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AN ABSTRACT OF THE THESIS OF Paul John Gilliam for the Master of 

Science in Electrical and Computer Engineering presented August 23, 1991. 

Title: A Practical Parallel Algorithm for the Minimization of Kronecker 

Reed-Muller Expansions. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

W. Robert Daasch, Chair 

Michael A. Driscoll I . I 

Laszlo Csan 

A number of recent developments has increased the desirability of using 

exclusive OR (XOR) gates in the synthesis of switching functions. This has, in 

turn, led naturally to an increased interest in algorithms for the minimization 

of Exclusive-Or Sum of Products (ESOP) forms. Although this is an active 

area of research, it is not nearly as developed as the traditional Sum of 

Products forms. Computer programs to find minimum ESOPs are not readily 

available and those that do exist are impractical to use as investigative tools 
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because they are too slow and/or require too much memory. A practical tool 

would be easy enough to use (faster/smaller) so that it could be run many 

times to explore the solution space of the minimization problem as well as to 

provide a baseline of comparison. This thesis develops and investigates such 

a tool. 

Building on the work of Bioul and Davia, D.H. Green presents the 

so-called "fast" algorithm for finding minimum Kronecker Reed-Muller (KRM) 

type ESOP forms, basically an exhaustive search of the solution space. In this 

thesis, the "fast" algorithm is reformulated to take advantage of a shared 

memory, multiprocessor environment. 

The reformulation of the "fast" algorithm is presented within a rigorous 

mathematical framework. Because ESOP forms are being manipulated, it is 

more natural to use the two-element Galois field, GF(2), in place of the more 

traditional Boolean algebra. The Kronecker product, also known as the tensor 

product, is used to form a KRM by combining different vectors chosen from a 

set of basis vectors. This is formulated rigorously as a matrix algebra problem, 

over GF(2), involving a bit vector and a Kronecker matrix, a matrix formed by 

repeated Kronecker products of some "seed" matrix. The parallelization of the 

algorithm stems directly from the recursive nature of the Kronecker matrices 

involved. 

Several different versions of the algorithm were programmed and used 

to investigate the computer resource requirements of the algorithm. Three 
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results were found: 1) Using word-based logical instructions significantly 

increases performance over one-bit-at-a-time manipulations, with a word size 

of 32 bits being the best; 2) A recursive "fast" algorithm is much faster than 

the direct algorithm; and 3) The shared memory, parallel processor algorithm 

developed in this thesis is even faster. Even with the improved performance, 

however, the exhaustive search nature of the algorithm causes the resources 

required to grow exponentially with the problem size. Current technology 

imposes a practical upper limit on the size of the problem to 15 bits. A 

minimum for such a problem can be found in 12 minutes on a Sequent S81 

using about 28 megabytes of memory and 9 processors. 

The claim is made that "kromin", the tool developed in this thesis, is a 

good tool; that is to say it is easy to use and does its job well. Aside from 

user-interface issues, "kromin" is easy to use because it is fast enough for 

many problems to be run during a course of research. It does its job well 

because, as an exhaustive search, it provides a complete characterization of the 

solution space for a given problem. 

Several possibilities are presented for future work. For the most part 

they represent improvements to "kromin", either by enlarging the class of 

problems that can be solved or by increasing the size of the problem that can 

be minimized. The real measure of usefulness of any tool, of course, is in its 

use. This thesis presents a tool intended to be useful in the development of 

algorithms for the minimization of ESOPs. 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

A number of recent developments has increased the desirability of 

using exclusive OR (XOR) gates in the synthesis of switching functions. 

New technologies, such as Programmable Gate Arrays [l], make the cost, 

in terms of area and speed, equal for all types of gates. In older technolo

gies, the cost of XOR gates, relative to the more traditional OR gates, 

needed to be balanced against the benefits. Currently, the major benefit is 

that circuits built from XOR gates can be easily tested [2]. This is dem

onstrated in the next section. It is also anticipated that for future technolo

gies using optical switches, exclusive OR may be more natural than inclu

sive OR [3], because of the physics of these new devices. 

One way to use XOR gates to realize an arbitrary switching function 

is to represent that function in exclusive sum-of-product (ESOP) form. 

Sasao [ 4] has shown that, on average, minimal ESOP forms require fewer 

product terms than the more traditional SOP forms. A family of ESOP 

representations, Reed-Muller canonical forms, has been used extensively, 

leading naturally to the problem of minimizing any such representation. 

In his paper "Reed-Muller canonical forms with mixed polarity and 

their manipulations" [5], D.H. Green, building on the work of Bioul and 
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Davio [6], outlines an algorithm for finding expansions with minimal 

weight, i.e., a minimum number of AND terms. An algorithm is given in 

this thesis that incorporates the main idea of Green's paper, performing the 

arithmetic using word-based logical instructions of a digital computer to 

increase performance. A parallel version of the algorithm is also given, for 

an even greater increase in performance. 

While these performance increases are substantial, as shown in the 

"Experimental Results" chapter of this thesis, they of course do not alter the 

brute force nature of the algorithm. Why then should we develop this 

practical algorithm when such brute force algorithms are usually supersed

ed by more sophisticated techniques? The answer is simple: this is not 

meant to be the final answer to the problem of minimizing ESOP forms, but 

rather it is meant to be a tool to be used to study that problem. We call 

this tool "kromin". 

Like any good tool, kromin should be easy to use and do its job well. 

For a computer program, ease of use is mostly a product of the user inter

face, which is outside the scope of this thesis. Ease of use is also affected by 

execution time, which is heavily influenced by algorithm design, which is a 

concern of this thesis. 

The job of kromin is to help researchers develop better algorithms. 

One way to help is to serve as a "base line" against which other algorithms 

can be compared. This is a traditional role of a brute force algorithm. 
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Perhaps a more important way is to help provide insight. This insight 

would hopefully come from using kromin to explore the problem space. The 

larger the problems that the algorithm can handle, the larger the volume of 

the problem space that can be explored. 

AN EXAMPLE EASILY TESTABLE REALIZATION1 

Testability, a driving force behind the use of ESOP forms, is shown in 

this section by presenting an example circuit that has the property of being 

easily testable, as defined by Readdy [2]. The example circuit realizes the 

following switching function: 

f(x1,x2,x3,x4 ) = 1 Ea X1 Ea x3x1 Ea x3xx x1 Ea X4 X 2X1 Ea x4x3x2 2 

Where the symbol Ea is used to denote XOR. 

The switching function is expressed in fixed-polarity Reed-Muller 

form where each literal is used in either complemented or uncomplemented 

form, but not both. Although Readdy [2] worked with zero-polarity Reed-

Muller forms, where each literal is used only in uncomplemented form, this 

example shows the slight modifications needed to use Reed-Muller forms of 

any polarity. This same method can be used with Kronecker Reed-Muller 

forms (see below) with only slightly more complex modifications. 

1 Most of the material in this section is from reference [2]. 



The following logic diagram is a realization of the example switching 

function, in the form given above. The two "extra" outputs, g and g', are 

included to reduce the number of vectors needed to test the circuit. 

x. 

X3 

X2 

.i'l 

Xo" 1 
g g' 

Figure 1. An example easily testable circuit. 

To be testable, any single fault of the following types must be detect-

able in the circuit [2]: 

• Stuck at 0 (s-a-0) faults in the input or output of an AND gate. 

• Stuck at 1 (s-a-1) faults in the input or output of an AND gate. 

4 

• If an XOR gate is faulty, it may implement any other 2-input logic 

function. 

• Faults in .primary input leads. 

From Readdy [2] we are given a set of four test vectors that will 

apply all possible input combinations to each XOR gate for any switching 

function in Reed-Muller form. When the polarity of the example switching 

function, in mixed-polarity Reed-Muller form, is taken into account, this set 

of four vectors is: 
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-
Xo X1 X2 X3 X4 Xo X1 X2 X3 X4 

0 1 1 1 1 0 0 1 1 0 

1 1 1 1 1 1 0 1 1 0 
Tl= I = 

0 0 0 0 0 0 1 0 0 1 
1 0 0 0 0 1 1 0 0 1 

If an XOR gate is faulty, its output may be any of the 15 two-input 

logic functions other than XOR. Because the XOR gates are cascaded in 

this circuit, the function's output is the parity of the outputs of the AND 

gates. This means that a change in the output of any single AND or XOR 

gate will cause the output of the function to change. In this way, these test 

vectors will detect a fault in any single XOR gate. 

Either of the first two vectors in T1 will force the outputs of the AND 

gates to 1. If a single s-a-0 fault occurs at any input or the output of any 

AND gate, it will be detected by either of these vectors. Either of the last 

two vectors in T1 will force the outputs of the AND gates to 0. If a single 

s-a-1 fault occurs at the output of any AND gate, it will be detected by 

either of these vectors. If a single s-a-1 fault occurs at the input of any 

AND gate, this set of test vectors will not detect it because all of the inputs 

are 0. 

The set of n test vectors that will detect a single s-a-1 fault at any of 

the inputs to the AND gates can be derived from those given in Readdy [2] 

by talcing into account the polarity: 
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- -
Xo X1 X2 X3 X4 Xo X1 X2 X3 X4 

d 0 1 1 1 d 1 1 1 0 

d 1 0 1 1 d 0 0 1 0 
T2 =I = 

d 1 1 0 1 d 0 1 0 0 

d 1 1 1 0 d 0 1 1 1 -
where d can be either a 0 or a 1. The ith vector in T2 inputs a zero to any 

AND gate connected to xi, where xi= xi or xi= X;, depending on the polarity, 

and all other inputs of the AND gates are set to 1. If the input connected to 

xi on any single AND gate is s-a-1, then the output of that gate will change 

from 0 to 1, changing the output of the whole circuit, which is detectable as 

a fault. 

To detect a single faulty primary input, we first assume that the rest 

of the circuit is fault free (we can make this assumption because only single 

faults are being detected). If the single faulty primary input is s-a-1, then 

the row of T2 corresponding to that input will detect the fault if that input 

is connected to an odd number of AND gates. This is because an odd 

number of changes at the inputs of the XOR cascade will change the output 

of the cascade, because XOR gates are also modulo 2 adders. If the single 

faulty primary input is s-a-0, then either of the first two vectors in T1 will 

detect the fault, again provided that the input is connected to an odd 

number of AND gates. 

To detect a single faulty primary input that is connected to an even 

number of AND gates, we would need at most two new test vectors for each 
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one [2]. We can avoid the need for these extra vectors if we simply add an 

AND gate tied to each of these inputs, ensuring that every input connects to 

an odd number of test points. If we assume that this new AND gate is fault 

free, which can be checked, then any single fault in one of these primary 

inputs can be detected by the test vectors in T1uT2, only now we monitor 

the output g instead of the function output f. To detect faults in this new 

AND gate, we can simply add another AND gate, connected to the same 

inputs, and compare the two outputs g and g'. 

