Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
5-28-1991

The Dimension of a Chaotic Attractor

Roslyn Gay Lindquist
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Physics Commons
Let us know how access to this document benefits you.

Recommended Citation

Lindquist, Roslyn Gay, "The Dimension of a Chaotic Attractor" (1991). Dissertations and Theses. Paper
4182.

https://doi.org/10.15760/etd.6066

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4182
https://doi.org/10.15760/etd.6066
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Roslyn Gay Lindgquist
for the Master of Science in Physics presented
May 28, 1991.

Title: The Dimension of a Chaotic Attractor.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Tools to explore chaos are as far away as a
personal computer or a pocket calculator. A few
lines of simple equations in BASIC produce fantastic

graphic displays. In the following computer experi-

ment, the dimension of a strange attractor is found
by three algorithms; Shaw's, Grassberger-Procaccia's
and Guckenheimer's. The programs were tested on the
Henon attractor which has a known fractal dimension.
Shaw's and Guckenheimer's algorithms were tested
with 1000 data points, and Grassberger's with 100
points, a data set easily handled by a PC in one
hour or less using BASIC or any other language
restricted to 640K RAM. Since dimension estimates
are notorious for requiring many data points, the
author wanted to find an algorithm to quickly esti-
mate a low-dimensional system (around 2). Although
all three programs gave results in the neighborhood
of the fractal dimension for the Henon attractor,
Dfractal=1-26, none appeared to converge to the

fractal dimension.

THE DIMENSION OF A CHAOTIC ATTRACTOR

by
ROSLYN GAY LINDQUIST

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
PHYSICS

Portland State University
1991

TO THE OFFICE OF GRADUATE STUDIES:
The members of the Committee approve the thesis

of Roslyn Gay Lindquist presented May 28, 1991.

APPROVED:

7 alr, Department of Physics

. willlam Savery,
Studies and Research

PAGE
LIST OF TABLES........ c e es e s s s e es e s ass e aaaesas II1
LIST OF FIGURES. c it cvtessesossscoccnsosncssscass Iv
CHAPTER
I INTRODUCTION..... s et s ecteseea s ese s 1
Strange Attractors.............. 1
Henon Attractor
Dimension......oeciieiernnnnnnns 3
Shaw's Method
Grassberger-Procaccia Method
Guckenheimer's Method
Sources of Error
IT EXPERIMENT oot eeeonooncasosnscenas 10
Diml...ieiinerereeneansonannosas 10
Dim2. ..t iieeeeeeenoanceaannancas 11
Dim3....c000.. et e e cee st 12
Henon.......cee... et et eeaenaan 12
TJIT RESULTS . .eceeeesccscsoscoscsosonacnssscas 13
Henon Attractor................. 13
ShaW..vieritveeceeencaenoonanonons 14
Grassberger....... Ceeeeseaaes e 16
Guckenheimer......cceeeeeeeaoens 18

TABLE OF CONTENTS

Iv DISCUSSION..ceseseccecsnoscccsascasss 20

REFERENCES........... cesctecscaas tessescssenes .o 22

APPENDICES
A Computer Program "Henon2"............ 23
B Computer Program "Diml".......c.e0ceue 25
C Computer Program "Dim2".............. 40

D Computer Program "Dim3"........ccce0e 54

LIST OF TABLES

TABLE PAGE
I Slopes of Lines in Figure 2,
Shaw's Method, for Embedding
Dimensions 1-5....ccecveeeccnns 16
II Slopes of Lines in Figure 3,
Grassberger's Method, for
Embedding Dimensions 1-5....... 17
IIT Slopes of Lines Using X and Y
Coordinates, Guckenheimer's

Method, for Embedding Dimensions

FIGURE

1.

LIST OF FIGURES

Henon attractor for a=1.4,

b=0.3, 1000 iterations
Shaw's method.....c.vveeveven.
Grassberger's method.......

Guckenheimer's method.........

PAGE

CHAPTER 1

INTRODUCTION

Tools to explore chaos are as far away as a
personal computer or a pocket calculator. A few
lines of simple equations in BASIC produce fantastic
graphic displays. In the following computer experi-
ment, the dimension of a strange attractor is found
by three algorithms; Shaw's, Grassberger-Procaccia's
and Guckenheimer's. The programs were tested on the
Henon attractor which has a known fractal dimension.
Shaw's and Guckenheimer's algorithms were tested
with 1000 data points, and Grassberger's with 100
points, a data set easily handled by a PC in one
hour or less using BASIC or any other language
restricted to 640K RAM. Since dimension estimates
are notorious for requiring many data points, the
author wanted to find an algorithm to quickly esti-

mate a low-dimensional system (around 2).

STRANGE ATTRACTORS

Attractors are points or cycles in phase space
that a system is drawn to. If a system with a non-

integer dimension has an attractor, it is called a

strange attractor. A strange attractor is chaotic if
two points on the attractor separated by a small
distance move apart exponentially with time (1).
Attractors exist in phase space. In phase
space, each point on the plot describes the state of
the total system at one time. An example of an
attractor that is not strange is the motion of a
simple pendulum (2). In phase space, plot the angle
the pendulum makes with the vertical vs the rate at
which the angle changes. The point on the graph will
circle the origin, spiraling toward the center as
friction slows the pendulum. In this case, the
origin is the attracting point. If you kick the
pendulum, it will eventually return to its stately

spiral toward the attracting point.

Henon Attractor

The Henon attractor was first noticed by M.
Henon in 1975 (3) while he was looking for a sinple
mapping with which to study the Lorenz system. The

Lorenz attractor is described by three differential

equations:
dx/dt = a(y - x)
dy/dt = -xz + bx - y
dz/dt = xy - cz

Lorenz found this attractor accidentally in 1961

while working on a computer simulation to predict
the weather.

Henon wanted to reduce the Lorenz attractor to
a Poincare two-dimensional mapping while preserving
the properties of the attractor. The mapping con-
sists of a series of foldings and contractions which

result in:

2

yi +1 - axjy

Xi+1
Yi+r = PXj o
now known as the Henon attractor. Henon also showed
that these two equations are the most general quad-

ratic mapping that preserve properties of the Lorenz

attractor.

DIMENSION

The dimension of an object relates how its

volume changes as its linear size changes:

BULK ~ sizgpdimension (4) .
Consider a system with N states, each of radius r.
The radius of the whole system is R. Then the dimen-
sion, d, is given by:

N=(R/1r)9d.
Taking the log of both sides yields:

log(N) = d log(R / r),

where log(N) is the stored information and log(R/r)

is the resolution along a single coordinate (5). Let
R=1 and r<1, then the fractal dimension, Dg, is:
Dp = lim.,o (1n(N) / 1n(1/r)) (6).

The fractal dimension is smaller than the
degrees of freedom.

Dp is very difficult to calculate when Dy>2.
Furthermore, the use of a single time series to
extract Dp when Dg>2 has been found to be impracti-
cal (1).

The Hausdorff-Besicovich dimension, Dy is
another type of dimension used to compare the "size"
of systems with the same fractal dimension. The
volume of the set may only have three values: zero,
infinity, or a finite number. Theiler gives an
excellent description of Dy:

For instance, the fractal coastline may

have a one-dimensional volume (length) of

infinity and a two-dimensional volume

(area) of zero, but there is a D between 1

and 2 at which the D volume crosses over

from o to 0, and that value of D is the

Hausdorff dimension of the coastline (4,

p.1060) .

The problem with using Dy in experiments is
that it reguires one to take a minimum over all
coverings. The fractal dimension can be used experi-
mentally since it allows a covering of a fixed size
grid. The fractal dimension, also called the capaci-

ty or the box-counting dimension, is an upper bound

on the Hausdorff dimension.

Many ways have been used to find the dimension
of an attractor. Hediger found the average local
intrinsic dimension of an attractor by counting the
number of local orthogonal axis along which points
were distributed (7). Some methods divide phase
space into boxes or balls and count the number of
points in each box or sphere. The three used in this
experiment are Shaw's (5), Grassberger-Procaccia's

(8), and Guckenheimer's (9) methods.

Shaw's Method

Shaw chose his algorithm for simplicity. It is
close to Guckenheimer's and Grassberger's. From a
set of time series data, a random point is chosen.
The distance from that point to all other points is
measured. This is repeated for a number of other
randomly chosen points. A mean distance to the
nearest neighbor, next nearest neighbor, etcetera,
is calculated. Ln(n) vs 1n(r) is plotted where n is
the number of data points within a distance r. This
process is repeated, grouping the time series data
in pairs and plotting 1ln(n) vs 1ln(r). The data is
then grouped in threes, fours, etcetera. This group-
ing corresponds to increasing the embedding dimen-
sion of the attractor. When the embedding dimension
is high enough to accommodate the full attractor,

the slope of the lines (the dimension) will approach

the dimension of the attractor (5).

