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ABSTRACT 

An abstract of the thesis of John Malcolm Chase for the Master of Science in 

Geography presented April 29, 2002. 

Title: Forest Landscape Change Detection in the Meseta Purepecha, Michoacan, 

Mexico. 

Social, political, economic, and environmental factors converge in developing 

countries to stimulate high rates of deforestation. Forest conversion reduces 

biodiversity, contributes to carbon loading of the atmosphere, alters the global water 

balance, and degrades the quality of life for rural people. Mexico is the fifth most 

biologically diverse country in the world and temperate and tropical forests in Mexico 

are rapidly disappearing with environmental and cultural repercussions for people and 

ecosystems. 

This study examines changes in the forest landscape surrounding two 

communidades indigenas in Michoacan, Mexico over a 15-year period. The research 

area includes communal forest, pasture, and agricultural land within the adjacent 

municipal boundaries of two Purepecha Indian communities: Sevina and San 

Francisco Pichataro. The economies of both villages depend in part on wood products 

manufacturing with timber harvested in local mixed-pine forests. As a result, forest 



landscapes surrounding the towns are at risk for potentially rapid land cover change 

and environmental degradation. 

Remotely sensed digital satellite images (Landsat Thematic Mapper), 

government forest maps, air photos, and ecological sample data collected in the region 

were compiled, registered, and analyzed. Supervised classifications of the imagery 

were compared to detect changes in forest and non-forest land cover classes between 

1986 and 2000. A change image shows the location and extent of landscape 

transformation during the period of interest. 

Post-classification comparison of the imagery indicates Sevina converted more 

than 40% of its forest to non-forest land cover and Pichataro, 7% of its forest. 

Pichataro experienced more vegetation regeneration than Sevina. Distinct spatial 

patterns of deforestation and vegetation re-growth emerge from the image change 

map. Sevina exhibits large contiguous regions of deforestation while the pattern in 

Pichataro is more evenly dispersed. 

This research is useful for assessing the impact of current forest management 

practices in the study area. It contributes to planning future harvest strategies, 

replanting programs, and conservation measures by local stakeholders. The change 

detection process is transferable to a variety of cultural and environmental situations 

where forest landscapes and the people who depend on them are at risk. 
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CHAPTER 1: INTRODUCTION 

The global environment is undergoing rapid systemic transformation. The 

realization that humans are the main catalyst for that change is not new. Pre-historic 

and ancient human modifications of the environment have fluctuated with the rise and 

fall of civilizations, punctuated by periods of reversal and ecological regeneration 

(Marsh 1864; Deneven 1992). At present, the magnitude of human interference with 

the physical environment appears to have out-paced the transformational power of 

natural systems. 

The historic human ability to alter landscapes at local and regional scales has 

become elevated to global proportions with the development of a fossil-fuel-based 

industrial society over the past 300 years (Kates et al. 1990). Forested landscapes are 

an important component of the global ecosystem and deforestation is an instrument of 

globally cumulative change (Meyer and Turner 1995). As the magnitude ofhuman­

induced change increases, so does the vulnerability of the world's forests. 

The process of deforestation as an agent of global change is long established 

and accelerating (Kates et al. 1990). Forest removal results in biotic carbon emissions, 

creating a strong link to global change via the atmosphere (Houghton et al. 1991 ). 

Rates of tropical deforestation nearly doubled during the 1980's causing the global 

increase in biotic carbon emissions to exceed the growth in fossil fuel emissions 
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(Myers 1989). The removal of forest cover has negative effects on the availability of 

fuel wood for household heating and cooking, the integrity of soil and water resources, 

and the quality of rural life (Adger et al. 1995). Deforestation degrades genetic 

resources, reduces biological diversity, accelerates soil erosion, and adversely affects 

the global water budget (Allen and Barnes 1985). 

Deforestation is a major concern for developing countries. The pace of 

deforestation in Mexico, like other emerging nations that control forest resources, is 

accelerating. Mexico is rapidly losing its remaining closed forests with rates of 

deforestation during the 1980's estimated between 365,000 ha to 1.5 million ha 

annually (Adger et al. 1995; Barbier and Burgess 1996). Rates vary by forest type, 

and tropical forests are believed to be under the greatest pressure. Masera (1992) 

estimates the rate for temperate coniferous forests at 0.64% and tropical evergreen at 

2.0%. Mexico ranks fourth globally behind Brazil, Indonesia, and Zaire for tropical 

deforestation (Cairns et al. 1995). 

The most commonly cited anthropogenic causes of deforestation in developing 

countries are clearing for agriculture and pasture, logging, and fuel wood cutting 

(Allen and Barnes 1985; Barbier and Burgess 1996). The drivers behind these cultural 

practices are less easily defined social, economic, and political forces. Stimuli 

promoting deforestation in developing countries include population pressure, national 

debt, land tenure, private property rights, governmental natural resource policy, and 

political stability (Gibson et al. 2000). 
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Mexico controls vast regions of forest suitable for commercial exploitation. 

Mexico'·s 191 million hectare (ha) land area contains approximately 26% closed forest 

or 49. 7 million ha (Masera et al. 1992). Of the total forest area, 25 .5 million ha is 

classified as temperate forest located in the mountainous regions of the country, and 

24.2 million ha is broadleafhumid forest located in the south and southeast (Adger et 

al. 1995, Barbier and Burgess 1996). Approximately 25% of the forests are privately 

held while 70% are controlled by ejidos and 5% by indigenous communidades (Silva 

1997; Castillo and Toledo 2000). 

Mexico's forests have come under increasing pressure following the 

modification of Constitutional Article 27, passage of the 1992 Forestry Law, and the 

North American Free Trade Agreement (NAFTA) (Adger et al. 1995; Menotti 1998). 

These three events substantially expanded the private forestry sector by allowing the 

sale of communally held lands, encouraging ejidos and communidades to enter joint 

ventures with private industry, and privatizing governmental forestry engineering 

services (Bray and Wexler 1996; Silva 1997). The consequences of such market 

liberalizations and changes in land tenure systems may prove detrimental to the future 

sustainability and success of local forest production and management in Mexico. 

Michoacan ranks second in importance among Mexican states with extensive 

amounts of sub humid temperate vegetation. The forests of the Meseta Purepecha are 

among the most biologically diverse subhumid temperate mixed-pine and oak forests 

in the world. They thrive on the cool, moist slopes of eroded tertiary volcanoes 

surrounding flat-floored agricultural valleys inhabited by the Purepecha since Pre-



Columbian times. The forests contain several species of pine, many oaks, alder, and 

true fir. They provide habitat for high levels of biological diversity and endemism in 

flowering plants, mammals, amphibians, reptiles, and terrestrial vertebrates (Toledo 

and Ord6fiez 1993). 
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The purpose of this investigation is to determine the extent of deforestation 

that occurred within two Purepecha Indian communidades in central Mexico over a 

15-year period. The study relies on remote sensing and GIS technology to analyze 

forest change within an ecological framework. The analysis consists of classifying 

two Landsat (Land Observation Satellite) Thematic Mapper (TM) satellite images for 

forest and non-forest land cover categories, then comparing the two land cover maps 

to determine the amount of deforestation that occurred between 1986 and 2000. GIS 

and remote sensing technology provide tools for the assessment and analysis of our 

rapidly changing environment. When used within a landscape and cultural ecological 

framework these tools improve our ability to evaluate the amount and direction of 

social and environmental change. A better understanding of how and why the natural 

world is changing presents the opportunity to plan for future sustainability of social 

and natural systems from local to global scales. 

The villages of Sevina and San Francisco Pichataro are located in the Meseta 

Purepecha, in the state of Michoac:in, Mexico (Figure 1.1 ). Both villages are 

indigenous Purepecha communities with federally sanctioned land rights. In both 

communities forest, pasture, and agricultural parcels are held privately and 

communally. The economies of both villages are bolstered by a combination of 



timber/lumber production and furniture/wood products manufacturing. The 

communities share a common municipal boundary and their town centers are located 

about 12 km apart (Figure 1.2). 

5 

Changes in trade and forestry policy and enhanced access to external markets 

created a recent boom in lumber and furniture production in the region. Sevina and 

Pichataro were thrust into modem markets exposing their community forests to the 

consequences of profit driven resource extraction. Traditional, sustainable forest 

resource use is being traded away for short-term gain in a boom or bust cycle of 

commercial exploitation. Workers who migrated to find jobs elsewhere have returned 

to Pichataro to participate in the growth and profits the local industry recently 

experienced. Sevina experienced this cycle when its forests were cleared in the 1990's 

to supply sawmills and can no longer participate in the boom because of a depleted 

resource base. Pressure on Pichataro's forests is growing and the dominant activities 

in the forest in terms of altering the structure and function of the ecosystem are 

logging and grazing. Access to regional markets and modem consumer goods 

contributes to forest degradation in the region. 

This thesis is part of a larger investigation of forest ecology and landscape 

change in the Meseta Purepecha focused on better understanding the political, 

economic, and cultural forces shaping forest resource use in the region (Works and 

Hadley forthcoming). The condition and composition of the Meseta's pine forests are 

linked to the socio-economic well being of local indigenous groups who manage them. 

A deeper understanding of vegetation dynamics in the region's forests contributes to 
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informed decisions about how future resource use will affect the stability of local 

communities, and the forest environment they depend on. Additionally, an improved 

concept of how cultural activities affect forest ecology and the sustainability of timber 

harvest contributes to enhanced forest stewardship by local stakeholders. 

Few studies have examined spatial landscape change and vegetation 

dynamics in temperate subhumid forest ecosystems (Mladenoff et al. 1993; Velazquez 

et al. 2000). This research aids future assessment of forest change and serves as an 

historical snapshot in time for comparison purposes. Research plots established on the 

ground in 2000 can be revisited in the future with the digital mapping, GIS, and GPS 

technology used by the study. 

The results of my change detection study can also contribute to more 

thoughtful programs of harvest, production, and conservation for local people who 

rely on the forests culturally and economically. Whereas tropical and temperate 

forests have been studied extensively with remotely sensed imagery, few studies have 

examined satellite data from temperate subhumid forests to estimate deforestation and 

temporal-spatial landscape change. Such results are useful for resource managers who 

make decisions about land use policies, harvest practices, reforestation activities, and 

conservation measures. 

Currently no study of forest landscape dynamics for the communities of Sevina 

and Pichataro exists. This research offers a benchmark for additional evaluations of 

natural resource use and sustainability in the region. The study provides local 

resource managers with a baseline against which to compare their forest landscape in 



the future. The land cover maps produced by classifying and comparing satellite 

images from 1986 and 2000 allow extended appraisals of deforestation and forest 

regeneration. 
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Figure 1.1. Relative location of the study area. 
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Figure 1.2. Absolute location of the study area. 
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CHAPTER 2: RESEARCH CONTEXT 

Community forestry, biodiversity, diminishing forest resources, and land 

degradation in the region have stimulated interest in the Meseta Purepecha's temperate 

mixed-pine forests and the indigenous culture that has survived there since pre­

conquest times. Multiple social, economic, and political layers of influence and 

conflict color the landscape adding to the region's complexity. 

People and Forests of the Meseta Purepecha 

Globalization and liberalization of markets and trade in Mexico have 

profoundly affected previously isolated ejidos and communidades with forest reserves. 

The repeal of constitutional article 27, the Fores try Law of 1992, and the passing of 

trade agreements like the General Agreement on Tariffs and Trade (GATT) and 

NAFTA have changed the face ofland tenure, forestry, agriculture, migration, trade, 

and transport in the region. Opportunities for small villages in the Meseta to 

participate in the global economy provide economic prospects, but often lead to 

mismanagement of the forests, timber theft, and environmental degradation of 

communal lands (Bray and Wexler 1996; Silva 1997). 

Several investigations in the Meseta have contributed to a body of literature 

concerning deforestation, communally managed forests, and land degradation. The 
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economic success and sustainability of community forestry enterprises (CFEs) in 

Michoacan and nearby states provides a model for timber-reliant communities like 

Sevina and Pichataro. Although Sevina and Pichataro are not truly CFEs with a 

formal governing body whose duty it is to regulate communal forests and control a 

centralized milling and woodworking enterprise, there are some important similarities. 

Both communities have a quasi-communal forest management and timber distribution 

hierarchy and regulations regarding logging practices. Unfortunately the regulations 

are often ignored, leading to over cutting, clandestine logging, and environmental 

degradation. 

The recent liberalization of the forestry sector and land tenure regulations has 

seen outside interests take advantage of local naivety concerning prices and markets 

for timber, lumber, and value added wood products. Like most of Mexico, indigenous 

people are often marginalized by the dominant mestizo culture and excluded from 

direct participation in national and international markets, capital lending, and 

improvements in rural technology (Klooster 1999). Because Sevina and Pichataro 

face many of the same problems addressed by the following research, the work merits 

review. 

