
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-26-1991

Associative Processing Implemented with Content-Associative Processing Implemented with Content-

Addressable Memories Addressable Memories

Luis Sergio Kida
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kida, Luis Sergio, "Associative Processing Implemented with Content-Addressable Memories" (1991).
Dissertations and Theses. Paper 4176.
https://doi.org/10.15760/etd.6060

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4176
https://doi.org/10.15760/etd.6060
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Luis Sergio Kida for the Master of Science in Electrical and

Computer Engineering presented July 26, 1991.

Title: Associative Processing Implemented with Content-Addressable Memories.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

~A7WW

Wchael A. Driscoll

Richard G. Hamlet

The associative processing model provides an alternative solution to the von Neumann

bottleneck. The memory of an associative computer takes some of the responsibility for processing.

Only intermediate results are exchanged between memory and processor. This greatly reduces the

amount of communication between them. Content-addressable memories are one implementation of

memory for this computational model. Associative computers implemented with CAMs have

2

reported performance improvements of three orders of magnitude, which is equivalent to the perfor-

mance of the same application running in a conventional computer with clock frequencies of the order

of GHz. Among the benefits of content-addressable memories to the computer system are: 1) it is

simpler to parallelize algorithms and implement concurrency; 2) the synchronization cost for parallel

processing is lower, which enables the use of small grain parallelism; 3) it can improve the perfor

mance in non-numeric applications that are known to have low performance in conventional comput

ers; 4) it provides a trade off between integration density and clock frequencies to achieve the same

performance that is not available in RAM 5) matches well to current and future technologies due to

the trade off between integration and clock frequency; 6) it attacks the von Neumann bottleneck by

reducing the requirements on the communication bandwidth between processor and memory.

In this thesis, the role of CAMs in associative processing is analyzed, reaching the conclusion

that to implement these characteristics the CAM must be able to filter the data transferred to the pro

cessor, provide explicit support for parallelism and data structures, support non-numeric applications,

and execute logical operations. The characteristics and architecture of a content-addressable memory

integrated circuit are presented along with an application with estimated performance improvement of

over three orders of magnitude .

ASSOCIATIVE PROCESSING IMPLEMEN1ED WITH

CON1ENT-ADDRESSABLE MEMORIES

by

LUIS SERGIO KIDA

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASIBR OF SCIENCE
in

ELECTRICAL AND COMPUIBR ENGINEERING

Portland State University
1991

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Luis Sergio Kida presented July 26, 1991.

Michael A. Driscoll

APPROVED:

Rolf Schaumann, Chair, Department of Electrical Engine.erlng

C. William Savery, Vice Provost for Graduate S

SJU<J.JVd AW 0 .L

TABLE OF CONTENTS

LIST OFT ABLES ... iv

LIST OF FIGURES ... v

CHAP'IER PAGE

I IN1RODUCTION ... 1

Motivation .. 1

The von Neumann Model of Computation and Parallelism 3

An Alternative Computer Memory Model .. 6

II CON1ENT-ADDRESSABLE MEMORY (CAM) :...................... 11

CAM Building Blocks ... 13

General Issues in the Integration of CAMs ... 24

III· BASIC COMPUTATIONAL TASKS AND CAMS... 32

Data Storage ... 32

IV CUBE CALCULUS ... 39

Basic Concepts ... 39

Operations with Cubes ... 43

Using CAMs for Cube Calculus .. 49

Logic Minimization of Synthesis of Boolean Functions 52

Cube Calculus and Resolution•.. 64

Image Processing and cube Calculus•.. 67

V CONCLUSIONS AND FUTURE WORK .. 69

REFERENCES•.. 72

LIST OF TABLES

TABLE PAGE

I Execution Time of the Sharp Product on a RAM-Based Computer 57

II Execution Profile of F 1 # F 2 ••• •• ••••• •• ••••• •••••••••••• ••••• •• ••••• ••••• •• ••• •••• ••• ••••••• •• ••••• ••••• ••••. •• ••• •• • 58

III Execution Profile of F 2 # F 1 •••••.•••••. •.. .. .• .•• .•••• ••. .••.•..••.•••. ••••••••.•••... •••• ••. .. ••. •••••..•••• 58

IV Execution Profile of F 1 # F 3 •••••••••••••.•••••••••••••••••••••••••••••••••.•• 59

V Cummulative Cost of Sorting Cubes ... 59

LIST OF FIGURES

FIGURE PAGE

1 The von Neumann computer architecture. ... 2

2 Block diagram of a CAM. .. 12

3 Static CAM cell.. 14

4 Functional memory cell. .. 16

5 Content addressable ROM (CAROM) ... 23

6 CAM bank built with minimum additional logic ... 27

7 CAM bank with hierarchy ··:·········· 28

8 Set data structure implemented with CAMs .. 36

9 Examples of Kamaugh maps and hyperspace ... 43

10 Examples of cube union ... 45

11 Inversion of functions .. 46

12 Sharp operation .. 47

13 Two examples of cube consensus .. - "'···~-,.......... 48

14 Detennining the covering relation among cubes with CAMs ~.... 50

15 Testing if cubes overlap using CAMs .. 50

16 Memory before and after intersection.. 51

17 State of the memory before processing ... 53

18 Patterns used for the generation of resultant cubes ... 53

19 Memory after the sharp ... :.............. 54

20 Results after the removal of empty cubes .. 54

21 Kamaugh map of F and g used in the example of sharp ... 54

22 Sharp of two cubes of a multiple output function .. 56

vi

23 Algorithm to sharp a cube out of a multiple output function ···················~····················· 57

24 Estimate of the execution time of shrup in a CAM .. 60

25 Example of resolution and unification ... 65

26 Graphical example of the resolution principle ... 66

27 Sample image and CAM entries .. 67

28 Update image and CAM entries ... 68

29 Final image and CAM entries .. 68

CHAPIERI

INIRODUCTION

Content-addressable memories have been known for over 30 years and there is an extensive list

of proposed applications for them in the literature. Nevertheless, con~nt-addressable memories are

devices almost unknown to the majority of the engineers in the electronics industry. This master's

thesis proposes to organize the existing information on content-addressable memories and show that

the lack of systems using content-addressable memories is not due to an inherent fault in the content

addressable memory model.

To achieve this goal, I will outline an application niche that is not well served by current com

puter systems and present the characteristics of the associative processing model that can execute these

applications effectively. The content-addressable memory is one implementation of this model. The

characteristics of content-addressable memories and the circuits required to implement content

addressable memories are also described. I will also investigate the data structures that are improved

by the addition of associativity and identify the applications that benefit from associativity.

MOTIVATION

The demand for more processing power and more memory continues to increase. In the last 25

years, advances in computer performance have been tied to advances in microelectronics through fas

ter technologies and the integration of system's bottlenecks. Since the introduction of the Dynamic

Random Access Memories (DRAM) 20 years ago, the density of integrated DRAMs has quadrupled

every 3 years [ITOH90] and the number of devices in commercially available integrated circuits has

doubled every year [SEITZ84]. During the same period, the computer architecture has remained close

to the von Neumann paradigm of a single sequential processor, a storage device and an input/output

channel. Figure 1 shows the block diagram of the von Neumann computer architecture.

System Bus

II

Ii

Storage Device

(memory)

Processing Device

(CPU)

'

w
I\

II

1/0 Channel

(user interface
mass storage)

Figure 1. The von Neumann computer architecture.

2

The simplicity and elegance of the von Neumann paradigm allied with the fast development of

microelectronics are responsible for the past developments in computation. To obtain further perfor-

mance increase and take advantage of new technologies, modifications have been made to the von

Neumann architecture. These modifications include higher integration and the increased use of paral-

lelism. Three key reasons for changing the von Neumann computer architecture style have been

identified [MOTO-OKA83, SETIZ84]:

(1) Computer system architectures have to match current and future technologies. Device speeds are

approaching fundamental technological limits. And much before that, the circuit dimensions

and speed will approach the limits where Kirchoffs laws no longer apply. The von Neumann

single processor cannot continue indefinitely to increase in complexity and performance. VLSI

substantially reduces hardware costs suggesting the use of parallel processing architectures.

(2) There are more problems to be solved than computer scientists to solve them. Programming and

computer problem solving have to be simpler in order to enable more people to effectively use

computers. One way to improve productivity is through more sophisticated human interfaces,

natural programming languages, or more unconventional approaches. The von Neumann archi-

tecture was developed to answer computer implementation needs, not human needs.

3

(3) A general purpose computer system has to provide acceptable performance in a large class of

applications. The structure and the processing principles of general-purpose computers used

today mainly take into account the demands of numerical algorithms [ZEIDLER89]. Current

computers have poor performance in applications for processing speech, text, graphs, images,

non-numerical data and for artificial intelligence. These applications are important for the

implementation of a better human interface.

This thesis reports my investigation into computer architectures that use content-addressable

memories as an alternative to improve performance.

THE VON NEUMANN MODEL OF COMPUTATION AND PARALLELISM

The principle of multi-processing is to have more than one processor cooperating to execute the

same job. Systems with more than one processing device depart from the well accepted von Nt'.u

mann architecture in a manner that change computation in fundamental ways:

(1) Many processors cooperating in the same task have an attendant requirement for synchroni7.a

tion and communication between the processors non-existent in sequential processors. That

requirement results in often substantial overhead for multi-processor systems, either in time

(performance) or in hardware.

(2) Multi-processor systems also require the development of parallel algorithms to deliver their

potential performance. However, the techniques to develop parallel algorithms are not as

developed as those for sequential algorithms.

(3) To make full use of the processors, the parallel programmer or the compiler has to find enough

parallelism in the problem to keep all processors busy. The task of finding this partitioning can

be expensive.

It is also known that the gain in performance with multi-processing has its limits. For a given

parallel algorithm there is an optimal number of processors to solve a problem and therefore, increas

ing the number of processors beyond that number does not lead to linear increase in performance. Par

titioning the job into many pieces can even degrade the performance because of the overhead in syn-

4

chronization. The simple application of a higher degree of multi-processing alone is not the final solu-

tion to the quest for improved computer performance. However, parallel processing continues to

improve its position because there are technological advantages in multi-processing. The lower costs

of the individual processor and Very Large Scale Integration (VLSI) makes multi-processor systems a

cost effective solution. The proposed memory model has to consider parallel processing. Many exist

ing multi-processor systems use multiple von Neumann processors. Because of the sequential nature

of the von Neumann processors, this style of parallel computation can have a large overhead to imple

ment synchronization and communication. To limit the overhead, von Neumann style multi-processor

systems have the tendency to sub-divide the job into few large pieces in what is called coarse grained

parallelism, as opposed to fine grained parallelism that sub-divides the job into many smaller tasks

enhancing the potential concurrency of processing.

Another main component of the von Neumann computer model that should be considered is the

storage device. To understand how the change of memory model affects the computer system, the

von Neumann memory model and the effect of multi-processing on memory organization are

reviewed.

The single storage device in the von Neumann architecture can be viewed as a black box that

takes an address and uses it to select a storage location. This storage location is used to store data via

the write operation or to retrieve data previously stored in that location via the read operation.

Although all the storage devices studied in this document can access the pieces of memory stored in

any order, historically this device is called random access memory (RAM) as opposed to magnetic tape

mass storage that accessed data in a fixed order. RAMs store data associated with an artificial code,

the address. The address refers to the physical location, not with the datum it stores. A physical loca

tion is selected based on the address associated to iL

In the von Neumann model, data and instructions are stored in RAM and have to be transferred

to and from memory and processor. The characteristic of sequential access to memory, one datum at a

time, limits the system performance and is known as the von Neumann bottleneck. For maximum

efficiency, the memory has to feed data at the same rate the processor consumes iL This sequential

nature of RAM creates serious disadvantages when multiple processing units are introduced.

5

There are two main parameters to evaluate the storage device implemented with RAM in the von

Neumann architecture. Those parameters are the maximum rate that data can be accessed and the

maximum amount of data that the memory device can store. Larger memories are needed to solve the

increasingly larger problems found in current applications. It takes longer to process the massive

amount of information stored in this larger memory. To reduce the execution time, the processor and

the memory must run at a higher speed.

Multiple processors in the system provide the processing power to execute these larger problems

but also stress the fact that the path between the memory and the processor is the key limiting factor

for system performance. For example, one scheme of connecting multi-processors and memory is

shared memory where each memory word has a global address. Multi-processor systems have higher

peak demand and potentially consume data at higher average rates and because there is only a single

data bus to access memory, each processor has to "wait for its tum" to access memory~ A second

scheme is message passing or local memory. Local memories try to widen the system memory

bandwidth by giving some of the memory to each processor with the scope of the address of each word

localized. To share data, messages are passed through a communication network between the proces

sor requesting the information and the processor that has the data stored in its local memory. Distri

buted and shared memories are like two ends of a possible continuum of architectures for storage using

the same memory model. One notable enhancement of memory systems is the introduction of

hierarchical memory levels like paging store and cache. The effectiveness of cache memories relies

on the prediction of which data will be accessed in the near future. The need for a good prediction of

the next access to memory explains in part the loss of performance in applications that dynamically

disorder data in memory. Caches can be used with either shared or local memories.

The traffic between processor and memory is not used solely to exchange data. Communication

of the address also consumes some of the communication bandwidth between memory and processor.

· Addressing by location is particularly inefficient when:

(1) data is associated with several sets of reference properties (e.g. address pointers).

(2) the size of data elements is small when compared to the reference properties that have to be

stored with them.

6

(3) during processing data becomes dynamically disordered in memory.

There is a large overlap between the applications for which von Neumann architectures are con

sidered inefficient and those where addressing by location creates a large overhead That is one of the

main reasons this research is focused on a different computer memory model.

Regardless of these modifications, three observations can be made:

(1) The modifications to the memory architecture have not changed the concept of memory

significantly. A better memory still means a larger and faster one.

(2) Parallel processing is becoming increasingly popular. RAM was developed to fit the von Neu

mann architecture and does not couple well with parallel processing demands.

(3) Many applications for which von Neumann type architectures have poor performance are also

applications in which address calculation overhead can be substantial.

AN AL1ERNATIVE COMPUTER MEMORY MODEL

A different memory model that comes to mind is the biological model Human memory is

known for its ability to process non-numerical data, image, speech and for (natural) intelligence.

Computer memories that model the human memory may capture some of these qualities.

In Aristotle's observations on the human memory [SORABJI72], he makes a distinction

between the simple storage of information and storage and processing of information. Aristotle called

each action remembering and recollecting, respectively. Remembering, according to him, retrieves

data exactly as it was presented. And recollection returns the data massaged by reasoning.

Aristotle observed that recollections seem to be a synthesis of memorized information. The

recollection process is a sort of reasoning that would remember an image not necessarily identical to

the original occurrence. Human recollections do not have to be exactly what was originally presented;

they can be modified by the interaction with other knowledge. The human memory functions are

quite different from the von Neumann computer memory. There is no clear distinction between pro

cessing and storage in the human memory suggesting that computer memory structures should perform

part of the processing.

7

The following features were selected from human memory as parameters to evaluate memory

models based on their apparent importance in the human thought process and the potential improve

ment they could bring if introduced to computer systems [KOHONEN80].

(1) Direct association or auto-association: recollect a data structure from a fragment of the datum

large enough to enable recognition.

(2) Indirect association or hetero-association or association by inference: recollect data from pieces

of data that are not similar to, nor part of, the data to be recalled. Uses reasoning, a sequence of

many direct associations to make associations by meaning.

(3) Sequential recollections, or temporal association, or temporal recall: the memory also stores the

sequence in which data should be recalled. There is a sense of time and/or order.

(4) Robustness: Recollections using a key contaminated by noise will recall data that is most similar

by some measure to what should have been recalled by the perfect key in an optimal way.

(5) Graceful degradation and fault-tolerance: damage to memory cells degrades the results grace

fully instead of impairing the whole process.

Associativity is possibly the most desirable characteristic of human memory. The term associa

tive memory is used to refer to a memory that is capable of some kind of data access through associa

tion. Kohonen [KOHONEN80] named the type of processing that uses associative memories associa

tive processing. In associative processing, address calculations are eliminated, eliminating one inter

mediate stage between human conception and computer implementation and reducing the traffic

between the processing device and the memory device. The computational work load is shared by the

memory and by the processor. Non-numerical applications can also use the support of the associative

memory to execute basic logic operations. The next sections outline two extremes in the range of

implementations of associative memories and discuss the implementation issues of associative

memories and how well they answer to the basic requirements of:

(1) Improving the performance of basic functions for processing speech, text, graphs, images and

other non-numerical data, artificial intelligence type processing such as inference, association

and learning.

8

(2) Simpler programming.

(3) Matching the implementation to current and future technologies.

Associative Memory Emulation Using Random Access Memories

Unlike RAM that stores data by address, associative memories store data based on the data con

tents and on associations to other data stored in memory. Associative memories implemented with

RAM have to emulate associations using addresses. This requires an overhead of memory usage and

processing and further stresses the constraint imposed by the path between memory and processor, the

von Neumann bottleneck. Furthermore, the desired characteristics of associative memories are imple

mented through software, through schemes such as hash coding and indirect association with the infer

ence process and artificial intelligence programs. Although RAM can emulate associative memories

with the use of more storage and the participation of the processing device, associative memory emula

tion is one application where RAMs are inefficient.

RAM store data in a single physical location. The data stored in RAM is completely lost in case

of malfunction or damage to the location that stores the data unless error correction, fault tolerance

and graceful degradation are explicitly provided through proper storage with redundancy and error

correcting codes. Error detecting codes require the addition of at least n bits to the data word to detect

any error of length n-1 bits or less [HAMMOND86]. Error correcting codes require that an even

larger portion of the memory be reserved for redundancy. Storage of information with fault tolerance

in RAM demands more memory and processing than only storing data.

There is an additional cost in processing and memory associated to the implementation of each

of the features of associative memories analyred. Although the equivalent of the von Neumann pro

cessing device could emulate these features in software, this implementation most likely would not

enhance the performance of the computer system.

Associative Memory Implemented with Artificial Neural Networks (ANN)

The artificial neural network (ANN), is a massively parallel array of highly interconnected sim

ple computational units, called the artificial neurons. The interconnections between neurons are called

9

synapses. Synapses are the way neurons communicate and in this manner cooperate to perform collec-

tive computations [MURRA Y89].

The behavior of an ANN is determined by its synapses. A neural network has to be trained to

perform a desired behavior like direct association (pattern recognition). The training of a neural net

work consists of adjusting the interconnection weights until the neural network produces the desired

outputs. ANN "programming" is conceptually simple and uniform.

Associative memories implemented with artificial neural networks are the ones that best cap

tures the features of human memory. Associative memories implemented with ANN have natural

fault tolerance because the information is stored in a distributed manner in the neural network. The

contribution of any single element is small and therefore the failure of one element has a small impact

on the storage of any individual datum.