Grassberger-Procaccia Method
The Grassberger-Procaccia method, also called

the correlation method, is based on the distances
between points on the attractor. The correlation
integral (8) is written:

C(r) = <By(r)>,
where B, (r) is the pointwise mass function, defined
as By (r)=u(by(r)). by(r) is a ball of radius r,
centered at point X. An average is taken since B, (r)
is not uniform over most fractals. The correlation

dimension, D is defined:

cl
Do = limy.sq (log C(r) / log(r))

For a finite data set, B,(r) can be approximated by:

N

By(r) = (1/(N-1)) = eo(r- | x3-%5 |)
J =3
i3

8 is the Heavyside step function which is zero for

¥<0 and one for x20. N is the number of points.

I X3 -X5 | is a metric such as the Euclidian metric.
Then
N
C(N,r) = 1/N £ By ()
j=1 3

1/(N(N-1)) = e(r- | x3-%5 [).
i)

As Theiler put it in words (5),

C(N,r) = # of distances less than r
of distances altogether

C(N,r) ranges from 2/N2 to one (4).
D, can be found by taking the slope:

D, = dC(N,r) /dr
C(N,r)/r .

The slope is always less than Dg.

Since a finite sample is taken, the sample size
is an issue. The minimum number of points has been
suggested at:

Npin = No ab -,

where A is of the order of ten, but as Theiler
points out "experience also indicates the need for
more experience" (4,p.1068). The number of points
needed to find the dimension of an attractor in-
creases exponentially with increasing dimension
(10) .

Dy is the information dimension. It represents

the information capacity of the attractor. The

information dimension lies between Do and Dy,

Dr and Dy, taken together, give a good estimate of
the information content.

Grassberger found D, for the Henon attractor to
be 1.21+.01 for 15,000 iterations, and 1.25+.02 for

20,000 iterations, compared to Dgp=1.26. Convergence

was apparent for D, after a few 1000 points (8).

Guckenheimer's Method

Guckenheimer began just as Shaw did, by finding
distances to nearest neighbors on the attractor. He
sorted the list of distances from large to small and
plotted log(r) vs log(V). V=i/N, where the ith
largest distance (i=1 to N) has the value r, and N
is the total number of points. "i" is the index such
that i=4 refers to the fourth smallest point. The
inverse of the slope is the dimension Dg (9). This
technique was developed for use with large data sets
that sample all regions of an attractor, and Gucken-
heimer cautions than his method "must be used with
great caution and does not always give reliable

results" (9,p 1439-1440).

Sources of Error

Errors occur chiefly because of two properties
of attractors and computers. Attractors have infi-
nite structure in a finite space. Computers can only
handle a limited number of points.

Infinite structure. Shaw is critical of dimen-

sion measurements, pointing out that different parts
of an attractor may yield different values because
of the limits to which an attractor of infinite

structure can be calculated (5).

Edge_effects. According to Brandstater,

dimension estimates may be low due to edge effects.
For a ball r whose center is located near an edge,
the increase on the number of points inside is
slower than for a ball located far from an edge
(10). Theiler writes "the finite sample size leads
to poor statistics at small r, and the finite size
of the attractor (the edge effect) limits the scal-
ing at large r" (4,p 1069).

Number of points. The number of points re-
quired to resolve an attractor down to a certain
length scale, increase exponentially as the dimen-
sion increases (10).

Non-uniform. Different regions on the attrac-

tor exhibit different scaling behavior (10).

CHAPTER II

EXPERIMENT

Three programs were written in True Basic IBM
version 1.0 to calculate the dimension of the Henon
attractor. A fourth program displays the Henon
attractor in phase space. Listings of the programs

may be found in the appendices

DIM1

DIM1 uses Shaw's method. It takes 1000 points
from the Henon attractor and stores them in an array
POINTS. The points chosen were the x coordinates,
since any variable of a dynamical system should be
able to reconstruct the attractor.

The subroutine MAKE_XDATAl calculates the
distances between a point and its neighbors for all
1000 points using the Euclidian metric. It then
calculates the mean distance between a point and its
neighbors, storing this data in the array XDATAl.

SORT_XDATAl sorts the mean distances from

smallest to largest.

11

The PLOT_LINEl subroutine plots the log of the
mean distance vs the log of the number of distances
less than that distance.

The slope of the line is found byvlinear re-
gression. The correlation coefficient of the slope
is also found.

Subroutines LINE2 through LINE5 repeat the
above process for pairs of points, triplets, fours,

and fives.

DIM2

Grassberger and Procaccia's correlation method
was used in the program DIM2. Only 100 points from
the Henon attractor were used because of the large
amount of memory required.

The array POINTS was formed just as in DIM1.
Distance between points was calculated and put in
XDATAL.

The sum of the distances less than r, C(N,r),
is the correlation function. "r" ranges from 0.1 to
2.0, 100 values of r were used.

PLOT_LINE1l draws a graph of 1log(r) vs
log(C(N,r)).

The slope and its correlation coefficient are

calculated, and subroutines LINE2 through LINE5 are

12
called.

DIM3

DIM3 uses Guckenheimer's method.

POINTS is created, as in the two previous
programs. 1000 points are computed.

The SORT_XDATA subroutine sorts the distances
in XDATAl from smallest to largest.

A graph is drawn of log(ith distance/N) vs
log(r), where N is the total number of data points,
and r is the ith largest distance.

The dimension calculated is the inverse of the
slope. The correlation coefficient is found.

LINE2 through LINES repeat the process for
embedding dimensions 2 through 5.

DIM3 was also run for the y coordinates of the

Henon attractor.

HENON

The program HENON plots the Henon attractor,

Yy, = bx

for a=l1.4 and b=0.3.

CHAPTER III

RESULTS

HENON ATTRACTOR

The Henon attractor is plotted in figure 1 with

the constants a=1.4 and b=0.3, iterated 1000 times.

IR
RO T

-
iy
CATATL u

Figure_1. Henon attractor for a=1.4,
b=0.3, 1000 iterations.

For these values of a and b, the attractor is chaot-

ic and has a fractal dimension of about 1.26 (1,8).

14

Initial values of y=.1 and x=.1 were used,
although the picture will appear the same for any

starting points chosen.

SHAW

Shaw's algorithm did not converge in 1000 data
points to the fractal dimension, 1.26, but gave a
value around 0.60. Since Shaw gave no indication how
many data points his method takes to converge on a
dimension near 2, I can only guess that many more
than 1000 are needed.

Figure 2 shows the lines for embedding dimen-
sions 1 through 5. The left line is for 1, the next
for 2, etcetera. Table I lists the slopes of the

lines.

15

t |1
3

o 189 18 In(r),

Figure 2. Shaw's method.

16

TABLE I

SLOPES OF LINES IN FIGURE 2, SHAW'S METHOD,
FOR EMBEDDING DIMENSIONS 1-5°

EMBED._ DIM. SIOPE
0.658296
0.629123
0.613265
0.602572
0.594524

Ol > W N

GRASSBERGER

The Grassberger-Procaccia method overestimated
the fractal dimension. The algorithm took the most
RAM to run, and so was restricted to 100 data points
from the attractor. Grassberger used 20,000 itera-
tions to obtain a value close to the fractal dimen-
sion.

Figure 3 shows the lines obtained and Table II
lists the slopes. The top line has an embedding

dimension of one, the next of 2, and so on.

In(C(N,p))

! 2 Inlp)

Figure_3. Grassberger's method.

TABLE II

SLOPES OF LINES IN FIGURE 3,

GRASSBERGER'S METHOD,

FOR EMBEDDING DIMENSIONS 1-5

EMBED._ DIM.

SIOPE

g W

3.09066
2.97917
2.86125
2.75760
2.66498

17

18

GUCKENHEIMER

For 1000 data points, Guckenheimer's method
gave a value in the neighborhood of the fractal
dimension, as did the other two methods.

The slopes found using the x coordinate of the
attractor were greater than the fractal dimension.
Figure 4 graphs the lines found using the x coordi-
nates. The left line is for an embedding dimension
fo 1, the next for 2, and so on. Repeating the same
program with the y coordinates, the slopes were less
than the fractal dimension. The slopes using the y
coordinates appeared to be converging more quickly

than the x coordinates as shown in Table III.

In{i’N)

13 I'A

| Int)

19

Figure 4. Guckenheimer's method.

TABLE III

SLOPES OF LINES USING X AND Y COORDINATES,
GUCKENHEIMER'S METHOD, FOR EMBEDDING
DIMENSIONS 1-5

EMBED._ DTM. X _SIOPE Y SIOPE
1 1.68290 0.941998
2 1.87335 0.952682
3 1.93501 0.953968
4 1.99319 0.954323
5 2.03469 0.954594

CHAPTER IV

DISCUSSION

Although all three methods gave results in the
neighborhood of the fractal dimension, no one algo-
rithm stood out as the best for a small number of
data points.

Shaw's method took more run-time than Gucken-
heimer's method because of the extra step of finding
the mean distance to neighbors, but this step gave a
much lower estimate of the dimension.

Grassberger's algorithm required large arrays
and more computing time than the other two methods.
Fewer data points from the attractor could be used.
The slopes at higher embedding dimension did not
appear to be converging as did the slopes in the
other two methods.

Guckenheimer's method took the least time to
run. The x coordinates appeared to be converging at
a slope around 2, and the y coordinates around 1.
Since this algorithm was designed for very large

data sets, the difference in slopes between the

21

X and y data sets may not be significant.