Rees ( 1971) studied the increasing prevalence of timber resource use for 

milled wood products in response to the diminishing returns from traditional 

agricultural production. He observed that although illegal at that time, harvesting logs 

and milling timber was increasingly attractive for Purepecha villagers experiencing 

rapid population growth, low agricultural productivity, and increased connectivity to 



the amenities and opportunities of markets outside their communities. Rees (1971) 

noted that several species of broadleaf trees had already been eliminated from the 

region because of over cutting. He concluded that accelerated levels of timber 

extraction would likely deplete resources near the villages of San Lorenzo and 

Capacuaro (Rees 1971). 
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Bray (1991) studied CFEs in the Sierra Juarez in the central Mexican state of 

Oaxaca prior to the trade agreements, land tenure changes, and neo-liberal market 

reforms that would take place in the early-mid 1990's. With NAFTA yet on the 

horizon he was optimistic about the outlook for communally managed forests. He 

observed that community forestry was a breakthrough for grassroots development 

because local people retained the real value of production. Bray (1991) concluded that 

sustainability was a possibility where local people controlled the fate of their own 

forest resources without external pressure from giant timber concerns. 

Klooster (1997, 1999, 2000a) conducted research in Oaxaca concerning 

community property rights, CFEs, deforestation, and land degradation resulting from a 

tragedy of the commons scenario perpetrated by alienated members of excluded 

communities. He discovered that corruption, kickbacks, under valuation of lumber, 

the creation of a forestry elite, smuggling, and clandestine cutting all threatened the 

sustainability of the resource and the equitable distribution of economic opportunity. 

The most successful communities had strong governing assemblies and citizen 

participation, open accounting and recording practices, effective control of timber 

smuggling, and a commitment to the future sustainability of their forests (Klooster 



2000). Klooster concluded that an increase in democratic community control 

improved forest management practices because of the potential economic benefits 

from collective action. He further suggested that improved integration of capital, 

forestry skills, and administrative methods could elevate a community's ability to 

organize and improve access to markets, NGOs, and government agencies (Klooster 

1999). 
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Jaffee (1996) studied two CFE's, Cheran and San Juan Parangaricutiro, and a 

communidad, Angahuan, similar in its economy to Pichataro. All three are in the 

Meseta Purepecha in Michoacan. He concluded that the liberalization of the forest 

sector in the 1990's had threatened the ability of the villages to sustainably manage 

their forests because of the lure of short term profits, cheap imported wood products, 

and clandestine cutting (Jaffee 1996). 

Theoretical Context 

The landscape of the Meseta has been modified by its human inhabitants for 

thousands of years. This research not only seeks to quantify the magnitude of forest 

change in the area, but also strives to illuminate why these transformations have taken 

place. The observational perspective and analytical tools provided by remote sensing 

and GIS technology form the core of the investigative framework for the study. The 

analysis is guided and informed by a cultural and political-ecological perspective for 

the appraisal of landscape-scale forest change. 
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Cultural and Political Ecology 

Cultural ecology examines the interconnected nature of culture groups and 

their natural world (Butzer 1989). It weighs the social and environmental forces that 

drive human activities to modify the biosphere (Turner 1989). The discipline 

integrates themes from geography and anthropology to understand the relationships 

between people, resources, and space (Butzer 1989). Cultural ecologists are 

concerned with 1) how energy and information transfers interact to create landscape 

pattern, 2) food and resource production in relation to demographics and the 

sustainability principle, and 3) the role of people and the manipulation of resources 

within ecosystems (Butzer 1989: 193). Cultural ecology attempts to bring human and 

natural science together by incorporating ecology, information theory, and systems 

theory with the cultural landscape overlay. For this multi-disciplinary study a cultural­

ecological perspective integrates the linkages between land use and land cover change, 

and the social and environmental forces that drive them. 

Another related sub-discipline, political ecology, compliments the 

investigation. According to Blaikie and Brookfield (1987), land degradation is the 

product of an equation including both human and natural forces: net degradation = 

(natural degrading processes+ human interference) - (natural reproduction+ 

restorative management). They recognize a need to include natural arid social 

scientists in the debate over why land managers are unable or unwilling to prevent 

accelerated land degradation. Because nature-society relationships are reflexive and 
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vary across time and space, the model combines physical and social theory to extract 

the nature of interactions between human and natural land degradation. 

The issue of geographic scale is central to understanding land degradation and 

human-nature interactions because transfers of material, energy, and information take 

place at multiple spatial and temporal scales. Blaikie and Brookfield (1987) propose a 

"regional political ecology;" an integrative approach combining interactive effects, 

different geographical scales and hierarchies of socioeconomic organization, and the 

contradictions between social end environmental change through time. This model 

combines ecology and political economy, imposition of social structures and policy by 

the state, applied theories of state and core-periphery models, and the ecology of 

agricultural systems to assess the dynamic links between society and land-based 

resources. This framework incorporates the multiple layers of policy, local 

economies, internal power structures, and outside market forces that influence 

resource use, land degradation, and environmental restoration in the study area. 

Landscape Ecology and Land Use 

A landscape ecology perspective allows the reader to holistically consider the 

study area in terms of its landscape scale patterns and processes. Landscape ecology 

examines the structure, function, and change experienced within and between 

ecosystems and the influence of human activity on that change (Forman and Godron 

1986). It is a holistic tool for ecosystem-scale planning, environmental management, 
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and the conservation of biological diversity within a system. Landscape ecology is a 

strategy for the organismic assessment of the health and management of ecosystems 

by human stewards. The focus of landscape ecology is on human land use and its 

effects, and how scientific discovery and theory can be applied to real-world problems 

in natural resource management and land use planning (Wiens 1999). The model 

dictates that management and conservation efforts should address entire landscape 

mosaics rather than simply isolated patches of habitat. 

Forman (1995) states that the objective is to better understand the spatial 

processes that occur when land is modified, and to identify an ecologically optimum 

sequence for a particular change. Landscape ecology is presently used in Europe as 

the basis for holistic landscape planning, management, and conservation. It integrates 

traditional biological sciences and human centered fields of knowledge including the 

socio-psychological, economic, geographic, and cultural sciences associated with 

modem land use (Naveh and Lieberman 1994). 

Risser ( 1987) defines the model as how processes functioning at different 

spatial and temporal scales operate as a system to create pattern. It synthesizes related 

disciplines that focus on pattern and process in the landscape as a field of scientific 

inquiry in both natural and managed ecosystems. It considers the development and 

maintenance of spatial heterogeneity, the influence of heterogeneity on biotic and 

abiotic processes, and the management of that heterogeneity (Risser 1987). 

According to Forman and Godron (1986), landscape ecology focuses on the 

structure, function, and change of regions and landscapes. Structure consists of the 
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spatial patterns of landscape elements and ecological objects like organisms, biomass, 

and mineral nutrients. Function is the flow of materials between landscape elements. 

Change is alteration in the mosaic through time. Landscape ecology can be applied to 

this case study to illuminate the cultural and physical interconnections that contribute 

to forest landscape change within the study area. 

Forest Dynamics 

Natural and human disturbance maintain patchy mosaics of vegetation in a 

variety of different seral stages throughout the forested landscapes of the Meseta. 

Most researchers recognize fir forest as the mesic climax stage of Mexico's temperate 

subhumid forest ecosystems. High elevation fir and pine forests, when clear-cut, 

revert to alpine bunchgrass land dominated by Calmagrostis, Tristetum, Agrostis, and 

Festuca. These bunchgrass lands may return to fir and pine forests in the absence of 

further disturbance, but fire and grazing activities often suppress natural forest 

regeneration (Velazquez and Toledo et al. 2000). 

Few studies have been conducted in central Mexico on the ecology of 

temperate subhumid mixed-pine and pine-oak forests. A large percentage of the area 

where these vegetation types occur have never been surveyed in detail. Therefore, 

knowledge about the development of vegetation assemblages and successional 

pathways in pine forests on the Meseta is limited (Velazquez et al. 2000). 

Ecological research on similar pine and mixed-pine forests conducted 

elsewhere in Mexico and North America provides comparative insight into the 
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situation on the Meseta. Savage ( 1997) investigated the role of anthropogenic 

influences on tree mortality in montane mixed conifer forests in southern California, 

USA, and northern Baja California, Mexico. Her study indicated that anthropogenic 

effects, especially fire suppression, might increase the impact of natural stresses on the 

dynamics of mixed conifer forests (Savage 1997). 

Another study conducted by Savage (1991) in the Chuska Ponderosa pine 

forest of the American Southwest examined the influence of anthropogenic 

disturbance on structural shifts in forest composition. Her study indicated that 

structural shifts in ponderosa pine forests occurred throughout the region in the early 

decades of the twentieth century, but that anthropogenic disturbance alone could not 

account for the changes to younger, denser, more even-aged stands from the 

previously park-like, old-growth stands. Savage (1991) concluded that development 

of the Chuska ponderosa pine forest since early this century is the result of multiple 

agents of change operating on the landscape simultaneously, including grazing, fire 

suppression, and background climate change. 

Segura and Snook (1992) examined the disturbance and regeneration patterns 

of a pinyon pine forest in east central Mexico. Fire suppression, woodcutting, and 

grazing appear to have severely limited the forest's natural regenerative abilities. 

Mimicking the natural disturbance regime once found in the forest may improve 

regeneration success and prevent stand replacing fires (Segura and Snook 1992). 

Research in disturbed pine-oak forests in the highlands of Chiapas, Mexico, 

indicated that the regeneration of pines occurred only on exposed sites and may be 
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favored by current land use patterns. Heavy grazing retarded the successional 

development of forested communities because of seedling removal and trampling, but 

selective logging of pines in mature stands may favor the regeneration of both pines 

and oaks by altering light and temperature conditions (Gonzalez-Espinosa et al. 1991). 

The Meseta's forests exhibit similar possible outcomes. Fire, grazing, and 

selective logging all complicate the equation. Whether climatic variation influences 

forest dynamics appears likely but remains unproven. These forests have experienced 

extensive human modification historically, and especially during the last century. 

What a "natural" forested area looks like is also unknown. No comparative historical 

baseline exists. This study will provide baseline data for future examinations of 

succession and response to disturbance in the study area. 

Remote Sensing and GIS 

Remote sensing and GIS contribute valuable tools and perspective for 

examining changes in landscape pattern in the Meseta. Remote sensing technology is 

useful for monitoring landscape pattern, process, and quality as it changes over time 

(Peterson and Running 1989; Luque 2000). Remote sensing and GIS provide the 

perspective and powerful analytical tools to map and measure the magnitude of 

cultural and ecological processes at the landscape scale (Naveh and Liberman 1995). 

Remote sensing, specifically satellite image classification and comparison, are useful 

for assessing forest landscape change in a variety of contexts (Singh 1989; Coppin and 
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Bauer 1996). Forests are amenable to structural and functional analysis at a variety of 

scales with satellite remote sensing data (Iverson et al.1989; Lunetta 1998). 

The utility of integrating remote sensing technology and GIS for the study of 

forest landscape change and ecosystem management is well recognized (Allen 1994; 

Mladenoff and Host 1994; Sample 1994). Radiometers aboard satellites can collect 

multispectral biophysical information about forest landscapes at different scales 

because of their space borne perspective (Jensen 1983; Quattrochi and Pelletier 1991; 

Naveh and Lieberman 1994). GIS has become an analytical tool of major importance 

and future potential for modeling spatial and temporal landscape change in forest 

ecosystems (Flamm and Turner 1994; Franklin 1994; Bridgewater 1996; Haines-

y oung et al. 1996). 

Numerous studies have used TM imagery and GIS to detect and model 

deforestation and forest dynamics in tropical forests (Gilruth et al. 1990; Stone et al 

1991; Jusoff and Manaff 1995; Sader et al.1994; Sader 1995; Chatalain et al. 1996; 

Frohn et al. 1996; Gorge and Garcia 1997; McCracken et al. 1999; Shimabukuro et al. 

1999; Peralta and Mather 2000; Tucker and Townshend 2000; Hayes and Sader 2001) 

and in temperate forests (Franklin 1986; Coppin and Bauer 1994; He et al. 1998; Ardo 

et al. 1997; Sachs et al. 1998; Luque 2000). Several studies have examined forest 

landscapes in subhumid temperate forests (Mas and Ramirez 1996; Keating 1997) but 

few assessments of subhumid temperate deforestation with TM imagery and GIS exist. 

