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AN ABSTRACT OF THE THESIS OF Christoph Gnieser for the Master of 
Science in Geography presented August 8, 1990. 

Title: Terrain Disturbances by Winter Roads in the Lower and Central 
Mackenzie River Valley, N.W.T., Canada. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Robert 0. Tinnin 

Winter roads, built from compacted snow and I or ice, are common 

throughout the circumpolar North. They are considered effective and 

economical means of providing seasonal access into permafrost terrain while 

minimizing the potential for environmental damage. 



The purpose of this study is an appraisal of long-term environmental 

impacts of winter roads by comparative assessment of terrain morphology, 

microclimate, permafrost, soils, and vegetation, on winter road right-of-ways and 

in adjacent undisturbed control areas. 
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Terrain disturbances result primarily from the removal and deterioration 

of the vegetation and the organic mat. Associated changes in the ground 

thermal regime, i.e. increased soil temperatures, lead to the degradation of near­

surface permafrost. Increases in seasonal thaw depth, and thermokarst 

subsidence in supersaturated fine-textured substrates, are more substantial than 

has previously been reported from temporary winter road test sites in the 

Mackenzie River Valley. Observations on terrain morphology at abandoned 

right-of-ways indicate that terrain modifications are enduring, yet confined to the 

area of initial impact. 

Plant communities adjust to continual disturbance with regard to their 

tloristic composition. Winter road right-of-ways are vegetated by fewer species 

than adjacent control areas, reflecting a decreased abundance of shrubs and an 

increased dominance of few seed-producing species, primarily graminoids. 

Upland roadway sections exhibit notably reduced plant cover, even after recovery 

periods of more than 10 years, whereas lowland sites generally support vigorous 



plant growth. 

Although surface perturbations by winter roads exceed disturbance levels 

predicted in previous studies, their overall impact on the terrain is smaller than 

disturbances caused by conventional all-weather roads. Wet lowland areas are 

less sensitive to winter road operations than dry upland sites and should be 

preferred for route selection. However, the success of winter roads in reducing 

terrain damage is closely tied to their proper preparation and maintenance, and 

the prudent observance of operation schedules. 
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CHAPTER I 

INTRODUCTION 

The acceleration of resource exploration and industrial development in 

Far Northwestern Canada during the past two decades has subjected permafrost 

environments to a broad range of human disturbances. The most widespread 

and extensive environmental perturbations result from myriad winter roads, 

seismic lines and drill pads crisscrossing the landscape. Winter roads, which 

include any kind of seasonally used trails over frozen, snow-covered terrain, or 

roads constructed from snow or ice, have been widely adopted as an economical 

means of providing access where low traffic volumes do not justify the 

construction and operation of conventional all-weather roads. 

The principal objective of this research was to assess long-term 

environmental effects of winter road operation for a variety of surface types in 

Lower and Central Mackenzie River Valley, N.W.T., Canada. During summer 

1989, nine study sites were established on winter-road-right-of-ways with varying 

disturbance histories between latitude 65°N and 68°N. The field program was 

structured to monitor changes in terrain morphology, microclimate, permafrost 

characteristics, soils, and vegetation. Impact assessments were based on 

comparative monitoring of selected environmental parameters on winter road 
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right-of-ways and representative undist~rbed control areas. Given the almost 

complete lack of information on long-term disturbances on winter roads in 

Subarctic forests (Strang, 1973), and the extent of the study area over three 

degrees of latitude, the survey was, necessarily, of a reconnaissance nature, 

designed to provide a regional perspective. One of the purposes of the research 

was to provide information regarding the pattern, rate and potential for recovery 

of terrain, permafrost and vegetation with latitude. An additional goal was to 

determine if conclusions developed in the early 1970s regarding the disturbance 

and recovery of winter-road-right-of-ways are still valid (Adam and Hernandez, 

1977; Younkin and Hettinger, 1978). 

The Mackenzie River Valley, hosting a broad range of tundra and taiga 

ecosystems, yields an excellent opportunity to study terrain response to winter 

road operation. Winter roads have been in operation in the area for nearly fifty 

years, and are, in places, readily accessible from the Mackenzie River. This 

presents a rare opportunity and made this study feasible in view of the current 

rigorous land use regulations that prohibit overland vehicle access to permafrost­

affected areas during the summer. A wealth of baseline information exists on 

the area's physical and biological environment as a result of a comprehensive 

field research program initiated in response to the proposed Mackenzie Gas 

Pipeline during the early 1970s. In the context of this environmental impact 

assessment, winter road performance and adjunct short-term environmental 



effects were evaluated at a number of experimental test sites (Adam and 

Hernandez, 1977; Younkin and Hettinger, 1978). Although only concerned with 

the short-term impacts of winter road operation, these studies led to the wide 

adoption of winter roads as the most effective means of providing access to 

permafrost terrain while reducing the potential for environmental degradation. 

However, no detailed field studies have yet focused on the long-term effects of 

winter road operation on the environment. 

3 

In October 1989, the National Energy Board, Canada, sanctioned plans to 

export natural gas from the Mackenzie Delta - Beaufort Sea (Canadian 

Petroleum Association, 1990). Pipeline construction through the Mackenzie 

River Valley would inevitably require extensive snow and ice road operations as 

soon as 1996. Therefore, an urgent need arises to advance our understanding 

about the long-term environmental effects of winter roads. This is essential to 

allow more realistic appraisals of terrain sensitivity, and development of 

competent mitigation and reclamation measures to minimize terrain damage. 



CHAPTER II 

AREA SETTING 

PHYSIOGRAPHY 

The Mackenzie River Valley, N.W.T., Canada, is a northwest trending 

lowland characterized by level to undulating, in places, hummocky landscape 

(Figure 1). The lower and central portions of the basin, between latitude 65°'N. 

and 68°'N., intersect two physiographic regions: 1) the Mackenzie Plain, a 

lowland separating the eastern ranges of the Mackenzie Mountains and the 

Franklin Mountains, and 2) the Anderson Plain, a narrow lowland belt adjacent 

to the Mackenzie River connected to a mosaic of broadly dissected upland 

plateaus (Bostock, 1965, 1970). Elevations in the basin range between 30 m 

a.s.I. near the Lower Mackenzie River and 150 m a.s.I. in the vicinity of Norman 

Wells; flanking mountain ridges attain elevations of 1,600 to 2.100 m in the 

Canyon Ranges and 700 to 1,000 m in the Norman Range. Slopes generally do 

not exceed 10 degrees, with the exception of cliffs adjacent to major 

drainageways and plateau escarpments in the Anderson Plain. 
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Figure 1. Physiographic regions of the Lower and Central Mackenzie River 
Valley and adjacent areas. Study sites are located by numbers (1-9). (Modified 
from Rowe, 1972.) 
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GEOLOGY 

The Mackenzie Plain and the flanking Franklin Mountains and 

Mackenzie Mountains are parts of the Eastern System of the Cordillera which is 

characterized by folded sedimentary bedrock. Dipping Devonian shales and 

limestones as well as sandstones of Lower Cretaceous occur intermittently along 

the Mackenzie River (Cook and Aitken, 1969). However, there is little bedrock 

control over the topography since the landscape has been profoundly modified 

by glacial phases in the Late Cenozoic. The Franklin Mountains, rising to the 

east of the Mackenzie Plain, are composed of folded and faulted Ordovician, 

Silurian and Devonian carbonate strata, primarily dolomites and limestones, with 

minor amounts of shale, sandstone and conglomerate (Douglas et al., 1976). 

Lowland areas of the Anderson Plain are underlain by flat sedimentary 

rocks - south of 67°50'N primarily by Middle Devonian shales and siltstones, 

northwest of 67°50'N by Upper Devonian clay shales with interbedded layers of 

sandstone and argillite (Cook and Aitken, 1969). Upland plateaus are capped 

by resistant strata, e.g. Mid-Devonian limestone and Lower Cretaceous 

sandstone. 

QUATERNARY GLACIATION 

The Mackenzie River Valley was glaciated at least twice by Laurentide 

ice sheets (Hughes, 1972). Late Wisconsin ice covered the entire area and 
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penetrated into the east-lying mountain fronts, reaching elevations of 1,525 m in 

the Canyon Ranges and 975 m at the south end of Richardson Mountains 

(Figure 1) (Hughes et al., 1983). Ice-marginal channels, terminal moraines, 

glaciofluvial and postglacial lacustrine deposits denote the maximum extent 

ofLaurentide ice. Deglaciation history remains poorly charted. Ice retreat 

commenced along the eastern flanks of the Cordillera by 12,000 yr B.P. 

(Mathews, 1980; White et al., 1985). However, subsequent readvances of the ice 

are evidenced by lobate morainal systems and ice-marginal features within the 

maximum Laurentide limit (Hughes et al., 1989). Mackay and Mathews (1973) 

provide a minimum date for final deglaciation on the Mackenzie Plain near Fort 

Good Hope of 11,530 ± 170 yr B.P. 

Ground moraine is ubiquitous throughout the area; rolling to hummocky 

terminal moraines occur locally. The tills are variable in texture, but typically of 

a clayey-silt matrix with 5 to 10 % coarse fraction (Hughes et al., 1973). Till 

deposits up to 10 m in thickness are common, in places exceeding 30 m (Polar 

Gas Ltd., 1984). With retreat of the Laurentide ice sheet, glacial lakes occupied 

much of the study area (Hughes et al., 1973). Glaciolacustrine sediments exhibit 

a textural gradation from clay and silt strata of up to 50 m thickness to veneers 

of sand and fine gravel usually less than 6 m thick. After drainage of the glacial 

lakes, eolian processes locally reworked the tills, glaciofluvial and glaciolacustrine 

sediments. Terrace and floodplain deposits developed adjacent to present-day 



water-courses. Scree slopes formed along bedrock outcrops. Organic deposits 

developed in shallow depressions and on gentle slopes, and continue to thicken 

and spread at present (Hughes et al., 1973) (Appendix A). 

CLIMATE 

8 

The Lower and Central Mackenzie River Valley falls within a Continental 

Subarctic climatic regime (humid microthermal (Dfc) of the Koppen - Geiger 

System). Summers are mild but short, winters are intensely cold and long. 

From December through March, relatively calm Arctic air predominates. 

Cyclonic breaks in the persistent high pressure system are rare, although 

protruding Pacific air occasionally produces major blizzards. Spring is 

characterized by an increase in cyclonic activity and the penetration of maritime 

air. During summer these moist air masses become progressively unstable due 

to surface heating. Cyclonic activity peaks in July and August with cyclogenesis 

and thunderstorm development common in the area of Norman Wells. In 

September, dropping surface temperatures stabilize the air masses, cyclonic 

activity gradually decreases and maritime air penetrates less frequently. 

Beginning in November, high pressure systems travel southeastward through the 

Mackenzie River Valley, and by December Arctic air once again dominates the 

entire region. 



9 

Climatic data for the Lower and Central Mackenzie River Valley are 

available from three reporting stations: Norman Wells, Fort Good Hope and 

Inuvik (Table I). Temperatures decrease with latitude as expected; across the 

basin, temperatures are significantly warmer in the lee of the Canyon Ranges 

and the Richardson Mountains than east of the Mackenzie River. Mean annual 

temperatures vary from -6.3°C at Norman Wells to -9.6°C at Inuvik, with 

January and July mean daily temperatures ranging from -27.5°C to 16.1°C in the 

south and -29.0°C to 13.2°C in the north, respectively. Degree-day values above 

5°C decrease from 1020 at Norman Wells to 650 at Inuvik (Atmospheric 

Environment Service, 1982). Annual frost-free periods range from 126 days to 

50 days, respectively (Burns, 1973). Air flow in the Mackenzie River Valley 

basically follows the river north during the summer and south during the winter, 

but is considerably modified by local topography, large water bodies and the 

movement of synoptic disturbances. Precipitation, estimated from evaporation 

and run-off regimes, ranges from about 317 mm in the north to about 500 mm 

in the south (Bums, 1973). Rainfall peaks between April and July, but is 

common until November. Snow constitutes about 60 % of the total annual 

precipitation range at Inuvik, but less than 45 % at Norman Wells. Mean 

maximum snow cover depths range from 40 cm near the Arctic Coast to 75 cm 

at Norman Wells and in the lowlands adjacent to the Mackenzie River (Potter, 

1965). 



T
A

B
L

E
 I

 

M
E

T
E

O
R

O
L

O
G

IC
A

L
 D

A
T

A
 F

O
R

 S
E

L
E

C
T

E
D

 S
T

A
T

IO
N

S 
IN

 T
H

E
 M

A
C

K
E

N
Z

IE
 R

IV
E

R
 V

A
L

L
E

Y
 

S
T

A
T

IO
N

 
8-

ti 
ru

 
M

A
R

 
Af

!B
 
~
 

d\
dl

i 
M

 
fil

!@
 

§
S

e 
Q

9!
 
~
 

.Q
5Q

 
~
 

N
o

r
m

a
n

 
T

em
pe

ra
tu

re
 f'q

 
W

e
ll

• 
M

ea
n 

-2
8.

9 
-2

6.
2 

-1
9.

8 
-

7.
2 

5.
4 

14
.0

 
16

.3
 

13
.4

 
6.

1 
-

4.
6 

-1
8.

2 
-2

6.
5 

• 
6.

4 
M

ax
im

um
 

-2
3.

8 
·2

1.
6 

-1
2.

2 
-

0
.5

 
11

.6
 

20
.0

 
22

.2
 

18
.3

 
10

.0
 

0.
0 

·1
2.

3 
·2

1.
1 

• 
0.

5 
el

ev
at

io
n 

7
3

 m
 

M
in

im
u

m
 

-3
2.

0 
-3

0.
5 

·2
4.

4 
-1

3.
8 

0.
0 

7.
7 

10
.0

 
7.

2 
1.

6 
-

6.
6 

-2
0.

0 
-2

9.
4 

·1
1.

1 
P

re
ci

pi
ta

tio
n 

T
ot

al
 (

m
m

) 
16

.5
 

14
.7

 
8

.6
 

13
.7

 
1

7
 

35
.5

 
51

.3
 

67
.3

 
42

.1
 

2 
2.

1 
1.

7 
32

4 
S

n
o

w
 (

cm
) 

16
.5

 
14

.7
 

8
.6

 
11

.6
 

4.
5 

0
.5

 
0.

0 
T

 
7.

1 
16

.5
 

21
.3

 
17

.0
 

11
8 

Ft
. 

G
oo

d 
H

op
e 

T
em

pe
ra

tu
re

 f'q
 

M
e

a
n

 
-3

1.
0 

-2
8.

8 
-2

0.
5 

-
9.

4 
3.

8 
13

.2
 

15
.9

 
12

.7
 

5.
1 

• 
5.

4 
-2

0.
2 

-2
7.

3 
• 

7.
7 

el
ev

at
io

n 
42

 m
 

M
a

xi
m

u
m

 
-2

6.
9 

-2
4.

3 
-1

4.
4 

-
2.

6 
9.

8 
19

.6
 

22
.3

 
18

.9
 

10
.2

 
-

1.
6 

·1
6.

4 
-2

3.
2 

• 
2.

4 
M

in
im

u
m

 
-3

4.
9 

-3
3.

1 
-2

6.
6 

-1
6.

2 
-

2.
2 

6
.7

 
9.

6 
6.

4 
0.

0 
-

9.
2 

-2
4.

1 
-3

1.
3 

-1
2.

9 
P

re
ci

pi
ta

tio
n 

T
ot

al
 (

m
m

) 
11

 
11

 
11

 
11

 
1

4
 

33
 

41
 

48
 

3
2

 
2

6
 

2
2

 
1

9
 

28
4 

S
no

w
 (

cm
) 

11
 

11
 

11
 

9 
7 

0.
5 

0 
T

 
6 

23
 

2
2

 
1

9
 

12
4 

ln
u

v
lk

 
T

em
pe

ra
tu

re
 f'q

 
el

ev
at

io
n 

1
8

 m
 

M
ea

n 
-2

9.
0 

-2
9.

2 
-2

3.
6 

·1
4.

4 
• 

0.
8 

9.
7 

13
.2

 
10

.2
 

2.
7 

• 
7.

2 
-2

0.
4 

·2
6.

8 
• 

9.
6 

M
ax

im
um

 
-2

4.
1 

·2
3.

9 
-1

7.
7 

• 
7.

9 
3.

9 
16

.0
 

19
.2

 
15

.5
 

6.
8 

• 
3.

8 
·1

6.
5 

-2
2.

1 
-

4.
6 

M
in

im
u

m
 

-3
4.

5 
-3

5.
0 

-3
0.

0 
-2

1.
2 

• 
5.

7 
3.

7 
7.

4 
5.

0 
• 

1.
3 

-1
0.

7 
-2

4.
7 

-3
2.

1 
-1

4.
9 

P
re

ci
pi

ta
tio

n 
T

ot
al

 (
m

m
) 

2
0

 
1

0
 

1
7

 
14

 
18

 
1

3
 

34
 

46
 

21
 

34
 

1
5

 
19

 
26

0 
S

n
o

w
 (

cm
) 

2
2

 
1

2
 

1
8

 
1

5
 

14
 

2 
T

 
4 

11
 

35
 

1
9

 
2

2
 

17
4 

T
 =

T
ra

c
e

 
(D

at
a 

fo
r 

ln
u

vi
k 

a
n

d
 F

l 
G

o
o

d
 H

o
p

e
 f

ro
m

 B
u

rn
a

; 
19

73
, 

D
at

a 
fo

r 
N

o
rm

a
n

 W
el

ls
 o

b
ta

in
e

d
 f

ro
m

 T
ar

no
ca

i, 
19

73
) 

.....
.. 

0 



11 

PERMAFROST AND GROUND ICE CHARACTERISTICS 

Information on the post-glacial paleoecology of the Mackenzie River 

Valley allows a speculative chronosequential reconstruction of permafrost 

development in the area. Palyonological records and radiocarbon dates on peat 

samples indicate a somewhat warmer and drier climate before 8,000 yrs B.P. 

(Ritchie, 1984). A subsequent transition to moister conditions is indicated by the 

rapid regional accumulation of peat deposits between 8,000 and 3,000 yrs B.P. 

The increased development of peat plateaus between 4,000 and 3,000 yrs B.P. 

evidence the subsequent spreading of permafrost (Zoltai and Tarnocai, 1975). 

Modem climatic conditions prevailed by 3,000 yrs B.P. with only short-term 

oscillatory fluctuations (MacDonald, 1987). Air temperature records and data 

obtained from deep borehole temperature profiles indicate an increase in mean 

annual ground temperatures of 3°C from the late 1800s to the 1940s, with a 

decrease of about 1°C into the mid-1970s (Mackay, 1975). However, decadal 

temperature records for the 1980s evidence a mean increase of air temperatures 

by approximately 0.9°C in Western Canada (Berry, unpublished data). A 

continuation of such a warming trend in the context of global warming would 

result in the partial or complete degradation of warm and relict permafrost in 

the Mackenzie basin. 