Memories implemented with ANNs have a very small ratio of storage capacity to hardware used

to implement it. An ANN associative memory interconnected as the well known Hoppfield net, has a

storage capacity of patterns proportional to N/logN where N is the number of neurons. Error correct

ing capabilities are added with even larger use of neurons. For the ANN to be able to correct up to n

bits, that is to say that each stable state of the ANN has a radius of attraction 'n' [NIJHUIS89], the

storage capacity has to be corrected by the factor 0.5(1 - 2n IN). If the patterns to be stored are not

favorable for error correction, that is the differences in the patterns are small, the storage capacity of

the ANN is even smaller [NUHUIS89].

ANNs are robust, degrade gracefully and can be trained to associate. But, to achieve these

remarkable characteristics, ANNs depend on massive use of hardware. Large numbers of neurons and

synapses are necessary to execute relevant work. The major problem of ANN computer memories is

its implementation. A neuron is an element more complex to implement than a simple storage cell and

the increase in storage capacity is less than linear with the increase in the number of neurons. So,

ANN computer memory implementations would consume significantly more silicon real estate than

traditional implementations. Current integrated ANN ICs have on the order of hundreds of neurons.

For more information on ANN implementations please refer to [HOILIS90, HOW ARD87, SAGE86,

BORGSTROM90, RUECKERT87, VITIOZ89, WEGMANN90, HAMMERSTROM90, GRAF87,

10

MURRAY89, BRUCE88]

Summary

A limit to the performance of present computer architectures is the communication between the

processing device and the memory device. Also, the performance of present computers in non

numeric applications is unsatisfactory. Computation with associative memories is one alternative to

improving the performance of computers and. specifically, to improve the performance on non

numeric applications.

The RAM and the ANN are two extremes of memory device implementation. RAM is capable

of storing large amounts of information in relatively small area. But, data manipulation is inefficient

because it can only associate information to the location where it is stored. ANN, on the other hand. is

extremely powerful. But the hardware cost is prohibitive. Furthermore, the computational model of

ANNs is radically different from the present one and is incompatible with current algorithms and pro

grams.

Aristotle had already observed that the people who are slow are better at remembering, while

those who are quick and learn well are better at recollecting [SORABil72]. The same occurs with

artificial memory. The comparison between RAM and ANN shows that for the same amount of

hardware, it is necessary to sacrifice storage capacity for convenience of handling.

In the next chapter the content-addressable memory (CAM) is presented. The content

addressable memory balances high level functions and storage densities to achieve high performance

by distributing logic circuits within the storage devices to incorporate features of associative

memories at the circuit level.

CHAP'IERII

CONTENT-ADDRESSABLE MEMORY (CAM)

The content-addressable memory is the proposed device to implement associative memory and

to improve the performance in non-numeric applications. This chapter _describes the basic features of

the CAM at the behavioral and functional level and the expected characteristics of an integrated

content-addressable memory circuit

There are many memory devices with very different characteristics in the literature under the

name content-addressable memory. For the purp0se of this discussion a CAM is a memory device that

uses a technology similar to the one used in RAMs to store information but, contrary to RAM, the

CAM selects the physical location based on the data contents. While the RAM requires the address of

the location in which the information is stored, the processor has only to describe the data it wants to

access and the CAM selects stored data matching the description. Valid descriptions of memory

words usually include combinations of the following properties: matching a binary pattern, being

smaller or larger than a value, being in a range of values, being the largest value stored, and being the

smallest value stored within a CAM. These comparisons are performed in parallel with the time

required to execute the operation essentially independent from the number of words stored in memory.

After the set of matching words is determined, another important function of the CAM takes place.

Generally, each word, or element, of this set has to be accessed sequentially. The CAM sub-divides

the set of matching words into many single element sets that can be sequentially accessed.

Some CAMs are also capable of limited data manipulation on the set of matching words such as

bitwise inversion, logic operations such as OR and AND, and arithmetic operations such as the addi

tion or subtraction of constants. The following section presents how each of these characteristics are

translated into building blocks of a CAM architecture. The architecture will be described in a bottom

up approach.

12

The CAM architectures discussed in this work implement equality comparisons at hardware

level and implement more complex comparisons as a sequence of equality comparisons, usually con-

trolled internally by the CAM. CAM designs such as [RAMAMOORTHY78] and [LEE85] which

implement more complex comparisons in hardware by implementing other types of logic, such as

magnitude comparators and arithmetic functions, will not be discussed. The major building blocks of

a CAM architecture are the data, search key and mask registers, array of CAM cells (CAM storage),

registers for the search responses (HREGs), processors to operate on the search responses (HPE), and

an arbiter to decide which matching word gains access to the data bus (MRR). They are shown

without their control in Figure 2.

HOST CPU

t r---,
data register

CAM
search key reg.

mask register

I I

I I
I I

CAM storage HPE HREG
MRR

I I
I I

I I .
I I

L---J
Figure 2. Block diagram of a CAM.

13

CAM BUILDING BLOCKS

CAM Storage

The distinguishing feature of a CAM is its ability to compare search data and stored data. The

equality comparison is the product of the bit by bit logical equivalence between key bits (keyi) and

bits of the stored data (memory ft) for each of the b bits of the word. The result of the comparison of

word j with search word. key, is given by the logical function HITj shown in equation (1).

'>

HITi = 0 vnemoryfi @keyi) (1)

CAMs that only perform an exact or perfect match have limited application because only a test

of the presence of a copy of the search key stored in memory is possible. For example, the unmasked

search for the relation (John, father, Mary) in a database that stores family relations can only answ~r

whether the relation is true or false. To increase their functionality, CAMs will generally include an

additional control for each bit of the word to select the bit columns that participate in the search

(maski). The control signal mask; prevents the bit stored in column i from affecting the result of the

search. Equation (1) is modified to reflect this feature in equation (2).

"=b
HITi = ll ((memory ft (!) keyi) + maski) (2)

Many terms are used in the literature to refer to this kind of comparison. Among them are:

masked exact match, masked perfect match, exact match with mask, perfect match with mask, masked

search, etc. In this work I will use the term masked search. Wherever a search is mentioned without

specifying if it is a masked or unmasked search it can be assumed that it is to a masked search. The

operation of selecting bits will be called masking and the circuitry to implement masking, masking cir-

cuitry. Masked search is the basic operation of CAMs. By selecting the bits which will participate in

the comparison, the CAM is capable of selecting words by partial information, in effect, direct associa-

tion. The masked search for relations matching (*, father, Mary) returns the identity of the father of

Mary. The asterisk (*) is used in this thesis as a "wild card" that will make a search match to a

14

sequence of symbols. And the question mark (J) is used as a wild card that matches to any single sym-

bol.

The circuit in Figure 3 implements equation (2) for one bit. The bit is stored in a static memory

cell that is selected by the signal word select (WS;) high, the comparison is implemented with a pass

transistor XNOR gate, and the results of the comparisons are accumulated in a wired-NOR gate. HIT;

is evaluated by wire-anding the HIT;; of each of the CAM cells of word j. External masking is

achieved by driving both key; and key; to low at the same time.

key; key;

memory;; memory;;

WS;

1--- <J-----1
i~~-______y-[___·~~ma-,-~_hP_··~~~~

HIT ft

--l

Figure 3. Static CAM cell.

In external masking, external information is used to generalize the search. By selecting which

bits of the memory word will participate in the comparison, the CAM with external masking is capable

of selecting words by partial memory information. For applications that require that each word masks

different bits, another model of CAM stores an individual mask for each word This kind of bit mask-

ing for individual words is called internal masking. CAMs that have internal masking are sometimes

15

called functional memories. Functional memories can select words by partial search key information.

Memory words with internal masks use local information to generalize the search and match a larger

number of binary patterns of search keys. For example, a database that stores qualities of John and

Mary might store:

individual quality
John handsome
Mary pretty
* sophisticated

The quality sophisticated is shared by John and Mary and is internally masked to match searches on

either (John,*) or (Mary,*). The seach with external mask (John,*) matches the qualities, or words,

handsome and sophisticated.

Equation (3) gives the functional description of the match on CAMs with internal and external

masking, where /mask/ is the internal mask of bit i of word j.

HITi = tJ ((memory ft @ key;) + mask; +I mask/) (3)

CAMs implement internal masking either through functional memories or by using more CAM

cells with external masking. Functional memories cells have an extra storage cell to store the internal

mask for each word in memory. Figure 4 shows the schematic of a functional memory cell. The

storage cell in the lower portion of the figure stores the internal mask. Internal masking can be emu-

lated in CAM that have external masking by reserving two memory bits to store each bit of data. For

example, the logical I can be stored as the pattern 01, logical 0 as 10, don't care as 00 and contradic-

tion as 11. A search for a 1 is converted to the masked search for the pattern O? and the search for log-

ical 0 into the masked search for the pattern ?O. Chapter IV will show one application of CAM for

logic minimization where unmasked data is used to represent a minterm and masked data is used to

represent a cube.

16

bit bit

ws
----- I memory memory I 1

HIT ---·-- --·---

/mask /mask

I ImaskWS I

Figure 4. Functional memory cell.

Multiple and Partial Access

This section discusses two important features of CAMs. The first one is partial access, which is

used for bit manipulation of memory words. It will be shown that bit manipulation adds processing to

the CAM. The second feature is multiple access which adds a fine-grained parallelism to the bit mani

pulations.

The partial read uses the concept of a "mask" for a read operation. Only selected or unmasked

bits of a word are read, preserving the previous value of the masked bits in the data register. The par

tial read operation combines bits from one word in memory with bits in the data register. The infor-

17

mation in two or more memory words can be combined inside the CAM without transferring data to

the host processor. Combining bits of two different words in a RAM-based computer system

requires processing and two bus transactions between memory and processor. The same operation in a

CAM with partial read capability with different masks reads bits of both words into the CAM data

register, combining the bits of the two (or more) internal read operations into a single word. The pro

cessing is done in the memory reducing the processor workload and the data traffic between the

memory and the processor.

The partial write feature of CAMs executes the dual operation of a masked read storing the final

result in the memory cells instead of in the data register. The masked bits of the matching word are

not written, or modified, preserving their previous values. At the end of the partial write operation, the

word in memory is altered.

The importance of multiple and partial access is illustrated with the very common situation

where data words are divided into fields, artificially delimited in the examples by commas (,), and the

memory and the processor have to combine one field of word A with another field of word B.

(apple.red); (red.sweet) => (apple.sweet)

(1010,1010); (1100,1100) => (1010,1100)

In the above example, apple, red, and sweet are binary fields much like the binary patterns of the

second example. The joining of two fields is achieved with two partial access operations with the

appropriate masks. To achieve the same results with RAMs and a processor, both words A and Bare

transferred to the processor that combines them with logical operations.

((apple.red) AND (1 ... 1,0 ... 0)) OR ((red,sweet)) AND (0 ... 0,1...1)) = (apple,sweet).

((1010,1010) AND (1111,0000)) OR ((1100,1100)) AND (0000,1111)) = (1010,1100).

Multiple write stores in parallel, the information in the input data register into more than one

word in parallel, creating multiple copies of the data. Multiple identical copies in the CAM are many

times useless because they all match the same keys and one copy of the data suffices. There are situa

tions, however, when it is desirable to store identical memory words. Among them are the cases

where the requested information is only the number or pattern of matching words (HIT) [HIRATA88,

18

TA V ANGARIAN89].

The multiple read operation permits access to the data bus by more than one wor-d at the same

time. During the multiple read, the data bus executes an analog sum of the contents in the accessed

memory words which, then, is sampled by the data register.

The multiple read and multiple write features have limited applications but, the multiple write

combined with partial access will be shown to be a powerful feature. While the partial access opera-

tions enable bit manipulation, they have to do so sequentially for each matching word. Multiple access

increases the parallelism of the CAM architecture for data manipulation. Multiple partial writing can

execute in parallel the modifications in the same field of all matching words instead of having to

modify each word sequentially in multiple read-modify-write cycles or in many partial write cycles.

The partial read is easy to implement The read cycle is performed normally for all columns but

only data registers of unmasked bits will sample the data bus. The multiple write feature is harder .to

implement because it requires strong data drivers. The capacitive and resistive load of the memory

cells selected for the multiple write are added, limiting the speed and the practical maximum number

of words that can be written at the same time.

Search Output

The results of a search must be available outside the CAM IC. One important feature present in

most CAM architectures is a signal to flag matching words after a search. SOME/NONE is the binary

function that collects the responses of each of the w words in the memory to determine the existence

of matching words. Equation (4) describes SOME/NONE as a logical OR of the HITs of each one of

the words in memory.

w
SOME /NONE=1~H/Ti (4)

Similar output signals from a search are the number of matching words, mismatching words,

unused and used words. Many applications require the calculation of SOME/NONE or an equivalent

function. This value is provided in a CAM through hardware. The function SOME/NONE is usually

implemented by a wired-NOR of the H!Tj of each word In associative memories implemented with

19

RAM and search algorithms, SOME/NONE is calculated during the sequential search.

Multiple Response Resolution (MRR)

The comparison logic circuits in each of the words work in parallel and independently. There

fore, more than one word may match the same search key. If the result of the search is directly used to

read the matching words, the voltage in the data lines during the read operation will be the analog sum

of the contents of all matching words (see multiple read above). A means to select one word at a time

has to be provided to successfully read each value individually. The circuit that performs this task is

often called multiple response resolver (MRR) because it solves the conflict between the multiple

matching words that want to access the data bus, or priority resolver because it prioritizes the match

ing words to determine which one will have access to the data bus first.

The MRR is needed because there is only one data bus shared by all words. For example, if we

have stored (John, father, Mary) and (John, father, JohnJr) and we search with the key (John, father, *)

both relations are found. The MRR is used to select which one will be accessed first Multiple

response resolution is unnecessary with search algorithms because of the sequential nature of the von

Neumann architecture. Likewise, the MRR can be left out of CAM architectures dedicated to applica

tions for which it can be guaranteed that multiple matches will not happen.

The performance of the MRR directly affects the performance of the CAM memory because it

has a key role in determining the maximum rate of access to data. The access to the bus between

memory (CAM) and processor is again the limiting factor for performance. But this time the require

ments on the bus bandwidth are smaller because only qualified data (matching words) are competing

for the resource.

The implementation of MRRs, or the problem of converting a pattern with many scattered ones

such as the result of a search into a selection pattern with a single logic one is well known. Lee

[LEE85] divided the MRR circuits used in CAMs into two classes. One class of MRR prioritizes the

responding words based on the data contents of the word. This scheme is consistent with the address

less model of CAMs. He called this scheme of MRR value-ordered retrieval. The value-ordered

"MRR resembles a machine that starts with the set of words matching the specifications given by the

20

user and continues to "trim" the set of matching words using a sequence of searches determined by the

MRR until it reduces the initial set to a set simple enough that it can access the data bus without

conflicts. The other class of MRR prioritizes the responding words according to their physical loca

tion. It was called address-ordered retrieval. The address-ordered MRR resembles the combinatorial

logic found in a daisy chain. The priority of a word is defined by its position in the daisy chain.

Address-ordered retrieval introduces the association of a physical location to a memory word from the

RAM architecture to the CAM architecture.

The simplest approach to implement the priority logic for an address-ordered scheme is to build

a chain of simple iterative circuits that can inhibit the output of cells that are lower in the chain. The

delay and the circuitry of the MRR grow linearly with the number of words. Since response resolution

is essential to determine the memory access time, a slow MRR circuit will negatively affect the perfor

mance of the CAM. Foster [FOSTER76] and Anderson [ANDERSON74] proposed to generate the

inhibit signal combinatorially to speed up the MRR process similar to a carry look-ahead of an adder.

These proposed schemes use a tree-like structure to generate the inhibit signals to the words with

lower priority. The tree structure provides logarithmic settling time in exchange for the exponential

growth in the number of gates.

Ogura [OGURA85] also proposed an area/speed compromise with a more "flattened" tree struc

ture. The number of levels and words grouped in each look-ahead block is defined by the optimization

of delay and the amount of hardware used. The calculation of the critical path delay is similar to the

calculation of the critical path delay of the Manchester carry look-ahead in adders. Because of layout

and speed considerations it is probable that the capacitance of the wired-NOR SOME/NONE will be

broken into many partial SOME/NONEs and more levels of wired-NOR will be added to generate the

global SOME/NONE signal. Notice that the split SOME/NONE is functionally equivalent to the carry

look-ahead used in the priority resolver. The hardware of the SOME/NONE can be shared with the

address-ordered MRR.

The delay and circuitry of address-ordered schemes are strongly correlated to the number of

words in the CAM memory. The alternative scheme of value-ordered prioritizes responders according

to their contents [RAMAMOORTHY78, LEE85]. All responding words must have different values in

21

order to have unique responses resulting from ordered retrieval. To guarantee this, Ramamoorthy

[RAMAMOORTHY78] proposed that each word should have a tag with a distinguishable value. That

tag has to be at least logz(w) long for a memory with w words. One disadvantage of using tags, espe

cially if they are hardwired in the design, is that the regularity of design would be smaller because

each word is designed with a different tag. Without the individual tags, memory words that store

identical data will access the ·bus together, but without contention. It is impossible to identify the

location or the number of words that store the same data accessing the bus at one time. This precludes

the application of this kind of addressless CAM for applications based on the pattern of matching

words.

The time needed to select a responding word in the ordered retrieval scheme of MRR is the time

used to sort the matching words. In CAMs, this time is proportional to log(b), when the word itself is

used for sorting, where b is the number of bits of the memory word, or proportional to log(log(w))

when a tag is appended to each word. In either case, the response resolution is much faster than the

address-ordered MRR schemes. Also, it will be seen later that the tag used for priority resolution will

find applications in testing and address encoding and address decoding.

Address-ordered MRR that achieve a logarithmic memory size dependence of the speed of

response resolution use priority trees with extensive use of hardware [FOS1ER76, ANDERSON74].

Value-ordered retrieval achieves logarithmic dependence using the hardware that already exists in the

CAM design. Additional hardware can be added to further improve the performance of value-ordered

MRR [LEE85].

Address Encoder and Address Decoder

The "addressing" for a content-addressable read and write access uses the accumulation of one

or more consecutive searches in the HREG (see the description of the HREG ahead) to access all

matching words in parallel or select them sequentially with the MRR through a feed-back circuit that

drives the word select lines (WS) with the output of the HREGs or with the output of the MRR. In the

sequential access, the MRR selects the matching word with the highest priority. Words with lower

priority are accessed without having to repeat the searches by using another feed-back circuit to reset

22

the HIT register bit of the word selected by the very output of the MRR. With the highest priority

word reset, the priority resolver selects the word of next highest priority. This process_ can continue

until all words have been accessed.

