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One of the obstacles to coherent fiber-optic communications is the 

unpredictable polarization drift which necessitates the use of an active 

polarization controlling system to match the polarizations of the signal and 

local oscillator. The polarization match must be maintained during the 

reset of any of the finite range components to prevent loss of data. We 

present a novel and practical system which uses three liquid crystal devices 

for the polarization matching process. Also, the required reset control 

algorithm and its derivation are described in detail. 
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CHAPTER I 

INTRODUCTION 

Modem fiber-optic communications systems employ direct detection 

of intensity modulated signals. Coherent communication offers the 

potential of increasing channel capacity by a factor of 1000 and receiver 

sensitivity by 14-20 dB [1], which would also lead to a significant increase 

in repeater spacing [2]-[4]. Coherent communication has come closer to 

realization with the advent of narrow spectral linewidth semiconductor 

lasers and single-mode fibers [5]. However, signal polarization 

fluctuations, due to inherent birefringent properties of the fiber and those 

induced by thermal and mechanical stresses, present an obstacle to 

heterodyne detection since coherent detection requires that the polarization 

of the local oscillator (LO) and signal match. Nevertheless, the 

polarization of signals in installed fibers varies slowly enough to permit 

SOP compensation [6], and state of polarization (SOP) matching schemes 

may be implemented in existing fiber-optic networks. 

The distinct advantages of coherent communications are not limited 

to long-haul telecommunications. The capabilities of network 

environments can also be significantly increased [7]. Coherent detection 

would allow for optical frequency division multiplexing (OFDM), in place 

of conventional wavelength division multiplexing (WDM), which would 

increase channel throughput and capabilities of the network. The increased 

receiver sensitivity would also permit the implementation of a passive star 

coupler to link users so that conventional star or point to point links would 
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no longer be needed. Also, since the hub of this network is passive, no 

optic-electronic and electronic-optic conversions are necessary. 

A practical SOP controlling system must change the polarization 

endlessly to prevent momentary signal loss during the reset of any 

constituent components. Currently, various groups are testing systems 

which use mechanically induced birefringence as a means of matching the 

signal SOP to that of the LO [8]-[14]. Most other research has concentrated 

on the use of LiNiB03 waveguides [15]-[18], while other proposed systems 

utilize electrooptic crystals, Faraday rotators, or rotating wave-plates [19], 

[20]. Difficulties associated with these systems include mechanical fatigue, 

high operating voltages, and excessive cost. To date, no practical systems 

have been reported. 

We have developed an endless SOP controlling system for use in 

coherent fiber-optic detection systems which does not exhibit the 

difficulties associated with previous systems [21], [22]. It uses three 

polarization controlling devices constructed with nematic liquid crystals. 

These cells are inexpensive to construct, have no moving parts, and can be 

operated on a 10-30V supply. 

This thesis describes the operation of liquid crystal retarders and 

their application in a polarization controlling system. A description of 

optical heterodyne· detection and the effects of mis-matched polarization 

states is given in Chapter II. Chapter III provides a brief description of 

liquid crystals and their use in polarization controlling devices. Chapter IV 

is an in-depth description of the system control and includes the derivation 

of the control algorithm. The system is experimentally demonstrated in 

Chapter V. 



CHAPTER II 

COHERENT DETECTION 

INTRODUCTION 

_./', 

A heterodyne system which implememti SOP matching is 

illustrated in Figure 1. The signal beam with a carrier frequency ro is 

spatially combined on the detector with a local oscillator offset by a 

frequency oro. Photo-detectors are inherently square law devices so that an 

interference (IF) signal is generated at the offset frequency oro. This 

interference signal is proportional to the strength of the LO and depends on 

how closely the polarizations of the LO and the signal match. The SOP 

controlling system continuously compensates the LO SOP to match that of 

the signal to prevent signal fading. This is accomplished by an SOP 

controlling system in which the only feedback available is the interference 

signal strength. In order to prevent momentary signal loss the control 

needs to be complete in that all possible polarization states can be matched, 

and endless so that no change in the SOP occurs during the reset of any of 

the finite range polarization controlling components. 

In order to understand the importance of polarization matching in 

coherent detection systems, we will examine the interference signal in two 

orthogonal decompostions of the polarizations of both the signal and LO 

beams. Since any polarization may be described as a superposition of 

linear polarizations in orthogonal directions, we will describe each beam 
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in terms of linear polarizations along the x and y directions transverse to 

the direction of propagation. The total IF signal is the sum of the IF 

signals of the fields in each direction and is maximum when the individual 

signals are in phase and of maximum amplitude. It will be shown below 

that relative phase and magnitudes of these IF signals are determined by 

how closely the polarizations are matched. 