At present, permafrost is discontinuous but widespread in the southern 

portion of the study area, while it is continuous in the northern reaches 
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(Figure 2) (Brown, 1970). The aerial extent of permafrost and ground ice 

contents increase with latitude (Heginbottom et al., 1978). However, site 

characteristics, especially soil texture, surface drainage, slope and aspect, 

vegetation and surface disturbance, have a considerable influence (Heginbottom 

and Kurfurst, 1977). Ice contents in soils and sediments increase with decreasing 

particle size and attain highest values in organic soils and peat (Lau and 

Lawrence, 1977). Visible ice, commonly in the form of finely-defined minute 

crystals, is the most frequently recorded type of ground ice. Origin and history 

of surface deposits are primary factors in controlling the occurrence, form and 

allocation of ground ice (Hughes, 1972b). Ground ice occurs throughout the till 

plains as thin irregular seams yet comprises less than 25 % by volume in the 

upper 2 to 3 meters of the deposit. In drumlinoid and hummocky moraine till, 

excess ice commonly occurs in thin lenses in the uppermost 2 to 3 m, with large 

erratically distributed bodies of segregated ice at greater depth (Hughes et al., 

1973). Glaciolacustrine deposits exhibit varying ground ice contents relative to 

their textural composition. Sand typically has pore ice only and may, if well 

drained, lack any ice. Silt and varved clay deposits contain pore- and segregated 

ice as tabular lenses several centimeters to 1 m or more thick. Unbedded clays 

may hold up to 40 % and more of segregated ice by volume, often enclosing 

unfrozen material. 
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68. 
68' 

Ft. McPherson 
-3 to -5 

/-11 
Discontinuous Permafrost 
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Arctic 
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Figure 2. Permafrost characteristics at selected locations in the Lower and 
Central Mackenzie River Valley. Numbers above the line indicate mean annual 
ground temperatures at the depth of zero amplitude with a possible variation 
of 1.5°C. Numbers below the line depict approximate permafrost depths (Data 
compiled from Brown [1967, 1970, 1978} and Mackay [1967, 1975}.) 
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Recent alluvium and glaciofluvial deposits, found along rivers and streams 

usually have deep active layers or remain unfrozen ( talilcs ), whereas fossil 

floodplain deposits (particularly those of low energy streams) and terraces exhibit 

relatively high ground ice contents (Mackay, 1966). Organic terrain or peatlands 

are perennially frozen, with a very restricted active layer; exceptions are areas 

beneath lakes, ponds and fenlands which thaw to depths of several meters 

(Hughes et al., 1973). Organic soils and peat may seasonally exhibit extremely 

high water contents and considerable quantities of segregation ice. Ice contents 

commonly average 75 % by total volume, however, moisture levels in the surface 

layers are depleted to less than 10 % during the summer (Zoltai and Pettapiece, 

1973a). 

TERRAIN SENSITIVITY 

Terrain susceptibility to disturbance in the Mackenzie Basin increases with 

latitude as a result of progressively increasing ground ice contents in surface 

deposits. However, on a smaller scale, terrain sensitivity varies considerably with 

type and character of surface deposits (Appendix A). 

VEGETATION 

The vegetation of the Lower and Central Mackenzie Valley changes with 

latitude from Boreal Forest to Forest-Tundra (Rowe, 1972). The increasing 
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severity of environmental conditions from south to north, is reflected by a 

decrease in species diversity and productivity, and an increased reliance on 

vegetatively propagating species (Figure 3) (Hernandez, 1974). Plant cover is 

complete throughout the study area except for areas of intense frost action, 

recent fires, slumps and slides, man-made disturbances, water bodies and 

bedrock exposures. Vegetation types of the Mackenzie River Valley have been 

classified and mapped by the Forest Management Institute (1972, 1974, 1975) 

and Reid (1974) (Appendix B). The same principal plant communities occur 

throughout the lower and central reaches of the valley, yet the extent of each 

type varies with latitude (Hernandez, 1974). 

Soils underlain by near-surface permafrost are commonly dominated by 

black spruce (Picea mariana) with an admixture of tamarack (Larix laricina) in 

immature stands. Localized well drained soils support white spruce (Picea 

glauca), white birch (Betula papyri/era), poplar (Populus balsamifera) and aspen 

(Populus tremuloides), of which all but spruce are important secondary species 

after fire and other disturbances. High shrubs include dwarf birch (Betula 

glandulosa ), willow (Salix spp.) and alder (A/nus spp. ), the latter of which are 

important species in early succession on disturbed areas or recent alluvium. 

Common dwarf shrubs are Labrador tea (Ledum spp.), bog blueberry 

(Vaccinium uliginosum ), lingonberry (V. vitis-idaea ), bearberry (Arctostaphylos 

uva-ursi) and red-fruit bearberry (A. ntbra), prickly rose (Rosa acicularis), 



IV 
128"W 

132" 

Figure 3. Forest and tundra regions of the Lower and Central Mackenzie River 
Valley and adjacent areas. I: Upper Mackenzie, 11: Lower Mackenzie, lll: 
Forest-Tundra, IV: Alpine and Arctic Tundra, V: Alpine Forest-Tundra, VI: 

Northwest Transition (Modified from Rowe, 1972.) 
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soapberry (Sheperdia canadensis), crowberry (Empet1Um nigrum), and various 

species of cinquefoils (Potentilla spp. ). Ground cover varies with micro-site. Dry 

sites are dominated by feathennosses (Hylocomium sp., Pleurozium sp., Dicmnum 

sp.) and lichens (including species of Cladina, Cladonia, Cetraria, Peltigera .and 

others), while wet sites usually support peat mosses (Sphagnum spp.) and 

ericaceous dwarf shrubs. Imperfectly drained depressional areas or seepage runs 

exhibit an increased abundance of sedges ( Carex spp.) and cottongrass 

(Eriophorum spp.). 

In the vicinity of Norman Wells, fairly productive, closed-canopy 

coniferous forests prevail, with admixtures of deciduous hardwoods and high 

shrubs in early seral communities (Figure 3 -- Upper Mackenzie Section). To 

the north (Figure 3 -- Lower Mackenzie Section), restricted root penetration due 

to near-surface permafrost, short growing seasons and low soil temperatures 

inhibit the uptake and cycling of nutrients (Hardy Associates, 1980). Black 

spruce, a species tolerant of shallow active layers, is the dominant tree species 

growing stunted and forming thickets and woodlands with a low shrub 

association. Tree density is often deceptively high due to vegetative 

reproduction leading to layered growth. Well-drained sites exhibit fairly 

productive stands of white spruce and poplar extending into the Mackenzie 

Delta (Ritchie, 1984). In the northern expanse of the study area, climatic 

severity is the apparent over-riding environmental factor (Figure 3 -- Forest-
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Tundr:a) (Rowe, 1972). Lowlands east and south of Inuvik are characterized by 

open woodlands of black spruce with a codominant low shrub and moss 

understory. 

SOILS 

Soils in the Lower and Central Mackenzie River Valley have been 

described by Tarnocai (1973), Zoltai and Pettapiece (1973), Pettapiece (1974a, 

1974b), Pettapiece and Zoltai (1974a), Brewer and Pawluk (1975). Soil 

classification in the following discussion is according to ''The Canadian System of 

Soil Classification" (Agriculture Canada Expert Committee on Soil Survey, 1987); 

equivalents of the U.S. system are provided in parenthesis. 

The Cryosolic order (Pergelic subgroups) dominates the area (Tarnocai, 

1973). Turbic cryosols (Pergelic Ruptic subgroups) are characteristic of fine­

and medium-textured soil materials. Markedly affected by cryoturbation, they 

commonly exhibit the formation of earth hummocks. These average 1 to 1.5 m 

in diameter and possess a microrelief of 30 to 40 cm between mound crest and 

hollow (Pettapiece and Zoltai, 1974). Associated cyclic soil bodies commonly 

exhibit cryogenic dispersion or intrusion of mineral and organic matter and soil 

profile disruption in horizontal and vertical direction. Roughly 80 % of the land 

surface comprised by mineral soils in the Lower Mackenzie Valley displays a 

hummocky microrelief (Zoltai and Tarnocai, 1974). Static Cryosols (Pergelic 



subgroups) are frequently associated with coarse-textured, well drained deposits 

veneered by a thick organic mat. Organic Cryosols (Pergelic Histosols or 

Pergelic Histic subgroups of other orders) are predominantly found in 

ombrotrophic wetlands in association with peat plateaus and palsas. 
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Soils unaffected by permafrost occur in "pockets" throughout the study area. 

Low-lying margins of streams and lakes and unfrozen fen wetlands are frequently 

characterized by gleysols (Aqu-suborders) and organic soils (mainly Fibrists and 

Mesisols) (U.S.: Fibrists and Hemists) where the accumulation of organic 

material exceeds 40 cm (Pettapiece and Zoltai, 1974). Small proportions of 

Eutric and Dystric Brunisols (Cryochrepts or Eutrochrept and Dystrochrept) 

occur on well drained terrain; they characteristically exhibit podzolic or luvisolic 

(Alfisol) features with eluviated surface horizons and subsurface accumulations of 

Fe, Al, organic matter or clays (Pettapiece and Zoltai, 1974). Orthic and 

Cumulic Regosols (Entisols) are associated primarily with recent alluvium and 

colluvium on slopes subject to mass wasting. 



CHAPTER III 

WINTER ROADS 

DEFINITION 

Winter road refers to any kind of seasonally used vehicle trail over snow­

covered terrain or a road constructed from snow, ice or a mixture of both. 

Winter road operations may be temporary where access is limited to a single 

winter season, or perennial where a right-of-way is used continually for 

numerous winter seasons. The period for which a winter road remains 

functional is related to its structural and physical properties which protect the 

underlying surface (Adam, 1981). Specific kinds of winter roads include: winter 

trails, compacted snow roads, processed snow roads, manufactured snow roads, 

ice-capped snow roads and solid ice roads; a detailed discussion is presented 

later. 

IMPORTANCE OF WINTER ROADS 

Winter roads are common throughout the circumpolar North. Snow and ice 

roads are effective means of providing access in permafrost regions, while 

reducing the necessity of gravel and land resources, and conserving energy 

(Keyes, 1976). Perennial snow or ice roads (operated for consecutive winters) 



render economically feasible low traffic volumes which do not justify the 

construction and operation of conventional year-round roads. 

Winter roads furnish the exclusive means of overland transportation in 

much of Siberia (Harris, 1986). In the Canadian Subarctic numerous outlying 

settlements and mining camps depend on the supply of bulky and low-value 

freight by winter hauling. Winter roads lend themselves well to temporary 

applications, such as seismic exploration and construction activities in sensitive 

terrain or timber hauling in the Boreal Forest (Adam, 1978). 
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ENVIRONMENTAL PROTECTION 

The sensitivity of permafrost terrain to surface perturbations requires 

restriction of overland travel to when the ground is frozen and a snowpack of 

adequate depth has accumulated. Access into tundra and taiga is facilitated 

during winter because the frozen terrain provides a firm surface for vehicular 

movement and trails can be cleared more easily. Moreover, winter allows the 

utilization of frozen lakes and rivers for travel, thereby avoiding impacts on the 

land. 

The concept of using snow and ice roads for the protection of terrain 

evolved fairly recently (Johnson and Collins, 1980). Prior to the early 1970s 

neither Alaskan nor Canadian authorities had established regulations to protect 

Tundra and Taiga environments from surface perturbations. In the course of 
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extensive hydrocarbon exploration on the Alaskan and Western Canadian Arctic 

Coastal Plains, caterpillar tractors and other tracked vehicles travelled over 

thawed ground in the summer, the effects of which have been well documented 

(Everett et al., 1985; Hok, 1969; Hernandez, 1973; Kerfoot, 1972; Lawson, 1986; 

Radforth, 1972; Radforth, 1973; Walker et al., 1987). Winter roads served as 

economical alternatives to all-weather roads, allowing the operation of non­

specialized wheeled and tracked vehicles. Through the 1950s winter trails were 

often bladed to the mineral soil (Walker et al., 1987); road surface preparation 

was more a means to improve the trafficability of the route than to protect the 

ground surface. 

Concern over vehicle-induced disturbances in Arctic and Subarctic arose 

in the late 1960s (Johnson and Collins, 1980). Recognizing that the overall 

impact by vehicular movement over frozen, snow-covered ground is considerably 

less than comparable activities on thawed terrain, Alaskan and Canadian 

authorities prohibited summer travel across permafrost terrain unless adequate 

measures for its protection were taken, such as the use of low-ground pressure 

vehicles. In the early 1970s, research into winter road performance and adjunct 

short-term environmental impacts led to the adoption of winter roads as the 

most effective means of reducing damage to vegetation and permafrost (Adam 

and Hernandez, 1977; Younkin and Hettinger, 1978). Subsequently, regulations 

for the prevention of excessive terrain perturbations by winter road use were 
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established. Route selection, winter road preparation and maintenance schemes 

as well as working equipment are commonly stipulated in land use permits; their 

observance is reinforced by regular winter road inspections (Christofferson, 

Interview, 1989). 

ROUTE SELECTION 

Environmental protection commences with initial route selection. The 

projected use of the route influences design criteria such as width, grades, cross 

slopes and alignment (Keyes, 1976). A particular road lay-out will, in most 

cases, be controlled by terrain topography, soil conditions, drainage patterns, and 

wildlife habitat. 

The performance of critical areas along a winter road ultimately 

determines its functionality. Terrain underlain by frost-susceptible, ice-rich soils 

should be avoided owing to its sensitivity to slides or slumps, excessive thaw 

settlement, and soil creep (Lotspeich, 1974). Potentially weak spots may be 

identified from topographic or surface geology maps and aerial photographs. 

However, the suitability of a route can only be confirmed by prudent soil, 

thermal and ground ice reconnaissance. Winter roads frequently require 

rerouting or bypassing of road sections where terrain reactions exceed 

anticipated disturbance levels or where slopes are too long or too steep. Sloping 

terrain and approaches to stream crossings with ice-rich soils are potentially the 
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most acute problem areas (Adam, 1974). Cross slopes in excess of 5. % should 

be bypassed since winter road operation will require surface grading using "cut 

and fill" practices. Grades steeper than 12 % commonly impede the operation 

of conventional wheeled vehicles, and surface rutting as a consequence of 

spinning wheels is inevitable (Keyes, 1976). Lotspeich (1974) advises to break 

long steady grades with short sections of level or reverse grades. Thereby, the 

potential for erosion is reduced by preventing the accumulation of excess 

drainage water on the right-of-way. Downwind slopes are often preferable due 

to greater snow accumulation (Adam, 1978). Stream crossings are commonly 

established where gently sloping banks allow easy passage to the ice bridge. 

Stream bank stability and susceptibility to erosion are important criteria to be 

considered. 

Lowland soils with a peraquic moisture regime freeze to form a solid 

substrate and, thus, compact less than peat covered upland soils (Wein and Bliss, 

1971). However, in early winter frost penetration into these soils is slow. The 

frozen surface of lakes and rivers may be optimal for the routing of winter roads 

in terms of construction costs and the prevention of terrain disturbances. Yet, 

late freezeup may locally delay preparatory work on the winter road. 
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RIGHT-OF-WAY CLEARING 

The importance of right-of-way clearing depends on terrain conditions, the 

type of winter road being constructed and the nature of the existing vegetation 

(Hardy Associates, 1984). Carelessness in clearing a right-of-way, particularly on 

supersaturated icy soils and on river banks, may result in surface deterioration 

and, hence, thermal and hydraulic erosion, slope failure and stream siltation 

(Pipeline Application Assessment Group, 1974). Thus, clearing procedures, 

schedules, the necessary vehicular equipment and clearing widths are stipulated 

by the authorized land use agencies in the Northwest Territories. 

Vegetation clearing can commence as soon as sufficient snow and frost 

penetration into the ground permit the operation of bulldozers. Tracked 

equipment is selected according to the type and height of the vegetation; the 

Environmental Protection Service (1976) recommends that working equipment 

should not exert a ground pressure in excess of 55 kN/m2 (8 psi). Clearing of 

an open spruce forest at the Northern treeline may be accomplished with a 

small crawler tractor, such as a D5 Caterpillar. However, in a dense stand of 

mature spruce in the Boreal Forest a heavy tractor, such as a D9 caterpillar, 

may be required. The operation of underpowered bulldozers can contribute to 

terrain degradation by the slippage of the cleated tracks when forward motion is 

impeded by a large tree or a group of trees (Inter-Disciplinary Systems Ltd., 

1973). Trees and high shrubs are commonly felled by "high-blading", that is, 



26 

knocking the vegetation over with the blade held slightly above the surface. 

Ground vegetation and low shrubs are bent over and compressed under the 

weight of the equipment and, thereby, to some extent preserved. Yet, the 

vegetative surface suffers where scarce snow cover provides little protection from 

the tracks, or where branches, twigs, or leaves of evergreen shrubs break under 

the compressional forces of passing vehicles. 

Clearing should preferably be carried out in late winter at temperatures 

below -18°C, when all roots are anchored in the frozen ground and trees and 

high shrubs break above their stump when being pushed over (Inter-Disciplinary 

Systems Ltd., 1973). In early winter when frost penetration into the soil is 

insufficient, trees may be uprooted causing the organic layer to rip. It is 

imperative to preserve the ground vegetation and the organic mat which insulate 

the underlying frozen ground and guard against erosive processes. 

Machine-cleared rights-of-way are commonly grubbed and cleaned up by 

hand since remaining tree stumps and debris would be hazardous to rubber tired 

vehicles. The slash is wind-rowed at the corridor margins and compacted by 

bulldozer to accelerate decay. However, windrowing of slash is controversial; 

freshly cut trees and shrubs provide prime breeding materials for bark-beetles 

and wood borers, and windrows represent a fire hazard (Hardy Associates, 

1984). Alternative methods for the disposal of clearing debris such as wood­

chipping, scattering or controlled burning may be specified in the land use 



27 

permit. 

Sensitive slopes with potentially unstable soils or high ground-ice content 

and approaches to water crossings may require hand-clearing and I or reduced 

clearing widths to prevent excessive surface disturbance (Pipeline Application 

Assessment Group, 1974). Hand-cleared corridors exhibit a higher rate of plant 

survival, less compaction of the organic mat and the soil, and smaller increases 

in thaw depth than land cleared by crawler tractor. However, the advantages of 

hand-clearing a right-of-way are lost if it is subjected to further disturbance from 

winter road operation (Adam and Hernandez, 1977). 