None of the three methods came close enough to
the fractal dimension to be useful in the determina-
tion of dimension for a low dimensional attractor

using few data points.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

REFERENCES

Grebogi, Celso, Ott, Edward, Yorke, James A., "Chaos,
strange attractors, and fractal basin boundaries in
nonlinear dynamics," Science 238, 632 (1987).

Dewdney, A.K., "Probing the strange attractors of
chaos," Sci. Amer. 257, 108 (1987).

Dold, A., Eckmann, B., Turbulence and Navier Stokes

Equation, Orsay 1975 (Springer Verlag, Berlin,
1976) .

Theiler, James, "Estimating Fractal Dimension," J.
Opt. Soc. Am. A 7, 1055 (1990).

Shaw, Robert, The Dripping Faucet as a Model cChaotic
System (Aerial Press, Santa Cruz, 1984).

Barnsley, Michael, Fractals Everywhere (Academic
Press, San Diego, 1988).

Hediger, T., Passamante, A., Farrell, Mary Eileen,
"Characterizing attractors using local intrinsic
dimensions calculated by singular-value decomposi-
tion and information-theoretic criteria," Phys. Rev.
A 41, 5325 (1990).

Grassberger, Peter, Procaccia, Itmar, "Characteriza-
tion of strange attractors," Phys. Rev. Let. 50, 346
(1983).

Guckenheimer, John, Buzna, George, "Dimension
measurements for geostrophic turbulence," Phys. Rev.
Let. 51, 1438 (1983).

Brandstater, A., Swinney, Harry L., "Strange attrac-
tors in weakly turbulent Couette-Taylor flow," Phys.
Rev. A 35, 2207 (1987).

APPENDIX A
COMPUTER PROGRAM "HENON2"

REM henon2

SET MODE "“egahires"

SET WINDOW -1.5,1.5,-1,1

LET y=.1 !initial values
LET x=.1

LET a=1.4 !constants

LET b=.3

1 dedede o o g g de d o K K ke K gk g de K ke K e g K de g K de K e K ke g K ke % g g K gk ok ke k ok k ok k
! ox SUB AXIS *
! % Draws x and y axis. *
I dkdkkkhkhkdkhkhkdkdkhkhkhkhhkhkhkhkhkhkkkkkkkkkkhkkkhkhkhkhkhkhkkhkkkkkkkk

SUB axis
ASK WINDOW x1,x2,v¥y1l,y2
PLOT x1,0;x2,0
PLOT O0,yl:;0,y2

END SUB

kkkkkdkhkkkhkdkkhkhkkkhkhkhkkhkhkkkhkkkhkhkhkhkkkkhkhkkkikkkikkkik

* SUB TICKS *

!
!
I % Draws ticks on x and y axis. *
1 dkkkkdkhkhkhhkkhkhkhkhkhhkkhkhkkhkhkhkhkhhkkhkkkkkkhkhkkkhkkkhhkkkkkkx

SUB ticks(x,Y) ! axis with ticks
X and y units apart

ASK SCREEN ul,u2,vl,v2

ASK WINDOW x1,x2,yl,y2

PLOT x1,0;x2,0

PLOT 0,y1l;0,y2

LET xu=640

LET pl=abs(v2-v1l)*200 !pixels vertical
LET p2=abs(u2-ul) *xu !pixels horizontal
LET r=min(pl/50,p2/50) !small fraction
LET dl=r/pl*abs(y2-yl) Ifor x

LET d2=r/p2*abs(x2-x1) Ifor y

CALL mark(xl,x,1,dl)

CALL mark(x2,x,1,dl)

CALL mark(yl,y,2,d2)

CALL mark(y2,y,2,d2)
END SUB

24

% e de kg de ek de ke ke ke ke e ke gk ke g ok ke ok kK ke % e de ke ok ke ke ke ke ke ke ke ok ke ke ke ke ke ke ke ok ok ke ke k

1

I % SUB MARK *
! % Used by SUB TICKS to draw a single tick. *
I kkkhkkkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkkhkkkkkkk

SUB mark(u2,us,c,d) !does 1 tick
IF u2=0 then EXIT SUB
FOR u=0 to u2 step sgn(u2)*us
IF c=1 then
PIOT u,-d;u,d
ELSE
PLOT -d,u:;d,u
END IF
NEXT u
END SUB

khkdkkkhkkhkhkkkhkhkkkhkhkhkkhkhkkkhkhkkkkkkhkhkkkhkkkkkkhkkkikkikkk

1
P MAIN PROGRAM *
I okkdkkkhkkkkhkhhhkhkhhhhkhkhhhkhkhhhkhkhhkhkhhhkhhhhkkhkhkkhkhdkhxk

SET COLOR "white"
CALL axis
CALL ticks (1,1)
FOR i=1 to 1000
LET xx=1+y-a*x*x
LET yy=b*x
LET x=xX
LET y=yy
PLOT (x),(Y)
NEXT i
END

APPENDIX B

COMPUTER PROGRAM "DIM1"

kkkkkkkkkkhkhhkkkkhkkkkhkhkkkhkkkhkkkkkkkkkkkkkkikkkkkkk

* DIM1 *
* Finds the dimension of the Henon attractor *
* using Shaw's method. *
* Slope of lines plotted approaches the *
* dimension of the attractor. *
kk

kkkkkkkkkkkkkhkhkkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkk

* Initialize variables and constants. Declare *
% arrays. *
khkkkkkXkkkkkkkXkkkkkkkXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

OPEN #1: printer
SET MODE "egahires"
SET WINDOW 0,20,0,10
DIM points(1000,1)

DIM xdatal(999,3) !lone less than #
of data pts
DIM xdata2(998,3) ! 2 less xdatal

DIM xdata3(997,3)
DIM xdata4 (996,3)
DIM xdata5(995,3)

LET y=.1

LET x=.1 !initial value
LET a=1.4 !constant

LET b=.3 !constant

LET total_data_pts=1000 !4 of data pts

| kkkkkkkkkkkkhkkhkkkkhkkkkkkkkhkhkkkkhkkkkkkhkkkkkkk*k
! * SUB AXIS *
! * Draws x and y axis. *
]

kkkkkkdkkhkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkk

SUB axis

ASK WINDOW x1,x2,y1l,y2
PLOT x1,0;x%2,0
PLOT 0,y1;0,y2

END SUB

*

!
!
[
!

26

hkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkk

SUB TICKS *
Draws ticks on x and y axis. *

khkkkhkhkkkhkhkkhkhkhkkhkhkkkkhkkkkhkkkhkkkkkkkdkkkhkikkikkikkik

SUB ticks(x,y) ! axis with ticks

X and y

units apart

ASK SCREEN ul,u2,vil,v2
ASK WINDOW x1,x2,y1l,y2
PLOT x1,0;x2,0
PLOT O,yl1l:;0,y2

LET
LET
LET
LET
LET
LET

xXu=640

pl=abs (v2=v1)*200 !pixels vertical
p2=abs (u2-ul) *xu !pixels horizontal
r=min(pl/50,p2/50) !small fraction
dl=r/pl*abs(y2-yl) !for x

d2=r/p2*abs (x2-x1) !for y

CALL mark(x1l,x,1,dl)
CALL mark(x2,x,1,d1)
CALL mark(yl,y,2,d2)
CALL mark(y2,y,2,d2)

END SUB

*

!
!
[
!

kdkkkhkdkkhkdkkkkkdkkhkhkhkkhkdkkkhkhkhkkkhkhkkhkkkkkkkkhkkkkkkkkkik

SUB MARK *
Used by SUB TICKS to draw a single tick. *

kdkkkkdkkhkdkkkkkdkhkkhkdkhkhkhkkkhkhkkkkhkkkkhkkkhkkkkhkkkhkkkikkkik

SUB mark(u2,us,c,d) !does 1 tick
IF u2=0 then EXIT SUB

FOR

u=0 to u2 step sgn(u2)*us
IF c=1 then
PLOT u,-d:;u,d
ELSE
PIOT -d,u:;d,u
END IF

NEXT u

END SUB

*

!
!
[
!

kkdkkkhkkhkhkkkhkhkhkkhkhkhkkkhkkkkhkkkkhkkkkkkkhkkkkkkkkdkkdkkkk

SUB FUNCTION *
Equations for Henon attractor. *

kkkkhkkhkkdkkdkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB function (x)

LET
LET
LET
LET
END SUB

xxX=1l-a*xX*x+y
yy=b*x

X=XX

Y=YY

!
1o
[
[
!

SUB make_points (x)

FOR

SUB MAKE_POINTS
Reads x & y values of strange attractor
equations into an array POINTS

i=1 to total_data_pts T# of data pts
CALL function (x)

LET points (i,1)=x

NEXT i

END SUB
!
1 %
1 *
%
!

SUB INITIALIZE_ARRAY
Sets all elements in the arrays
to zero.

