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Wchael A. Driscoll 

Richard G. Hamlet 

The associative processing model provides an alternative solution to the von Neumann 

bottleneck. The memory of an associative computer takes some of the responsibility for processing. 

Only intermediate results are exchanged between memory and processor. This greatly reduces the 

amount of communication between them. Content-addressable memories are one implementation of 

memory for this computational model. Associative computers implemented with CAMs have 
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reported performance improvements of three orders of magnitude, which is equivalent to the perfor-

mance of the same application running in a conventional computer with clock frequencies of the order 

of GHz. Among the benefits of content-addressable memories to the computer system are: 1) it is 

simpler to parallelize algorithms and implement concurrency; 2) the synchronization cost for parallel 

processing is lower, which enables the use of small grain parallelism; 3) it can improve the perfor­

mance in non-numeric applications that are known to have low performance in conventional comput­

ers; 4) it provides a trade off between integration density and clock frequencies to achieve the same 

performance that is not available in RAM 5) matches well to current and future technologies due to 

the trade off between integration and clock frequency; 6) it attacks the von Neumann bottleneck by 

reducing the requirements on the communication bandwidth between processor and memory. 

In this thesis, the role of CAMs in associative processing is analyzed, reaching the conclusion 

that to implement these characteristics the CAM must be able to filter the data transferred to the pro­

cessor, provide explicit support for parallelism and data structures, support non-numeric applications, 

and execute logical operations. The characteristics and architecture of a content-addressable memory 

integrated circuit are presented along with an application with estimated performance improvement of 

over three orders of magnitude . 
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CHAPIERI 

INIRODUCTION 

Content-addressable memories have been known for over 30 years and there is an extensive list 

of proposed applications for them in the literature. Nevertheless, con~nt-addressable memories are 

devices almost unknown to the majority of the engineers in the electronics industry. This master's 

thesis proposes to organize the existing information on content-addressable memories and show that 

the lack of systems using content-addressable memories is not due to an inherent fault in the content­

addressable memory model. 

To achieve this goal, I will outline an application niche that is not well served by current com­

puter systems and present the characteristics of the associative processing model that can execute these 

applications effectively. The content-addressable memory is one implementation of this model. The 

characteristics of content-addressable memories and the circuits required to implement content­

addressable memories are also described. I will also investigate the data structures that are improved 

by the addition of associativity and identify the applications that benefit from associativity. 

MOTIVATION 

The demand for more processing power and more memory continues to increase. In the last 25 

years, advances in computer performance have been tied to advances in microelectronics through fas­

ter technologies and the integration of system's bottlenecks. Since the introduction of the Dynamic 

Random Access Memories (DRAM) 20 years ago, the density of integrated DRAMs has quadrupled 

every 3 years [ITOH90] and the number of devices in commercially available integrated circuits has 

doubled every year [SEITZ84]. During the same period, the computer architecture has remained close 

to the von Neumann paradigm of a single sequential processor, a storage device and an input/output 

channel. Figure 1 shows the block diagram of the von Neumann computer architecture. 
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Figure 1. The von Neumann computer architecture. 
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The simplicity and elegance of the von Neumann paradigm allied with the fast development of 

microelectronics are responsible for the past developments in computation. To obtain further perfor-

mance increase and take advantage of new technologies, modifications have been made to the von 

Neumann architecture. These modifications include higher integration and the increased use of paral-

lelism. Three key reasons for changing the von Neumann computer architecture style have been 

identified [MOTO-OKA83, SETIZ84]: 

(1) Computer system architectures have to match current and future technologies. Device speeds are 

approaching fundamental technological limits. And much before that, the circuit dimensions 

and speed will approach the limits where Kirchoffs laws no longer apply. The von Neumann 

single processor cannot continue indefinitely to increase in complexity and performance. VLSI 

substantially reduces hardware costs suggesting the use of parallel processing architectures. 

(2) There are more problems to be solved than computer scientists to solve them. Programming and 

computer problem solving have to be simpler in order to enable more people to effectively use 

computers. One way to improve productivity is through more sophisticated human interfaces, 

natural programming languages, or more unconventional approaches. The von Neumann archi-

tecture was developed to answer computer implementation needs, not human needs. 
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(3) A general purpose computer system has to provide acceptable performance in a large class of 

applications. The structure and the processing principles of general-purpose computers used 

today mainly take into account the demands of numerical algorithms [ZEIDLER89]. Current 

computers have poor performance in applications for processing speech, text, graphs, images, 

non-numerical data and for artificial intelligence. These applications are important for the 

implementation of a better human interface. 

This thesis reports my investigation into computer architectures that use content-addressable 

memories as an alternative to improve performance. 

THE VON NEUMANN MODEL OF COMPUTATION AND PARALLELISM 

The principle of multi-processing is to have more than one processor cooperating to execute the 

same job. Systems with more than one processing device depart from the well accepted von Nt'.u­

mann architecture in a manner that change computation in fundamental ways: 

(1) Many processors cooperating in the same task have an attendant requirement for synchroni7.a­

tion and communication between the processors non-existent in sequential processors. That 

requirement results in often substantial overhead for multi-processor systems, either in time 

(performance) or in hardware. 

(2) Multi-processor systems also require the development of parallel algorithms to deliver their 

potential performance. However, the techniques to develop parallel algorithms are not as 

developed as those for sequential algorithms. 

(3) To make full use of the processors, the parallel programmer or the compiler has to find enough 

parallelism in the problem to keep all processors busy. The task of finding this partitioning can 

be expensive. 

It is also known that the gain in performance with multi-processing has its limits. For a given 

parallel algorithm there is an optimal number of processors to solve a problem and therefore, increas­

ing the number of processors beyond that number does not lead to linear increase in performance. Par­

titioning the job into many pieces can even degrade the performance because of the overhead in syn-
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chronization. The simple application of a higher degree of multi-processing alone is not the final solu-

tion to the quest for improved computer performance. However, parallel processing continues to 

improve its position because there are technological advantages in multi-processing. The lower costs 

of the individual processor and Very Large Scale Integration (VLSI) makes multi-processor systems a 

cost effective solution. The proposed memory model has to consider parallel processing. Many exist­

ing multi-processor systems use multiple von Neumann processors. Because of the sequential nature 

of the von Neumann processors, this style of parallel computation can have a large overhead to imple­

ment synchronization and communication. To limit the overhead, von Neumann style multi-processor 

systems have the tendency to sub-divide the job into few large pieces in what is called coarse grained 

parallelism, as opposed to fine grained parallelism that sub-divides the job into many smaller tasks 

enhancing the potential concurrency of processing. 

Another main component of the von Neumann computer model that should be considered is the 

storage device. To understand how the change of memory model affects the computer system, the 

von Neumann memory model and the effect of multi-processing on memory organization are 

reviewed. 

The single storage device in the von Neumann architecture can be viewed as a black box that 

takes an address and uses it to select a storage location. This storage location is used to store data via 

the write operation or to retrieve data previously stored in that location via the read operation. 

Although all the storage devices studied in this document can access the pieces of memory stored in 

any order, historically this device is called random access memory (RAM) as opposed to magnetic tape 

mass storage that accessed data in a fixed order. RAMs store data associated with an artificial code, 

the address. The address refers to the physical location, not with the datum it stores. A physical loca­

tion is selected based on the address associated to iL 

In the von Neumann model, data and instructions are stored in RAM and have to be transferred 

to and from memory and processor. The characteristic of sequential access to memory, one datum at a 

time, limits the system performance and is known as the von Neumann bottleneck. For maximum 

efficiency, the memory has to feed data at the same rate the processor consumes iL This sequential 

nature of RAM creates serious disadvantages when multiple processing units are introduced. 
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There are two main parameters to evaluate the storage device implemented with RAM in the von 

Neumann architecture. Those parameters are the maximum rate that data can be accessed and the 

maximum amount of data that the memory device can store. Larger memories are needed to solve the 

increasingly larger problems found in current applications. It takes longer to process the massive 

amount of information stored in this larger memory. To reduce the execution time, the processor and 

the memory must run at a higher speed. 

Multiple processors in the system provide the processing power to execute these larger problems 

but also stress the fact that the path between the memory and the processor is the key limiting factor 

for system performance. For example, one scheme of connecting multi-processors and memory is 

shared memory where each memory word has a global address. Multi-processor systems have higher 

peak demand and potentially consume data at higher average rates and because there is only a single 

data bus to access memory, each processor has to "wait for its tum" to access memory~ A second 

scheme is message passing or local memory. Local memories try to widen the system memory 

bandwidth by giving some of the memory to each processor with the scope of the address of each word 

localized. To share data, messages are passed through a communication network between the proces­

sor requesting the information and the processor that has the data stored in its local memory. Distri­

buted and shared memories are like two ends of a possible continuum of architectures for storage using 

the same memory model. One notable enhancement of memory systems is the introduction of 

hierarchical memory levels like paging store and cache. The effectiveness of cache memories relies 

on the prediction of which data will be accessed in the near future. The need for a good prediction of 

the next access to memory explains in part the loss of performance in applications that dynamically 

disorder data in memory. Caches can be used with either shared or local memories. 

The traffic between processor and memory is not used solely to exchange data. Communication 

of the address also consumes some of the communication bandwidth between memory and processor. 

· Addressing by location is particularly inefficient when: 

(1) data is associated with several sets of reference properties (e.g. address pointers). 

(2) the size of data elements is small when compared to the reference properties that have to be 

stored with them. 
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(3) during processing data becomes dynamically disordered in memory. 

There is a large overlap between the applications for which von Neumann architectures are con­

sidered inefficient and those where addressing by location creates a large overhead That is one of the 

main reasons this research is focused on a different computer memory model. 

Regardless of these modifications, three observations can be made: 

(1) The modifications to the memory architecture have not changed the concept of memory 

significantly. A better memory still means a larger and faster one. 

(2) Parallel processing is becoming increasingly popular. RAM was developed to fit the von Neu­

mann architecture and does not couple well with parallel processing demands. 

(3) Many applications for which von Neumann type architectures have poor performance are also 

applications in which address calculation overhead can be substantial. 

AN AL1ERNATIVE COMPUTER MEMORY MODEL 

A different memory model that comes to mind is the biological model Human memory is 

known for its ability to process non-numerical data, image, speech and for (natural) intelligence. 

Computer memories that model the human memory may capture some of these qualities. 

In Aristotle's observations on the human memory [SORABJI72], he makes a distinction 

between the simple storage of information and storage and processing of information. Aristotle called 

each action remembering and recollecting, respectively. Remembering, according to him, retrieves 

data exactly as it was presented. And recollection returns the data massaged by reasoning. 

Aristotle observed that recollections seem to be a synthesis of memorized information. The 

recollection process is a sort of reasoning that would remember an image not necessarily identical to 

the original occurrence. Human recollections do not have to be exactly what was originally presented; 

they can be modified by the interaction with other knowledge. The human memory functions are 

quite different from the von Neumann computer memory. There is no clear distinction between pro­

cessing and storage in the human memory suggesting that computer memory structures should perform 

part of the processing. 
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The following features were selected from human memory as parameters to evaluate memory 

models based on their apparent importance in the human thought process and the potential improve­

ment they could bring if introduced to computer systems [KOHONEN80]. 

(1) Direct association or auto-association: recollect a data structure from a fragment of the datum 

large enough to enable recognition. 

(2) Indirect association or hetero-association or association by inference: recollect data from pieces 

of data that are not similar to, nor part of, the data to be recalled. Uses reasoning, a sequence of 

many direct associations to make associations by meaning. 

(3) Sequential recollections, or temporal association, or temporal recall: the memory also stores the 

sequence in which data should be recalled. There is a sense of time and/or order. 

(4) Robustness: Recollections using a key contaminated by noise will recall data that is most similar 

by some measure to what should have been recalled by the perfect key in an optimal way. 

(5) Graceful degradation and fault-tolerance: damage to memory cells degrades the results grace­

fully instead of impairing the whole process. 

Associativity is possibly the most desirable characteristic of human memory. The term associa­

tive memory is used to refer to a memory that is capable of some kind of data access through associa­

tion. Kohonen [KOHONEN80] named the type of processing that uses associative memories associa­

tive processing. In associative processing, address calculations are eliminated, eliminating one inter­

mediate stage between human conception and computer implementation and reducing the traffic 

between the processing device and the memory device. The computational work load is shared by the 

memory and by the processor. Non-numerical applications can also use the support of the associative 

memory to execute basic logic operations. The next sections outline two extremes in the range of 

implementations of associative memories and discuss the implementation issues of associative 

memories and how well they answer to the basic requirements of: 

(1) Improving the performance of basic functions for processing speech, text, graphs, images and 

other non-numerical data, artificial intelligence type processing such as inference, association 

and learning. 
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(2) Simpler programming. 

(3) Matching the implementation to current and future technologies. 

Associative Memory Emulation Using Random Access Memories 

Unlike RAM that stores data by address, associative memories store data based on the data con­

tents and on associations to other data stored in memory. Associative memories implemented with 

RAM have to emulate associations using addresses. This requires an overhead of memory usage and 

processing and further stresses the constraint imposed by the path between memory and processor, the 

von Neumann bottleneck. Furthermore, the desired characteristics of associative memories are imple­

mented through software, through schemes such as hash coding and indirect association with the infer­

ence process and artificial intelligence programs. Although RAM can emulate associative memories 

with the use of more storage and the participation of the processing device, associative memory emula­

tion is one application where RAMs are inefficient. 

RAM store data in a single physical location. The data stored in RAM is completely lost in case 

of malfunction or damage to the location that stores the data unless error correction, fault tolerance 

and graceful degradation are explicitly provided through proper storage with redundancy and error 

correcting codes. Error detecting codes require the addition of at least n bits to the data word to detect 

any error of length n-1 bits or less [HAMMOND86]. Error correcting codes require that an even 

larger portion of the memory be reserved for redundancy. Storage of information with fault tolerance 

in RAM demands more memory and processing than only storing data. 

There is an additional cost in processing and memory associated to the implementation of each 

of the features of associative memories analyred. Although the equivalent of the von Neumann pro­

cessing device could emulate these features in software, this implementation most likely would not 

enhance the performance of the computer system. 

Associative Memory Implemented with Artificial Neural Networks (ANN) 

The artificial neural network (ANN), is a massively parallel array of highly interconnected sim­

ple computational units, called the artificial neurons. The interconnections between neurons are called 
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synapses. Synapses are the way neurons communicate and in this manner cooperate to perform collec-

tive computations [MURRA Y89]. 

The behavior of an ANN is determined by its synapses. A neural network has to be trained to 

perform a desired behavior like direct association (pattern recognition). The training of a neural net­

work consists of adjusting the interconnection weights until the neural network produces the desired 

outputs. ANN "programming" is conceptually simple and uniform. 