SCHEDULING OF WINTER ROADS 

Alaskan and Canadian land use agencies stipulate winter road schedules 

according to ice (snow) and weather conditions along the right-of-way. 

Accumulative snow depth, Degree-day values above or below OOC or depth of 

frost penetration into the substrate, respectively, have been established as 

decisive climatic criteria. The Alyeska Pipeline Service Company has appended 

snow density as a design criterion for their snow work pads, since this will 

ultimately determine the roads' load-bearing capacity and durability (Johnson 

and Collins, 1980). 

Appreciable terrain disturbance can occur in early winter if snow and 

frost conditions are not suitable for winter road operation (Pipeline Application 
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Assessment Group, 1974). Hence, the Environmental Protection Service (1976) 

recommends delaying construction until 13 cm of snow have accumulated and 

the ground is frozen to a depth of at least 20 cm. The winter road season ends 

when the road surface looses its load-carrying capacity and terrain damage may 

ensue. Heat absorption of a darkened snow or ice road surface is increased due 

to a lower albedo, and snowmelt and runoff from the surface commonly occur 

before the undisturbed snowpack adjacent to the road starts to thaw (Adam, 

1974). Likewise, melting at the ground surface-snow (ice) interface starts earlier 

on roadways than in the adjacent surface owing to higher heat transfer and 

attenuation coefficients of artificially compacted snow or ice. 

The seasonal limits for winter road use can be approximated on the basis 

of historic temperature and snowfall records. Table II presents the range of 

climatic criteria required for winter road operations (Kosten, 1976). 

The specifications are guidelines only since the local variability of terrain 

conditions requires actual decisions to be based on field observations. 

Adam (1974) evaluated theoretically available winter road periods in the 

Mackenzie River Valley by determining the joint probability of snow depths and 

accumulated Degree-days of frost at particular dates in the fall, and accumulated 

Degree-days of thaw (adjusted for radiation and road albedo) in spring. He 

assumed 20 cm of snowfall and 550 Degree-days of frost before winter road 

construction could commence in early winter and 1.3 cm of accumulated thaw on 
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consecutive days, a value which was found to represent a daily mean 

temperature of OOC, for the shut-down of winter roads (Figure 4). The period 

available for winter road operation is, however, significantly shorter since road 

construction has to be accomplished within this time interval and several days 

are usually lost during early winter and late spring due to unseasonal thaws. 

Between 1982/83 and 1988/89 the compacted snow road Jinking Norman Wells 

and Ft. Norman in the Central Mackenzie River Valley was operated on an 

average of 77 days as compared to a minimum of 120 days theoretically 

available in any year (Figure 4). 
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Construction of public winter roads in the Central Mackenzie River 

Valley is commonly begun no later than December 15 to open the roadways to 

traffic by January 1. March 20 is the official closing date unless climatic 

conditions permit longer use. Although snow conditions might prohibit travel 

during the day, night temperatures below freezing may allow limited hauling and 

extend the fmal shut-down date (Hardy Associates, 1984). 

After the official closing date, N. W. T. land use permits require the 

removal of snow fills, drainage control structures and ice bridges prior to 

breakup. Since roadbed failure has frequently occurred, the remaining snow 

cover provides little protection to the underlying ground surface from crawler 

tractors and heavy 4-wheel drive pickups used during the "clean-up". Surface 

rutting, soil compaction and crushing of the ground vegetation could to some 

extent be avoided if winter road closure was expedited. 
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Figure 4. Probability of "N" or more calendar days of winter road use in any 
winter at various locations in the Mackenzie River Valley. (Modified from Adam, 
1974.) 
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CLASSIFICATION OF WINTER ROADS 

Winter roads can be distinguished on the basis of road surface 

characteristics. Strength and durability of snow- and ice road surfaces are 

determined by the type and properties of the construction material as well as 

processing techniques and equipment used. The extent of road surface 

preparation depends on the required density and hardness of the snow or ice 

surface to support the types of vehicles using it, anticipated traffic volumes and 

loads (wheel loads) and to provide adequate protection to the underlying ground 

surface. A standardization of construction and maintenance programs for the 

various types of winter roads is difficult owing to the variability of weather 

conditions and terrain characteristics. Nevertheless, the Alyeska Pipeline Service 

Company has advanced engineering specifications for five types of snow pads on 

the basis of vehicle types and loads (Johnson and Collins, 1980). Adam (1978) 

differentiates between winter roads on ice and ice bridges, winter trails, snow 

roads and ice roads, which may either be used temporarily or perennially. His 

classification follows. 

Winter roads on ice and ice bridges are prepared rights-of-way on the 

frozen. surface of lakes and streams. The ice thickness is usually increased by 

clearing the snow off the surface, thereby removing the insulative cover and 

allowing increased frost penetration. Construction and maintenance costs are 

low and environmental disturbances are avoided unless the ice thickens too 
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much so that aquatic lifeforms are threatened or streamflow is impeded. 

Winter trails are relatively unimproved rights-of-way, established by a single 

pass of a tracked or low-ground-pressure wheeled vehicle over snow-covered 

terrain. Surface preparation is confined to the compaction of the snow by 

repeated passes of crawler tractors. Where less specialized vehicles are 

operated on the right-of-way, the snow is commonly ''back-bladed" to fill hollows 

and depressions in the trail. Light drags may be used to level and compact the 

surface. Subsequently, the trail is allowed to sinter and gain strength through 

"age-hardening". The physical principles underlying this process are water vapor 

pressure gradients in the snow inducing the growth of necks between snow 

grains through sublimation (Ramseier and Keeler, 1966). Low temperatures 

favor the hardening of snow. The most rapid increase in strength occurs during 

the first two or three days of "age-hardening" (Adam and Hernandez, 1977). 

However, construction schedules rarely permit sintering intervals of more than 24 

hours. 

Maintenance efforts on winter trails are generally confined to keeping the 

surface covered with snow to delay thawing in the spring. Surface deterioration 

is inherent where wheeled vehicles with high tire pressures are used. Compared 

to snow or ice roads, winter trails provide the least environmental protection and 

should, therefore, be used exclusively by low ground-pressure, tracked or 

''balloon-tired" vehicles (Adam, 1978). 
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Compacted snow roads are built with snow as a cut and fill material to 

establish a relatively smooth surface. Prior to construction, early snowfalls are 

compacted by light, tracked vehicles to induce frost penetration to sufficient 

depths. Once 20 cm of snow accumulate and the active layer is frozen 

sufficiently to support heavy construction equipment, bulldozers shape the snow 

into a road grade. The surface is levelled by backblading or light log drags and 

compacted by repeated passes of a crawler tractor. 

Snow road applications require snow densities of at least 0.55 g/cm3 to 

accommodate wheeled vehicles (Adam, 1978), a value, which, in the Far North, 

can only be attained and exceeded by artificial densification through compaction. 

Heavy steel or log drags are necessary to apply enough pressure to ensure 

satisfactory compaction. The compressional forces exerted by drags or rollers on 

a snow cover cause individual snow grains and grain aggregates to break, 

resulting in a decreased average grain size and denser packing. Snow 

temperatures and moisture levels in the snow are important variables in 

compaction. For a given compactive effort, highest snow densities are achieved 

at temperatures slightly below G°C (McClung, 1980), albeit packing of snow at 

-400C is virtually impossible (Christofferson, Interview, 1989). 

Compacted snow roads are usually allowed to "age-harden" for at least 48 

hours before full-scale operation (Adam et al., 1984). The importance of the 

"age-hardening process" is evidenced by U.S. Navy field experiments (Adam, 
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1981 ), which indicate that the immediate operation of tracked and wheeled 

vehicles on dry, freshly compacted snow causes churning of the surface with no 

increase in compacted hardness over time. Since the entire snow column is 

compacted in one step, snow densities and hardness values decrease significantly 

from the road surface towards the base of the snow layer. Consequently, 

compacted snow roads have relatively low load-bearing capacities unless used by 

low-ground pressure vehicles. Low vehicle speeds and judicious routing across 

the gentlest possible slopes are essential to keep maintenance efforts down. 

Maintenance entails regular grading, compaction, the patching of potholes and 

ruts, and the reworking of the surface after snowfalls. 

Processed snow roads are constructed from snow that has been "agitated" by 

means of harrows, snow plows or other specifically designed equipment prior to 

compaction. Thtreby, the number of contact points among snow particles is 

increased and layers of snow of different temperatures and consistencies are 

mixed. As a result, greater densities are achieved during compaction and snow 

hardness values increase due to the ameliorated growth of bonds among the 

snow particles. 

Alternatively, a roadbed may be constructed from individually compacted 

layers of snow, as opposed to one-step compaction of the entire snow column. 

In the Upper and Central Mackenzie River Valley public snow roads are 

constructed by "layered compaction", a technique providing the densest and most 
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evenly compacted type of snow road (Adam, 1984). In early winter, the snow 

cover and vegetation along the right-of-way are compacted by low-ground 

pressure vehicles to accelerate frost penetration. As soon as sufficient load­

bearing capacity is gained and about 30 cm of snow accumulate, crawler tractors 

(i.e. Caterpillar tractors D-5 to D-7) blade as much snow as possible to the sides 

of the roadway. Bulldozers are equipped with soft tracks, commonly known as 

"white pads", to minimize disturbances of the ground vegetation. Wedge- or 

mushroom-formed blade- or skid-shoes, fitted under the blade, are designed to 

raise its cutting edge above the ground to prevent the "scalping" or levelling of 

the surface layer. However, in terrain of marked microrelief the effectiveness of 

blade shoes is, yet, limited and the scuffing of hummocks and tussocks is 

inevitable (Linton, Interview, 1989). Organic material and soil mixed with a base 

layer of snow will cause maintenance problems in spring due to intensified 

thawing. 

Frost penetration into the ground for at least one or two days is 

recommended before wheeled, motorized graders are permitted on the roadway 

to blade the snow back onto the roadway. Drags or rollers are used to compact 

each individual veneer of snow applied. The thickness of individual snow layers 

depends on the physical properties of the snow, ambient temperatures, and the 

type and weight of equipment used, but generally measure less than 5 cm. 

Following compaction, each top snow layer is allowed to sinter and gain strength 
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through "age-hardening" before another veneer of snow is applied or the road is 

opened to traffic. 

The road surface is maintained with motorized graders and drags, or 

rollers for compaction. Maintenance schedules depend on the types and loads 

of vehicles using the winter road, vehicle speeds, traffic volumes and atmospheric 

conditions. During storms new fallen snow is bladed off the roadway and 

subsequently reapplied in thin layers. 

Land use regulations require a minimum compacted snow surface 

thickness of 5 cm for the operation of snow roads in the Mackenzie River 

Valley. Public winter roads, limited to regular highway type vehicles with gross 

loads of maximum 64,000 kg, are maintained to allow travel at an average speed 

of at least 35 kilometers per hour. The snow roads linking Norman Wells with 

Ft. Good Hope and Ft. Norman, respectively, accommodate mainly pickups to 

heavy trucks (Lafferty, Letter, 1990). 

Manufactured snow roads are built from artificial snow, which is commonly 

manufactured at a water source, hauled to the. right-of-way and end-dumped into 

place. The construction scheme for manufactured snow roads does not differ 

from other snow roads. "Snow-making" becomes necessary where there is a lack 

of natural snow. During the construction of the Alyeska Pipeline sections of 

snow pads had to be built from manufactured snow when snowfalls in early 

winter were light and harvest sources, such as lakes or snow drifts adjacent to 
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the right-of-way, were unavailable (Johnson and Collins, 1980). 

Ice-capped snow roads are constructed where insufficient snow 

accumulates or where proper densities and hardness values cannot be attained. 

Water is sprayed on a compacted snow surface to bond snow particles and 

augment the strength of the road surface. The water is pumped out of 

perennially flowing streams or deep lakes into water trucks. According to Adam 

(1978), about 2.5 cm of water are required to adequately ice-cap a snow road, a 

value which can be translated into 250,000 liters needed per kilometer on a 10-

m wide snow pavement. In hummocky terrain considerably larger volumes may 

be required to level the microrelief. The high costs of ice-capping 

(approximately Can$ 3,000 per mile for a 4-month period in 1989) justify the 

implementation of water only when and where absolutely necessary 

(Christofferson, Interview, 1989). In the Mackenzie River Valley ice-capped 

snow roads are used for hauling of heavy equipment in the course of resource 

exploration activities or where roads have to be maintained beyond the official 

closing date. 

Solid ice roads are constructed where the lack of snow prohibits other types 

of winter roads to be built or where heavy loads or high volumes of traffic 

require greater road surface strength than can be provided by snow roads. As 

opposed to ice-capped snow roads a base of snow is not required, yet, would be 

beneficial, especially in hummocky terrain with marked microrelief. Ice roads 
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are built by sprinkling water onto the ground to fill depressions and form an ice 

surface. The first application of water wets the snow or ground to form a seal 

that prevents seepage. Subsequently, ice is built up in layers several cm thick, 

until the desired thickness and smoothness is attained. 

Ice aggregate winter roads are built of crushed ice hauled to, and end­

dumped on the right-of-way. The aggregate ice is usually "mined" by fracturing 

or chipping ice from frozen lakes and rivers. Water is sprayed or hosed onto 

the aggregate to bond it. Due to the surface roughness of ice aggregate winter 

roads they have been shown to provide better traction than solid ice roads, while 

rendering comparable durability. Due to high construction costs this relatively 

new concept in winter road design has yet only been used for experimental 

purposes. 

Ice as a construction material for overland winter roads significantly 

increases the road's stability and longevity (Christofferson, Interview, 1989). 

However, the limited availability of water during winter, concerns about the 

impacts of the withdrawal of water on lake or stream environments, and the 

exorbitant construction expenditures restrict the use of water in the construction 

of snow or ice roads. 
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HISTORY OF WINTER ROAD DEVELOPMENT IN THE STUDY AREA 

Winter Trails 

Winter access into the Mackenzie River Valley became necessary during 

World War II to allow the flow of equipment and supplies needed at Norman 

Wells, N.W.T., for the CANOL Pipeline Project of the U.S. Army. In the winter 

of 1942/43 two overland trails were cleared northwestward through the Upper 

Mackenzie Valley to Norman Wells, N.W.T. (Wonders, 1962). These winter 

roads allowed barging on the Mackenzie River to commence prior to the 

breakup on Great Bear Lake and enabled winter hauling of urgent items by 

"tractor train". However, after the initial year both trails were abandoned as the 

emergency passed and winter-hauling for civil purposes didn't pay. 

During the late 1960s and early 1970s, thousands of kilometers of winter 

trails were cleared throughout the Mackenzie River Valley and the Mackenzie 

Delta for seismic exploration activities in the search for hydrocarbon resources. 

The number of trails cleared each year decreased after the territorial land use 

regulations came into effect in the early 1970s. Yet, in 1976/77 the movement 

and servicing of oil exploration rigs still required the construction of about 880 

kilometers of winter roads, more than half of which were overland snow or ice­

capped snow roads (Adam, 1978). 
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CNT-Telephone-Line Corridor 

Between 1963 and 1965 Canadian National Telecommunication (CNT) 

cleared a right-of-way for a telephone line to Inuvik, N.W.T, thereby opening the 

way for the operation of a winter road parallel to the Mackenzie River for its 

entire length. Until 1971 the trail was used for routine maintenance on the line 

and as a haul road by oil companies and seismic crews. From 1969no to 

1974n5, a privately operated compacted snow road was constructed along the 

right-of-way with minor grade-reducing diversions and route improvements. The 

snow road was built only as far as the most northerly of destinations required 

that season. Construction was performed with bulldozers (Caterpillar D-6 

through D-9) and motor graders (Caterpillar models 12 and 14). No snow 

making equipment or plow trucks were operated, but drags were used for road 

surface compaction (AVCON, 1976). The road was opened in early January 

when stream crossings were passable and closed in mid-April by removal of the 

ice bridges. Traffic volumes along the winter road are hard to estimate since 

only commercial vehicles passing the tollgate at Fort Simpson were recorded 

(Table III). Intermediate traffic movements north of Ft. Simpson are not 

known. In 1975/76 the contractor's lease for building and operating the 

snow road expired. Since then, the road has been used irregularly by native 

trappers and hunters on snowmobiles and limited hauling by exploration crews. 



1969-70 
1970-71 
1971-72 
1972-73 
1973-74 
1974-75 

TABLE III 

CONSTRUCTION PROGRAM AND COMMERCIAL VEHICLE 
MOVEMENTS ON THE CANADIAN NATIONAL 

TELECOMMUNICATIONS RIGHT-OF-WAY 

Construction Program 

Fon Simpson to Wrigley 
Fon Simpson to Norman Wells 
Fon Simpson to Inuvik 
Fort Simpson to Inuvik 
Fon Simpson to Inuvik 
Fort Simpson to Norman Wells 

Commercial Vehicle Movement• 

? 
1,483 
1,441 
1,207 

574 
? 

• Two-way traffic passing the toll gate at Fort Simpson 

(Source: A VCON Aviation Consultants Ltd., 1976). 

Mackenzie Highway 

During the winter of 1970nl, a right-of-way was cleared for the long-

planned Mackenzie Highway, a public all-weather road designed to provide 

access to the settlements on the eastern shore of the Mackenzie River and to 

foster resource development in the Valley and the Beaufort Sea. Construction 

was halted south of Wrigley, N.W.T., in 1975 when plans to develop the 

Mackenzie Valley as a pipeline and transportation corridor were suspended 

because of concerns about environmental disturbances and socioeconomic 

impacts on the native population (Berger, 1977). Until 1979 a snow road was 

constructed on the right-of-way for winter hauling from Wrigley, N.W.T., to 
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Inuvik, N.W.T., when it became obsolete with the completion of the all-weather 

Dempster Highway. Since 1979, a processed snow road has been constructed 



annually on the right-of-way between Wrigley, N.W.T., and Norman Wells, 

N.W.T. In the winter of 1988/89 the road was extended to Ft. Good Hope, 

N.W.T., after 10 years of abandonment. 

Territorial Winter Roads on Ice 
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Public winter roads, linking lnuvik, N.W.T., with Aklavik, N.W.T., and 

Tuktoyaktuk, N.W.T., in the Mackenzie Delta, are constructed annually on 

frozen stream channels. South of the Delta, the construction of winter roads on 

the Mackenzie River is impeded by highly variable, treacherous ice conditions 

along the river as well as late freezeup and early breakup dates. 



CHAPTER IV 

METHODOLOGY 

FIELD SITES 

Nine winter road research sites were established within the Lower and 

Central Mackenzie River Valley between latitude 65°13' N and 68°12' N. 

Principal selection criterion for winter road sites was that initial disturbance 

dates (right-of-way clearing or winter road operation) had to be older than 15 

years. The nine investigated sites included three winter road right-of-ways 

currently still in use (Site # 1, 2, 3) and six abandoned winter road right-of-ways 

(Site # 4, 5, 6, 8, 9) (Figure 1). Neither cumulative traffic volumes/loads nor 

the time span since discontinuation of use were considered as criteria during the 

initial right-of-way selection, since appropriate data are sketchy or unavailable. 