Mertens and Lambin (1997, 2000) conducted several studies using similar 

remote sensing techniques to assess land cover change in Cameroon, Africa. Their 
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research produced a spatial model of deforestation by incorporating landscape 

attributes and human activity in a landscape experiencing substantial levels of forest 

clearing. The investigation resulted in a multivariate spatial model of land cover 

change trajectories associated with deforestation processes (Mertens and Lambin 

1997, 2000). They relied on many of the same remote sensing and image processing 

techniques used here, including visual selection of training regions, application of the 

maximum-likelihood statistical algorithm for supervised classification, and post­

classification comparison for change detection of multi-date Landsat imagery. 

Klooster (2000b) analyzed the social context of deforestation in the nearby 

Lake Patzcuaro region. Using air photos and interviews, his research indicated that 

woodcutting strategies and agricultural abandonment lead to an increase in forest 

cover and changes in forest composition that were not consistent with a 

unidirectionional deforestation scenario. He concluded that established methods of 

interpretation and forest classification in the area reinforced a "unilinear deforestation 

orthodoxy" that made no provision for other types of forest dynamics, particularly 

widespread regrowth initiated by agricultural abandonment (Klooster 2000b ). 

Rudel, et al. (2002), conducted supervised classification of multi-temporal TM 

imagery to assess land-use change in the Ecuadorian Amazon. The study extracted 

spectral signatures from training data to classify two Landsat TM images acquired ten 

years apart. The study found that contrary to forest transition theory, reforestation was 

more prevalent along roads and near communities rather than farther away from roads 

on less productive soils and in less favored locations. 
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Except for a comparison of image classification techniques by Mas and 

Ramirez ( 1996) using a single subscene from a TM image acquired in 1992 of the 

Meseta Purepecha, few similar studies have been conducted in the region. No 

published study of forest landscape dynamics incorporating the principles of landscape 

ecology with remote sensing and GIS technology is currently known for Sevina and 

Picha.taro. 

Objectives of the Study 

The primary objective for this study is to determine the extent of deforestation 

that occurred in two Purepecha Indian communities in central Mexico. The research 

uses remote sensing and GIS technology to detect forest landscape change within an 

ecological framework between 1986 and 2000. My secondary objective is to compare 

land cover change between the two communities and assess the extent of forest 

recovery. More specifically, my objectives are to 1) produce land cover maps by 

classifying forest and non-forest land cover categories for the study region with two 

sequential Landsat TM satellite images, and 2) compare the maps to create a new land 

cover map depicting regions of change (deforestation and regeneration) and no change 

during the period of interest. 

Sevina (19° 34' 17" N, 101° 48' 21" W, 2400 m elevation) and San Francisco 

Picha.taro (19° 37' 47" N, 101° 54' 04" W, 2390 m elevation) are adjacent 

communities in a mountainous region west of the colonial town of Patzcuaro. Their 

village centers are located approximately 12 km apart. The combined study area 
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covers 133 .9 km2
. Pichataro is the larger of the two villages with an area of 86.4 km2

. 

Sevina covers 47.5 km2
• Both communities are situated on near level benches in 

broad, gently sloping valleys surrounded by agricultural fields and pasture, with forest 

and hillside milpa plots above. Old eroded volcanoes rise up on either side of the 

valleys, towering to more than 2800m above the villages. 

The study region is divided into two distinct communities along a shared 

boundary allowing comparison of forest landscape dynamics between the two villages. 

The results of the comparison shed light on the differences in local economies, timber 

extraction, and wood products manufacturing in each village. The ability to assess the 

pattern and extent of forest conversion and vegetation re-growth provides insight into 

the prevalence and trajectory of lumbering, reforestation, agriculture, and pastoral 

activities linked to the socio-economic fortunes of the communities. 

The land cover change maps provide spatial statistics about the extent and 

location of forest conversion and vegetation re-growth in the study region. A 

comparison of the outcomes contributes to an enhanced understanding of the 

differences and similarities in forest landscape dynamics between the two 

communities. 

Finally, the results contribute to an improved understanding of the linkages 

between forest resource use and landscape change in the area. An estimate of the 

amount and location of forest change allows speculation about how social, political, 

economic, and environmental structures affected forest resource use and landscape 
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dynamics from 1986 to 2000. The results may be extended forward to predict possible 

outcomes and plan for sustainable forest stewardship in the future. 
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CHAPTER 3: REGIONAL GEOGRAPHY 

Toledo and Ord6fiez (1993) estimate at least five million species inhabit the 

earth, and Mexico contains more than 12 percent of the species known to exist. 

Because of its topographic and climatic variation, Mexico is comparable only to India 

and Peru for the total number of vegetation types it contains (Velazquez et al. 2000). 

At the biome scale, the distribution of Mexico's main vegetation types can be divided 

into categories according to two climatic variables: precipitation and temperature. 

Mexico's geography allows the distribution of ecosystems along a transitional gradient 

between two major bioregions, Nearctic and Neotropical (Velazquez et al. 2000). Six 

ecological zones and their principal characteristics have been identified in Mexico. 

These include humid tropic, subhumid tropic, humid temperate, subhumid temperate, 

arid and semiarid, and alpine environments (Toledo and Ord6fiez 1993). 

The Meseta Purepecha lies within the Mesa Central adjacent to the Central 

Valley of Mexico along the Transverse Neovolanic Axis. The archeological record 

suggests the region has supported large human populations since the formative or 

Preclassic times (West 1971 ). In The Handbook of Middle American Indians West 

(1971) made an observation about the region's forests that would become the subject 

of research and discussion in years to come. While describing the physiography of the 

Meseta, West stated, "Although now largely destroyed by human action, pine-oak 

forests and open woods originally covered the more humid central and western portion 
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of the Mesa Central" (1971: 372). As forest resources in the region shrink, the debate 

over how remaining forests should be managed widens. The question of whether local 

people and their traditional technology is better suited to manage forests than modem 

science and the policies of dominant culture divides the discussion. 

This study is concerned with some of the sub humid temperate mixed-pine 

forests growing along the volcanic axis bisecting central Mexico from Cape Corrientes 

on the west coast southeast to Jalapa and Veracruz on the east coast. In 1989 Toledo 

et al. (1993) estimated that Michoacan contained 3,436, 172 ha of subhumid temperate 

forest. Little information is available on the biogeography and vegetation dynamics of 

these pine forests. Few studies have been conducted to better understand the fire 

chronologies, successional strategies, community relationships, resiliency to 

disturbance, and compositional structure of mixed-pine and pine-oak forests in the 

reg10n. 

Landforms 

Several large, flat-floored valleys of aeolian and alluvially deposited sediment 

characterize the region. The valleys are surrounded by and interspersed with volcanic 

peaks and smaller, more recent, crater-topped cinder cones (West 1971). Elevations 

range from 2,400 to over 3,800 meters within the study area. The dominant landforms 

in the Meseta were produced by Tertiary and Quaternary volcanism. The oldest 

composite cones, likely dating from the Eocene, are most prominent. These old 

eroded volcanoes are conical with radial drainages, but no longer exhibit craters. 



Composed mainly of andesite, they sometimes contain deposits of mineral-bearing 

quartz and pinkish rhyolite near their summits (West 1948). Younger cinder cones 

and lava flows, dating from the Pleistocene to present, are situated throughout the 

Meseta with no regular spatial pattern. 

Depositional processes created the other major landforms. Broad, flattened 

valleys accumulated from ash and cinder fall, then aeolian and alluvial deposition 

from surrounding slopes. The valley soils are composed of reworked volcanic 

material from adjacent cinder cones, lava flows, and ash deposits (Rees 1971). The 

valleys have been cleared for agricultural production and livestock grazing, and the 

peaks and cinder cones are often covered with temperate subhumid mixed-pine, and 

pine-oak, and occasionally at higher elevations, fir forests. Forest vegetation grows 

where sufficient soil development has taken place on mountains, cinder cones, and 

lava flows, depending on their age. 

Hydrology 
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Few perennial streams or lakes occur on the Meseta. Most villages are located 

near springs emanating from the porous flanks of the old composite volcanoes. Water 

percolates down through the slopes of the composite cones and then seeps out at the 

surface where older, impenetrable layers of bedrock are exposed. Spring water is 

collected in cisterns and tanks and piped to villages. Stock tanks carved from tree 

boles and made from cast cement collect surface seep and spring water for humans 

and stock in remote areas. Shallow lake basins formed by internal drainage patterns 
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are the only bodies of surface water in the area. The closest are Lake Zirahuen to the 

south and Lake Patzcuaro to the east. Limited seeps from springs and several small 

catchment ponds designed to trap and store rainwater are the only surface water in the 

study area. 

Climate 

The tierra fria climate of the region corresponds to the Cwb designation of the 

Koppen climate classification system. This is a mesothermal climate with at least one 

month greater than 10°C (50°F) and the coldest month between 18°C (64.4°F) and 0°C 

(32°F), a marked seasonality of precipitation, dry in winter and wet in summer. The 

warmest month is below 22°C (71.6°F) but 4 months are above 10°C (50°F). 

Rainfall is seasonal and occurs mainly during the summer months as 

convectional thunderstorms from June to September. During this time thunderstorms 

occur nearly every afternoon when solar heating of the land surface throughout the 

morning causes convectional uplift of moisture-laden air masses. Light winter rains 

and snow occasionally fall at higher elevations during December and January. Frosts 

and overnight freezing occur during the winter months. The warmest temperatures 

precede summer rains during April and May. 

Soils 

Soils in the region belong exclusively to the order Andisol. The edaphic map 

developed by INEGI (1982) identifies two suborders in the study area; humico and 
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ocrico. These Andisols developed on volcanic parent material composed of andesitic 

ash and rock produced by durable stratovolcanoes. 

West ( 1948) reported two dominant soil types in the region identified by local 

people. The first is a yellowish-brown leached soil that develops at higher altitudes 

under seasonally moist conditions. This soil is associated with pine-fir forest 

vegetation, and has a fine sandy A horizon in which crops can be planted several 

months prior to the summer rains because it retains moisture. This tierra de humidad 

is infertile and acidic, and will only support crops for 4-5 years before it must be left 

fallow. This soil is most often used for hillside milpa agriculture. 

The second soil type, T'upuri, is the more fertile, dark sandy loam of the lower 

slopes and valleys between 2,000 and 2,500 meters (West 1948). The surface dries to 

a powder and prevents moisture evaporation from lower layers. T'upuri is more 

heavily cultivated for row crop agriculture because of its higher productivity and 

accessible location on valley floors. 

Vegetation 

Mexico is a mountainous country with over half of its terrestrial area greater 

than 1 OOOm in elevation. Temperate vegetation covers more than 22% of the land 

area, with subhumid temperate environments and vegetation dominating the largest 

part of the mountainous regions in Mexico (Toledo and Ord6fiez 1993; Velazquez et 

al. 2000). The subhumid temperate zone in Mexico with pine, oak, and mixed forests, 

occupies more than 33 million ha in 20 states. The four states with the most 



significant quantities of subhumid temperate vegetation are Chihuahua, Michoacan, 

Durango, and Oaxaca respectively. 
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This ecological zone is significant biologically and biogeographically because 

of its distribution along the main mountain ranges in Mexico. It contains high levels 

of endemism and biodiversity for flowering plants, conifers, terrestrial vertebrates, 

mammals, amphibians, and reptiles. The subhumid temperate zone along the Trans­

volcanic axis is especially critical because it is believed to support to some of the 

highest rates of species-diversity and endemism among mammals anywhere (Toledo 

and Ord6fiez 1993). 

Subhumid Temperate Pine Forests 

The genus Pinus (Pinaceae-Coniferales) comprises a natural plant group 

including from 90-120 species. Mexico may have a greater concentration of pines 

than any other country in the world with possibly more than 45% of the known species 

(Styles 1993 ). Pines are the most well distributed genus of all woody plants in 

Mexico. Of the 30 million ha of forested or wooded land in Mexico, 21 million ha 

contain coniferous forest, with the dominant species being pine. Some states in 

Mexico, including Michoacan, support more than twenty distinct species of pines, 

exclusive of hybrids (Styles 1993). 

Pines often grow in concentrated stands and form extensive forests because 

they are wind pollinated. They can be monospecific, growing in forests containing a 

single species, or coexist in a multispecies community with up to seven species in a 



single forest. Some pines in Mexico exhibit clinal variation associated with 

environmental conditions along elevation and microclimate gradients. Pairs of the 

same species may appear different morphologically at the extremes of their ranges, 

and exhibit variations in form between the extremes (Styles 1993). 