Associative memories implemented with artificial neural networks are the ones that best cap­

tures the features of human memory. Associative memories implemented with ANN have natural 

fault tolerance because the information is stored in a distributed manner in the neural network. The 

contribution of any single element is small and therefore the failure of one element has a small impact 

on the storage of any individual datum. 

Memories implemented with ANNs have a very small ratio of storage capacity to hardware used 

to implement it. An ANN associative memory interconnected as the well known Hoppfield net, has a 

storage capacity of patterns proportional to N/logN where N is the number of neurons. Error correct­

ing capabilities are added with even larger use of neurons. For the ANN to be able to correct up to n 

bits, that is to say that each stable state of the ANN has a radius of attraction 'n' [NIJHUIS89], the 

storage capacity has to be corrected by the factor 0.5(1 - 2n IN). If the patterns to be stored are not 

favorable for error correction, that is the differences in the patterns are small, the storage capacity of 

the ANN is even smaller [NUHUIS89]. 

ANNs are robust, degrade gracefully and can be trained to associate. But, to achieve these 

remarkable characteristics, ANNs depend on massive use of hardware. Large numbers of neurons and 

synapses are necessary to execute relevant work. The major problem of ANN computer memories is 

its implementation. A neuron is an element more complex to implement than a simple storage cell and 

the increase in storage capacity is less than linear with the increase in the number of neurons. So, 

ANN computer memory implementations would consume significantly more silicon real estate than 

traditional implementations. Current integrated ANN ICs have on the order of hundreds of neurons. 

For more information on ANN implementations please refer to [HOILIS90, HOW ARD87, SAGE86, 

BORGSTROM90, RUECKERT87, VITIOZ89, WEGMANN90, HAMMERSTROM90, GRAF87, 



10 

MURRAY89, BRUCE88] 

Summary 

A limit to the performance of present computer architectures is the communication between the 

processing device and the memory device. Also, the performance of present computers in non­

numeric applications is unsatisfactory. Computation with associative memories is one alternative to 

improving the performance of computers and. specifically, to improve the performance on non­

numeric applications. 

The RAM and the ANN are two extremes of memory device implementation. RAM is capable 

of storing large amounts of information in relatively small area. But, data manipulation is inefficient 

because it can only associate information to the location where it is stored. ANN, on the other hand. is 

extremely powerful. But the hardware cost is prohibitive. Furthermore, the computational model of 

ANNs is radically different from the present one and is incompatible with current algorithms and pro­

grams. 

Aristotle had already observed that the people who are slow are better at remembering, while 

those who are quick and learn well are better at recollecting [SORABil72]. The same occurs with 

artificial memory. The comparison between RAM and ANN shows that for the same amount of 

hardware, it is necessary to sacrifice storage capacity for convenience of handling. 

In the next chapter the content-addressable memory (CAM) is presented. The content­

addressable memory balances high level functions and storage densities to achieve high performance 

by distributing logic circuits within the storage devices to incorporate features of associative 

memories at the circuit level. 



CHAP'IERII 

CONTENT-ADDRESSABLE MEMORY (CAM) 

The content-addressable memory is the proposed device to implement associative memory and 

to improve the performance in non-numeric applications. This chapter _describes the basic features of 

the CAM at the behavioral and functional level and the expected characteristics of an integrated 

content-addressable memory circuit 

There are many memory devices with very different characteristics in the literature under the 

name content-addressable memory. For the purp0se of this discussion a CAM is a memory device that 

uses a technology similar to the one used in RAMs to store information but, contrary to RAM, the 

CAM selects the physical location based on the data contents. While the RAM requires the address of 

the location in which the information is stored, the processor has only to describe the data it wants to 

access and the CAM selects stored data matching the description. Valid descriptions of memory 

words usually include combinations of the following properties: matching a binary pattern, being 

smaller or larger than a value, being in a range of values, being the largest value stored, and being the 

smallest value stored within a CAM. These comparisons are performed in parallel with the time 

required to execute the operation essentially independent from the number of words stored in memory. 

After the set of matching words is determined, another important function of the CAM takes place. 

Generally, each word, or element, of this set has to be accessed sequentially. The CAM sub-divides 

the set of matching words into many single element sets that can be sequentially accessed. 

Some CAMs are also capable of limited data manipulation on the set of matching words such as 

bitwise inversion, logic operations such as OR and AND, and arithmetic operations such as the addi­

tion or subtraction of constants. The following section presents how each of these characteristics are 

translated into building blocks of a CAM architecture. The architecture will be described in a bottom­

up approach. 
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The CAM architectures discussed in this work implement equality comparisons at hardware 

level and implement more complex comparisons as a sequence of equality comparisons, usually con-

trolled internally by the CAM. CAM designs such as [RAMAMOORTHY78] and [LEE85] which 

implement more complex comparisons in hardware by implementing other types of logic, such as 

magnitude comparators and arithmetic functions, will not be discussed. The major building blocks of 

a CAM architecture are the data, search key and mask registers, array of CAM cells (CAM storage), 

registers for the search responses (HREGs), processors to operate on the search responses (HPE), and 

an arbiter to decide which matching word gains access to the data bus (MRR). They are shown 

without their control in Figure 2. 

HOST CPU 

t r-----------------------------------------------------, 
data register 

CAM 
search key reg. 

mask register 

I I 

I I 
I I 

CAM storage HPE HREG 
MRR 

I I 
I I 

I I . 
I I 

L-----------------------------------------------------J 
Figure 2. Block diagram of a CAM. 
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CAM BUILDING BLOCKS 

CAM Storage 

The distinguishing feature of a CAM is its ability to compare search data and stored data. The 

equality comparison is the product of the bit by bit logical equivalence between key bits (keyi) and 

bits of the stored data (memory ft) for each of the b bits of the word. The result of the comparison of 

word j with search word. key, is given by the logical function HITj shown in equation (1). 

'> 

HITi = 0 vnemoryfi @keyi) (1) 

CAMs that only perform an exact or perfect match have limited application because only a test 

of the presence of a copy of the search key stored in memory is possible. For example, the unmasked 

search for the relation (John, father, Mary) in a database that stores family relations can only answ~r 

whether the relation is true or false. To increase their functionality, CAMs will generally include an 

additional control for each bit of the word to select the bit columns that participate in the search 

(maski ). The control signal mask; prevents the bit stored in column i from affecting the result of the 

search. Equation (1) is modified to reflect this feature in equation (2). 

"=b 
HITi = ll ((memory ft (!) keyi) + maski) (2) 

Many terms are used in the literature to refer to this kind of comparison. Among them are: 

masked exact match, masked perfect match, exact match with mask, perfect match with mask, masked 

search, etc. In this work I will use the term masked search. Wherever a search is mentioned without 

specifying if it is a masked or unmasked search it can be assumed that it is to a masked search. The 

operation of selecting bits will be called masking and the circuitry to implement masking, masking cir-

cuitry. Masked search is the basic operation of CAMs. By selecting the bits which will participate in 

the comparison, the CAM is capable of selecting words by partial information, in effect, direct associa-

tion. The masked search for relations matching (*, father, Mary) returns the identity of the father of 

Mary. The asterisk (*) is used in this thesis as a "wild card" that will make a search match to a 
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sequence of symbols. And the question mark (J) is used as a wild card that matches to any single sym-

bol. 

The circuit in Figure 3 implements equation (2) for one bit. The bit is stored in a static memory 

cell that is selected by the signal word select (WS;) high, the comparison is implemented with a pass­

transistor XNOR gate, and the results of the comparisons are accumulated in a wired-NOR gate. HIT; 

is evaluated by wire-anding the HIT;; of each of the CAM cells of word j. External masking is 

achieved by driving both key; and key; to low at the same time. 

key; key; 

memory;; memory;; 

WS; 

1--- <J-----1 
i~~-______y-[___·~~ma-,-~_hP_··~~~~ 

HIT ft 

--l 

Figure 3. Static CAM cell. 

In external masking, external information is used to generalize the search. By selecting which 

bits of the memory word will participate in the comparison, the CAM with external masking is capable 

of selecting words by partial memory information. For applications that require that each word masks 

different bits, another model of CAM stores an individual mask for each word This kind of bit mask-

ing for individual words is called internal masking. CAMs that have internal masking are sometimes 
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called functional memories. Functional memories can select words by partial search key information. 

Memory words with internal masks use local information to generalize the search and match a larger 

number of binary patterns of search keys. For example, a database that stores qualities of John and 

Mary might store: 

individual quality 
John handsome 
Mary pretty 
* sophisticated 

The quality sophisticated is shared by John and Mary and is internally masked to match searches on 

either (John,*) or (Mary,*). The seach with external mask (John,*) matches the qualities, or words, 

handsome and sophisticated. 

Equation (3) gives the functional description of the match on CAMs with internal and external 

masking, where /mask/ is the internal mask of bit i of word j. 

HITi = tJ ((memory ft @ key;) + mask; +I mask/) (3) 

CAMs implement internal masking either through functional memories or by using more CAM 

cells with external masking. Functional memories cells have an extra storage cell to store the internal 

mask for each word in memory. Figure 4 shows the schematic of a functional memory cell. The 

storage cell in the lower portion of the figure stores the internal mask. Internal masking can be emu-

lated in CAM that have external masking by reserving two memory bits to store each bit of data. For 

example, the logical I can be stored as the pattern 01, logical 0 as 10, don't care as 00 and contradic-

tion as 11. A search for a 1 is converted to the masked search for the pattern O? and the search for log-

ical 0 into the masked search for the pattern ?O. Chapter IV will show one application of CAM for 

logic minimization where unmasked data is used to represent a minterm and masked data is used to 

represent a cube. 
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bit bit 

ws 
----- I memory .... memory I 1 

HIT ---·-- --·---

/mask /mask 

I ImaskWS I 

Figure 4. Functional memory cell. 

Multiple and Partial Access 

This section discusses two important features of CAMs. The first one is partial access, which is 

used for bit manipulation of memory words. It will be shown that bit manipulation adds processing to 

the CAM. The second feature is multiple access which adds a fine-grained parallelism to the bit mani­

pulations. 

The partial read uses the concept of a "mask" for a read operation. Only selected or unmasked 

bits of a word are read, preserving the previous value of the masked bits in the data register. The par­

tial read operation combines bits from one word in memory with bits in the data register. The infor-
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mation in two or more memory words can be combined inside the CAM without transferring data to 

the host processor. Combining bits of two different words in a RAM-based computer system 

requires processing and two bus transactions between memory and processor. The same operation in a 

CAM with partial read capability with different masks reads bits of both words into the CAM data 

register, combining the bits of the two (or more) internal read operations into a single word. The pro­

cessing is done in the memory reducing the processor workload and the data traffic between the 

memory and the processor. 

The partial write feature of CAMs executes the dual operation of a masked read storing the final 

result in the memory cells instead of in the data register. The masked bits of the matching word are 

not written, or modified, preserving their previous values. At the end of the partial write operation, the 

word in memory is altered. 

The importance of multiple and partial access is illustrated with the very common situation 

where data words are divided into fields, artificially delimited in the examples by commas (,), and the 

memory and the processor have to combine one field of word A with another field of word B. 

(apple.red); (red.sweet) => (apple.sweet) 

(1010,1010); (1100,1100) => (1010,1100) 

In the above example, apple, red, and sweet are binary fields much like the binary patterns of the 

second example. The joining of two fields is achieved with two partial access operations with the 

appropriate masks. To achieve the same results with RAMs and a processor, both words A and Bare 

transferred to the processor that combines them with logical operations. 

((apple.red) AND (1 ... 1,0 ... 0)) OR ((red,sweet)) AND (0 ... 0,1...1)) = (apple,sweet). 

((1010,1010) AND (1111,0000)) OR ((1100,1100)) AND (0000,1111)) = (1010,1100). 

Multiple write stores in parallel, the information in the input data register into more than one 

word in parallel, creating multiple copies of the data. Multiple identical copies in the CAM are many 

times useless because they all match the same keys and one copy of the data suffices. There are situa­

tions, however, when it is desirable to store identical memory words. Among them are the cases 

where the requested information is only the number or pattern of matching words (HIT) [HIRATA88, 
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TA V ANGARIAN89]. 

The multiple read operation permits access to the data bus by more than one wor-d at the same 

time. During the multiple read, the data bus executes an analog sum of the contents in the accessed 

memory words which, then, is sampled by the data register. 

The multiple read and multiple write features have limited applications but, the multiple write 

combined with partial access will be shown to be a powerful feature. While the partial access opera-

tions enable bit manipulation, they have to do so sequentially for each matching word. Multiple access 

increases the parallelism of the CAM architecture for data manipulation. Multiple partial writing can 

execute in parallel the modifications in the same field of all matching words instead of having to 

modify each word sequentially in multiple read-modify-write cycles or in many partial write cycles. 

The partial read is easy to implement The read cycle is performed normally for all columns but 

only data registers of unmasked bits will sample the data bus. The multiple write feature is harder .to 

implement because it requires strong data drivers. The capacitive and resistive load of the memory 

cells selected for the multiple write are added, limiting the speed and the practical maximum number 

of words that can be written at the same time. 

Search Output 

The results of a search must be available outside the CAM IC. One important feature present in 

most CAM architectures is a signal to flag matching words after a search. SOME/NONE is the binary 

function that collects the responses of each of the w words in the memory to determine the existence 

of matching words. Equation (4) describes SOME/NONE as a logical OR of the HITs of each one of 

the words in memory. 

w 
SOME /NONE=1~H/Ti (4) 

Similar output signals from a search are the number of matching words, mismatching words, 

unused and used words. Many applications require the calculation of SOME/NONE or an equivalent 

function. This value is provided in a CAM through hardware. The function SOME/NONE is usually 

implemented by a wired-NOR of the H!Tj of each word In associative memories implemented with 
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RAM and search algorithms, SOME/NONE is calculated during the sequential search. 

Multiple Response Resolution (MRR) 

The comparison logic circuits in each of the words work in parallel and independently. There­

fore, more than one word may match the same search key. If the result of the search is directly used to 

read the matching words, the voltage in the data lines during the read operation will be the analog sum 

of the contents of all matching words (see multiple read above). A means to select one word at a time 

has to be provided to successfully read each value individually. The circuit that performs this task is 

often called multiple response resolver (MRR) because it solves the conflict between the multiple 

matching words that want to access the data bus, or priority resolver because it prioritizes the match­

ing words to determine which one will have access to the data bus first. 

The MRR is needed because there is only one data bus shared by all words. For example, if we 

have stored (John, father, Mary) and (John, father, JohnJr) and we search with the key (John, father, *) 

both relations are found. The MRR is used to select which one will be accessed first Multiple 

response resolution is unnecessary with search algorithms because of the sequential nature of the von 

Neumann architecture. Likewise, the MRR can be left out of CAM architectures dedicated to applica­

tions for which it can be guaranteed that multiple matches will not happen. 