Specific site locations were selected according to terrain sensitivity ratings 

obtained from disturbance susceptibility maps (Anonymous, 1975), and ease of 

access from the Mackenzie River as determined by aerial photography (Ripley, 

Klohn and Leonoff Alberta Ltd., 1970; Foothills Pipe Lines (Yukon) Ltd., 1979; 

Canadian Arctic Gas Pipeline Ltd., 1975). Study transects within each individual 

research site were established in diverse environmental settings with regard to 

botanical characteristics, morphology and geologic substrate. This was an effort, 
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to provide information on terrain reactions of distinct landform units and 

vegetation associations. Winter road widths, course and slopes were surveyed 

and mapped on all nine study sites. Transects were marked in a permanent way 

to allow reevaluation in the future as long-term monitoring sites. Site 

characteristics and disturbance accounts ar~ summarized in Appendix C. 

MEASUREMENTS . 

All measurements are based on comparative monitoring of selected 

environmental parameters, discussed below, on disturbed winter road right-of­

ways and representative undisturbed control areas. The research sites were 

monitored successively during July and August 1989. Thus, observations on 

permafrost conditions and microclimate at the individual sites cannot be 

compared to one another. Whether or not the prevailing climatic conditions, at 

the time of this study, were a normal reflection of conditions for this area, was 

not considered. 

Microclimate 

Air and Soil Temperatures. Air and soil temperatures were measured on 

roadways and in the control area with Yellow Springs Instruments (YSI) No. 401 

thermistors and recorded to 0.1 °C. All temperature probes were calibrated 

prior to and upon completion of the field work. Output from the sensors was 

recorded, via a custom-made switch-box, in the form of resistance data from a 
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FLUKE 77 Multimeter and manually logged. The loss of information through 

the interposed switch-box was negligible and accuracy, resolution, and response 

time of the output device were higher than for the thermistors. Readings were 

taken hourly during daytime and at two-hour intervals from midnight to 8 a.m. 

Air and surface temperatures were measured synchronously on the winter 

road right-of-way and in the control section at 0, 0.1, 0.5 and 1.0 m above the 

ground surface. All sensors were shielded from direct irradiance. For surface 

temperature measurements the vinyl-coated thermistor beads were covered with 

surface materials; sensors measuring air temperature were encased in quadruple­

layered, reflective sheet-aluminum radiation shields, but were subject only to 

natural ventilation. Thus, data values in excess of the actual temperatures were 

recorded under conditions of minimal convective exchange and cloudless sky, a 

common midday occurrence. 

Soil temperatures were assessed at the same sites at depths of 0.05, 0.1, 0.25 

and 0.5 m or to active layer depth. Equipment constraints made the 

measurement of air and soil temperatures on consecutive days necessary; 

atmosphere-soil temperature profiles can, thus, not be related to one another. 

Soil Heat Flux. Soil heat flux was measured directly with Thornthwaite 

soil heat flux discs, bearing a resolution of 9.6 wm·2• The soil heat flux systems 

were placed horizontally at a depth of 5 cm below the surface of the winter 

road right-of-way and the control. Output was synchronously recorded every 



47 

hour during the day and at two-hour intervals between midnight and 8 a.m. 

The discs' absolute accuracy depends on the factory-assigned calibration 

and on their insertion into the ground. The variability of the soil heat flux 

around a site was not possible to assess since only two systems were available. 

The failure of one of the soil heat flux discs during the field program required 

that measurements be obtained under comparable atmospheric conditions on 

consecutive days for control and winter road sections of the three northernmost 

research sites (Figure 1 ). 

The validity of measurements obtained by using soil heat flux plates is 

questionable, especially in wet soils, because of possible coupling between heat 

conduction and mass moisture migration, including a thermally-induced capillary 

effect (Beattie et al., 1973). In addition, the plates may not have the same 

conductive capacity as the soil which could create a barrier to heat flow. 

Nevertheless, the results are useful to illustrate differences in the sensible heat 

flux between the disturbed environment and the control section. 

Solar Radiation. Incoming solar radiation K+ was measured with an 

EPPLEY (Black and White) Pyranometer at Sites # 4, 6, 8 and 9. The sensor 

was placed at ground surface level in the control section and on the winter road 

right-of-way. The factory-assigned calibration was used after cross-checking 

against another EPPLEY system. Output could only be recorded at hourly 

intervals; readings were obtained from a FLUKE 77 Multimeter. 

Midday surface albedo was derived from measurements of incoming and 
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reflected solar radiation. The pyranometer was mounted upright on a mast, 1.5 

m above the ground surface or dense shrub canopy, and could be inverted for 

measurement of reflected solar radiation. Because radiation fluxes vary spatially 

in vegetation canopies, the instrument was moved to improve sampling. 

Permafrost 

Active Layer Depth. Frost table depths were determined by probing with 

an OAKFIELD Soil Sampler to a resistant layer. Three or four transects were 

established perpendicular to the winter road right-of-ways in distinct, visually 

recognized terrain units. At each study site, one of the transects intersected the 

microclimate plots on the disturbed surface area and in the control area. The 

transects penetrated 9 to 12 m into the control section on both sides of the 

winter road. Active layer depths were determined across the disturbed surface 

at 1.5 to 3-m intervals, every 3 meters in the control. In areas of hummocky 

microrelief, frost table depths were probed in the inter-mound depressions. 

It was assumed, that sufficient free water was present in the soil, so that 

the frost table depth would be indicated by an impermeable surface. The 

validity of this procedure is questionable, particularly if implemented in fine­

grained soils with a high specific surface area and an appreciable amount of 

unfrozen pore water at and just below D°C (Mackay, 1977). Consequently, at 

the freezing level a gradational increase in penetration resistance may be 

experienced and, thus, probes may be pushed several decimeters below the 
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active layer. The obvious implication is a significant overestimation of frost table 

depths by an amount which may vary with the observer and the diameter of the 

probe. However, since relative (not absolute) active layer depths were assessed 

for comparative analysis of perturbed and undisturbed sites with similar soil 

texture, the probing method rendered satisfactory results. 

Ice Content of the Upper Portion of the Frost Table. Frozen soil 

material of the upper 10 centimeters below the frost table was obtained from 

the roadway and the control area with an OAKFIELD Soil Sampler (inner 

diameter 2 cm). Sample sizes varied from 17 to 78 g. The frozen samples were 

packaged in sealed aluminum tubes and plastic bags to inhibit evaporative loss. 

The samples were ovendried at 105°C, and ice contents were determined on a 

per cent weight basis. 

Vegetation Sampling 

Floristic characteristics were assessed by sampling the transects which had 

previously been established for active layer depth measurements at diverse 

terrain units. Sample quadrates of 1 m2 were randomly located along the 

transects on the winter road and in the control area; an additional plot of the 

same dimension was located at the leading edge (transition) between winter road 

and control. Cover estimates were obtained in each quadrate sampled for 

individual vascular plant species, mosses, lichen, litter, dead moss, bare peat and 

exposed mineral soil or rock. Tree and shrub heights were approximated, their 



cover estimated separately on one plot of 100 m2
, centered around the smaller 

1 m2 plot. A list of species sampled in a total of 105 plots and related cover 

estimates are provided in Appendix D. Scientific nomenclature follows Porsild 

and Cody (1980). 

Ground Subsidence 

Ground subsidence was assessed by stretching a steel tape horizontally 

across a right-of-way at the ground surface level of the undisturbed control 

section and, subsequently, measuring vertically down from the tape to the 

collapsed right-of-way. 
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Soil pits were dug to a depth of 1 m or the depth of the frost table at 

the microclimate measurement transects in both disturbed and control sites. 

Epipedon degradation on corridors (in terms of stripped, compacted, and eroded 

upper soil horizons and organic layers) was assessed by comparative 

measurement of the proportions of diagnostic soil horizons and layers in the 

control section and on the disturbed surfaces. A classification of the undisturbed 

soils in the control sections was attempted on the basis of diagnostic soil 

horizons and their morphological characteristics (Appendix A). Soil taxonomy 

follows ''The Canadian System of Soil Classification" (Expert Committee on Soil 

Survey, 1987). 



CHAPTER V 

DATA ANALYSIS 

Winter road operations in permafrost terrain generate a sequence of 

ecological consequences. This chapter is concerned with some of the key 

components of the ecosystem affected by long-term perturbations in the tundra­

taiga ecotone -- microclimate, permafrost, terrain morphology, soils, and 

vegetation. 

CHANGES IN MICROCLIMATE 

The influence of climate on the ground thermal regime of Subarctic 

forests is conditioned by surface characteristics, which determine the magnitude 

of the individual component processes of the surface energy regime (Brown, 

1966; Benninghoff, 1966). 

Solar Radiation 

The loss of plant canopy stratification on winter road right-of-ways, 

following clearing, results in a significant modification of the radiant energy 

budget. Practically all of the incoming solar radiation reaches the road surfaces 

during high sun angles, while in the adjacent control, a considerable fraction of 

the shortwave radiation is trapped, absorbed or reflected by the vegetation 
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canopy. On August 1, at Site # 3 (Jackfish Creek) daily totals of 19.7 MJm-2 

were tallied from hourly measurements on the sparsely vegetated roadway, 

compared to 3.6 MJm-2 on the control surface; a closed black spruce I heath I 

feathermoss association (Figure Sa). This comparison translates into a fivefold 

increase of shortwave radiation receipt on the disturbed surface. On the other 

hand, incoming solar radiation in the forest-tundra at Site # 9 (Campbell Creek, 

Transect 1) was higher on the control surface; an open, sparse black spruce I 

heath community, than on the roadway site where vigorously growing sedges 

(Carex spp.), tall cottongrass (Eriophorum angustifolium) and swamp horsetail 

(Equisetum fluviatile) shaded the ground surface (Figure Sb). Shading of road 

surfaces is further controlled by orientation of the corridor with respect to the 

solar path, sun angles, as well as height and density of the tree and shrub 

canopy in the control. These effects are illustrated at Site # 8 (Mackenzie 

Highway - Dempster Highway Junction), an east-south-east oriented corridor 

through a closed black-spruce I heath association (Figure 6). The roadway 

surface was shaded from sunrise until about 9:40 hr local apparent solar time 

(11:30 hr standard time), when irradiance values markedly increased due to 

receipt of direct-beam solar radiation. The receipt of shortwave radiation 

decreased steeply after 14:10 hr local apparent solar time (16:00 hr standard 

time), when the adjacent vegetation shaded the road surface again. 
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Figure 6. Effects of roadway orientation on irradiance. Measurements taken 
at the ground surface of a sparsely vegetated, ESE-oriented roa~way surface and 
in the adjacent control, an open black spruce I heath association. Note the 
marked increase in irradiance on the roadway around 11:30 hr (standard time) 
due to exposure to direct sunlight, and the steep decrease after 16:00 (standard 
time) when the adjacent forest shades the roadway surface again. 
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Differences in radiative receipt between roadway and control sites 

diminish with increasing latitude due to progressively sparser tree and shrub 

canopy and, hence, increased sky view factors. This implies that energy budget 

changes, following surface disturbance, and adjunct implications on microclimate, 

permafrost, and vegetation, are more substantial in the borea1 forest than in the 

forest-tundra. 

Surface Albedo 

Due to a simplification of vegetation stand architecture, caused by the 

removal of tree and shrub strata, mean midday surface albedo increased from an 

average of 0.13 in the control areas to 0.16 on the roadways, regardless of 

latitude. The mean albedo of 0.13 for undisturbed spruce forest conforms with 

values of 0.13, 0.12 and 0.13 reported for open spruce forest by Haag (1973), 

Rouse and Bello (1983) and Rouse (1984), respectively. The recorded mean of 

0.16 for roadways approximates values of 0.15 reported for upland tundra by 

Rouse (1984) and Petzold and Rencz (1975), respectively. 

In the closed boreal forest, changes in surface albedo are assumed to 

significantly affect the surface energy exchange, in view of the substantial 

increase in shortwave radiation reaching the ground following vegetation clearing. 

In contrast, in open forest-tundra slight modifications of the albedo are expected 

to be rather inconsequential. 
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Soil Heat Flux 

Vegetation clearing, the complete or partial removal of the organic mat, 

and soil compaction by vehicular movement (Haag and Bliss, 1974; Adam and 

Hernandez, 1977), enhance the penetration of energy into the ground, and thus, 

heat exchange in the substrate. Roadways exhibit increased net downward flux 

for the measurement periods, compared to adjacent control sites. However, 

heat storage in the ground decreases as the late summer advances, and with 

latitude, due to lower temperatures and shorter daylight periods (compare 

Figures 7a and Th). Soil heat flux is more pronounced in its diurnal range on 

the investigated right-of-ways than in the control areas, where desiccated surface 

peat layers inhibit moisture and heat exchange (Figures 7a - 7d). Positive soil 

heat flux (soil warming) is attained in roadway soils later in the morning than in 

the control areas, due to substantial heat losses from the denuded surfaces 

during the night (Figures 7a - 7d). 

In soils with abundant moisture supply, the amplitude of the recorded soil 

heat flux is markedly smaller than on dry sites with comparable substrate 

(compare Figures 7c and 7d). This is attributed to increased evaporative losses 

from wet soils, through which substantial amounts of latent heat are released 

and the cardinal portion of the ground heat flux is realized. Measurements with 

heat flow plates only determine the sensible heat flow. They do not reflect the 

gross ground heat flux which is comprised of both latent heat and sensible heat 
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terms. Therefore, the data presented (Figures 7a - 7d) does not give a 

comprehensive appraisal of the ground heat flux. Since the sensible heat flux 

shows no correlation to latent heat flow, extrapolation of the latter is 

unobtainable (Rouse, 1984). 

Surface and Air Temperatures 

58 

Mean daily air and soil temperature differences between roadways and 

the adjacent control, calculated by integration of hourly temperature differences, 

are presented in Table N. Mean air temperatures are consistently higher on 

the roadways than in the control since road surfaces remain largely unshaded 

during the day. Periodically, however, daytime surface and air temperatures 

drop below those recorded in the control due to increased air movement over 

the right-of-ways and, in tum, greater heat transport away from the ground 

surface. Nocturnal surface temperatures are consistently higher on roadways 

than in the control sections owing to ameliorated mixing of near-surface air 

layers and an increased upward soil heat flux. Air temperatures are typically 

higher on the roadways for the first half of the night, but drop below those 

recorded in the control for several hours until dawn. This may be explained by 

a more gradual decrease in temperature in the control due to absorption of 

longwave radiation lost from the surface by the tree and shrub canopy. 

Increased C02 and water vapor levels in the control influence night air 

temperatures to a lesser extent by increasing the heat capacity and thermal 
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conductivity of the air (Haag and Bliss, 1974). 

Nocturnal temperature inversions develop at a11 sites and become 

progressively more stable as the late summer advances. Calm, clear-sky 

conditions favor stronger inversions on roadways than in the control, suggesting 

higher probabilities for night frost during the spring and fall. Vertical lapse 

rates are generally more pronounced on roadways which offer less resistance to 

heat transport away from the surface than the control sections. Mean daily air 

temperature differences between roadway and control sections decrease 

consistently with height above the ground due to increased turbulent diffusion of 

air layers. Further, differences in air and surface temperatures diminish with 

increasing latitude, owing to progressively sparser tree cover. 

One exception to typical conditions is Site # 9 (Table IV). Soils on the 

subsided right-of-way are water-saturated and support densely growing sedges 

and cottongrass which shade the ground. Any heat received at the surface 

quickly dissipates into the ground as a result of its large thermal mass. During 

the night, surface and near-surface air temperatures remain higher on the 

roadway than in the control owing to the thermal inertia of the saturated soil 

and decreased heat transport away from the densely growing vegetation. 

Soil Temperatures 

Soil temperatures are consistently higher on the roadway during the mid­

and late summer, because of long daily insolation periods and, hence, an 
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increased positive heat flux (Table IV). Mean daily differences in soil 

temperatures between roadways and control sections increase with depth due to 

deeper active layers on the roadway. Moreover, temperature differences appear 

to decrease with increasing latitude which may be attributed to progressively 

colder soil climate. 

Site # 7 (Table IV) exhibits an exceptional profile of soil temperature 

differences; at depths of 5 and 10 cm, temperatures are higher in the control 

than on the· roadway, whereas at lower depths the opposite holds true. An 

explanation may be the fire history of the site: less than two years before the 

field visit, an intense fire had completely consumed the forest including peat 

layers of approximately 30 cm thickness (Anonymous, 1975b ). However, the 

bare road surface provided little combustible material, thus, was little impacted 

by the fire. At the time of the field visit the ground surface in the control area 

was still charred and absorbed the incoming solar radiation more effectively than 

the roadway. Near-surface soil temperatures would, thus, be expected to 

increase relative to the roadway. The reversal of the temperature profile at 

greater depths, on the other hand, is attributed to a deeper active layer on the 

right-of-way than in the control. 

The range of diurnal soil temperature fluctuation is consistently greater 

beneath disturbed surfaces (Table V) as a result of the partial or complete 

removal of the insulating vegetation and the organic mat, as well as increased 
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thermal conductivities and compacted near-surface soil layers. However, the 

actual range of diurnal temperature variation is related to the depth of 

measurement, the moisture regime and thermal conductivity of the soil. Due to 

the thermal inertia of water, wet sites (Table V, Site # 9) exhibit smaller diurnal 

temperature ranges in both disturbed or undisturbed soils than dry or mesic sites 

(Table V, Sites # 1, 2, and 6) . The most marked diurnal temperature 

oscillations are observed on the recently burned Site # 7 (Table V). 

CHANGES IN NEAR-SURFACE PERMAFROST CHARACTERISTICS 

The environment in which permafrost exists is a complex dynamic system, 

easily influenced by alterations of the prevailing environmental conditions 

(Brown, 1970). Whereas permafrost in tundra areas is predominantly controlled 

by the regional climate (French, 1976), its existence and nature in the forested 

reaches of the Subarctic is primarily determined by vegetation characteristics. 

The potential for long-term damage to near-surface permafrost, following 

removal of the vegetative cover, increases with complexity of vegetation 

stratification (Haag, 1973). In the following, additional factors influencing the 

extent of permafrost degradation in the context of winter road operation are 

discussed, including the effect of peat layers, soil moisture regimes, and 

disturbances by fire. 
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Active Layer Depth 

As a result of higher soil temperatures, depth of the active layer is 

increased on all disturbed surfaces (Table VI). During field work, mean thaw 

depths on the right-of-ways exceeded the control values by 105 % ± 15 %. This 

value is expected to have further increased as the thaw season advanced since 

frost table depths were probed about 65 to 30 days before the active layer 

attained its maximum depth. 