THE IMPORTANCE OF A POLARIZATION MATCH 

The total electric field of a coherent beam is described as a 

superposition of linearly polarized beams below 

E = Exeos(cot + ex)x + E~os(cot + ey)y (2-1) 

where co is the carrier frequency, Ex and Ey are the magnitudes of the 

electric field in the x and y directions and Ex and Ey are relative phase terms 

of the components. The polarization is determined by the ratio of the 

magnitudes and the relative phase of the components. The intensity of the 

field in (2-1) is (Ex2 + Ey2)1/2, 

The signal beam may be intensity or angle (phase or frequency) 

modulated and in the most general form will be given by 

Es=Esx(t)cos(cot +9(t)+eJx + Esy(t)cos(COt +9(t) +Ey)Y (2-2) 

In angle modulation, 9(t) carries the signal information, but the total phase 

difference between the x and y components will remain constant, for 

constant polarization. For an amplitude modulated signal, 9(t) will be 0 
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and the magnitude of the quadrature components is modulated with 

Esx(t)/Esy(t) constant for constant polarization. The LO is assumed to have 

constant power and a fixed frequency offset from the signal carrier 

frequency by 8ro. Thus, 

E 1=E1xeos(( ro + 8ro)t + e,Jx + E1fos(( ro + 8ro)t + ey)Y c2_3) 

In the heterodyne system of Figure 1, the total field incident on the 

detector is the vector sum of the signal and LO fields and is given by 

Et=Es+E1 (2-4) 

Substituting (2-1) and (2-2) into (2-3) gives 

Et= [EsxCt)cos(rot + 9(t) + esJ + E1xCos((ro + 8ro)t + e1,J]x 

+ [Esy(t)cos(rot + 9(t) + esJ + E1fos((ro + 8ro)t + e1y)]y (2_5) 

The detector current, id, is proportional to the time average of the field 

squared over an optical cycle. Thus, 

id - <Et·Et> = (EsxCt)2 + E1x2 + Esy(t)2 + E1y2 )/2 

where, 

+ Esx(t)E1xcos(8rot - 9(t) + E1x - esx) 

+ Esy(t)E1ycos(8rot - 9(t) + E1y - Esy) 

= ibb + isig 

ibb = (EsxCt)2 + E1x2 + Esy(t)2 + E1y2 )/2 

(2-6) 

(2-7) 
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isig = Esx(t)EixCOS(Ocot - 0(t) + Eix - Esx) 

+ Esy(t)E1ycos(Ocot - 0(t) + E1y - Esy) (2-8) 

Equation (2-7) gives the baseband signal which is of no interest and will be 

be removed with a high pass filter. Equation (2-8) gives the signal of 

interest and has a carrier frequency of oco. 

Thus, the total interference signal is a superposition of two IF signals 

with the magnitudes and relative phase determined by the polarizations of 

the beams. By inspection, it is clear that if the phase and magnitude for 

each term match, as is the case when the polarizations match, isig will be 

maximum. On the other hand, if the beams are orthogonally polarized, 

the magnitudes will be identical, but the phase difference will be 180 

degrees and isig will be 0. 
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Figure I. Implementation of an SOP matching system in 
fiber-optic heterodyne detection. 
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CHAPTER III 

LIQUID CRYSTAL RETARDERS 

INTRODUCTION 

Liquid crystals are long polymer molecules which under proper 

conditions, may collectively exist in mesophases. Mesophases are highly 

ordered fluid-like phases which cause the material to be highly anisotropic. 

Since this molecular ordering is determined by the physical environment, 

and may be distrorted by an electirc field, liquid crystals are useful for 

making field controlled variable birefringent devices [23]. 

The liquid crystals used in this work are aligned in the nematic 

mesophase in which the molecules align in the same direction. Each 

molecule experiences an elastic restoring force which tends to align it in 

the direction of its neighbor. Thus, the molecular ordering of the system 

may be chosen by placing the liquid crystals between two surfaces which 

are specially prepared to align the molecules at the boundary in the same 

direction. Two common methods for preparing the surfaces are rubbed 

polyimide and directionally sputtered Si02. Either method will cause the 

molecules in contact with the surface to anchor in a uniform direction. 