The performance of the MRR directly affects the performance of the CAM memory because it 

has a key role in determining the maximum rate of access to data. The access to the bus between 

memory (CAM) and processor is again the limiting factor for performance. But this time the require­

ments on the bus bandwidth are smaller because only qualified data (matching words) are competing 

for the resource. 

The implementation of MRRs, or the problem of converting a pattern with many scattered ones 

such as the result of a search into a selection pattern with a single logic one is well known. Lee 

[LEE85] divided the MRR circuits used in CAMs into two classes. One class of MRR prioritizes the 

responding words based on the data contents of the word. This scheme is consistent with the address­

less model of CAMs. He called this scheme of MRR value-ordered retrieval. The value-ordered 

"MRR resembles a machine that starts with the set of words matching the specifications given by the 
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user and continues to "trim" the set of matching words using a sequence of searches determined by the 

MRR until it reduces the initial set to a set simple enough that it can access the data bus without 

conflicts. The other class of MRR prioritizes the responding words according to their physical loca­

tion. It was called address-ordered retrieval. The address-ordered MRR resembles the combinatorial 

logic found in a daisy chain. The priority of a word is defined by its position in the daisy chain. 

Address-ordered retrieval introduces the association of a physical location to a memory word from the 

RAM architecture to the CAM architecture. 

The simplest approach to implement the priority logic for an address-ordered scheme is to build 

a chain of simple iterative circuits that can inhibit the output of cells that are lower in the chain. The 

delay and the circuitry of the MRR grow linearly with the number of words. Since response resolution 

is essential to determine the memory access time, a slow MRR circuit will negatively affect the perfor­

mance of the CAM. Foster [FOSTER76] and Anderson [ANDERSON74] proposed to generate the 

inhibit signal combinatorially to speed up the MRR process similar to a carry look-ahead of an adder. 

These proposed schemes use a tree-like structure to generate the inhibit signals to the words with 

lower priority. The tree structure provides logarithmic settling time in exchange for the exponential 

growth in the number of gates. 

Ogura [OGURA85] also proposed an area/speed compromise with a more "flattened" tree struc­

ture. The number of levels and words grouped in each look-ahead block is defined by the optimization 

of delay and the amount of hardware used. The calculation of the critical path delay is similar to the 

calculation of the critical path delay of the Manchester carry look-ahead in adders. Because of layout 

and speed considerations it is probable that the capacitance of the wired-NOR SOME/NONE will be 

broken into many partial SOME/NONEs and more levels of wired-NOR will be added to generate the 

global SOME/NONE signal. Notice that the split SOME/NONE is functionally equivalent to the carry 

look-ahead used in the priority resolver. The hardware of the SOME/NONE can be shared with the 

address-ordered MRR. 

The delay and circuitry of address-ordered schemes are strongly correlated to the number of 

words in the CAM memory. The alternative scheme of value-ordered prioritizes responders according 

to their contents [RAMAMOORTHY78, LEE85]. All responding words must have different values in 
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order to have unique responses resulting from ordered retrieval. To guarantee this, Ramamoorthy 

[RAMAMOORTHY78] proposed that each word should have a tag with a distinguishable value. That 

tag has to be at least logz(w) long for a memory with w words. One disadvantage of using tags, espe­

cially if they are hardwired in the design, is that the regularity of design would be smaller because 

each word is designed with a different tag. Without the individual tags, memory words that store 

identical data will access the ·bus together, but without contention. It is impossible to identify the 

location or the number of words that store the same data accessing the bus at one time. This precludes 

the application of this kind of addressless CAM for applications based on the pattern of matching 

words. 

The time needed to select a responding word in the ordered retrieval scheme of MRR is the time 

used to sort the matching words. In CAMs, this time is proportional to log(b ), when the word itself is 

used for sorting, where b is the number of bits of the memory word, or proportional to log( log(w)) 

when a tag is appended to each word. In either case, the response resolution is much faster than the 

address-ordered MRR schemes. Also, it will be seen later that the tag used for priority resolution will 

find applications in testing and address encoding and address decoding. 

Address-ordered MRR that achieve a logarithmic memory size dependence of the speed of 

response resolution use priority trees with extensive use of hardware [FOS1ER76, ANDERSON74]. 

Value-ordered retrieval achieves logarithmic dependence using the hardware that already exists in the 

CAM design. Additional hardware can be added to further improve the performance of value-ordered 

MRR [LEE85]. 

Address Encoder and Address Decoder 

The "addressing" for a content-addressable read and write access uses the accumulation of one 

or more consecutive searches in the HREG (see the description of the HREG ahead) to access all 

matching words in parallel or select them sequentially with the MRR through a feed-back circuit that 

drives the word select lines (WS) with the output of the HREGs or with the output of the MRR. In the 

sequential access, the MRR selects the matching word with the highest priority. Words with lower 

priority are accessed without having to repeat the searches by using another feed-back circuit to reset 
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the HIT register bit of the word selected by the very output of the MRR. With the highest priority 

word reset, the priority resolver selects the word of next highest priority. This process_ can continue 

until all words have been accessed. 

This model of memory access is as powerful and complete as the RAM memory model. But, 

until microprocessors and application programs under this model are developed, the CAM should also 

provide access by address to emulate RAMs. RAM emulation utilizing the procedure used for CAM 

addressing is slow. The conventional solution to this problem is to include an address decoder and an 

address encoder in the CAM architecture. The address decoder provides the compatibility with 

RAM-based computers and the association of the memory words to a physical location provides an 

alternate output form to the result of the searches. Then, the compatibility with RAMs can be achieved 

by including the RAM circuitry with the same mechanics of the RAM model. CAM architectures that 

use this alternative pay a high price for compatibility because they must implement the hardware of 

both models. The commercial CAM IC Am99Cl0 [AMD88] and the DBA [W ADE89] follow this 

approach. The scheme found in [Y ASUURA88] optimizes the emulation of RAMs while trying to 

minimize the departure from the CAM model. In this alternative, a content addressable read-only 

memory (CAROM) field with a different binary pattern is tagged to each word. Figure 5 shows the 

schematic of a CAROM cell. When emulating a RAM, the addressing of a word is converted to a 

search on the CAROM field and the MRR is by-passed. The uniqueness of the address searched in 

the RAM model guarantees that the MRR can be eliminated from the critical path to memory access. 

Independent control for the CAROM and CAM cell drivers enable the CAROM to be read dur­

ing any content-addressed read and write cycle since the CAROM field stores the address of the word 

during reads and writes. With the bits of the CAM cells masked, the CAROM acts as a substitute for 

the address decoder in read and write operations. During search operations, the CAROM field acts as 

an address encoder. The CAROM field can also be used in the implementation of a value-ordered 

MRR. 
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Figure 5. Content addressable ROM (CAROM). 

HIT Processing Element (HPE) and HIT Registers (HREG) 

Many CAM architectures include registers and arithmetic and logic units between the HIT lines 

and the MRR to enhance the CAM processing power [WADE89, LEA86b, DULLER89, 

YASUURA88]. In general, each HPE is a bit-slice processor that has a registers set, the HIT registers 

(HREG ), and the memory bits of the CAM word to work on. The size and complexity of the HIT pro-

cessor element varies depending on the intended application of the CAM design. 

A CAM with HPE is a parallel computer with w bit-slice processors, one for each word. The 

processors work on their own set of registers and memory. Because of pin limitations, generally, all 

the HPEs share the same instruction bus, and execute the same instruction synchronously as in a Single 

Instruction stream Multiple Data stream (SIMD) computer. Additionally, the execution or the decod-

ing of the instruction in each HPE can be conditioned by values stored in the local HIT registers [FIN-

NILA??]. 

With the addition of the HIT processing elements and the HIT registers, the CAM can execute 

more complex searches. The result of individual searches are stored in the HIT registers and are used 

by the HPE to compose the result of many searches into a complex selection. 
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Communication Between Words 

The class of problems that the processing elements in the CAM HPE can solve is still limited 

because the HIT register composes the results of different masks and search keys within the same 

word. In order to use different stored data (memory;), there must be a write operation between the 

searches. To increase the class of problems that the CAM can solve, the HPEs have to be able to 

cooperate and share the data stored in different CAM words. An interword communication network 

(WNET) for the HPEs is added in some CAM architectures for this purpose [JONES88a, FINNILA77, 
' 

W ADE89]. With the interword communication, the HPEs can solve problems that require infonnation 

stored in many words. By adding communication, data structures larger than the CAM word can be 

stored and searched [ADAMS86, ASP88]. 

GENERAL ISSUES IN THE IN1EGRATION OF CAMS 

The many general issues of integrating the many building blocks discussed and the use of the 

CAM integrated circuit as a building block of higher level systems are presented. A comparative 

analysis of the integration of CAMs and RAMs is provided. 

Selection of the Architecture and Features 

There must be a coherence between the intended use of the CAM IC and its architecture. Basi-

cally, there are two major roles for CAM ICs in computer systems. The first type of computer system 

uses the CAM as an "intelligent memory". The function of the CAM in the computer system is to 

store information and retrieve it organized by associations. The CAM used for this purpose is strong 

in comparison logic and in structured data support. The CAM IC in the second type of computer sys-

tern modifies the data stored in it in addition to re-organizing the data. These CAMs are virtually 

indistinguishable from processing devices. There is a thin line, if any, dividing CAMs with high sup-

port for data manipulation and content-addressable or associative processors. A characteristic of these 

CAM architectures is the enhanced capability to access and modify data stored in them. 

An important architectural decision is the number of HIT lines per word. Looking to the CAM 

as a processor, the HIT line is the von Neumann bottleneck between the memory word (memory 



25 

device) and the HPE (processing device). CAM architectures designed for data manipulation like 

GLiTCH [DULLER89] and SCAPE [LEA86b] use two HIT lines to increase the access of the HPE to 

data. The architectures in [DULLER89] and [AMD88] have one extra HIT line exclusively for the 

almost unavoidable "tag bits" to support memory management 

Multiple and partial word accesses are important for CAM architectures in which data process­

ing plays an important role. Internal masking, on the other hand, is most often found in architectures 

dedicated for searching. Mundy [MUNDY72] noticed that both features are rarely needed in the same 

application. 

Other architectural decisions include the degree of complexity of the HPE, WNET and the 

number of HREG. All of these decisions depend on the role intended for the CAM in the computer 

system. 

Fabrication Technology and Lay-out Scalability 

CMOS is the fabrication technology used for most logic circuits. However, memories are usu­

ally designed in NMOS. The CAM ICs described in [JONES88a] and in [W ADE89] were fabricated 

in CMOS but the memory cells used n-type transistors only because the well distance necessary for the 

CMOS design would make the memory cells excessively large. One disadvantage of using only n­

transistors for the memory cell is that the HIT evaluation is slow. Sensing devices, like the ones used 

to read the bit lines, have to be added to speed-up the HIT evaluation. 

The fact that CAM has both logic circuits and memory in the same design adds complexity to 

the fabrication process and to the incorporation of the latest DRAM fabrication technological 

advances. The technology used for CAM fabrication has to provide a reasonable yield for both 

memory and logic and the scaling of the CAM integrated circuit will be paced by the slowest scaling 

rate of logic and memory. This technology constraint is not unique to CAMs. Microprocessors that 

integrate cache memory also require a technology optimal for memory and logic. While the cache 

memory cells and logic cells in the microprocessors share the same technology, the design of the 

memory cells and logic cells are developed independently. However, in the CAM, memory and logic 

cells are closely knit together. The horizontal and vertical dimensions of the content-addressable 
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memory cell design are constrained by the size of the logic cells. Scaling down of any dimension of 

the memory cell is constrained by scaling down the corresponding logic circuitry by the same factor 

and vice-versa. This consideration is found in [HIRATA88] and in [JONES88a] where memory cells 

match the pitch of logic cells to prevent the waste of area in connections and to minimize the capaci­

tance of the HIT lines. 

Another difference between RAM and CAM requirements for process fabrication is that CAMs 

have the HIT lines running orthogonal to the data lines. The HIT lines also have to have low resis­

tance and capacitance (RC) to keep delays acceptable. Therefore, the CAM fabrication process must 

have, at least, two high quality interconnects [KADOT A85, W ADE87]. 

Due to these characteristics, the integration density of static CAMs is half of those of SRAMs 

[ADAMS86], and the density of dynamic CAMs is comparable to the density of SRAMs [W ADE88, 

HERRMANN91] 

CAM ICs also require more expensive packaging because, for the present word size and integra­

tion, a CAM requires more pins per package than the RAM with the same storage capacity. For exam­

ple, a 32 Kword x 32 bit, or 1 Mbit CAM IC would have 32 data bits plus the instruction bits for the 

additional features of CAMs. A 1 Mword x 1 bit RAM IC has a single data pin and 20 address pins. 

This difference comes mainly because the logic of the CAM requires the memory cells to be organized 

in longer words which may require more data pins. 

Modularity of the CAM IC 

Modularity in CAM designs is that property of design that enables the assembly of larger 

memory systems with minimum design effort. Modularity is important in two levels of the system. In 

the IC design level, a modular design is important so that larger CAM chips can be developed with 

minimal additional design cost, at the board level, the goal is to minimize external "glue circuitry" and 

therefore design effort, to build larger CAM memory banks. 

At chip level, the CAM design is very modular. It can be extended by increasing the number of 

bits in a word or by increasing the number of words in an IC. Analyzed as processing devices, the 

CAM ICs have a high degree of modularity. Wafer scale parallel processors were proposed using the 
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CAM architecture in part because of that modularity [ASP88, FINNILA77]. But as memory devices, 

providing modularity to CAM ICs is more complex due to the larger functionality of CAMs. 

The provisions necessary to build longer RAM memory banks is minimal because the only func­

tionality that has to be preserved is addressing. Integrated "chip select" logic is enough to provide 

modularity at the board level. CAMs have much more functionality that must be preserved from the 

IC level to the board level. RAM ICs do not require extra circuitry nor "glue logic" to integrate thirty­

two 1 M x 1 bit RAM ICs to build 1 Mword of 32 bits memory. For the same amount of memory (IM 

32-bit words), patching together thirty-two 32 Kwords x 32 bit CAM !Cs requires much more effort 

than patching together thirty-two 1 M x 1 bit RAM ICs. The CAM IC must integrate support circuit or 

there must be "glue logic" on the board to implement all the features at the CAM IC level to the CAM 

memory bank. Among the common features to CAM !Cs that should be supported at board level are 

signals of the class of SOME/NONE and the number of used or unused words, MRR, and a interword 

communication network. 

The structures of the circuits to implement features at the board level have the tendency to repli­

cate the structure of the circuits used to implement the same features at the IC level. For example, 

address-ordered MRR that use a linear chain will have the CAM !Cs connected in a linear chain to 

implement the MRR at board level (see Figure 6). 

The discontinuity between chip and board level lends itself to the creation of hierarchical 

schemes to manage the global outputs of the CAM ICs [0GURA85, RAMAMOORTHY78]. In the 

hierarchical scheme, the outputs of the CAM IC such as SOME/NONE and the matching word of 

commands 

data 

CAM CAM CAM 
global signals I =:>I global signals I =:::::... global signals I ...._,. 