This section has shown how a realization of a 4-input example 

switching function, expressed in mixed-polarity Reed Muller form, can be 

tested for single faults using only 8 test vectors. Readdy [2] shows that any 

switching function of n inputs can be realized in a circuit that needs only 

n+4 test vectors to detect any single fault. While this scheme does require 

the use of two AND gates solely for testing, the cost of the "extra" gates 

should be compared to the cost of needing more test vectors. This can be 

compared to a time vs. space trade-off, where the number of test vectors 

takes the place of time and the number of gates added to increase the 

effectiveness of those test vectors takes the role of space. In this case, the 

trade-off is affected by n because as n increases, the relative cost of the 

"extra" gates decreases, making their "overhead" less and less of a factor. 



CHAPTER II 

BACKGROUND THEORY2 

OVERVIEW 

This chapter gives some of the theory behind the development of an 

algorithm, given by Green [5], for finding minimum Kronecker Reed-Muller 

(KRM) expansions. The first two sections cover algebra topics needed as 

background for the rest of the chapter. The remaining sections expand 

upon the development given in Green [5]. 

THE TWO-ELEMENT GALOIS FIELD, GF(2) 

The traditional mathematical tool used in dealing with switching 

functions is the theory of Boolean algebras, specifically the two-element 

Boolean algebra. The operators of a Boolean algebra correspond well to the 

basic gates used in standard sum-of-product (SOP) implementations. When 

dealing with ESOP implementations, another tool must be found. Such a 

tool is the theory of Galois Fields, specifically GF(2) [7]. Galois Fields are 

2 Most of the material in this chapter is from references [5] and [7]. 



named after their discoverer, the French mathematician Evariste Galois 

(1811-1831)3 [8]. 

In general, a field consists of a set, S, and two operators, ffi and 0 

(the usual shorthand of ab will be used for aeb ), that have the following 

properties [9]: 

1. S and ffi form an abelian group. 

la. 'Va,beS, affibeS. (Closure) 

lb. 'Va,b,ceS, (affib)ffic = affi(bffic). (Associative) 

le. 30eS I 'VaeS, affiO = Offia =a. (Identity) 

ld. 'VaeS, 3-aeS I affi(-a) = (-a)ffia = 0. (Inverse) 

le. 'Va,beS, affib = bEaa. (Commutative) 

2. Let S' = S\{O}, then S' and 0 form an abelian group. 

2a. 'V a,be S', aebe S'. (Closure) 

2b. 'Va,b,ceS', (ab)c = a(bc). (Associative) 

2c. 31eS' I 'VaeS', ael = loo= a. (Identity) 

2d. 'VaeS', 3a·1eS' I a(a-1
) = (a-1)a = 1. (Inverse) 

2e. 'Va,beS, ab= ba. (Commutative) 

3. 'VaeS, aeO = 0. 

4. The following distributive laws hold for any a, b, c e S: 

a(b ffi c) = ab ffi ac and (b ffi c)a = ba ffi ca. 

9 

3 Tragically, Galois was killed, at the age of 20, in a dual over a woman. 
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A simple example of a field is the field of real numbers, where ffi is 

the ordinary addition operation and 0 is the ordinary multiplication opera

tion. When a field, such as the field of real numbers, has an underlaying 

set with an infinite number of members, it is an infinite field. If we let ffi 

be modulo-q addition, 0 be modulo-q multiplication, and S={O,l, ... ,q-1}, then 

if q is prime or an integer power of a prime, a field denoted GF(q), is 

formed. This field is a finite field because S has a finite number of ele

ments, namely q. Because we are working with switching functions where 

only two states are possible, we are only interested here in GF(2). 

Since GF(2) is a field, many of the operators defined for the field of 

real numbers will be useful when performed over GF(2). In particular, two 

matrix operations over GF(2), with all additions modulo-2 and all multipli

cations modulo-2, are used throughout this paper. Besides the ordinary 

matrix product, which behaves as expected and is represented in the usual 

way, the Kronecker product is also used. The Kronecker product is covered 

in the next section. 

KRONECKER PRODUCTS 

The Kronecker product of two matrices, A®B, is defined [10] as 

the partitioned matrix: 
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ao,cfi ao,1B ... aoft 

Ai'Xj®Bkxl = cijxkl = I al,aB al,lB ... alfl 

a. n a.
1
B ... a .. R ,,,()6-1 ,, i.J 

The Kronecker product can be defined over any field, in particular 

GF(2). Some of the properties of Kronecker products are given below. In 

their descriptions (and in the definition above), it is important to remember 

that all the operations are over the same field. 

Properties of Kronecker products: 

1. If a is a scalar, then A®(aB) = a(A®B). 

2. (A+B)®C = (A®C)+(B®C) and A®(B+C) = (A®B)+(A®C). 

3. A®(B®C) = (A®B)®C. 

4. (A®B? = AT®BT. 

5. (A®B)(C®D) = AC®BD (provided the dimensions of A, B, C, and D 

are such that the various matrix products exist). This is known as 

the mixed-product rule. 

6. (A®B)"1 = A·10.a-1 (provided the inverses exist). 

Kronecker products are used here, with binary matrices, to expand 

the right-hand matrix into a larger matrix by copying it into positions of the 

larger matrix using the left-hand matrix as a guide. We will call a matrix 

formed in this way a Kronecker matrix. The next section uses Kronecker 
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products over GF(2) to define and discuss different types of Reed-Muller 

expansions. 

As an example, consider the matrices A and B: 

[1 0 1] [1 o ol A= 0 1 1 and B = 0 1 0 
1 1 0 0 0 1 

then 

r 
1 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 1 0 

[1 0 lJ [1 0 OJ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
A®B = 0 1 1 ® 0 1 0 = 0 0 0 0 1 0 0 1 0 

1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 
1 0 0 1 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 
0 0 1 0 0 1 0 0 0 -

and 

r 
1 0 1 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 

[1 0 OJ [1 0 lJ O O O 1 O 1 O 0 0 
B®A = 0 1 0 ® 0 1 1 = 0 0 0 0 1 1 0 0 0 

001 110 000110000 
0 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 1 0 
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REED-MULLER CANONICAL FORMS 

Every switching function can be characterized by at least two binary 

vectors with 2n elements, where n is the number of input variables. One 

such vector is called d, the truth vector, and is just the output column of the 

function's truth table. The function is expressed as the sum of 2n Boolean 

minterms, each multiplied by a corresponding element of d. The elements 

of d serve as the (binary) coefficients of this "traditional" form. 

A second vector is called a, the "function" vector, and consists of the 

coefficients of the Reed-Muller (RM) canonical form of the given switching 

function. This form consists of the XOR of 2n product terms, each multi

plied by a corresponding element of a. Together, these product terms com

prise all possible combinations of the n literals. These product terms are 

used in a particular order, making this form canonical. The RM canonical 

form can then be expressed as: 

ft:x1,x2, ... ,x2") = a 0 EB a 1x 1 EB a~2 EB aaX~1 EB··· EB a 2 •. ,x1x 2···X2• 

which is expressed in the Kronecker product form as: 

ft:x1,x2,···,xn) = ([1 xn]@[l xn-1]@ ... @[1 X1Da 

The Kronecker product over n variables, each with the basis vector 

[1 xJ, generates all the terms and, when multiplied by a, forms the RM 

canonical form. For example, when n=2: 



ft:x1,X2) = ([1 X2]ffi[l X1Da 

= (1 X1 X2 X~1]a 
= a0EBa1x1EBa~2EBagX~1 

The truth vector d can be related to the function vector a using a 

transform matrix Tn, recursively defined as: 

T. = ~ ~] ®T._1, for n<!l 

T0 = [1], for n =0 

since Tn = Tn·1, d = Tna, and a = Tnd. 
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If the vector [1 xJ is added as a second choice for a basis vector, then 

the number of function vectors representing an n input function increases to 

2n. In other words, for an n input switching function, there are 2n Fixed-

Polarity RM (FPRM) forms in which each variable could occur complement-

ed or uncomplemented but not both. For a given polarity <p>, expressed as 

the binary number <pn, Pn.1, ••• , p 1>, the terms of the corresponding fixed-

polarity RM form can be expressed as 

where 

[xnf·®[xn-if··1®···®[x1f 1 

[xJ0 = [1 xJ 
[xJ1 = [1 ~] 

The coefficients for the fixed-polarity RM function vector of polarity 

<p> can be obtained from the function vector a using the transform matrix 

z<p>' defined as: 



where 

z<p> = [Zf·®[z:r·-J®···®[Zfl 

[ZJ' = [~ ~] 

[ZJ' = [~ ~] 
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Combining the above expressions for the terms and coefficients of the 

RM of fixed-polarity <.p> gives the following expression for the given switch-

ing function: 

f(x1,x2, ... ,xn) = ([xJP·®[xn_1f·-1 ®···®[x1f 1)Z<P>a 

If a third basis vector, [xi xJ, were added to those given above, it 

would be possible to generate forms where the variable xi occurs in both 

complemented and uncomplemented forms. For each of the n variables, 

there are now 3 basis vectors to choose from, giving 3n possible expansions. 

Green calls these forms Kronecker Reed-Muller (KRM) expansions. 

Each KRM expansion can be given a mixed-polarity number p, 0 -5,p -5, 

3n-1
• For a given polarity <.p>, expressed as the trinary number <JJn, Pn-l' ... , 

p 1>, the terms of the corresponding KRM form can be expressed as: 

where 

[xnf·®[xn-1f·-1®···®[x1f 1 

[xJ0 = [1 xi] 

[xJ1 = [1 xJ 
[xJ2 = [ii xJ 
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The coefficients for the KRM expansion of mixed-polarity p can be 

derived from the function vector a using the transform matrix K<p>' defined 

as: 

where 

K = [K]P·®[K]P·-1®-··®[K]P· <p> 

[KJ' = [~ ~] 
[K]1 = [~ ~] 

[KJ' = [~ ~] 
If the vector containing the coefficients is called t (we will need this 

later), then t = K<p>a and 

flx 1,x2,. •. ,x1) = ([xnf·®[xn-iY'·-1® ... ® [x1f 1)t 

The next section develops a way to find the KRM expansion with the 

fewest terms for a given switching function, i.e. the minimum KRM. 