The principal pines in the area are Pinus leiophylla (pino chino), extensively 

tapped by the Purepecha Indians for turpentine producing resin, P. pseudostrobus 

(pino cantzimbo ), preferred by woodworkers because it is easiest to work, and P. 

michoacana var. cornuta (pino lacio ), highly prized for lumber because of its tall, 

straight growth form. P. pseudostrobus is no longer as abundant as it once was 

(Works and Hadley 2001). P. michoacana and P. leiophylla are the primary pines 

found in the region. Minor species include P. teocote, P. montezumae, P. rudis, P. 

oocarpa, and P. hartwegii. Remnant fir forests occasionally remain at higher 

elevations. Abies religiosa is the only fir species found in the study area. 
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A pine and mixed pine-oak vegetation type dominates the forested mountains 

of the Meseta, and correlates to the higher and colder range of the Cwb climatic zone 

(Figure 3.1 ). Pines are usually interspersed with oak, depending on elevation. More 

than twenty-five species of oak occur in the Meseta and are dominant at lower 

elevation, while pines dominate at higher altitudes. Alder is found in association with 

most forest assemblages. 

Often no single species pine dominates a large forested area of mixed-pine. 

According to Velazquez and Toledo et al. (2000), this complex seral stage is the result 

of disturbance, promoted by intensive logging and fire. This occurs in heterogeneous 



landscapes with flats and slopes providing a variety of habitat. Stands of true fir 

occasionally remain in the forests. 
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Pine forests in the Meseta occur mainly on the flanks, ridges, and tops of peaks 

and cinder cones. They grow above the cleared valleys where agricultural production 

and livestock grazing dominate (Figure 3.2). They often exhibit somewhat park-like 

characteristics with a semi-closed canopy, partial under story, and low herbaceous 

layer. 

Origin of Pines 

Florin (1963) suggests the genus Pinus originated in the Northern Hemisphere 

during the Jurassic Period of the Mesozoic era. It appears that pines migrated 

southward from North America along the mountain ranges of Mexico and Central 

America (Perry 1991; Styles 1993). These pines were more widespread than they are 

presently, and did not form extensive forests. They migrated southward because of 

changes in climate and physical barriers during glacial advance and retreat. At times 

migration reversed and pines spread northward to occupy land previously covered by 

the great glaciers, but overall there was a general movement of pines southward into 

Mexico and Central America (Perry 1991). 

Several hypotheses about the timing of pine migration and arrival in Mexico 

from North America have been suggested. Miller ( 1977) posits that they reached 

Mexico during the Mid-Tertiary and no later than Mid-Cenozoic. Mirov (1967) 

concludes they arrived during the late Crustaceous or at the beginning of the Tertiary 
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along the Sierra-Madre Occidental from the North American Cordillera. Martin and 

Harrell (1957) advocate a later invasion during the Middle Tertiary from the 

Appalachian uplands along the Sierra Madre Oriental. Most botanists and taxonomists 

presently believe that the western range of the Sierra Madre Occidental was the main 

route for the migration of western pines into Mexico (Perry 1991 ). 

Purepecha Culture 

The Purepecha Indians of the Meseta resisted conquest by the Aztecs, survived 

domination by the Spanish, and retain their cultural identity and native language 

despite marginalization by the dominant mestizo culture of modern Mexico. They 

have lived for thousands of years by managing the natural resources found in the 

Meseta and nearby Lake Patzcuaro Basin. The capital of the ancient Purepecha world 

lies on the edge of Lake Patzcuaro at Tzintzuntzan. Several excavated Yacatas, large 

stone pyramid-like structures, sit atop the highest point in the village facing the lake. 

Tzintzuntzan was the cultural and economic hub of an agricultural society that thrived 

around the lake and in the nearby mountains. It was the seat of power and home to the 

dominant Purepecha ruling clan. 

A unique set of geographical, environmental, and cultural circumstances gave 

rise to a distinct society in the Meseta. A combination of climate, landforms, flora, 

and fauna converged in the region to provide the necessary materials for the 

development of a rich and complex civilization. Purepecha culture flourishes today as 



an amalgam of customs, belief systems, and life ways incorporating ancient Indian, 

Hispano-Catholic, and contemporary Mexican cultures. 
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When West (1948) published Cultural Geography of the Modern Tarascan 

Area in 1948, the area where Purepecha language was still spoken occupied less than 

one-fifteenth its pre-Conquest extent. The pre-Columbian linguistic area encompassed 

most of the present state of Michoacan except for a portion of the Pacific slope of the 

Sierra Madre de! Sur (Brand 1944). The political influence of the Purepecha Empire 

extended well beyond its language boundary into Jalisco to the west, south to the 

Pacific, and north to the Bajio de Guanajuato. The Purepecha cultural capital was 

situated in the north-central part of the region including the Lake Patzcuaro-Cuitzeo 

area, the forest region of the Meseta highlands, and the upper escarpment zone (Brand 

1944; Stanislawski 1947; West 1948). 

Several factors led to the recession of Purepecha culture during the Spanish 

colonial and postcolonial periods. In some settlements, epidemics of contagious 

European diseases decimated native populations. The remaining population further 

declined when local people migrated to distant farming and mining areas to provide 

labor for the Spanish. In addition, wherever Spanish or Mestizo haciendas and 

estancias were established within the Purepecha culture area, the influence of 

Hispanicization slowly diluted and assimilated native speech and customs (West 

1948). 

Today, Purepecha culture and language survives, mainly in rural villages not 

yet fully incorporated into the national and global economies. Historically, small 



Purepecha settlements were located on forested slopes conducive to both maize 

agriculture and defense from invaders. Modem settlements usually occupy level 

surfaces on lakeshores, or slopes and benches near a spring adjacent to valley basins 

suitable for agriculture and grazing. 
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Agriculture has long been the primary economic activity practiced in the 

region. The native trilogy of maize, beans, and squash provided enough surplus food 

to support population increase and an elaboration of cultural complexity. Fishing was 

a significant occupation along the shores of Lake Patzcuaro, and continues to be 

important in some lake communities. Handicrafts, including woodworking and 

carving, and regional trade were also important traditional occupations and still 

provide income to Meseta communities. Medicinal plants, herbs, grasses, greens, 

mushrooms, and fruits are still gathered for household consumption and sale in local 

markets. 

Agriculture was central to the Purepecha economy, but a recent diversification 

into specialized community industry has eclipsed the economic dominance of farming. 

NAFTA has further reduced the ability of local farmers to compete in expanding and 

increasingly competitive international and global markets. A reduction in the 

profitability of agriculture led to expansion of the local population's historic ability as 

woodworkers and craftspeople (Rees 1971; Bray and Wexler 1996; Klooster 1999). 
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Traditional and Modern Forest Use 

Purepechans modify their diverse forest landscape to provide a multitude of 

foods, medicines, and materials. They are pastoralists and agriculturalists who 

incorporate the ancient knowledge of their ancestors, Hispanic influences, and modem 

technology to manipulate the natural environment for their benefit. Local people 

know and name over 400 plant species (Alcorn and Toledo 1998). They gather or 

cultivate over two hundred species of plants and mushrooms for food and medicine. 

They practice 14 distinct land management and sivicultural strategies (Alcorn and 

Toledo 1998). 

Timber Harvest 

The dominant timber harvest strategy observed in the region is high grading. 

High grading is a form of selective logging where the oldest trees, hence largest, with 

the straightest growth form are chosen for harvest. These trees contain the most board 

feet of lumber when milled into rough planks with either a chainsaw or band saw mill. 

Ideally, a pine tree will be selected for harvest and cut down after it serves multiple 

purposes as a resin, firewood, and ocote (highly resinous heartwood used as fire 

starting material) producer. This is the typical sequence of traditional Purepecha use 

for pines. The cycle may be accelerating as the demand for wood outweighs the value 

of traditional non-timber materials a tree can provide during its life. 

Purepecha loggers in Sevina and Pichataro operate in small crews of two or 

more men. They enter the forest with an axe for each man and at least one chainsaw 
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between them. Virtually no access to the forest by motor vehicle exists, partly to 

prevent poaching. The loggers bring a team of draft animals, usually oxen, with a 

drag cart. The cart is made of two stout wood beams that act as a tongue harnessed to 

the oxen. The other ends of the beams are attached to a wheeled automobile axel to 

form a simple and effective drag rig. 

After selecting a tree, the feller cuts it down with a chain saw. The team then 

limbs the bole with axe and chainsaw, and bucks it into manageable lengths (Figure 

3.3). A large diameter tree would probably be cut into a square blank by a skilled 

sawyer and removed one section at a time. A smaller tree might be removed as 

several bucked logs at once. The operation depends on the skill of the loggers, the 

size of the tree, and the resources at hand. When the log or logs are ready for removal, 

the ox cart is positioned next to the load and one end of the section or sections are 

lifted onto the axel crossbar of the cart. The load is then lashed to the cart and the 

oxen driven down the trail effectively dragging the logs out of the woods to a waiting 

truck at the edge of the forest, or back to the village (Figure 3.4). Drag trails criss­

cross the forest where logs have been skidded out of the woods in this manner for 

years. Soil compaction and erosion usually accompany the skid trails, especially 

where cattle repeatedly pass. 

Purepecha logging practices appear less destructive to forest ecosystems than 

the degradation associated with heavy machinery and logging roads. However, the 

systematic removal of genetically superior trees, grazing, and burning may have 

negative impacts on the forest's resiliency to disturbance (Styles 1993) (Figure 3.5). 
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Removing the fittest trees may reduce a forest's ability to survive fires, pathogens, and 

insect outbreaks. 

Land Management and Resource Allocation 

Human activities are now the major agent of disturbance operating in the pine 

forests of the Meseta Purepecha. Subhumid temperate ecosystems cover 33 million ha 

in Mexico and are home to 1.55 million indigenous people (Alcorn and Toledo 1998, 

p. 236). Rural indigenous communities of Purepecha Indians now manage most of the 

pine forests in the region. 

The Mexican Government recognizes community land tenure and allows the 

ejidos and communidades to operate somewhat autonomously within the larger 

framework of the national government. Until recently, land within the communal 

boundaries of indigenous communidades and ejidos could not be sold or privately 

owned. President Salinas lifted this restriction when he modified Article 27 of the 

Mexican Constitution in preparation for NAFT A. Land ownership and timber rights 

can now be transferred by sale and concession, although few such transfers have 

occurred in the Meseta. 

The production of forest products and the condition of the forests differs 

dramatically between Sevina and Pichataro. Sevina cut, milled, and sold much of its 

commercially valuable timber as lumber and logs over the past 20 years. Sevina is 

about 50 percent smaller than Pichataro, and had less forest to begin with. The local 

timber industry is in the throes of a bust cycle and many people have migrated to 
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urban centers and the United States in search of work. There are only a few local 

woodworking shops in Sevina and most of their lumber comes from local sawmills or 

other communities (Figure 3.6) (Works and Hadley 2001). 

Pichataro has a well-developed furniture and woodcraft production industry. 

Local forests are divided between eight subdivisions of the community providing each 

of over 500 households with access for resource extraction (Alcorn and Toledo 1998). 

Most of the timber used for local production comes from communal property or 

individual family parcels (Works and Hadley 2001 ). Picha taro has numerous small 

workshops producing tables, chairs, entertainment centers, bookshelves, cabinets, 

armoires, ornamental doors, carved pillars, bars, planter boxes, bed frames, 

headboards, and numerous other handmade craft items. Elaborate relief carving is a 

local specialty and might adorn chairs, tables, picture frames, headboards, or trunks. 

Buyers from outside the village purchase truckloads of woodcrafts and 

transport them to regional, national, and international markets. The hotels, stores, 

bars, and restaurants in nearby Patzcuaro, a colonial town with major tourism from 

Guadalajara and Mexico D. F., are full of pine furniture from the area. Local shops 

sell traditional wooden items and ornaments, and merchandise made especially for the 

tourist trade like coat racks, planter boxes, and carved mirror frames. Whether this 

boom remains sustainable for the people of Pichataro has yet to play out. 
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Figure 3.2. The landscape of the Meseta Purepecha. 
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Figure 3.3. Purepechan loggers. 

Figure 3.4. Transporting timber (Hadley 2000). 
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Figure 3.5. Landscape degradation. 

Figure 3.6. Band saw mill. 
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CHAPTER 4: METHODS 

Biotic sampling of large areas can be problematic. The forests in the study 

area are remote and difficult to access. Remotely sensed imagery provides the most 

efficient means for assessing the nature of change occurring in isolated forests. 

Anniversary dates were chosen to minimize seasonal differences in vegetation growth 

form and to correspond with geospatial information acquired during field 

investigations in the region. 

Remote Sensing and Cartographic Data 

The multi-temporal satellite data used in this study consists of two digital 

satellite images. The first was acquired by the TM multi-spectral radiometer aboard 

the Landsat 5 platform on April 6, 1986 at 4:37 pm. The second was acquired April 

20, 2000 at 5:04 pm by the latest version of the TM called the Enhanced Thematic 

Mapper Plus (ETM+) aboard the Landsat 7 platform. Both images record similar band 

widths at the same resolution. 