LIQUID CRYSTAL RETARDERS 

A nematic liquid crystal retarder is made by introducing the liquid 

crystals between two plates of glass that have a transparent conductive 
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coating of indium-tin-oxide (ITO) and a suitable surface treatment. The 

retardance, is a function of molecular alignment, which is controlled by an 

applied electric field and is given by 

21t I \ r = ~(n9(V) - nq 

where 1 is the cell thickness, A. is the free-space wavelength, and ne(V) and 

n0 are respectively the indices of refraction for the extraordinary and 

ordinary rays. The extraordinary index of refraction is a function of the 

applied voltage V. 

Figures 2 through 4 illustrate the operation of a variable liquid 

crystal retarder. In Figure 2, an electric field less than V th which is the 

threshold voltage required to overcome the molecular restoring forces. 

The molecular order is such that the retardance is maximum. Figure 3 

shows the cell response when electric field is increased beyond V th. 

Distortion of the nematic order is greatest near the center since these 

molecules experience the weakest restoring forces. The rotation of these 

molecules reduces the retardance. In Figure 4, the applied electric field is 

equal to Vmax' which is the breakdown voltage. The molecules on the 

surface are too tightly anchored to rotate completely in the direction of the 

field and the cell remains slightly birefringent. 

Figure 5 is a graph of the retardance as a function of applied voltage 

measured at 633nm for the liquid crystal retarders used in this work. The 

devices are made with ROTN 1132 liquid crystals and a 15.5 µm spacing. 

Liquid crystal devices are addressed with a.c. voltages to prevent ion 

migration which degrades performance. By using different liquid crystals 



10 

or a different cell spacing, the operating voltage range for the desired 

retardance range may be tailored to suit many applications. Generally, it is 

preferable to design the devices to operate in the region where dr /dV is 

small. Although this reduces the driving efficiency of the cells, here they 

are less sensitive to thermal fluctuations since the molecular restoring 

forces are dominant. 
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CHAPTER IV 

SYSTEM OPERATION 

INTRODUCTION 

The system we have developed is shown in figure 6. The LO is 

linearly polarized with the liquid crystal devices dl, d2 and d3 tilted with 

their fast-axes at 45, 0 and 45 degrees respectively to the plane of LO 

polarization, which defines the x axis of the coordinate system. 'Pz, Sp and 

Sy. which completely determine the output polarization, represent the 

retardances introduced by the three liquid crystal retarders and are 

functions of the applied voltages. The Jones vector describing the output 

polarization is obtained by multiplying the input polarization vector and the 

Jones matrices for each device in opposite order than they appear in the 

system, which gives 

_ [ cos(Sy/2) isin(Sy/2)] leiSp/2 o l I cos(\f z/2) isin(\f z/2) l [ 1 l 
Eout = isin(Sy/2) cos(Sy/2) o e-iSp/2 isin(\f z/2) cos(\f z/2) o 

Sp (\fz+Sy) Sp (\fz-Sy) 
cos2cos 2 + isin-rcos 2 

= 
. Sp . (\f z- Sy) . Sp . (\f z+ Sy) 

sm2sm 2 + 1cos2sm 2 (4-1) 
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CONTROL ALGORITHM 

Two control algorithms are necessary to continuously and endlessly 

maintain the polarization match by appropriate adjustments to \f z, 9p, and 

e y. In the normal mode of operation, the controlling electronics 

systematically adjust the device voltages to maintain the maximum IF 

signal. These devices have a finite control range, so a reset mode is 

designed to bring the devices back into pre-defined operation limits while 

maintaining a constant output polarization. 

NORMAL MODE OF OPERATION 

The normal mode algorithm is designed to permit a system reset 

when necessary while maintaining the retardances within their operational 

ranges. If it is improperly designed, the system may enter a state from 

which no reset is possible. During the normal mode of operation, d 1 and 

d2 operate as a single unit independent of d3, and the output polarization is 

determined by two independently controlled units. 

d 1 and d2 operate as a linear state rotator which rotates the 

polarization at point B (see Figure 6) endlessly in either direction and 

which will be referred to as the rotator analog hereafter. The polarization 

at point B is given by 

-EB= 

\f 
cos~ 

2 
ei(7t/2 - e_, . \f z v sm~ 

2 (4-2) 
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where the absolute phase term has been ignored since it has no effect on the 

polarization. Note that if'¥ z = 2mt (n = 0, ±1, ±2, ... ), the polarization is 

~=[6] (4-3) 

and when 'P z = (2n + 1 )rt, the polarization is 

~=[?] (4-4) 

Since the eigenstates of d2 are aligned to the coordinate axes, the 

polarization at point A matches one of the two eigenstates of d2 when '¥ z = 

nrt, and changes in 0p have no effect on the polarization at point B. It will 

be shown that the polarization at point B may be rotated endlessly by 

choosing the operating range limits of \fl z to be any integral multiples of rt, 

and by switching between appropriate values of 0p at these range limits. 