THE EXTENDED TRUTH AND WEIGHT VECTORS 

Bioul and Davio [6] introduced the concept of the extended truth 

vector which has 3n components. Each component corresponds to a possible 

term in a sum-of-product expression of a function. There are 3n such terms 

because for each of the n literals, there are three choices for a given term: 

the literal is absent from the term, the complement of the literal is present 

in the term, or the literal is present in the term. 
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Using the basis vector [1 xi xJ, these terms can be represented by a 

Kronecker product over n variables. For n = 3: 

[1 i'3 x3 ]®[1 i'2 x2 J®[1 X'i xi] = [1 X'i xi i'2 ¥i X'ri x2 xri xri x3 XaXi XaXi xr2 

Xffi XaXri XaX2 Xffi XaXri X3 XaXi XaXi XaX2 xaX'~i XaXri XaX2 XaX~i XaXri] 

Any function of 3 literals will be some combination of these terms. 

Each KRM form selects a different set of 2n=8 of these 3n=27 terms. For a 

specific function, some of the 2n selected terms may correspond to zero 

coefficients. Finding the minimum KRM is equivalent to finding the KRM 

form with the maximum number of zero coefficients for the 2n selected 

terms. 

The extended truth vector e is comprised of all the components of the 

ordinary truth vector d and all their linear combinations over GF(2). More 

precisely: e = Mnd where 

Mn = Mn_1®M1 , for n>l 

M, = [~ ~] 
If we wish to express the extended truth vector e in terms of the 

function vector a, the transform matrix Tn can be used to find a matrix Nn 

such that e = Nna where 



Nn = MnTn 

(N1®N1®···®N1) = (M1®M1®···®M1)(T1®T1®···®T1) 

Nl = MITI 

= [~ ~][~ ~] 
= [i !] 

Each polarity of the KRM expansion can be related to the extended 

truth vector by constructing an incidence matrix Pn. Each column corre-

sponds to one of the 3n possible terms and each of the 3n polarities is 

represented by a row in Pn with 2n ones and 3n_2n zeros. Each row selects 
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the 2n coefficients of a function vector from the 3n bits of the extended truth 

vector. Since all the possible expansions and all possible terms are both 

generated using the Kronecker product, it would seem reasonable to express 

Pn as P/i9P/i9 ... ®P1 , n times. 

P1 can be constructed by inspecting the three transformation matrices 

[K]0
, [K]1, and [K]2

, in relation to the extended truth vector expressed in 

terms of the function vector: 
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e • N,a • [~ ~]a • [a, (a,©a,) a,] 
[.K]o = ~ 0 0 0 ~ row 0 of P = [1 0 1] ~10] t=a=e 

0 1 ti = ai = e2 1 

[.K]l = ~ 0 0 1 1 ~ row 1 of P = [0 1 1] ~1 1] t = a Eaa = e 
0 1 ti = ai = e2 1 

[.K]2 = ~ 0 o ~ 1 ~ row 2 of P = [1 1 0] [1 OJ t = a = e 
1 1 ti = ao wa1 = e2 i 

[
1 0 1] 

:.P1 = 0 1 1 

1 1 0 

The weight of a particular KRM expansion is the number of terms 

with non-zero coefficients. The extended weight vector w is formed from the 

weights of all the KRM expansions for the given switching function. It can 

be computed by forming the real matrix product P n and e: w = P n x e. Once 

computed, w can be used to identify the minimum weight KRM expansion. 

This is, essentially, Green's algorithm for finding minimum Kronecker Reed-

Muller expansions. 

THE 'FAST' ALGORITHM 

Although the direct algorithm described in the previous section will 

find the KRM with the fewest terms, it is not efficient in execution time. 

For this reason, we use the work of Zhang and Rayner [11], who intro-

duced what they named the 'fast' algorithm. This is actually a family of 
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algorithms which computes the product of a Kronecker matrix and a vector 

more efficiently than a direct algorithm. The 'fast' algorithm is more 

efficient because it takes advantage of the recursive structure of the 

Kronecker matrix. 

To develop the 'fast' algorithm, first let An be the Kronecker matrix 

formed by (A1®A1® ... ®A1), n times, where A 1 has r rows and s columns. If v 

is an-vector, then the product Anv can be factored as follows: 

Anv = CA1®A1®···®A1)V = (IJr···A1)®(Irir ... A1Is)®(lrir ... A1Isis)® 

···®(IJrA1IJ8 ••• )@(l~1I8I8 ••• )®(A1IJs···)V 

where Ir and Is are rxr and sxs unit matrices, respectively. Each term 

above is comprised of n-1 such unit matrices, along with a single A1 • If we 

apply the mixed product rule (property 5, above, of Kronecker products) we 

get 

A v = (I ®I ®···®A )(I ®I ®···®A ®I )(I ®I ®···®A ®I I) ··· n r r 1 r r 1 s r r 1 ss 

(lr®Ir®Al ®Is®Is @ ... )(lr®Al ®Is ®Is®··· )(Al ®Is®Is ®···)V 

In the 'fast' algorithm, this product is computed from right to left. 

With each successive multiplication, "partial" sums are accumulated that 

represent progressively larger numbers of additions. Without the 'fast' 

algorithm, these partial sums would be recomputed each time they were 

needed. For example, consider the case of transforming d to a for n = 3: 
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Now a = (l/i!)J/i!)T1) P 

= ( [~ ~] E9 [~ ~] E9 [~ ~]) ~ 
r 

1 0 0 0 0 0 0 0 Po 

1 1 0 0 0 0 0 0 P1 

0 0 1 0 0 0 0 0 P2 

0 0 1 1 0 0 0 0 Pa 
=I 

0 0 0 0 1 0 0 0 p4 

0 0 0 0 1 1 0 0 p5 
0 0 0 0 0 0 1 0 

Ps 
0 0 0 0 0 0 1 1 

P1 -
= [Po <Po +pl) P2 <P2+Pa) p4 <P4 +p5) Ps <Ps+P7)]T 

Now compare the 'fast' solution above to the direct solution below: 

a = Tad = (T1 @T1 @T1) d 

r 
1 0 0 0 0 0 0 0 

do do 

1 1 0 0 0 0 0 0 dl do+d1 

1 0 1 0 0 0 0 0 d2 do+d2 

1 1 1 1 0 0 0 0 da do +d1 +d2 +da 
:I = 

1 0 0 0 1 0 0 0 d4 do+d4 
1 1 0 0 1 1 0 0 d5 do+d1 +d4 +d5 
1 0 1 0 1 0 1 0 d6 do+d2+d4+ds 
1 1 1 1 1 1 1 1 

d1 d0 +d1+d2+da+d4+d5+d6+d7 

In the direct solution, the sum d0+d4 is computed 4 times. In the 'fast' 

solution, it is computed only once (as a4 ). In the direct solution, the sum 

(d0+d4)+(d1+d5 ) is computed twice, but only once in the 'fast' solution. In 



general, the number of additions that are avoided by the 'fast' algorithm 

depends on the specific Kronecker matrix. 
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CHAPTER III 

A PRACTICAL ALGORITHM 

OVERVIEW 

When implementing computer algorithms, many practical concerns 

need to be considered. For example, typical computers do not perform 

logical operations one bit at a time. They are usually performed a word at a 

time, where the number of bits per word is now usually 32. A given logical 

operation is applied to each bit of the argument words, in parallel, giving. 

each bit of the resultant word. This implicit parallelism can be exploited to 

increase performance. 

Another practical aspect to consider is that of space. The storage 

required for M, P, e, and w grows very fast with n. To reduce the amount of 

memory (and allow larger problems to be solved), the recursive structure of 

Mand P can be exploited so that only small versions of them are needed. 

Even when careful attention is given to these practical concerns, current 

technology, in the form of memory limitations, limits sizes of problems to n 

~ 15. For example, when n=15, the vector w will contain 3n=315=14,348,907 

weights. The use of virtual memory eases the concern about space some

what, but at the expense of the execution time, which is still a problem. 



Another way to improve performance is to use multiple processors. 

The structure of Kronecker matrices makes them good choices for the 

application of parallel processing techniques. 
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For this algorithm to be the basis of a good tool, useful in the study of 

the problem of minimizing ESOP forms, it must be able to solve problems of 

a reasonable size in a reasonable amount of time on an accessible computer 

system. Of course, this is all highly subjective. The best we can do now is 

to provide a tool that is practical to use and wait for feedback from actual 

users. 

The remaining sections in this chapter each address a different 

practical concern: The "Chunky Bit Vector" section examines how to use the 

"word-wide" operations. The "Recursive 'Fast' Algorithm" section reformu

lates the 'fast' algorithm into a form more easily implemented. Finally, 

the "Practical Parallel Algorithm" section increases performance of the 

algorithm by using multiple processors. 

CHUNKY BIT VECTORS 

Green's [5] algorithm manipulates two bit vectors (d and e), two 

matrices (Mn and Pn) and a vector of integers (w ). The vectors are discussed 

next followed by the matrices. 

The weight vector does not require special attention, except for its 

size and the size of its elements. The maximum weight is 2n, so each 
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element must be at least n bits wide. The actual width chosen will be the 

upper limit on the size of problems the algorithm will allow. If the weight 

vector was implemented as an array of unsigned 16-bit words, then when 

n=16, w would have 43,046,721 (316
) elements and take more than 80 mega

bytes of memory. This was chosen as a practical upper limit. 

The vectors d and e are both arguments in matrix products over 

GF(2). Rather than perform logical operations with the vectors one bit at a 

time, elements of the vectors can be grouped together so that the word 

oriented logical instructions available on most computers can be used. As a 

short-cut, such a group of bits will be referred to as a "chunk", and a vector 

divided into such chunks will be referred to as a "chunky" bit vector. 

Since d and e are represented as chunky bit vectors, the matrices Mn 

and Pn must also be represented in some chunky way. Both d and e are 

column vectors that multiply their respective matrices on the right. This 

leads naturally to representing the rows of these matrices as chunky bit 

vectors. 

The truth vector dis multiplied by the matrix Mn, so they must be 

divided into chunks of the same size. As will be seen in the next section, 

only a small version of Mn is stored in memory. Each chunk of d corre

sponds to one row of Mn. In this way, the choice of the chunk size for d 

determines how much memory is used by Mn. If chunks of d were 32 bits, 

then M5 would be stored, requiring 972 bytes of memory. If the switching 
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function has fewer inputs than the number needed to "fill up" a chunk, then 

we can just put the whole vector in the low-order part of a chunk and ignore 

the rest. 