Paper and digital map products obtained from The Forestry Commission of the 

State of Michoacan (COFOM) included forest stand classification maps for the 

community of Sevina, dated 1984 and 1992. The 1984 stand map provided visual 

verification of forest stand types believed to exist during the mid to late eighties and 

therefore proved useful as a secondary source of land cover verification during the 



45 

training site delineation process. The maps also served as an aid for locating potential 

sample sites on the ground with GPS in Sevina during August 2000. 

COFOM also supplied a digital version of the National Institute of Geographic 

Statistics and Information (INEGI) 1 :50,000 scale Cheran topographic quadrangle 

map. The fifteen-degree latitude by twenty-degree longitude digital map layers were 

projected with the Universal Transverse Mercator (UTM) zone 14 north grid location 

system and North American Datum 1927 (NAD 27). The digital vector map layers 

were used for preliminary visual assessment and interpretation of the other digital 

layers during registration and rectification procedures. The most useful layers 

included urban area boundaries, 20-meter elevation contours, vegetation polygons, and 

transportation routes. The roads layer was used during the compilation process for 

comparison to the visible roads on the Landsat images. 

Two flight lines of aerial photography were obtained from the archives at 

COFOM. The photos were acquired in 1974 and 1990. They proved useful during 

training site delineation as ancillary data for the identification of training area land 

cover classes. 

INEGI provided the digital elevation model (DEM) used to produce the 

contours for the 1 :50,000 scale Cheran quadrangle. The DEM was crucial for terrain 

correction, georeferencing, and registration of the satellite imagery and digitized map 

layers. The INEGI 1 :50,000 scale topographic sheet of Cheran appears in the same 

format as the digital version because the paper edition was created with the digital 

vector layers (2000). The only notable difference is that the paper version was 
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projected with the ITRF92 graticule. This discrepancy in cartographic projections was 

corrected during registration after the map was digitized with a raster scan. 

Field Data 

Ecological data from forest stands was sampled for 10 plots in each of the 

communities during a field visit to the region in August 2000, for a total of twenty 

plots. Sites were chosen to represent the range of different stand composition types 

and environmental conditions found in the study region. Stand types varied along a 

gradient of tree species make-up and stand age. Ages ranged from young regeneration 

patches (approximately 10 years old) to mid-successional pine-dominated 

(approximately 70-80 years old) with only one mature oak-dominated stand (age 

unknown). Species composition of stand types ranged from oak dominated to mixed 

pine-oak to pine dominated to fir dominated. 

Ecological and environmental measures recorded for each site were intended to 

provide details about the physical and cultural characteristics of the forest stand 

structure represented by the sample plot. Sample sites ranged from 125 m2 to 1000 m2 

circular plots. Smaller plots were used where distinctly higher tree densities occurred. 

Each plot included a minimum combination of twenty live pine, oak, or fir trees 

greater than 4 cm diameter at breast height ( dbh) (Hadley 2000). Plot centers were 

chosen subjectively within each forest stand to represent typical stand conditions and 

geo-referenced with a portable GPS satellite receiver. 
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GPS locational data was converted into digital data layers for use with a GIS. 

In addition to recording plot center point locations, GPS allowed the placement of 

forest stand and non-forest boundary polygons and features of particular interest into a 

database for subsequent use with GIS. This GPS application assists ground truthing 

and delineating training data for the classification of remotely sensed satellite imagery. 

Forest stand outlines were recorded for use with digital map layers by walking 

the perimeter of the larger stand that contained each individual sample plot with a GPS 

receiver while recording positional waypoints at preset temporal increments. Non­

forest polygons containing crops, fallow re-growth, and various stages of shrub, burn, 

and regeneration were delineated and later downloaded and incorporated into the 

digital dataset. 

Georeferenced digital photographs were taken. These photo points allowed 

specific features of interest like agricultural fields, notable stand types, burn areas, and 

cultural features not linked to specific sample plots to be mapped. All stationary 

waypoints were averaged for at least ten minutes to improve locational accuracy 

(Jensen 1996). 

Data Processing 

The objective for the preprocessing procedures was to compile and register all 

of the geographic information data so it could be visually and digitally integrated with 

a GIS (Figure 4.1). All layers were projected in or converted to NAD 27 and the UTM 

l 4n grid system. Once the data layers were registered, they could be overlaid for the 
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delineation of training sites. The training sites facilitated classification of the two 

images, and ultimately post-classification comparison to detect regions of change from 

between 1986 and 2000. 

Four GIS software packages were instrumental in the pre-processing and 

analysis tasks performed for this project. Arc View and ARC/INFO were used to 

develop, edit, and display vector data layers. Idrisi and ERDAS Imagine were used to 

edit, display, and process raster data layers and satellite image files. Though the 

systems have some overlapping capabilities, each one has a unique functionality to 

perform certain tasks the others cannot, and was used according to specific needs. 

The first processing task required digitization of several paper maps. 

Vegetation maps were manually digitized for the study area, one for Sevina and two 

for Pichataro. The new vector files were attributed with forest stand information. The 

community boundaries for Sevina and Pichataro were digitized from maps and built 

into the coverages. 

The digital Cheran topographic quadrangle vector files were important 

reference layers for visual assessment, geo-referencing, and registration of other 

geographic information layers. The roads, vegetation, and contour layers were useful 

for providing visual identification of ground control points (GCP's) during the 

registration and ortho-rectification of the satellite images. 

The satellite images were then ortho-rectified and registered. Terrain 

correction reduces geometric distortion caused by topographic variation. Both images 

required cropping to a smaller size before terrain correction and registration. 
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Proper registration of multi-date imagery data sets is crucial to the accuracy of 

image processing for change detection (Coppin and Bauer 1994). The satellite sub­

scenes were compared visually with overlay to the INEGI digital roads layer by 

manually matching corresponding GCP's on both images. First, the higher resolution 

panchromatic band from the 2000 image was overlayed visually on the INEGI roads 

layer to locate useful GCP's. The resulting model was used to register and rectify all 

2000 bands to the proper UTM grid with a second-order polynomial warp function and 

nearest neighbor resampling. The resampling technique met the requirement that the 

rectified image must be within 1/4 to 112 pixel of the reference map (Coppin and 

Bauer 1994, Jensen 1996). The resulting residual mean square (RMS) error fell within 

the acceptable limits (Table 4.1 ). 

The same procedure was used for the 1986 image but the reference image was 

the corrected and registered 2000 ETM+ image. Again, acceptable RMS error results 

were achieved (Table 4.1 ). The registration of the two images was inspected visually 

and appeared to be within one pixel. This margin of error was deemed acceptable 

based on the RMS error, and visual overlay of the results. According to Coppin and 

Bauer (1994) a slight within pixel shift cannot be corrected for and must be accepted 

as a limitation inherent to change detection methodology using digital imagery. Next, 

the satellite images were windowed to the extent of the study area boundary. 

Additive false color composites produced from various sets of bands were 

useful for registration, visual assessment, and correction tasks during the project. The 

combination of bands 2, 3, and 4 resulted in a false color infrared composite in which 



healthy vegetation appears in shades ofred (Figure 4.2 and 4.3). This band 

combination afforded the best visual display image during processing operations. 
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The last image correction was the removal of pixels obscured by clouds. The 

2000 study area image contained no cloud cover, however the 1986 image included 

two small clusters of clouds in the northeast portion of the community of Pichataro. 

Clouds in an image may skew the distribution of reflectance values decreasing 

classification accuracy and should be removed (Yuan et al. 1998). Cloud regions were 

masked out of all bands in both the 1986 and 2000 images to maintain registration and 

a consistent number of pixels in both images. 

The Cheran 1 :50,000 scale topographic quadrangle was digitized and the 

resulting geo-Tiff (georeferenced Tiff image) was projected with NAD 27 and UTM 

14n. Air photos were digitized and geo-referenced in the same manner. Low­

resolution photocopies of the panchromatic air photos were scanned and converted to 

Tiff images. The images were geo-referenced with GCP's through visual overlay with 

the transportation layer from the INEGI digital quad map. 

Two GIS projects were produced to help delineate training regions with the 

digital map and photo layers. The first focused on using 1990 air photos for the 1986 

training region delineation. The second project compiled all digital geographic 

information gathered for the study except the air photos and was used to select the 

2000 training sites. The projects allowed me to overlay and toggle between false color 

composites, the graphic INEGI topographic quad map, the INEGI digital quadrangle 

map layers, the GPS training layers and plot centers, the sample plots with all trees 
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and stumps mapped and attributed, and the digital landscape and canopy photography. 

Photos and the plots were added to the view window by clicking on georeferenced 

hot-links. This allowed me to view photos of the landscape to assess the vegetation 

type and density at specific locations. 

Training Region Selection 

The accuracy of post-classification comparison change detection is highly 

dependent on the quality of the training sites used for the initial image classifications 

(Campbell 1996; Coppin and Bauer 1996; Mather 1999). Training site selection 

required a priori knowledge of the study region, historical information, in situ 

environmental information, and on-screen polygonal selection of sites. Classification 

of the 1986 TM classification relied most heavily on the 1990 air photos and 1985 

vegetation map. Classification of the 2000 image depended more on ecological field 

data collected during August of that year. 

Training regions were interactively digitized on-screen using visual overlay of 

the data layers. For both images, my previous experience on the ground, knowledge 

of local conditions, and familiararity with the satellite images contributed to the 

selection of quality sites. Visual clues indicating the type and density of vegetation, or 

its lack thereof, were discemable with the eye. Knowledge of image characteristics 

including tone, color, texture, and pattern associated with ground features helped 

identify significant image components (Mas and Ramirez 1996). These visual 
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indicators were then cross referenced against the air photos, GPS data, stand data, and 

digital photos to validate the classification of training regions. 

Signature Extraction 

Supervised classification requires the extraction of spectral signatures based on 

training region classifications. After the training sites were digitized, signature 

extraction produced statistical characterizations of the forest and non-forest 

information classes for each image. The signature files contain the names of the bands 

from which the information was extracted, the minimum, maximum, and mean values 

for each band, and the variance/covariance matrix for the multispectral image band set 

for each class (Eastman 1999a). The file can be viewed graphically to assess the 

separation or overlap between each informational class for all bands. 

Jensen (1996) and Eastman (1999a) suggest at least a 10:1 ratio of pixels per 

training class to the number of bands in the image. Campbell (1981) indicates that 

selecting a large number of small training fields rather a few large contiguous areas 

reduces high levels of similarity and better represents variation within classes, 

increasing classification accuracy. He also recommends at least 100 pixels per 

training class (Campbell 1981). The training regions for this study represented many 

smaller areas for the forest and non-forest classes, and exceeded both requirements for 

the minimum number of pixels necessary for each class (Tables 4.2 and 4.3). 

For the supervised classifications in this study, signatures were extracted from 

bands 1 through 7 excluding 6 and the panchromatic. The 2000 panchromatic band 
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does not contain digital reflectance values appropriate for classification based on 

vegetation types. Thermal band 6 was omitted because it is not readily associated with 

the reflective region of the electromagnetic radiation (EMR) spectrum and may 

degrade classification accuracy (Coppin and Bauer 1994). 

Initial Classification 

The maximum likelihood classification algorithm was chosen to process the 

Landsat images. Maximum likelihood is generally regarded as the most powerful hard 

classifier when applied with high quality training data exhibiting unimodal (Gaussian) 

or near normal distributions (Campbell 1996; Jensen 1996; Mather 1999). The 

maximum likelihood equation uses Bayesian probability theory to calculate the prior 

probability that a pixel belongs to one class or another based on the signature files 

extracted from a set of training regions. Maximum-likelihood uses not only the 

means, but also the variance/covariance matrices from the signatures to estimate the 

prior probability that a pixel belongs to each class (Eastman 1999a). 

When the natural spectral variability of brightness values from separate land 

cover classes causes their frequency distributions to overlap, maximum likelihood uses 

a priori knowledge to assign pixels to the appropriate class (Campbell 1996). The 

equation produces what can be described as a multidimensional elliptical 

characterization of the signature where the prior probability of belonging to each class 

is highest at the mean position, and decreases in an elliptical pattern away from the 

mean (Eastman 1999a). The set of signature files that defines the proportion of the 
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area to be classified covered by each class is characterized as a vector of prior 

probabilities. The probabilities are proportional to the area covered by the classes, 

similar to weights (Mather 1999). The weights are incorporated into the algorithm by 

weighting each class according to its appropriate a priori probability (Jensen 1996). 

Post-classification Comparison 

The classified images were compared to determine the extent of forest cover 

change that occurred for deforestation and forest re-growth. An image was produced 

that assigned a unique class to every new combination of original values, in effect a 

cross-tabulation of the time 1 (1986) and time 2 (2000) images. The new image 

displays coded regions of change and no change in the form of a land cover map. 