The smallest increase in thaw depth averages 17 % (11 cm) (Table VI, 

Site # 6, Transect 3) where peat layers of 20+ cm are preserved on an 

abandoned roadway, vegetated by a graminoid I willow association. In contrast, 

the most significant deepening of the active layer occur where the insulative 

organic mat has been removed (Figure 8). Increases on the order of 313 % (94 

cm) are assessed on a right-of-way at Site # 1 (Table VI, Transect 2) which has 

been in perennial winter operation for at least 10 years. Here, the organic mat 

has been removed entirely (about 16 cm) and about 8 cm of compacted mineral 

soil have been stripped. The right-of-way supports a graminoid association, 

providing only little insulation. 

Soils with aqueous (hydric) or aquic moisture regimes thaw to greater 

depths than dry or moist deposits, owing to increased thermal conductivities of 

the water-saturated substrate (Brown, 1970). However, the findings of this study, 

demonstrate that, following disturbance, mean increases in thaw depth are 
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significantly smaller at water-logged sites (53%) than on dry sites (153%) 

suggesting lower sensitivity of saturated sites to near-surface permafrost 

degradation. This is attributed to substantial latent heat uptake by wet soils 

through which the cardinal portion of the ground heat flux is realized. In 

contrast, dry soils experience considerable sensible heating as a result of low 

actual evaporative losses. 

Active layer response to forest fire is found to be variable and seems 

related to the severity of the disturbance. At Site # 6 (Table VI, Transect 4), 

roughly five years prior to the field visit, a fire of low intensity had consumed 

the tree canopy, but the organic mat, preserved at 20 cm to 40 cm, was only 

singed. Thaw depth in the burned control area has increased negligibly to a 

mean of 39 cm. However, on the roadway, little peat remains as a result of 

winter road operation. As a result, active layer depths on the roadway exceed 

those in the burned control area by 146 % (57 cm), a value notably increased 

relative to probings on three unburned transects on the site (17 %, 38 %, 

and 98 %). 
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Contrasting observations on the effects of fire on near-surface permafrost 

are made at Site # 7, where a wildfire of significantly greater intensity had 

occurred less than two years before the field visit. While the right-of-way, 

already abandoned for roughly eight years when the fire occurred, had provided 

little combustible material, the adjacent forest and peat layers of approximately 
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30 cm (Anonymous, 1975b) were completely consumed. As would be expected, 

the active layer in the burned control site has deepened significantly, whereas 

the fire impact results in only negligible changes in the ground thermal regime 

of the roadway site. Consequently, increases in thaw depth on the right-of-way 

(25%, 63%, and 67% at transects 1, 2, and 3, respectively; Table VI), resulting 

from the joint impact of winter road operation and the fire, are smaller than at 

most other sites which have not been exposed to recent fires. 

Ice Content 

Previous terrain disturbance studies have indicated that increased terrain 

damage and, thus, the degradation of near-surface permafrost, causes a 

proportionate decrease in the ground ice content (Heginbottom, 1974; Kurfurst, 

1974; Heginbottom and Kurfurst, 1977). The findings of this study along the 

Lower and Central Mackenzie River substantiate these observations (Figure 9). 

Loss of excess ice, determined gravimetrically on a per cent basis of dry weight, 

ranges between 23 % and 82 % relative to the control, and is attributed to 

subsurface drainage of excess water from supersaturated thawing soils. 

GROUND SUBSIDENCE 

Previous winter road studies report only insignificant changes in surface 

elevation following temporary right-of-way operations (Canadian Arctic Gas 
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Study Ltd., 1974; Adam and Hernandez, 1977; Younkin and Hettinger, 1978). 

However, the findings of this study on long-term effects of winter road 

operations, prove that substantial ground settlement may result, particularly, 

where the thermal regime of excessively ice-rich sediments is altered (Table VII, 

Sites # 2 & 3). 

Surface subsidence occurs on all of the investigated right-of-ways, and is 

generally uniform across the roadway surface unless, localized, massive ground 

ice has thawed (Figure lOa) (Table VII). At Site # 2, differential terrain 

collapse, apparently resulting from the thaw of a massive body of segregational 

ice or an ice wedge in the silty clay deposits of an alluvial meander plain, 

impairs the trafficability of the right-of-way. Localized, ground subsidence 

disrupts the local drainage pattern. As a result, site wetness increases or surface 

water is impounded (Figure lOb). 

TABLE VII 

GROUND SUBSIDENCE (CM) ON ROADWAYS 

Site #I I Location I I Litholoav I !Subsidence (cm 
I I I I I I Min. I I Max. 

:
:··' .. ,'.,i: .. ,' .. :::, .. ".~.l.:.~~,:,'~,· .. ·,: 0 i1:11:,__2_0 _ _,__, 

.;:. 1 5 :.:·:.:.:,:·,:.:::f: 1 05 :::r::::: .,,,,,_, ---i--t 
:r 25 ''''""' s4 

0 ' /J'--1 5-;----1 



a 

b 

Figure 10. Ground subsidence on right-of-ways. a) uniform thaw settlement 
in excess of 1 m due to thawing of supersaturated sediments (Site # 3); b) 
differential thaw settlement (Site # 3) resulting from the thaw of ice wedges. 
Water is impounded in vehicle tracks and the thaw depressions. Black spruce 
in the adjacent control averages 3.5 m in height. Roadway vegetation 
dominated by sedges and grasses. 
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Relief changes on the investigated right-of-ways are attributed primarily to 

thermokarst collapse on sites with supersaturated frozen sediments and 

subsequent thaw consolidation of the substrate. Additionally, ground surface 

subsidence is augmented by the removal or compaction of organic and mineral 

soil layers, and to a lesser extent, seasonal variations in thaw subsidence owing 

to discordant thaw rates on roadways and in the control. 

SOIL DEGRADATION 

This portion of the study is concerned with the differences between 

control soils and disturbed site substrates. Soil degradation includes: a) the 

stripping or deterioration of the organic mat and mineral soil layers, b) the 

scuffing of earth hummocks in areas of hummocky microrelief, c) the rutting of 

the ground surface by vehicle tires, and d) the compaction of upper soil layers 

(Haag and Bliss, 1974; Adam and Hernandez, 1977). However, the long-term 

evolution of initial minor disturbances increases the impact by e) the hydraulic 

erosion of exposed top soil layers (particularly fine fractions), t) the unearthing 

of rocks in areas of coarse moraine till, and g) the impounding of surface water 

as a result of thaw subsidence. 
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On upland terrain, stripping or churning of the organic mat, and scuffing 

of earth hummocks is practically unavoidable during the initial right-of-way 

clearing and winter road preparation in early winter (Linton, Interview, 1989). 

Furthermore, the operation of heavy equipment, vehicles with high tire pressures 

or cleated tracks results in the crushing of the frozen stems, leaves and roots of 

upright vegetation and the organic mat (Felix and Reynolds, 1989). Due to 

exposure to sunlight, the light-sensitive feathermosses, normally the dominant 

form of ground cover, die back completely upon right-of-way clearing in the first 

summer following construction (Adam and Hernandez, 1977). Perennial 

operation of a winter road causes the disintegration of plant parts and ultimately 

the pulverization of peat fibers. Upon desiccation, these particles are subject to 

deflation or erosion. However, peat layers in fenlands or depressional roadway 

sections remain largely undisturbed because the frozen water-logged soils 

compact less under the impact of vehicular traffic than their dry upland 

counterparts (Wein and Bliss, 1971). 

The findings of this study substantiate the fact, that the organic mat is 

significantly reduced in thickness or completely removed at dry and mesic 

roadways which have been operated perennially (Figure 11 ), whereas peat layers 

on wet and water-logged roadway sections are largely preserved. Average loss 

of soil material (including the organic mat) ranges between 3 cm and 35 cm, 

varying with severity of the impact (Table VIII). Earth hummocks have been 
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scuffed by as much as 25 cm (Figure 12). 

Surface rutting occurs on all slopes greater than 6° and where winter 

roads have been operated too late in the spring (Figure 13a ). Similarly, the 

unseasonal use of All-Terrain-Vehicles on the right-of-ways results in excess 

disturbance and causes hydraulic surface erosion (Figure 13b ). Stream banks 

and approaches to stream crossings, potentially the most critical areas (Adam, 

1974), exhibit no signs of instability where streamflow is confined to the summer. 

However, at the perennially flowing Canyon Creek (Site # 1, Figure 1) gravel 

bank erosion at an existing ice bridge crossing has required the construction of a 

lateral bypass. In areas of coarse moraine till (Site # 4, Site # 8, Transect 4) 

rocks are unearthed more frequently on roadways than in the control sections 

suggesting their indirect. exhumation by erosion of fines (Figure 14). 

Alternatively, changes in the ground thermal regime, following surface 

disturbance, may be responsible for increased upfreezing of the rocks. 

TABLE VIII 

AVERAGE LOSS OF SOIL MATERIAL (CM) ON ROADWAYS 

Site # Location Average Loss of Soll Material (cm) 
Oraanlc Mat Mlneral Soll Total 

1 65 13'N 126 32'W 16 8 24 

2 65 26'N 127 25'W 19 1 20 
3 66 15'N 128 37'W 14 0 14 
4 66 18'N 128 37'W 35 0 35 
6 67 12'N 130 12'W 0 17 17 
7 67 17'N 133 21'W 4 4 8 
8 67 57'N 133 28'W 0 3 3 

9 68 35'N 133 14'W 22 5 27 



Figure 12. Scuffed earth hummocks. Note book for scale. The road shoulder 
has been cleared to a width of 6 m to enhance visibility in a road bend (Site 
# 1). Peat layers are preserved at 10 - 15 cm and inhibit revegetation due to 
summer drought. The grass-covered roadway, on the left, has been in operation 
for at least the past 18 years. Trees in the adjacent control average 6.5 m in 
height. 
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a 

b 

Figure 13. Surface rutting. a) on a sloping roadway section ( 4°), constructed 
by "cut -and - fill" practices in glaciofluvial gravels during the previous winter. 
The rutting was due to passage of vehicles too late in the spring (Site #2); 
b) hydraulic erosion caused by the unseasonal passage of All-Terrain-Vehicles 
on the right-of-way (Site # 1). Note the frothy appearance of the soil as a 
result of needle-ice formation. 
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Figure 14. Unearthed rocks on a roadway underlain by coarse ground moraine 
(Site # 4). 
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BOTANICAL CHARACTERISTICS AND 
REVEGETATION ON RIGHT-OF-WAYS 

Species composition, pattern and rate of natural revegetation of the 

investigated winter road right-of-ways varies with site characteristics, severity of 

of the disturbance, and the length of time since impact (Appendix D). On 

actively used right-of-ways, as well as those abandoned, species richness and 

diversity are lower than in the adjacent control. 

The most apparent change in vegetation with regard to permafrost and 

ground ice is the extensive elimination of mosses and lichens on winter roads 

compared to the adjacent control (Table IX). Acrocarpous moss species 

reestablish at inconspicuous cover values on some of the abandoned roadways; 

however, Sphagnum and feathermosses remain largely absent. Fruticose and 

foliose lichens, abundant forms in local plant communities, are observed on 

right-of-ways only at Sites # 6 (Little Chicago) and # 9 (Campbell Creek). 

However, these are present at notably reduced cover values, compared to the 
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adjacent controls. Both roadway sections have been abandoned for 15 years and 

it is uncertain whether the lichens (unidentified species and Peltighera aphthosa) 

survived the disturbance in the protected depressions between earth hummocks, 

or if recolonization occurred. 

Plant communities and individual vascular plant species vary in their 

response to disturbance (Table IX). Though the investigated roadways show 

marked differences in site characteristics and disturbance history, a number of 



TABLE IX 

GROUND COVER(%) OF VEGETATION STRUCTURE 
CLASSES ON ROADWAYS (WR) AND IN THE 

ADJACENT CONTROL SECTIONS (CO) 

# Site Transect Deciduous Everareen Grasses Mosses 

Shrubs Shrubs & Sedies 

WR 00 WR 00 WR 00 WR 

1 Canvon Creek 1 14 40 l - 30 27 - -

2 11 44 - 25 55 8 .,. -
3 3 24 - 15 54 15 <1 

4 2 23 - 25 40 3 -

2 Oscar Creek 1 <1 26 <1 30 1 - -
2 5 105 - 10 70 <1 5 

3 2 13 - 5 3 - 4 

3 Jackflsh Creek 1 <1 25 - 50 70 - 60 

2 6 57 - 27 10 10 

3 6 12+ - 12 60 60 9 

4 Hare Indian River 1 15 43 - 58 - - -
2 7 24 42 35 21 4 -
3 5 11 - - 5 28 100 
4 5 31 5 41 <1 -

5 Tiede River 1 27 35 1 0 27 25 -
2 40 23 1 0 14 32 12 -
6 45 - <1 26 4 -

6 Little Chicago 1 47 45 1 0 28 10 <1 ... -
2 35 31 1 30 35 15 -
3 60 70 - - 25 15 3 
4 59 65 <1 16 30 - -

7 Charrue River 1 57 31 3 - 25 <1 2 
2 4 22 3 60 - 4 
3 11 - 45 - ' 5 
4 - <1 . - - 65 1 ) 3 . 

•••• 

8 Mackenzie H'wav 1 56 11 1 30 26 <1 . , . -
2 77 95 <1 45 13 <1 7 
3 3 80 - 35 97 <2 -
4 30 31 <1 37 62 - -
5 11 6 2 70 3 - 49 

. . 
9 Campbell Creek 1 - 45 .• 47 75 3 . -

2 45 85 1 50 17+ 4 .. 5 
3 86 80 2 25 11 10 5 
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regionally successful colonizers, as well as highly sensitive species have been 

recognized. Woody plants are the most severely impacted. Deciduous shrubs 

show significant reduction in cover on the three actively used roadways (Sites # 

1, 2, 3), but exhibit high recovery potential along the sides of currently used 

right-of-ways and those that have been abandoned. Species rarely found on 

disturbed surfaces, yet, abundant in the control sites, include Arctostaphylos spp., 

Rhododendron lapponicum, Sheperdia canadensis and Vaccinium spp. Evergreen 

shrubs are largely absent from roadways, even after 10 years of abandonment 

(Table IX). However, one exception is the mat-forming shrub mountain avens 

(Dryas integrifolia ), which successfully colonizes dry and mesic corridor sections at 

Site 4, 5 and 6 (Appendix D). 

Herbaceous species are generally present but relatively unimportant in the 

cover of most undisturbed vegetation associations. Most forbs have reestablished 

on abandoned roadways at cover values less or comparable to the controls'; 

successful species include, Aster sp., Potentilla spp., Senecio sp., Solidago sp. The 

horsetail Equisetum arvense proliferates on mesic right-of-ways. Fireweed 

(Epilobium angustifolium ), an important pioneer on recently burned areas, rarely 

occurs on roadways that have been in continuous winter operation, and is, 

apparently, an inadequate competitor with opportunistic grasses and sedges. 

Grasses and sedges constitute the most conspicuous element of the 

vegetation on abandoned and, particularly, actively used right-of-ways 
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(Figure 15a). Sedges (Carex spp.) and Cottongrass (Eriophomm angustifolium) 

proliferate on wet roadway surfaces (Figure 15b). Arctagrostis latif olia, 

Calamagrostis canadensis, Poa spp., and in some localized sites, Juncus spp., are 

dominant ruderal species colonizing exposed mineral soil on dry and mesic sites. 

However, hummock tops and bare peat, generally poor seedbeds because of 

summer drought, remain sparsely vegetated even on roadways which have been 

abandoned for more than 10 years. The degree to which initial plant 

reestablishment is successful appears to be related to the moisture regime. Wet 

spots, though supporting fewer species, generally display higher live plant cover 

than dry or mesic sites with similar disturbance history. Where water has been 

deeply impounded as a result of thaw settlement, revegetation is limited and 

seems to depend primarily on the seeds and other propagules of wetland, pond 

or riparian species that are transported to these sites. 

Abandoned right-of-ways display recolonization by plant associations of 

various successional stages, depending on the time since abandonment of the 

roadway and site characteristics. Pioneer graminoid communities, found on the 

three actively used roadways (Sites # 1, 2 & 3), are generally replaced after less 

than 10 years following roadway abandonment by tall shrub associations; e.g. 

willows (Salix spp.), alder (Alnus crispa), paper birch (Betula papyri/era) and 

poplar (Populus spp.)(Figure 16). At this stage in succession, inconspicuous 

numbers of regenerating spruce (Picea spp.) and larch (Larix laricina) are 



a 

b 

Figure 15. Dominance of grasses and sedges on roadways. a) on a winter road 
(right trail) and a seismic line (left trail) through a recent bum (less than two 
years before the field visit) dominated by fireweed (Epilobium angustifolium). 
The roadway has been abandoned for 14 years. The tent is pitched on a plain 
in the valley bottom formed by sediments eroded from the right-of-way (Site 
#7). b) vigorous growth of cottongrass (Eriophorum angustifolium) on a 
subsided right-of-way which has been abandoned for 10 years (Site # 8). 
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Figure 16. Tall shrub association on an inclined, south-facing right-of-way. 
The former roadside is indicated by tall spruce trees. Principal successionary 
species on the roadway after 17 years of abanonment include: Populus spp., Salix 
glauca, Sheperdia canadensis (Site # 4). 
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observed on warm and dry right-of-ways. Water-saturated roadway sections, 

exhibiting a high short-term recovery potential, advance at slower rates in 

succession than dry and mesic roadways. Reestablishment of spruce is less 

successful on wet sites where apparent competition by grasses and sedges is 

more vigorous. 

White spruce (Pi,cea glauca) exhibits an exceptional recolonization 

mechanism at Site # 5 where seedlings vigorously encroach on a right-of-way 

bulldozed across a steep colluvium slope (Figure 17). The regenerating trees, 

measuring up to 1.50 m in height, exhibit significantly higher densities on the 

roadway and in gravel borrow pits than on the control site, suggesting an 

enhancement of the habitat by these disturbances. This may be attributed to 

increased availability of base nutrients on the roadway where calcareous scree 

material has been crushed. Additionally, white spruce seedlings are highly 

drought-resistant, giving them an important advantage over other species in the 

colonization of these habitats. 
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Tall shrub associations are eventually replaced by mixed wood 

communities with a sparse dwarf shrub understory and an incomplete ground 

cover of forbs and litter. These are observed on roadways with southfacing 

slopes which have been abandoned for at least fifteen years. In the localized 

tall shrub communities live plant cover values are comparable to, or in excess of 

the cover values among the control sites, primarily as a result of vigorous growth 



Figure 17. Encroachment of white spruce (Picea glauca) and mountain avens 
(Dryas integrifolia) on a right-of-way across a stabilized colluvium slope. Salix 
spp. proliferate on the upslope roadside. The roadway has been abandoned for 
approximately 17 years. 
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among shrubby canopy species (Appendix D, Site # 4, Transect 1, 2). 