Now, if Sp= (4n + l)rt/2 the polarization at B is 

- -[ cos('P z/2)] 
EB - sin('P z/2) (4-5) 

which is linear with the plane of polarization tilted 'P z/2. Similarly, for 

ep = (4n - l)rt/2 

- [ cos('P z/2) ] 
EB = -sin('P z/2) (4-6) 
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which has a tilt of-'¥ z/2. In the normal mode of operation, Sp is set to 

either ( 4n ± 1 )n/2 and the polarization at point B is· linear. Thus, the tilt 

angle at point B may be rotated endlessly in either direction by reversing 

the direction of control of '¥ z at the boundary of its range limit and 

switching Sp to its complimentary value. At these transition points, the 

polarization will be given by (4-3) or (4-4) depending on which range limit 

has been reached. 

For complete polarization control d3 is required. The polarization 

control of the entire system can be represented as two rotations about 

orthogonal axes on the Poincare sphere as illustrated in Figure 7. Since 9p 

= (4n ± l)n/2 , the rotator analog causes a rotation about the Z - Z* axis 

along the equator by an angle ± '¥ z, while d3 causes a rotation about the 

ey - Sy* axis by an angle Sy. Clearly, all possible polarization states may 

be matched with these independent rotations. 

RESET MODE OF OPERATION 

Since the rotator analog operates endlessly, no reset of d 1 and d2 is 

necessary. However, d3 will periodically reach a range limit and a reset of 

the entire system will be required. No polarization tracking is possible 

during the reset mode so it is important that the reset is completed in a 

time short compared to the rate of change of SOP in the signal fiber. A 

system built with standard liquid crystal devices is capable of a reset in less 

than a second. This is far faster than the required reset interval since the 

SOP change in installed fiberoptic networks is on the order of hours or 

days [6]. 
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During the reset cycle, d 1 and d2 no lon£er operate as a rotator and 

the polarization at point B will not be linear. As d3 is brought back into its 

operational range, d 1 and d2 are controlled in a manner that exactly 

compensates for the changes in d3 so that the output SOP remains constant. 

The reset cycle is initiated when Sy reaches its upper or lower range 

limits. In general, these limits may be set to any integral multiple of 1t, 

however, for clarity, only the limits of 0 and 1t are discussed here. 

Similarly, the operational limits of "I' z and 9p are chosen to be 0 to 1t and 0 

to 21t respectively. Thus, when the upper bound reset cycle is initiated, Sy 

= 1t, Sp = n/2 or 3n/2, and \f'z = \f'z0 , where 0 ~ \f'zo ~ 1t, and according to 

( 4-1 ), the polarization will be 

- [ cos("I' ro /2) ] 
Ereset = +sin("I' ro/2) (4-7a) 

Similarly, when the lower range reset is initiated 9y = 0, 9p = n/2 or 3n/2, 

and "I' z = "I' zo, where 0 ~ "I' zo ~ 1t, and the polarization will be 

- [ sin("I' ro /2) ] 
E reset = ±cos("I' ro /2) (4-7b) 

The reset conditions on 9y, 9p and "l'z are derived below using (4-1) 

and assuming a constant polarization given by ( 4-7). For the upper range 

reset, 

0y = 1t - Cos-1(cos"l'z/cos"l'z0 ) (4-8) 

9p = 9po - MCos-l(sin"l'zofsin"l'z) (4-9) 
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where 

0 ~ Cos-I(x) ~ 1t 

M= 1 if 0 ~ 'l'zo < 7t/2 and 0po = 1t /2 

or 

7t/2 ~ '¥ zo< 1t and 0p0 = 37t/2 

and 

M = -1 if 0 ~ '¥ zo <1t/2 and 0po = 37t /2 

or 

7t/2 ~ '¥ zo< 1t and 0po = 7t/2 

where 0po and 'l'zo are the initial values of Sp and 'l'z. When 0y reaches 

its lower range limit, 

9y = Cos-1(cos'l'z/COS'l'z0 ) (4-10) 

0p = 0po + MCos-I(sin'l'zofsin'l'z) (4-11) 

where M is determined by the same relationships above. 