This model of memory access is as powerful and complete as the RAM memory model. But,

until microprocessors and application programs under this model are developed, the CAM should also

provide access by address to emulate RAMs. RAM emulation utilizing the procedure used for CAM

addressing is slow. The conventional solution to this problem is to include an address decoder and an

address encoder in the CAM architecture. The address decoder provides the compatibility with

RAM-based computers and the association of the memory words to a physical location provides an

alternate output form to the result of the searches. Then, the compatibility with RAMs can be achieved

by including the RAM circuitry with the same mechanics of the RAM model. CAM architectures that

use this alternative pay a high price for compatibility because they must implement the hardware of

both models. The commercial CAM IC Am99Cl0 [AMD88] and the DBA [W ADE89] follow this

approach. The scheme found in [Y ASUURA88] optimizes the emulation of RAMs while trying to

minimize the departure from the CAM model. In this alternative, a content addressable read-only

memory (CAROM) field with a different binary pattern is tagged to each word. Figure 5 shows the

schematic of a CAROM cell. When emulating a RAM, the addressing of a word is converted to a

search on the CAROM field and the MRR is by-passed. The uniqueness of the address searched in

the RAM model guarantees that the MRR can be eliminated from the critical path to memory access.

Independent control for the CAROM and CAM cell drivers enable the CAROM to be read dur

ing any content-addressed read and write cycle since the CAROM field stores the address of the word

during reads and writes. With the bits of the CAM cells masked, the CAROM acts as a substitute for

the address decoder in read and write operations. During search operations, the CAROM field acts as

an address encoder. The CAROM field can also be used in the implementation of a value-ordered

MRR.

23

BIT BIT

ws

I Vdd

J mem~ memory

HIT -------- --------

Figure 5. Content addressable ROM (CAROM).

HIT Processing Element (HPE) and HIT Registers (HREG)

Many CAM architectures include registers and arithmetic and logic units between the HIT lines

and the MRR to enhance the CAM processing power [WADE89, LEA86b, DULLER89,

YASUURA88]. In general, each HPE is a bit-slice processor that has a registers set, the HIT registers

(HREG), and the memory bits of the CAM word to work on. The size and complexity of the HIT pro-

cessor element varies depending on the intended application of the CAM design.

A CAM with HPE is a parallel computer with w bit-slice processors, one for each word. The

processors work on their own set of registers and memory. Because of pin limitations, generally, all

the HPEs share the same instruction bus, and execute the same instruction synchronously as in a Single

Instruction stream Multiple Data stream (SIMD) computer. Additionally, the execution or the decod-

ing of the instruction in each HPE can be conditioned by values stored in the local HIT registers [FIN-

NILA??].

With the addition of the HIT processing elements and the HIT registers, the CAM can execute

more complex searches. The result of individual searches are stored in the HIT registers and are used

by the HPE to compose the result of many searches into a complex selection.

24

Communication Between Words

The class of problems that the processing elements in the CAM HPE can solve is still limited

because the HIT register composes the results of different masks and search keys within the same

word. In order to use different stored data (memory;), there must be a write operation between the

searches. To increase the class of problems that the CAM can solve, the HPEs have to be able to

cooperate and share the data stored in different CAM words. An interword communication network

(WNET) for the HPEs is added in some CAM architectures for this purpose [JONES88a, FINNILA77,
'

W ADE89]. With the interword communication, the HPEs can solve problems that require infonnation

stored in many words. By adding communication, data structures larger than the CAM word can be

stored and searched [ADAMS86, ASP88].

GENERAL ISSUES IN THE IN1EGRATION OF CAMS

The many general issues of integrating the many building blocks discussed and the use of the

CAM integrated circuit as a building block of higher level systems are presented. A comparative

analysis of the integration of CAMs and RAMs is provided.

Selection of the Architecture and Features

There must be a coherence between the intended use of the CAM IC and its architecture. Basi-

cally, there are two major roles for CAM ICs in computer systems. The first type of computer system

uses the CAM as an "intelligent memory". The function of the CAM in the computer system is to

store information and retrieve it organized by associations. The CAM used for this purpose is strong

in comparison logic and in structured data support. The CAM IC in the second type of computer sys-

tern modifies the data stored in it in addition to re-organizing the data. These CAMs are virtually

indistinguishable from processing devices. There is a thin line, if any, dividing CAMs with high sup-

port for data manipulation and content-addressable or associative processors. A characteristic of these

CAM architectures is the enhanced capability to access and modify data stored in them.

An important architectural decision is the number of HIT lines per word. Looking to the CAM

as a processor, the HIT line is the von Neumann bottleneck between the memory word (memory

25

device) and the HPE (processing device). CAM architectures designed for data manipulation like

GLiTCH [DULLER89] and SCAPE [LEA86b] use two HIT lines to increase the access of the HPE to

data. The architectures in [DULLER89] and [AMD88] have one extra HIT line exclusively for the

almost unavoidable "tag bits" to support memory management

Multiple and partial word accesses are important for CAM architectures in which data process

ing plays an important role. Internal masking, on the other hand, is most often found in architectures

dedicated for searching. Mundy [MUNDY72] noticed that both features are rarely needed in the same

application.

Other architectural decisions include the degree of complexity of the HPE, WNET and the

number of HREG. All of these decisions depend on the role intended for the CAM in the computer

system.

Fabrication Technology and Lay-out Scalability

CMOS is the fabrication technology used for most logic circuits. However, memories are usu

ally designed in NMOS. The CAM ICs described in [JONES88a] and in [W ADE89] were fabricated

in CMOS but the memory cells used n-type transistors only because the well distance necessary for the

CMOS design would make the memory cells excessively large. One disadvantage of using only n

transistors for the memory cell is that the HIT evaluation is slow. Sensing devices, like the ones used

to read the bit lines, have to be added to speed-up the HIT evaluation.

The fact that CAM has both logic circuits and memory in the same design adds complexity to

the fabrication process and to the incorporation of the latest DRAM fabrication technological

advances. The technology used for CAM fabrication has to provide a reasonable yield for both

memory and logic and the scaling of the CAM integrated circuit will be paced by the slowest scaling

rate of logic and memory. This technology constraint is not unique to CAMs. Microprocessors that

integrate cache memory also require a technology optimal for memory and logic. While the cache

memory cells and logic cells in the microprocessors share the same technology, the design of the

memory cells and logic cells are developed independently. However, in the CAM, memory and logic

cells are closely knit together. The horizontal and vertical dimensions of the content-addressable

26
memory cell design are constrained by the size of the logic cells. Scaling down of any dimension of

the memory cell is constrained by scaling down the corresponding logic circuitry by the same factor

and vice-versa. This consideration is found in [HIRATA88] and in [JONES88a] where memory cells

match the pitch of logic cells to prevent the waste of area in connections and to minimize the capaci

tance of the HIT lines.

Another difference between RAM and CAM requirements for process fabrication is that CAMs

have the HIT lines running orthogonal to the data lines. The HIT lines also have to have low resis

tance and capacitance (RC) to keep delays acceptable. Therefore, the CAM fabrication process must

have, at least, two high quality interconnects [KADOT A85, W ADE87].

Due to these characteristics, the integration density of static CAMs is half of those of SRAMs

[ADAMS86], and the density of dynamic CAMs is comparable to the density of SRAMs [W ADE88,

HERRMANN91]

CAM ICs also require more expensive packaging because, for the present word size and integra

tion, a CAM requires more pins per package than the RAM with the same storage capacity. For exam

ple, a 32 Kword x 32 bit, or 1 Mbit CAM IC would have 32 data bits plus the instruction bits for the

additional features of CAMs. A 1 Mword x 1 bit RAM IC has a single data pin and 20 address pins.

This difference comes mainly because the logic of the CAM requires the memory cells to be organized

in longer words which may require more data pins.

Modularity of the CAM IC

Modularity in CAM designs is that property of design that enables the assembly of larger

memory systems with minimum design effort. Modularity is important in two levels of the system. In

the IC design level, a modular design is important so that larger CAM chips can be developed with

minimal additional design cost, at the board level, the goal is to minimize external "glue circuitry" and

therefore design effort, to build larger CAM memory banks.

At chip level, the CAM design is very modular. It can be extended by increasing the number of

bits in a word or by increasing the number of words in an IC. Analyzed as processing devices, the

CAM ICs have a high degree of modularity. Wafer scale parallel processors were proposed using the

27

CAM architecture in part because of that modularity [ASP88, FINNILA77]. But as memory devices,

providing modularity to CAM ICs is more complex due to the larger functionality of CAMs.

The provisions necessary to build longer RAM memory banks is minimal because the only func

tionality that has to be preserved is addressing. Integrated "chip select" logic is enough to provide

modularity at the board level. CAMs have much more functionality that must be preserved from the

IC level to the board level. RAM ICs do not require extra circuitry nor "glue logic" to integrate thirty

two 1 M x 1 bit RAM ICs to build 1 Mword of 32 bits memory. For the same amount of memory (IM

32-bit words), patching together thirty-two 32 Kwords x 32 bit CAM !Cs requires much more effort

than patching together thirty-two 1 M x 1 bit RAM ICs. The CAM IC must integrate support circuit or

there must be "glue logic" on the board to implement all the features at the CAM IC level to the CAM

memory bank. Among the common features to CAM !Cs that should be supported at board level are

signals of the class of SOME/NONE and the number of used or unused words, MRR, and a interword

communication network.

The structures of the circuits to implement features at the board level have the tendency to repli

cate the structure of the circuits used to implement the same features at the IC level. For example,

address-ordered MRR that use a linear chain will have the CAM !Cs connected in a linear chain to

implement the MRR at board level (see Figure 6).

The discontinuity between chip and board level lends itself to the creation of hierarchical

schemes to manage the global outputs of the CAM ICs [0GURA85, RAMAMOORTHY78]. In the

hierarchical scheme, the outputs of the CAM IC such as SOME/NONE and the matching word of

commands

data

CAM CAM CAM
global signals I =:>I global signals I =:::::... global signals I_,.

Figure 6. CAM bank built with minimum additional logic.

28

highest priority are collected by external circuitry and treated as responses of individual words to gen-

erate a SOME/NONE output for the data bank and to perform the MRR between the matching words

of all the CAM ICs at the board level (see Figure 7).

.. ..
c

I

'M A:
.,,-- ~ - - - - -r~~~~~~-t-

c
M

A

Figure 7. CAM bank with hierarchy.

Reliability, Testability and Fault-Tolerance

This section analyzes three inter-related issues, reliability, testability and fault-tolerance. The

link between these issues are the circuit failures. Circuit failures reduce the confidence in the informa-

tion provided by any circuit As a consequence, the results of the computations of the overall system

are less reliable. This section discusses the design techniques to increase the confidence in the output

of the CAM. Using only circuits that are not faulty is one way to increase the reliability of the system.

Testing finds whether a circuit is faulty and, if possible, diagnoses the fault The importance of testing

in the overall cost of ICs and the importance of design for testability have been continuously increas-

ing. CAM ICs are no exception to this trend. With the faults identified, special circuitry tries to

increase the yield of CAM ICs by "salvaging" CAM ICs with a small number of faults. Fault-

tolerance increases the yield and enables the design of larger CAM ICs.

CAM ICs have two distinct sections to test, the memory and the logic circuits. Grosspietsch

[GROSSPIETSCH89, GROSSPIETSCH87, GROSSPIETSCH86] proposed a CAM architecture that

divides the CAM architecture into subcircuits for testability purposes. The major building blocks of

the CAM ICs (see Figure 2) are divided into three groups for testing. The first group consists of the

data, key, and mask registers. The second group consists of the circuitry used to process the HITs, the

HPE logic, HREG, MRR, WNET, etc. The CAM cell fabric is the third group. Observation and

29

control points are placed on the interface of the subcircuits to facilitate testing.

The first two groups have only logic circuits and can be tested with conventional techniques.

Grosspietsch [GROSSPIETSCH89] proposed that the key and mask registers be also readable to

enhance the observability of the first subcircuit Access to the IDT register and to the priority resolver

is proposed to solve both lack of observability and controllability of the HPE logic and CAM cells.

The scan path testing scheme is very popular in CAM ICs designed for testability because CAM

architectures that have the HIT registers configured as shift registers to allow storage of longer data

words can be converted to Built-In Logic Block Observation elements (BILBO) with minimal

modifications. BILBOs are elements used in scan-path and signature analysis styles of design for test.

[BENNETTS84].

The testing of the CAM cell array is also simpler than it may appear initially. Even with more

functionality and circuitry to be tested than a RAM cell array, the testing of CAMs can be significantly

shorter [MAZUMDER88]. The testing is aided by the fact that the subcircuits can be used to help test

each other. For example, the HPE logic can be used to help test the CAM cells by analyzing the pat

terns of HITs as a signature analyzer and the HITs of the CAM cell array provides a binary pattern to

test the HPEs. The signal SOME/NONE also contn1mtes to the testing of the CAM IC.

Content-addressable memory cells have both storage and logic to be tested. The testing of the

storage part is similar to the testing of RAM cells. The types of faults that affect RAMs are basically

of two types:

(1) hard-errors: stuck-at and bridge types of faults and

(2) soft-errors: pattern sensitive, coupling faults, and radiation.

The logic circuit in the CAM cell that has to be tested is a XNOR that compares the data in the

storage part and the binary pattern in the bit lines. That is exactly the kind of circuit that is used to test

the storage part The conventional test of storage cells is to write a pattern and read the pattern back to

determine if the patterns mat.ch. Rather than testing the logic and the storage individually, both parts

of the CAM cell can be tested together. The CAM cell integrates the comparator with the storage cell

as if the CAM cell were a RAM with built-in testing circuits.

30

As a final remark on testing of the CAM cell, pattern-sensitive and coupling faults are tested

with patterns based on the physical location of the stored data. Therefore, for testing, we need to

access the CAM by physical location instead of by contents.

With the faults detected, the next step is to improve the yield with special circuits that enable the

use of ICs that have a limited number of faults. The tests for fault repair have to be more complex

than the tests for fault detection to diagnose and locate the defects to enable the reconfiguration and

repair.

The options proposed for repairability are redundancy and graceful degradation. Redundant

schemes have spare words or spare bit columns to substitute faulty words or bits, respectively. Grace

ful degradation allows the deactivation of faulty words so that the IC is still functional, although with a

smaller number of words. For large CAM ICs the strategy of graceful degradation appears to be supe

rior than redundancy [GROSSPIETSH89]. CAMs designed for graceful degradation are naturally

fault tolerant because there is no minimal memory size to have a working component. As long as

defective circuits can be rendered harmless, the CAM IC will remain functional with the remaining

logic [BLAIR87].

Also, because of the characteristics of the "built-in" CAM testing, the graceful degradation of

CAM ICs can be managed with a minimum of test equipment and in a uniform way. Blair [BLAIR87]

presented a CAM design with graceful degradation in which the CAM IC disables faulty circuitry by

itself. Each word in this CAM has a latch that can be accessed only in testing mode that disables the

match of its word. Testing is performed with the help of the comparison logic using the following

test-and-repair sequence:

(1) write the test pattern to all memory words;

(2) perform a comparison with respect to the test pattern;

(3) latch the result of the comparison.

Defective words will mismatch the test pattern and be disabled in future searches. For more complex

architectures, the value stored in the repair latch is also used to direct internal signals past the faulty

word, like the signals of the address-ordered MRR and the WNET, rendering the word completely

31

harmless.

In conclusion, the ideal CAM IC must support enough processing to solve non-numerical and

logic processing problems because these are the applications for which the current RAM-based sys

tems are deficient. A balance between processing power and storage capacity is obtained with the fol

lowing characteristics:

(1) provide multiple partial access;

(2) support data types longer than the word length;

(3) have linear communication between words;

(4) . have a HREG register bank; and provide logical operations on the IilTs;

(5) have on-chip circuits to allow expansion to larger memories.

(6) have built-in testing schemes such as connecting the HREGs to form a scan-path;

(7) have low-cost repair circuits with the scheme similar to the ones used in [BLAIR.87] and

[MCAULEY90];

(8) have direct memory access based on data content.

Based on this specifications an integrated circuit designer can select the circuits to implement the

CAM IC. If resources are allocated to this end, the described CAM IC with high densities can be built

in the near future. The question that arises is: Is it worth while to implement such a circuit? The next

two chapters will analyze the implications of using CAMs to implement computer memories. It will

be shown that the answer is yes. The content-addressable memory described fulfills the goals set out

in Chapter I.

CHAPTER III

BASIC COMPUTATIONAL TASKS AND CAMS

This chapter describes the computational environment that uses associative memories in the

form of CAMs and the changes in the execution of common computational tasks which result from

CAMs. It will be shown that computers that use CAMs could be a fundamental addition to computer

design and to non-numeric data processing. Most of the chapter is devoted to the data structures

.ideally supported by CAMs.

DATA STORAGE

Probably the most important function of the memory device is to store information. The struc

ture of the memory device affects the efficiency of implementation of the data structures used in com

putation and, consequently, the performance of programs.

The structure of the memory words in RAM is the linear array with an implicit order given by

the addresses. This structure maps well to linear and multi-dimensional arrays (matrices) that are used

in most numeric computations, and to other data structures in which order plays an important role.

The set is identified as the natural data structure for CAMs. The mapping of other data structures to

CAMs are also analyzed. An illustrative example is analyzed at the end of the chapter to gauge the

effect of storing data in a CAM on basic computational tasks.

Sets

Sets are the foundation on which virtually all of mathematics is constructed and many mathema

ticians believe that it is possible to express all of mathematics in the language of set theory

[STANAT77]. CAMs are the ideal medium to implement sets in the same way RAMs are ideal to

implement arrays. Elements are naturally stored without order in CAMs. I present here one scheme to

33

store multiple sets in CAM fully supporting the basic operations and relations of sets.

Sets are defined as collection of objects called elements or members without duplication nor

order [AMSBURY85]. Some definitions of sets allow repeated elements in the set [STANA177,

KOLMAN84]. A set is described by its elements. Therefore, a finite set can be described by listing its

elements (e.g. set A= { 1, 2, 4, 5}; set B = {a, i, u, e, o }). Sometimes it is inconvenient or impossible

to list all elements of a set Other useful ways to describe a set are through specifying properties that

uniquely identify the elements of the set using mathematical or English statements, or by induction (

e.g. set C = { x I x is an even number and x is smaller than 12}; set D '= { 1, 2, 4, ... , 2; , ... }). It is

assumed that there.is an universe of discourse or universal set (U) that is a set that contains allele

ments for which the discussions and descriptions are meaningful [KOLMAN84] (e.g. "all natural

numbers"; "the letters of the English alphabet").

There are several operations that can be performed on sets. The most important ones are: union

(u), intersection (n), relative complement(-) also known as sharp or difference, and symmetric differ

ence($).