Figure 6. CAM bank built with minimum additional logic. 
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highest priority are collected by external circuitry and treated as responses of individual words to gen-

erate a SOME/NONE output for the data bank and to perform the MRR between the matching words 

of all the CAM ICs at the board level (see Figure 7). 
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Figure 7. CAM bank with hierarchy. 

Reliability, Testability and Fault-Tolerance 

This section analyzes three inter-related issues, reliability, testability and fault-tolerance. The 

link between these issues are the circuit failures. Circuit failures reduce the confidence in the informa-

tion provided by any circuit As a consequence, the results of the computations of the overall system 

are less reliable. This section discusses the design techniques to increase the confidence in the output 

of the CAM. Using only circuits that are not faulty is one way to increase the reliability of the system. 

Testing finds whether a circuit is faulty and, if possible, diagnoses the fault The importance of testing 

in the overall cost of ICs and the importance of design for testability have been continuously increas-

ing. CAM ICs are no exception to this trend. With the faults identified, special circuitry tries to 

increase the yield of CAM ICs by "salvaging" CAM ICs with a small number of faults. Fault-

tolerance increases the yield and enables the design of larger CAM ICs. 

CAM ICs have two distinct sections to test, the memory and the logic circuits. Grosspietsch 

[GROSSPIETSCH89, GROSSPIETSCH87, GROSSPIETSCH86] proposed a CAM architecture that 

divides the CAM architecture into subcircuits for testability purposes. The major building blocks of 

the CAM ICs (see Figure 2) are divided into three groups for testing. The first group consists of the 

data, key, and mask registers. The second group consists of the circuitry used to process the HITs, the 

HPE logic, HREG, MRR, WNET, etc. The CAM cell fabric is the third group. Observation and 
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control points are placed on the interface of the subcircuits to facilitate testing. 

The first two groups have only logic circuits and can be tested with conventional techniques. 

Grosspietsch [GROSSPIETSCH89] proposed that the key and mask registers be also readable to 

enhance the observability of the first subcircuit Access to the IDT register and to the priority resolver 

is proposed to solve both lack of observability and controllability of the HPE logic and CAM cells. 

The scan path testing scheme is very popular in CAM ICs designed for testability because CAM 

architectures that have the HIT registers configured as shift registers to allow storage of longer data 

words can be converted to Built-In Logic Block Observation elements (BILBO) with minimal 

modifications. BILBOs are elements used in scan-path and signature analysis styles of design for test. 

[BENNETTS84]. 

The testing of the CAM cell array is also simpler than it may appear initially. Even with more 

functionality and circuitry to be tested than a RAM cell array, the testing of CAMs can be significantly 

shorter [MAZUMDER88]. The testing is aided by the fact that the subcircuits can be used to help test 

each other. For example, the HPE logic can be used to help test the CAM cells by analyzing the pat­

terns of HITs as a signature analyzer and the HITs of the CAM cell array provides a binary pattern to 

test the HPEs. The signal SOME/NONE also contn1mtes to the testing of the CAM IC. 

Content-addressable memory cells have both storage and logic to be tested. The testing of the 

storage part is similar to the testing of RAM cells. The types of faults that affect RAMs are basically 

of two types: 

(1) hard-errors: stuck-at and bridge types of faults and 

(2) soft-errors: pattern sensitive, coupling faults, and radiation. 

The logic circuit in the CAM cell that has to be tested is a XNOR that compares the data in the 

storage part and the binary pattern in the bit lines. That is exactly the kind of circuit that is used to test 

the storage part The conventional test of storage cells is to write a pattern and read the pattern back to 

determine if the patterns mat.ch. Rather than testing the logic and the storage individually, both parts 

of the CAM cell can be tested together. The CAM cell integrates the comparator with the storage cell 

as if the CAM cell were a RAM with built-in testing circuits. 
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As a final remark on testing of the CAM cell, pattern-sensitive and coupling faults are tested 

with patterns based on the physical location of the stored data. Therefore, for testing, we need to 

access the CAM by physical location instead of by contents. 

With the faults detected, the next step is to improve the yield with special circuits that enable the 

use of ICs that have a limited number of faults. The tests for fault repair have to be more complex 

than the tests for fault detection to diagnose and locate the defects to enable the reconfiguration and 

repair. 

The options proposed for repairability are redundancy and graceful degradation. Redundant 

schemes have spare words or spare bit columns to substitute faulty words or bits, respectively. Grace­

ful degradation allows the deactivation of faulty words so that the IC is still functional, although with a 

smaller number of words. For large CAM ICs the strategy of graceful degradation appears to be supe­

rior than redundancy [GROSSPIETSH89]. CAMs designed for graceful degradation are naturally 

fault tolerant because there is no minimal memory size to have a working component. As long as 

defective circuits can be rendered harmless, the CAM IC will remain functional with the remaining 

logic [BLAIR87]. 

Also, because of the characteristics of the "built-in" CAM testing, the graceful degradation of 

CAM ICs can be managed with a minimum of test equipment and in a uniform way. Blair [BLAIR87] 

presented a CAM design with graceful degradation in which the CAM IC disables faulty circuitry by 

itself. Each word in this CAM has a latch that can be accessed only in testing mode that disables the 

match of its word. Testing is performed with the help of the comparison logic using the following 

test-and-repair sequence: 

(1) write the test pattern to all memory words; 

(2) perform a comparison with respect to the test pattern; 

(3) latch the result of the comparison. 

Defective words will mismatch the test pattern and be disabled in future searches. For more complex 

architectures, the value stored in the repair latch is also used to direct internal signals past the faulty 

word, like the signals of the address-ordered MRR and the WNET, rendering the word completely 
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harmless. 

In conclusion, the ideal CAM IC must support enough processing to solve non-numerical and 

logic processing problems because these are the applications for which the current RAM-based sys­

tems are deficient. A balance between processing power and storage capacity is obtained with the fol­

lowing characteristics: 

(1) provide multiple partial access; 

(2) support data types longer than the word length; 

(3) have linear communication between words; 

(4) . have a HREG register bank; and provide logical operations on the IilTs; 

(5) have on-chip circuits to allow expansion to larger memories. 

(6) have built-in testing schemes such as connecting the HREGs to form a scan-path; 

(7) have low-cost repair circuits with the scheme similar to the ones used in [BLAIR.87] and 

[MCAULEY90]; 

(8) have direct memory access based on data content. 

Based on this specifications an integrated circuit designer can select the circuits to implement the 

CAM IC. If resources are allocated to this end, the described CAM IC with high densities can be built 

in the near future. The question that arises is: Is it worth while to implement such a circuit? The next 

two chapters will analyze the implications of using CAMs to implement computer memories. It will 

be shown that the answer is yes. The content-addressable memory described fulfills the goals set out 

in Chapter I. 



CHAPTER III 

BASIC COMPUTATIONAL TASKS AND CAMS 

This chapter describes the computational environment that uses associative memories in the 

form of CAMs and the changes in the execution of common computational tasks which result from 

CAMs. It will be shown that computers that use CAMs could be a fundamental addition to computer 

design and to non-numeric data processing. Most of the chapter is devoted to the data structures 

.ideally supported by CAMs. 

DATA STORAGE 

Probably the most important function of the memory device is to store information. The struc­

ture of the memory device affects the efficiency of implementation of the data structures used in com­

putation and, consequently, the performance of programs. 

The structure of the memory words in RAM is the linear array with an implicit order given by 

the addresses. This structure maps well to linear and multi-dimensional arrays (matrices) that are used 

in most numeric computations, and to other data structures in which order plays an important role. 

The set is identified as the natural data structure for CAMs. The mapping of other data structures to 

CAMs are also analyzed. An illustrative example is analyzed at the end of the chapter to gauge the 

effect of storing data in a CAM on basic computational tasks. 

Sets 

Sets are the foundation on which virtually all of mathematics is constructed and many mathema­

ticians believe that it is possible to express all of mathematics in the language of set theory 

[STANAT77]. CAMs are the ideal medium to implement sets in the same way RAMs are ideal to 

implement arrays. Elements are naturally stored without order in CAMs. I present here one scheme to 
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store multiple sets in CAM fully supporting the basic operations and relations of sets. 

Sets are defined as collection of objects called elements or members without duplication nor 

order [AMSBURY85]. Some definitions of sets allow repeated elements in the set [STANA177, 

KOLMAN84]. A set is described by its elements. Therefore, a finite set can be described by listing its 

elements (e.g. set A= { 1, 2, 4, 5}; set B = {a, i, u, e, o }). Sometimes it is inconvenient or impossible 

to list all elements of a set Other useful ways to describe a set are through specifying properties that 

uniquely identify the elements of the set using mathematical or English statements, or by induction ( 

e.g. set C = { x I x is an even number and x is smaller than 12}; set D '= { 1, 2, 4, ... , 2; , ... }). It is 

assumed that there.is an universe of discourse or universal set (U) that is a set that contains allele­

ments for which the discussions and descriptions are meaningful [KOLMAN84] ( e.g. "all natural 

numbers"; "the letters of the English alphabet"). 

There are several operations that can be performed on sets. The most important ones are: union 

(u), intersection (n), relative complement(-) also known as sharp or difference, and symmetric differ­

ence($). 

The union of set A and B, denoted A u B is the set with all elements of the set A and all ele­

ments of set B: 

C=AuB= { xlxe Avxe B} 

The intersection of the set A and B, denoted An Bis the set with the elements that belong to 

both sets: 

C=AnB= { xf xe AAXE B} 

The difference of A and B, also denoted relative complement of B with respect to A, or A sharp 

B, is the set of all elements of A that do not belong to the set B. 

C=A-B= { XIXE AAXE B} 

The symmetric difference of sets A and B, denoted A $ B, is the set consisting of all elements 

that belong to either set A or to set B but not to both. It is easy to verify that A $ B = (A - B) u (B -

A). 

C =A $ B = { x I (x e A Ax E B) v (x e A" x e B)} 



34 

There are two fundamental relations between two sets, equality and containment [STANA177]. 

Two sets are equal if they have the same elements. Set A contains set B if all elements_ of B are also 

elements of A. The set B is then called a subset of A, and A is a superset of B. It is also said that B is 

contained in A, and we write: 

A;;;iBorB!;;A 

A very useful concept for sets is the characteristic function [KOLMAN84]. The characteristic 

function of a subset A of the universal set U,/ A is defined as follows: 

{
1 ifxeA 

f A (x) = 0 if x e A 

Since the characteristic functions are defined over numbers or logic values, logic or arithmetic 

operations can be performed with characteristic functions. As an illustration, some important proper-

ties, valid for characteristic functions defined as logic functions, are listed without proof: 

f1t.uB=f1t.VfB 

fA(')B=f1t.l\fB 

fA©B =f1t.©fB 

Similar properties can be derived to evaluate the basic relations of set theory. For example, if A 

= B, then/ A - fB is false (or zero) over the universe. 

One alternative is presented to represent sets in a CAM in a way that provides an efficient imple-

mentation of the fundamental operations and relations of sets. An extensive review of the CAM 

literature indicates that generalizing CAM functions usings sets has not been done. 

Implementation of the Set Data Structure with CAMs. In this proposed model, each word of the 

CAM stores one object of the universal set and a tag. The function of the tag will be explained later. 

We have seen that each set or subset can be described by the properties of its elements. Simple obser-

vation shows that the HITs are in fact the evaluation of the characteristic function for each element 

stored in the CAM. Therefore, the basic functions of the CAM support the relations and operations of 

set theory. The HIT output is the product of negated and non-negated sets represented as bits in the 

tag and is equivalent to logical ANDs and NANDs that are universal building blocks for more complex 
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operations. The HREGs and HPEs accumulate the intermediate results to build these complex opera-

tions. The function SOME/NONE is a building block to evaluate the basic relations 9f set theory. 

With RAMs, the set operations and rela:ions are evaluated sequentially and the time required to exe­

cute most operations is proportional to the size of the set(s) involved. In the CAM, the equivalent set 

operations and relations are executed in parallel over all elements of the set, possibly over many sets, 

because attached to each word of a CAM is hardware powerful enough to execute the key set opera­

tions and relations. 

The sets in a CAM are described by descriptions that can be bmlt with logic and arithmetic 

operations on the lllTs supported by the HPE such that after a sequence of searches describing a set, 

only the elements that are members of the set will still match the search. Sets that are hard to describe 

in terms of lllTs because they would require long and complex series of searches can have their 

descriptions simplified by appending to each element of the set an identifier in the "tag". In effect, this 

identifier in the tag creates a property that helps to describe the set in terms of lllTs. In addition to 

storing identifiers to support the selection of the members of a set, the tag is also used to delimit dif­

ferent universes of discourse, simplifying the memory management in a multi-task environment. 

An example of set storage in CAM is shown in Figure 8. Notice that the database in the exam­

ple stores two universes of discourses, fruits and colors. The color orange will not be affected by 

operations on sets of the universe fruits even though orange is also an element of the universe fruit. A 

search of the set 

A= { x I x is a color of the rainbow and x is warm}. 

can be calculated with the logical AND of the searchs on colors of the rainbow and warm colors. The 

search "color" AND "warm" AND "rainbow" correctly retrieves the elements red, orange and yellow 

of the set of colors without affecting the HREGs of the element orange of the set fruits during process­

ing. 

In the model presented, each object is stored with associations to all of its sets. This requirement 

enables the evaluation of operations among sets using the lllTs as characteristic functions without hav­

ing to use the communication between words and enhances the parallelism of the execution of the set 

operations. At the same time, it requires that the tag encodes the complete information regarding the 



element : tag 
red 
orange 
yellow 
green 
blue 
indigo 
violet 
white 
black 
apple 
pear 
orange 
banana 
grape 

: color; warm; rainbow 
: color; warm; rainbow 
: color; warm; rainbow 
: color; cold; rainbow 
: color; cold; rainbow 
: color; cold; rainbow 
: color; cold; rainbow 
: color 
: color 
: fruit 
: fruit 
: fruit 
: fruit 
: fruit 

Figure 8. Set data structure implemented with CAMs. 
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element stored in that word. Consequently, this model requires a longer tag than the one used with a 

model that allows the associations to be distributed among multiple copies of the same element. It also 

requires that before storing any new object in memory, the presence of the element in memory is 

checked for duplication to maintain the information in the tag about the element complete. The check 

for duplication is fully supported by the signal SOME/NONE. The signal SOME/NONE also supports 

the relation of "membership" between an object and a set. The query to check if an object belongs to a 

set using SOME/NONE is executed in parallel, using the comparison logic with response time 

independent from the size of the set. 