SUB initialize_array

MAT
MAT
MAT
MAT
MAT
MAT
END SUB

S Gmn Pow s Gw Sm Gmm Smm Swm fum S G Gmm S

*
*
*
*
*
*
*
*
*
*
*
*
*

points=0
xdatal=0
xdata2=0
xdata3=0
xdata4=0
xdatas5=0

kkdkhkhkdkhkhkhkhkdkhkhkhkhhhkhkhkhhkhkkhkhkhkkhhkhkhkhkhkhkkhkhkkkkhkhkhkkik

SUB MAKE_xdatal *

Forms the array xdatal. Finds the *
distance between each point and its *
neighbor. The index of the array stands *
for the neighbor. Distances are stored *
in the first column. Number of times *
the distance to each neighbor is *
measured is stored in the second *
column. The mean distance to each *
neighbor, calculated by dividing *
column 1 by column 2, is placed in the *
third column. *
*

hhkdhkhkhkkhkhkkkhkhkkkhkhkkkhkkhkhhkhhkhkhkhkhkhkhhkhkkkhkkkkkk

SUB make_xdatal

LET
FOR

pointnum=0

m=1 to total_data_pts

LET startlx=points(m,k1)

FOR j=m+1 to total_data_pts
LET pointnum=pointnum+1l

*

2

khkkkhkhkhkkhkhkdkkhkhkhhkkhkhkkhhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhhkhhkhkkkkhkkk

*
*

khkkkkkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkkhkhkkkkhkkkkkhkhkhkhkkkkkkk

7

hkkkkkkhkkkkkkhkkhkkkkkkhkkkkkkkkkkkkhkkkkkkkkkdkkkkkkkkk

*
*
*

khkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkkhkkkkkhkkkkkkkhkkkkkkkkkkkk

LET difl=(startlx-points(j,1))*(startlix-

points(j,1))

LET difsg=sqr(difl)

28

LET xdatal(pointnum,l)=difsqg +
xdatal (pointnum, 1)
LET
xdatal (pointnum, 2)=xdatal (pointnum, 2)+1
NEXT 3
LET pointnum=0
NEXT m
FOR i=1 to total_data_pts-1
IF xdatal(i,2)<>0 then
LET xdatal(i,3)=xdatal(i,1l)/xdatal(i, 2)

!mean
END IF

NEXT i
END SUB
I khkkkkkkkhkkhkkhkkkhhkhkhkkhkkkkkhkkkkkkkkkkhkkkxk
I % SUB sort_xdatal *
1 % Sorts the array xdatal smallest *
P % to largest. *
|

kkkhdkdkhkdkhkdkhkhkhkkkdkhkhkkdkhkdkkhkhkkdkdhkdkkkkkkkk

SUB sort_xdatal
FOR first = 1 to total_data_pts-1
LET smallest=first
FOR current=first to total_data_pts-1
IF xdatal (current, 3)<xdatal (smallest, 3)
then
LET smallest =current
END IF
NEXT current
LET temp=xdatal (smallest, 3)
LET xdatal(smallest,3)=xdatal(first, 3)
LET xdatal(first,3)=temp
NEXT first
END SUB

kkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkhkkkkkhkhkkkkkhkkkkk

SUB PLOT_ XLINE1l
Plots the log of the distance
vs the log of the number of points
less than that distance. Also
calculates sums to be used in finding
the slope in the subroutine

FIND_ SIOPE.
hkkkhkhkhhhhkhhhhhhhhhhhhhhhhhhhkkkkkkhhhhhkkkkkk

¥ ¥ ¥ ¥ ¥ ¥ ¥

!
! *
! *
! *
! *
! *
! *
! *
1 *

SUB plot_xlinel
LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
LET old_yy=0

29

FOR i=1 to total_data pts-1
IF xdatal(i,3)<>0 then
LET xcoord=log(xdatal(i,3)*10000) I1n(r)
LET ycoord=log(i) ! In(n)
PLOT xcoord, ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx :
LET sumy=ycoord+old_y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy !sum of
x*y coord
LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old xx !sum of
x*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy {sum of
y*y coord
LET old_yy=sumyy
END IF
NEXT i
END SUB

khkkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkhkkhhkhkhkhkkhhkdhhkdhhdkdhkhkhkdkdkkkkkk

|
! % SUB XLINE1l *
I % Calls the routines to calculate and *
I o* plot the first line and return the *
I % slope. *
|

hhkkkhkkkkkhkhhkhkkkhhhkkkhhhhkhkhhhhkhkhkhkhkhkhkkkkkkkkkkk

SUB xlinel
CALL make_xdatal
CALL sort_xdatal
CALL plot xlinel
CALL find xslope
END SUB

hkkkhkkkkkkkkkkkkhhkhhkhkhkhkhkhkhkhkhkhkkkhkkkkkkkkkkkkkkkk

SUB MAKE_xdata2
Forms the array xdata2. Finds the
distance between pairs of points.
The index of the array stands
for the neighbor. Distances are stored
in the first column. Number of times
the distance to each neighbor is
measured is stored in the second
column. The mean distance to each
neighbor, calculated by dividing
column 1 by column 2, is placed in the

third column.
R LI T I

¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ N F *
¥ ¥ ¥ ¥ ¥ ¥ N ¥ ¥ ¥ F* *

30

SUB make_xdataz
LET pointnum=0
FOR m=1 to total_data_pts-4
LET startlx=points(m,1)
LET start2x=points(m+1,1)
FOR j=m+l1 to total_data_pts-2
LET pointnum=pointnum+1
LET difl=(startlx-points(j,1))*(startlx-
points(j,1))
LET dif2=(start2x-
points(j+1,1)) *(start2x-points(j+1,1))
LET difsg=sqr(difil+dif2)
LET xdata2 (pointnum,l)=difsq +
xdata2 (pointnum, 1)
LET
xdata2 (pointnum, 2)=xdata2 (pointnum, 2) +1
NEXT j
LET pointnum=0
NEXT m
FOR i=1 to total_data_pts-2
IF xdata2(i,2)<>0 then
LET xdata2(i,3)=xdata2(i,l)/xdata2(i,2)

! mean
!print #1:xdata2(i,1l),xdata2(i, 3)
END IF
NEXT i
END SUB
1 kkkkkkkhkhkkkkhhkkkhkkhkhkhkhkkkkkkkkkkkdkkkkkkk
! o* SUB sort_xdata2 *
! % Sorts the array xdata2 smallest *
1 % to largest. *
1

khkkkhkkkkhkhkhkhhkhkhhkhkkhkhkhkhkdkhkhkhkhkkhkkkikkkkkkkk

SUB sort_xdata2
FOR first = 1 to total_data_pts-2
LET smallest=first
FOR current=first to total_data_pts-2
JF xdata2(current,3)<xdata2(smallest, 3)
then
LET smallest =current
END IF
NEXT current
LET temp=xdata2(smallest,3)
LET xdata2(smallest,3)=xdata2(first, 3)
LET xdata2(first,3)=temp
NEXT first
END SUB

31

dhkhkhkhkhkkkkkkkkkkkkkhkhkkkkkkkkkhkhkhkhkhkhkkkkkkkkkkkkxk
SUB PLOT XLINE2

Plots the log of the distance

vs the log of the number of points

less than that distance. Also

calculates sums to be used in finding

the slope in the subroutine

FIND_SLOPE.
kkkkkkhkkkkkkkhkkkkhkkkkkhkkkhkkkkkkhkkkkkhkkkkkkkkkk

* ¥ ¥ % ¥ X *
* ¥ ¥ N ¥ ¥ ¥

SUB plot_xline2
LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
LET old_yy=0
FOR i=1 to total_data_pts-2
IF xdata2(i,3)<>0 then
LET xcoord=log(xdata2(i,3)*10000) !
In(r)
LET ycoord=log(i) ! 1n(n)
PLOT xcoord,ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old_y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy !sum of
x*y coord
LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old_xx !sum of
x*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy fsum of
y*y coord
LET old_yy=sumyy

END IF
NEXT i

END SUB

| dkkkkhkhkhhhkhkhhkhhhhkhdhhhhhhhhhhhkhhhkhhkhhhhkhhdkhkhhkx
! % SUB XLINE2 *
! % Calls the routines to calculate and *
! % plot the second line and return the *
1 % slope. *
1

% e Je % Kk g K Kk g g ke ok ok gk ok Kk gk ok Kk ke Kk ke ke kK de koK gk ok ke ke ke ok kek kkk ok ok

SUB xline2
CALL make_xdata2
CALL sort_xdata2
CALL plot_xline2
CALL find_xslope
END SUB

32

dhkkdkhkhkkkhkhkkkkhkhkkkhkhkkhkhkkkhkhkhkkkhkkkkkkkkkkkkkkkkkk
* SUB MAKE_xdata3

* Forms the array xdata3. Finds the

* distance between three points.