The union of set A and B, denoted A u B is the set with all elements of the set A and all ele

ments of set B:

C=AuB= { xlxe Avxe B}

The intersection of the set A and B, denoted An Bis the set with the elements that belong to

both sets:

C=AnB= { xf xe AAXE B}

The difference of A and B, also denoted relative complement of B with respect to A, or A sharp

B, is the set of all elements of A that do not belong to the set B.

C=A-B= { XIXE AAXE B}

The symmetric difference of sets A and B, denoted A $ B, is the set consisting of all elements

that belong to either set A or to set B but not to both. It is easy to verify that A $ B = (A - B) u (B -

A).

C =A $ B = { x I (x e A Ax E B) v (x e A" x e B)}

34

There are two fundamental relations between two sets, equality and containment [STANA177].

Two sets are equal if they have the same elements. Set A contains set B if all elements_ of B are also

elements of A. The set B is then called a subset of A, and A is a superset of B. It is also said that B is

contained in A, and we write:

A;;;iBorB!;;A

A very useful concept for sets is the characteristic function [KOLMAN84]. The characteristic

function of a subset A of the universal set U,/ A is defined as follows:

{
1 ifxeA

f A (x) = 0 if x e A

Since the characteristic functions are defined over numbers or logic values, logic or arithmetic

operations can be performed with characteristic functions. As an illustration, some important proper-

ties, valid for characteristic functions defined as logic functions, are listed without proof:

f1t.uB=f1t.VfB

fA(')B=f1t.l\fB

fA©B =f1t.©fB

Similar properties can be derived to evaluate the basic relations of set theory. For example, if A

= B, then/ A - fB is false (or zero) over the universe.

One alternative is presented to represent sets in a CAM in a way that provides an efficient imple-

mentation of the fundamental operations and relations of sets. An extensive review of the CAM

literature indicates that generalizing CAM functions usings sets has not been done.

Implementation of the Set Data Structure with CAMs. In this proposed model, each word of the

CAM stores one object of the universal set and a tag. The function of the tag will be explained later.

We have seen that each set or subset can be described by the properties of its elements. Simple obser-

vation shows that the HITs are in fact the evaluation of the characteristic function for each element

stored in the CAM. Therefore, the basic functions of the CAM support the relations and operations of

set theory. The HIT output is the product of negated and non-negated sets represented as bits in the

tag and is equivalent to logical ANDs and NANDs that are universal building blocks for more complex

35

operations. The HREGs and HPEs accumulate the intermediate results to build these complex opera-

tions. The function SOME/NONE is a building block to evaluate the basic relations 9f set theory.

With RAMs, the set operations and rela:ions are evaluated sequentially and the time required to exe

cute most operations is proportional to the size of the set(s) involved. In the CAM, the equivalent set

operations and relations are executed in parallel over all elements of the set, possibly over many sets,

because attached to each word of a CAM is hardware powerful enough to execute the key set opera

tions and relations.

The sets in a CAM are described by descriptions that can be bmlt with logic and arithmetic

operations on the lllTs supported by the HPE such that after a sequence of searches describing a set,

only the elements that are members of the set will still match the search. Sets that are hard to describe

in terms of lllTs because they would require long and complex series of searches can have their

descriptions simplified by appending to each element of the set an identifier in the "tag". In effect, this

identifier in the tag creates a property that helps to describe the set in terms of lllTs. In addition to

storing identifiers to support the selection of the members of a set, the tag is also used to delimit dif

ferent universes of discourse, simplifying the memory management in a multi-task environment.

An example of set storage in CAM is shown in Figure 8. Notice that the database in the exam

ple stores two universes of discourses, fruits and colors. The color orange will not be affected by

operations on sets of the universe fruits even though orange is also an element of the universe fruit. A

search of the set

A= { x I x is a color of the rainbow and x is warm}.

can be calculated with the logical AND of the searchs on colors of the rainbow and warm colors. The

search "color" AND "warm" AND "rainbow" correctly retrieves the elements red, orange and yellow

of the set of colors without affecting the HREGs of the element orange of the set fruits during process

ing.

In the model presented, each object is stored with associations to all of its sets. This requirement

enables the evaluation of operations among sets using the lllTs as characteristic functions without hav

ing to use the communication between words and enhances the parallelism of the execution of the set

operations. At the same time, it requires that the tag encodes the complete information regarding the

element : tag
red
orange
yellow
green
blue
indigo
violet
white
black
apple
pear
orange
banana
grape

: color; warm; rainbow
: color; warm; rainbow
: color; warm; rainbow
: color; cold; rainbow
: color; cold; rainbow
: color; cold; rainbow
: color; cold; rainbow
: color
: color
: fruit
: fruit
: fruit
: fruit
: fruit

Figure 8. Set data structure implemented with CAMs.

36

element stored in that word. Consequently, this model requires a longer tag than the one used with a

model that allows the associations to be distributed among multiple copies of the same element. It also

requires that before storing any new object in memory, the presence of the element in memory is

checked for duplication to maintain the information in the tag about the element complete. The check

for duplication is fully supported by the signal SOME/NONE. The signal SOME/NONE also supports

the relation of "membership" between an object and a set. The query to check if an object belongs to a

set using SOME/NONE is executed in parallel, using the comparison logic with response time

independent from the size of the set.

For sets, it is the RAM that has to emulate the set structure using structures more suited for

RAM storage like trees and lists. Applications that use sets would benefit from the direct hardware

support provided by the CAM. Analyzing the implementation of algorithms utilizing RAMs, it is easy

to find examples where more complex structures like lists were used instead of the simpler set struc-

ture. Chapter IV presents in detail the applications of set theory and CAMs to logic minimization and

other important applications.

Other more complex data structures can be implemented with the simpler set structure. Records

are collections, or sets of data, each element of a record is also a sub-set that has to be uniquely

identifiable to be accessed. Lists are sets with their elements or sub-sets ordered. Arrays are sets, too.

To implement these more complex data structures, the sets and sub-sets are managed and organized

37

through the "tag bits". The implementation of data structures with CAMs is more flexible because the

tags are programmable as opposed to addresses that are hardwired.

When compared to RAM, the degree of efficiency in which these other data structures can be

implemented with sets varies. The applications that require more complex data structures have their

performance conditioned by how well the other structures can be implemented with sets or how well

the CAM architecture can implement those structures directly. The burning question is: Is the perfor

mance of computer systems that use CAMs satisfactory for all kinds of applications? Or, at least, do

they have a satisfactory performance over a wider range of applications than RAM-based computer

systems? This is one of the major questions this work expects to answer.

One of the effects of storing data in CAM is that the execution of basic computation is changed.

Considerable effort has been dedicated to searching and sorting algorithms. Foster [FOSTER76]

claimed that "at any given instant, half of the university computers in the world are compiling (table

look-up) and half of the business computers are sorting." (page 125)

In all likelihood, searching and sorting will continue to be one of the most important computa

tional tasks. Any proposed computer system should be efficient in searching and sorting. Searching

with CAM is a breeze. In the literature, searching algorithms abound for CAMs [KOHONEN80,

FOSTER76]: minimum, maximum, next above, next under, magnitude comparison, five way split,

interval search, etc. The comparator added to the storage devices in a CAM directly supports search

ing tasks in hardware. Masked search is also implemented directly in the CAM hardware; the other

types of searches can be implemented as sequences of masked searches.

Since data are not sorted with addresses, sorting cannot be executed by changing the physical

location of data. Data are sorted by changing their positions in an ordered structure such as a list. But

sorting can also be done dynamically as access to the data is required. Data are stored in CAM

unsorted and can be read out of the CAM sorted using the search algorithm used to select the data (see

the discussion of value-ordered MRRs in Chapter II). To sort from largest to smallest dynamically, the

program searches for maximum and reads the selected word. The process continues with a search for

the "next below" until all words are read (and hence sorted).

38
Sorting is improved in systems using CAM but the important question is: Why are we sorting the

data? If the answer is: to speed up searching, sorting the data does not improve the speed of searching

in CAM. Therefore, we probably could live without sorting [FOSTER76]. The processing and time

delay for sorting is eliminated from the process of appending new data to the set and transferred to the

time when the information is retrieved The hardware support of the CAM enables the CAM to sort in

parallel and retrieve data in the same order of time needed to retrieve data from a sorted set in RAM.

One non-numeric application that uses both searching and sorting, and is gaining in importance,

is database search. There are two main kinds of database search. One 'is the search by keyword that

can be speeded up in RAM with hash-coding. In CAMs, this kind of search is implemented directly at

the transistor level. The otber kind of search is magnitude search, which is speeded up in RAM by

including a structure and sorting the data. Each expected magnitude search query must have its

correspondent structure to implement the sorting. A magnitude search of income on a employee data

base sorted by social security number does not experience any performance improvement RAMs util

izes additional storage cells and CPU time to solve a problem on a case by case basis. CAMs use their

additional hardware in the form of distributed logic in the memory cell to accomplish a fast database

search. If the importance of this type of application grows as predicted in Chapter I, it makes sense to

think of a computer memory model (CAM) that goes to the root of the problem instead of fighting the

side effects of RAM.

This chapter analyzed the effects of CAM-based computers in basic structures of computation.

The next chapter will complete the examination of the effects of CAM-based computers on applica

tions.

CHAPTER IV

CUBE CALCULUS

This chapter uses cube calculus to illustrate the support CAMs provide to the set data structure.

The use of CAMs is not limited to applications that are based on cube _calculus. The applications are

presented using the cube calculus mathematical model to take advantage of previous work that used

this model. It is the contention of this thesis that any application that maps well to set theory is well

supported by CAM-based computers. It will be shown that cube calculus is a powerful mathematical

model with many applications. The major cube calculus application treated in this chapter is logic

minimization and synthesis of Boolean functions. Cube calculus and all applications in this chapter

will be described using the logic minimization language. The basic elements and operations of cube

calculus will be introduced informally, through examples and illustrations.

BASIC CONCEPTS

The first concept to be defined is that of the multi-valued variable (MW). The v-valued variable

can assume any of the 2v subsets that can be built from v elements. For example, a ten-valued vari

able has 210 = 1024 possible combinations, or possible sub-sets, of its ten values. Likewise, a two

valued variable can be instantiated by the :22 subsets that can be built with its 2 values.

The usual representation of a multi-valued variable is the positional notation. In this representa

tion, each value, that can be understood as an element of a set, is represented by a binary digit {bit)

being true (1) when the value is a member of the set, and false (0), when it is not The values of the

variable, or elements of the set, are ordered and represented in sequence. The first bit represents the

first value, the second bit represents the second value and so on. MVVs and sets are equivalent

mathematical elements. The positional notation is equivalent to the characteristic function described in

Chapter III. The positional notation simplifies the execution of operations on MVV s as the charac-

40

teristic function does for sets. For example, a two-valued variable is represented by two bits in the

positional notation because it has two values, namely 0 and 1 and can represent any of_ the four sub-

sets that can be built with the two values (0, {O}, {I}, and {O, I}).

The examples of MVVs that will be presented in this section will use a four-valued variable v

with the elements V = {O, 1, 2, 3} and is represented in positional notation by a four bit bit-vector. For

example, if v assumes the value v = {O, 2, 3}, it would be represented by the bit-vector v = 1011.

When a variable includes all elements, it is said that the variable is fall. This is equivalent to the

universal set. In positional notation, the variable is a string of 1 's (v = 1111). When the variable

does not contain a single value, the variable represents the empty set. It is called a contradiction. In

positional notation, it is represented by a string of zeros (v = 0000).

Basically, the same operations defined for sets are defined for multi-valued variables. The logic

operations on the positional notation are equivalent to operations on characteristic functions of sets.

The power of the positional notation can be appreciated in the execution of logic operations. Logic

operations over MVV s are transformed into logical operations over the positional representations. The

inversion or complement of a variable v (-.v or v), is the set of values such as all the values that are

not in v are present in V and vice-versa. The inversion of a multi-valued variable in positional nota-

tion can be executed with the bitwise logic inversion of the representation (one's complement). For

example,

v={0,2,3}
v = {l}

V= 1011
v=OlOO

In positional representation, the union (u) can be implemented by the bit logical OR of the

bit-vectors that represent the values. For example,

vl =
v2=

vl uv2=

{O, l}
{I, 3}
{0, 1, 3}

vl = 1100
v2= 0101

vl uv2= 110I

Similarly, the intersection (n) is implemented in positional notation, as the logical AND of the

representations of the variables.

vl =
v2=

vl nv2=

{O, l}
{l, 3}

ro

41

vl = 1100
v2 = 0101

vl n v2= 0100

The exclusive-or (EB) of two variables is equivalent to the symmetric difference of set theory and can

be performed by a logical XOR of the representations.

vl =
v2=

vl EB v2=

{O, l}
{ l, 3}
{O, 3}

vl = 1100
v2= 0101

vl EB v2= 1001

Two other concepts of cube calculus to be defined are the cube and the array of cubes. Cubes

and arrays of cubes also represent sets. The elements of the universal set for this representation are the

elements built by the cartesian product of the values of two or more multi-valued variables. The cube

is a cartesian product of MWs. An array of cubes is a set of cubes and represent the union of the ele-

ments of each cube in the array. In this section the cube represents a Cartesian product of variables and

an array of cubes is the sum of the cubes. Cubes and arrays of cubes can also represent other normal-

ized forms of representation of functions such as product of sums, or exclusive sum of products or

exclusive sum of sums, etc.

The term "cube" comes from a geometric idealization in which the variables are dimensions of a

hyperspace. The vertices of the hyperspace that can be represented by a single cube are vertices of a

hyper-cube in that hyperspace. One popular representation of the hyperspace is the Karnaugh map

where the hyperspace is flattened to two dimensions and each element of the cartesian product, or ver-

tex has a reticule to represent it

To illustrate the use of cubes to represent sets we begin with an example with two-valued vari-

ables. The cartesian product of the two-valued variables vl = {0, l} and v2 = {O, l}, results in the

universal set U = {00, 01, 10, 11}. The representation of a cube of this universe is the concatenation

of the representations of both variables in positional notation. For two-value variables, 0 = 00, {O} =

10, {l} = 01, and {O, l} = 11. The cube cl= 10.11 represents the set of all vertices that can have the

first coordinate 0 (10) and the second coordinate either 0 or 1 (11), this is the sub-set cl = {00, 01} of

U. The cube with all variables replaced by a full variable represents all the elements of the cartesian

42

product and is equivalent to a "logical one" for logical functions. Any cube with an empty variable or

contradiction does not contain a single element because the cartesian product is emp~y. These are

empty cubes. The empty cube in which all MVVs are contradictions is equivalent to a "logical zero".

Using this format, not all sub-sets are representable with a single cube. For example, the empty

set, can be represented by any one of the cube notations 00.00, 00.01, 00.10, 00.11, 01.00, 10.00, and

11.00. The single cube sub-sets are: 01.01, 01.10, 01.11, 10.01, 10.10, 10.11, 11.01, 11.10, and 11.11.

It is necessary to use an array of cubes to represent the remaining sub-sets. For example, to represent

the sub-set {00, 01, 11} we can use any of one of the following arrays of cubes: {10.11, 01.01},

{10.10, 10.01,01.01}, {11.01, 10.10},or {10.11, 11.01}.

However, a set with the same maximum number of elements as U, the universal set, could be

represented with a single four-valued variable and is capable of representing each of the 16 sub-sets.

That is, the four valued variable V = { 0, 1, 2, 3}, represented by a four bit bit-vector, can represent any

of the 16 sub-sets. For example, the same subset v = {O, 1, 3} that was impossible to represent in a

single cube, is represented by the bit-vector v = 1101.

The Figure 9 shows a hyperspace built with the cartesian product of four two-valued variables

along with the Kamaugh maps of hyperspaces of four two-valued variables, five two-valued variables

and two four-valued variables. The higher expressivity of multi-valued variables of larger number of

elements is illustrated by the cube representation of the same function in a hyperspace of four two

valued variables and in a hyperspace of two four-valued variables. Notice how the use of MVVs of

larger number of values allowed a more compact representation of the set of reticules in the Karnaugh

maps marked with a "l ".

Although the cube and array of cubes representation of sets is less expressive than a large MVV,

it is preferred over the pure set model for some applications because it maps better to those applica

tions. For example, in logic synthesis, the cube representation provide insights into the implementa

tion of the logic functions. The minimization of the number of cubes of a logic function also minim

izes the number of gates in the implementation of that logic function. Notice that the representation of

sub-sets of cube calculus matches the CAM model well because the sub-sets that can be represented by

a single cube map directly to the "sets that can be described with a single masked search" discussed in

be
ab'- 00 01 11 10

t I I I

00
I I :A:::::.-k: I

01
I H ll _JI _JI

11
1 l~I

10

4 two valued var. map

de O a 1
00 01 11 10 10 11 01 00

I

(1" (['

l \1) !Go - --· \!)
)

43

b 0 1 2 3
a "P-~ ~..-~.-----.
0

I l:J: :LI
1

I If I I JI
2

I I :=t==F I
3

2 four valued var. map

5 two valued var. map 4 two valued var. hyperspace
Figure 9. Examples of Karnaugh maps and hyperspace.

Chapter ill.

Any sub-set of the universe is a function and is a set of vertices that can be represented by an

array of cubes. To be more formal, a completely specified, single output function is a mapping of the

points of the hyperspace to a binary value. An incompletely specified function maps onto the values

{O, 1, X} where Xis free to assume either the value 0 or 1. A completely specified function with mul-

tiple outputs maps into many binary values, a binary code. For simplicity, the examples presented are

restricted to single output, completely specified functions. As a consequence, such function can be

represented by the vertices that assume the value 1 because the function assumes the value 0 on all

other vertices.

OPERATIONS WITH CUBES

The same essential set operations presented for multi-valued variables are adapted for the cube

representation according to the works of Dietmeyer [DIETMEYER78] that present the cube operations

44

for two-valued variables and the works on MVVs by Sasao [SASA084], Kuo [KU087], Su [SU72]

and Hong [HONG74]. When appropriate, it will be introduced how to extend the operations to arrays

of cubes since some sub-sets require more than one cube for their representation. The union (OR),

intersection (AND), sharp (NOT) and consensus are the most important operations in cube calculus.

The notation introduced in Chapter III for characteristic functions will be adapted to represent the

positional notation of cubes.

Cube Union

The union of two cubes or functions is the function that covers the minterms, or product of

literals, or vertices contained in at least one of the functions. Covering is the term used in cube cal

culus for the containment relation. The most straightforward way to perform a union of two cubes, or

cube arrays, is to build a result array of cubes with all cubes of the operands in it. The union of two

functions F and G is the concatenation of the arrays of cubes of F and of G.