For sets, it is the RAM that has to emulate the set structure using structures more suited for 

RAM storage like trees and lists. Applications that use sets would benefit from the direct hardware 

support provided by the CAM. Analyzing the implementation of algorithms utilizing RAMs, it is easy 

to find examples where more complex structures like lists were used instead of the simpler set struc-

ture. Chapter IV presents in detail the applications of set theory and CAMs to logic minimization and 

other important applications. 

Other more complex data structures can be implemented with the simpler set structure. Records 

are collections, or sets of data, each element of a record is also a sub-set that has to be uniquely 

identifiable to be accessed. Lists are sets with their elements or sub-sets ordered. Arrays are sets, too. 

To implement these more complex data structures, the sets and sub-sets are managed and organized 
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through the "tag bits". The implementation of data structures with CAMs is more flexible because the 

tags are programmable as opposed to addresses that are hardwired. 

When compared to RAM, the degree of efficiency in which these other data structures can be 

implemented with sets varies. The applications that require more complex data structures have their 

performance conditioned by how well the other structures can be implemented with sets or how well 

the CAM architecture can implement those structures directly. The burning question is: Is the perfor­

mance of computer systems that use CAMs satisfactory for all kinds of applications? Or, at least, do 

they have a satisfactory performance over a wider range of applications than RAM-based computer 

systems? This is one of the major questions this work expects to answer. 

One of the effects of storing data in CAM is that the execution of basic computation is changed. 

Considerable effort has been dedicated to searching and sorting algorithms. Foster [FOSTER76] 

claimed that "at any given instant, half of the university computers in the world are compiling (table 

look-up) and half of the business computers are sorting." (page 125) 

In all likelihood, searching and sorting will continue to be one of the most important computa­

tional tasks. Any proposed computer system should be efficient in searching and sorting. Searching 

with CAM is a breeze. In the literature, searching algorithms abound for CAMs [KOHONEN80, 

FOSTER76]: minimum, maximum, next above, next under, magnitude comparison, five way split, 

interval search, etc. The comparator added to the storage devices in a CAM directly supports search­

ing tasks in hardware. Masked search is also implemented directly in the CAM hardware; the other 

types of searches can be implemented as sequences of masked searches. 

Since data are not sorted with addresses, sorting cannot be executed by changing the physical 

location of data. Data are sorted by changing their positions in an ordered structure such as a list. But 

sorting can also be done dynamically as access to the data is required. Data are stored in CAM 

unsorted and can be read out of the CAM sorted using the search algorithm used to select the data (see 

the discussion of value-ordered MRRs in Chapter II). To sort from largest to smallest dynamically, the 

program searches for maximum and reads the selected word. The process continues with a search for 

the "next below" until all words are read (and hence sorted). 
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Sorting is improved in systems using CAM but the important question is: Why are we sorting the 

data? If the answer is: to speed up searching, sorting the data does not improve the speed of searching 

in CAM. Therefore, we probably could live without sorting [FOSTER76]. The processing and time 

delay for sorting is eliminated from the process of appending new data to the set and transferred to the 

time when the information is retrieved The hardware support of the CAM enables the CAM to sort in 

parallel and retrieve data in the same order of time needed to retrieve data from a sorted set in RAM. 

One non-numeric application that uses both searching and sorting, and is gaining in importance, 

is database search. There are two main kinds of database search. One 'is the search by keyword that 

can be speeded up in RAM with hash-coding. In CAMs, this kind of search is implemented directly at 

the transistor level. The otber kind of search is magnitude search, which is speeded up in RAM by 

including a structure and sorting the data. Each expected magnitude search query must have its 

correspondent structure to implement the sorting. A magnitude search of income on a employee data­

base sorted by social security number does not experience any performance improvement RAMs util­

izes additional storage cells and CPU time to solve a problem on a case by case basis. CAMs use their 

additional hardware in the form of distributed logic in the memory cell to accomplish a fast database 

search. If the importance of this type of application grows as predicted in Chapter I, it makes sense to 

think of a computer memory model (CAM) that goes to the root of the problem instead of fighting the 

side effects of RAM. 

This chapter analyzed the effects of CAM-based computers in basic structures of computation. 

The next chapter will complete the examination of the effects of CAM-based computers on applica­

tions. 



CHAPTER IV 

CUBE CALCULUS 

This chapter uses cube calculus to illustrate the support CAMs provide to the set data structure. 

The use of CAMs is not limited to applications that are based on cube _calculus. The applications are 

presented using the cube calculus mathematical model to take advantage of previous work that used 

this model. It is the contention of this thesis that any application that maps well to set theory is well 

supported by CAM-based computers. It will be shown that cube calculus is a powerful mathematical 

model with many applications. The major cube calculus application treated in this chapter is logic 

minimization and synthesis of Boolean functions. Cube calculus and all applications in this chapter 

will be described using the logic minimization language. The basic elements and operations of cube 

calculus will be introduced informally, through examples and illustrations. 

BASIC CONCEPTS 

The first concept to be defined is that of the multi-valued variable (MW). The v-valued variable 

can assume any of the 2v subsets that can be built from v elements. For example, a ten-valued vari­

able has 210 = 1024 possible combinations, or possible sub-sets, of its ten values. Likewise, a two­

valued variable can be instantiated by the :22 subsets that can be built with its 2 values. 

The usual representation of a multi-valued variable is the positional notation. In this representa­

tion, each value, that can be understood as an element of a set, is represented by a binary digit {bit) 

being true (1) when the value is a member of the set, and false (0), when it is not The values of the 

variable, or elements of the set, are ordered and represented in sequence. The first bit represents the 

first value, the second bit represents the second value and so on. MVVs and sets are equivalent 

mathematical elements. The positional notation is equivalent to the characteristic function described in 

Chapter III. The positional notation simplifies the execution of operations on MVV s as the charac-
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teristic function does for sets. For example, a two-valued variable is represented by two bits in the 

positional notation because it has two values, namely 0 and 1 and can represent any of_ the four sub-

sets that can be built with the two values ( 0, {O}, {I}, and {O, I}). 

The examples of MVVs that will be presented in this section will use a four-valued variable v 

with the elements V = {O, 1, 2, 3} and is represented in positional notation by a four bit bit-vector. For 

example, if v assumes the value v = {O, 2, 3}, it would be represented by the bit-vector v = 1011. 

When a variable includes all elements, it is said that the variable is fall. This is equivalent to the 

universal set. In positional notation, the variable is a string of 1 's ( v = 1111 ). When the variable 

does not contain a single value, the variable represents the empty set. It is called a contradiction. In 

positional notation, it is represented by a string of zeros ( v = 0000 ). 

Basically, the same operations defined for sets are defined for multi-valued variables. The logic 

operations on the positional notation are equivalent to operations on characteristic functions of sets. 

The power of the positional notation can be appreciated in the execution of logic operations. Logic 

operations over MVV s are transformed into logical operations over the positional representations. The 

inversion or complement of a variable v ( -.v or v), is the set of values such as all the values that are 

not in v are present in V and vice-versa. The inversion of a multi-valued variable in positional nota-

tion can be executed with the bitwise logic inversion of the representation (one's complement). For 

example, 

v={0,2,3} 
v = {l} 

V= 1011 
v=OlOO 

In positional representation, the union ( u ) can be implemented by the bit logical OR of the 

bit-vectors that represent the values. For example, 

vl = 
v2= 

vl uv2= 

{O, l} 
{I, 3} 
{0, 1, 3} 

vl = 1100 
v2= 0101 

vl uv2= 110I 

Similarly, the intersection ( n ) is implemented in positional notation, as the logical AND of the 

representations of the variables. 



vl = 
v2= 

vl nv2= 

{O, l} 
{l, 3} 

ro 

41 

vl = 1100 
v2 = 0101 

vl n v2= 0100 

The exclusive-or (EB) of two variables is equivalent to the symmetric difference of set theory and can 

be performed by a logical XOR of the representations. 

vl = 
v2= 

vl EB v2= 

{O, l} 
{ l, 3} 
{O, 3} 

vl = 1100 
v2= 0101 

vl EB v2= 1001 

Two other concepts of cube calculus to be defined are the cube and the array of cubes. Cubes 

and arrays of cubes also represent sets. The elements of the universal set for this representation are the 

elements built by the cartesian product of the values of two or more multi-valued variables. The cube 

is a cartesian product of MWs. An array of cubes is a set of cubes and represent the union of the ele-

ments of each cube in the array. In this section the cube represents a Cartesian product of variables and 

an array of cubes is the sum of the cubes. Cubes and arrays of cubes can also represent other normal-

ized forms of representation of functions such as product of sums, or exclusive sum of products or 

exclusive sum of sums, etc. 

The term "cube" comes from a geometric idealization in which the variables are dimensions of a 

hyperspace. The vertices of the hyperspace that can be represented by a single cube are vertices of a 

hyper-cube in that hyperspace. One popular representation of the hyperspace is the Karnaugh map 

where the hyperspace is flattened to two dimensions and each element of the cartesian product, or ver-

tex has a reticule to represent it 

To illustrate the use of cubes to represent sets we begin with an example with two-valued vari-

ables. The cartesian product of the two-valued variables vl = {0, l} and v2 = {O, l}, results in the 

universal set U = {00, 01, 10, 11}. The representation of a cube of this universe is the concatenation 

of the representations of both variables in positional notation. For two-value variables, 0 = 00, {O} = 

10, {l} = 01, and {O, l} = 11. The cube cl= 10.11 represents the set of all vertices that can have the 

first coordinate 0 (10) and the second coordinate either 0 or 1 (11), this is the sub-set cl = {00, 01} of 

U. The cube with all variables replaced by a full variable represents all the elements of the cartesian 
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product and is equivalent to a "logical one" for logical functions. Any cube with an empty variable or 

contradiction does not contain a single element because the cartesian product is emp~y. These are 

empty cubes. The empty cube in which all MVVs are contradictions is equivalent to a "logical zero". 

Using this format, not all sub-sets are representable with a single cube. For example, the empty 

set, can be represented by any one of the cube notations 00.00, 00.01, 00.10, 00.11, 01.00, 10.00, and 

11.00. The single cube sub-sets are: 01.01, 01.10, 01.11, 10.01, 10.10, 10.11, 11.01, 11.10, and 11.11. 

It is necessary to use an array of cubes to represent the remaining sub-sets. For example, to represent 

the sub-set {00, 01, 11} we can use any of one of the following arrays of cubes: {10.11, 01.01}, 

{10.10, 10.01,01.01}, {11.01, 10.10},or {10.11, 11.01}. 

However, a set with the same maximum number of elements as U, the universal set, could be 

represented with a single four-valued variable and is capable of representing each of the 16 sub-sets. 

That is, the four valued variable V = { 0, 1, 2, 3}, represented by a four bit bit-vector, can represent any 

of the 16 sub-sets. For example, the same subset v = {O, 1, 3} that was impossible to represent in a 

single cube, is represented by the bit-vector v = 1101. 

The Figure 9 shows a hyperspace built with the cartesian product of four two-valued variables 

along with the Kamaugh maps of hyperspaces of four two-valued variables, five two-valued variables 

and two four-valued variables. The higher expressivity of multi-valued variables of larger number of 

elements is illustrated by the cube representation of the same function in a hyperspace of four two­

valued variables and in a hyperspace of two four-valued variables. Notice how the use of MVVs of 

larger number of values allowed a more compact representation of the set of reticules in the Karnaugh 

maps marked with a "l ". 

Although the cube and array of cubes representation of sets is less expressive than a large MVV, 

it is preferred over the pure set model for some applications because it maps better to those applica­

tions. For example, in logic synthesis, the cube representation provide insights into the implementa­

tion of the logic functions. The minimization of the number of cubes of a logic function also minim­

izes the number of gates in the implementation of that logic function. Notice that the representation of 

sub-sets of cube calculus matches the CAM model well because the sub-sets that can be represented by 

a single cube map directly to the "sets that can be described with a single masked search" discussed in 
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Figure 9. Examples of Karnaugh maps and hyperspace. 

Chapter ill. 

Any sub-set of the universe is a function and is a set of vertices that can be represented by an 

array of cubes. To be more formal, a completely specified, single output function is a mapping of the 

points of the hyperspace to a binary value. An incompletely specified function maps onto the values 

{O, 1, X} where Xis free to assume either the value 0 or 1. A completely specified function with mul-

tiple outputs maps into many binary values, a binary code. For simplicity, the examples presented are 

restricted to single output, completely specified functions. As a consequence, such function can be 

represented by the vertices that assume the value 1 because the function assumes the value 0 on all 

other vertices. 

OPERATIONS WITH CUBES 

The same essential set operations presented for multi-valued variables are adapted for the cube 

representation according to the works of Dietmeyer [DIETMEYER78] that present the cube operations 
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for two-valued variables and the works on MVVs by Sasao [SASA084], Kuo [KU087], Su [SU72] 

and Hong [HONG74]. When appropriate, it will be introduced how to extend the operations to arrays 

of cubes since some sub-sets require more than one cube for their representation. The union (OR), 

intersection (AND), sharp (NOT) and consensus are the most important operations in cube calculus. 

The notation introduced in Chapter III for characteristic functions will be adapted to represent the 

positional notation of cubes. 

Cube Union 

The union of two cubes or functions is the function that covers the minterms, or product of 

literals, or vertices contained in at least one of the functions. Covering is the term used in cube cal­

culus for the containment relation. The most straightforward way to perform a union of two cubes, or 

cube arrays, is to build a result array of cubes with all cubes of the operands in it. The union of two 

functions F and G is the concatenation of the arrays of cubes of F and of G. 

F= {/i./2, ... , /,.} 

G= { gi,g2, ... , gm} 

F u G = { fi,f 2. ... ,/,., gi,g2, ... ,gm} 

The representation of the result will probably have more cubes than the minimum necessary to 

represent the union. Finding the minimum number of cubes necessary to represent a function is a very 

important minimization problem. To reduce the number of cubes used in the representation of the cov­

ering we try to remove redundant cubes and to replace two or more cubes by a larger one that cover 

the same vertices. Redundant cubes are cubes that only cover vertices that are also covered by other 

cubes in the array. Absorption is the process that finds and removes redundant cubes. Absorption 

decides if a cube or function covers another and removes the covered cube or function. 

The Figure 10 illustrates the power of multi-valued variables for minimization. The operand 

cubes are represented by rectangles of broken lines and the resultant cubes are represented by circles 

or ellipses surrounding the elements of the cube. Arrows indicate that a cube is represented by two or 

more rectangles or circles for convenience of drawing. The union of the same operand two cubes can 

be represented by a single cube in a 2 four-valued variables hyperspace due to its larger expressivity. 
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The cube intersection is the set of all vertices covaed by both cubes. As in sets, the intasection 

of two cubes can bC calculated by the bitwise logical AND of the cube notation of the two cubes. For 

functions represented by multiple cubes, the intersection can be obtained by applying the distnootive 

Jaw of the intasection over the union of the cubes in the cover. The intersection of a function F = { 

· Ii. I 2t ••• , I" } and a cube gi is: 

" F ngi =hJf; (°'\gi 

and the intersection of ·two functions F and G = { gi. g2, -· g,.} is: 

"' " F nG =l J(t. J/; ()Bi) 
,~ i=1 

Cube Inversion or Complement 

The same definition used in set theory and multi-valued variables applies to inversion of cubes. 