The change map was then generalized with a 3 by 3 median filter to reduce 

isolated pixels and strings of single pixels. These strings occurred mainly along patch 

boundaries and were likely caused by the slight misregistration inherent to the post­

classification comparison of multi-temporal imagery. The median filter preserves 

detail while removing random noise in qualitative images (Eastman 1999b ). The 

median value of the 9 pixel values in the "mask'', or filter window, is output in the 

case of the 3 by 3 filter. 

Accuracy Assessment 

Accuracy assessment was conducted to evaluate the correctness of the initial 

classifications. An accuracy assessment determines the quality of the information 
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derived from remotely sensed digital imagery and is a prudent part of the classification 

procedure if the results will influence decision making (Congalton and Green 1999). 

The error matrix is a basic tool for evaluating classification results (Congalton 1991). 

Ideally, the matrix results from the comparison of ground truth data to the interpreted 

land cover map created by the classification operation. If no additional reference data 

exists, as was the case with this study, the alternative is to use the training data to 

conduct a basic assessment of classification accuracy. The vector training area layers 

were converted to raster images and compared with the classified images to produce 

an error matrix that tabulated errors of commission and omission from which an 

overall Kappa Index of Agreement (KIA) measure (also known as Coen's Kappa, 

KHAT, or simply Kappa) was output for each image. 

Kappa measures association or agreement and is used in accuracy assessment 

to determine if one error matrix is significantly different from another (Congalton and 

Green 1999). Kappa corrects the observed percent agreement for chance and 

normalizes the resulting value so that the coefficient ranges from 0.0 indicating no 

correlation, to 1.0 indicating perfect agreement (Norusis 1998). The Kappa measure 

rates correctness based on agreement in the error matrix indicated by the major 

diagonal and chance agreement represented by the row and column totals. 



56 

Table 4.1. RMS error. 

X coordinate Y coordinate Total RMS error 

1986 TM 7.8701 5.8369 9.7984 

2000 ETM+ 6.5814 4.0605 7.7332 
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Table 4.2. Number of polygons per training region class per image. 

1986 TM 2000ETM+ 

Forest 23 19 

Non-forest 11 19 

Table 4.3. Number of pixels per training region class per image. 

1986 TM 2000ETM+ Image Total 

Forest 4327 2706 148648 

% of Total 2.9 1.8 100 

Non-forest 7198 12096 148648 

% of Total 4.8 8.1 100 
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April 1986 False Color Infrared Composite 

Figure 4.2. 1986 false color infrared composite. 
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April 2000 False Color Infrared Composite 

Figure 4.3. 2000 false color infrared composite. 
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CHAPTER 5: RESULTS AND DISCUSSION 

The results from the change detection analysis consist of two kinds of 

information; 1) land cover maps depicting land cover classes and the amount and 

location of landscape change, and 2) histograms summarizing the amount of landscape 

change in terms of pixels per land cover class. Land cover change totals from the 

histograms were then converted from pixels to hectares, and km2
• 

Supervised Classification 

The Landsat images were classified for two land cover classes; forest and non­

forest. According to Congalton ( 1999), a classification scheme should be mutually 

exclusive and totally exhaustive. A scheme is mutually exclusive when each mapped 

area falls into only one category or class. In order to be totally exhaustive, every part 

of the mapped landscape must receive a map label. The scheme for this study met the 

preceding criteria and was chosen based on the poor results obtained from several 

unsupervised cluster classifications of the study area. 

Separating different forest types produced poor results because of the mixed­

species nature of the pine-oak forest stand-types in the study area. The lack of 

contiguous separable training regions definable as a particular homogeneous stand­

type made classification at the stand level problematic. For the purposes of this study, 

because mixed classes with similar spectral signatures were difficult to separate even 



with TM imagery, the two classes provide the highest likelihood for reliable results 

(Jusoff and Manaf 1995). 
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I produced two classified maps of the study area, one each for 1986 and 2000, 

with the Idrisi image processing module (Figs. 5.1 and 5.2). Numeric histograms 

extracted from the classified images represent the land cover classification tabulation 

for every pixel, and the descriptive statistics for the distributions (Table 5.1). I 

verified the classifications with visual inspection of the false color infrared and true 

color composites for the respective years. 

Post-classification Comparison 

I compared the classified images to determine the location and extent of forest 

landscape change from 1986 to 2000. Using Idrisi's cross-tabulation operator I 

compared the original classified images and produced a change map, land cover 

classification statistics, and a cross-tabulation matrix with several measures of 

association between the images (Tables 5.2 and 5.3, Figure 5.3). The change image 

shows the location and extent of all new combinations of land cover classes from the 

original input images. I then smoothed the initial change image with a 3 by 3 median 

filter to remove isolated pixels producing a final change image (Figure 5.4). 

The new image map contains four land cover categories; 1) forest (no change), 

2) deforestation, 3) non-forest (no change), and 4) regeneration (re-growth). In other 

words, the new land cover classes depict forest that remained forest, forest that 

became non-forest, non-forest that remained non-forest, and non-forest that 
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regenerated enough to appear forested (but likely includes shrubby vegetation 

regeneration). Each new mapped class graphically renders the extent and location of 

forest loss, regeneration, and no change in land cover class. 

The cross-tabulation (comparison) produced two contingency tables (Table 

5.3). The first is a cross-tabulation matrix listing the frequency with which each 

possible combination of the categories from the original images occurred, or 

frequency of sameness and difference between 1996 and 2000. The matrix assigns a 

unique identifier to every combination of original values and includes the number of 

pixels in each combination. The table shows the frequency with which the classes 

remained the same (frequencies along the diagonal) or changed (off-diagonal) 

(Eastman 1999b ). The second table tabulates the proportional values for the number 

of pixels that fell into each possible category relative to the total number of pixels in 

the sample. 

I calculated two measures of association between the images based on the 

proportional values and frequencies output by the cross-tabulation operation (Table 

5.3). First, the chi-square (x2
) test of homogeneity of proportions is used when two or 

more random samples are compared and each response is classified as belonging to 

two or more categories (Schweigert 1994). The Chi-square computed for the 

classified images was x2 (1, 148.647) = 77381.22, .Q < .001. 

Because the two images contained an identical number of categories, a second 

measure of association, the Kappa Index of Agreement (KIA) was output. Kappa 

measures correlation between the two images, corrects the observed percent agreement 



64 

for chance, and normalizes the resulting value (Norusis 1998). Kappa is a meaningful 

measure of association because the two maps represent the same type of data with 

identical classes (Eastman 1999b ). The overall KIA for the two images is K = . 7211. 

Change Statistics 

I calculated land area totals for each community and for the entire study area 

using the classified images (Table 5.4). Next, I calculated the total area of forest and 

non-forest land cover for the individual communities (Table 5.5) and the entire study 

area for 1986 and 2000 (Table 5.6). Finally, I extracted land cover change statistics 

for the individual communities (Table 5.7) and the entire study area (Table 5.8). 

The statistics show that Sevina contains nearly one half the total land area (47.5 krn2
) 

compared to Pichataro (86.4 km2
). 

The total forested area for Sevina and Pichataro in 1986 was 16. 8 km2 and 3 3 .2 

km2 respectively. Total area forested in 2000 was 11.8 km2 and 36.6 krn2 respectively. 

Pichataro actually experienced a net increase in its forested area according to the 

classifications, while Sevina experienced an overall decrease. 

The total land area deforested for each community was 7 .3 krn2 for Sevina 

and 2.3 km2 for Pichataro. The percentage of original forest deforested by 2000 was 

43.5% and 6.9% for Sevina and Pichataro respectively equating to 19.1% of the total 

original forest area for the study region. The percentage of total land area for each 

community deforested was 15.4% and 2.6% for Sevina and Pichataro respectively and 

7.2% for the entire study area. 
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Vegetation regeneration totals indicated that Pichataro experienced a greater 

degree ofre-growth than Sevina. Non-forest land cover encompassed 30.7 km2 and 

53.2 km2 for Sevina and Pichataro respectively in 1986. The total non-forest area in 

2000 for Sevina and for Pichataro was 35.7 km2 and 49.8 km2
• The total land area that 

experienced regeneration for each community was 2.2 km2 and 6.0 km2 for Sevina and 

for Pichataro. The percentage of the original non-forest area that experienced 

regeneration was 7.1 % for Sevina and 11.3% for Pichataro or 9.8% of the total 

original non-forest area. The percentage of total land area that experienced 

regeneration was 4.6% and 6.9% for Sevina and Pichataro respectively, and 6.1 % for 

the entire study region. 

I used differential equations to statistically determine an average deforestation 

percentage per year for the fourteen years within the period of interest. Sevina lost an 

average of 3.99% of its original forest per year or 52.21 ha. Pichataro converted an 

average of 0.51 % or 16.34 ha per year. 

Accuracy Assessment 

Congalton ( 1991) suggests adopting an error matrix to assess the accuracy of 

classified images. I conducted a cursory accuracy assessment using error matrices for 

both images. The procedure used ground reference information to create a 

contingency table indicating correctly classified pixels, those pixels incorrectly 

classified as errors of commission, known as "user's accuracy", and errors of 

omission, known as "producer's accuracy" (Congalton 1991). 
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Congalton and Green ( 1999) state that existing data is only useful as a 

qualitative assessment tool and should not be used for accuracy considerations unless 

additional reference data is not obtainable. In this case, the only reference information 

available was pre-existing data. Raster training region images converted from 

polygon data layers during the training site delineation process were compared to the 

classified results. 

The raster training images for 1986 and 2000 were correlated with the 

appropriate classified image for each year. The Idrisi system's ERRMAT module 

produced two error matrices, one for each classified image (Table 5.9). The matrices 

tabulated each land cover class to which ground truth cells were assigned correctly or 

incorrectly. The procedure also output column and row totals, errors of commission 

and omission, an overall error figure, confidence intervals for that figure, and a Kappa 

Index of Agreement for all classes and on a per category basis. Kappa measures 

association based on the difference between the actual agreement in the error matrix 

(the difference between the interpreted land cover classification map and the reference 

image depicted by the major diagonal) and the chance agreement represented by the 

marginals (row and column totals)(Congalton 1999). The 1986 image resulted in an 

overall Kappa of .9917 while the 2000 image resulted in an overall Kappa of .9785. 

Since the post-classification comparison land cover change map relies on the 

accuracy of the initial classifications, errors in the initial classifications were 

compounded by the comparison (Coppin and Bauer 1996; Singh 1989). The overall 

accuracy figure for the post classification comparison was calculated by combining the 
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figures obtained for each individual classification; .9917 x .9785 x 100 = 97% correct 

joint classification rate. 

Deforestation 

For the purposes of this study deforestation is defined as the conversion of 

forest land cover to some other category. Land cover classifications reveal how much 

forest each village had in 1986 and in 2000. Sevina lost 43.5% (731 ha) of forested 

area during that time compared to 6.9% (228.7 ha) for Pichataro. This finding is 

consistent with the large number of sawmills that operated in Sevina during the 1990 's 

stimulating substantially more cutting than Pichataro experienced. 

A change image representing the extent of deforestation provides a dramatic 

visualization of the disparity in deforestation patterns between the two community 

forests. Distinctly different land management strategies were applied to the landscape, 

clear cutting (Sevina) versus high grading (Pichataro), during the period resulting in 

the obvious contrast in pattern between the northeast and southwest portions of the 

study area. The boundary between communities is visible in the pattern of 

deforestation (Figure 5.5). 

Sevina lost extensive patches of contiguous forest indicative of clear-cutting 

and concentrated harvest. This pattern of intensive harvest is usually associated with 

logging stimulated by the demands of organized sawmill operations. Historically, 

sawmills move into an area, operate until they exhaust all the large dimension timber 

they can extract and mill at a significant profit, then close down and move on in search 



of more trees. Deforestation took place throughout Sevina's forests but was mostly 

concentrated at higher elevations, further from the urban center, where the largest 

remaining and most valuable trees were located. 
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Pichataro experienced a more evenly dispersed pattern of forest conversion 

with only a few areas of concentrated change. This finding is consistent with the 

recent history of forest use in the community. Selective logging was the dominant 

extraction strategy in Pichataro, in response to the demands of a developing furniture­

making industry. A value added industry based in carpentry, cabinetmaking, and 

finished wood products consumed less wood than one based on intensive extraction 

for lumber production by sawmills. At least during the period of interest, Pichataro' s 

forests appear to have undergone significantly less conversion. 