F= {/i./2, ... , /,.}

G= { gi,g2, ... , gm}

F u G = { fi,f 2. ... ,/,., gi,g2, ... ,gm}

The representation of the result will probably have more cubes than the minimum necessary to

represent the union. Finding the minimum number of cubes necessary to represent a function is a very

important minimization problem. To reduce the number of cubes used in the representation of the cov

ering we try to remove redundant cubes and to replace two or more cubes by a larger one that cover

the same vertices. Redundant cubes are cubes that only cover vertices that are also covered by other

cubes in the array. Absorption is the process that finds and removes redundant cubes. Absorption

decides if a cube or function covers another and removes the covered cube or function.

The Figure 10 illustrates the power of multi-valued variables for minimization. The operand

cubes are represented by rectangles of broken lines and the resultant cubes are represented by circles

or ellipses surrounding the elements of the cube. Arrows indicate that a cube is represented by two or

more rectangles or circles for convenience of drawing. The union of the same operand two cubes can

be represented by a single cube in a 2 four-valued variables hyperspace due to its larger expressivity.

cd ab' 00
01 11 10

11

10

union - can't

reduce the no. of cubes

.-.. b.d

b.c

al:J..bO

b
a

0

- 4

3

0 1 2

union - reduced

the no. of cubes

Figure 10. Examples of cube union.

Cube Intersection

45

3
a 1.2.b0.2.3

al.2 .b2.3

The cube intersection is the set of all vertices covaed by both cubes. As in sets, the intasection

of two cubes can bC calculated by the bitwise logical AND of the cube notation of the two cubes. For

functions represented by multiple cubes, the intersection can be obtained by applying the distnootive

Jaw of the intasection over the union of the cubes in the cover. The intersection of a function F = {

· Ii. I 2t ••• , I" } and a cube gi is:

" F ngi =hJf; (°'\gi

and the intersection of ·two functions F and G = { gi. g2, -· g,.} is:

"' " F nG =l J(t. J/; ()Bi)
,~ i=1

Cube Inversion or Complement

The same definition used in set theory and multi-valued variables applies to inversion of cubes.

The inversion of a cube anay is the set of all wnices in the hyperspace that are not covaed by the

original array of cubes. The inversion can be considered a special case of the sharp operation that will

be swdied next. F'igure 11 illustrates the inversion of a cube. The array of the cubes represented by

the rectangles is the inversion of the covering composed of the reticules marlced by "l" and represent

able by the array of cubes represented by circles.

46

Figure 11. Inversion of functions.

Sharp or Relative Complement

The result of the sharp operation between two functions F 1 #F 2 is another function F 3 that is true

only when a vertex is true for F 1 but is not true for F z. The inversion is a particular case of sharp

when F 1 is the universe. The sharp operation is equivalent to a subtraction of minterms.

The sharp of two cubes f and g, f # g is the array of cubes, F, that is the covering of all the

minterms of the first cube that do not intersect with the second cube. Depending on the cubes used in

F to represent the results, sharp and inversion are classified into two flavors. In Disjoint sharp, the

function is expressed as an array of disjoint cubes, meaning the two by two (cube against cube) inter-

section of the cubes of the result is empty. In the "normal" sharp the result is represented with the

minimum number of cubes that cover the function and that are not covered by other cube that is also

covered by the function. These cubes are called prime implicants. A prime implicant is the largest

cube that implies the function and covers the same vertices. Equation (5) generates a list of cubes that

cover the vertices covered by the cube f but not covered by the cube g, executing the "normal" sharp of

the two cubes. Equation (5) also shows how much harder it is to execute the set difference with the

requirement that the resultant set be described with an array of cubes.

Ii# Kj =kf / .x/ · · ·x/ng · · ·x{ (5)

Figure 12 shows one example of a disjoint sharp and a sharp. The cube represented by the rectangle

drawn with a solid line is the cube being sharped, the rectangle drawn with the broken line is the cube

being "subtracted" and the ellipses are the resultant cubes.

47

be

ab ab '
- -

00 00

0 0

1
-- - - ,

/1' I 1 1 I

L-- - -..I
1

- - -,
11' I 1 1 I

L-
__ .J

\.1) ~
-,,, -.....

'-11 !... 1 1

sharp (disjoint) sharp (largest cube)
Figure 12. Sharp operation.

Two properties are used in sequential computers to reduce the calculations necessary to execute

the sharp of cube against cube: 1) the result of the sharp product of two cubes will be the empty cube if

K coversf; 2) the result will be F = f if the cubes are disjoint (do not overlap). A test of these condi-

tions can branch around the execution of a sharp algorithm to avoid the calculation of equation (5).

The sharp product of one array of cubes against one cube, F # Ki, where F = { f 1. f z, ... , f n } , is

the union of the results of the sharp product of f;#Ki

n
F # Ki = ~ f; # Ki

The sharp product of one array of cubes against another array of cubes is the recursive applica-

tion of the sharp product of each cube of the second array to the result of the sharp product of the first

array with one cube.

F # G = F - G = F n G = ((.. (F # Kt)# KV · · · # Km)

This is equivalent to the intersection of the sharp products of the first array and each cube of the

second array.

- "' F # G = F - G = F n G = (J F # Ki
J=l

Consensus or Star Product

Consensus is not an essential operation for cube calculus, but life would be more difficult

without it The consensus is used to generate new cubes from an existing array of cubes that still

imply the same vertices implied by the array of cubes. The cubes generated by consensus can be used

48

to represent the same function with a different array of cubes in the process of minimization of the

representation of a function and to reduce the number of cubes in the array and still c~ver the same

vertices.

The consensus (asymmetric consensus) of the cubes f and g is the array with the prime impli-

cants of f u g that cover at least one vertex covered only by f, one vertex covered only by g, and the

intersection off and g. The formula used to calculate the consensus or the star product of two cubes is:

f*g = Q x{,ng, · .tj•"'• · · · x{,vg, ... x{'""'.

Where x; are the MVV s that compose the cubes.

Figure 13 shows two examples of consensus. In this figure, the stars (*) indicate vertices

covered by the first cube and ampersands(@) the vertices covered by the second cube. The resultant

cubes are represented by rectangles or ellipses.

0 1

be 0 1 2 3 3 2 1 0 -
A ,.

... - - - - -- -- 0
I \ I \

@ @ @ :@, @ :@~
ab

00 * .. -.. --- t"I __ ,_ ---,
@ @ @ " @ I *I • • ltru ! ~!

.. 1

0 *
2 .--- ---,

I * @l @ I @ @ @
1 3

I I
I * @' @ L __ ---· @ @ @

1
4

Figure 13. Two examples of cube consensus.

I I
t *I
I I

I
I I
•@1 @
I ' ,._,. ---•• @

'~'- ---
T

I I

I *I
I I

II I
I I
:@1

... -.
\ I

~c'W'-
1

- -·
*

;...--.
I

* I

I
I
I
I
I
I
I
I
I
I

If the cubes f and g overlap as in the examples in the Figure 13, consensus generates a list of

cubes with rninterms off and g that are candidates to cover or be covered by other cubes. If the inter-

section of the MVV s that compose the cubes is empty for more than one MVV, the result of the con-

sensus is an array of empty cubes. The number of intersections of MVVs that are empty is used as a

measure of the relative position between two cubes and is called the distance between the two cubes.

Cubes of distance zero overlap, and cubes of distances one or larger do not overlap.

USING CAMS FOR CUBE CALCULUS

The key reasons to use CAM-based computers are to:

(1) Filter the data that is transferred between memory and the CPU.

(2) Increase the parallelism of execution of programs.

49

(3) Provide additional operations that improve the performance of the computer in non-numeric

applications.

(4) Provide means to rethink algorithms and improve the execution of existing ones.

Beginning with filtering, all these points are illustrated with cube calculus applications.

Processing of cube calculus operations can be greatly reduced by the application of properties

of cubes. For example, if the distance between the cube f and the cube g is greater than one, the result

of consensus f*g is the empty cube. The intersection of cubes of distance one or larger is also the

empty cube. Likewise, the result of the sharp product/; # gi is the empty cube if the cube gi covers

the cube f i. And, fi # gi is the cube fi if fi and gi are of distance one or larger. With all cubes

stored in CAM using positional representation, complex searches can split the cubes by distance and

transfer to the host processor only those cubes that will generate resultant cubes, reducing the data

traffic between the memory and the host CPU. The use of CAMs reduces the number of the pairwise

operations between cubes to the execution of only the pairs of cubes that generate non-empty cubes.

· This eases the requirements on communication between the host CPU and memory and on the process

ing of the host CPU.

For the sharp operation, the cubes must be split into overlapping cubes (cubes of distance 0), dis

joint cubes (distance 1 or larger), and cubes covered by another cube. These relations can be tested by

comparing the representations of the cubes in positional notation. A cube c; covers another cube Cj if

the values of all variables of Ci cover the variables of the cube Cj. This is equivalent to the representa

tion of Ci not having a 0 in a position that the representation of Cj has a 1. A single search for O's in

the positions c; has O's will mismatch all cubes stored in the CAM that are not covered by Ci. Figure

14 shows an example of how to use CAMs to determine the covering relationship among cubes. A

50

search for the pattern ??.0?.??.?0.?? matches only cubes that are covered by the cube c1 and is per-

formed in parallel to The cubes c 2 through c 5•

Ct 11.01.11.10.11
??.0?.??.?0.?? search pattern

HIT
Cz 10.01.11.10.10 1 matches, c 1 covers c 2

C3 11. 01. 01.10 .11 1 matches, c 1 covers c3

C4 11.10.01.10.11 0 mismatches, c 1 does not cover c 4

C5 11. 01. 01.11. 01 0 mismatches, c 1 does not cover c 5

Figure 14. Determining the covering relation among cubes with CAMs.

Two cubes c; and Cj overlap if no variables are disjoint. In positional notation this can be

identified when, for each variable, there is at least one '1' in the same position for both cubes. A

search, then, for O's where the variable is 1 will match only on cubes that are disjoint for this variable.

The product of the search for all variables tests whether two cubes overlap. Figure 15 illustrates how

to determine whether the cubes c 2 through c 6 overlap the cube c 1• If two cubes are disjoint in any

variable, they are djsjoint cubes. Each search pattern tests if the cubes in memory and c 1 are disjoint

in one MVV of the cube. The first, third and fifth patterns do not need to be applied because c 1 is full

for these variables and a match (HIT) in at least one position is guaranteed. Only c2, c3 and cs

mismatch all searches and, therefore, overlap with c 1•

11.01.11.10.11
??.??.??.??.??
?? . ?0.??.??.??
??.??.??.??.??
??.??.??.0?.??
??.??.??.??.??
10.01.11.10.10
11. 01. 01.10 .11
11.10.01.10.11
11. 01. 01.11. 01
10 .11. 01. 01.11

C1
search pattern for the first variable (no need to search)
search pattern for the second variable
search pattern for the third variable (no need to search)
search pattern for the fourth variable
search pattern for the fifth variable (no need to search)
c2 mismatches both searches, overlaps
c 3 mismatches both searches, overlaps
c 4 matches second variable search, do not overlap
cs mismatches both searches, overlaps
c 6 matches fourth variable search, do not overlap

Figure 15. Testing if cubes overlap using CAMs.

Besides reducing the number of cubes that have to be transferred to the host CPU for processing,

the CAM can also control the order in which the cubes will be passed to the host CPU. Algorithms

that use heuristics to reduce the amount of processing can use this sorting property of CAMs to reduce

51

the overhead of the heuristics. For example, the cubes can be sorted by the inner product of the cube

representation weighted by the number of cubes in the cover that have 1 's for that value. CAMs can

select all cubes with 1 's in any position and count them to find out the weights, add the weights to an

accumulator field of all matching words, and retrieve the cubes sorted by the largest accumulator field.

Each of these operations would be performed in parallel.

In the tasks described above, the CAM was used in the "traditional" applications of filtering and

sorting data. CAMs that have partial access, preferably multiple partial access, can execute some of

the simple logic operations that would be executed by the host CPU. Notice that the CAM is executing

"real" processing, the data retrieved from the CAM is different from the data originally stored.

Simple logic operations like bitwise AND and OR of cube and array can be executed by the

CAM without a data transfer to the CPU. The following example of the intersection of a function and

a cube illustrates these cube calculus operations executed by a CAM.

The operations necessary to execute the intersection between the cube c 1 = li.b.c and the func-

ti.on F = {b.C.d, a.c, li, a.b.C.d} in positional notation are shown in Figure 16 that shows the state of

the memory before and after the multiple partial write of the pattern O? .O?. ?O. ?? •

a.b.c
b.c.d
a.C
li
a.b.C.d

empty
em_pty
li.b.c
empty

before
01.01.10.11
11.01.01.10
10.11.01.11
01.11.11.11
10.10.01.10

after
01.01.00.10
00.01.00.11
01.01.10.11
00.00.00.10

Figure 16. Memory before and after intersection.

Representing each array of cubes as a set using the set data structure presented in Chapter III,

the union of two arrays is performed with the union operation over sets. The modification of the tags

of the set data structure of the set operands with a partial write creates a new set that is the union of the

two sets.

52

More complex cube calculus operations can also be executed in the CAM. Among these is the

sharp operation. A naive algorithm for sharp is presented but, even with this simple-algorithm the

power of CAMs for cube calculus can be perceived. The algorithm presented begins with one copy of

the function for each variable of the cube stored in memory. The intersection of each variable is exe

cuted with a multiple partial write and is followed by the removal of cubes with contradictions in any

of its MVVs. This algorithm could be improved to store only copies of the function for literals that

generate non-empty cubes. But, as an illustration, the naive algorithm is used. (Observe that F#g is

equivalent to F-g which is also equivalent to F n g)

As an example, the execution of sharp F#g, where F = {C.d, a.ii.c, b.c.d, a.b.c.d} and g =a.bis

shown in the Figures 17 through 20 and Figure 21 gives the visualization of the example with Kar

naugh maps. The memory is initially loaded with the cubes of F with one letter appended (tagged) to

indicate which variable is going to be consumed (Figure 17). Notice that because the cube g does not

contain the literals c and d, they generate only empty cubes. Each copy of F is selected sequentially

according to the variable being processed and the corresponding intersection is executed. The

sequence of searches and multiple partial write patterns is shown in Figure 18. The state of the

memory after the processing is shown in Figure 19. Figure 20 shows the state of the memory after the

garbage collection of the empty cubes and the removal of redundant cubes.

The union, intersection and sharp operations form a basis that can be used to build any cube cal

culus operation. The next sections will show applications that put to good use cube calculus and the

efficiency of implementation of cube calculus operations with CAMs.

LOGIC MINIMIZATION AND SYNTHESIS OF BOOLEAN FUNCTIONS

The goal for this section is the minimization and synthesis of a Boolean function so that the

mapping of its input to its output uses a minimum of hardware. Practical minimization problems work

with multiple output and incompletely specified functions of rarely more than 100 binary inputs and up

to 100 binary outputs. The cube calculus operations described so far address only completely specified

single output functions. With sufficient memory size, the cube calculus model can be easily extended

to represent and manipulate the kind of Boolean functions found in practical problems.

C.d
a.b.c
b.c.d
a.b.c.d

11.11.01.10-a
01.01.10.11-a
11.10.10.01-a
10.10.10.10-a

11.11.01.10-b
01.01.10.11-b
11.10.10.01-b
10.10.10.10-b

11.11.01.10-c
01.01.10.11-c
11.10.10.01-c
10.10.10.10-c

11.11.01.10-d
01.01.10.11-d
11.10.10.01-d
10.10.10.10-d

Figure 17. State of the memory before processing.

search
intersection
search
intersection
search
intersection
search
intersection

?? . ?? . ?? . ??-a
0?.??.??. ??-*
??.??.??.??-b
?? . 0?.??. ??-*
??.??.??.??-c
?? . ?? . 00. ??-*
?? . ?? . ?? . ??-d
??.??.??.00-*

Figure 18. Patterns used for the generation of resultant cubes.

53

01.11.01.10-a
01.01.10.11-a
01.10.10.01-a
00.10.10.10-a

11.01.01.10-b
01.01.10.11-b
11.00.10.01-b
10.00.10.10-b

11.11.00.10-c
01.01.00.11-c
11.10.00.01-c
10.10.00.10-c

11.11.01.00-d
01.01.10.00-d
11.10.10.00-d
10.10.10.00-d

Figure 19. Memory after the sharp.

01.11.01.10-a
01.01.10.11-a
01.10.10.01-a
11.01.01.10-b

Figure 20. Results after the removal of empty cubes.

g F,g F#g
Figure 21. Kamaugh map ofF and g used in the example of sharp.

54

Cubes are still used to represent logic functions but, the vertices of a cube in the representation

of an incompletely specified multiple output function (ISMO) can evaluate to true (1) for one output,

the value false (0) for another, or be either one (X) for yet another output. The execution of the

presented cube calculus operations using CAMs can be extended to ISMO functions and preserve the

55

execution parallelism.

To support ISMO functions the cube notation has to be extended with an output tag that flags the

value of a cube for each output. This output tag is identical to the tag field presented in Chapter ID for

set manipulations. The cube calculus operations over ISMO functions manipulate the output tag of the

operands and generate resultant cubes with possibly modified output tags.

The complexity of extending the cube calculus operations to ISMO functions is because a com

mon set of cubes is used to describe all outputs. A product or mintenn can belong to one of three sets

for each output. The set of minterms that evaluate to 0 (OFF-set), the set of minterms that evaluate to

1 (ON-set), and the set of minterms that can evaluate to either 0 or 1 (DC-set). In the representation

used for the examples presented, the functions are described by their ON-sets and DC-sets. The tag

field of the set data structure must be extended to support the "don't care (X)" state of the output By

treating the DC-set and the ON-set of each output as a bit of the output tag, and the minterms as ele

ments of these sets, the scheme developed in Chapter ID for the set data structure using tag fields can

be directly applied to the output tag. The number of elements in the representation of an ISMO func

tion is minimized by grouping minterms that have the same output tag into the same cube.

The representation of an ISMO function as an array of cubes maps directly to its PLA imple

mentation. Each cube of the representation can be implemented as an AND gate. The array of cubes

is equivalent to an OR gate of the cubes. The binary inputs of the function are mapped into MVVs

with the use of decoders, or inverters for the simpler two-valued variables. The minimization of the

cube representation of the function minimizes the PLA implementation of the function.

Extension of Cube Calculus Operations for ISMO Functions

Of the basic operations of cube calculus, union, intersection, and sharp, the union operation is

the simplest to extend for ISMO functions. The result of the union of two arrays of cubes is a new

array with the cubes of both operands. The sharp product is the most complex to extend. The scheme

to extend the cube calculus operations with the output tag will be illustrated by an example of the inter

section of two cubes of ISMO· functions of 2 two-valued inputs and 9 binary outputs. The example is

shown in Figure 22. The bits of the output tag are independent from each other. Each output can be

56

visualized as a function of a single output that will be processed in parallel. Similarly, when generat-

ing the result of an intersection, each output is generated independently using a parallel !?it-vector logi-

cal operation.

cube
C1

Cz
Cr

inputs
01.11
11.10
01.10

outputs
000 111 xxx
OlX OlX OlX
000 OlX OlX

Figure 22. Sharp of two cubes of a multiple output function.