The inversion of a cube anay is the set of all wnices in the hyperspace that are not covaed by the 

original array of cubes. The inversion can be considered a special case of the sharp operation that will 

be swdied next. F'igure 11 illustrates the inversion of a cube. The array of the cubes represented by 

the rectangles is the inversion of the covering composed of the reticules marlced by "l" and represent­

able by the array of cubes represented by circles. 
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Figure 11. Inversion of functions. 

Sharp or Relative Complement 

The result of the sharp operation between two functions F 1 #F 2 is another function F 3 that is true 

only when a vertex is true for F 1 but is not true for F z. The inversion is a particular case of sharp 

when F 1 is the universe. The sharp operation is equivalent to a subtraction of minterms. 

The sharp of two cubes f and g, f # g is the array of cubes, F, that is the covering of all the 

minterms of the first cube that do not intersect with the second cube. Depending on the cubes used in 

F to represent the results, sharp and inversion are classified into two flavors. In Disjoint sharp, the 

function is expressed as an array of disjoint cubes, meaning the two by two (cube against cube) inter-

section of the cubes of the result is empty. In the "normal" sharp the result is represented with the 

minimum number of cubes that cover the function and that are not covered by other cube that is also 

covered by the function. These cubes are called prime implicants. A prime implicant is the largest 

cube that implies the function and covers the same vertices. Equation (5) generates a list of cubes that 

cover the vertices covered by the cube f but not covered by the cube g, executing the "normal" sharp of 

the two cubes. Equation (5) also shows how much harder it is to execute the set difference with the 

requirement that the resultant set be described with an array of cubes. 

Ii# Kj =kf / .x/ · · ·x/ng · · ·x{ (5) 

Figure 12 shows one example of a disjoint sharp and a sharp. The cube represented by the rectangle 

drawn with a solid line is the cube being sharped, the rectangle drawn with the broken line is the cube 

being "subtracted" and the ellipses are the resultant cubes. 
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Figure 12. Sharp operation. 

Two properties are used in sequential computers to reduce the calculations necessary to execute 

the sharp of cube against cube: 1) the result of the sharp product of two cubes will be the empty cube if 

K coversf; 2) the result will be F = f if the cubes are disjoint (do not overlap). A test of these condi-

tions can branch around the execution of a sharp algorithm to avoid the calculation of equation (5). 

The sharp product of one array of cubes against one cube, F # Ki, where F = { f 1. f z, ... , f n } , is 

the union of the results of the sharp product of f;#Ki 

n 
F # Ki = ~ f; # Ki 

The sharp product of one array of cubes against another array of cubes is the recursive applica-

tion of the sharp product of each cube of the second array to the result of the sharp product of the first 

array with one cube. 

F # G = F - G = F n G = (( .. ( F # Kt)# KV · · · # Km) 

This is equivalent to the intersection of the sharp products of the first array and each cube of the 

second array. 

- "' F # G = F - G = F n G = (J F # Ki 
J=l 

Consensus or Star Product 

Consensus is not an essential operation for cube calculus, but life would be more difficult 

without it The consensus is used to generate new cubes from an existing array of cubes that still 

imply the same vertices implied by the array of cubes. The cubes generated by consensus can be used 
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to represent the same function with a different array of cubes in the process of minimization of the 

representation of a function and to reduce the number of cubes in the array and still c~ver the same 

vertices. 

The consensus (asymmetric consensus) of the cubes f and g is the array with the prime impli-

cants of f u g that cover at least one vertex covered only by f, one vertex covered only by g, and the 

intersection off and g. The formula used to calculate the consensus or the star product of two cubes is: 

f*g = Q x{,ng, · .tj•"'• · · · x{,vg, ... x{'""'. 

Where x; are the MVV s that compose the cubes. 

Figure 13 shows two examples of consensus. In this figure, the stars (*) indicate vertices 

covered by the first cube and ampersands(@) the vertices covered by the second cube. The resultant 

cubes are represented by rectangles or ellipses. 

0 1 

be 0 1 2 3 3 2 1 0 -
A ,. 

... - - - - -- -- 0 
I \ I \ 

@ @ @ :@, @ :@~ 
ab 

00 * .. -.. --- t"I __ ,_ ---, 
@ @ @ " .... @ I *I • • ltru ! ~! 

.. 1 

0 * 
2 .--- ---, 

I * @l @ I @ @ @ 
1 3 

I I 
I * @' @ L __ ---· @ @ @ 

1 
4 

Figure 13. Two examples of cube consensus. 
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If the cubes f and g overlap as in the examples in the Figure 13, consensus generates a list of 

cubes with rninterms off and g that are candidates to cover or be covered by other cubes. If the inter-

section of the MVV s that compose the cubes is empty for more than one MVV, the result of the con-

sensus is an array of empty cubes. The number of intersections of MVVs that are empty is used as a 

measure of the relative position between two cubes and is called the distance between the two cubes. 

Cubes of distance zero overlap, and cubes of distances one or larger do not overlap. 



USING CAMS FOR CUBE CALCULUS 

The key reasons to use CAM-based computers are to: 

(1) Filter the data that is transferred between memory and the CPU. 

(2) Increase the parallelism of execution of programs. 
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(3) Provide additional operations that improve the performance of the computer in non-numeric 

applications. 

(4) Provide means to rethink algorithms and improve the execution of existing ones. 

Beginning with filtering, all these points are illustrated with cube calculus applications. 

Processing of cube calculus operations can be greatly reduced by the application of properties 

of cubes. For example, if the distance between the cube f and the cube g is greater than one, the result 

of consensus f*g is the empty cube. The intersection of cubes of distance one or larger is also the 

empty cube. Likewise, the result of the sharp product/; # gi is the empty cube if the cube gi covers 

the cube f i. And, fi # gi is the cube fi if fi and gi are of distance one or larger. With all cubes 

stored in CAM using positional representation, complex searches can split the cubes by distance and 

transfer to the host processor only those cubes that will generate resultant cubes, reducing the data 

traffic between the memory and the host CPU. The use of CAMs reduces the number of the pairwise 

operations between cubes to the execution of only the pairs of cubes that generate non-empty cubes. 

· This eases the requirements on communication between the host CPU and memory and on the process­

ing of the host CPU. 

For the sharp operation, the cubes must be split into overlapping cubes (cubes of distance 0), dis­

joint cubes (distance 1 or larger), and cubes covered by another cube. These relations can be tested by 

comparing the representations of the cubes in positional notation. A cube c; covers another cube Cj if 

the values of all variables of Ci cover the variables of the cube Cj. This is equivalent to the representa­

tion of Ci not having a 0 in a position that the representation of Cj has a 1. A single search for O's in 

the positions c; has O's will mismatch all cubes stored in the CAM that are not covered by Ci. Figure 

14 shows an example of how to use CAMs to determine the covering relationship among cubes. A 
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search for the pattern ??.0?.??.?0.?? matches only cubes that are covered by the cube c1 and is per-

formed in parallel to The cubes c 2 through c 5• 

Ct 11.01.11.10.11 
??.0?.??.?0.?? search pattern 

HIT 
Cz 10.01.11.10.10 1 matches, c 1 covers c 2 

C3 11. 01. 01.10 .11 1 matches, c 1 covers c3 

C4 11.10.01.10.11 0 mismatches, c 1 does not cover c 4 

C5 11. 01. 01.11. 01 0 mismatches, c 1 does not cover c 5 

Figure 14. Determining the covering relation among cubes with CAMs. 

Two cubes c; and Cj overlap if no variables are disjoint. In positional notation this can be 

identified when, for each variable, there is at least one '1' in the same position for both cubes. A 

search, then, for O's where the variable is 1 will match only on cubes that are disjoint for this variable. 

The product of the search for all variables tests whether two cubes overlap. Figure 15 illustrates how 

to determine whether the cubes c 2 through c 6 overlap the cube c 1• If two cubes are disjoint in any 

variable, they are djsjoint cubes. Each search pattern tests if the cubes in memory and c 1 are disjoint 

in one MVV of the cube. The first, third and fifth patterns do not need to be applied because c 1 is full 

for these variables and a match (HIT) in at least one position is guaranteed. Only c2, c3 and cs 

mismatch all searches and, therefore, overlap with c 1• 

11.01.11.10.11 
??.??.??.??.?? 
?? . ?0.??.??.?? 
??.??.??.??.?? 
??.??.??.0?.?? 
??.??.??.??.?? 
10.01.11.10.10 
11. 01. 01.10 .11 
11.10.01.10.11 
11. 01. 01.11. 01 
10 .11. 01. 01.11 

C1 
search pattern for the first variable (no need to search) 
search pattern for the second variable 
search pattern for the third variable (no need to search) 
search pattern for the fourth variable 
search pattern for the fifth variable (no need to search) 
c2 mismatches both searches, overlaps 
c 3 mismatches both searches, overlaps 
c 4 matches second variable search, do not overlap 
cs mismatches both searches, overlaps 
c 6 matches fourth variable search, do not overlap 

Figure 15. Testing if cubes overlap using CAMs. 

Besides reducing the number of cubes that have to be transferred to the host CPU for processing, 

the CAM can also control the order in which the cubes will be passed to the host CPU. Algorithms 

that use heuristics to reduce the amount of processing can use this sorting property of CAMs to reduce 
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the overhead of the heuristics. For example, the cubes can be sorted by the inner product of the cube 

representation weighted by the number of cubes in the cover that have 1 's for that value. CAMs can 

select all cubes with 1 's in any position and count them to find out the weights, add the weights to an 

accumulator field of all matching words, and retrieve the cubes sorted by the largest accumulator field. 

Each of these operations would be performed in parallel. 

In the tasks described above, the CAM was used in the "traditional" applications of filtering and 

sorting data. CAMs that have partial access, preferably multiple partial access, can execute some of 

the simple logic operations that would be executed by the host CPU. Notice that the CAM is executing 

"real" processing, the data retrieved from the CAM is different from the data originally stored. 

Simple logic operations like bitwise AND and OR of cube and array can be executed by the 

CAM without a data transfer to the CPU. The following example of the intersection of a function and 

a cube illustrates these cube calculus operations executed by a CAM. 

The operations necessary to execute the intersection between the cube c 1 = li.b.c and the func-

ti.on F = {b.C.d, a.c, li, a.b.C.d} in positional notation are shown in Figure 16 that shows the state of 

the memory before and after the multiple partial write of the pattern O? .O?. ?O. ?? • 

a.b.c 
b.c.d 
a.C 
li 
a.b.C.d 

empty 
em_pty 
li.b.c 
empty 

before 
01.01.10.11 
11.01.01.10 
10.11.01.11 
01.11.11.11 
10.10.01.10 

after 
01.01.00.10 
00.01.00.11 
01.01.10.11 
00.00.00.10 

Figure 16. Memory before and after intersection. 

Representing each array of cubes as a set using the set data structure presented in Chapter III, 

the union of two arrays is performed with the union operation over sets. The modification of the tags 

of the set data structure of the set operands with a partial write creates a new set that is the union of the 

two sets. 
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More complex cube calculus operations can also be executed in the CAM. Among these is the 

sharp operation. A naive algorithm for sharp is presented but, even with this simple-algorithm the 

power of CAMs for cube calculus can be perceived. The algorithm presented begins with one copy of 

the function for each variable of the cube stored in memory. The intersection of each variable is exe­

cuted with a multiple partial write and is followed by the removal of cubes with contradictions in any 

of its MVVs. This algorithm could be improved to store only copies of the function for literals that 

generate non-empty cubes. But, as an illustration, the naive algorithm is used. (Observe that F#g is 

equivalent to F-g which is also equivalent to F n g) 

As an example, the execution of sharp F#g, where F = {C.d, a.ii.c, b.c.d, a.b.c.d} and g =a.bis 

shown in the Figures 17 through 20 and Figure 21 gives the visualization of the example with Kar­

naugh maps. The memory is initially loaded with the cubes of F with one letter appended (tagged) to 

indicate which variable is going to be consumed (Figure 17). Notice that because the cube g does not 

contain the literals c and d, they generate only empty cubes. Each copy of F is selected sequentially 

according to the variable being processed and the corresponding intersection is executed. The 

sequence of searches and multiple partial write patterns is shown in Figure 18. The state of the 

memory after the processing is shown in Figure 19. Figure 20 shows the state of the memory after the 

garbage collection of the empty cubes and the removal of redundant cubes. 

The union, intersection and sharp operations form a basis that can be used to build any cube cal­

culus operation. The next sections will show applications that put to good use cube calculus and the 

efficiency of implementation of cube calculus operations with CAMs. 

LOGIC MINIMIZATION AND SYNTHESIS OF BOOLEAN FUNCTIONS 

The goal for this section is the minimization and synthesis of a Boolean function so that the 

mapping of its input to its output uses a minimum of hardware. Practical minimization problems work 

with multiple output and incompletely specified functions of rarely more than 100 binary inputs and up 

to 100 binary outputs. The cube calculus operations described so far address only completely specified 

single output functions. With sufficient memory size, the cube calculus model can be easily extended 

to represent and manipulate the kind of Boolean functions found in practical problems. 



C.d 
a.b.c 
b.c.d 
a.b.c.d 

11.11.01.10-a 
01.01.10.11-a 
11.10.10.01-a 
10.10.10.10-a 

11.11.01.10-b 
01.01.10.11-b 
11.10.10.01-b 
10.10.10.10-b 

11.11.01.10-c 
01.01.10.11-c 
11.10.10.01-c 
10.10.10.10-c 

11.11.01.10-d 
01.01.10.11-d 
11.10.10.01-d 
10.10.10.10-d 

Figure 17. State of the memory before processing. 

search 
intersection 
search 
intersection 
search 
intersection 
search 
intersection 

?? . ?? . ?? . ??-a 
0?.??.??. ??-* 
??.??.??.??-b 
?? . 0?.??. ??-* 
??.??.??.??-c 
?? . ?? . 00. ??-* 
?? . ?? . ?? . ??-d 
??.??.??.00-* 

Figure 18. Patterns used for the generation of resultant cubes. 
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01.11.01.10-a 
01.01.10.11-a 
01.10.10.01-a 
00.10.10.10-a 

11.01.01.10-b 
01.01.10.11-b 
11.00.10.01-b 
10.00.10.10-b 

11.11.00.10-c 
01.01.00.11-c 
11.10.00.01-c 
10.10.00.10-c 

11.11.01.00-d 
01.01.10.00-d 
11.10.10.00-d 
10.10.10.00-d 

Figure 19. Memory after the sharp. 