* The index of the array stands

* for the neighbor. Distances are stored
* in the first column. Number of times

* the distance to each neighbor is

* measured is stored in the second

* column. The mean distance to each

* neighbor, calculated by dividing

* column 1 by column 2, is placed in the
*

*

third column.
AhEXEEAhkrkAhkhkkhhkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkkkkikkkkkkkk

% % % % N ¥ X X FH X * ¥ %

SUB make_xdata3
LET pointnum=0
FOR m=1 to total_data_pts-6
LET startlx=points(m,1)
LET start2x=points(m+1,1)
LET start3x=points(m+2,1)
FOR j=m+1 to total_data_pts-3
LET pointnum=pointnum+1l
LET difl=(startlx-points(j,1))*(startlx-
points(j,1))
LET dif2=(start2x - points(j+1,1)) *
(start2x - points(j+1,1))
LET dif3=(start3x-points(j+2,1)) *
(start3x - points(j+2,1))
LET difsg=sqr(difl+dif2+dif3)
LET xdata3 (pointnum,l)=difsq +
xdata3 (pointnum, 1)
LET
xdata3 (pointnum, 2)=xdata3 (pointnum, 2)+1
NEXT 7
LET pointnum=0
NEXT m
FOR i=1 to total_data_pts-3
IF xdata3(i,2)<>0 then
LET xdata3(i,3)=xdata3(i,l)/xdata3(i,2)

!mean
!print #l:xdata3(i,1),xdata3 (i, 3)
END IF
NEXT i
END SUB
[J % % de K % K % Fe K Je Kk de ok de k de ok d ok Kk Kk ok Kk ok k ok k ok kkkkkkkkkk
! o* SUB sort_ xdata3 *
I % Sorts the array xdata3 smallest *
! % to largest. *
|

o % % % K K K K K J F K d Kk Kk Kk k Kk Kk Kk Kk Kk Kk Kk Kk Kk kK kK kK k ok ok ok kokkk

33

SUB sort_xdata3
FOR first = 1 to total_data_pts-3
LET smallest=first
FOR current=first to total_data_pts-3
IF xdata3 (current, 3)<xdata3(smallest,3)
then .
LET smallest =current
END IF
NEXT current
LET temp=xdata3(smallest, 3)
LET xdata3(smallest,3)=xdata3(first, 3)
LET xdata3(first,3)=temp
NEXT first
END SUB

hddkkhkkkhkhkhkdkhkhkhkhkhkhkhkkkhkhkkdhkhkkhkhkhkkkdkkdhdkkdhdkkihkkihik

SUB PLOT_xline3 *

Plots the log of the distance *
vs the log of the number of points *
less than that distance. Also *
calculates sums to be used in finding *
the slope in the subroutine *
*

*

FIND SLOPE.
kkkkkkkkhkhkkkkhkkkkdhkkhkhkhkkhkhkkkhkhkkkkkhhkkkkhkhkkkk

S G bom Sm G Gm fe G S

*
*
*
*
*
*
*
*

SUB plot_xline3
LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
LET old_yy=0
FOR i=1 to total_data_pts-3
IF xdata3(i,3)<>0 then
LET xcoord=log(xdata3(i,3)*10000) !
In(r)
LET ycoord=log(i) ! 1n(n)
PLOT xcoord, ycoord
LET sumx=xcoord+old x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_ xy !sum of
x*y coord
LET old_xy=sumxy
LET sunmxx=xcoord*xcoord+old_xx !sum of
x*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy fsum of
y*y coord
LET old_yy=sumyy
END IF

34

NEXT i

END SUB

1 dedede dede ke ke ke ok e de ke ok ok ok ke ke e ok ke e e ok e de e ke e ok ke ke ke ke ok e ke de ke ko de ok kok ok
I % SUB xline3 *
! % Calls the routines to calculate and *
I % plot the second line and return the *
o slope. *
|

% & % ke A ek ke ke g g de ke ok ke ke ke ok ok ke ke ok K gk Kk kg ke ok ke ke ok ok ke ok ok ok ok de Kok ok k

SUB xline3
CALL make_xdata3
CALL sort_xdata3
CALL plot_xline3
CALL find_xslope
END SUB

%k & de e ok de ke ok de ke ke ok g de ok ok ke de kK ke de ok ok ok kK ke ke ke ok ok ke ok ok ok ok ok ok ke kk ok ok kkk

* SUB MAKE_xdata4 *
* Forms the array xdata4. Finds the *
* distance between four points. *
* The index of the array stands *
* for the neighbor. Distances are stored *
* in the first column. Number of times *
* the distance to each neighbor is *
* measured is stored in the second *
* column. The mean distance to each *
* neighbor, calculated by dividing *
* column 1 by column 2, is placed in the *
* *
* *

third colunmn.
kkkhkhkhkkkhkhkhkhkkkkhkkkhkkkkhkkkhkhkhkkkhkhkkhktkkkkkkkkkik

Sam gum um fom Gem Gem fem fem g fem Gem fun S P

SUB make_xdata4
LET pointnum=0
FOR m=1 to total_data_pts~8
LET startlx=points(m,1)
LET start2x=points(m+1,1)
LET start3x=points(m+2,1)
LET start4x=points(m+3,1)
FOR j=m+1l to total_data_pts-4
LET pointnum=pointnum+1l
LET difl=(startlx-points(j,1))*(startlx-
points(j,1))
LET dif2=(start2x-
points(j+1,1))*(start2x-points(j+1,1))
LET dif3=(start3x-
points(j+2,1))*(start3x-points(j+2,1))
LET dif4=(start4x-
points(j+3,1)) *(start4x-points(j+3,1))
LET difsg=sqr(difl+dif2+dif3+dif4)
LET xdata4 (pointnum,1l)=difsq +
xdata4 (pointnum, 1)

35

LET
xdata4 (pointnum, 2)=xdata4 (pointnum, 2)+1
NEXT 3
LET pointnum=0
NEXT m
FOR i=1 to total_data_pts-4
IF xdata4(i,2)<>0 then
LET xdata4(i,3)=xdata4 (i, 1)/xdata4(1 2)

% de de K K K Je ke K K g Kk K de K ke ke de ke kK K kK Kk gk K K de ke ok Kk ok ok de ke ok ok ok

{mean
!print #1:xdata4(i,1),xdata4(i,3)
END IF
NEXT i
END SUB
| dkkkhkhkhkhhkdkhkhkhkhhkhkhkkhkhkkhhkhkhkhkhkkxhkhhkkkkkkkk
!o* SUB sort_xdata4 *
Pox Sorts the array xdata4 smallest *
I ox to largest. *
1

SUB sort_xdata4
FOR first = 1 to total_data_pts-4
LET smallest=first
FOR current=first to total_data_pts-4
IF xdata4 (current,3)<xdata4 (smallest,3)
then
LET smallest =current
END IF
NEXT current
LET temp=xdata4 (smallest,3)
LET xdata4 (smallest,3)=xdata4 (first, 3)
LET xdata4 (first,3)=temp
NEXT first
END SUB

kkkkkkkkkkkkkkhkhkhkhkhkhkhkkkkkkhkhkhkkhkhkhkhhkhkkkkkkhkkkkxk

* SUB PLOT_xline4

* Plots the log of the distance

* vs the log of the number of points

* less than that distance. Also

* calculates sums to be used in finding
*

*

*

¥ ¥ * % ¥ ¥ *

the slope in the subroutine

FIND_SLOPE.
% % % %k Kk % % % g Kk % %k ok ok k k k% ok k Kk k kg ok ok Kk ke k ok ok ok ok k ok okok kkkkkkk

Gm mm fom Jeam S Gem G S G

SUB plot_xline4
LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
LET old_yy=0
FOR i=1 to total_data_pts-4

36

IF xdata4(i,3)<>0 then

LET xcoord=log(xdata4(i,3)*10000) !
In(r)

LET ycoord=log (i) ! 1n(n)

PLOT xcoord,ycoord

LET sumx=xcoord+old_x !sum of x coord

LET old_x=sumx ,

LET sumy=ycoord+old_y !sum of y coord

LET old_y=sumy

LET sumxy=xcoord*ycoord+old_xy !sum of
x*y coord

LET old_xy=sumxy

LET sumxx=xcoord#*xcoord+old_xx !sum of
x*x coord

LET old_xx=sumxx

LET sumyy=ycoord*ycoord+old_yy !sum of
y*y coord

LET old_yy=sumyy

END IF
NEXT i

END SUB

I kkkkdkkhkhhkhkhhhhhhkdhhhhkhhhhhkhhhhhhhhdhdkhhhhdhhdhk
I o* SUB xline4 *
1 o* Calls the routines to calculate and *
!o* plot the second line and return the *
! % slope. *
1

hkkkkhkhkhkhkkkkhkdkkkhkhkhkhhkhkkkhkkkkhkkhkkkkkhkkkhkkkkkk

SUB xline4
CALL make_xdata4
CALL sort_xdata4
CALL plot_xline4
CALL find_xslope
END SUB

hkkkkkhkdhkhkhkhkhkkhkhkhhkkdhkhkkhkhkhkkhkhkdhhkhkhkhkhkkhkhkhkhkkkkkkkkkkk

SUB MAKE_xdata5
Forms the array xdata5. Finds the
distance between five points.
The index of the array stands
for the neighbor. Distances are stored
in the first column. Number of times
the distance to each neighbor is
measured is stored in the second
column. The mean distance to each
neighbor, calculated by dividing
column 1 by column 2, is placed in the

third column.
hkkhkhhkkhkhhhhrhkkkkkkhhhhrrhkkkkkkhkrrhkhkkkhrrhk

fum gum fon fum fam fem fow §om Gow fow Sow Juw fum $um
¥ ¥ ¥ * F ¥ ¥ N ¥ ¥ ¥ ¥
% % N N ¥ N N X ¥ ¥ ¥ *