The extended truth vector e is not quite so nice to deal with. Its 

chunks must match the chunks of the matrix Pn which, because of its 

structure, must have chunks that are a power of 3 bits wide. Word sizes on 

a typical computer are powers of 2, such as 8, 16 or 32. Corresponding 

chunk sizes fore would be 3, 9 and 27. The most efficient would be 27. Pn 

is just as hard to deal with, but because most of the product Pne is per

formed implicitly, only a small portion of P n is stored. In the case of a 27 

bit chunk size, only P3 would be stored, requiring 108 bytes of memory. 

The effect of chunky bit vectors is similar to the 'fast' algorithm. 

The 'fast' algorithm partitions a product into smaller pieces for the purpose 

of computing those pieces only once. Chunky bit vectors partition a bit32 

vector into smaller pieces for the purpose of storage and computational 

efficiency. For example, consider the case of finding the extended truth 

vector when n=4 and the chunk size ford is 8 bits: 

e = M 4d 

= (M/8JM3)d 

= ((M1I 2)®(19M 3))d 

= (M 1®I9)(1/SJM3) d 

If we let dci denote the ith chunk of d, M39 the jth chunk (row) of M3, and 



J:.(M3C'Jdci) the sum, across GF(2), of the bits of the logical word-product of 

M 3rJ and dci, then let: 

a = (l/i!JM3)d 
-
Mac1 

0 

Mac9 ~d<] a= I 
Mac1 dc2 

0 

Mac9 

= [L(M3cldcl) J:.(M3c2dcl) ... J:.(M3c9dcl) J:.(M3cldc2) LCMac2dc2) ... J:.(M3c9dc2)] 

= [ aci ac2 ac3 ac4 acs ac6 f 

a is an intermediate chunky bit vector which must have the same chunk 

size as e because the chunks of a combined to form the chunks of e as 

follows: 

e = (M/i!Jl9)a 

t
/9 ol aci 

e = 0 l9 a.c2 

I 1 : 
9 9 

'ac6 

= [acl ac2 ... ac6 (acl+ac4) (ac2+ac5) (ac3+ac6)f 

= [eel ec2 ec3 ec4 ec5 ec6 ec7 ecB ecJT 

28 
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RECURSIVE 'FAST' ALGORITHM 

In the form given by Zhang and Rayner [11], the 'fast' algorithm 

does not lend itself well to a practical implementation. It is reformulated 

below into a recursive form more easily implemented. This is followed by a 

proof of the operation count equivalency, between the recursive reformula-

tion and the original 'fast' algorithm. For this development, only the P 

transform is considered; the M transform is very similar. 

First, as in the original 'fast' algorithm, the product ~e is factored 

as follows: 

w = Pne = (P1®P/S···®P1) e = (l3 / 3 ••. P 1)®(!3 / 3 ••. p 1/ 3 )®(!3 / 3 ... p 1/ 3 / 3)® 

···®UalaP1Iala···)®(laP1Iala···)®(P1Iaia ... ) e 

Green [5] rearranged this as follows: Using the commutative property, 

"' (P113/3 ... )®(I3P1Ial3··· )®(/3l3P3la/3 ... )®···®U3l3···P 1l3l3 )®Uala· .. Pi13 )®(I3/3 .. ·P1) e 

Now isolate the left hand term and, using the distributive law, factor out an 

13 from the remaining terms: 

"' (P 1 l3/3 ... )®la [ (P1 lal3 ··· )®(I3P1 I ala···)®··· ®(I3l3 ... p1 l3l3)®(Ial3 ... p1l3)®(Iala ... p1)] e 

This is still the Kronecker product of a number of terms, each of which is a 

matrix product of several matrices. Using the mixed product rule, this 

becomes: 

"' (P1®l3®l3®··· )(Ia®(<P1®Ia®Ia®··· )(Ia®P1 ®Ia®Ia®··· )(Ia®Ia®P1®Ia®Ia®···) 

... (I3®/3®···P1®13®13)(I3®13®···P1®13 )(I3®13®···®P1)]) e 
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which is the matrix product of a number of terms, each of which is the 

Kronecker product of several matrices. The expression in square brackets 

will evaluate to simply Pn-i and there are n-1 identity matrices in the first 

term. This and the partitioning of e into three parts, each with 3n-1 ele-

ments, leads to: 

= (P/i!J/3.-1) U/8JPn_1 ) e 

t
/3°-1 0 /3•-1] [pn-1 0 

= 0 13"-1 /3.-1 0 Pn-1 

13.-1 I 3"-1 0 0 0 

Q l [e[O]l 
0 em 

pn-1 e[2] 

Here the Kronecker products have been performed leaving only ordinary 

matrix products. The recursive nature of the algorithm is now clearly 

evident. If we developed the algorithm from this, it would need temporary 

memory to hold the results of the recursive products. Since the square of 

an elementary permutation is the identity matrix [12], we can rearrange 

things as follows: 

t ][ J[ lt l / 3.-1 0 /3"-1 / 3.-1 0 0 pn-l Q Q e[O] 

= 0 l3n-l I:f<-1 0 0 /3•-l 0 pn 1 0 e[l] 

l3n-l /3•-l 0 0 /3•-l 0 0 0 pn-1 e[2] 

rw· 0 I~Jw• 0 0 l r·-1 
0 0 l t'°1

] = 0 /3•-l I:f'-1 0 0 /3•-l 0 0 pn 1 e[l] 

l3.-1 /3•-l 0 0 l3•-l 0 0 pn-1 0 e[2] 

rF' I,._, 0 ir·-1 0 0 l [•ro1] = 0 l3n-l I:f<-1 0 0 pn-1 e[l] 

/3•-l 0 l3n-l 0 p n-1 0 e[2] 
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Now the recursive products can be computed "in place" without the need for 

temporary storage for those products. 

This leads to the following recursive algorithm, given in a C-like 

pseudo code: 

fast_p(lvl, *w_out, *e_in) { 

1) IF (lvl == O) {*w_out = *e_in; RETURN;} 

2) c = pwrofJ[lvl-1]; 

3) fast_p(lvl-1, w_out, e_in); 

fast_p(lvl-1, w_out+c, e_in+2*c); 

fast_p(lvl-1, w_out+2*c, e_in+c); 

4) FOR (i=O; i<c; ++i) { 

temp = w_out[i]; 

w_out[i] += w_out[i+c]; 

w_out[i+c] += w_out[i+2*c]; 

w_out[i+2*c] +=temp;} 

5) RETURN;} 

At the top level, lvl will have the value n, the number of literals. 

When, through recursion, lvl reaches 0, we are down to the level of a single 

bit, and Step 1 will cut off the recursion. In the actual implementation, the 

level at which recursion stops depends on the size of the chunks of vector e. 
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If the algorithm. does not return in Step 1, then e_in and w_out are 

divided into thirds, each having c elements. The value of c is found in Step 

2 by a simple table look-up. 

In Step 3, recursion is used to compute the three partial results, each 

in its own portion of w_out. These partial results correspond to Pn_1e[i1, 

where i is either 0, 1, or 2, depending on the portion of w_out. For the M 

transform, this step would be comprised of only two recursive calls. 

The final values for the elements of the w_out vector are computed in 

Step 4. The three partial results are combined as dictated by the placement 

of ones in the matrix P1• For the M transform, this step would add the two 

partial results together to form the middle third of thee vector. 

The p_out vector is now complete and this level of recursion is 

terminated by the return in Step 5. When the top level invocation returns, 

the algorithm is complete. 

Figure 2 graphically illustrates how the vector e is decomposed into 

smaller and smaller pieces through recursion. At the top level, the e_in 

vector is comprised of the entire 3n bits of vector e, which is then divided 

into thirds, each passed to a recursive invocation of fast_p. Each level of 

recursion repeats this process until a third of the e_in vector can fit in a 

single chunk. At this point, a direct algorithm is used to compute w_out for 

this bottom level of recursion. 
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3n 

n-3 

27 bit chunks 

Figure 2. Decomposition of e through recursion when chunk size is 27. 

To show that this reformulation performs the same number of 

operations as the original 'fast' algorithm, mathematical induction will be 

used to count operations. For the purpose of comparison with Green [5], 

only additions are counted. Since we are only concerned here with the 

equivalency of the two algorithms, this is sufficient. More practical mea

sures of efficiency are presented in the next chapter. 
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THEOREM: 

The number of operations performed by the original algorithm is the same 

as for the reformulated algorithm. 

PROOF: 

For n=O: 

For both algorithms, this is the trivial case and no operations are 

performed. 

For n=m+l: 

From Green [5], the original algorithm performs n3n operations. The 

reformulated algorithm first computes three partial results. By induction, 

we can assume that each partial result is computed in m3m operations. The 

three partial results are then added together in a loop whose body consists 

of three additions: the loop is repeated 3m times. The total count of opera-

tions is then: 

Q.E.D. 

count = 3(m3m) + 3(3m) 

= 3(m3m + 3m} 

= 3(m + 1)3m 

= (m + 1)3m+l 

= n3n 

From this proof and from the careful derivation of the recursive 

'fast' algorithm from the original, we know that the two algorithms per-

form the same computation. The two algorithms do not, however, perform 
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the same exact sequence of operations. Figure 3 shows the computation 

tree for the first element of the weight vector when n is 3. 

The number beside an operator node in Figure 3 is the sequence 

55 E9 55 

/9~ 
1E91 4(B7 
/\ /\ 

/ 
37 E9 19 

/\ 
eo e2 e6 es e is e 20 e 24 e 26 

Figure 3. Computation tree for n=3. 

number of that operation. Those on the left are for the recursive 'fast' 

algorithm and those on the right are for the original 'fast' algorithm. This 

figure shows that not only do the two versions perform these operations in a 

different order within the 81 total operations each performs, but also in a 

different order within the computation tree for an individual weight. The 

order of operations in the recursive 'fast' algorithm is based on the order of 

the recursive calls. These three calls can actually be made in any order; 

indeed, they can be made simultaneously, as shown in the next section. 

The order in which the results of the recursive calls are added together is 

also arbitrary. Note that the computation tree illustrated here is balanced 

only because there are two ones in each row of P 1• 
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PRACTICAL PARALLEL ALGORITHM 

As hinted at toward the end of the previous section, the recursive 

'fast' algorithm not only lends itself to a practical implementation, it also 

lends itself to the application of parallel processing techniques. Not only 

can the three recursive calls be done in parallel, but so can adding together 

their results. The rest of this section explores these two areas and modifies 

the recursive 'fast' algorithm for parallelism. First, however, we must 

think about the model we wish to use for parallel processing. 