The intersection operation can be parallelized to execute the intersection of c 1 against the cubes

c2 to en by generating the resultant cubes of the intersection as presented for the single output case and

processing the output tags with a sequence of searches and partial writes. This scheme is presented

using the patterns of the cube c 1 in Figure 22. The operation executed is a multiple partial write with

the pattern "O?. ??000??????, where the first four bits are the inputs and the last nine bits are the outputs

of the function. The cube c 2 is overwritten by the intersection. The multiple partial write transforms

the operand cubes stored in the CAM into the cube that is the intersection (input field), and sets the bits

of output tag of the resultant cubes to the correct values that enable the resultant cube to be shared by

all outputs. The outputs that 3!e 0 in c1 must also be 0 in the intersection cube (first 3 bits of the out

put), the tag of the intersection of outputs that are 1 in c 1 are determined by the outputs of the cubes

stored in memory (the fourth, fifth and sixth bits of the output tag), and the intersection of outputs that

are don't cares in c 1 are also determined by the outputs of the operand cube stored in memory

(seventh, eight and ninth bits of the output tag).

In software, the sharp of a cube on a multiple output function requires three nested loops (see

Figure 23) The outer loop sharps the cube against the arrays representing each of the outputs. The

second loop sharps the cube against the cubes in each array and the inner loop runs over the variables

to generate the resultant cubes.

In CAM-based and RAM-based computers, the outer loop is executed in parallel by the

representation of the outputs with the output tag. However, CAM-based computers also parallelize the

intermediate loop, number of cubes, which is by far the longest one. For example, the representation

57

of an ISMO function can have thousands of cubes. The performance improvement of the sharp pro-

duct executed with the support of CAMs is proportional to this parallelization.

F # C1c

FOR all output arrays F; in function F
DO

FOR all cubes f i in F;
DO

FOR all variables w
DO/fj # C1c I

x{.x~ · · · x!,ni · · · x/;.

END
END

END

Figure 23. Algorithm to sharp a cube out of a multiple output function.

Table I lists the execution times of the sharp product measured with the UNIX utility gprof

[GRAHAM82] of the three functions labeled F1, Fz and F3 using the program ESPRESSO

[BAKER88] on a SUN Spare station 1 iPC with 8 Mbytes of RAM. Each of these functions have 26

binary inputs and 46 binary outputs, represented by an array of 301 cubes. F 1 is the benchmark bca

provided in the ocr distribution and F 2 and F 3 were created by modifying the cubes of F 1 at random.

TABLE I

EXECUTION TIME OF THE SHARP PRODUCT
ON A RAM-BASED COMPUTER

CPU [s]
F1# Fz 434.58
F2# F1 440.90
F1 # F3 10094.35
F3# F1 25.38
F3# Fz 32.46
Fz# F3 33.35

Tables II, ill and IV profile, again using gprof, the execution of the sharp products that are not

dominated by reading the operand arrays of cubes in Table I. The function cv _sharp0 forms the sharp

product of two covers and calls cb_sharpO that forms the sharp product of a cube and a cover. The

58

function cb_sharpO calls a recursive formulation cb_recur_sharpO. The function cb_recur_sharp0

calls the function sharp0 that forms the sharp product of two cubes. Cb_recur_sharpO also calls

cv _intersectO to find the intersection of the results of the function sharpO. The function sf_unionO

forms the union of the sharp results and also deletes repeated cubes and cubes that are covered by a

single cube. The functions nn2_contain0 rm2_equa10 that are called by sf_unionO and removes the

redundant cubes from their already sorted input arrays of cubes.

TABLE II

EXECUTION PROFILE OFF i # F 2

number self CPU time
function of

calls [s] [%]
cv_sharp 1 0.01 0.0
cb_sharp 301 0.04 0.0
cb_recur_sharp 180901 1.17 0.4
sharp 90601 0.44 0.1
cv _intersect 93300 2.53 0.5
sf_ union 733 0.02 0.0
nn2_contain 1466 273.99 54.4

TABLE ill

EXECUTION PROFILE OFF 2 # Fi

function number self CPU time
of

calls [s] [%]
cv_sharp 1 u.uu u.u
cb_sharp 301 0.02 0.0
cb_recur_sharp 90732 1.54 0.3
sharp 90601 0.37 0.1
cv _intersect 90300 2.55 0.5
sf_ union 733 0.05 0.0
rm2_contain 1466 272.91 53.4

59

TABLE IV

EXECUTION PROFILE OFF i # F 3

number self CPU time
function of

calls [s] [%]
cv_sharp 1 u.uo u.o
cb_sharp 301 0.00 0.0
cb_recur_sharp 301 1.31 0.0
sharp 90601 0.50 0.0
cv _intersect 90300 21.63 0.2
sf_ union 20150 0.22 0.0
rm2_contain 40300 8342.87 78.2

The sharp product of two covers (ISMO functions) executed with CAMs execute the equivalent

to the function sharp and the intersection of cube and covering(s) in parallel. The equivalent CAM

functions used to substitute the functions cv_intersect(), cb_recur_sharp0 and sharpO are called the

same number of times cb_sharpO is called The function rm2_contain0 that accounts for over 50% of

the processing time is also executed in parallel. Furthermore, rm2_containO requires sorted coverings

as inputs. The cumulative cost of the function sf_sort() that sorts the coverings for the sharp product

of Tables II, m and IV are shown in Table V. Due to the efficiency of sorting, and in many cases the

lack of need of sorting in CAMs, the cost in time of sorting would be greatly reduced.

TABLEV

CUMMULATIVE COST OF SORTING CUBES

operation CPU time [s] CPU time[%]

Fi# Fz 58.50 13.9
Fz# Fi 61.60 14.3
Fi# F3 267.41 2.8

Another point in favor of CAMs is that they provide a trade-off between execution time and

hardware that RAMs cannot provide. The removal of redundant cubes is essential to the performance

of the sharp product on RAM-based computers because the processing time is proportional to the

number of cubes. Subject to memory constraints, the sharp algorithm for CAM-based computers is

60

almost independent from the number of cubes in the intermediate representation of the covers. There-

fore, the removal of redundant cubes can be executed once, just prior to presenting the final results

with small penalty in performance. More RAM only adds storage space , which is essential to execute

larger problems, but without performance gain. More CAMs in the system adds storage space and

parallel processors that can take advantage of under used parallelism.

Perhaps the most impressive point in favor of CAM-based computers is that the RAM-based

performance is measured in CPU time and the performance of the CAM-based sharp is measured in

CAM cycles. The CAM has transferred the processing load of the CPU.'

To evaluate the performance of the sharp product in a CAM-based computer, the execution time

of the sharp product F 1 # F 3 in the recently reported CAM-based computer IXM2 [HIGUCHI91] will

be estimated. The sharp product will require the cube operations listed in Figure 24. The cube against

cube sharp products are executed in parallel for all 301 cubes of F 1 and sequentially for the 301 cubes

of F 3. Each sharp call requires 26 multiple write cycles, one for each input. The intersections are exe-

cuted in parallel over the sharp results and require a worst case number of calls of 301 * 26 in the case

of each sharp product creates a maximum number of resultant cubes. The results of the intersections

are composed into a single array. A pessimistic number of cycles is estimated for the removal of

redundant cubes based on the results of the profiling. Since each cube is stored in 4 words, pessimisti-

cally, the operations have to be repeated for each of the words.

301 sharp calls * 26 MVV s cycles
301 cv_intersect calls* 26 MVVs cycles
301 sf_union calls cycles
40300 rm2_contain cycles
total number of CAM cycles

7826
7826

301
40300

4 * 56253

Figure 24. Estimate of the execution cycles for sharp in a CAM.

The IXM2 executes each the equivalent to the CAM cycle listed in Figure 24 in 18 µs. The total

execution time for the sharp product F 1 # F 3 is 18 µs x 4 x 56253 "' 4.0 s. This impressive perfor-

mance improvement ofi over three orders of magnitude is achieved if the IXM2 can store the largest

intermediate representation of the operand functions. The IXM2 has a storage capacity of 256 K words

of 40 bits. For the examples used, each cube requires 4 words and the memory required would be 4

61

words x 310 cubes x 26 MVVs = 31,304 words. Operations that require more than 256 Kwords will

demonstrate a smaller gain in performance.

The estimated improvement, of course, will be smaller because only the performance of the cal

culations is improved. The time required to read the operand covers and for the output of the results is

nearly constant Reading the operand covers took approximately 5% of CPU time of the longest

example, and little less than 15% on the other two. The percentage of time spent on setting up the

operation of examples with very short sharp execution times may be as high as 50% for a RAM-based

computer. In these cases, the performance improvement of the CAM-based computer is limited by the

operations not directly related to the calculations.

Another Representation of Logic Functions and CAMS

The representation of functions with cubes presented is suitable for PLA implementations. The

factored form is a representation that is more suitable for multi-level minimization of logic functions.

Factored forms and multi-level minimization are based on the papers by Brayton [BRA YTON82,

BRAYTON87]

The factored form is defined recursively: 1) a literal is a factored form; 2) a sum of factored

forms is a factored form; 3) a product of factored forms is a factored form. This definition can be gen

eralized to include other operations such as the exclusive-or, arithmetic sum, arithmetic product, etc.

For simplicity, the discussion will be restricted to the logical sum and product of factored forms.

Typically, the data structured used to represent factored forms is the list For example, the cubes

of binary literals are represented as lists of literals. The cube, or product of literals, a.b.d, is

represented by the list {a, b, d}. When one literal appears in a list in its negated and non-negated form,

the list represents an empty cube. This representation again works with symbols that are suitable for

algebraic manipulations.

With two lists representing the product of their elements, appending the two lists is equivalent to

the AND operation or intersection of algebraic representations. For example, appending the lists that

represent the cubes "a.b.d" and "c.d", append({a,b,d},{c,d}), results in the list {a,b,c,d} which

represents the cube "a. b.c.d". Analogously, when the list represents the sum of its elements, appending

62

two lists represents the union or OR operation

Although originally the data structure used for factored forms was the list, the ideal data struc

ture for this representation is the set data structure because the list {a, b, c} represents the same cube as

the list { c, a, b}. This representation of functions with lists is one example of the use of a more com

plex data structure because of the low support of the set data structure and the sequential nature of

RAM-based computers. Because of the sequential nature of RAM, sorting of the elements is almost a

must to achieve acceptable performance.

The logic minimiution with factored forms performs algebraic manipulation to identify com

mon sub-expressions in different outputs, and functions that are by themselves subexpressions of other

functions. The cost of the implementation can then be shared by the functions that share the common

sub-expression. Brayton [BRA YTON87] presented the concept of kernels, co-kernels and support of a

function to help find sub-expressions that can be shared by two functions. An informal description of

these concepts is given below.

A kernel of a function is a divisor of the function, or sub-expression of a function that cannot be

represented by a single cube (product of literals) and cannot be divided evenly by a single cube. A

co-kernel, C, of a kernel k is a single cube divisor of a function f such as f/C = k.f whose quotient is a

kernel. Kernels and co-kernels are good candidates for sub-expressions. For example, the product c.d

is a co-kernel of the function f = a.b.c.d + c.d.e = {ab+ c.d).(d.e) that corresponds to the kernel (ab +

c.d).

The support of a functiop is the set of all literals used to describe the function. If the function is

the list representing the sum of its elements {ab, cd, ad } , the support of the function is

{a, a, ii, c, d,il}.

The support of the function is used to construct cubes that divide the function evenly and is used

to find the kernels and co-kernels of a function. Two functions,/ and g, have a common multiple-cube

divisor (a common kernel) if the intersection of the set of kernels of f and g is more than one cube.

The algorithm of the multi-level minimization program MIS [OCT] searches for common divisors by

generating the set of kernels of each function and forming the intersection of the sets. If the result of

63

the intersections is either the empty cube or a single cube, the program looks only for single cube divi-

sors. Brayton [BRA YTON87] observed that since most of the possible 21 intersections o_f sub-sets of f

are empty, the generation of the kernels of an expression by the scheme presented can be extremely

inefficient. To avoid the calculation of the intersections, MIS transforms the calculation of intersec

tions into finding the kernels of another function with the overhead of the transformation and the

reverse transformation.

Again, the different performance relation of the CAM significantly changes the complexity of

execution and development of existing algorithms. In this specific case, it simultaneously simplifies

and improves the performance of the algorithm. CAMs can calculate the bitwise intersection in paral

lel and without the CPU. The transformation and anti-transformation of the problem is then unneces

sary, simplifying the algorithm.

The set of literals of a cube and the sub-expressions in a function can be represented with the set

data structure described in Chapter III, with each literal as an element of the cube, and each cube as an

element of a sub-expression, and so on.

The CAM can be used to find out which literals of the support divide the function evenly by

searching, one literal at a time, and finding those that match all cubes in the function. The literals that

do not match all lists, match a partial list of the cubes in the function and can be used to generate the

kernels of the function. The kernels can also be found by dividing the function by the co-kernels.

An important process of algebraic manipulation of functions is the factomation of the function.

This task is performed with the algebraic division of the functions. Due to the high cost of the division

and the large number of functions found in minimization problems, some guidelines to filter the divi

sions were developed. Devising heuristics and discovering properties to reduce the amount of compu

tation is a very important technique in logic minimization and synthesis since it enhances the perfor

mance and enables the solution of problems that would be too big to solve otherwise.

Filtering is one of the strong points of CAMs. Brayton [BRA YTON87] showed that gj is not an

algebraic divisor of/; (i.e., f;lgi = 0) if:

(1) gi contains a literal not in/i

(2) gi has more terms than f i

(3) for any literal, the number of appearances in gi exceeds that inf i.

64

(4) if for any literal, the number of appearances in gi equals that in fi then (fJgi) is at most a sin

gle cube.

These properties are easily mapped into a sequence of searches in the CAM, enhancing the per

formance of logic minimization algorithms at low cost.

The logic minimization and synthesis of Boolean functions is typical of the kind of application

that would be improved by the use of CAM-based computers. The multi-level minimization scheme

presented does not use its ideal data structure, the set, and a more complex algorithm had to be

developed due to the shortcomings of RAM. Some of the processing can be transferred to CAM and

executed in parallel. By executing searches on the data stored in the memory the amount of processing

and data transferred from memory to CPU is reduced.

CUBE CALCULUS AND RESOLUTION

Artificial intelligence is one of the non-numeric applications with low performance in RAM

based computers that is expected to continue to grow in importance in the near future. A key factor

that makes artificial intelligence programs so computational intensive and suitable for associative pro

cessing is that they are often non-deterministic. The amount of computation for AI poses requirements

in performance that a single processor system cannot handle in reasonable time. Higher parallelism

and concurrency are required to execute these programs at a rate that will make them find realistic

applications. A hardware implementation of fine-grained parallelism at a lower level as the content

addressable memory is then suggested.

Of the representations of knowledge used in AI, predicate calculus is a more general representa

tion but it is also less succinct than specialized languages. The retrieval of information from databases

that use predicate calculus generally takes longer because the information is not always directly stored

in the database. The information has to be deduced, inferred, from the database. The applications that

65

require predicate calculus or clausal forms to describe knowledge because of its expressivity, have an

even higher processing requirements than specialized languages.

The manipulation of declarative knowledge for artificial intelligence in clausal form is done with

the resolution principle. A clause is equivalent to a set of literals representing their disjunction. Sim-

ply stated, the resolution principle is: If a literal of one clause is false the remainder of the clause has to

be true. Finding two literals in different clauses that cannot be true at the same time means that at least

one of the remainder of those two clauses is true and we can join both remainders in a new clause

assured that the new clause is true.

An illustration of resolution with unification is shown in the Figure 25. No conclusion can be

drawn from the clauses marked 1 and 2 until the unifier "(is applied to clause 2 to substitute the free

variables by constants, creating the clause 3. The application of resolution on the clauses 2 and 3 con-

eludes that the clause 4 is also true.

1) {P(x), Q(x, y)}
2) { -J>(A), R(B, z)}

y=(x/A, y/z)
3) {P(A),Q(A, y)}
4) {R(B, z),Q(A, y)}

Figure 25. Example of resolution and unification.

Previously, a cube was interpreted as a product. The formulation of the consensus of two cubes

is repeated with the notation used in logic. The consensus of two cubes will have a single cube result

that covers both cubes if their distance is one:

p /\q_ /\r * jJ /\r = q /\r

If the distance is larger than one, the result cube is the empty cube:

p/\q/\r * p/\r = q/\r/\r= 0

If the cube is interpreted as a sum of literals, each cube is equivalent to a clause, and a function is

equivalent to a database. The consensus operation is the dual to the resolution principle.

pVqVr * jJVr = qVr

pVqVr * jJVr = qVrVr= 1

66

The Figure 26 shows a simple example of resolution from [ULUG87] and its graphic representa-

tion. The example shows that resolution just states:

If (p OR q) is true and ((NOT q) or r) is also true, it is correct to infer that (p OR r) is true also.

In the example:

If an object A is "not round or large" and at the same time it is "not large or do not have a hole",

it is safe to assume that the object is also "not round or does not have a hole". It is also safe to

assume that an object is "large or not large", but this is a trivial conclusion.

All "mathematics" of cube calculus and CAM-based algorithms shown in this chapter can be

applied to artificial intelligence. Testing whether a sentence is true is equivalent to testing the covering

of the array of cubes that represents the sentence by the knowledge database. Finding all objects that

match some relation is equivalent to the intersection between the database and the sentence that

"I
000 I

stamp

.NOTro~ OR large

NOTJarge OR NOThole

large nut
101

book I d , ..

OxO

dime

large washer

111

quarter

011

round

NOTround OR NOThole

Figure 26. Graphical example of the resolution principle.

67

describes the relation, and so on.

IMAGE PROCESSING AND CUBE CALCULUS

Oldfield [0LDFIELD87] proposed the use of CAMs to process images subdivided in homogene-

ous quadrants. In that paper, an update of the image does not require the visiting of all quadrants

because CAMs can search and identify which quadrants have to be modified. Using functional

memories (trits) it is easy to clip an image or count the quadrants that have a certain color (property).

The example from [0LDFIELD87] is repeated here as an illustration. The Figure 29 shows the result

of overwriting the non-white quadrants of the update image shown in Figure 28 over the complex

image shown in Figure 27. The images are stored in CAM as non-overlaping cubes that represent each

quadrant. The entries in the memory are show alongside with each figure.