During the reset, the values of 0y and 0p are calculated according to 

(4-8) and (4-9) or (4-10) and (4-11) as 'l'z is incrementally changed from 

'l'zo to 1t-'¥zo· When the cycle is completed, Cos-I(cos'l'z/COS'l'zo) = 1t and 

Cos-I(sin'l'z0 /sin'l'z) = 0, so that 0p = 0po· but Sy= 0 and 1t for the upper 

and lower limit resets respectively. 
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Derjyation of Upper Ranee Reset 

The upper range reset algorithm is derived by solving ( 4-1) for the 

magnitude and phase of the x and y components and setting them equal to 

the terms of (4-7a). Thus, 

where 

Ax2 = cos2Pcos2(Z + Y) + sin2Pcos2(Z - Y) = sin2 Z0 

Ay2 = sin2Psin2(Z - Y) + cos2Psi~2(Z + Y) = cos2 z0 

-I( cos(Z - Y)) -if sin(Z + Y)) 
Ex - Ey = tan tanP cos(Z + Y) - tan \ cotP sin(Z _ Y) = n1t 

Zc: ~d2 

Zo = ~zo/2 

p = 0p/2 

y = 0y/2 

n=0,±1,±2, .. 

( 4-12) 

(4-13) 

(4-15a) 

(4-15b) 

(4-15c) 

(4-15d) 

and Ax and Ay are the magnitudes of the x and y components and Ex and Ey 

are the phase terms. Conditions (4-12) and (4-13) ensure that the 

magnitude of the field components remain constant, and ( 4-14) requires the 

polarization to remain linear. 

By (4-14), 

.ij cos(Z - Y)) .ij sin(Z + Y)) 
tan \ tanP cos(Z + Y) = tan \ cotP sin(Z - Y) + n1t 



cos(Z - Y) J -1( sin(Z + Y)) ) 
tanP cos(Z + Y) = tan l tan cotP sin(Z _ Y) + mt 

=tan J tan-J cotPs~n(Z + Y))) l \ sm(Z- Y) 

= cotPs~n(Z + Y) 
sm(Z- Y) 

20 

The previous expression is valid even if the tan-I function is restricted to 

principal values since any discrepancy is absorbed in the n7t term. 

Dividing both sides of the last expression by cotP gives 

tan 2J> = cos(Z + Y)sin(Z + Y) 
cos(Z - Y)sin(Z - Y) 

_ sin(2Z + 2Y) 
- sin(2Z - 2Y) 

Using the identity, 

tan 2a = 1 - cos2a 
1 + cos2a 

and solving for cos2P gives 

cos2P = sin(2Z + 2Y) 
1 + sin(2Z - 2Y) 

1 
_ sin(2Z + 2Y) 

sin(2Z- 2Y) 



Thus, 

sin(2Z - 2Y) - sin(2Z + 2Y) 
= sin(2Z - 2Y) + sin(2Z + 2Y) 

-2cos2Zsin2Y 
= 2sin2Zcos2Y 

cos2P = -cot2Ztan2Y 
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( 4-16) 

Taking (4-13) minus (4-12) and using the identity, 

cos2a. = cos2a. - sin2a. 

gives 

cos2Z0 = sin2Psin2(Z - Y) + cos2Psin2(Z + Y) 

- cos2Pcos2(Z + Y) - sin2Pcos2(Z - Y) 

= sin2P[sin2(Z - Y) - cos2(Z - Y)] 
+ cos2P[sin2(Z + Y) - cos2(Z + Y)] 

= sin2P[ - cos(2Z - 2Y)] + cos2P[ - cos(2Z + 2Y] 

= -sin2P[cos2Zcos2Y + sin2Zsin2Y] 
+ cos2P[sin2Zsin2Y - cos2Zcos2Y] 

= -cos2Zcos2Y[sin2P + cos2P] + sin2Zsin2Y[cos2P - sin2P] 

Thus, 
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cos2Z0 = - cos2Zcos2Y + cos2Psin2Zsin2Y (4-17) 

Substituting ( 4-16) into ( 4-17), 

cos2Z0 = - cos2Zcos2Y - cot2Ztan2Y sin2zsin2Y 

Thus, 

-cos2Zcos 22Y - cos2Zsin 2iY = ---------------------~ 
cos2Y 

_ -cos2Z[cos22Y +sin2iY] 

_ -cos2Z 
- cos2Y 

cos2Y 

( 4-18) 

Since 9y = 2Y is defined to be in the range 0 to n, the principal value 

identity, 

gives, 

Cos-I(-x) = 1t - Cos-Ix 

-I( cos2Z) 
2Y = 1t - Cos cos2Zo 

0:::;; Cos-Ix:::;; 1t (4-19) 



Substituting (4-15a), (4-15b), and (4-15d) gives, 

~ cos'l' z) 
Sy= 1t - Cos \ cos'l' zo 

which confirms ( 4-8) in the text. 