When developing a parallel processing model, a very practical concern 

is for the types of computer systems expected to be able to support that 

model. This, of course, will determine the types of computer systems that 

will be able to run implementations of the given algorithm. This may seem 

to some like "putting the cart before the horse", but one goal of this research 

was to provide a tool for other researchers to use in developing better XOR 

minimization algorithms, ones that do not rely on brute force. To make the 

algorithm more portable, I have developed a simple model that is not 

targeted to any particular hardware, but rather uses two concepts common 

to several software environments running on many different computer 

systems: multiple processes and shared memory. The implementation 

detailed in the next chapter is for the DYNIX operating system running on 

computers manufactured by Sequent Computer Systems, Inc. This is the 
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technology on which the symmetric multiprocessor support of AT&T's UNIX 

System V .4 is based. 

To show multiple processes in the C-like pseudo code used above, we 

will add a construct similar to the COBEGIN ... COEND mechanism used by 

Brinch Hansen [13] and first proposed by Dijkstra [14]. In this con-

struct, each statement between the COBEGIN and the COEND is executed 

simultaneously, each by a different process. Since the C language does not 

support this mechanism directly, I have modified the mechanism to facili

tate its implementation. In my scheme, both COBEGIN and COEND take 

as an argument the number of processes that are to execute the code 

between them. I have also added a statement prefix: THREAD(i). This 

indicates that the prefixed statement is to be executed only by the ith 

process of the containing COBEGIN block. Statements not so prefixed will 

be executed by all processes executing the COBEGIN block. In addition, the 

variable THREADNO, which will be local to the COBEGIN block, will be set to 

the number of the "current" process within that block. The value of 

THREADNO will range from 0 to i. 

In most operating systems, multiple processes do not automatically 

access the same memory. For example, when a process is created in the 

UNIX operating system by the fork() system call, the new process executes 

the same program code, but all the data of the original (parent) process is 

copied for use by the new (child) process. Many operating systems that 
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support multiple processes also support shared memory. Shared memory 

can exist in the address space of more than one process, each of which can 

access the shared memory as they would any other memory. This could 

lead to synchronization problems if two or more processes try to update the 

same memory at the same time. As shown later, this is not a problem here. 

Only the output vectors of the M and P transforms need to be allocated 

from shared memory. This will be indicated in the C-like pseudo code by 

preceding the appropriate formal parameter with the key-word SHARED. 

This leads to the following parallel algorithm for the P transform: 

fast_p(lvl, SHARED *w_out, *e_in) { 

1) IF (lvl == O) {*w_out = *e_in; RETURN;} 

2) c = pwrof3[lvl-1]; 

3) COBEGIN(3); 

THREAD(O) fast_p(lvl-1, w_out, e_in); 

THREAD(l) fast_p(lvl-1, w_out+c, e_in+2*c); 

THREAD(2) fast_p(lvl-1, w_out+2*c, e_in+c); 

COEND(3); 

4) nproc = pwrof3[lvl]; 

5) COBEGIN(nproc) 

FOR (i=THREADNO; i<c; ++nproc) { 

temp = w_out[i]; 

w_out[i] += w_out[i+c]; 



w_out[i+c] += w_out[i+2*c]; 

w_out[i+2*c] +=temp;} 

COEND(nproc ); 

6) RETURN;} 
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This is still basically a recursive algorithm. Now, however, each 

recursive call is executed by its own process. For a switching function with 

n inputs, there will be 3n-m such calls and processes, where there are 3m bits 

per chunk. At each level of recursion, once the three recursive calls are 

made, their results must be added together. In theory, this could be done 

using a new process for each addition to be performed. At the bottom most 

level of recursion, performed by 3n-m processes, no adding together is needed, 

so no additional processes are needed. At the next higher level, performed 

by 3n-m-z processes, three adds are done to sum the results of the recursive 

calls, needing three processes. The total number of processes in use at this 

level is then 3x3n-m-z or 3n-m. This argument can be applied at succeedingly 

higher levels, up to the top level, showing that throughout the execution of 

the algorithm, 3n-m processes are used. 

To minimize execution time, each process should be executed by its 

own processor. In fact, if a process is not run on its own processor, then the 

overhead it takes to create and coordinate that process is wasted. A way is 

needed to limit the number of processes used so that it matches the number 

of processors available. The most practical way to do this is to limit the 
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number of recursion levels that use the parallel algorithm. After this limit 

has been reached, the recursive 'fast' algorithm is used. Step 4 would also 

have to be changed to nproc = pwrof3[max(lvl-(n-limit),O)], where limit is 

the number of recursion levels which use the parallel 'fast' algorithm. 

A concern central to the design of parallel algorithms is that of 

synchronization. A process must not try to use the value contained in some 

memory location before the value has been placed there by some other 

process. Many mechanisms have been developed for process synchroniza

tion [13], but only the simple synchronization provided by COEND is needed 

here. This is because, at each recursion level, the results of a single 

recursive call are not used until all three recursive calls are completed. Put 

another way, each recursive call, executing in its own process, writes to its 

own third of the portion of the w vector (the only shared data) that the 

given recursion level is responsible for computing. 

Complexity analysis can be used to compare the algorithm presented 

in this section with the algorithm presented in the previous section. Again, 

the algorithms being compared are for the P transform; the analysis for the 

M transform would be similar. 

From Green [5], the operation count for the 'fast' algorithm is n3n. 

We must, however, take into account the chunky bit vectors. Once the 

recursion gets to the point where the part of e being worked on fits in a 

single chunk, then the direct algorithm is used for that part. Again from 
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Green [5], the operation count for the direct algorithm is 3n(2n-l). If 3c is 

the number of bits per chunk, then the number of operations for our 

"chunked" 'fast' algorithm is (n-c)3<n-cl+3<n·cl3c(2c-l)=((n-c)+3c(~-1))3<n-cl. This 

is larger than the operation count for the "no chunk" 'fast' algorithm, so 

one may ask why we use chunky bit vectors at all. The answer is that they 

are used for two reasons: storage efficiency and computational efficiency. 

The latter reason seems to be in conflict with the operation counts only 

because they do not take into account the number of multiply (AND) 

operations, which are greatly reduced in the "chunky" case. 

The parallel algorithm can be thought of as solving several smaller 

problems simultaneously and then adding the results together. If l is the 

number of recursion levels that use the parallel algorithm, then the total 

operation count for one of the smaller problems will be ((n-l-c)+3c(~-1))3<n-l-c>. 

At the lth level of recursion, the three processors that were used to solve 

the three smaller problems are now available to add up the results. At the 

l-l'th level, there are 9 processors available to add up the results. And so 

on until at the top level, there are 31 processors available. The operation 

count for recursion level i, 1 ~ i ~ l, is 3n·i I 3l-i+l = 3n·1•1. Combining these 

counts, the total operation count for the parallel algorithm is z3n·l·
1+((n-l-

c )+3c(~ -1) )3(n-l-c). 

By comparing the operation count for the algorithm presented in this 

section with that of the algorithm presented in the previous section we can 
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see that as n gets larger, both algorithms are equally bad. The parallel 

algorithm is, however, about 31
+

1 times faster than the non-parallel algo

rithm. This doesn't take into account the overhead (processes creation, etc.) 

incurred by the parallel algorithm. This overhead would cause the parallel 

algorithm to be slower for values of n less than some small number, depend

ing on l. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

OVERVIEW 

The previous chapter developed a practical algorithm for finding 

minimum KRM, and fixed-polarity RM expansions. In this chapter, that 

algorithm is analyzed by timing the execution of programs based on the 

algorithm over a wide range of problem sizes. Because each is an exhaus

tive search of the solution space, all versions of the algorithm are data 

independent. This means that every switching function of a given number 

of input bits requires the same amount of time to minimize. 

Each section in this chapter analyzes different versions of the algo

rithm as follows: 

• The "Chunky Performance" section of this chapter analyzes the 

effect that the size of a chunk has on performance. The algorithm 

implemented for this analysis is the direct algorithm. Different 

versions were tested corresponding to three different chunk sizes: 8 

bits, 16 bits, and 32 bits. These results are analyzed to predict 

performance for other chunk sizes. 



• The "How Fast is 'Fast"' section of this chapter analyzes the 

performance of the 'fast' algorithm. The object of the analysis is 

to characterize the maximum performance of the algorithm. For 

that reason, a chunk size of 32 bits is used. 

44 

• The "Parallel Performance" section of this chapter analyzes the 

effect of using multiple processes. The practical parallel algorithm 

is implemented with a chunk size of 32 bits. A command line 

option is used to select the number of processors to use: one, three, 

or nine. The timing results of the single process are compared to 

the timing results for the 'fast' algorithm. Using an approach 

similar to that used in the first section of this chapter, the timing 

results using one, three, or nine processors are analyzed to predict 

performance of the algorithm with more processors. 

CHUNKY PERFORMANCE 

This section analyzes the effect of using chunky bit vectors on the 

performance of the direct algorithm. Three different versions of the pro

gram were compiled, each with a different word size: 8-bits, 16-bits and 

32-bits with corresponding e vector chunk sizes of 3, 9, and 27 bits. Switch

ing functions with sizes ranging from n=3 to n=15 literals were used as 

inputs. For each run, the M and P transformations were timed and the 

total CPU execution time (user and system) of the program was recorded. 
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These times were taken using the process profiling interval timer, which 

should not be affected by the number of users on the system. In each case, 

the system was a Sequent S81 computer with more processors than users 

when the test was performed and each test was performed only once. Table 

I gives the results, in seconds. 

TABLE I 

EXECUTION TIMES FOR THE DIRECT ALGORITHM 

8-bit words ~~i!i~ l§f!~ : I 32-bit words 

M p Total M p Total 

0.00 0.00 0.02 0.001 0.001 0.001 

0.00 0.01 0.07 0.001 0.001 0.001 

0.01 0.02 0.04 0.00 0.00 0.02 

0.01 0.10 0.17 0.01 0.02 0.06 

0.02 0.58 0.66 0.03 0.09 0.15 

0.03 3.44 3.52 0.04 0.41 0.50 

0.08 22.68 23.04 0.10 2.11 2.41 

0.33 198.67 199.38 0.21 11.41 11.89 

1.13 1168.09 1169.96 0.45 65.34 66.38 

9.78 5066.17 5077.78 ··········l~·~11~•·1·•·······•~1•~§~~~··1 1. 08 
383.18 385.95 

.w .• 16.79 34629.66 34655.36 1ng~a:$~1 2.91 2750.00 2759.42 
;~:}f~:~{ 

ti< 17268.38 17293.00 8.80 

i't$ 29.83 I 109211.39 I 109302.26 

The first thing one notices when looking at Table I is that not all the 

positions in the table have values. This is because the three computer runs 

associated with the empty table positions did not complete. For these runs, 
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the combination of their large demands for virtual memory and their CPU-

intensive nature triggered a bug in the DYNIX operating system that 

caused these runs to become permanently "swapped out" [15]. 