Only the non-white quadrants of the update data have to be processed. In this example, only the

entries 1, n and q of Figure 28 have to be processed. The entry 1 of the update image matches only the

quadrant b of the image. The quadrant b and the quadrant 1 are of the same size and a simple update of

the color of b updates the image. The quadrant specified by the entry n covers the quadrants

represented by the entries d, e, f and g. These four quadrants can be absorbed , or sharped, from the

image and substituted by a new entry d with the color of entry n. The quadrant of the update image q

matches the quadrant j of the image. The quadrant j is sharped by the quadrant q generating the new

b II
a

a 100**** D
b 11000** D
c 11010** []

d 1100100 D
e 1100110 rm .
f 1100101 II
g 1100111 mi .

1 J h 11011** m
i 101 **** D
j 111 **** D

Figure 27. Sample image and CAM entries.

68

II: k

k 100**** _ D
1 11000** [fill

m 11010** D

0 n 11001** §I

0 11011 ** D

p
r p 101**** D

q 11100** lil
r 11110** D

s I t .s 11101** D
t 11111** D

Figure 28. Update image and CAM entries.

quadrants represented by the new entries f, g and j.

The basic theory used is the disjoint sharp of cubes using a quad-tree data structure and using

cubes to represent the quadrants. Clipping of one image A from one image B is the equivalent to the

operation (A# B) u B. This operation is executed efficiently using CAMs.

a -
g

1

f I J

a 100****
b 11000**
c 11010**
d 11001**
e 11100**
f 11101**

g 11110**
h 11011 **

D
Im
lEI
rm
rm
D
D
IHI

i 101 **** D
j 11111** D

Figure 29. Final image and CAM entries.

CHAPTERV

CONCLUSIONS AND FUTURE WORK

This work analyzed the performance improvement that results from the addition of associativity

to the set data structure. The analysis showed that the content-addressab~e memory implements associ

ativity and enhances the parallelism of algorithms. The communication bandwidth requirement

between the processor and the memory is smaller in a CAM-based computer. Therefore, a CAM

based computer has higher performance than RAM-based computer for the same system bus com

munication bandwidth.

No inherent fault was discovered in the associative processing model implemented with

content-addressable memories, but only recently has the integration density permitted the integration

of CAM ICs large enough to find realistic applications, and the understanding of content-addressable

memories matured to defining the role of the CAM in the system beyond that of a search engine. It is

the extended capability of execution of logic operations and the support of data structures that enabled

the CAM to assume a more participative role in processing. Probably the strongest reason for the

small number of CAM-based systems is the RAM monopoly of the implementations of computer

memories. The processors and software are optimized to work in conjunction with RAMs.

Associative processing is such a powerful model that special architectures were developed

despite the high cost of the development of CAM ICs and dedicated software. The number and variety

of applications of proposed application specific CAM-based systems demands the rethinking of the

decision to concentrate research and development efforts to RAM-based computers. The prevailing

single mindedness for memory integrated circuits was important in the development of computation

but it is time to re-evaluate that decision in face of the wider range of applications found for comput

ers. The technology to develop CAM-based computers is already available, as proved by the IXM2

[HIGUCHI91] which is a CAM-based computer that presents high performance in applications for

70

which RAM-based computers have poor performance.

It is expected that CAM-based computers will have worse performance than RAM-based com

puters for some applications. The natural research topic that arises from this fact is the study of alter

native architectures that blend the characteristics of RAM and CAM-based computers into an architec

ture that is more powerful than either one isolated. To decide how to blend both computational

models, it is necessary to know the strengths of each model. Compared to the experience accumulated

on RAM-based computers, the CAM-based computer is almost unknown.

The effects and applications of other data structures enhanced by associativity have to be stu

died. And the programming environment of the CAM-based computer must be better understood, the

substitution of RAM with CAM changes the execution speed of essential tasks. For example, search

ing a table was always avoided by experienced programmers, The naive algorithm to sort a set of N

values is of complexity of the order of N 2• By the development of sophisticated algorithms sorting can

be executed in N.lo g N time. Algorithms developed for systems that use CAM taking the naive

approach execute the same task in O(N) time, by using the processing power of N comparator circuits

in parallel. It is conceivable that there would be a larger use of interpreters in CAM based systems

because compilers take longer to develop and are more difficult to modify than interpreters. Com

pilers are used because they transfer the table look-up, which implies searching and sorting, to compile

time, speeding-up the execution of interpreted programs. Table look-ups are too expensive to be done

while executing the program on-the-fly in RAM-based systems but not in CAM based computer sys

tems. In the same way, programs that use more dynamic memory allocation should became more

popular. Memory management with CAM is much simpler than memory management of dynamic

memory allocation with RAM. Programs that use dynamic memory allocation and disorganize data

will not be significantly slower than those that do not, because, in CAM-based computers, the over

head of memory management and allocation is small.

Parallel programs are not as sequential as the programs for sequential computers. CAM-based

computer systems can take advantage of the fact that the sequence of execution of instructions in

CAMs has to be explicitly stored to increase the parallelism. The Linda language for parallel program

ming is one example of a high-level programming language that uses the associative memory model.

71

For more information on the Linda language please refer to: [CARRIER090, AHUJA88, CARRI-

ER088, LELER90, GELERNTER85, AHUJA86]. Ahuja [AHUJA88] showed that the implementa

tion of the primitives of Linda with an associative memory implemented in hardware using hash cod

ing yields significant gain in performance. Since CAMs have been shown to outperform hash coding,

it is reasonable to expect similar or better gains with CAMs.

CAMs also support relational calculus which finds applications in artificial intelligence. Many

architectures were proposed for relational databases that use content-addressable memories to improve

performance [BLAIR89, RIBEIR089, NG87, ROBINSON85, SHANKAR88, STORMON88, OLD

FIELD86, OLDFIELD87]. And the literature on the use of CAMs for logic programming is extensive

[BLAIR89, RIBEIR089, NG87, ROBINSON85, SHANKAR88, STORMON88, OLDFIELD86,

OLDFIELD87]. The papers of Yokota, [YOKOTA86] Woo [W0085, O'KEEFE86] and Shobatake

[SHOBATAKE86] do not use CAMs but could be extended to do so.

The research of the associative model should also include alternative CAM-based computer

architectures. The dynamic dataflow computer (and the data-driven computer) uses the data depen

dencies to enforce the sequence of execution of instructions. This scheme of fine-grained parallelism

yields high parallelism and the CAM is the ideal memory device to implement the matching unit of

dataflow computers. For more information on dataflow computers please refer to: [YUBA90,

AMAMIYA86, DAVIS82, IANNUCCI88, BUEHRER87, ARVIND82, DENNIS80, GAUDIOT86,

GAJSKI82, GOSTELOW80, NIKHIL89, ARVIND83, 1RELEAVEN82, GAUDIOT89]. The

dataflow computer was proposed for the execution of logic programs and the implementation of expert

systems to make use of the inherent parallelism of these applications [BIC84, ROKEY85,

MURAKAMI83]. High parallelism and artificial intelligence are two of the characteristics of the "fifth

generation computer" [MOTO-OKA83, TRELEA VEN83] which was proposed to address the issues

raised in Chapter I. This research leads to the conclusion that CAMs will be a building block of this

computer.

This thesis has not completely answered all the questions that it set out to answer. And the

answers found raised more questions. But we believe that the questions raised are more important and

in a higher level than the original ones.

REFERENCES

Adams, Stuart J., Mary Jane Irwin, and Robert M. Owens, "A Parallel, General Purpose CAM Architec
ture," in Advanced Research in VLSI, pp. 51-71, MIT Press, 1986.

Advanced Micro Devices, "Am99C10 256x48 Content Addressable Memory," Commercial Release,
November 16, 1988.

Ahuja, Sudhir, Nicholas Carriero, and David Gelemter, "Linda and Friends," Computer, vol. 19, no. 8,
pp. 26-34, August 1986.

Ahuja, Sudhir, Nicholas J Carriero, David H Gelemter, and Venkatesh Krishnaswamy, "Matching
Language and Hardware for Parallel Computation in the Linda Machine," IEEE Transactions on
Computers, vol. 37, no. 8, pp. 921-929, August 1988.

Amamiya, Makoto, Masaru Takesue, Ryuzo Hasegawa, and Hirohide Mikami, "Implementation and
Evaluation of a List-Processing-Oriented Data Flow Machine," in 13th International Symposiwn
on Computer Architecture, pp. 10-19, 1986.

Amsbury, Wayne, Data Structures.from a"ays to priority queues., Wadsworth Publishing Co., Belmont,
CA, 1985.

Anderson, George A, ''Multiple Match Resolvers: A New Design Method,'' IEEE Transactions on Com
puters, vol. C-23, no. 12, pp. 1317-1320, December 1974.

Arvind, and Kim P Gostelow, "The U-Interpreter," Computer, pp. 4249, February 1982.

Arvind, and Robert A Iannucci, "A Critique of Multiprocessing von Neumann Style," in 10th Interna
tional Symposiwn on Computer Architecture, pp. 426-436, 1983.

Ashenhurst, Robert L, The Decomposition of Switching Functions, pp. 74-116, 1959.

Baker, Wendell, Jeff Burns, Wayne Chritopher, Shau-Lim Chow, David Harrison, Chuck Kring, Tom
Laidig, Bill Lin, Rick McGeer, Peter Moore, Kurt Pires, Tom Quarles, Jim Reed, Richard Rudell,
Carl Sechen, Russel Segal, Rick Spickelmier, Albert Wang, Robert K Brayton, A Richard Newton,
and Alberto Sangiovanni-Vincentelli, "OCT Distribution 2.1," Berkley University, March 25,
1988.

Bennetts, R G.,Design of testable logic circuits., Addison-Wesley Publishers Limited, 1984.

Bergh, Harald, Johan Eneland, and Lars-Erik Lundstrom, ''A Fault-Tolerant Associative Memory with
High-Speed Operation," IEEE Journal of Solid-State Circuits, vol. 25, no. 4, pp. 912-919, August
1990.

Bic, Lubomir, "Execution of Logic Programs on a Dataflow Architecture," SIGARCH Newsleller, vol.
12, no. 3, pp. 290-296, June 1984.

Blair, G. M. and P. B. Denyer, "Content addressability: an exercise in the semantic matching of
hardware and software design," IEE Proceedings, Pt. E, vol. 136, no. 1, pp. 41-47, January 1989.

Blair, Gerard Miles, "A Content Addressable Memory with a Fault-Tolerant Mechanism," IEEE Journal
of Solid-State Circuits, vol. sc-22, no. 4, pp. 614-616, August 1987.

73

Borgstrom, T H, M Ismail, and S B Bibyk, "Programmable current-mode neural network for implemen
tation in analogue MOS VLSI," IEE Proceedings, vol.137, PtG, no. 2, pp. 175-183, April 1990.

Brayton, R Kand Curt McMullen, "The Decomposition and Factorization of Boolean Expressions," in
Proceedings of ISCAS, ed. IEEE, pp. 49-54, Rome, 1982.

Brayton, Robert K, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R Wang, "MIS: A
Multiple-Level Logic Optimization System," IEEE Transactions on Computer-Aided Design, vol.
CAD-6, no. 6, pp. 1062-1081, November 1987.

Browne, James C., "Parallel architectures for computer systems," Physics Today, pp. 28-35, May 1984.

Bruce D Shriver, Computer, vol. 21, no. 3, March 1988.

Buehrer, Richard and Kattamuri Ekanadham, "Incorporating Data Flow Ideas into von Neumann Proces
sors for Parallel Execution," IEEE Transactions on Computers, vol.,C-36, no. 12, pp. 1515-1521,
December 1987.

Carpenter, Gail A and Stephen Grossberg, "A Massive Parallel Architecture for a Self-Organizing Neur
al Pattern Recognition Machine," in Computer Vision, Graphics and Image Processing, vol. 37,
pp. 54-117, 1987.

Carriero, Nicholas and David Gelernter, Applications Experience with Linda, January 1988.

Carriero, Nicholas and David Gelernter, How to Write Parallel Programs, a First Course, The MIT
Press, 1990.

Chae, Soo-ik, James T. Walker, Chong-cheng Fu, and R. Fabian Pease, "Content-Addressable Memory
for VLSI Pattern Inspection," IEEE Journal of Solid-State Circuits, vol. 23, no. 1, pp. 74-78,
February 1988.

Chisvin, Lawrence and R. James Duckworth, "Content-Addressable and Associative Memory: Alterna
tives to the Ubiquitous RAM," Computer, pp. 51-64, July 1989.

Clark, L. T. and R. 0. Grondin, "Comparison of a Pipelined "Best Match" Content Addressable Memory
with Neural Networks," inIEEE International Symposium on Neural Networks, ed. IEEE, vol. ill,
pp. 411-418, 1988.

Clark, Lawrence T. and Robert 0. Grondin, "A Pipelined Associative Memory Implemented in VLSI,"
IEEE Journal of Solid-State Circuits, vol. 24, no. 1, pp. 28-34, February 1989.

Damarla, T. and M. Karpovsky, "Detection of stuck-at and bridging faults in Reed-Muller canonical
(RMC) netwotks," IEE Proceedings, vol. 136, Pt E, no. 5, pp. 430-433, September 1989.

Dasgupta, Subrata, Computer architecture. A modern synthesis., 2: Advanced topics, John Wiley & Sons,
1989.

Daunicht, W J, "Control of manipulators by neural networks," IEE Proceedings Pt.E, vol. 136, no. 5,
pp. 395-399, September 1989.

Davis, Alan Land Robert M Keller, "Data Flow Program Graphs," Computer, pp. 26-41, February
1982.

Dennis, Jack B, "Data Flow Supercomputers," Computer, pp. 48-56, November 1980.

Dietmeyer, D. L., Logic Design of Digital Systems, Allyn and Bacon, Boston, 1978. 2nd ed.

Duller, A. W. G., R. H. Storer, A. R. Thomson, E. L. Dagless, M. R. Pout, A. P. Marriot, and J.
Goldfinch, ''Design of an associative processor array,'' IEE Proceedings, vol. 136, Pt. E, no. 5, pp.
374-382, September 1989.

74

Eder, Elmar, Properties of Substitutions and Unifications, pp. 31-46, Academic Press, Inc., 1985.

Finnila, Charles A. and Hubert H. Love, Jr., "The Associative Linear Array Processor," /Ef,E Transac
tions on Computers, vol. C-26, no. 2, pp. 112-125, February 1977.

Foster, Caxton C., Content Addressable Parallel Processors, Van Nostrand Reinhold Company, New
York, 1976.

Gajski, DD, DA Padua, and DJ Kuck, "A Second Opinion on Data Flow Machines and Languages,"
Computer, pp. 58-69, February 1982.

Gaudiot, Jean-Luc, "Structure Handling in Data-Flow Systems," IEEE Transactions on Computers, vol.
C-35, no. 6, pp. 489-502, June 1986.

Gaudiot, Jean-Luc and Yi-Hsiu Wei, "Token Relabeling in a Tagged Token Data-flow Architecture,"
IEEE Transactions on Computers, vol. 38, no. 9, pp. 1225-1239, September 1989.

Gehringer, Edward F and J Leslie Keedy, "Tagged Architecture: How Compelling Are its Advan
tages?," SIGARCH Newsletter, vol. 13, no. 3, pp. 162-170, June 1985.

Gelemter, David, "Generative Communication in Linda," ACM Transaction on Programming
Languages and Systems, vol. 7, no. 1, pp. 80-112, January 1985.

Gelsinger, Patrick P, Paolo A Gargini, Gerhard H Parlcer, and Albert Y C Yu, "Microprocessors circa
2000," IEEE Spectrum, vol. 26, no. 10, pp. 43-47, October 1989.

Genesereth, Michael Rand Nils J Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kauf
mann Publishers, Los Altos, California, 1987.

Gostelow, Kim P and Robert E Thomas, "Performance of a Simulated Dataflow Computer," IEEE Tran
sactions on Computers, vol. C-29, no. 10, pp. 905-919, October 1980.

Graf, Hans P and Paul de Vegvar,."A CMOS Associative Memory Chip Based on Neural Networks," in
1987 IEEE International Solid-State Circuits Conference ISSCC 87, ed. IEEE, pp. 304-305,437,
February 1987.

Graham, Susan L, Peter B Kessler, and Marshall K McKusick, "gprof: a Call Graph Execution Profiler,"
SIGPLAN Notices, vol. 17, no. 6, pp. 120-126, June 1982.

Griffiths, Michael and Carol Palissier, Algorithmic Methods for Artificial Intelligence, Chapman and Hall,
1987.

Grosspietsch, K. E., H. Huber, and A. Muller, "The concept of a fault-tolerant and easily-testable associ
ative memory," in Proc. 16th Fault-tolerant Computing Symp., ed. IEEE, pp. 34-39, July 1986.

Grosspietsch, K. E., "Architectures for testability and fault tolerance in content-addressable systems,"
IEE Proceedings, vol. 136, Pt E, no. 5, pp. 366-373, September 1989.

Grosspietsch, KE, H huber, and A Muller, ''The VLSI Implementation of a Fault-tolerant and Easily
testable Associative Memory," Proceedings of VLSI and Computers First International Confer
ence on Computer Technology, Systems and Applications, pp. 47-50, IEEE, Hamburg, May 11-15,
1987.

Hammerstrom, Dan, "A VLSI Architecture for High-Performance, Low-Cost, On-chip Learning," in
IEEE Int. Conf on Neural Networks, vol. 1, pp. 1-8, 1990.

Hammond, Joseph Land Peter JP 0/Reilly, "Error Control," in Performance Analysis of Local Comput
er Networks, ed. Addison-Wesley Publishing Co., pp. 42-66, 1986.

Herrmann, Frederick P, Craig L Keast, Keisuke lshio, Jon P Wade, and Charles G Sodini, "A Dynamic
Three-State Memory Cell for High-density Associative Processors," IEEE Journal of Solid-State
Circuits, vol. 26, no. 4, pp. 537-541, April 1991.

75

Higuchi, Tetsuya, Tatsumi Furuya, Kenichi Randa, Naoto Takahashi, Hiroyasu Nishiyama, and Aldo
Kokubo, "IXM2: A Parallel Associative Processor," Computer Architecture News, vol. 19, no. 3,
pp. 22-31, Toronto, Canada, May 1991. -

Hillberg, W, "Neural networlcs and conditional association networks: common properties and differ
ences," IEE Proceedings Pt.E, vol. 136, no. 5, pp. 343-350, September 1989.

Hillis, W Daniel and Guy L Steele Jr, "Data Parallel Algorithms," Communications of the ACM, vol. 29,
no. 12, pp. 1170-1183, December 1986.

Hirata, Masaki, Hachiro Yamada, Hajime Nagai, and Kousuke Takashi, "A Versatile Data String-Search
VLSI," IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp. 329-335, April 1988.