SUB make_xdata5

37

LET pointnum=0
FOR m=1 to total_data_pts-10
LET startix=points(m,1)
LET start2x=points(m+1,1)
LET start3x=points(m+2,1)
LET start4x=points(m+3,1)
LET start5x=points(m+4,1)
FOR j=m+1 to total_data_ pts-~5
LET pointnum=pointnum+1
LET difl=(startlx-points(j,1))*(startlx-
points(j, 1))
LET dif2=(start2x-
points(j+1,1)) *(start2x-points(j+1,1))
LET dif3=(start3x-
points(j+2,1)) *(start3x-points(j+2,1))
LET dif4=(start4x-
points(j+3,1)) *(start4x-points(j+3,1))
LET dif5=(startb5x-
points(j+4,1)) *(starts5x~-points (j+4,1))
LET difsg=sqr(difl+dif2+dif3+dif4+dif5)
LET xdata5(pointnum,l)=difsq +
xdatab (pointnunm, 1)
LET
xdata5 (pointnum, 2)=xdata5 (pointnum, 2)+1
NEXT j
LET pointnum=0
NEXT m
FOR i=1 to total_data_pts-5
IF xdata5(i,2)<>0 then
LET xdata5(i,3)=xdata5(i,1)/xdata5(i,2)

!mean
!print #l:xdata5(i,1),xdata5(i,3)
END IF
NEXT i
END SUB
I kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk
! o* SUB sort_xdatab *
! ox Sorts the array xdata5 smallest *
Po* to largest. *
|

kkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB sort_xdatab
FOR first = 1 to total_data_pts-5
LET smallest=first
FOR current=first to total_data_pts-5
IF xdata5(current, 3)<xdata5(smallest, 3)
then
LET smallest =current
END IF
NEXT current
LET temp=xdata5(smallest, 3)

LET xdata5(smallest,3)=xdata5(first, 3)
LET xdata5(first,3)=temp

NEXT first

END SUB

* N ¥ X ¥ X ¥

khkkkkkkkkhkhkkkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB PLOT_xline5
Plots the log of the distance
vs the log of the number of points
less than that distance. Also
calculates sums to be used in finding
the slope in the subroutine
FIND SILOPE.

* ¥ ¥ ¥ X X ¥

khkkkkkkkkkkkkkkkhkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkxx

SUB plot_xline5

LET
LET
LET
LET
LET
FOR

In(r)

old_x=0
old_y=0
old_xy=0
old_xx=0
old_yy=0
i=1 to total_data_pts-5
IF xdata5(i,3)<>0 then
LET xcoord=log(xdata5(i,3)*10000)

LET ycoord=log (i) ! 1n(n)

PLOT xcoord,ycoord

LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx

LET sumy=ycoord+old y !sum of y coord
LET old_y=sumy

LET sumxy=xcoord*ycoord+old_xy !sum

X*y coord

LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old_xx !sum

X*x coord

LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy !sum

y*y coord

LET old_yy=sumyy
END IF

NEXT i

END SUB

!
1%
1 %
1%
1%
!

khkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB xline5 *
Calls the routines to calculate and *
plot the second line and return the *
slope. *

khkkkkkkkkkhkkkkkkkhkkkkhkhkkkhkhkkkkhkkkhkhkkhkkkkkkkkkk

SUB xlineS5

38

of

of

of

CALL make_xdata5
CALL sort_xdatab
CALL plot_xline5
CALL find_xslope

END SUB

| kkdkkhkhkkkkhkhkkhhhkhkhhkhkhkhkhkkhkhhhkhkkhkkhkhkhkhkhkkkhkhkhkkk
! % SUB FIND_XSLOPE *
I % Calculates the slope of a line using *
1% linear regression. *
1

khkkhkhkhkkkhkhkhkhkhkhkhhkhkhkkhkhkhkhkkhkdhhddkhhkhkhhhkdkdkhkdkdkkikdkkik

SUB find_xslope
LET pts=total_data_pts-1
LET sxy=sumxy-((sumx#*sumy)/((2*pts)-1))
LET sxx=sumxx-((sumx*sumx)/((2*pts)-1))
LET syy=sumyy-((sumy*sumy)/((2*pts)-1))
LET slope=sxy/sxX
LET r=sxy/(sqr(sxx*syy))
PRINT slope

END SUB

! dkhkhkkhkhkkhkhkkkhkkkhkhkkkhkhkhkhkkkhkkkhkkkhkhkkhkkkkkkkkkkkkk
1 * MAIN PROGRAM *
Po* Calls subroutines to create each line. *
|

J % J g e K %k e K g ok de de de de de e de de e e de de e K e de ke K de ke e e de g ke e e ke ke ke ke ok ke ke ok

SET COLOR "white"
CALL axis

CALL ticks(1,1)
CALL initialize_array
CALL make_points(x)
CALL xlinel

SET COLOR "yellow"
CALL xline2

SET COLOR "blue"
CALL xline3

SET COLOR "red"
CALL xline4

SET COLOR "green"
CALL xline5

SOUND 300, .5

END

39

APPENDIX C

COMPUTER PROGRAM "DIM2"

khkkhkkhkhkhhkhhkhkhkhkhhhkhkdbhkhhbhkbhkhhhkhbhkhkhkhhkhhhhhkhhkhhkhhkkk

* DIM2 *
* Finds the dimension of the Henon attractor *
* using the correlation method. *
* Slope of lines plotted approaches the *
* dimension of the attractor. *
khkkhkkhkhkkhkhkhkkkkkkkkhkhkhkhkkkhkkkkkkhkhkhkkkrkhhkkhkhkhkhkhkkkkk

hkhkkhkkkkhkkkkhkhkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkhkhkkhkkkhkkkkkk
* Initialize variables and constants. Declare *

* arrays. *
khkkkkkkhkhkkhhkhkkkkhhdhhhkhkhkhhkkhhhkhkkkhhhhhkkkkrkkkhhkk

OPEN #1: printer
SET MODE "egahires"
SET WINDOW 0,5,0,10
DIM xdatal(4950,1)
DIM points(101,1)
DIM xcorl(100,2)
DIM xcor2(100,2)
DIM xdataz2(4900,1)
DIM xdata3(4850,1)
DIM xcor3(100,2)
DIM xcor4(100,2)
DIM xdata4 (4800,1)
DIM xdata5(4750,1)
DIM xcor5(100,2)

LET y=.4

LET %X=.4 !initial value
LET a=1l.4 !constant

LET b=.3 !constant

LET total_data_ pts=100 !4 of data pts

1 hkkkhhkkhkhhkhhhkhhkhkhkhhhkhhkhkhkhhkkhhhkhkkhkhkkhhhhkkhkrkkkkk
I o* SUB AXIS *
! o* Draws x and y axis. *
1

kkkkkkkkkkhkhhkhkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkkkkkkkkkk

41

SUB axis
ASK WINDOW x1,x2,yl,y2
PLOT x1,0:x%2,0
PLOT 0,yl;0,y2

END SUB

! dkhkkkkhkhkhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhkk
Lo* SUB TICKS *
!
!

* Draws ticks on x and y axis. *
kkkkkkhkkhkkkkkkhkkkkhkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkk

SUB ticks(x,Yy) ! axis with ticks
x and y units apart

ASK SCREEN ul,u2,vl,v2

ASK WINDOW x1,x2,y1l,y2

PLOT x1,0;x2,0

PLOT 0,y1:0,y2

LET xu=640

LET pl=abs(v2-v1l)*200 !pixels vertical
LET p2=abs(u2-ul) *xu !pixels horizontal
LET r=min(pl/50,p2/50) !small fraction
LET dl=r/pl*abs(y2-yl) !for x

LET d2=r/p2*abs(x2-x1) !for y

CALL mark(xl,x,1,dl)

CALL mark(x2,x,1,dl)

CALL mark(yl,y,2,d2)

CALL mark(y2,y,2,d2)
END SUB

1 kkkhkkhhkhhkkkkhhkkhhhkhkhhkhkhhkhkhkhhkhkhkkhkhkhhkhkhkhkhkhkkhkhkkhkkkkk
! % SUB MARK *
! o* Used by SUB TICKS to draw a single tick. *
| kkkkkhkkhhkkhkhhhhhkkhhhhhhhhkhhrhhkkkkkhhkkhhkkhkkk

SUB mark(u2,us,c,d) !does 1 tick
IF u2=0 then EXIT SUB
FOR u=0 to u2 step sgn(u2) *us
IF c=1 then
PLOT u,-d:u,d

ELSE
PLOT -d,u;d,u
END IF
NEXT u

END SUB
I kkkkhhkhhkhkhhhhkhkhkkhhkhhhkhkrkrhrhkrhrhkhhkhkkkrkk
1 % SUB FUNCTION *
I o* Equations for Henon attractor. *
b ke o e ok ok ok ok ok ke ke ok ke e e ke ke e ok ok ok ok gk ok ke ok ok ke ok ok e ke ke e ke e ke e e ke e e ke e e ke e e ke