Another thing apparent from Table I is that as n grows larger, the 

time taken for the P transform starts to dominate the program execution 

time. The program can be broken into roughly three areas: input/output, 

the M transform, and the P transform. The time needed for input/output is 

linear in n and therefore small compared to the other two areas. It will be 

ignored. The time needed for the M transform increases as 0(2n). This 

does not increase nearly as fast as the time needed for the P transform, 

which increases as 0(3n). For this reason, the M transform will generally be 

ignored for the rest of this chapter. 

The main question to be answered in this section is: "How does 

chunk size affect performance?" A qualitative answer, based on Table I, is: 

"The larger the chunk size, the higher the performance." For example, for a 

problem of size n=ll, performance was increased by about a factor of 4 each 

time the word size was doubled. This is deceptive because the next dou

bling of the word size, from 32 to 64, would not increase performance 

because the next appropriate chunk size for the P transform is 81 bits 

requiring a word size of 128 bits. 

A quantitative analysis would not lead to confident answers because 

of the small number of samples: only three different chunk sizes were used. 
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--M
n=ll -·· n=lO -·· n=9 

n=8 

n=7 

n=6 

We can, however, use quantitative techniques to give us a qualitative "feel" 

for the data. For example, the graph in Figure 4 shows execution time of 

the P transform vs. the chunk size. The time is plotted for six different 

values of n ranging from 6 to 11. As can be seen, the curves for the largest 

three values of n are distinguishable. The curves for the smallest three are 

all muddled together at the bottom of the graph. This fact, along with the 

general shape of the curves, suggests that there might be some kind of 

exponential function involved. 
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n=lO 

n=9 

n=8 

n=7 

n=6 

The graph of Figure 5 again plots execution time on the y axis, but 

this time on a logarithmic scale. The log3 of the chunk size is plotted on the 

x axis. The first thing to notice about this graph is that the curves are 

nearly straight lines, especially for the larger values of n. This would 

suggest the following equation: 

time = exp(c + mlogaCchunksize)) 

where c is a constant and m is obviously negative. Another thing to notice 

about the graph is that the curves seem to be evenly spaced from each 

other. This suggests that the constant in the previous equation is a linear 



function of the value of n, the number of literals. This would suggest the 

following equation: 

time = exp(c0 + m0 n + m1 log3(active bits)) 
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We could use curve fitting techniques to find values for c0, m0 , and m 1 , but 

because we have so few points, we would not have much confidence in those 

values, especially for mr In the next section, we will have enough points to 

use curve fitting techniques with more confidence. 

HOW FAST IS 'FAST'? 

This section analyzes the performance of the 'fast' algorithm. In 

place of the direct algorithm used in the previous section, the 'fast' algo

rithm was implemented on the Sequent S81. Another change that limited 

the size of problems to be minimized to n ~ 5, stems from the fact that a 

word size of 32 bits was used. A truth vector d, that fills a complete chunk, 

contains 25 bits. The algorithm was implemented in such a way that only 

whole chunks could be used. If a problem of size n<5 is input to the pro

gram, the problem is solved by expanding it to a 5 bit problem. 

The program was run with input problems ranging in size from n=5 

to n=14. Larger problems ran into the same system bug as reported in the 

previous section. As before, the time taken by the M and P transformations 

for each run were recorded, along with the total execution time. The results 

are shown in Table II, again in seconds. 



TABLE II 

EXECUTION TIMES FOR THE 'FAST' ALGORITHM 

I I 32-bit words I 
n M p Total 

5 0.03 0.03 0.09 

6 0.05 0.08 0.25 

7 0.11 0.23 0.45 

8 0.21 0.7 1.05 

9 0.42 2.12 3.21 

10 0.85 6.55 8.43 

11 1.7 20.24 24.24 

12 3.44 62.31 72.04 

13 7.03 192.15 223.16 

14 14.48 591.5 666.36 

The first thing one notices when comparing Table I with Table II is 

that the 'fast' algorithm is actually slower than the direct algorithm for 
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n < 9 but much faster for n > 9. This is best shown by plotting the execu

tion times of the P transform, with a chunk size of 32 bits, for both algo

rithms. This is done in the graph in Figure 6. The graph in Figure 7 is of 

the same data, but with a logarithmic scale used for the y axis. 

Why would the direct algorithm be faster than the 'fast' algorithm 

for n < 9? The answer is that it's not the algorithm that's faster, it's the 

implementation. For n < 9, the advantage of the 'fast' algorithm is lost to 

the extra overhead needed to implement it. For n > 9, the overhead be-



600 • I 

500 

00 400 
'"d 
i:: 
8 
J5 300 -Q) s ..... 
~ 200 

100 

I 

: i i i i i J 
I I : I I I I I I 
I I : : : : I I I 

-------~--------t--------}-------t--------~-------~-------- --------}-----1-
: I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

-------1--------t--------t-------t--------~-------1-------- --------t---t---
: : : I I I : I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I : I I I 

-------1--------t--------t-------t--------~-------1----- -~--------t-t-----
: I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I 1/ 

-------1--------t--------r-------t--------r-------1--- ----r-------f-------
• I I I I I I I 
I I I I I I I / 1 

l l l l l l l I l 
I I I I I I I I I 
I I I I : I I I I -------,--------T-------"T"-------T--------r-------, -------r-~----"T"-------1 I I I I I I/ I : : : : : :, : 
I I I I I I A I : : : : : : .,,..,,. : : 
: : : : I --~,; : : 
I I I - I I I 

5 7 9 11 13 
6 8 10 12 14 

Number of Literals 

Figure 6. P transform time: direct and 'fast'. 
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Direct 

'Fast' 

comes smaller and smaller when compared to the computational advantage 

of the 'fast' algorithm. A program could be written that uses the direct 

algorithm for n < 9 and the 'fast' algorithm for n > 9, but the time saved 

would be small. 

We can see that the 'fast' algorithm is indeed faster than the direct 

algorithm, but how much faster? If we define speed-up to be the ratio of the 

time needed by the direct algorithm to the time needed by the 'fast' 

algorithm, it is clear from Figure 7 that speed-up is a function of n. In fact, 

because the plots in Figure 7 are nearly straight lines, speed-up should be 
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Figure 7. P transform time: direct and 'fast' (log scale). 

"close" to an exponential function of n. Figures 8 and 9 plot speed-up vs n 

along with an exponential curve that tries to fit the data. 

To find the "fit curve" in Figures 8 and 9, only the last 5 data points 

were used in the regression analysis. The first points were not used so that 

the resultant curve would fit the later points better. The equation for the 

fit curve is: 

speedup= exp(-6.64+0.71n) 

We use this equation to predict speed-up outside the range of possible 

experiments. For example, we predict that for n = 15, the 'fast' algorithm 
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Figure 8. Speed-up vs n. 

will be about 55 times faster than the direct algorithm. 

While it might be useful to know this, it would be more useful to 

predict the execution time of the 'fast' algorithm itself. Figures 10 and 11 

plot the P transform time vs n, the number of literals, along with an 

exponential curve fit to that data. For the regression analysis used to fit 

this curve, only times for 8 ~ n ~ 13 were used. As seen in Figure 9, the 

overhead overshadows the execution time for the smaller values of n. 

n = 14 was not used because of a previously mentioned system bug for a 

problem of that size. The equation of this curve is: 
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Figure 9. Speed-up vs n (log scale). 

t = exp( -9.358+1.124n) 

Using the equation, we can predict that a 24 input switching function can 

be minimized in 518 days. Given the determination of the data used in this 

equation, it might be more reasonable to estimate a couple of years. This 

assumes, of course, that we can find a computer with more than 565 

gigabytes of memory to run the program on. In the next section, we analyze 

execution time using multiple processors. 
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Figure 10. 'Fast' P transform time vs n. 

PARALLEL PERFORMANCE 

14 

In this section we analyze the effect that the number of processors 

has on the performance of the practical parallel algorithm. This is a very 

similar analysis to that of the "Chunky Performance" section of this chapter. 

In that section, the effect of implicit parallelism was analyzed. In this 

section, explicit parallelism is analyzed. 

The program used in the previous section was modified to support the 

use of multiple processors, as suggested in Chapter III. This program was 
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Figure 11. 'Fast' P transform time vs n (log scale). 

then run using 1, 3, and 9 processors with input problems ranging in size 

from n=5 to n= 15. The real elapsed time of the P transform was measured. 

These results, along with the equivalent times for the 'fast' algorithm, are 

given in Table III. 

First, let's look at a graph of these times vs n, the size of the problem. 

This graph, with time on a log scale, is shown in Figure 12. There are 

several things that are apparent from this graph. The first is that for n < 7, 

the 'fast' algorithm is faster than the parallel one, no matter how many 

processors are used. This was predicted by the complexity analysis at the 
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TABLE III 

EXECUTION TIMES FOR THE PRACTICAL PARALLEL ALGORITHM 

n fast 1 3 9 

5 0.03 0.12 0.23 0.53 

6 0.08 0.16 0.25 0.52 

7 0.23 0.32 0.31 0.57 

8 0.7 0.79 0.46 0.59 

9 2.12 2.27 0.99 0.84 

10 6.55 6.85 2.56 1.46 

11 20.24 20.85 7.35 3.12 

12 62.31 64.3 22.13 8.51 

13 192.15 198.08 67.72 24.91 

14 591.5 630.87 207.87 75.74 

15 2495.65 872.79 518.47 

end of chapter III and is due to the fact that for these smaller problems, the 

time spent in process management is significant. Another thing to notice is 

that for n>9, the plot for a single processor overlays the plot for the 'fast' 

algorithm. This is expected because, except for the overhead of process 

management, the two algorithms are the same. 

One last thing to notice about the graph in Figure 12 is that as n gets 

larger, the curves for the parallel algorithm start looking like straight lines 

that have the same slope, but different intercepts. This is not a surprise 
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Figure 12. Parallel P transform time vs n (log scale). 

because we saw in the previous section that the execution time of the 'fast' 

algorithm was an exponential function of n. What may be a little hard to 

see is that the distance between the intercepts is not constant, but decreas-

es as the number of processors increases. This agrees with Amdahl's 

equation [16] which suggests that as the number of processors increase, 

the marginal increase in performance decreases. 