23 

(4-20) 

The conditions on Sp are derived below. Substituting (4-17) into (4-

15) yields, 

Thus, 

cos2Zcos2Z&iin2Y 
cos2P = . 2Z 2Z sm cos 

cos2Z~in2Y 

= sin2Z 

sin2Y = sin2Zcos2P 
cos2Z0 

Substituting (4-18) and (4-21) into (4-17), 

Thus, 

cos2Z
0 

= cos 22z + cos 22Psin 
2
2Z 

cos2Z0 

cos22z0 = cos22Z + cos22Psin22Z 

(4-21) 



cos 22P= cos 
2
2Zo - cos 

2
2Z 

sin
2
2Z 

cos 22Z0 - sin 2iz -1 

- sin22Z 

- sin 
2
2Z0 - sin 2iz 

- sin2iz 

-sin2iz 
= . 2- 0+1 

Slil LZ 

cos 22.P _ 1 = - sin 2iz0 

sin2iz 

sin 2iP = sin 2izo 
sin2iz 

sin2Zo 
± sin2P = sin2Z 

-I(± sin2Zo) 
2P = sin sin2Z 

24 

(4-22) 

Principal values of sin-Ix are in the range± rt/2. Since Sp = 2P might not 

be in this range during the reset cycle, two cases must beconsidered. For 

principal values of 2P we can use the identity, 

Sin-Ix = rt/2 - Cos-Ix O ~Cos-Ix~ 7t (4-23) 
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-rt/2 ~Sin-Ix ~rt/2 

and substitute (4-15a), (4-15b), (4-15c) which yields, 

rt -if sin'¥ zo) 
0p= 2 -Cos \ sin'I'z (4-24) 

This is (4-9) for 0 ~'I'zo ~ rt/2 and 9po = rt/2. Also by (4-22), 

rt -i/-sin'I' zo) 
0p= 2 -Cos \ sin'I'z 

(4-25) 

Using (4-19), (4-25) becomes, 

rt -I( sin'¥ zo) 
0p= - 2 +Cos sin'I'z 

(4-26) 

Since a retardance of -rt/2 radians has the identical effect on polarization as 

3rt/2 radians, (4-26) confirms (4-9) for 0 ~'l'zo ~ rt/2 and 9po = 3rt/2. 

When rt/2 > '¥ zo ~ rt, the non-principal values of ( 4-22) are used which 

gives, 

-I(±sin2Zo) 
2P = rt - Sin sin2Z (4-27) 

where the principal valued function, Sin-I. function will return values in the 

range -rt/2 to rt/2. Again, using (4-23) and substituting (4-15a), (4-15b), 

and (4-15c), (4-27) becomes, 
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0p = 7t +Cos -if sin'¥ zo) 
2 \ sin'l'z (4-28) 

which is ( 4-9) for 7t/2 S '¥ zo S 7t, and 0po = 7t/2. Using ( 4-19) for the 

negative argument in (4-27) gives, 

7t -~sin'¥ zo) 
0p= - 2 - Cos \ sin'l'z (4-19) 

which confirms ( 4-9) for 7t/2 S '¥ zo S 7t, and 0po = 3rr./2. 

Deriyatjop of Lower Raoi:e reset 

The lower range reset can be derived by reversing the process of the 

upper range reset. The initial and final values of 0y for the upper range 

reset are exactly the final and inital values respectively for the lower range 

reset. Thus, subracting (4-8) from 7t gives (4-10). Similarly, (4-11) 

follows by switching the inital conditions on ( 4-9). In order to prevent 

continual swithching between the upper and lower reset modes, a slight 

hysteresis must be programmed into the controlling system. 
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CHAPTER V 

EXPERIMENTAL VERIFICATION 

INTRODUCTION 

The operation of the system is verified with two experiments. One 

illustrates the endless control of the rotator analog while the other 

demonstrates the normal and reset modes of the entire system. The 

experiments are designed to demonstrate the operation of the polarization 

controller, and are not intended to mimic an actual heterodyning system. 