SUB function (x)
LET xx=l-a*x*x+y

42

LET yy=b*x

LET x=xX

LET y=yy
END SUB
| kkkkkkkkkkkkhkhkhkhkkkkkkkkhkkkkhkkhkkhkhkhkhkhkkkhkhkkhkkkkkkkk
! o SUB MAKE_POINTS ‘ *
! % Reads x values of strange attractor *
! % equations into an array POINTS *
1

khkkkhkkkhkhkhkhhkhkhkkkhkhkkkhkhkhkhhhkhkhkhkhkhkhhkhhkkhkhkkhkhkkhkkkkkk

SUB make_points (x)
FOR i=1 to total_data_pts !# of data pts
CALL function (x)
LET points (i,1l)=x

NEXT i
END SUB
| kkkkkkkhkkhkkhkkhkkhkhkhkhkhkhkhhkkhkkkhkkhkkhkhkhkhkhkhkhhkkkhkkhkkkkkk
! % SUB INITIALIZE_ARRAY *
!o* Sets all elements in the arrays *
! o* to zero. *
1

khkkhkdkkhkhkhkhkhkhkkkhkhkhkkhkhkkhhkhkkkhkhkhdkkkdhkhdkkdhdkkhkikkkik

SUB initialize_array
MAT xdatal=0
MAT points=0
MAT xcorl=0
MAT xdataz2=0
MAT xcor2=0
MAT xdata3=0
MAT xcor3=0
MAT xdata4=0
MAT xcor4=0
MAT xdata5=0
MAT Xxcor5=0

END SUB

I kkkkkkhkkhkhhkhkhhkhkhkhkhhhhkhhhkhhkhhhkhhkhhkhhkhkhhkhhhkhkhkhd
ok SUB MAKE_ xdatal *
! % Forms the array xdatal. Finds the *
I % difference between each point and its *
1 % neighbor. *
]

khkkkhkhkhkhkhkhkhkhkkkhkkhkkkkhkkkkhkkhkhkhkkkkkkhkhkkhkkhkkkkkk

SUB make_xdatal
LET pointnum=0
FOR m=1 to total_data_pts
LET startx=points(m,1)
FOR j=m+1 to total_data_pts-1
LET pointnum=pointnum+1l
LET difl=(startx-points(j,1))*(startx-

43

points(j,1))

LET difsqg=sqr(difl)
LET xdatal(pointnum,1)=difsqg +

xdatal (pointnum, 1)

NEXT 3
NEXT m

END SUB

I hkkhkhkkhhkhhkhkhkhhkhkhkhkhhhkhkhkhkhhhkhhhkhkhkhkhkrkhkhkhhkhhkhhkk
!o* SUB make_xcorl *
! % Finds the number of distances less *
I o* than r and puts them in the array *
I * xcorl. *
1

khkkkhkkhkkhkkkkkhkkkkkhkkkkkhkkkkhkkkhkkkkkkkkkkkkkkkk

SUB make_xcorl

LET count=0
FOR r=1 to 20 step .2
LET count = count+1l
LET xcorl(count,l)=r
LET sumdist=0
FOR i=1 to 4950
IF (xdatal(i,1)*10) < r then
LET sumdist=sumdist + 1
END IF
NEXT i
LET xcorl(count,2)=sumdist/((4950%4949)/2)
NEXT r

END SUB

khkkkkkkkhkkkhkhkhkkhkhkkkkhkhkkkhkhkkkhkkkhkhkhkkkkhhkkkkkkkk
SUB plot_linel

Plots the log of the distance r

vs the log of the number of distances

less than r. Also calculates

sums to be used in finding

the slope in the subroutine

find_slope.

khkkhkhkhkkkhkkkkhkhkhkkhkkkkhkhkkhkhkhkkkhkkkhhkkkkhkhkhkkkkkkkk

* % * * ¥ * *
* % * ¥ FH % %

SUB plot_linel

LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
FOR i=1 to total_data_pts
IF xcorl(i,2)<>0 then
LET xcoord=log(xcorl(i,l)) !r
LET ycoord=log(xcorl(i,2)*le7) !C(N,r)
PLOT xcoord,ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx

xX*y coord

LET
LET
LET

LET
LET

X*x coord

LET
LET

y*y coord

LET
END IF
NEXT i

END SUB

sumy=ycoord+old_y !sum of y coord

old_y=sumy
sumxy=xcoord*ycoord+old_xy

old_xy=sumxy
sumxx=xcoord*xcoord+old_xx

old_xx=sumxx
sumyy=ycoord#*ycoord+old_yy

old_yy=sumyy

44

Isum of

!sum of

!sum of

kkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

*

SUB find_slope

* Calculates the slope of a line using

* linear regression.
hkhkkkhkkkkhkhkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkikk

SUB find_slope
LET pts=total_data_pts

LET sxy=sumxy-((sumx*sumy)/((2*pts)-1))
LET sxxX=sumxX-((sumx*sumx)/((2*pts)-1))
LET syy=sumyy-((sumy*sumy)/ ((2*pts)-1))

LET slope=sxy/sxX
LET r=sxy/(sqr(abs(sxx*syy)))

PRINT slope

END SUB

kkkkkkkkhkkhkkhkkkkkkkkhkkkkhkkkkhkkhkkkkkkkkkkkkkkkk

*

* Calls the routines to calculate and
* plot the first line and return the

* slope.

SUB LINE1l

*
*
*
*

kkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB linel
CALL make_xdatal
CALL make_xcorl

CALL plot_1

inel

CALL find_slope
END SUB

*
*
*

khkkkkhkkkkkkkkkkkhkhkkhkhkkkkhkhkkkhkhkkkkkkhkkkkikkkdkkkkk

*

SUB make_xdata2

* Forms the array xdata2. Finds the

* difference between pairs of points.

*
*
*

khkkkkhkhkkkhkhkkhkhkkkkkkkkhkhkkkhkkkhkhkkkhkhkkhkkkkkkkkkkkk

SUB make_xdata2

LET pointnum=0
FOR m=1 to total_data_pts-2
LET startx=points(m, 1)
LET start2x=points(m+1,1)
FOR j=m+1 to total_data_pts-2
LET pointnum=pointnum+1

45

LET difl=(startx-points(j,1l)) *(startx-

points(j,1))

LET dif2=(start2x-
points(j+1,1)) *(start2x-points(j+1,1))

LET difsg=sqr(difl+dif2)

LET xdata2(pointnum,1l)=difsq +
xdata2 (pointnum, 1)

NEXT j
NEXT m
END SUB
I dkkkkkkhhhhhhhhkhkhkkhhkkhhkhkhkhkhhkkhkkhkhkkhkhhhkkdkkkkk
Po* SUB make_xcor?2 *
Pox Finds the number of distances less *
! % than r and puts them in the array *
[Xcor2. *
I o kkkkkkhkhhkhkkhhkkhkkhhkhkhkkhkhkkhhkkhkkhhhkkkhkkhkhkdkkikikk

SUB make_xcor2
LET count=0
FOR r=1 to 20 step .2
LET count = count+1l
LET xcor2(count,l)=r
LET sumdist=0
FOR i=1 to 4900
IF (xdata2(i,1l)*10)<r then
LET sumdist=sumdist + 1

END IF
NEXT i
LET
xcor2(count,2)=(1/((4900%4899)/2)) *sumdist
NEXT r
END SUB

)k K d Kk ok k kg ok ok k Kk gk ok k gk ok kkkkdkkkkkkkkkkkkkkkkkkkkkk
* SUB plot_line2 *
* Plots the log of the distance r *
* vs the log of the number of distances *
* less than r. Also calculates *
* sums to be used in finding *
* the slope in the subroutine *
* find slope. *
khkkkkkkkkkkkhkhkkkkhkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkk

SUB plot_line2
LET old_x=0

LET old_y=0

LET old_xy=0

LET old_xx=0

FOR i=1 to total_data_pts
IF xcor2(i,2)<>0 then

LET xcoord=log(xcor2(i,1)) !r

LET ycoord=log(xcor2(i,2)*le7)

PLOT xcoord,ycoord
LET sumx=xcoord+old_x
LET old_x=sumx

LET sumy=ycoord+old_y
LET old_y=sumy

!sum of x coord

!sum of y coord

LET sumxy=xcoord*ycoord+old_xy !sum

x*y coord
LET old_xy=sumxy

LET sumxx=xcoord*xcoord+old_xx !'sum

x*x coord
LET old_xx=sumxx

LET sumyy=ycoord*ycoord+old_yy !Isum

y*y coord
LET old_yy=sumyy

END IF
NEXT i

END SUB

I T T T I T T R T R T R I T TR XY R I EE EE E Y
1o* SUB LINE2 *
Iox Calls the routines to calculate and *
! o* plot the second line and return the *
! % slope. *
|

kkkkkhkkkhkkkkkhkkkhkdkhkkhkhhkkkhkhkkkhkhkhkhkhhkhkhkkkhkkkhkkk

SUB line2
CALL make_xdata2
CALL make_xcor2
CALL plot_line2
CALL find_slope

END SUB

| kkkkkkhkkkhkhkhkhkkhkkhhkhkhkkkhkhkhkkhhkbhkkkkkkhkkkkkkkk
!o* SUB make_xdata3 *
' % Forms the array xdata3. Finds the *
Pox difference between each three points. *
!o* neighbor. *
|