01.11.01.10-a 
01.01.10.11-a 
01.10.10.01-a 
11.01.01.10-b 

Figure 20. Results after the removal of empty cubes. 

g F,g F#g 
Figure 21. Kamaugh map ofF and g used in the example of sharp. 
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Cubes are still used to represent logic functions but, the vertices of a cube in the representation 

of an incompletely specified multiple output function (ISMO) can evaluate to true (1) for one output, 

the value false (0) for another, or be either one (X) for yet another output. The execution of the 

presented cube calculus operations using CAMs can be extended to ISMO functions and preserve the 
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execution parallelism. 

To support ISMO functions the cube notation has to be extended with an output tag that flags the 

value of a cube for each output. This output tag is identical to the tag field presented in Chapter ID for 

set manipulations. The cube calculus operations over ISMO functions manipulate the output tag of the 

operands and generate resultant cubes with possibly modified output tags. 

The complexity of extending the cube calculus operations to ISMO functions is because a com­

mon set of cubes is used to describe all outputs. A product or mintenn can belong to one of three sets 

for each output. The set of minterms that evaluate to 0 (OFF-set), the set of minterms that evaluate to 

1 (ON-set), and the set of minterms that can evaluate to either 0 or 1 (DC-set). In the representation 

used for the examples presented, the functions are described by their ON-sets and DC-sets. The tag 

field of the set data structure must be extended to support the "don't care (X)" state of the output By 

treating the DC-set and the ON-set of each output as a bit of the output tag, and the minterms as ele­

ments of these sets, the scheme developed in Chapter ID for the set data structure using tag fields can 

be directly applied to the output tag. The number of elements in the representation of an ISMO func­

tion is minimized by grouping minterms that have the same output tag into the same cube. 

The representation of an ISMO function as an array of cubes maps directly to its PLA imple­

mentation. Each cube of the representation can be implemented as an AND gate. The array of cubes 

is equivalent to an OR gate of the cubes. The binary inputs of the function are mapped into MVVs 

with the use of decoders, or inverters for the simpler two-valued variables. The minimization of the 

cube representation of the function minimizes the PLA implementation of the function. 

Extension of Cube Calculus Operations for ISMO Functions 

Of the basic operations of cube calculus, union, intersection, and sharp, the union operation is 

the simplest to extend for ISMO functions. The result of the union of two arrays of cubes is a new 

array with the cubes of both operands. The sharp product is the most complex to extend. The scheme 

to extend the cube calculus operations with the output tag will be illustrated by an example of the inter­

section of two cubes of ISMO· functions of 2 two-valued inputs and 9 binary outputs. The example is 

shown in Figure 22. The bits of the output tag are independent from each other. Each output can be 
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visualized as a function of a single output that will be processed in parallel. Similarly, when generat-

ing the result of an intersection, each output is generated independently using a parallel !?it-vector logi-

cal operation. 

cube 
C1 

Cz 
Cr 

inputs 
01.11 
11.10 
01.10 

outputs 
000 111 xxx 
OlX OlX OlX 
000 OlX OlX 

Figure 22. Sharp of two cubes of a multiple output function. 

The intersection operation can be parallelized to execute the intersection of c 1 against the cubes 

c2 to en by generating the resultant cubes of the intersection as presented for the single output case and 

processing the output tags with a sequence of searches and partial writes. This scheme is presented 

using the patterns of the cube c 1 in Figure 22. The operation executed is a multiple partial write with 

the pattern "O?. ??000??????, where the first four bits are the inputs and the last nine bits are the outputs 

of the function. The cube c 2 is overwritten by the intersection. The multiple partial write transforms 

the operand cubes stored in the CAM into the cube that is the intersection (input field), and sets the bits 

of output tag of the resultant cubes to the correct values that enable the resultant cube to be shared by 

all outputs. The outputs that 3!e 0 in c1 must also be 0 in the intersection cube (first 3 bits of the out­

put), the tag of the intersection of outputs that are 1 in c 1 are determined by the outputs of the cubes 

stored in memory (the fourth, fifth and sixth bits of the output tag), and the intersection of outputs that 

are don't cares in c 1 are also determined by the outputs of the operand cube stored in memory 

(seventh, eight and ninth bits of the output tag). 

In software, the sharp of a cube on a multiple output function requires three nested loops (see 

Figure 23) The outer loop sharps the cube against the arrays representing each of the outputs. The 

second loop sharps the cube against the cubes in each array and the inner loop runs over the variables 

to generate the resultant cubes. 

In CAM-based and RAM-based computers, the outer loop is executed in parallel by the 

representation of the outputs with the output tag. However, CAM-based computers also parallelize the 

intermediate loop, number of cubes, which is by far the longest one. For example, the representation 
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of an ISMO function can have thousands of cubes. The performance improvement of the sharp pro-

duct executed with the support of CAMs is proportional to this parallelization. 

F # C1c 

FOR all output arrays F; in function F 
DO 

FOR all cubes f i in F; 
DO 

FOR all variables w 
DO/fj # C1c I 

x{.x~ · · · x!,ni · · · x/;. 

END 
END 

END 

Figure 23. Algorithm to sharp a cube out of a multiple output function. 

Table I lists the execution times of the sharp product measured with the UNIX utility gprof 

[GRAHAM82] of the three functions labeled F1, Fz and F3 using the program ESPRESSO 

[BAKER88] on a SUN Spare station 1 iPC with 8 Mbytes of RAM. Each of these functions have 26 

binary inputs and 46 binary outputs, represented by an array of 301 cubes. F 1 is the benchmark bca 

provided in the ocr distribution and F 2 and F 3 were created by modifying the cubes of F 1 at random. 

TABLE I 

EXECUTION TIME OF THE SHARP PRODUCT 
ON A RAM-BASED COMPUTER 

CPU [s] 
F1# Fz 434.58 
F2# F1 440.90 
F1 # F3 10094.35 
F3# F1 25.38 
F3# Fz 32.46 
Fz# F3 33.35 

Tables II, ill and IV profile, again using gprof, the execution of the sharp products that are not 

dominated by reading the operand arrays of cubes in Table I. The function cv _sharp0 forms the sharp 

product of two covers and calls cb_sharpO that forms the sharp product of a cube and a cover. The 
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function cb_sharpO calls a recursive formulation cb_recur_sharpO. The function cb_recur_sharp0 

calls the function sharp0 that forms the sharp product of two cubes. Cb_recur_sharpO also calls 

cv _intersectO to find the intersection of the results of the function sharpO. The function sf_unionO 

forms the union of the sharp results and also deletes repeated cubes and cubes that are covered by a 

single cube. The functions nn2_contain0 rm2_equa10 that are called by sf_unionO and removes the 

redundant cubes from their already sorted input arrays of cubes. 

TABLE II 

EXECUTION PROFILE OFF i # F 2 

number self CPU time 
function of 

calls [s] [%] 
cv_sharp 1 0.01 0.0 
cb_sharp 301 0.04 0.0 
cb_recur_sharp 180901 1.17 0.4 
sharp 90601 0.44 0.1 
cv _intersect 93300 2.53 0.5 
sf_ union 733 0.02 0.0 
nn2_contain 1466 273.99 54.4 

TABLE ill 

EXECUTION PROFILE OFF 2 # Fi 

function number self CPU time 
of 

calls [s] [%] 
cv_sharp 1 u.uu u.u 
cb_sharp 301 0.02 0.0 
cb_recur_sharp 90732 1.54 0.3 
sharp 90601 0.37 0.1 
cv _intersect 90300 2.55 0.5 
sf_ union 733 0.05 0.0 
rm2_contain 1466 272.91 53.4 
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TABLE IV 

EXECUTION PROFILE OFF i # F 3 

number self CPU time 
function of 

calls [s] [%] 
cv_sharp 1 u.uo u.o 
cb_sharp 301 0.00 0.0 
cb_recur_sharp 301 1.31 0.0 
sharp 90601 0.50 0.0 
cv _intersect 90300 21.63 0.2 
sf_ union 20150 0.22 0.0 
rm2_contain 40300 8342.87 78.2 

The sharp product of two covers (ISMO functions) executed with CAMs execute the equivalent 

to the function sharp and the intersection of cube and covering(s) in parallel. The equivalent CAM 

functions used to substitute the functions cv_intersect(), cb_recur_sharp0 and sharpO are called the 

same number of times cb_sharpO is called The function rm2_contain0 that accounts for over 50% of 

the processing time is also executed in parallel. Furthermore, rm2_containO requires sorted coverings 

as inputs. The cumulative cost of the function sf_sort() that sorts the coverings for the sharp product 

of Tables II, m and IV are shown in Table V. Due to the efficiency of sorting, and in many cases the 

lack of need of sorting in CAMs, the cost in time of sorting would be greatly reduced. 

TABLEV 

CUMMULATIVE COST OF SORTING CUBES 

operation CPU time [s] CPU time[%] 

Fi# Fz 58.50 13.9 
Fz# Fi 61.60 14.3 
Fi# F3 267.41 2.8 

Another point in favor of CAMs is that they provide a trade-off between execution time and 

hardware that RAMs cannot provide. The removal of redundant cubes is essential to the performance 

of the sharp product on RAM-based computers because the processing time is proportional to the 

number of cubes. Subject to memory constraints, the sharp algorithm for CAM-based computers is 
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almost independent from the number of cubes in the intermediate representation of the covers. There-

fore, the removal of redundant cubes can be executed once, just prior to presenting the final results 

with small penalty in performance. More RAM only adds storage space , which is essential to execute 

larger problems, but without performance gain. More CAMs in the system adds storage space and 

parallel processors that can take advantage of under used parallelism. 

Perhaps the most impressive point in favor of CAM-based computers is that the RAM-based 

performance is measured in CPU time and the performance of the CAM-based sharp is measured in 

CAM cycles. The CAM has transferred the processing load of the CPU.' 

To evaluate the performance of the sharp product in a CAM-based computer, the execution time 

of the sharp product F 1 # F 3 in the recently reported CAM-based computer IXM2 [HIGUCHI91] will 

be estimated. The sharp product will require the cube operations listed in Figure 24. The cube against 

cube sharp products are executed in parallel for all 301 cubes of F 1 and sequentially for the 301 cubes 

of F 3. Each sharp call requires 26 multiple write cycles, one for each input. The intersections are exe-

cuted in parallel over the sharp results and require a worst case number of calls of 301 * 26 in the case 

of each sharp product creates a maximum number of resultant cubes. The results of the intersections 

are composed into a single array. A pessimistic number of cycles is estimated for the removal of 

redundant cubes based on the results of the profiling. Since each cube is stored in 4 words, pessimisti-

cally, the operations have to be repeated for each of the words. 

301 sharp calls * 26 MVV s cycles 
301 cv_intersect calls* 26 MVVs cycles 
301 sf_union calls cycles 
40300 rm2_contain cycles 
total number of CAM cycles 

7826 
7826 

301 
40300 

4 * 56253 

Figure 24. Estimate of the execution cycles for sharp in a CAM. 

The IXM2 executes each the equivalent to the CAM cycle listed in Figure 24 in 18 µs. The total 

execution time for the sharp product F 1 # F 3 is 18 µs x 4 x 56253 "' 4.0 s. This impressive perfor-

mance improvement ofi over three orders of magnitude is achieved if the IXM2 can store the largest 

intermediate representation of the operand functions. The IXM2 has a storage capacity of 256 K words 

of 40 bits. For the examples used, each cube requires 4 words and the memory required would be 4 
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words x 310 cubes x 26 MVVs = 31,304 words. Operations that require more than 256 Kwords will 

demonstrate a smaller gain in performance. 

The estimated improvement, of course, will be smaller because only the performance of the cal­

culations is improved. The time required to read the operand covers and for the output of the results is 

nearly constant Reading the operand covers took approximately 5% of CPU time of the longest 

example, and little less than 15% on the other two. The percentage of time spent on setting up the 

operation of examples with very short sharp execution times may be as high as 50% for a RAM-based 

computer. In these cases, the performance improvement of the CAM-based computer is limited by the 

operations not directly related to the calculations. 

Another Representation of Logic Functions and CAMS 

The representation of functions with cubes presented is suitable for PLA implementations. The 

factored form is a representation that is more suitable for multi-level minimization of logic functions. 

Factored forms and multi-level minimization are based on the papers by Brayton [BRA YTON82, 

BRAYTON87] 

The factored form is defined recursively: 1) a literal is a factored form; 2) a sum of factored 

forms is a factored form; 3) a product of factored forms is a factored form. This definition can be gen­

eralized to include other operations such as the exclusive-or, arithmetic sum, arithmetic product, etc. 

For simplicity, the discussion will be restricted to the logical sum and product of factored forms. 

Typically, the data structured used to represent factored forms is the list For example, the cubes 

of binary literals are represented as lists of literals. The cube, or product of literals, a.b.d, is 

represented by the list {a, b, d}. When one literal appears in a list in its negated and non-negated form, 

the list represents an empty cube. This representation again works with symbols that are suitable for 

algebraic manipulations. 

With two lists representing the product of their elements, appending the two lists is equivalent to 

the AND operation or intersection of algebraic representations. For example, appending the lists that 

represent the cubes "a.b.d" and "c.d", append({a,b,d},{c,d}), results in the list {a,b,c,d} which 

represents the cube "a. b.c.d". Analogously, when the list represents the sum of its elements, appending 
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two lists represents the union or OR operation 

Although originally the data structure used for factored forms was the list, the ideal data struc­

ture for this representation is the set data structure because the list {a, b, c} represents the same cube as 

the list { c, a, b}. This representation of functions with lists is one example of the use of a more com­

plex data structure because of the low support of the set data structure and the sequential nature of 

RAM-based computers. Because of the sequential nature of RAM, sorting of the elements is almost a 

must to achieve acceptable performance. 

The logic minimiution with factored forms performs algebraic manipulation to identify com­

mon sub-expressions in different outputs, and functions that are by themselves subexpressions of other 

functions. The cost of the implementation can then be shared by the functions that share the common 

sub-expression. Brayton [BRA YTON87] presented the concept of kernels, co-kernels and support of a 

function to help find sub-expressions that can be shared by two functions. An informal description of 

these concepts is given below. 

A kernel of a function is a divisor of the function, or sub-expression of a function that cannot be 

represented by a single cube (product of literals) and cannot be divided evenly by a single cube. A 

co-kernel, C, of a kernel k is a single cube divisor of a function f such as f/C = k.f whose quotient is a 

kernel. Kernels and co-kernels are good candidates for sub-expressions. For example, the product c.d 

is a co-kernel of the function f = a.b.c.d + c.d.e = {ab+ c.d).(d.e) that corresponds to the kernel (ab + 

c.d). 

The support of a functiop is the set of all literals used to describe the function. If the function is 

the list representing the sum of its elements {ab, cd, ad } , the support of the function is 

{a, a, ii, c, d,il}. 