EXPERIMENTAL APPARATUS 

The experimental apparatus is shown in Figure 8. A polarized HeNe 

laser is used as a source with the plane of polarization defined to be 0 

degrees. Devices d 1, d1, and d3 are liquid crystal retarders and are 

mounted on rotational mounts which rotate in the plane normal to the laser 

beam. The a.c voltages V dl, V d2, and V d3 are controlled independently. 

A polarizer which is also mounted on a rotational mount, and a power 

meter are used to determine the output polarization by rotating the 

polarizer and measuring the transmitted power. The angle of maximum 

transmission gives the tilt, and the ellipticity is defined as the minimum 

transmission over the maximum transmission. 
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CHARACTERIZATION OF RETARDERS 

Before beginning the experiments, the rotational mounts must be 

calibrated in reference to the fast axes of the retarders so that the rotation 

angle may be known accurately. Then the retardance characteristics for 

each cell must be measured. 

Initially, the retarders are removed and the polarizer is rotated to 90 

degrees for maximun extinction so that no transmitted power is measured. 

Any device placed in front of the polarizer which changes the polarization 

will cause light to transmit through the polarizer which will be measured 

with the power meter. Since a linearly polarized beam remains linear 

when it propagates in one of the two eigen-axes of a retarder, the fast and 

slow-axes of each retarder can be located by inserting it in the beam and 

rotating it until no transmitted light is detected. The fast-axis is the one 

measured to be orthogonal to the liquid crystal alignment direction. 

The retardance of the cell is measured by rotating the fast axis of the 

retarder to 45 degrees with the polarizer still at 90 degrees. This is a 

standard configuration for an electro-optic modulator and the transmitted 

power can be shown to be [24] 

Pout= Pinsin2r (V) 

where Pin is the input optical power, r(v) is the retardance which is a 

function of applied voltage, and Pout is the transmitted power. Hence, 



-1 {P;:;; 
r(v)= sin ~ J>:-
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By slowly increasing the volage across the cell, the transmitted 

power will go through several minima and maxima every rr,/2 of 

retardance until there is little or no change near a minimum. Here the cell 

has a retardance close to zero and increasing the voltage much beyond this 

point will cause the cell to break down. These measurements were made 

for each cell and were found to be nearly identical. The retardance curve 

for a typical cell is plotted in Figure 5. 

ROT A TOR ANALOG 

The first experiment demonstrates the endless control of the rotator 

analog. Devices d 1 and d2 are placed in the experimental apparatus with a 

45 and 0 degree tilt respectively. Initially, the drive voltages to dl and d2 

(V d 1, and V d2) are set equal to 1.31 V, and 1. 72 V to provide 2n and 3n/2 

radians of phase retardance respectively, and the polarization at point B is 

measured to be linear and to have a 0 degree tilt. V d 1 is then increased 

which reduces \J' z, and a positive rotation of the polarization results. When 

Vdl is 2.32 V, \J'z = 7t, and Vd2 is increased to 3.60 V which gives 9p = 

n/2. During this transition, the polarization is measured to remain linear 

and to have a constant tilt of 90 degrees. Now, as V dl is decreased, 

polarization rotation continues in the positive direction until a rotation of 

180 degrees has been reached. Once again V dl is 1.31 V and \J'z = 2n so 

that the polarization at the input to d2 matches one of the eigen states of 

that device and V d2 may be switched back to 1.72 V so that 9p = 3n/2. 
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Thus, the rotation will continue in the same direction by increasing V dl. 

Experimental plots of V dl and V d2 for a 180 degree rotation are given in 

Figure 9 for every 10 degree increment. 

SYSTEM DEMONSTRATION 

The second experiment demonstrates the operation of the entire 

system for both the normal and reset modes. Now all three liquid crystral 

retarders are in place with the orientation described in Chapter IV. 

Initially, Vdi. Vd2 and Vd3 are set to 1.31V,1.72 V, 10 V, so that 'l'z = 
27t, 0p = 37t/2, and 0y = O,and the polarization is measured to be linear 

with a 0 degree tilt. The drive voltages are now systematically adjusted to 

produce polarizations which map onto the Poincare sphere as a locus of 

points indicated in Figure 10. A reset cycle is required when Sy = 7t. 