Vegetative ground cover is incomplete on all but wet roadway surfaces 

regardless of the age of the disturbance. Mineral soil or rocks are exposed in 

70 % of the plots on currently used right-of-ways and 60 % on abandoned ones, 

respectively, compared to 21 % of the plots in control sections. It should be 

noted that four of the six sites on abandoned roadways include plots on sparsely 

vegetated colluvium (Site # 5) and sections of recently burnt forest in terrain of 

hummocky microrelief. Thus, analysis of the figures provided for the 

revegetating, abandoned roadways and control sections must take these 

conditions into consideration to account for the inflated percentages. On 

transects where mineral soil is exposed, its cover is increased on 86 % of the 

right-of-ways compared to the control sites. Furthermore, bare ground (litter, 

rocks and exposed soil) on roadways is increased on 70 % of the investigated 

transects relative to the adjacent controls. 



CHAPTER VI 

TERRAIN DISTURBANCES -- IMPLICATIONS TO THE ENVIRONMENT 

This chapter integrates information presented in the previous chapter by 

discussing speculative energy budget changes following terrain disturbances 

inferred from observations on changes in microclimate and permafrost. The 

impacts of winter road operation on permafrost are evaluated with respect to 

findings from previous experimental impact assessments. Finally, the effects of 

changes in microclimate and permafrost are related to disturbed vegetation and 

its recovery potential. 

ENERGY BUDGET CHANGES ON DISTURBED TERRAIN 

Little attention has been directed to changes in the energy budget 

following man-induced or natural vegetation disturbances in Subarctic forests 

(Beattie et al., 1973; Haag and Bliss, 1974; Rouse and Kershaw, 1971; Rouse, 

1976). The following discussion is a speculative analysis based on the data 

collected for the field study. The removal of the tree and shrub strata on right­

of-ways results in the change from a three- to a two-dimensional energy 

absorbing system and, consequently, a repartitioning of the individual energy 

budget components (Haag and Bliss, 1974). The microclimatic changes 
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presented in Chapter V suggest a decrease in net radiation on currently used 

and abandoned, revegetating right-of-ways. The reflectivity of the ground surface 

increases following vegetation clearing. Furthermore, greater receipt of solar 

radiation on disturbed sites results in higher surface temperatures. Therefore, 

increased emittance of longwave radiation from roadway surfaces can be 

expected. Terrestrial radiation losses increase on upland sites, exhibiting 

substantial soil heating due to summer drought. In the adjacent forest, longwave 

radiation losses are considerably smaller due to a lower radiant heat load at the 

ground surface, and the conditioning effect of the organic mat on the mean 

surface temperature. Moreover, the canopy absorbs and retains much of the 

heat lost from the surface. This ''buffer" effect of the tree canopy can be 

demonstrated by a sharper drop in air temperatures, and stronger temperature 

inversions on right-of-ways than in the forest during calm and clear summer 

nights. 

Additional observations indicate that the partitioning of the subsurface 

heat flux, latent heat and sensible heat, respectively, is controlled predominantly 

by the sites' moisture regime. Roadway sites, maintaining a high moisture 

regime throughout the thaw period, exhibit lower sensible heat flux than dry 

sites, indicating that a substantially greater portion of the ground heat flux is 

realized through latent heat loss by evaporation of soil water, and only a very 

limited portion through sensible heat flow. This explains why, following 
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disturbance, continuously wet soils in depressional areas and fenlands experience 

only moderate warming and relatively small increases in thaw depth. Conversely, 

upland soils, although exhibiting high moisture contents immediately following 

snowmelt, are generally depleted of surface-soil water by high evaporative losses 

early in the summer (Haag and Bliss, 1974). By mid-summer, the droughty 

substrate exhibits a high resistance to further evaporation, and latent heat loss. 

Therefore, the cardinal portion of the available energy at the ground surface is 

converted into sensible heat. This scenario may explain the profound surface 

and soil warming and, therefore, the significant increases in active layer depth at 

dry upland sites. 

Several assumptions can be made about energy budget changes during 

winter. Owing to little snow accumulation and snow densification on the 

windswept roadway surfaces (Kershaw, unpublished data), the soils here would 

experience faster ground freezing at the onset of winter than the adjacent forest 

soils. This would be true even considering that heat storage during the thaw 

period is significantly greater in roadway soils than in adjacent forest soils, 

because the sensible heat, stored in roadway soils, is lost through conduction at 

a substantially faster rate than the latent heat, released in the forest soils 

through evaporation (Rouse, 1984). Nevertheless, roadway sections with high 

soil moisture content in early winter would benefit from a prolonged zero 

curtain effect, as a result of substantial latent heat release. Consequently, they 
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would be expected to freeze later than dry upland right-of-ways. By contrast, 

upland forest soils retain considerably more soil moisture at freeze back, 

therefore, ground freezing is delayed by the release of substantial amounts of 

latent heat (Rouse, 1984). Furthermore, heat losses are effectively inhibited by 

the organic mat, a deep snow blanket, and the vegetation canopy (Rouse, 1984). 

PERMAFROST DEGRADATION 

Short-term observations of environmental impacts on winter road test sites 

in the Mackenzie River Valley during the early 1970s implied that the 

degradation of near-surface permafrost was inconsequential (Canadian Arctic 

Gas Study Ltd., 1974a; Adam and Hernandez, 1977; Younkin and Hettinger, 

1978). Following one season of experimental snow and ice road operations at 

Inuvik, N.W.T., and Norman Wells, N.W.T., peat layers were largely preserved, 

although compacted. Increases in thaw depth within the subsequent 3 and 4 

years were moderate (12 % and 68 %, respectively) (Brown and Grave, 1979). 

Thaw subsidence was negligible because neither of the two test facilities was 

constructed on excessively ice-rich sediments despite their widespread occurrence 

in the area (Hughes et al., 1973). At the Norman Wells test loop, snow and ice 

road construction commenced in March when much of the annual snowfall had 

accumulated (Adam and Hernandez, 1977). Yet, the critical period for snow 

road construction would be in early winter when the snow cover is scant and the 
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ground may not be entirely frozen. At the Inuvik test site inadequate snowfall 

delayed the construction of an 800 m-long processed snow road until early 

December when 7,500 m3 of snow were harvested on a nearby lake and hauled 

in over a gravel road (Younkin and Hettinger, 1978). However, suitable harvest 

sources are scarce along the Mackenzie River Valley, and it is likely that snow 

could not be procured in adequate quantities in years with little snowfall. Since 

a shortage of snow in the Lower Mackenzie River Valley occurs one out of five 

years (Adam and Hernandez, 1977), it seems apparent that winter roads would 

have to be operated periodically under conditions less than optimal. While 

N.W.T. land use permits require a minimum of 5 cm of snow cover for winter 

road construction and operation, Felix and Raynolds (1989a) report less than 25 

cm of snow to be insufficient to protect the ground surface on winter trails used 

by seismic exploration crews. A snow cover of even greater depth may be 

required for snow road construction on terrain with hummocky microrelief to 

allow for packing of snow in the inter-mound depressions (Zoltai, 1975). 

Winter road-induced terrain disturbances were inadequately simulated by 

the temporary snow and ice road tests at Norman Wells and Inuvik (Adam and 

Hernandez, 1977; Younkin and Hettinger, 1978). The findings of this study, 

presented in Chapter V, indicate that perennial winter road operation inevitably 

results in the removal of the organic mat (moss and peat layers). Mean 

increases in thaw depth at the investigated sites along the Lower and Central 
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Mackenzie River Valley are substantially greater (105 % ) than those reported 

from the Norman Wells and Inuvik test facilities (68% and 12%, respectively) 

(Adam and Hernandez, 1977; Younkin and Hettinger, 1978). Thaw equilibrium, 

following one season of winter road operation, was attained at the lnuvik test 

loop and the Norman Wells test site after three, and four years, respectively 

(Brown and Grave, 1979). However, the observations on long-term disturbances 

in this research, presented in Chapter V, suggest that longer time periods are 

necessary for thermal equilibration on perennially used winter road corridors. 

This is due to deeper thaw, gradual impact aggregation, and decreased terrain 

stability in ice-rich sediments as a consequence of, localized, substantial ground 

subsidence. 

It is noteworthy, that physical terrain modifications have not spread 

laterally beyond the area of initial disturbance. Thermokarst slumping, flow 

slides and slope failures, degradational processes which have been reported 

following snow pad operations at several sites on the Alaskan North Slope 

(Everett, 1985; Lawson, 1986), have not occurred on the investigated sites, 

although they may have a localized occurrence. 

The variable effects of removal and compaction of the vegetation, the 

organic mat, and localized soil layers on near-surface permafrost indicate the 

relative importance of terrain characteristics and sediment properties at the 

investigated sites rather than the influence of a latitudinal gradient. The primary 
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factors determining the nature and extent of the terrain response appear to be 

ice content of the substrate which increases with the amount of fines, dimensions 

and distnbution of ground ice, and the geotechnical attributes of the sediments. 

Furthermore, comparison of the severity of impacts on the permafrost across the 

study sites implies a correlation with the level of disturbance, i.e. type of winter 

road, types of vehicles, traffic volumes, and duration of right-of-way use; 

however, this association could not be assessed in adequate detail. 

Observations on perennially operative winter roads suggest that the 

removal of the vegetation and surface organic or mineral deposits results in 

permanent terrain modification due to near-surface permafrost degradation. 

Pre-disturbance permafrost conditions can apparently only be attained with the 

reestablishment of the organic mat. However, Zoltai and Pettapiece (1974) 

found that following fire, the permafrost table in hummocky terrain began to rise 

60 to 80 years after the establishment of trees, but the organic mat would 

require at least 150 years to develop its original thickness. 

VEGETATION -- IMPACT AND RECOVERY 

Disagreements persist relative to rates and pattern of recovery in 

disturbed permafrost-affected ecosystems. Human-induced disturbance is 

generally considered to be environmentally destructive, although in some 

instances, depending upon the researcher's orientation, it can be argued that a 
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more biologically productive or diverse ecosystem may result (Walker et al., 

1987). Viereck (1973) noted that forested areas in the lower elevations of 

Alaskan taiga, if repeatedly burned, occasionally developed into meadowlands 

dominated by grass-likes, prickly rose (Rosa aciculam), and herbaceous species. 

Gill (1973) found that the production of a more severe post-disturbance 

microclimate associated with vegetation removal resulted in the conversion of 

Subarctic open-woodland to physiognomically simpler treeless tundra associations. 

Conversely, Chapin and Shaver (1981) argued that energy budget changes 

following surface disturbance on wet sedge tundra improved the permafrost­

affected soil environment for plant growth, e.g. higher soil temperatures and 

increased rooting depths, increased nutrient availability, extension of the growing 

seasons. Accordingly, Strang (1973), and Pettapiece and Zoltai (1974) predicted 

increased tree productivity and rates of tree regeneration following man-induced 

disturbance in the forested areas of the Mackenzie River Valley. Moreover, 

Strang (1973) implied that fire in the forest-tundra ecotone stimulated more 

vigorous tree stands, whereas a freedom from burning promoted the 

development of a stagnating, "drunken" forest, and eventually its replacement by 

a treeless lichen tundra. 

The data on changes in microclimate and permafrost, presented and 

analyzed in Chapter V, suggest enhanced recolonization conditions on wet 

(lowland) roadways, but aggravated revegetation conditions on dry (upland) 



roadways. Summer drought and diurnal temperature extremes adversely affect 

the regenerating vegetation on upland right-of-ways, though increased soil 

temperatures, deeper rooting zones, extended growing seasons, and 

photosynthetic advantages on the disturbed surfaces result in environmental 

enhancement. Radiation frost, and frequent needle ice events may further 

inhibit seedling survival. 
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The soil climate of wet (lowland) right-of-ways is far more buffered and is 

not subjected to the thermal extremes experienced on disturbed upland terrain; 

moreover, the subsurface flow of water on wet roadways enhances plant nutrient 

cycling (Chapin et al., 1988). At the onset of winter, upland right-of-ways freeze 

earlier than their lowland counterparts; consequently, colder soil temperatures 

further reduce the germination potential of seeds and seedling survival. 

Increased wind speeds over roadways are more likely to generate frost drought 

conditions on frozen upland sites than on unfrozen wet lowland sites, which still 

have sufficient moisture to drive transpiration in early winter before snow 

protects the roadway vegetation. 

It seems reasonable to assume that the potential for revegetation 

following winter road operation varies with severity of the impact. On 

temporarily used right-of-ways, revegetation has been reported to occur almost 

immediately following disturbance by vegetative regrowth (Adam and Hernandez, 

1977; Younkin and Hettinger, 1978). Conversely, the observations on long-term 
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disturbances, presented in Chapter V, imply that revegetation on currently used 

right-of-ways depends primarily on seed-producing plants, particularly, grasses 

and sedges. On actively used right-of-ways, vegetative regrowth, following 

destruction of above ground plant shoots, appears to be limited due to the 

gradual depletion of root carbohydrate reserves. However, Salix arbusculoides, 

an upland willow highly adapted for resprouting following disturbance (Kershaw 

et al., 1988), is the single exception which exhibites continued regeneration from 

root reserves on a roadway which had been perennially in operation for at least 

17 years. 

Perennial winter road operations on upland terrain causes the eradication 

of shrubs, apparently as a result of the destruction of near-surface rootstocks 

and vegetative propagules (Figure 18). This corresponds with observations by 

Ironside (1974), who noted that the woody roots and runners of shrubs (i.e. Salix 

spp., Ledum spp., Vaccinium spp.) are brittle when frozen and, being located 

near the surface, are fractured and torn by the pressure of passing vehicles over 

upland tundra. Furthermore, he found that the roots of most grasses and sedges 

remain relatively flexible when frozen, therefore, are less susceptible to damage. 

Crushing of the plants' rootsystems appeared to be significantly reduced on wet 

lowland sites, where the water-saturated substrate freezes solid during winter and 

compacts less than on upland sites. 

Recolonization by vegetative means becomes important once the 



Figure 18. Roadway illustrating the general absence of vegetation, particularly 
shrubs, in the track areas after 10 years of abandonment. This is attributed to 
the destruction of near-surface rootstocks and vegetative propagules. Trees in 
the adjacent control average 3.5 m in height (Site # 8). 
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disturbance is discontinued and the terrain has stabilized. Asexually reproducing 

species advance slowly into the abandoned right-of-ways from the road shoulder. 

However, species, with both reproductive adaptations; those producing wind­

borne seeds and propagating vegetatively (i.e. Salix spp., Populus spp., Betula 

glandulosa, Dryas spp., Eriophornm spp. ), appear to be the most successful in 

reoccupying abandoned winter road right-of-ways. Conversely, species, producing 

heavy seeds or fruits, are dispersed very slowly. This may explain the absence of 

most evergreen shrubs from long abandoned right-of-ways. From these findings, 

it can be reasonably speculated that the reproductive mechanisms of individual 

plant species are important factors influencing the successionary patterns and 

rates of growth for discreet communities. One would expect regeneration of 

vegetation to be impeded with increasing latitude, due to increasing 

environmental severity. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Winter road operations in terrain underlain by permafrost generate a 

sequence of ecological consequences. This research, conducted in the Lower 

and Central Mackenzie River Valley, N.W.T., Canada, was concerned with long­

term impacts on terrain morphology, microclimate, permafrost, soils, and 

vegetation. Changes in these ecological parameters were assessed in a variety of 

environmental settings along a latitudinal gradient from 65°N to 68°N, to provide 

a regional perspective on the potential and pattern for ecosystem recovery. An 

additional purpose of this research was to determine if conclusions, developed in 

the early 1970s regarding the disturbance and recovery of winter road rights-of­

way, are still valid (Adam and Hernandez, 1977; Younkin and Hettinger, 1978). 

Terrain disturbances by winter road operations are largely due to the 

removal of the vegetation during right-of-way clearing and the resulting 

alterations in the surface energy regime. However, the actual extent to which 

key components of the ecosystem respond to surface perturbations appears to be 

determined by the thickness of the insulative organic mat. 

Vegetation clearing produces greater receipt of solar radiation at the soil 

surface, which leads to increases in mean daily air and surface temperatures and 
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in their diurnal variations. These effects slightly diminish with increasing latitude 

due to progressively sparser vegetation cover. As a result of enhanced energy 

penetration to the disturbed ground surface, heat exchange in the substrate 

increased in diurnal range. During the measurement periods, heat storage in 

roadway soils were increased compared to undisturbed sites. However, wet 

lowland soils experience less sensible heating than dry upland soils owing to 

increased evaporative losses. 

Near-surface permafrost degrades on roadways as a result of higher soil 

temperatures. Mean increases in thaw depth on winter roads used for a number 

of years are significantly greater than has previously been reported from 

temporary winter road test sites in the area (Adam and Hernandez, 1977; 

Younkin and Hettinger, 1978). The variable effects of winter road operation on 

near-surface permafrost, monitored across sites in diverse environmental settings, 

indicate the relative importance of terrain characteristics and sediment properties 

rather than the influence of a latitudinal gradient. Increases in thaw depth are 

smaller at water-logged roadway sections (53%) than on dry roadway sites 

(153% ), owing to reduced sensible heating of the former. Nature and extent of 

terrain response to deeper seasonal thaw are largely dependent upon the ice 

content of the substrate. Substantial ground settlement results where excessively 

ice-rich sediments thaw. Observations on terrain morphology at abandoned 

rights-of-way of varying disturbance ages indicate that these terrain modifications 

are enduring. 
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Soil degradation in terms of scuffing of earth hummocks, stripping of soil 

layers, as well as surface rutting and erosion, is an inevitable consequence of 

perennial winter road operation on upland sites; however, these perturbations 

are limited in wet lowland terrain. The most substantial impact on the soil, with 

regard to the permafrost, soil climate, and vegetation, is the complete or partial 

removal of the organic mat on perennially used winter road rights-of-way, an 

observation which contrasts with conclusions developed on temporary winter 

road test sites in the Mackenzie Valley during the early 1970s (Adam and 

Hernandez, 1977; Younkin and Hettinger, 1978). 

Plant communities adjust to continual surface disturbance with regard to 

their floristic composition. Species richness and diversity are lower on roadways 

than in the adjacent undisturbed terrain, reflecting decreased abundance of 

shrubs, particularly evergreens, and increased dominance by a few species of 

graminoids. The degree to which plant establishment on disturbed surfaces is 

successful, appears largely related to the moisture regime of a site. 