The support of the function is used to construct cubes that divide the function evenly and is used 

to find the kernels and co-kernels of a function. Two functions,/ and g, have a common multiple-cube 

divisor (a common kernel) if the intersection of the set of kernels of f and g is more than one cube. 

The algorithm of the multi-level minimization program MIS [OCT] searches for common divisors by 

generating the set of kernels of each function and forming the intersection of the sets. If the result of 
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the intersections is either the empty cube or a single cube, the program looks only for single cube divi-

sors. Brayton [BRA YTON87] observed that since most of the possible 21 intersections o_f sub-sets of f 

are empty, the generation of the kernels of an expression by the scheme presented can be extremely 

inefficient. To avoid the calculation of the intersections, MIS transforms the calculation of intersec­

tions into finding the kernels of another function with the overhead of the transformation and the 

reverse transformation. 

Again, the different performance relation of the CAM significantly changes the complexity of 

execution and development of existing algorithms. In this specific case, it simultaneously simplifies 

and improves the performance of the algorithm. CAMs can calculate the bitwise intersection in paral­

lel and without the CPU. The transformation and anti-transformation of the problem is then unneces­

sary, simplifying the algorithm. 

The set of literals of a cube and the sub-expressions in a function can be represented with the set 

data structure described in Chapter III, with each literal as an element of the cube, and each cube as an 

element of a sub-expression, and so on. 

The CAM can be used to find out which literals of the support divide the function evenly by 

searching, one literal at a time, and finding those that match all cubes in the function. The literals that 

do not match all lists, match a partial list of the cubes in the function and can be used to generate the 

kernels of the function. The kernels can also be found by dividing the function by the co-kernels. 

An important process of algebraic manipulation of functions is the factomation of the function. 

This task is performed with the algebraic division of the functions. Due to the high cost of the division 

and the large number of functions found in minimization problems, some guidelines to filter the divi­

sions were developed. Devising heuristics and discovering properties to reduce the amount of compu­

tation is a very important technique in logic minimization and synthesis since it enhances the perfor­

mance and enables the solution of problems that would be too big to solve otherwise. 

Filtering is one of the strong points of CAMs. Brayton [BRA YTON87] showed that gj is not an 

algebraic divisor of/; (i.e., f;lgi = 0) if: 



(1) gi contains a literal not in/i 

(2) gi has more terms than f i 

(3) for any literal, the number of appearances in gi exceeds that inf i. 
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(4) if for any literal, the number of appearances in gi equals that in fi then (fJgi) is at most a sin­

gle cube. 

These properties are easily mapped into a sequence of searches in the CAM, enhancing the per­

formance of logic minimization algorithms at low cost. 

The logic minimization and synthesis of Boolean functions is typical of the kind of application 

that would be improved by the use of CAM-based computers. The multi-level minimization scheme 

presented does not use its ideal data structure, the set, and a more complex algorithm had to be 

developed due to the shortcomings of RAM. Some of the processing can be transferred to CAM and 

executed in parallel. By executing searches on the data stored in the memory the amount of processing 

and data transferred from memory to CPU is reduced. 

CUBE CALCULUS AND RESOLUTION 

Artificial intelligence is one of the non-numeric applications with low performance in RAM­

based computers that is expected to continue to grow in importance in the near future. A key factor 

that makes artificial intelligence programs so computational intensive and suitable for associative pro­

cessing is that they are often non-deterministic. The amount of computation for AI poses requirements 

in performance that a single processor system cannot handle in reasonable time. Higher parallelism 

and concurrency are required to execute these programs at a rate that will make them find realistic 

applications. A hardware implementation of fine-grained parallelism at a lower level as the content­

addressable memory is then suggested. 

Of the representations of knowledge used in AI, predicate calculus is a more general representa­

tion but it is also less succinct than specialized languages. The retrieval of information from databases 

that use predicate calculus generally takes longer because the information is not always directly stored 

in the database. The information has to be deduced, inferred, from the database. The applications that 
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require predicate calculus or clausal forms to describe knowledge because of its expressivity, have an 

even higher processing requirements than specialized languages. 

The manipulation of declarative knowledge for artificial intelligence in clausal form is done with 

the resolution principle. A clause is equivalent to a set of literals representing their disjunction. Sim-

ply stated, the resolution principle is: If a literal of one clause is false the remainder of the clause has to 

be true. Finding two literals in different clauses that cannot be true at the same time means that at least 

one of the remainder of those two clauses is true and we can join both remainders in a new clause 

assured that the new clause is true. 

An illustration of resolution with unification is shown in the Figure 25. No conclusion can be 

drawn from the clauses marked 1 and 2 until the unifier "( is applied to clause 2 to substitute the free 

variables by constants, creating the clause 3. The application of resolution on the clauses 2 and 3 con-

eludes that the clause 4 is also true. 

1) {P(x), Q(x, y)} 
2) { -J>(A), R(B, z)} 

y=(x/A, y/z) 
3) {P(A),Q(A, y)} 
4) {R(B, z),Q(A, y)} 

Figure 25. Example of resolution and unification. 

Previously, a cube was interpreted as a product. The formulation of the consensus of two cubes 

is repeated with the notation used in logic. The consensus of two cubes will have a single cube result 

that covers both cubes if their distance is one: 

p /\q_ /\r * jJ /\r = q /\r 

If the distance is larger than one, the result cube is the empty cube: 

p/\q/\r * p/\r = q/\r/\r= 0 

If the cube is interpreted as a sum of literals, each cube is equivalent to a clause, and a function is 

equivalent to a database. The consensus operation is the dual to the resolution principle. 

pVqVr * jJVr = qVr 

pVqVr * jJVr = qVrVr= 1 
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The Figure 26 shows a simple example of resolution from [ULUG87] and its graphic representa-

tion. The example shows that resolution just states: 

If (p OR q) is true and ((NOT q) or r) is also true, it is correct to infer that (p OR r) is true also. 

In the example: 

If an object A is "not round or large" and at the same time it is "not large or do not have a hole", 

it is safe to assume that the object is also "not round or does not have a hole". It is also safe to 

assume that an object is "large or not large", but this is a trivial conclusion. 

All "mathematics" of cube calculus and CAM-based algorithms shown in this chapter can be 

applied to artificial intelligence. Testing whether a sentence is true is equivalent to testing the covering 

of the array of cubes that represents the sentence by the knowledge database. Finding all objects that 

match some relation is equivalent to the intersection between the database and the sentence that 

"I 
000 I 

stamp 

.NOTro~ OR large 

NOTJarge OR NOThole 

large nut 
101 

book I d , .. 

OxO 

dime 

large washer 

111 

quarter 

011 

round 

NOTround OR NOThole 

Figure 26. Graphical example of the resolution principle. 
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describes the relation, and so on. 

IMAGE PROCESSING AND CUBE CALCULUS 

Oldfield [0LDFIELD87] proposed the use of CAMs to process images subdivided in homogene-

ous quadrants. In that paper, an update of the image does not require the visiting of all quadrants 

because CAMs can search and identify which quadrants have to be modified. Using functional 

memories (trits) it is easy to clip an image or count the quadrants that have a certain color (property). 

The example from [0LDFIELD87] is repeated here as an illustration. The Figure 29 shows the result 

of overwriting the non-white quadrants of the update image shown in Figure 28 over the complex 

image shown in Figure 27. The images are stored in CAM as non-overlaping cubes that represent each 

quadrant. The entries in the memory are show alongside with each figure. 

Only the non-white quadrants of the update data have to be processed. In this example, only the 

entries 1, n and q of Figure 28 have to be processed. The entry 1 of the update image matches only the 

quadrant b of the image. The quadrant b and the quadrant 1 are of the same size and a simple update of 

the color of b updates the image. The quadrant specified by the entry n covers the quadrants 

represented by the entries d, e, f and g. These four quadrants can be absorbed , or sharped, from the 

image and substituted by a new entry d with the color of entry n. The quadrant of the update image q 

matches the quadrant j of the image. The quadrant j is sharped by the quadrant q generating the new 

b II 
a 

a 100**** D 
b 11000** D 
c 11010** [] 

d 1100100 D 
e 1100110 rm . 
f 1100101 II 
g 1100111 mi . 

1 J h 11011** m 
i 101 **** D 
j 111 **** D 

Figure 27. Sample image and CAM entries. 
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II: k 

k 100**** _ D 
1 11000** [fill 

m 11010** D 

0 n 11001** §I 

0 11011 ** D 

p 
r p 101**** D 

q 11100** lil 
r 11110** D 

s I t .s 11101** D 
t 11111** D 

Figure 28. Update image and CAM entries. 

quadrants represented by the new entries f, g and j. 

The basic theory used is the disjoint sharp of cubes using a quad-tree data structure and using 

cubes to represent the quadrants. Clipping of one image A from one image B is the equivalent to the 

operation (A# B ) u B. This operation is executed efficiently using CAMs. 

a -
g 

1 

f I J 

a 100**** 
b 11000** 
c 11010** 
d 11001** 
e 11100** 
f 11101** 

g 11110** 
h 11011 ** 

D 
Im 
lEI 
rm 
rm 
D 
D 
IHI 

i 101 **** D 
j 11111** D 

Figure 29. Final image and CAM entries. 



CHAPTERV 

CONCLUSIONS AND FUTURE WORK 

This work analyzed the performance improvement that results from the addition of associativity 

to the set data structure. The analysis showed that the content-addressab~e memory implements associ­

ativity and enhances the parallelism of algorithms. The communication bandwidth requirement 

between the processor and the memory is smaller in a CAM-based computer. Therefore, a CAM­

based computer has higher performance than RAM-based computer for the same system bus com­

munication bandwidth. 

No inherent fault was discovered in the associative processing model implemented with 

content-addressable memories, but only recently has the integration density permitted the integration 

of CAM ICs large enough to find realistic applications, and the understanding of content-addressable 

memories matured to defining the role of the CAM in the system beyond that of a search engine. It is 

the extended capability of execution of logic operations and the support of data structures that enabled 

the CAM to assume a more participative role in processing. Probably the strongest reason for the 

small number of CAM-based systems is the RAM monopoly of the implementations of computer 

memories. The processors and software are optimized to work in conjunction with RAMs. 

Associative processing is such a powerful model that special architectures were developed 

despite the high cost of the development of CAM ICs and dedicated software. The number and variety 

of applications of proposed application specific CAM-based systems demands the rethinking of the 

decision to concentrate research and development efforts to RAM-based computers. The prevailing 

single mindedness for memory integrated circuits was important in the development of computation 

but it is time to re-evaluate that decision in face of the wider range of applications found for comput­

ers. The technology to develop CAM-based computers is already available, as proved by the IXM2 

[HIGUCHI91] which is a CAM-based computer that presents high performance in applications for 
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which RAM-based computers have poor performance. 

It is expected that CAM-based computers will have worse performance than RAM-based com­

puters for some applications. The natural research topic that arises from this fact is the study of alter­

native architectures that blend the characteristics of RAM and CAM-based computers into an architec­

ture that is more powerful than either one isolated. To decide how to blend both computational 

models, it is necessary to know the strengths of each model. Compared to the experience accumulated 

on RAM-based computers, the CAM-based computer is almost unknown. 

The effects and applications of other data structures enhanced by associativity have to be stu­

died. And the programming environment of the CAM-based computer must be better understood, the 

substitution of RAM with CAM changes the execution speed of essential tasks. For example, search­

ing a table was always avoided by experienced programmers, The naive algorithm to sort a set of N 

values is of complexity of the order of N 2• By the development of sophisticated algorithms sorting can 

be executed in N.lo g N time. Algorithms developed for systems that use CAM taking the naive 

approach execute the same task in O(N) time, by using the processing power of N comparator circuits 

in parallel. It is conceivable that there would be a larger use of interpreters in CAM based systems 

because compilers take longer to develop and are more difficult to modify than interpreters. Com­

pilers are used because they transfer the table look-up, which implies searching and sorting, to compile 

time, speeding-up the execution of interpreted programs. Table look-ups are too expensive to be done 

while executing the program on-the-fly in RAM-based systems but not in CAM based computer sys­

tems. In the same way, programs that use more dynamic memory allocation should became more 

popular. Memory management with CAM is much simpler than memory management of dynamic 

memory allocation with RAM. Programs that use dynamic memory allocation and disorganize data 

will not be significantly slower than those that do not, because, in CAM-based computers, the over­

head of memory management and allocation is small. 

Parallel programs are not as sequential as the programs for sequential computers. CAM-based 

computer systems can take advantage of the fact that the sequence of execution of instructions in 

CAMs has to be explicitly stored to increase the parallelism. The Linda language for parallel program­

ming is one example of a high-level programming language that uses the associative memory model. 
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For more information on the Linda language please refer to: [CARRIER090, AHUJA88, CARRI-

ER088, LELER90, GELERNTER85, AHUJA86]. Ahuja [AHUJA88] showed that the implementa­

tion of the primitives of Linda with an associative memory implemented in hardware using hash cod­

ing yields significant gain in performance. Since CAMs have been shown to outperform hash coding, 

it is reasonable to expect similar or better gains with CAMs. 

CAMs also support relational calculus which finds applications in artificial intelligence. Many 

architectures were proposed for relational databases that use content-addressable memories to improve 

performance [BLAIR89, RIBEIR089, NG87, ROBINSON85, SHANKAR88, STORMON88, OLD­

FIELD86, OLDFIELD87]. And the literature on the use of CAMs for logic programming is extensive 

[BLAIR89, RIBEIR089, NG87, ROBINSON85, SHANKAR88, STORMON88, OLDFIELD86, 

OLDFIELD87]. The papers of Yokota, [YOKOTA86] Woo [W0085, O'KEEFE86] and Shobatake 

[SHOBATAKE86] do not use CAMs but could be extended to do so. 

The research of the associative model should also include alternative CAM-based computer 

architectures. The dynamic dataflow computer (and the data-driven computer) uses the data depen­

dencies to enforce the sequence of execution of instructions. This scheme of fine-grained parallelism 

yields high parallelism and the CAM is the ideal memory device to implement the matching unit of 

dataflow computers. For more information on dataflow computers please refer to: [YUBA90, 

AMAMIYA86, DAVIS82, IANNUCCI88, BUEHRER87, ARVIND82, DENNIS80, GAUDIOT86, 

GAJSKI82, GOSTELOW80, NIKHIL89, ARVIND83, 1RELEAVEN82, GAUDIOT89]. The 

dataflow computer was proposed for the execution of logic programs and the implementation of expert 

systems to make use of the inherent parallelism of these applications [BIC84, ROKEY85, 

MURAKAMI83]. High parallelism and artificial intelligence are two of the characteristics of the "fifth 

generation computer" [MOTO-OKA83, TRELEA VEN83] which was proposed to address the issues 

raised in Chapter I. This research leads to the conclusion that CAMs will be a building block of this 

computer. 

This thesis has not completely answered all the questions that it set out to answer. And the 

answers found raised more questions. But we believe that the questions raised are more important and 

in a higher level than the original ones. 
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