Vegetation Regeneration 

Image comparison reveals significant areas of vegetation regeneration in the 

region (Figure 5.6). Re-growth in the context of the study area is considered natural 

shrub regeneration, the re-establishment of seedlings and saplings naturally or through 

replanting, or a combination of the two processes (Figure 5.2). Tree regeneration 

occurs in areas cleared by logging, burning, or where agricultural fields and pasture 

have been abandoned. Although natural and culturally influenced regeneration may 

eventually result in the return of forest cover, most of the areas classified as re-growth 

are not forest. This conclusion is based on field observations of land use in the region, 



an expansion in the wood products sector, and a decline in the profitability of 

agriculture leading to abandonment of marginal parcels. 
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While the major process of landscape change for Sevina between 1986 and 

2000 was deforestation, for Pichataro it was regeneration. My results indicate 

Pichataro experienced more re-growth than Sevina. This is a consequence of the 

disparity in size between the communities and forest conversion in Sevina where 

significant areas of deforested land have not yet had time to recover enough to appear 

as re-growth in the change image. Re-growth in Sevina (220.3 ha) was approximately 

35% of that identified for Pichataro (600.7 ha). 

The greater re-growth in Pichataro reflects its larger land area, 8,644 ha 

opposed to Sevina's 4751.9 ha, but there are likely other factors that caused the 

discrepancy. A different pattern of re-growth for each village is evident in the change 

image indicating that each management strategy influenced landscape pattern and 

process in different ways. The northern forest area of Sevina exhibits larger 

contiguous areas of re-growth than are found anywhere else in the image. This is one 

of the most difficult places to reach in the forests of Sevina and is an area the change 

image indicates was most heavily deforested during the period of interest. These large 

patches of re-growth may be the result of logging that predates the forest conversion 

detected by this study and are now experiencing a return of shrubby vegetation and 

young forest. 

The pattern of re-growth in Pichataro is more consistent with the return of 

vegetation in areas cleared for agriculture and pasture. The pattern is more random 
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and dispersed than the concentrated pattern found in Sevina. Visual feature analysis 

indicates that most of the re-growth took place in and around the margins of forested 

areas and hillside agricultural plots. This distribution suggests that re-growth was 

associated with the abandonment of more marginal milpa plots and the selective 

removal of forest cover at higher altitudes. This is consistent with an increase in 

selective timber harvest in response to expanding markets for wood products in the 

area. 

As markets change, so do land use practices. The abandonment of marginal 

agricultural lands is indicative of the trade reforms that went into effect during the 

1990' s limiting the ability of small-scale farmers to compete against foreign imports. 

This disparity probably also reflects the abandonment of mil pa agriculture on marginal 

hillside plots by many townspeople who in one way or another became involved in the 

woodworking industry. 

No Change 

Little change took place in the broad valleys. This area contains the most 

productive soil, is easiest to plow and plant, and produces the highest returns on 

planting investments. Visual feature analysis indicates that most of the valley floors 

experienced a degree of cultivation and/or grazing sufficient to maintain their 

classification as non-forest, no change regions between 1986 and 2000. Also notable 

is that most of Pichataro's forest canopy remained intact, although it was likely 
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somewhat degraded by selective harvesting. Pichataro retained over 90% of the forest 

it had in 1986. 

Conclusion 

My results indicate that both community forests in the study area underwent 

rapid change between 1984 and 2000. The land cover change map shows large 

differences in the in the area of deforestation between the communities and abrupt . 

changes adjacent to their shared boundary. These differences are associated with 

concurrent ecological and social change but along different trajectories. 

Political, economic, and social forces shaped the character of forest landscape 

change. Shifts in policy governing land-tenure and property rights contributed to these 

changes by allowing the sale of communal lands and timber concessions. The 

liberalization of markets by NAFTA and the GA TT altered the smallholder farmer's 

ability to subsist on maize cultivation. Migration responded to boom and bust cycles 

in village economies. Sevina experienced population loss when its timber supply 

diminished and workers migrated in search of work. Pichataro' s population grew after 

members of the community returned to participate in the current boom in value-added 

woodworking. The decision to seek short-term profits from the extraction of timber 

became a destabilizing force for one village while the other has thus far retained its 

historical identity by resisting the pressure to sell its timber off quickly. 

The neighboring villages experienced dramatically different trajectories of 

landscape change as a result of economic, political, and social determinants. 
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Migration, community structure, access to markets, local traditions, geographical 

location, the spatial distribution of natural resources, and government policy all played 

a role in how events unfolded for each community. 

Exactly what sent each village down its particular path is beyond the scope of 

this study. However, recognizing the importance of these vectors for social, 

environmental, and economic change contributes to a better theoretical understanding 

of how the villages could experience radically different patterns of landscape change. 

This understanding provides insight into how patterns of landscape change occur, 

lending evidence in support of the validity of the land cover classifications. 

The boundary between Sevina and Pichataro is not merely political: It is also 

ecological and social. Visual feature analysis of the forest change maps indicate that 

two distinct regions exist within the study area based on the pattern of deforestation 

and regeneration. This example of how culture influences landscape pattern supports 

the effectiveness of an ecologically framed remote sensing perspective for analyzing 

human-environment interactions. This approach provides a holistic context in which 

to examine landscape change and a better causal understanding of emergent spatial 

patterns in the landscape. 

Initial investigations in the region hinted there was a significant amount of 

deforestation and degradation taking place, and that it had occurred to a greater extent 

in Sevina. When the problem is assessed with satellite imagery the magnitude of this 

change becomes obvious. Over 15 years Sevina lost close to 2.5 times the amount of 

forest Pichataro did, from an original area of forest nearly half the size. 
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GIS analysis of remotely sensed imagery proved to be an effective means to 

approach the problem. Comparison of the satellite imagery elicited a graphic map of 

the extent and location of deforestation and regeneration in the study area. The 

logistics of conventional biotic field sampling on the ground limit the ability to 

conduct large scale analysis of landscape change. Digital imagery, GIS analysis, and 

limited ground trothing are an inexpensive compromise to the enormous cost required 

for extensive field work in remote locations. 

This approach to landscape change detection allows transferability to similar 

situations where landscapes and people face potential environmental crisis. The basic 

strategy used to understand forest change with satellite imagery in this study can be 

fine tuned and applied in a multitude of different but related scenarios. Images of 

change, especially dramatic change sensed remotely from the air or space, are potent 

tools for education and persuasion. When they illustrate impending or transpiring 

environmental degradation and resource depletion they become even more powerful. 
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Table 5.1. Land cover classification image pixel totals. 

1986 Landsat TM Image Classified with Maximum Likelihood Algorithm 

Class Freq. Prop 
Cum. Cum. 
Freg. Pro_Q. 

Forest 55542 0.1988 55542 0.1988 

Non-forest 93106 0.3333 148648 0.5321 

No Data 130730 0.4679 279378 1.0000 

Class width 1.0000 
Display minimum 1.0000 
Display maximum 3.0000 
Actual minimum 1.0000 
Actual maximum 3.0000 
Mean 2.2691 
Standard Deviation 0.7709 
df 279377 

2000 Landsat ETM+ Image Classified with Maximum Likelihood Algorithm 

Class Freq. Prop 
Cum. Cum. 
Freg. Pro_Q. 

Forest 53792 0.1925 53792 0.1925 

Non-forest 94856 0.3395 148648 0.5321 

No Data 130730 0.4679 279378 1.0000 

Class width 1.0000 
Display minimum 1.0000 
Display maximum 3.0000 
Actual minimum 1.0000 
Actual maximum 3.0000 
Mean 2.2754 
Standard Deviation 0.7646 
df 279377 



Table 5.2. Change comparison pixel totals. 

Initial Change Image 
(cross-tabulation of 1986 maxlike against 2000 maxlike) 

Class 

Forest 
Regen 
Deforest 
Non-Forest 
No Data 

Freq. 

45032 
8760 
10510 
84346 
130730 

Class width 
Display minimum 
Display maximum 
Actual minimum 
Actual maximum 
Mean 
Standard Deviation 
df 

Prop 

0.1612 
0.0314 
0.0376 
0.3019 
0.4679 

1.0000 
1.0000 
5.0000 
0.0000 
5.0000 
3.8840 
1.4381 
279377 

Cum. Cum. 
Freq. Prop. 
45032 0.1612 
53792 0.1925 
64302 
148648 
279378 

0.2302 
0.5321 
1.0000 

Final Change Image with 3x3 Median Filter 
(cross-tabulation of 1986 maxlike against 2000 max like) 

Cl F P 
Cum. Cum. 

ass req. rop F p reg. rop. 
Forest 44181 0.1581 44181 0.1581 
Regen 9123 0.0327 53304 0.1908 
Deforest 10634 
Non-Forest 84721 
No Data 130719 

Class width 
Display minimum 
Display maximum 
Actual minimum 
Actual maximum 
Mean 
Standard Deviation 
df 

0.0381 
0.3032 
0.4679 

1.0000 
1.0000 
5.0000 
1.0000 
5.0000 
3.8901 
1.4310 
279377 

63938 
148659 
279378 

0.2289 
0.5321 
1.0000 
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Table 5.3. Cross-tabulation matrices. 

Cross-tabulation of 1986 and 2000 classified images 

1986 

Forest Non-forest 

Forest 45032 8760 
2000 

Non-forest 10510 84346 

Total 55542 93106 

Proportional Cross-tabulation 

1986 

Forest Non-forest 

Forest 0.30 0.06 
2000 

Non-forest 0.07 0.57 

Total 0.37 0.63 

Chi-square= x2 (1, 148647) = 77381.22, Q < .001 

Overall Kappa = . 7211 

Total 

53792 

94856 

148648 

Total 

0.36 

0.64 

1.00 
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Table 5.4. Total land area statistics by community. 

Land Area Totals 

I Sevin a Pichataro Entire Area 

pixels 52746.0 95955.0 148648.0 
Total Area 

ha 4751.9 8644.0 13391.7 

% Total Area 35.5 64.5 100.0 
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Table 5.5. Forest/non-forest land area statistics by community. 

Forest/Non-forest Area Statistics by Community 

Sevin a Picha taro 

1986 2000 1986 2000 

% total areaa 35.0 25.0 38.0 42.0 

Forest 
pixels 18658.0 13080.0 36876.0 40666.0 

ha 1680.9 1174.8 3322.2 3663.6 

% total areaa 65.0 75.0 62.0 58.0 

Non-forest 
pixels 34088.0 39666.0 59079.0 55289.0 

ha 3071.0 3573.5 5322.4 4981.0 

a = percentage of the total community land area. 
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Table 5.6. Forest/non-forest land area statistics for the entire study area. 

Forest/Non-forest Area Statistics for the Study Region 

Total 

1986 2000 

% total areaa 37.0 36.0 

Forest 
pixels 55542.0 53792.0 

ha 5003.1 4846.1 

% total areaa 63.0 64.0 

Non-forest 
pixels 93106.0 94856.0 

ha 8393.4 8545.6 

• = percentage of the total combined study region. 
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Table 5.7. Change statistics by community. 

Change Statistics by Individual Community 

I Sevin a Pichataro 

% total areaa 15.4 2.6 

Deforestation % original areab 43.5 6.9 

pixels 8114.0 2539.0 

ha 731.0 228.7 

% total areaa 4.6 6.9 

% original areac 7.1 11.3 

Regeneration 
pixels 2445.0 6668.0 

ha 220.3 600.7 

a= percentage of the community's land area. 
b =percentage of the community's original forest area (1986). 
c =percentage of the community's original non-forest area (1986). 
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Table 5.8. Change statistics for the entire study area. 

Change Statistics for the Entire Study Region 

j Entire Area 

% total areaa 7.2 

Deforestation % original areab 19.l 

pixels 10634.0 

ha 958.0 

% total areaa 6.1 

% original areac 9.8 

Regeneration 
pixels 9123.0 

ha 821.0 

• = percentage of the total land area. 
b =percentage of the total original forest area (1986). 
c =percentage of the total original non-forest area (1986). 



Table 5.9. Accuracy assessment of the image classifications. 

Error Matrix Analysis of 86TRAIN _LA YER ( columns:truth) 

against 86MAXLIKE _ EQUALPROB (rows:mapped) 

1 
2 

Total 
ErrorO 

1 

4304 
23 

4327 
0.0053 

l=Forest 2=Non-forest 

2 

22 I 
7176 I 

7198 I 
0.0031 I 

Total 

4326 
7199 

11525 

ErrorC 

0.0051 
0.0032 

0.0039 

Using 86MAXLIKE_EQUALPROB as the reference image: 
Category KIA 

1 0.9919 
2 0.9915 

86TRAIN LAYER 
Category 

1 

2 

KIA 
0.9915 
0.9919 Overall Kappa 

Error Matrix Analysis of OOTRAIN _LA YER ( columns:truth) 

against OOMAXLIKE _ EQUALPROB(rows:mapped) 

1 

2 

Total 
ErrorO 

1 

2695 
11 

2706 
0.0041 

l=Forest 2=Non-forest 

2 

85 I 
12011 I 

12096 I 
0.0070 I 

Total 

2780 
12022 

14802 

0. 991 7 

Errorc 

0.0306 
0.0009 

0.0065 

Using OOMAXLIKE_EQUALPROB as the reference image: 
Category KIA 

1 0. 9626 
2 0.9950 

OOTRAIN LAYER 
Category KIA 

1 0.9950 
2 0. 962 Overall Kappa = 0.9785 
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1986 Maximum Likelihood Classification 
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Figure 5.1. 1986 maximum-likelihood classification image. 
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2000 Maximum Likelihood Classification 
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Figure 5.2. 2000 maximum-likelihood classification image. 