Hollis, Paul Wand John J Paulos, ''Artificial Neural Networks Using MOS Analog Multipliers,'' IEEE
Journal of Solid-State Circuits, vol. 25, no. 3, pp. 849-855, June 1990.,

Hong, SJ, R G Cain, and D L Ostapko, "MINI: A Heuristic Approach to Logic Minimization," IBM
Journal of research and development, vol. 18, no. 5, pp. 443-458, September 1974.

Howard, Richard E., Daniel B. Schwartz, John S. Denker, Roger W. Epworth, Hans Peter Graf, Wayne
E. Hubbard, Lawrence D. Jackel, Brian L. Straughn, and D. M. Tennant, "An Associative Memory
Based on an Electronic Neural Network Architecture," IEEE Transactions on Electron Devices,
vol. ED-34, no. 7, pp. 1553-1556, July 1987.

Hwang, Kai and Faye A Briggs, Computer Architecture and Parallel Processing, pp. 56-57, 1984.

Iannucci, Robert A, Toward a Data.flow I Von Neumann Hybrid Architecture, pp. 131-139, 1988.

IBM Corp., "System for Efficiently Using Spare Memory Components for Defect Corrections Employ
ing Content-Addressable Memory," IBM Technical Disclosure Bulletin, vol. 28, no. 6, pp. 2562-
2567, November 1985.

Isenman, Merrill E and Dennis E Shasha, "Performance and Architectural Issues for String Matching,"
IEEE !SSC, vol. 39, no. 2, pp. 238-250, February 1990.

ltoh, Kiyo, "Trends in Megabit DRAM Circuit Design," IEEE Journal of Solid-State Circuits, vol. 25,
no. 3, pp. 779-789, June 1990.

Jones, Simon, ''Design, selection and implementation of a content-addressable memory for a VLSI
CMOS chip architecture," IEE Proceedings, vol. 135, Pt. E, no. 3, pp. 165-172, May 1988.

Jones, Simon R., Ian P. Jalowiecki, Stephen J. Hedge, and R. M. Lea, "A 9-kbit Associative Memory for
High-Speed Parallel Processing Applications," IEEE Journal of Solid-State Circuits, vol. 23, no. 2,
pp.543-548,April1988.

Kadota, Hiroshi, Jiro Miyake, Yoshito Nishimichi, Hitoshi Kudoh, and Keiichi Kagawa, ''An 8-kbit
Content-Addressable and Reentrant Memory," IEEE Journal of Solid-State Circuits, vol. SC-20,
no. 5, pp. 951-956, October 1985.

Kam, Moshe, Roger Cheng, and Allon Guez, "On the Design of a Content-Addressable Memory via
Binary Neural Networks," in IEEE Int. Conf. on Neural Networks, pp. 11-513, 11-522, 1988.

Kohonen, Teuvo, Associative Memory, a System-Theoretical Approach, Springer-Verlag, Berlin, 1977.

Kohonen, Teuvo, Content-Addressable Memories, Berlin, 1980.

Kolman, Bernard and Robert C Busby, Discrete Mathematical Structures for Computer Science, p.
chapter 1, Englewood Cliffs, NJ, 1984.

Kuo, Y S, "Generating Essential Primes for a Boolean Function with Multiple-Valued Inputs," IEEE
Transactions on Computers, vol. c-36, no. 3, p. 356, March 1987.

76

Lea, R. M., "SCAPE: a single-chip array processing element for signal and image processing," IEE
Proceedings, Pt. E, vol. 133, no. 3, pp. 145-151, May 1986.

Lea, RM, "VLSI and WSI associative string processor for structured data processing," IEE Proceedings
Pt.E, vol. 133, no. 3, pp. 153-162, May 1986.

Lea, RM, "ASP: A Cost-effective Parallel Microcomputer," IEEE Micro, vol. 8, no. 5, pp. 10-29, Oc
tober 1988.

Lee, Dile Lun, "A Distributed Multiple-Response Resolver for Value-ordered Retrieval," SIGARCH
Newsletter, vol. 13, no. 3, pp. 258-265, June 1985.

Lee, Dile Lun and Frederick H Lochovsky, "HY1REM - A Hybrid Text-Retrieval Machine for Large
Databases," IEEE JSSC, vol. 39, no. 1,pp. 111-123,January 1990.

Leier, Wm, "Linda Meets Unix," Computer, pp. 43-54, February 1990.

Lin, Yow-Jian and Vipin Kumar, "AND-parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results," in Logic Programming: Proceedings of the 5th Interna
tional Conference and Symposium, ed. Kenneth A Bowen, vol. 2, pp. 1123-1139, MIT Press, 1988.

Lucente, Michael A, Clifford H Harris, and Robert M Muir, "Memory System Reliability Improvement
Through Associative Cache Redundancy," IEEE JSSC, vol. 26, no. 3, pp. 404-409, March 1991.

Martin, Ursula and Tobias Nipkow, "Boolean Unification - The Story So Far," Journal of Symbolic
Computation, vol. 7, pp. 275-292, 1989.

Mazumder, Pinaki, Janak H. Patel, and W. Kent Fuchs, "Methodologies for Testing Embedded Content
Addressable Memories," IEEE Transactions on Computer-aided Design, vol. 7, no. 1, pp. 11-20,
January 1988.

McAuley, Anthony J and Charles J Cotton, "A Self-Testing Reconfigurable CAM," IEEE Journal of
Solid-State Circuits, vol. 26, no. 3, pp. 257-261, March 1991.

McEliece, R J, EC Posner, ER Rodemich, and SS Venkatesh, "The capacity of the Hopfield associative
memory," IEEE Transaction on Information Theory, vol. IT-33, no. 4, pp. 461-482, 1987.

Mead, Carver A, Analog VLSI and Neural Systems, Reading, MA, 1989.

Milutinovic, Veljko M, High-level language computer architecture, Computer Science Press, 1988.

Moskowitz, JP and C Jousselin, "An algebraic memory model," Computer Architecture News, vol. 17,
no. 1, pp. 55-61, march 1989.

Moto-oka, Tohru, "Overview to the fifth generation computer system project," in 10th Int Symp on
Computer Architecture, pp. 417-422, 1983.

Motomura, Masato, Jun Toyoura, Kazumi Hirata, Hideyuki Ooka, Hachiro Yamada, and Tadayoshi
Enomoto, "A 1.2-Million Transistor, 33-MHz, 20-b Dictionary Search Processor(DISP) ULSI with
a 160-Kb CAM," IEEE Journal of Solid-State Circuits, vol. 25, no. 5, pp. 1158-1165, October
1990.

Mundy, Joseph L, James F Burgess, Reuben E Jayson, and Constantine Neugebauer, "Low-Cost Associ
ative Memory," IEEE Journal of Solid-State Circuits, vol. SC-7, no. 5, pp. 364-369, October 1972.

Murakami, Kunio, Takeo Kakuta, Nobuyoshi Miyazaki, Shigeki Shibayama, and Haruo Yokota, ''A Re
lational Data Base Machine: First Step to Knowledge Base Machine," in 10th Int. Symposium on
Computer Architecture, pp. 423-425, 1983.

Murray, Alan F. and Anthony V. W. Smith, "Asynchronous VLSI Neural Networlcs Using Pulse-Stream
Arithmetic," IEE Journal of Solid-State Circuits, vol 23, no. 3, pp. 688-697, June 1989.

77

Naganuma, Jiro, Takeshi Ogura, Shin-Ichiro Yamada, and Takashi Kimura, "High-Speed CAM-Based
Architecture for a Prolog Machine (ASCA)," IEEE Transactions on Computers, vol. 37, no. 11,
pp. 1375-1383, November 1988. -

Ng, Yan H and Raymond J Glover, "The Basic Memory Support for Functional Languages," in
Proceedings of VLSI and Computers First International Coriference on Computer Technology, Sys
tems and Applications, ed. IEEE, pp. 35-40, IEEE, Hamburg, May 11-15, 1987.

Nijhuis, JAG and L Spaanenburg, "Fault tolerance of neural associative memories," IEE Proceedings
Pt.E, vol. 136, no. 5, pp. 389-394, September 1989.

Nikhil, Rishiyur S and Arvind, "Can dataflow subsume von Neumann computing?," in International
Symposium on Computer Architecture, ed. ACM, pp. 262-272, 1989.

Nodes, T. A., J. L. Smith, and R. Hecht-Nielsen, "A Fuzzy Associative Me~ory Module and its Applica
tion to Signal Processing," in Proceedings of the International Conference on Acoustics Speech
and Signal Processing, ICASSP, ed. IEEE, pp. 1511-1514, New York, 1985.

Nogami, Kazutaka, Takayasu Sakurai, Kazuhiro Sawada, Kenji Sakaue, Yuichi Miyaz.awa, Shigeru Ta
naka, Yoichi Hirota, Katsuto Katoh, Toshinari Takayanagi, Tsukasa Shirotori, Yukiko Itoh,
Masanori Uchida, and Tetsuya Iizuka, "A 9-ns HIT-Delay 32-Kbyte Cache Macro for High-Speed
RISC," IEEE JSSC, vol. 25, no. 1, pp. 100-106, February 1990.

O'Keefe, Richard A, "A Comment on" A Hardware Unification Unit Design and Analysis"," Comput
er Architecture News, vol. 14, no. 1, pp. 2-3, January 1986.

Ogura, Takeshi, Shin-Ichiro Yamada, and Tadanabu Nikaido, "A 4-kbit Associative Memory LSI,"
IEEE Journal of Solid-State Circuits, vol. SC-20, no. 6, pp. 1277-1282, December 1985.

Ogura, Takeshi, Junzo Yamada, Shin-ichiro Yamada, and Masa-aki Tan-no, "A 20-kbit Associative
Memory LSI for Artificial Intelligence Machines," Journal of Solid-State Circuits, vol. 24, no. 4,
pp. 1014-1020, August 1989.

Oldfield, John V, Charles D Stormon, and Mark Brule, "The Application of VLSI Content-addressable
Memories to the Acceleration of Logic Programming Systems," Proceedings o/VLSI and Comput
ers First International Conference on Computer Technology, Systems and Applications, pp. 27-30,
IEEE, Hamburg, May 11-15, 1987.

Oldfield, JV, "Logic programms and an experimental architecture for their execution," IEE Proceed
ings pt. E, vol. 133, no. 3, pp. 163-167, May 1986.

Oldfield, J V, R D Williams, and N E Wtseman, "Content-Addressable Memories for Storing and Pro
cessing Recursively Subdivided Images and Trees," Electronic Letters, vol. 23, no. 6, pp. 262-263,
12 March 1987.

Papachristou, Christos A, "Content-Addressable Memory Requirements for Multivalued Logic," in 11th
Int. Symposium on Multi-Valued Logic, pp. 62-72, 1981.

Peterson, Craig, "iWarp," in HOT Chips Symposium Record, Santa Clara, CA, August 20-21, 1990.

Ramamoorthy, C V, James L Turner, and Benjamin W Wah, "A Design of a Fast Cellular Associative
Memory for Ordered Retrieval," IEEEE Transactions on Computers, vol. C-27, no. 9, pp. 800-
815, September 1978.

Ribeiro, J.C. D. F., C. D. Stormon, J. V. Oldfield, and M. R. Brule, "Content-addressable memories ap
plied to execution of logic programs," IEE Proceedings, vol. 136, Pt E, no. 5, pp. 383-388, Sep
tember 1989.

78

Robinson, Phillip, "The SUM: an AI coprocessor," BYTE, pp. 169-180, June 1985.

Rokey, Mark, ''The Dataflow Architecture: A Suitable Base for the Implementation of Expert Systems,''
Computer Architecture News, vol. 13, no. 4, pp. 8-14, September 1985.

Ross, GR T, Aristotle de Sensu and de Memoria Text and Translation with Introduction and Commenta
ry, Amo Press, New York, 1973.

Rudell, Rand A Sangiovanni-Vincentelli, Multiple-Valued Minimi.zationfor PLA Optimi.zation, pp. 198-
207, IEEE, 1987.

Rueckert, U, I Kreuzer, and K Goser, "A VLSI Concept for an Adaptative Associative Matrix Based on
Neural Networks," Proceedings of VLSI and Computers First International Conference on Com
puter Technology, Systems and Applications, pp. 31-34, IEEE, Hamburg, May 11-15, 1987.

Sage, J P, K Thompson, and R S Withers, "An artificial neural network integrated circuit based on
MNOS/CCD principles," in Proc AIP Conj. Neural Networks for Computing, pp. 381-385,
Snowbird, 1986.

Saluja, K Kand S M Reddy, "Fault Detecting Test Sets for Reed-Muller Canonic Networks," IEEE
Transactions on Computers, pp. 995-998, October 1975.

Sasao, Tsutomo, "Input Variable Assignment and Output Phase Optimization of PLA's," IEEE Transac
tions on Computers, vol. c-33, no. 10, p. 892, October 1984.

Sasao, Tsutomo, ''An Algorithm to Derive the Complement of a Binary Function with Multiple-Valued
Inputs," IEEE Transactions on Computers, vol. C-34, no. 2, pp. 131-140, IEEE, February 1985.

Schuster, S. E., "Dynamic Content Addressable Memory with Refresh Feature," IBM Technical Disclo
sure Bulletin, vol. 26, no. lOB, pp. 5364-5366, March 1984.

Seitz, Charles L. and Juri Matisoo, "Engineering limits on computer performance," Physics Today, pp.
38-45, May 1984.

Shankar, Subash, "A Hierarchical Associative Memory Architecture for Logic Programming
Unification," in Logic Programming: Proceedings of the 5th International Conference and Sym
posium, ed. Kenneth A Bowen, vol. 2, pp. 1428-1447, MIT Press, 1988.

Shobatake, Yasuro and Hideo Aiso, "A unification processor based on uniformly structured cellular
hardware," in 13th International Symposium on Computer Architecture, pp. 140-148, 1986.

Siekmann, Jorg H, "Unification Theory," Journal of Symbolic Computation, vol. 7, pp. 207-274, 1989.

Sorabji, Richard, Aristotle on Memory, Brown University Press, Providence, 1972.

Stanat, Donald F and David F McAllister, Discrete Mathematics in Computer Science, p. chapter 2, En
glewood Cliffs, NJ, 1977.

Stormon, CD, MR Brule, JV Oldfield, and JC D F Ribeiro, "An Architecture Based on Content
Addressable Memory for the Rapid Execution of Prolog," in Logic Programming: Proceedings of
the 5th International Conference and Symposium, ed. Kenneth A Bowen, vol. 2, pp. 1449-1473,
MIT Press, 1988.

Strugala, M, D Tavangarian, K. Waldschmidt, and G. Roll, "An Associative Processor as a Design Rule
Check Accelerator," Proceedings of VLSI and Computers First International Conference on Com
puter Technology, Systems and Applications, pp. 426-431, IEEE, Hamburg, May 11-15, 1987.

Stubberud, Allen R., "Failure Isolation Using an Associative Memory Algorithm," in Proceedings of
25th Conference on Decision and Control, ed IEEE, pp. 1113-1115, Athens, Greece, December
1986.

79

Su, S Y H and PT Cheung, ''Computer Minimization of Multivalued Switching Functions,'' IEEE Tran
sactions on Computers, vol. c-21, no. 9, p. 995, September 1972.

Tavangarian, D., "Flag-algebra: a new concept for the realisation of fully parallel associative architec
tures," IEE Proceedings, vol. 136, Pt. E, no. 5, pp. 357-365, September 1989.

Treleaven, Philip C, David R Brownbridge, and Richard P Hopkins, "Data-Driven and Demand-Driven
Computer Architecture," Computing Surveys, vol. 14, no. 1, pp. 93-142, March 1982.

Treleaven, Philip C, "The New Generation of Computer Architecture," SIGARCH Newsletter, vol. 11,
no. 3, pp. 402-409, June 1983.

Uchida, Shunichi, "Inference Machine: From Sequential to Parallel," in 10th Int. Symposiwn on Com
puter Architecture, pp. 410-416, 1983.

Ullman, Jeffrey D, Principles of Database Systems, 1983.

Ulug, ME, "VLSI Knowledge Representation Using Predicate Logic and Cubical Algebra," in Phoenix
Conference on Computers and Communication, pp. 292-299, 1987.

Venta, Olli and Teuvo Kohonen, "A Content-Addressing Software Method for the Emulation of Neural
Networks," inIEEE Int. Conf on Neural Networks, pp. 1-191, 1-198, July 1988.

Vittoz, Eric A and Xavier Arreguit, "CMOS Integration of Herault-Jutten Cells for Separation of
Sources," in Workshop on ''Analog VLSI and Neural Systems", ed. to be published by Kluwer
Academic Pu., Portland, May 8, 1989.

Wade, Jon P. and Charles G. Sodini, "Dynamic Cross-Coupled Bit-Line Content Addressable Memory
Cell for High-Density Arrays," IEEE Journal of Solid-State Circuits, vol. SC-22, no. 1, pp. 119-
121, February 1987.

Wade, Jon P. and Charles G. Sodini, "A Ternary Content Addressable Search Engine," Journal of
Solid-State Circuits, vol. 24, no. 4, pp. 1003-1013, August 1989.

Waldschmidt, Klaus, "Associative Processors and Memories Overview and Current Status," Proceed
ings of VLSI and Computers First International Conference on Computer Technology, Systems and
Applications, pp. 19-26, IEEE, Hamburg, May 11-15, 1987.

Wegmann, George and Eric A Vittoz, "Analysis and Improvements of Accurate Dynamic Current Mir
rors," IEEE Journal of Solid-State Circuits, vol. 25, no. 3, pp. 699-706, June 1990.

Welch, Terry A, "An Investigation of Descriptor Oriented Architecture," Computer Architecture News,
vol. 4, no. 4, pp. 141-146, January 1976.

Woo, Nam Sung, "A Hardware Unification Unit: Design and Analysis," in 12th International Symposi
um on Computer Architecture, pp. 198-205, 1985.

Yasuura, Hiroto, Taizo Tsujimoto, and Keikichi Tamaru, "Parallel Exhaustive Search for Several NP
Complete Problems Using Content Addressable Memories," in Proceeding ISCAS 88, ed. IEEE,
pp. 333-336, 1988.

Yokota, Haruo and Hidenori Itoh, "A Model and an Architecture for a Relational Knowledge Base,"
Computer Architecture News, vol. 14, no. 2, pp. 2-9, June 1986.

Yuba, Toshitsugu, Toshio Shimada, Yoshinori Yamaguchi, Kei Hiraki, and Shuichi Sakai, "Dataflow
Computer Development in Japan," ACM SIGARCH NEWS, vol. 18, no. 3, pp. 140-147, September
1990.

Zeidler, H. Ch., "Content-addressable mass memories," IEE Proceedings, vol. 136, Pt. E, no. 5, pp.
351-356, September 1989.

	Associative Processing Implemented with Content-Addressable Memories
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1520970898.pdf.2CGiE