In fact, based on the analysis in the "How Fast is 'Fast'" section of 

this chapter, we might expect execution time to be an exponential function 

of the Llog3J of the number of processors. The floor of log3 is used because 
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performance is increased only when the number of processors is increased to 

the next higher integer power of three. If the number of processors is not 

an integer power of three, then at some level of recursion, the three partial 

results are computed using an unequal number of processors, some of which 

will block, waiting for the completion of the partial result with fewer proces-

sors. For this reason, tests were run using one, three, or nine processors. A 

Sequent system with 27 processors was not available. The graph in Figure 

13 plots the execution time of the P transform vs the log3 of the number of 

processors for 9::;;n::;;l4. 
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This graph looks very similar to the graph in Figure 5 from the 

"Chunky Performance" section of this chapter. Following the same reason-

ing as used in that section, we would expect the elapsed time for execution 

of the parallel algorithm for the P transform to be related to the number of 

processors by the following equation: 

time = exp(c0 + m0 n + m1l log3(processors)J) 

As in the "Chunky Performance" section of this chapter, curve-fitting 

techniques can be used to find values for the constants, but there are not 

enough data points to have much confidence in those values. We could, 

however, use them to find "ballpark" estimates of the P transform times 

when using 27 processors. 

First we fit exponential curves to the data plotted in Figure 13. This 

gives the following equations: 

time
0

,.14 = exp(6.430 -1.060l log3(processors)J) 

time
0

,.13 = exp(5.276-1.037l log3(processors)J) 

time
0

,.12 = exp(4.145-1.0lllloga<processors)J) 

time
0

,.11 = exp(3.006 -0.950l log3(processors)J) 

time
0

,.10 = exp(l.854 -0.770l log3(processors)J) 

Figures 14 and 15 repeat the previous two graphs, but with the addition of 

the points predicted by the above equations. Notice in these equations that 

the slopes of the linear arguments to the exponential functions are all close 

to the same value. We assign their mean value -1.014 to be the constant 

m1• Now notice that the intercepts of the linear arguments to the exponen-
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Figure 14. Predicted P time vs n (log scale). 

tial functions seem to form a linear function of n. Using regression, we find 

the slope and intercept of that function as m0=1.142 and c0=-9.565 respec-

tively. Filling these constants into the first equation in this section gives: 

time = exp( -9.565 + 1.142n - 1.014l log3(processors)J) 

We would like to use this equation to make "ballpark" predictions of the 

performance of the parallel algorithm using 27 processors. This is done in 

the graphs shown in Figures 16 and 17, which are the same as the previous 

two graphs, except that the single equation above is used for all the predict-
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3 

ed points. The predicted values for 27 processors seem to fit well with the 

measured data, so we can use this equation to make really wild guesses, 

such as: a minimum KRM can be found for a switching function with 24 

inputs in a couple of days using 729 processors. This is not a very reliable 

prediction, but it does suggest a line of future research, as discussed in the 

next chapter. 
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CHAPTERV 

EXAMPLE USES OF KROMIN 

OVERVIEW 

In the first chapter of this thesis, we stated that for kromin to be a 

good tool, it should be easy to use and do its job well. We went on to say 

that kromin's job was to help researchers develop better algorithms to 

minimize ESOPs and gave two ways it could be used in doing so: by serving 

as a "base line" for comparison and by helping to provide insight into the 

problem. The former use of kromin was developed in Chapter IV: the 

experimental results of that chapter can be used for comparison as newer 

algorithms are developed. Three examples of the latter use of kromin are 

presented in this chapter: 

• In the "Cohn's Conjecture and the Distribution of Weights" section 

of this chapter, kromin is used to examine the distribution of 

weights within the context of a conjecture made by Cohn [17]. 

• In the "Expansion on Work by Sasao and Besslich" section of this 

chapter, kromin is used to add to work reported by Sasao [ 4]. 

• In the "Incompletely Specified Functions" section of this chapter, a 

modified version of kromin is used to compare two different ap-



proaches to finding minimum KRMs for incompletely specified 

switching functions. 
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These example uses of kromin are meant to demonstrate how the tool 

can be used and to add support to the conclusion presented in the next 

chapter that kromin is a useful tool for the development of ESOP minimiza

tion algorithms. Each of these examples represent an avenue of research 

that could prove fruitful. However, only initial steps are take here. 

COHN'S CONJECTURE AND THE DISTRIBUTION OF WEIGHTS 

In a letter to the IRE Transactions on Electronic Computers [17], 

Martin Cohn presents a conjecture made by himself and S. Even that for a 

switching function of n inputs, there exists a canonical form with at most W 

product terms, where 

n 

W= l;J 
Because KRMs are canonical, this conjecture can be reformulated in terms 

of the vector w as: 

=ii I wi:::; w 

In a sense, Cohn's conjecture partitions w into two parts: weights less than 

or equal to Wand weights that are greater. We can increase the number of 
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partitions and form a distribution. Such a distribution would, of course, be 

dependent on the particular switching function. 

It is impossible to explore the problem space by examining all attrib

utes of every possible switching function. We can, however, examine some 

attributes of some functions, hopefully those that will give us insight. One 

way to limit the number of functions to examine would be to only look at 

functions of a given number of inputs and then only at representative 

functions of the NP-equivalence classes [18]. This is one approach taken 

by Sasoa [ 4] and followed in the next section of this thesis. Another ap

proach, taken in this section, is to look at functions of a particular type with 

several different values of n, the number of inputs. 

In this section, we describe the results of an experiment in which the 

distribution of weights was found for 25 5-input functions, 25 8-input 

functions, 25 11-input functions, and 25 14-input functions. Each of these 

functions was generated at random according to the following rules: 

1) The ON set of each function is comprised of 75% "cubes" and 

25% single minterms. 

2) A "cube" will have between n/3 and n/2 "don't care" inputs. 

3) "Don't cares" will be contiguous 50% of the time. The rest of 

the time they will be split into two contiguous strings. 

4) The truth vector for each function will have about 25% ones. 
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These rules were developed in the hope that random functions so generated 

will be good representations of "real world" functions. This hope has not 

been put to any rigorous scrutiny. 

The program randgen, written to incorporate these rules, was used to 

generate the 100 functions used in this experiment. Kromin was then used 

to find the w vector for each function. Each time kromin was run, the 

program wghtfreq, written to accept a shared memory file produced by 

kromin, was used to convert the w vector to a distribution and plot it. 

W ghtfreq also indicates the "bin" of the distribution where Cohn's conjecture 

would fall. 

Rather then include all 100 distribution plots here, I will show only a 

few to summarize the results of the experiment. Figures 18, 19, 20, and 21 

represent typical weight distributions for n=5, 8, 11, and 14, respectively. 

The first thing to notice is that as n gets larger, the shape of the 

distribution becomes more recognizably that of a poisson distribution. This 

observation leads to two questions: why does the "shape" of the distribution 

become more "smooth" as n increases and why does the shape match that of 

a poisson distribution? A possible answer to the former question is that as 

n increases, the distribution is formed from an increasing number of 

weights (samples). When samples are counted to form any distribution 

curve (as was done here), the more samples that are counted, the closer the 

match between the constructed distribution curve and the actual curve of 
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Figure 18. Example distribution of weights for n=5. 

the underlaying distribution. An answer to the latter question is not so 

easily found and is left to future research. 

Where does Cohn's Conjecture fit into these distributions? The value 

of Wis indicated in the distributions shown here with a line and a label 

indicating the value of W for the particular value of n. It is clear that for 

all the functions shown here (and, in fact, for all 100 functions used in this 

experiment), there are several weights less than or equal to W. Figures 22 

and 23 show the distributions of weights for the 14-input functions with the 

least and most weights ~ W, respectively. In both cases, there are many 
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weights S W but many more that are greater. This suggests that Cohn's 

Conjecture can be safely used as the basis of a heuristic that avoids comput-

ing weights larger than W. Such a heuristic could not be incorporated into 

any algorithm based on the recursive 'fast' algorithm presented in Chapter 

III because the weights are not computed one at a time. It could be possible 

to reformulate the original 'fast' alogorithm into a "serial" 'fast' algorithm 

where the weights would be computed one at a time (perhaps in parallel). 

This new algorithm could then use the value of W as a "cut off' value. The 

development of this new algorithm is left to future research. 
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EXPANSION ON WORK BY SASAO AND BESSLICH 

In the paper "On the Complexity of Mod-2 Sum PLA's" [4], Sasao and 

Besslich present a table titled "Average Number of Products for All the 

Four-Variable Functions". The first row of data in this table is for mini-

mum ESOPs and the second row of data is for minimum SOPs. Kromin can 

be used to add rows for RMs FPRMs and KRMs. Table IV is a result of 

doing so, using the functions from Appendex 5 of [18]. Note that the first 

two rows of data are take from [ 4]. The standard deviation for these 
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Figure 21. Example distribution of weights for n=14. 

averages is also reported in the table, except for those from [ 4]. The 

averages are also shown graphically in Figure 24 (just for reference, the 

value of Win Cohn's Conjecture is indicated). 

The main thing to notice from the new table is that as the form of 

expression gets more general (from RM to ESOP), the average number of 

products for a given number of minterms drops. KRMs seem to have about 

as many product terms as SOPs. In the next chapter, we speculate that 

there may be a way to transform KRMs to ESOPs, thereby reducing the 

average number of products. 
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INCOMPLETELY SPECIFIED FUNCTIONS 

If the truth vector is allowed to contain "don't care" values, then the 

switching function is said to be incompletely specified. As presented in 

Chapter III, the algorithm will only work with completely specified switch

ing functions. This limits its usefulness because many switching functions 

are, by the nature of their application, incompletely specified. A good area 

for future research would be to modify the practical algorithm to work with 

incompletely specified functions. 
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Figure 23. For n=14, distribution with most weights~ W. 