Recolonization conditions are enhanced on wet lowland roadways, owing to 

increased soil temperatures, deeper rooting zones, extended growing seasons, and 

photosynthetic advantages. However, on dry roadway surfaces, these beneficial 

consequences of disturbance, are counterbalanced by summer drought and 

temperature extremes, therefore, reducing the revegetation potential. 
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The findings of this research indicate that surface perturbations from 

perennial winter road operations exceed disturbance levels predicted in the 

context of evaluations of short-term winter road performance and environmental 

impact assessments during the early 1970s (Adam and Hernandez, 1977; 

Younkin and Hettinger, 1978). However, the overall terrain impact by winter 

roads is smaller than disturbances caused by conventional all-weather roads. 

Wet lowland areas are less sensitive to winter road operations than dry upland 

sites and should be preferred for route selection although a late freezeup curtails 

the available period for winter road use. The success of winter roads in 

reducing terrain damage is, more than anything else, tied to their proper 

preparation and maintenance, and the prudent observance of operation 

schedules. 
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APPENDIX B 

VEGETATION-IANDFORM UNIT ASSOCIATIONS IN THE 
LOWER AND CENTRAL MACKENZIE RIVER VALLEY 
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VEGETATION ASSOCIATIONS ON PRINCIPAL lANDFORM UNITS 
IN THE LOWER AND CENTRAL MACKENZIE RIVER VALLEY 

(modified from Rowe, 1974) 

TERRAIN TYPE 

Well drained glacial 
lake basin 

Glacial lake basin 
with slopewash 

Thermokarst glacial 
lake basin 

Deep peat glacial 
lake basin 

Advanced thermokarst 
glacial lake basin 

Lake basin 
with peat deposits 

Delta with peat 
deposits 

LACUSTRINE AND DELTAIC PLAINS 

SUBTYPE 

lacustrine plain 

drainageway 

plain and depression 

palsa mounds and ridges 

thaw pond 

peat deposit 

thaw pond 

palsa mound and ridges 

depression 

thaw pond 

peat deposits 

thaw pond 

peat deposit 

thaw pond 

VEGETATION ASSOCIATION 

Picea mariana-Betula papyri/era/ 
Vaccinium vitis-idaea 

P. mariana-Larix laricina/V. 
uliginosum 

open P. mariana/Ledum sp./ 
Cladonia sp. 

B. papyri/era/Rosa acicularis­
Salix spp. and P. mariana/ 

Hylocomium sp. 

Carex fen 

scattered P. mariana/Cladonia sp./ 
Sphagnum spp. 

Sphagnum bog 

B. papyrifera/R. acicularis-Salix 
spp. and P. mariana-B. 
papyrifera/V. vitis-idaea 

open P. mariana/Ledum sp./ 
Cladonia sp. 

Carex fen 

scattered P. mariana/Cladonia 
sp./ Sphagnum spp. 

Spagnum bog 

scattered P. mariana/Cladonia sp. -
Shpagnum spp. 

Sphagnum bog 
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VEGETATION ASSOCIATIONS ON PRINCIPAL LANDFORM UNITS 
IN THE LOWER AND CENTRAL MACKENZIE RIVER VALLEY 

(modified from Rowe, 1974) 
(continued) 

DELTAIC AND OUTWASH PLAINS 

TERRAIN TYPE SUBTYPE VEGETATION ASSOCIATION 

Deltaic sand plain sand plain P. mariana-B. papyrifera/V. vitis-
idaea 

depressions open P. mariana/Ledum sp./ 
Cladonia sp. 

thaw ponds and Carex fen 
abandoned channels 

Delta with sand dunes sand dune P. mariana-B. papyrifera/V. vitis-
idaea 

interdune depression P. mariana/Hylocomium sp. 

Delta with string bogs channel or drainageway string fen 

palsa mound scattered P. mariana/Cladonia sp./ 
Shpagnum spp. 

Delta with thermokarst palsa mound or ridge P. glauca/Hylocomium sp. 

depression open P. mariana/Ledum sp./ 
Cladonia sp. 

thaw pond Carex fen 

Outwash channel scarred open P. mariana/Ledum sp./ 
Cladonia sp. 

Outwash with meltwater channel bottom P. mariana-L. laricina/ 
channel V. uliginosum 
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VEGETATION ASSOCIATIONS ON PRINCIPAL lANDFORM UNITS 
IN THE LOWER AND CENTRAL MACKENZIE RIVER VALLEY 

(modified from Rowe, 1974) 
(continued) 

TILL AND BEDROCK UPLANDS 

TERRAIN UNIT SUBTYPE VEGETATION ASSOCIATION 

Ridge and knoll till plain P. mariana-B. papyrifera/V. vitis-
moraine idaea and B. papyrifera/R. 

acicularis-Salix spp. 

depression open P. mariana/Ledum sp./ 
Cladonia sp. 

drumlin P. mariana-B. papyrifera/V. vitis-
idaea 

thaw pond Sphagnum bog 

peat deposit scattered P. mariana/Cladonia sp/ 
with peat deposits 

drainageway P. mariana-L. laricina/V. 
slopewash uliginosum 

Eskers and kames ridges and knolls P. mariana-B. papyrifera/V. vitis-
idaea 

Bedrock ridges and bedrock P. glauca-B. papyrifera/Alnus 
outcrops crisp a 

tops of ridges or open gnarled P. glauca-L. 
mountains laricina/Dryas sp./Cetraria sp. 

Thin till over bedrock thin till over bedrock P. glauca-B. papyrifera/A crispa 
and open P. mariana/Ledum sp./ 
Cladonia sp. 
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VEGETATION ASSOCIATIONS ON PRINCIPAL LANDFORM UNITS 
IN THE LOWER AND CENTRAL MACKENZIE RIVER VALLEY 

(modified from Rowe, 1974) 
(continued) 

HIGH TERRACE AND FLUVIAL LOWLANDS 

TERRAIN UNIT 

High Terrace 

Alluvial meander plains 

Alluvial floodplains 

Fossil floodplains 

Old slope failures 

SUBTYPE 

terrace 

drainageway and 
depression 

low terrace and levee 

point bar 

backswamp 

abandoned channel 
infilling 

low terrace 

point bar 

terrace or island 

backswamp 

abandoned channel 

undisturbed surface of 
slump 

slip face of slump 

VEGETATION ASSOCIATION 

open Picea mariana/Ledum sp./ 
C/adonia sp. 

P. mariana-Larix laricina/ 
Vaccinium vitis-idaea 

P. glauca/Hylocomium sp. and 
Populus balsamifera/Alnus incana/ 
Equisetum sp. 

Salix spp.-A. incana/Epilobium sp. 

P. balsamifera/Hylocomium sp. 

Carex fen 

P. balsamifera/A. incana/ 
Equisetum sp. 

Salix spp.-A. incana 

P. glauca/Hylocomium sp. 

open P. mariana/Ledum sp./ 
Cladonia sp. 

Carex fen 

P. mariana- B. papyri/era/ 
V. vitis-idaea 

P. glauca/Hylocomiumsp. 



APPENDIX C 

SUMMARY OF STUDY SITE CHARACTERISTICS AND DISTURBANCE 
ACCOUNTS OF INVESTIGATED RIGHT-OF-WAYS 



SITE: # 1 (Canyon Creek) 

LOCATION: 65°13'N 126°32'W 

ELEVATION: 69 m 

LANDFORM UNIT: flat to sloping moraine plain 

SURFACE DEPOSITS: glaciolacustrine deposits; silty clay tiUs 

SOILS (at transect 1): Turbic Cryosols 

VEGETATION: 
(control area) 

TRANSECT 1: 

TRANSECT 2: 

TRANSECT 3: 

immature Picea mariana I Alnus crispa I Vaccinium 
vitis-Ulaea 

immature P. mariana - Betu/a glandulosa I V. vitis­
Ulaea 

immature P. mariana I Artostaphy/os rubra 
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DISTURBANCE: presently used processed-snow-road, operated 
perennially for at least 18 years (Mackenzie Highway 
right-of-way, refer to Chapter II). 
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SITE: # 2 (Oscar Creek) 

LOCATION: 65°26'N 127°25'W 

ELEVATION: 55 m 

LANDFORM UNIT: deltaic sand plain & dunes I alluvial meander plain 

SURFACE DEPOSITS: fine sand and silt, some silty clay 

SOILS (at transect 1 ): Orthic Turbic Cryosols 

VEGETATION: 
(control area) 

TRANSECT 1: 

TRANSECT 2: 

TRANSECT 3: 

DISTURBANCE: 

P. mariana I Ledum spp. 

Salix sp. - Betu/a glandu/osa 

P. glauca - B. papyri/ era I Equisetum a1vense 

presently used processed snow road (operative since 
1988/89), initial right-of-way clearing 1970fil, 
operative compacted snow road operative until 1979 
(Mackenzie Highway, refer to Chapter II), abandoned 
from 1975 until 1988. 



SITE: # 3 (Jackfish Creek) 

LOCATION: 66°15'N 128°N37'W 

ELEVATION: 60 m 

LANDFORM UNIT: sand dunes 

SURFACE DEPOSITS: aeolian fine sands and silty sands 

SOILS: Orthic Static Cryosol 

VEGETATION: 
(control area) 

TRANSECT 1: 

TRANSECT 2: 

TRANSECT 3: 

Pi.cea mariana I Vaccinium spp. 

P. mariana I feathermosses 

P. mariana/ Sphagnum spp. 

126 

DISTURBANCE: presently used processed snow road (operative since 
1988/89), initial right-of-way clearing in 1970/71, 
compacted snow road operative until 1975 
(Mackenzie Highway, refer to Chapter II), abandoned 
from 1975 until 1988. 



SITE: # 4 (Hare Indian River) 

LOCATION: 66°18'N 128°37'W 

ELEVATION: 54 m 

LANDFORM UNIT: broadly rolling till plain 
and glaciofluvial outwash plain 

SURFACE DEPOSITS: ground moraine tills (gravel, sand, silt) 

SOILS (at transect 2): Orthic Humic Gleysol 

VEGETATION: 
(control area) 

TRANSECT 1: 

TRANSECT 2: 

TRANSECT 3: 

TRANSECT 4: 

DISTURBANCE: 

Picea glauca I Juniper communis 

P. mariana I Dry as integrif olia 

burned P. mariana I Carer spp. 

P. mariana I ericaceous shrubs 

winter trail, right-of-way clearing and operative in 
winter and spring 1972, used since then by 
snowmobiles. 
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SITE: # 5 (Tieda River) 

LOCATION: 66°37'N 129°19'W 

ELEVATION: 45 - 95 m 

LANDFORM UNIT: steep scree slope, bedrock escarpment 

SURFACE DEPOSITS: colluvial shale-, silt-, and limestone 

SOILS: Orthic Regosols 

VEGETATION: 
(control area) 

TRANSECT 1: 

TRANSECT 2: 

riparian Picea mariana I Sphagnum sp. 

upland steep slope Picea mariana I dwarf heath 
shrubs 
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TRANSECT 3: steep slope Arctostaphylos uva-ursi - Dryas integrif olia 

TRANSECT 4: 

TRANSECTS: 

TRANSECT 6: 

DISTURBANCE: 

sparse steep slope Dryas integrif o/ia 

sparse steep slope Dryas integrif olia 

upland Picea glauca I dwarf heath shrubs 

winter access road, right-of-way clearing and operative 
in 1971 / 72. 



SITE: # 6 (Little Chicago) 

LOCATION: 67°12'N 130012'W 

ELEVATION: 60 m 

LANDFORM UNIT: rolling glacial lake basin modified by 
channel incisement 

SURFACE DEPOSITS: glaciolacustrine sandy silts 

SOILS: Orthic Turbic Cryosols 

VEGETATION: 
(control area) 
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TRANSECT 1: upland Picea mariana I mat-forming ericaceous shrubs 

TRANSECT 2: 

TRANSECT 3: 

TRANSECT 4: 

DISTURBANCE: 

upland Picea glauca I ericaceous shrubs 

lowland Betula glandulosa I Equisetum 
arvense 

pioneer upland Salix spp. - Alnus crispa (recent forest 
fire) 

Canadian National Telecommunications (CNT) right­
of-way, refer to Chapter II. 



SITE: # 7 (Charrue River) 

LOCATION: 67°17'N 133°2l'W 

ELEVATION: 37 - 60 m 

I.ANDFORM UNIT: glacial lake basin modified by channel 
incisement 

SURFACE DEPOSITS: glaciolacustrine silty clays 

SOILS: Orthic Turbic Cryosols 

VEGETATION: burned approximately two years before field visit 
(control area) 

TRANSECT 1: pioneer Salix spp. I Equisetum scirpoides 
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TRANSECT 2: pioneer Equisetum scirpoides - Epilobium angustif olium 

TRANSECT 3: 

TRANSECT 4: 

DISTURBANCE: 

pioneer Epilobium angustif olium 

pioneer Epi/obium angustif olium 

Canadian National Telecommunications 
(CNT) right-of-way, refer to Chapter II. 



SITE: # 8 (Mackenzie Highway • Dempster Highway 
Junction) 

LOCATION: 67°57'N 133°28'W 

ELEVATION: 80 m 

LANDFORM UNIT: alluvial floodplain, fen wetland, esker 

TRANSECT 1: esker 

TRANSECT 2: esker 

TRANSECT 3: fen wetland 

TRANSECT 4: alluvial floodplain (imperfectly drained) 

TRANSECTS: alluvial floodplain (well drained) 

SURFACE DEPOSITS: 
TRANSECT 1: coarse gravels, sand, silt 

TRANSECT 2: coarse gravels, sand, silt 

TRANSECT 3: silty clay till (moraine veneer) 

TRANSECT 4: stratified silt, sand, and gravel 

TRANSECT S: stratified silt, sand, and gravel 

SOILS (transect 5): Dystric Brunisol 

VEGETATION: 

TRANSECT 1: Picea mariana I Cladina sp. 

TRANSECT 2: P. mariana I ericaceous shrubs I Cladina sp. 

TRANSECT 3: P. mariana I Sphagnum sp. 

TRANSECT 4: P. mariana I Vaccinium spp. 

TRANSECTS: P. mariana I ericaceous shrubs 

131 



SITE: 
(continued) 

DISTURBANCE: 

# 8 (Mackenzie Highway • Dempster Highway 
Junction) 
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Mackenzie Highway right-of-way, refer to Chapter II. 



SITE: # 9 (Campbell Creek) 

LOCATION: 68°35'N 133°14'W 

ELEVATION: 15 m 

LANDFORM UNIT: ridge- and knoll-moraine 

SURFACE DEPOSITS: ground moraine tills and glaciolacustrine silty clays 

SOILS (transect 1): Regosolic Static Cryosol 

VEGETATION: 
. (control area) 

TRANSECT 1: 

TRANSECT 2: 

TRANSECT 3: 

DISTURBANCE: 

Picea mariana I ericaceous shrub I Sphagnum sp. 

P. mariana I Betula glandulosa I ericaceous shrubs 

P. mariana I ericaceous shrubs I Sphagnum sp. 

Canadian National Telecommunications 
(CNT) right-of-way, refer to Chaper II. 
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APPENDIX D 

COVER ESTIMATES FOR VASCULAR AND NON-VASCULAR PLANTS 
ON THE INVESTIGATED WINTER-ROAD-RIGHT-OF-WAYS 



CODES FOR MODIFIED BRAUN-BIANQUET 
COVER-ABUNDANCE SCALE 

r = solitary, small cover 

+ = few, small cover 

1 = numerous, but < 5 % 

2=5-25% 

3=25-50% 

4 = 50 - 75 % 

5 = > 75 % 

WR = winter road 

LE = road shoulder 

CO =control 

SD = snowmobile trail 
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Canyon Creek (Site # 1) Transect 1 !Transect 21 !Transect 3 !Transect 4 
WR LE co !WRILE CO! IWR LEICO !WR LE co 

I. Trees •/:<• •·<:' \Y: 
Betula papyrifera + 1 ' 

%•:•· :n<:•. 
Larix /aricina :'. ii + 3 :;, 3 
Picea glauca 

4 ,,· 
:.• : ... ·. 

Picea mariana + 3 /} 4 >/ 3 
Popu/us balsamifera ./ .... .·::t( . 
P. tremuloides ... :\ -Et·· } ·., 

: •:': . 2 ::.•. 
II. Deciduous Shrubs _ .... , .... : :. . .. 
A/nus crispa 3 .(.'. {/ 
A incana _;: 

{'\ 
; 

Arctostaphylos alpina 
:~.i,· + 

3 B •.•:: 

A rubra + 2 .·.·. :.::• 1 2/ : 2 
Betula g/andulosa :S/ 4 3'ffYf 1 1 ••:.•• . 1 
Comus ssp. I · ... · ., '" ~-

. 
Potentilla biflora :: }::: 1 ti: ) + 
P. fruticosa ' 1 (·.··· >: 
P multifida 1 ' 1 / 2 :·:···· 1 :.'".:•· 
Rhododendron Japponicum / 

.)? .;'t Ribes triste ·.· .·.· 
Rosa acicularis 1 1 f F + :::i:" i + 
Rubus strigosus .> .· .. - ). 

Salix alaxensis (f_ .... 

S. arbusculoides 2 •':"/ "( )\ 1 ···: + 1 
S. bebbiana + :·'.: u: F t 
S. g/auca :. 

-·r i 
·····:: 

S. /anata ... . ) .: . 
S. myrtillifolia \:: + : t T 
S. p/anifolia :• ? ): ·:• •:• 

S. pseudomonticola }{ ·r .. -
S. pyrifolia 1 .. :::.::: d:'. .{ :: 
Salix SDD. ···•\ 

1 .• ;. 
\:: + 1 .: + 

Sheperdia canadensis •• : 5 
Vaccinium uliginosum .. .:.:: 

··•··· 
:::. 1 IF 

Viburnum edule ;;;;., ) : .. 
. ! 

.... 
( •:, ..•. 

Ill. Evergreen Shrubs ••<;_ .•, · .. · ;; 
Andromeda polifolia :· { :• 1 1 
Arctostaphylos uva-ursi : i :( :: 
Castilleja Raupii . ::.:;:{ %! ; • 
Dryas drummondii ·: •:•:· . 
D. intearifolia _\{ x: + ..... 