Figure 5.3. Initial change image. 
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Final Change Image 

Figure 5.4. Final change image. 



1986-2000 Deforestation Regions 

~"'.' . . 
.,.·" ~ .. ,..; ·~, . - ... 

....... . J. :_ ' 
. . .j'f..·.·.r:~ -..· ',_ .. 
" -~ ,.,,1'~iaJ'! A' ~' ' .... __ ... 'J.! r -4.-' • .· .... .... 

"!' .. -
- : ~~ ,; . 

· •. <• 

... ' . . ·-.',.... ~-. 

- ' ., ( ~ ·• " fl -. 

' ~ ··--~.,~ ~ -"!'. ,J ..•• 

·.: . •'... "':"\~ ~._r-Y-
·'" ·-. -; : t.':; .. ' 

J .i ....... \·,. .· ... ,r" 

J .... . .. . '• 'f -tr~ v -~ I~ ct ~ , ,, 
.• t' ~ i-- " ., • 

" 

\ ::·._· 
--.; 

'-

. f •/'" , ) 
• ··1 • ~ ' «- ' -, " 

'~ 

"' 

'. "v-..; ·~ "'~ . '·~~ •, ',,, •,,, 
r-.... • _,A.4>... ·~. ··-- ' ' f~·.' r ' -· I_ • • ( •• '. 

r....__ ... __ _. , - . : .... < 
- ·~ \ 

"\ . '« , . . ,. ...... ';. .. ._ ... 
\ • •' ~ .. 1 

jl , .... 
., 

[] Study area 

• Deforestation 

Figure 5.5. Deforestation regions. 
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1986-2000 Regeneration Regions 
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Figure 5.6. Regeneration regions. 
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CHAPTER 6: SUMMARY 

Developing nations are vulnerable to the factors that stimulate deforestation at 

multiple geographic scales. Natural resource management policies that change with 

each new administration contribute to a history of ineffective forest management in 

Mexico. During the 20th century forest policy oscillated between the redistribution of 

land and communal tenure for rural peasants, logging bans, huge concessions to 

timber parastatals, and consolidation of government control over the forestry sector. 

Mexico is susceptible to a diverse set of forces that drive landscape change 

and degradation. Government policy designed to improve Mexico's access to the 

global economy allows timber concessions and the sale of communal lands. Kick­

backs and national debt lead to the liquidation of forests for short-term profit and loan 

repayment to outside lenders at the national level. Clandestine logging and timber 

smuggling occurs to the extent that theft is profitable and supported by a black market 

regionally. Ineffective forest resource management, poor community organization, 

and a tragedy of the commons scenario all contribute to forest degradation at local and 

regional scales. 

The situation in Sevina and Pichataro is directly affected by the micro and 

macro-scale changes taking place within and outside Mexico. Each village appears to 

have reacted in its own way to external and internal pressures to cut down its 

remaining forests. These pressures stimulated different resource management 
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strategies. The difference in strategies unevenly influenced pattern and process in the 

natural landscape. 

Sevina is clearly in a predicament and although Pichataro is currently not 

experiencing a timber shortage, one may be on the horizon. A forest resource 

management plan based on sustainable harvest, increased efficiency, and value added 

production in the region may or may not prolong the viability of local forests. Market 

forces might not even allow such an experiment. Intense pressure to liquidate forests 

for the short-term production of marketable commodities may preclude any attempt to 

manage pine forests in the region for sustainable timber production and the 

conservation of biological diversity. The purpose of this study is not to suggest ways 

to avoid a crisis, but simply to assess the dimensions of the current situation and 

attempt to better understand its causes. 

Local people in the Meseta do not have the luxury to consider concepts like 

sustainability, biodiversity, ecosystem connections, or carbon sequestration. They 

face more immediate concerns like growing and gathering food, accessing the 

electrical power grid, and obtaining potable water and wastewater management 

systems for their villages and homes. After that, needs more tangible than forest 

health take precedence. Access to the modem amenities and consumer goods 

associated with emerging regional and local currency based markets supercede most 

other matters, including thoughtful forest management. 

The desire to participate in this new marketplace is a potent and seductive 

agent of change in the region. Locals want satellite television, modem clothing, and 
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telephones. They desire electricity, gas heat, and plumbing. They want pick-up trucks 

and chainsaws so they can participate in the industry that puts pesos in their hands. 

Pesos are the tickets that buy seats in the theater of the global marketplace. Trees are 

the resource that provides the opportunity to earn pesos. The marketplace, therefore, 

is the main agent of change that drives the entire system, and is the premier catalyst 

for deforestation and land degradation in the region. 

The ability to regulate the environmental and social impact of market forces 

from within the community by organizing and managing local resources and 

production methods may improve the situation in the Meseta. Sevina appears to be 

attempting to do so with a program of community education, replanting, erosion 

prevention, and water resource conservation. A collapse of the forest industry in 

Sevina already caused economic depression and out-migration. Whether attempts to 

mitigate environmental degradation in there can succeed will not be knowable for 

perhaps 20-40 years. 

If Picha taro's forests and economic stability can endure also remains to be 

seen. As the local woodworking industry expands, so does the opportunity for 

mismanagement of the forests. At present, villagers appear to have some 

understanding of the potential problems they face if harvest levels increase unchecked. 

They seem either unwilling or unable to organize at the community level to seize 

control of their own natural resource based economy at this time. Perhaps they will 

recognize the potential economic disaster that awaits them and take steps to promote 

the future viability of their forests. On the other hand, they may not be able to resist 
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the strength of the classic boom and bust cycles that challenge an economy reliant on 

primary resource extraction for survival. Only time will tell. 

Mexico and Latin America face difficult challenges concerning their rapidly 

disappearing forest resources. Rural and marginalized people look to the diversity of 

temperate and tropical forests for their livelihood and cultural identity throughout 

much of the region. The abandonment of subsistence agriculture for the production of 

furniture and other forest products is an attractive proposition for rural people with 

access to timber. 

As forests disappear, so do traditional ways oflife and ethnic identity. The 

destruction of forest landscapes produces a homogenizing effect that not only absorbs 

ancient cultures, but adversely affects the quality of human life at regional and global 

scales. Deforestation diminishes water quality, enhances soil erosion, degrades soil 

fertility, and generally reduces the quality of rural life. The global destruction of 

forests may influence climate change and accelerate global warming of the 

atmosphere. Ultimately, large-scale forest conversion renders landscapes 

uninhabitable because it degrades the biological diversity required by terrestrial life 

forms, especially human life. Unproductive land invites migration and abandonment. 

The social structures that bind culture groups to each other and their land dissolve 

when people drift away. 

The future of Mexican temperate forests is a complex situation with multiple 

potential outcomes. Communal forest resource use may contribute to the 

sustainability of temperate forests if rural people are willing and able to organize and 



93 

plan for the future. This requires cooperation and consensus from stakeholders, access 

to capital and administrative resources, replanting, conservation, and a genuine effort 

to reinvest in forests. Increased efficiency and adding value during the manufacturing 

process softens negative impacts on forest ecosystems and improves revenue for 

producers. An organized community can also reduce losses from timber theft and 

smuggling by policing its own land. 

Communal forest management may, on the other hand, lead to runaway 

logging and the depletion of commercially useful timber for rural people in Mexico. 

Recent liberalization ofland tenure policy and improved access to outside markets 

might induce widespread forest conversion in favor of quick profits. This scenario 

usually ends in the depression or collapse of local and regional economies and a 

renewed cycle of out-migration. 

The environmental consequences can be far reaching as well. Forests are self­

regulating systems that maintain ecological and biophysical stability over time. 

Extensive forest cover removal destroys the microclimate that regulates an 

environment in which forests can regenerate. Forest fragmentation and declining 

biodiversity further reduce the landscape's ability to rebound causing long-term 

degradation. Severe degradation prolongs the period in which the landscape remains 

unproductive and uninhabitable. The magnitude of change happening in the forests is 

increasing exponentially because modem forest use is not as sustainable as traditional 

use. The lure of quick profits excludes provisions for the forest in terms of sustainable 

harvest or biological conservation. 
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There can be a balance between profit driven forest destruction and total 

preservation that includes the participation of local people who steward forest 

resources. A sustainable strategy for the long-term viability of timber harvest and 

conservation for non-timber forest benefits may be possible through a convergence of 

ancient and modem technologies. By blending traditional knowledge with low impact 

harvesting and the sustainability principle, forests may continue to provide multiple 

amenities indefinitely. The challenge is to find and implement an equitable strategy 

for the maintenance of biodiversity and continued resource extraction before the 

global forest becomes irreparably degraded. 

Future Research 

My thesis leaves many questions untouched and provides opportunities for 

future studies. The results present the potential for additional forest change detection 

preceding, following, and within the time period of interest. GPS technology was 

used to georeference 20 sample plots, forest stands, farm fields, and pasture in a 

variety of conditions. These locations can be revisited and assessed in the future for 

comparison to the baseline ecological conditions established by this study. Landscape 

photography and stand composition data can be analyzed to assess harvest levels, 

vegetation dynamics, replanting success, and response to disturbance. 

A logical continuation of this study is to pursue more image classification and 

accuracy assessment for landscape change detection. This requires additional field 

surveys of local forests to collect training and ground truth information. Only after 
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further sampling is conducted on the ground, or new geospatial information becomes 

available for the study area can a more robust accuracy assessment be conducted. 

Additional ground sampling will lead to improved assessments of land cover maps and 

image classification. Such research builds toward a better understanding of landscape 

dynamics in the region. 

Future research should address questions central to the structure and function 

of forest ecosystems. If forest removal continues at rates similar to those in Sevina 

what might the consequences be for processes like carbon sequestration and biotic 

carbon emissions to the atmosphere? How will an increase in carbon release affect 

climate and the continued viability of forest ecosystems at local and regional scales? 

How will deforestation affect the integrity of water and soil resources in the area? 

Ecological modeling of historic and current information provides the opportunity to 

build predictive models of possible trajectories for future landscape change. The 

unique cultural and physical geography of the study area presents great potential for 

additional research into the relationship between people and their forest environment. 
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APPENDIX: MAP DATA AND LANDSAT IMAGERY 

Cheran, Michoacan, Mexico. 1982. 1:50,000 Scale Edaphic Topographic Quadrangle. 
Projection: UTM zone 14n. Source: Instituto Nacional Estadistica Geografia y 
Informatica (INEGI). 

Cheran, Michoacan, Mexico. 1980. 1:50,000 Scale Digital Topographic Quadrangle: 
Projection: UTM zone 14n. Ellipsoid: GRS80. Datum: NAD 27/ITRF 92. 
Vector data in digital CAD file format on CD-ROM. Source: Instituto 
Nacional Estadistica Geografia y Informatica (INEGI). 

Cheran, Michoacan, Mexico. 2000. 1 :50,000 Scale Topographic Quadrangle. 
Projection: UTM zone 14n. Ellipsoid: GRS80. Datum: NAD 27/ITRF 92. 
Digital Vector Data in CAD file format on CD-ROM. Source: Instituto 
Nacional Estadistica Geografia y Informatica (INEGI). 

Forest Vegetation Inventory Map of the Meseta Purepecha, Michoacan, Mexico. 
1994. 1:50,000 Scale. Basemap: 1:50,000 scale Cheran Topographic 
Quadrangle (INEGI). Source: Comisi6n Foresta! def Estado de Michoacan, 
Mexico (COFOM). 

Landsat 5 Thematic Mapper Scene. April 6, 1986. WRS Path 28, Row 46 Capture 
Direction: Descending. Time 16:37. Reference System: UTM zone14n. 
Resolution 30m, Thermal 120m. USGS EROS Data Center. 

Landsat 7 Enhanced Thematic Mapper Plus Scene. April 20, 2000. WRS Path 28, Row 
46. Capture Direction: Descending, Time 17:04. Reference System: UTM zone 
14n. Resolution 30m, Pan. 15m, Thermal 60m. USGS EROS Data Center. 

Map of Forestry Plan for the Indigenous Community of Sevina, Municipality of 
Nauhatzen, Michoacan, Mexico. 1985. 1 :25,000 Scale, Base map: 1 :25,000 
Scale Aerial Photographs 1969, complimented by 1 :50,000 scale aerial 
photographs, 1973. Source: Comisi6n Foresta/ del Estado de Michoacan, 
Mexico (COFOM). 
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