One way to deal with incompletely specified functions can be found in 

the paper "Reed-Muller Expansions of Incompletely Specified Functions" 

[19]. If there are k values of the d vector specified as "don't care", then 

simply solve '2fe minimization problems, each with different values substitut-

ed for the k "don't cares". Then pick values for the "don't cares" correspond-

ing to the minimum of the '2fe minimums. For this section kromin was 

modified to allow incompletely specified functions and find their minimum 

as outlined above. 
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I 

TABLE IV 

AVERAGE NUMBER OF PRODUCTS FOR ALL THE FOUR-VARIABLE 
FUNCTIONS 

II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 

ESOP 1.000 1.733 2.371 2.738 3.132 3.350 3.702 3.696 

SOP 1.000 1.733 2.371 2.905 3.370 3.730 4.053 4.273 

KRM 1.000 1.750 2.500 2.947 3.852 4.260 4.875 4.440 

aKRM 0.000 0.500 0.548 0.911 0.989 1.226 1.129 1.327 

PRM 1.000 3.250 4.667 3.737 5.259 5.120 5.786 5.009 

a FPRM 0.000 2.217 1.633 1.195 1.347 1.649 1.371 1.623 

RM 1.000 6.500 5.667 6.263 5.926 7.320 9.018 7.224 

a RM 0.000 6.191 2.160 3.380 2.480 2.945 2.378 2.337 

II 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 

ESOP 3.912 3.864 4.088 3.732 3.371 2.733 2.000 1.000 

SOP 4.457 4.537 4.546 4.426 4.200 3.733 4.000 1.000 

KRM 5.268 5.140 5.407 4.684 4.833 4.250 2.000 1.000 

a KRM 0.981 1.309 1.338 1.204 1.169 2.217 0.000 0.000 

FPRM 6.054 5.580 6.185 4.737 5.667 4.250 2.000 1.000 

a FPRM 1.197 1.372 1.331 1.195 1.633 2.217 0.000 0.000 

RM 9.768 7.920 6.704 6.632 6.667 7.000 2.000 1.000 

a RM 2.071 2.546 1.938 2.629 2.160 5.292 0.000 0.000 

While this solution is in keeping with the brute force nature of the 

practical algorithm, the performance gets exponentially worse as the 

number of "don't cares" is increased. That goes against intuition which 

suggests that we should be able to use the flexibility of having "don't cares", 

I 
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Figure 24. Average number of products for all the four-variable functions. 

along with our knowledge of the M and P transformations, to avoid most of 

the work. 

To take a first step in the development of such a heuristic, we first 

develop a very simple heuristic and see how well it performs against the 

brute force method. The heurisic tested in this section could not be much 

simpler: just assign random binary values to the "don't care" outputs. Do 

this some number of times and pick the "best" set. 

To test this heurisic, the 100 random functions used above were 

modified so that two random ON-minterm had their output values set to 
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"don't care". The same was done for two random OFF-minterms. This gives 

a total of 16 different combinations of "don't care" output values. The 

functions were processed by kromin, which used both the brute force 

method and the simple heuristic, limited to 8 "don't care" combinations per 

run. 
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Figure 25. Incomplete functions heuristic. 

Because the simple heuristic does half as many minimizations as the 

brute force method, it is twice as fast. But it doesn't always find the 

minimum. Figure 25 shows the number of attempts the heuristic needed to 

find the true minimum of each of the 100 random functions. If the true 
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minimum was not found in 8 attempts, then no bar is printed for that 

function. As can be seen from the figure, this simple heuristic doesn't do as 

badly as one would think. This experiment offers encouragement to the 

idea of finding a better heuristic for assigning values to "don't care" outputs. 

The section "Incomplete Switching Functions" in the next chapter offers an 

idea that could lead to a better heuristic. 



CHAPTER VI 

FUTURE WORK AND CONCLUSIONS 

OVERVIEW 

In the previous chapters we discussed the need for and then devel

oped a practical algorithm for finding minimum KRM expansions. We then 

tested several implementations based on that algorithm. While the result

ing software is valuable in its own right as a minimization tool, because of 

its brute force nature, it would probably be of more use as a research tool 

for building a better algorithm. This chapter discusses four different areas 

for further research: the first two would change the nature of the problem 

being solved and the last two would tinker with algorithm design. 

INCOMPLETE SWITCHING FUNCTIONS 

In the last section of the previous chapter we developed and tested a 

simple heuristic. The heuristic just tried a number of random values for 

"don't care" outputs and picked the best one. Although this approach didn't 

do too bad of a job, it didn't always find the minimum and doesn't use any 

of the information available about the function. As stated above, intuition 

suggests that we should be able to use the flexibility of having "don't cares", 



along with our knowledge of the M and P transformations, to make better 

choices about the values assigned to "don't care" outputs. 
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Another approach would be the following: for each row in P n' indepen

dently choose a "don't care" combination that forces as many of the selected 

elements of e as possible to the value zero. Note that changing an element 

of e from a one to a zero is guaranteed to reduce the weight if that element 

is selected by the corresponding row in Pn. A "provisional" minimum weight 

found in this way will actually be the true minimum only if the set of "don't 

care" assignments is consistent. That is to say, each time a value is as

signed to a "don't care", that value is the same as any previously assigned to 

that "don't care". 

The key to this future research would be to find a way to resolve any 

inconsistencies in "don't care" assignments in such a way as to: 1) increase 

the minimum weight as little as possible and 2) do so in polynomial time. 

Methods should be investigated that resolve inconsistencies on the fly and 

heuristics could be found that avoid inconsistencies in the first place. In 

either case, it should be possible to beat 2k executions of the algorithm. 

The completion of this research would give us a fast practical way to 

find minimum KRM expansions for incompletely specified switching func

tions. Some might say that this is not enough, because a minimum KRM 

expansion is not necessarily the minimum ESOP form of a given function. 

This problem is explored in the next section. 
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ESOPS ARE NOT KRMS 

The purpose of the practical algorithm developed in this thesis is to 

find minimal KRM expansions. And while a KRM expansion is, of course 

an ESOP, the minimal KRM expansion of a given function may not be the 

minimum ESOP form of that function. For example, consider the following 

switching function, given in ESOP form: 

f(x1, x 2, x3 , x4 ) = 1 EB x~1 EB X4X~2 EB x4XaX~1 

There are several minimum KRM expansions for this function, but they 

have six terms, two more than the ESOP form above. The reason that this 

particular ESOP is not a KRM is that the variables x2 and x4 are used in 

three ways: for a given term, either the variable is used, or the complement 

of the variable is used, or the variable does not appear in the term. For a 

KRM form, each variable may be used in any two of these ways, but not all 

three. This is a consequence of the fact that three symbols are used in the 

basis vectors (1, xi, x) fore, but each basis vector for an ESOP consists of 

only two of these symbols. 

Future research would be to develop a way to find the minimum 

ESOP form of a switching function, given the minimum KRM expansions for 

that function. Perhaps some kind of intelligent factoring can be used. For 

example, consider the following minimum KRM expansion for the above 

function: 
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ftx1' X2, X3, X4) = X2ffiX2ffiX~1ffiXaX2ffiX4XaX2ffiX~aX~1 

Obviously, the first two terms can be combined into a single term, equal to 

1. In addition, the following factorization can be performed: 

xaX°2E9x4x#2 = (1E9x4)x#2 

= X4XaXa 

After these two straightforward simplifications, we are left with the original 

(minimal) ESOP. It might be possible to find a way to guide the factorizing 

based on the polarity numbers of the minimum KRM expansions. For 

example, the polarity number, in trinary, for the above KRM is <0211>. 

This alerts us to the fact that x2, either complemented or uncomplemented, 

appears in every term, making it a good candidate for factoring. An x2 can 

be factored from the first and third terms and an x2 can be factored from 

the second and fourth terms as follows: 

X1ffiX2X1 = X2(lffix1) 

-= X2X1 

.X2E9.X3.X2 = (lE9.X3).X2 
-= X3X2 

After these simplifications, we are left with a new ESOP for the switching 

function that has the same number of terms as the original ESOP. 

If this research were successful, we would be able to find minimal 

ESOPs for any switching function, provided we had a computer with enough 

memory, required by the exhaustive search nature of the minimization 



algorithm. Even with virtual memory, this can be a problem because the 

need for memory grows exponentially with the size of the switching func

tion. The next two sections deal with possible ways around this memory 

problem. 

MORE MEMORY BY DISTRIBUTED SYSTEMS 
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As an example of how fast the need for memory grows, minimizing a 

15-input switching function requires about 29 megabytes, but minimizing a 

24-input switching function requires about 565 gigabytes of memory. It's 

not likely that any single computer, even a multiprocessor, will have that 

much memory any time soon. In fact, 565 gigabytes is 140 times the 

maximum addressability of a 32-bit processor! This section deals with a 

way to find enough memory to do larger problems. The next section dis

cusses a way to reduce the amount of memory needed. 

Let's say we had a network of engineering workstations, each with a 

600 megabyte hard disk. It would take a network with just less than 1000 

of these systems to have enough "collective" hard disk memory to cover the 

565 gigabyte memory requirement. Of course, hard disk memory is not the 

same as main memory, and distributed processors are not the same as the 

shared memory multiprocessing of the Sequent. But because of the way the 

work is partitioned by the Kronecker product, it isn't difficult to see how to 

make the algorithm work in this kind of environment. 
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Another part of this future research would be to modify the algorithm 

to effectively use distributed processing. The key here, as in many distrib

uted applications, would be in communication between processors. Perhaps 

the communications could be handled in a way that takes advantage of the 

topology of the network. In any event, we will need to use distributed 

systems if we want exact solutions to large problems. 

LESS MEMORY BY CLOSE TO MINIMAL SOLUTIONS 

Another way to get around the memory problem is to modify the 

algorithm to use less memory by not saving all of the weights. Methods 

should be investigated that allow only weights that have small values to be 

computed and stored. The problem is, how do we know which weights have 

small values without computing them? One possible approach would be to 

combine groups of bits in the extended truth vector as a way to estimate 

which weights need to be computed. Some memory-saving tricks we might 

try could interfere with the algorithm's ability to find the true minimum 

expansion. In this case, we want to at least find a solution that is close to 

the minimum. 

If in the process of modifying the algorithm to use less memory we 

lose the guarantee of a minimum solution, we need some kind of assurance 

that the solution is still a good solution, in some sense. It might be that 

this research leads to a whole new approach, or it could be that a simple 
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modification to the existing algorithm could be made. Now that the practi-

cal algorithm has been developed, there are may different ways to use and 

extend it. 

CONCLUSIONS 

In this thesis we have discussed the need for and then developed a 

practical algorithm for finding minimum KRM expansions. We then tested 

several implementations based on that algorithm. Finally, in this chapter, 

several areas for future work were discussed. 

In the first chapter, it was stated that the algorithm "should be easy 

to use and do its job well". We can take this to mean that the algorithm 

should be as fast as possible and should be able to minimize problems with 

as many inputs as possible. 

From the experiments on a Sequent S81 with 32 megabytes of 

memory and nine processors, we found that a practical upper bound on the 

size of the problem is 15 bits and that a minimum for a problem of that size 

can be found in about 12 minutes. The maximum problem size is big 

enough so that minimum KRM expansions can be found for moderately 

complex switching functions and the speed is fast enough so that many 

problems of that size could be run during a course of research. Because the 

algorithm performs an exhaustive search, it is particularly useful as a "base 

line" to compare against when evaluating other methods or heuristics. 
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Based on these findings, it could be argued that this thesis research 

has satisfied the goal of being a useful tool for the development of ESOP 

minimization algorithms. The proof of any tool, however, is in its use and 

only time will tell. 
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