Empetrum nigrum .. . ... 
Juniperus communis 

·fr :: A:, 
J. horizontalis ·: 
Ledum spp. 2 : + 2 2 
Linnaea borealis : + 
Vaccinium vitis-idaea 3 ::: 1 3• : 2 

)'. •: 

IV. Annuals :::) :':':' 

Erigeron e/atus 
Juncus bufonius 1 1 
unspecified Annuals 

V. Perennials 
Achillea niarescens 
Anemone soo. 
Amica alpina 
Artemisia tiles ii 
Aster SDD. 1 1 
Dracocephalum parviflorum 
Epilobium angustifolium 
E. palustre 
Eauisetum arvense + + 2 2 
E. scirpoides + 
E. svlvaticum 



Canyon Creek (Site # 1) Transect 1 JTransect 21 !Transect 31 Transect 4 

Petasites triaidus : '•• • : 
Polygonum viviparum 1 •:: 2 :• '•t + , \ + 

+ 1-P~o:...:t.c..e.c:.n-'-til--la~a"'-n...:s..c.e __ n __ ·n--a _____ 1--+-+-+---':•,:.: t,_1-+--1---joc[···] ~ + : + 

~--.-------1---t---1-~:.,n;'--+-+-+-~•~\~ ·>~-+--+-· .. ,}:{==:=====:=: 
Ranunculus spp. .,,. ··· > + ····--+--+---+---i 

Rubus spp. :c:, y, + : , :i _-+--1---+---1 
Senecio soo. / ; . \ j_ 
Solidaqo soo. <.: ··:•:····:,::·':•: --+--+--_ ··--r---+-+---1 

~;~;~~g~.~--~c--e~~~~~~--oe~fe~'gu_!_~ __ :-,-,----t---+-+-+--!•:•:;:~~--+--1+-+-+ __ :,s\,'cS--1--1---:_······ .. _+-+--t---+---t 
unspecified Perennials + + ,, .. \§ + ·e (-+-+--1--- + + 

y; ?\ _ _,.. ___ _ 
VI. Gramlneae i+> ;' ,._.· .. 
Arctaarostis latifolia X i X f. I 
~A~lg=r=o~py~1r=o=n=~tr~a=c~hy=.c=a=u=lu=m=======~==:==1===:~,,n0•,t:.--+--t---i;ut~:'--+--+--'::.>····~-+--t---+---t 
Agrostis scabra + • :; t?. 

rB~r_o~m_u_s-'-p_um~1+-pe_,ffi_a_n_u~s ____ .___1+1-+---':st:~:--+---1l---<$::_,,_,__+---:•'•"·•--t--+--1----1 
Calamagrostis canadensis •·· 3 (.? + 3 

C. pumurascens }~}~[~'.'. ( r.CMa~l~am~a~qr~o~s~lis_s_p~>p-.. -----t--1---t--V?0{---t--t--- ~--1----1--!:Q''•'t·''-71+---+-+---l 
Elymus innovatus :•:• L + r: 

r.FMe~s~tu~c~a,..--a_lt_a_~_a ______ -+-+---+--'%'~:"'--t--t--~:n;::':--+--+--•·<:y,:··--+--+---1'--~ 
r~~~~:~p5~1~0~c01~·ii-e~d-G,,.-ra-m--,-in-o~id~s----+-+---+--;(\%•.'.·--l-~2;:-l--2""°"i~t\··.···~-+--J---/>./--+-+--+-~ 
t-'--"'--'--'-~-'---'---~-'-'-=--c__---+-t--+-->7>--t--=-t-=-t{h'---+-+-~········· ~-+-+---+-~ 

lvir-,.,-::::-::-::::-::-:c:::-::-------+--t--·-t--h".·"---!--t--0;;"';"---+-+--.. ·.···---+-~---<-~ 
rv=-1_1._c......_vP_e~ra_c~e~a_e ______ .__-+-+-~).f :' E --r-+--- "--+--!---+---< 
Carex aquatilis var. aquatilis •·•·. ::• 
C. capi/laris 2 
C. eburnea 
C. garberi 
C. g/acia/is ; 
C. avnocrates ·.•· 
C. /ugens ;'.) 
C. media J C 
C. membranacea ii --+--1----,/r--+--1---+---t 

r.c~-~p7,h~~~-s~o7ca7r~pa _______ t-;:;+-+--,·vu•X¥-~f---+-- 801 \~-+--;:-t--'<··'>---,3=-+--t---+---t C. scirpoidea 2 ::: : v: 4 2 : • 

C. vaginata '--+-+--=2-,/~-•"· --+--t--,-+--t 
Carex spp. + 2 _7 t. 
Erioohorum angustifolium --+----<--:,.,.>:. :; 
E. Scheuchzeri -,:)• :' 
E. vaginatum ff!\:.•• 

VIII. Bryophytes 
live 
dead 

IX. Lichen 

X. Bare Ground 2 

2 
5 

+ + 

2 

+ 3 2 
1 

+ +• 

ff§ ·:· 

,., 

2 

rX~l.:__::L~lt~te~r~~~~~~~-1-~3-t-~s+--2=-sa';~~--+_;;:2+--2=-~11;;;~--=2:+-~2+-~2<·.·.··b~~s:+-~2+--2+--~ 
' ·····•::» •;:•·· 

XII. Rocks • ::»':•: x 
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Oscar Creek Site # 2 

I. Trees 
Betula rifera 
Larix laricina 
Picea lauca 
Picea mariana 
Po ulus balsamifera 
P. tremuloides 

II. Deciduous Shrubs 

ina 

P. truticosa 
P. multifida 
Rhododendron la onicum 
Ribes triste 
Rosa acicularis 
Rubus stri osus 
Salix alaxensis 
S. arbusculoides 
S. bebbiana 
S. lauca 

Led um 
Linnaea borealis 
Vaccinium vitis-idaea 



139 

Oscar Creek Site # 2 

V. Perennials continued 
Galium boreale 
Geocaulon livldum 
Hed sarium 

ustifolium 

VIII. Br o h tes 
live 
dead 

IX. Lichen 

X. Bare Ground 

XI. Litter 

XII. Rocks 
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Jackflsh Creek Site # 3 

I. Trees 
Betula a rifera 
Larix laricina 
Picea lauca 
Picea mariana 
Po u/us balsamifera 
P. tremuloides 

P. fruticosa 
P. multifida 
Rhododendron onicum 
Ribes triste 
Rosa acicularis 
Rubus str' osus 
Salix alaxensis 
S. arbusculoides 
S. bebbiana 
S. /auca 
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Jackflsh Creek Site # 3 

V. Perennials continued 
Galium boreale 

var. a uatilis 

ustifolium 

VIII. Br o h tes 
live 
dead 

IX. Lichen 

X. Sare Ground 

XI. Litter 

XII. Rocks 
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Hare lndlan River Site # 4 Transect Transect 
WR 00 WR 00 

I. Trees 
Betula a rifera 
Larix laricina 
Picea lauca 3 
Picea mariana + 4 2 
Po u/us balsamifera 3 2 
P. tremuloides 4 

II. Deciduous Shrubs 

ina 

+ 
Cornus ss . 
Potentilla biflora 2 + 
P. fruticosa 
P. multifida 
Rhododendron l onicum 
Ribes triste 
Rosa aCicularis + 
Rubus stri osus 
Salix alaxensis 
S. arbusculoides 
S. bebbiana 2 
S. lauca 3 2 
S. lanata 
s. m rtillifolia 
S. lanifolia 
s. seudomonticola 
S. rifolia 
Salix 
She 3 2 

+ 

Ledum s . 
Linnaea borealis + 
Vaccinium vitis-idaea 

+ + 
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Hare lndlan River Site # 4 

V. Perennials continued) 
Galium boreale + 
Geocaulon lividum 
Hed sarium + 

ustifolium 

VIII. 
live 
dead 

IX. Lichen 

X. Bare Ground 

XI. Litter 

XII. Rocks 
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Tiede River Site I 5 

I. Trees 
Betula rifera 
Larix laricina 
Picea lauca 
Picea mariana 
Po ulus balsamifera 
P. tremuloides 

P. fruticosa 
P. multifida 
Rhododendron I onicum 
Ribes triste 
Rosa acicularis 
Rubus stri osus 
Salix alaxensis 
S. arbusculoides 
S. bebbiana 
S. lauca 

Vaccinium vitis-idaea 
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Tleda River Site # 5 

VIII. Br o h tea 
live 
dead 

IX. Lichen 

X. Bare Ground 

XI. Litter 

XII. Rocks 
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Little Chicago (Site # 6) Transect 1 Transect 2 !Trans. 3 !Transect 4 
WR LE 00 ... WH LE oo I IWR CX> IWR LE CX> 

I. Trees •:.:./: :·· .. :. ... 
Betula papyrifera 4 2 ; ( 

•: " 
Larix laricina •:•• ... :q. % 

Picea glauca + 2 1 2 2 ·.: : ... 
·\ix 2 ? 

Picea mariana 2 •: - ·· .. ··:· 

Populus balsamifera 2 1 t> 2 -( 
.... 

P. tremuloides : ::.: ... ·: :i: :; 
: \: •:::';:. 

II. Deciduous Shrubs •: ? }\ . / ·.·. 

··:···· 
A/nus crispa 2 2 2 ;nt. :•:. ) 3 
A incana .... 

rn: 
:?\ ,.Y•:· ... 

Arctostaphylos a/pin a :=::'~:\:.-- . ..::.--: ::: 
A rubra 2 3 2 -: ''··" 2 1 f > : + '•) 

Betu/a glandu/osa : : :r 3 :::::. 
Camus ssp. : ··:· /\ :·_ :•. 
Potentilla biflora > •.:} •:, :/ :, 

P. fruticosa 2 2 •.: 1 + + fr( ·• > 1 :, :::' 
P. multifida , .... 

-·;}r :•.•e-•: + :• 
Rhododendron /apponicum -: .• _, .... , .. .ff :-(: .... 

Ribes triste {: )''. -;(;i)i ····:/.\ fr 
Rosa acicularis > -~:·:· 
Rubus strigosus < ,·. •. < ·, :• 
Salix alaxensis .\. •, : :' ,;:.. ' ··:•: 
S. arbusculoides 1 ) .::>:. 3 3 2 ,· : L •• 

S. bebbiana 2 2 2 •1t 2 ::·.• } ..•. 2 2 2 : 
S. g/auca 2 2 : ::• 

-, 
:_ .. :, .•. , •. 2 3 : 

S. lanata <1:- : /, : ' ,,. M 
S. myrtillifolia 1 ·•: ? h:• ' ~~;:;~1·11 S. r:>lanifofia :;: ;:: 4 2 {'.; 2 2 
S. pseudomonticola ::.•: : \, )ff; 
S. pyrifolia : ( : :. ::?' 
Salix son. '< : :•- 2 Uff 
Sheperdia canadensis :.• 2 " 

., 2 1 ,:: 

Vaccinium uliginosum }t 
., 

2 : ;; .. 2 •; 

Viburnum edule : ··•':• F •: 

:"•:.:;: .:: x / •::• 

Ill. Evergreen Shrubs <H ::••::::•:: ··:.;. 
•,:_> Andromeda polifolia CF\ .::::::f -) { 

Arctostaphylos uva-ursi 1 J'j: 1 2 : fr ?·>: 
Castilleja Rauoii - :: ... '. F :: 
Dryas drummondii '?? .. ::• :,_: 

~il1 iv o_ integrifolia 2 + 2 ··: y + 1 2 ··:-: + 3 1 
Emoetrum nigrum 1 '::--.; i: FY 
Junioerus communis <•'' ::,: j i ; 
J. horizontalis ·:· ff i :): 

Ledum soo. 2 : ": 
::::- ) 

•• ·?': 2 
Linnaea borealis '"" 2 H ::-

Vaccinium vitis-idaea + - ' . .:' •:•:: :: •:: 
: / .;-· •::: :' 

IV. Annuals - :_• 
··•.:• 

i: ..... 

Erigeron SDD. .., • ?:• 
Juncus bufonius ~ ... ; 

unspecified Annuals 

V. Perennials •• 

Achillea nigrescens 
Anemone son. + + + + + 
Amica alpina > + 
Artemisia tilesii 

1· Aster son. + + + + 
Dracocephalum parvif/orum 
Eoilobium an,,ustifolium + + + 
E. pa/ustre + + + 
Equisetum arvense e:• 1 3 4 2 2 
E. scirooides 1 2 1 .. , .. + 1 1 2 
E. sylvaticum 

····• E. variefJatum u 
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Little Chlcaao (Site # 61 Transect 1 Transect 2 Trans. 3 !Transect 4 
WR LE CD ••;:m••:''' WH LE CDI WRCD~ CDI 

V. Perennials (continued) 

·~ 
. -·:';; Ga/ium boreale 

Geocaulon lividum % -~:;;: }.' 
Hedysarium soo. 2 ,:, <F :::,:,, 

Juncus a/pinus ··: ···.:.•:< •:• \'Y < 
J. castaneus •: :·•.•u: ;; '.• 
Orchis rotundifolia +';:1I- :;/• -( 

Oxitropis def/exa 

:~!;'.![1t!:: 
2 1 :•i:•·• ./ 

Parnassia palustris - i;~]~ .. + 
••••• •••••••• 

Petasites friaidus : :.:· ::::.•:• 
Polygonum viviparum I ::· •• i•\f• . .:;•• ••• 
Potentilla anserina : ::.:::· -.r. •.. ·: 

2 f > 
P. oalustris :;.:. LU; :• \ 
P. norvegica :• >: L : • •• 
Pyrola spp. ff ? ... ·· ;; 
Ranunculus sao. ...... ::.: . it 

"} 
i ••• 

Rubussoo. .·:. -;;; fL 
Senecio soo. :.: 1 1 1 + • + + •\ 
Solidago soo. ; .\X J ;; 
Trialochin palustre \. ..• 
Zygadenus elegans .•· ;;·: 

:;;: f./ 
unspecified Perennials .: :h + < 

i :: t -
VI. Gramlneae ': :.::: :•::: ::::• 
Arctaarostis latifolia .... •i :: '·fo :,) 

Agroovron trachvcau/um .• i Vi< ;· Agrostis scabra ·:::•: ::••:: ... \: 
Bromus r:wmoe/lianus :•': 2 2 :• ·(· .... 2 2 
Calamagrostis canadensis . .,.. ! :: 2 : ) 

C. purpurascens 2 1 + .. 2 2 : •·> •:••· 2 . .::' 
Calamaarostis soo. • •:c : '. .'. 
Elymus innovatus ·: .. 

! Festuca altaica ......... ; 

Poaspp. . •: ........ 2 2 ..... 
unspecified Graminoids 

·~·.······ 
,:]/' • :.: \ 

::!Ji': :•: 
.·1; VII. Cyperaceae .,:-•. ' Carex aquatilis var. aqua ti/is j S\ 2 i • C. caoillaris •.••• 2 2 ·:< 

2 •·•••• 
•> 2 <: 

C. eburnea .•. : .. •• •::: •••• 
C. garberi ... : 

·:.;. L ~~;,;~;~: 
. ... 

C. alacialis 
····• 

':(•·• 
C. gynocrates •:•'.· ··.:. •:•: < 
C. luaens ··: :@fi 
C. media 

ii 
;) 

C. membranacea 
•· C. physocarpa •::• . 

C. scirpoidea .. •.•• 

C. vaainata •:;:: 
Carex soo. 

;it ':':•-.; 
Eriophorum angustifolium .\ 
E. Scheuchzeri 
E. vaoinatum •••. 'ff .... 

y• •h. :. VIII. Bryophytes •:• 

live 2 2 1 1 1 .. 
dead 2 1 3 I 

IX. Lichen + 
=;;,;!'[;( 

X. Bare Ground 3 2 2 

XI. Litter 3 3 2 2 2 2 ::•: 3 2 2 2 2 ' ' ••• . .. 
XII. Rocks /.(:/. ... ' «··· 
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Charrue River (Site # 7) 
WR 00 

I. Trees 
Betula a rifera 
Larix laricina 
Picea lauca 
Picea mariana 
Po ulus balsamifera 
P. tremuloides 

II. Deciduous Shrubs 

A rubra 
Betula landu/osa 
Camus ss . 
Potentil/a biflora 
P. fruticosa 
P. multifida 2 
Rhododendron la onicum 
Ribes triste 
Rosa acicu/aris 
Rubus stri osus 
Salix alaxensis 
S. arbusculoides 3 2 
S. bebbiana 
S. lauca 2 

S. 
s. 
S. 2 
S. 

+ 

Viburnum edule 

Ledum s 'P 
Unnaea borealis 
Vaccinium vitis-idaea 

+ 
2 2 

2 3 3 

2 2 
+ 3 2 + 

varie atum 
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Charrue River Site # 7 
WROO 

V. Perennials continued) 
Galium boreale 
Geocaulon lividum 
Hed sarium 
Juncus al. inus 
J. castaneus 
Orchis rotundifolia 

+ 

2 

2 3 

2 

3 

var. a uatilis 
2 

+ + 

ustifolium 

VIII. Br o h tes 
five 2 
dead 2 2 

IX. Lichen 2 

X. Bare Ground 2 2 3 

XII. Rocks 
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Mackenzie H'wa (Site # 8} 

I. Trees 
Betula a rifera 
Larix /aricina 
Picea /auca 
Picea mariana 
Po ufus balsamifera 
P. tremuloides 

II. Deciduous Shrubs 

P. fruticosa 
P. multifida 
Rhododendron la onicum 
Ribes triste 
Rosa acicularis 
Rubus stri osus 
Salix afaxensis 
S. arbusculoides 
S. bebbiana 
S. lauca 

Vaccinium vitis-idaea 
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Mackenzie H'wa (Site # 8 

V. Perennials continued 
Galium boreale 
Geocau/on lividum 
Hed sarium s 
Juncus al. inus 
J. castaneus 
Orchis rotundifolia 

var. a uatilis 

ustifolium 

VIII. B o h tes 
live 
dead 

IX. Lichen 

X. Bare Ground 

XI. litter 

XII. Rocks 
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Cam bell Creek (Site # 8) Transect 1 
V'IR LE CD 

I. Trees 
Betula rifera 
Larix laricina 
Picea lauca 
Picea mariana 3 2 
Po ulus ba/samifera 
P. tremuloides 

II. Deciduous Shrubs 

ina 

3 2 2 4 
Cornus ss . 
Potentilla biflora 
P. fruticosa 
P. multifida 
Rhododendron la onicum 
Ribes triste 
Rosa acicu/aris 
Rubus stri osus 
Salix alaxensis 
S. arbusculoides 
S. bebbiana 
S. lauca 2 2 
S. lanata 
s. m rtillifolia 
s. lanifolia 2 2 2 
S. 
S. 

rdia canadensis 
Vaccinium uli inosum 3 3 2 2 2 
Viburnum edule 

2 2 2 
Juni erus communis 
J. horizon ta/is 
Ledum s 2 + 2 
Linnaea borealis 
Vaccinium vitis-idaea 3 + 2 3 

IV. Annuals 
Eri eron s 
Juncus bufonius 
uns ecified Annuals 

3 
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Festuca altaica 
Poas . 
uns citied Graminoids 

3 4 

ustifolium 3 

VIII. Br o h tes 
live 2 
dead 

IX. Lichen 

X. Bare Ground 

XI. Litter 

XII. Rocks 
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