The con tolling voltages for the 12 polarization states and for 6 

intermediate states of the reset cycle are plotted in Figure 11. The voltages 

of points 1 through 6 correspond to the first six polarization states starting 

with the H polarization which is horizontal and linear. Voltages 7 

through 11 demonstrate the reset cycle and are indicated in the shaded 

region. Here the polarization is maintained at V which is vertical and 

linear. The normal mode of operation is continued with voltages 12 

through 18, which brings the polarization back to H. This demonstrates 

the endless control possible by the system when a reset is done at the 

appropriate time. 
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Fi1Wre 11. A plot of the control voltages demonstrating nonnal and 
reset modes. 



CHAPTER VI 

CONCLUSIONS 

We have presented a novel yet practical endless SOP controlling 

system for use in coherent fiber-optic detection systems which uses three 

polarization controlling devices constructed with nematic liquid crystals. 

We have illustrated the importance of polarization matching in heterodyne 

detection and the fundemental operation of liquid crystal retarders. 

Finally, we provided an in-depth description of the system control and 

demonstrated it experimentally. 
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APPENDIX 

POLARIZED LIGHT 

INTRODUCTION 

The polarization of a monochomatic beam may be determined by the 

magnitude and phase of the field in two orthogonal directions transverse to 

the direction of propagation. Thus, polarization may be altered passing the 

beam through an optically anisotropic material which introduces a phase 

delay in one field direction with respect the other. Jones Calculus is a 

mathmatical construct for determining the effects of anisotropic or 

dichroic materials on polarized light and Poincare's Sphere is a graphical 

method for the same means. These methods are used extensively in this 

thesis and are presented below. 

JONES CALCULUS 

The effects of a system of polarization controlling devices on 

polarized light can be calculated with Jones Calculus [25], [26], [27], [28]. 

In Jones Calculus, the electric field polarization is represented by a vector 

in the form, 

E= IA~iEx 
Af-iEy 
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where Ax and Ay are the amplitudes of the field in the x and y directions, 

and their phase difference is Ey - Ex. In general, the amplitude of the total 

field is normalized to unity. 

A birefringent device may be used to change polarization and is 

represented by a 2 by 2 matrix. The resultant polarization is found by 

multiplying input polarization vector by device matrix. The Jones matrix 

for a linearly birefringent device, such as the liquid crystal retarders used 

here, which is aligned to the principal axes is, 

[
eiP/2 Q l 

Q e-iP/2 

where p is the retardance. The matrix for the same devices tilted 45 

degrees is, 

[ 
cos(p/2) isin(p/2)] 
isin(p/2) cos(p/2) 

POINCARE SPHERE 

The Poincare sphere (see Figure 12) is a three dimensional model 

useful in describing the effect of optical phase retarders on polarized light. 

[2 9] Every point on the sphere represents a unique polarization state. 

Linear states are mapped on to the equator with right-handed and left

handed elliptic states mapped to the hemispheres above and below 

respectively. Ellipticity of the states increases in the direction of the poles 

which represent the circular states. lines of constant ellipticity defined by 
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lines of !attitude and lines of constant tilt are defined by longitudinal lines. 

Orthogonal polarizations are dimeterically oposite of each other. The H, 

V, RC, and LC indicate the horizontal linear, vertical linear, right-handed 

circular and left-handed circular states. 

Polarization conversions by birefringent devices are represented as 

coordinate transformation on Poincare's sphere. The effect of a retarder 

on an arbitrary input polarization state is determined by a rotation on the 

surface of the sphere about an axis defined by the two orthogonal eigen

axes of the retarder from the point corresponding to the input polarization 

to that of the output polarization. The angle of rotation is equal to the 

optical phase retardation. The retarders have linear eigen-axes so the axis 

of rotation intercepts the equator at a point corresponding the the tilt of the 

retarder's eigen axes. 

An example of a quarter-wave retarder tilted 45 degrees to H is 

illustrated in Figure 13. The longitude corresponding to 45 degree tilt is 

located by rotating 90 degrees around the equator in a counter clock-wise 

direction as viewed by the R state. This point is indicated with an FA and , 

inicating the fast-axis. The SL is diameterically opposite and inicates the 

location of the slow axis. If the input beam is linearly polarized and 

vertical, the output polarization is found by rotating 90 degrees about FA

SL. Thus, the output beam is right-handed circularly polarized. 



43 

RC 

v 

LC 

Figure 12. The poincare sphere. 

Figure 13. An example using the Poincare sphere. 
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