Ahkkkkkkkkkkkkhkkhkhkhkkhkkhkkkkhkkhkkhkkkkhkkkkkkkkkkkkkk

SUB make_xdata3
LET pointnum=0
FOR m=1 to total_data_pts-3
LET startx=points(m,1)
LET start2x=points(m+l,1)
LET start3x=points(m+2,1)

46

!C(N,r)

of

of

of

47

FOR j=m+1 to total_data_pts-3

LET pointnum=pointnum+1l

LET difl=(startx-points(j,1))*(startx-
points(j,1))

LET dif2=(start2x-
points(j+1,1)) *(start2x-points(j+1,1))

LET dif3=(start3x-
points(j+2,1)) *(start3x-points(j+2,1))

LET difsg=sqr(difl+dif2+dif3)

LET xdata3 (pointnum,1l)=difsq +
xdata3 (pointnum, 1)

NEXT j
NEXT m

END SUB

! khkhkhkkkkkkkkkkkkkkkkkhkkkkkkkkkhkhkhkhkhkhkhkhkhkkkkkkkkk
! * SUB make_xcor3 *
1 % Finds the number of distances less *
!o* than r and puts them in the array *
LI xXcor3. *
1

khkkkhkkkkhkhkkkkhkkhkkhkhkhkhkhkkkkhkkkkhkkhkkhkkkkhkkkhkkkhkkk

SUB make_xcors3
LET count=0
FOR r=1 to 20 step .2
LET count = count+l
LET xcor3(count,l)=r
LET sumdist=0
FOR i=1 to 4850
IF (xdata3(i,1)*10)<r then
LET sumdist=sumdist + 1

END IF
NEXT i
LET
xcor3 (count,2)=(1/((4850%4849)/2)) *sumdist
NEXT r

END SUB

% % % Kk %k Kk Kk % Kk Kk Kk k Kk Kk ok k kK kk Kk dkkkdkkkkdkkkkdkkkkkdkkkkkkkkk

SUB plot_line3 *
Plots the log of the distance r *
vs the log of the number of distances *
less than r. Also calculates *
sums to be used in finding *
the slope in the subroutine *
find_slope. *
% % % % % Kk Kk %k %k Kk k% Kk Kk k% kkk Kk kkkkkkkkkkkkkkkkkkkkkkkkk

* % ¥ ¥ * * ¥

SUB plot_line3
LET old_x=0
LET old_y=0
LET old_xy=0

LET old_xx=0
FOR i=1 to total_data_pts
IF xcor3(i,2)<>0 then

48

LET xcoord=log(xcor3(i,1l)) !r
LET ycoord=log(xcor3(i,2)*le7) !C(N,r)
PLOT xcoord,ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old_y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy !sum of
X*y coord
LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old_xx !sum of
x*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_ yy !sum of
y*y coord
LET old_yy=sumyy
END IF
NEXT i
END SUB
I kkkkkhkhkhhkhkhkhkhhkhkhkhkhhkhhkhhkhkhkhkhhkhkhkrkhkhkkhkhkhkhkhkhkhkhkkhkkk
! % SUB line3 *
! o* Calls the routines to calculate and *
I o* plot the third line and return the *
1 o* slope. *
I dkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhhkhkhhhkhkhkhkkhkkhkkkkkk

SUB line3

CALL make_xdata3
CALL make_xcor3
CALL plot_1line3
CALL find_slope

END SUB

kkkkkkkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkkhkkkkkkkkkx

!

Po* SUB make_xdata4

! % Forms the array xdata4. Finds the
1 % difference between four points.

1

*
*
*

kkkkkhkkkkkkhkhkhkkkkhkkkkkkkhkhkhkkkhkkkhkkkkhkkkkkkkkkkk

SUB make_xdata4

LET pointnum=0

FOR m=1
LET
LET
LET
LET
FOR

to

total_data_ pts-4

startx=points(m, 1)
start2x=points(m+1,1)
start3x=points(m+2,1)
start4x=points(m+3,1)
j=m+1l to total_data_pts-4
LET pointnum=pointnum+1l

49

LET difil=(startx-points(j,1))*(startx-
points(j,1))

LET dif2=(start2x-
points(j+1,1)) *(start2x-points(j+1,1))

LET dif3=(start3x-
points(j+2,1)) *(start3x-points(j+2,1))

LET dif4=(startdix-
points(j+3,1)) *(start4x-points(j+3,1))

LET difsg=sqr(difil+dif2+dif3+dif4)

LET xdata4 (pointnum,l)=difsqg +
xdata4 (pointnum, 1)

NEXT j
NEXT m
END SUB
| hkkhkhkhhhhhkhkhhhhhhhhhhkhhhhhhhhhhkhkhhhhhhkrhhhkhhk
P o* SUB make_xcor4 *
I % Finds the number of distances less *
! % than r and puts them in the array *
I % xXcor4. *
! khkkhkkhkhkkhkhkkkhkhkkhkhkhkkhkhkhkhkhkhkhkkkhkhkkhkhkkhkhkkhkhkhkhkkkikkk

SUB make_xcor4
LET count=0
FOR r=1 to 20 step .2
LET count = count+l
LET xXcor4(count,l)=r
LET sumdist=0
FOR i=1 to 4800
IF (xdata4(i,1l)*10)<r then
LET sumdist=sumdist + 1

END IF
NEXT i
LET
xcor4 (count,2)=(1/((4800%4799)/2)) *sumdist
NEXT r

END SUB

khkkhkhkhkkkhkhkkkhkhkkkhkhkkkhkhkhhkhkhkkhkhkkkhkhkhkkkkhkkkkkkkkk
* SUB plot_line4 *
* Plots the log of the distance r *
* vs the log of the number of distances *
* less than r. Also calculates *
* sums to be used in finding *
* the slope in the subroutine *
* find_slope. *
khkkhkhhhhhhkhhkhhkhkkhkkhkhrhkhkkhhkrhkkhkkhhkk

SUB plot_line4
LET old_x=0
LET old_y=0
LET old_xy=0

LET old_xx=0
FOR i=1 to total_data_pts
IF xcor4(i,2)<>0 then

50

LET xcoord=log(xcord4(i,1l)) !r
LET ycoord=log(xcor4(i,2)*1le7) !C(N,r)
PLOT xcoord,ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old_y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy lsum of
x*y coord
LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old_xx !sum of
xX*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy !sum of
y*y coord
LET old_yy=sumyy
END IF
NEXT i
END SUB
I dhkkkkkhkkhkhhhkhkhhhkhkhkdhhhkhkhkkkhkhkhkkhkkhkhhdkidkkkkkkkk
I o* SUB line4 *
! % Calls the routines to calculate and *
'ox plot the fourth line and return the *
I * slope. *
|

kkkkkkhkkhkkkkkkkkkhkkhkkhkkhkkhkkkkkkkkhkkkkkkkkkkkkk

SUB line4

CALL make_xdata4
CALL make_xcor4
CALL plot_line4
CALL find_slope

khkkkkhkhkkkhkhkkhkkkhhkkkhkhkkkhkhkkkhkhkkkhkkkhkkkhkhkkkkikk

END SUB

| o kkkkkhkhkkhhhhhhhhkhhhkhkhhhkhhhkhhhhhhhhkkhkhhhd
! o* SUB make_xdata5s *
I % Forms the array xdata5. Finds the *
1 * diference between each point and its *
1 % neighbor. *
|

SUB make_xdatas

LET pointnum=0

to total_data_pts-5
startx=points(m,1)
start2x=points(m+1,1)
start3x=points(m+2,1)
start4x=points(m+3,1)
start5x=points(m+4,1)

FOR m=1
LET
LET
LET
LET
LET

FOR j=m+1l to total data_pts-5
LET pointnum=pointnum+1

51

LET difl=(startx-points(j,1l))*(startx-

points(j,1))

LET dif2=(start2x-

points(j+1,1)) *(start2x-points(j+1,1))

LET dif3=(start3x-

points(j+2,1)) *(start3x-points(j+2,1))

LET dif4=(startdx-

points(j+3,1)) *(start4x-points(j+3,1))

LET difS5=(start5x-

points(j+4,1)) *(start5x-points(j+4,1))
LET difsg=sqr(difl+dif2+dif3+dif4+dif5)

LET xdata5(pointnum,1l)=difsq +

xdata5 (pointnum, 1)

NEXT j
NEXT m

END SUB

! khkhkkkkkkkkkkkkkkkkkhkkkkkhhkhkhkkkkkkdkkkkkkkkkkkk
! % SUB make_xcor5 *
1 % Finds the distance of distances less *
! * than r and puts them in the array *
I % Xcor5. *
|

% Je de K de de de ke de de de ke K de ek ke de K K K K de ke K de e de dede ke Kk ke ok ok kk ok ok ok kkkk

SUB make_xcor5

LET count=0
FOR r=1 to 20 step .2
LET count = count+1
LET xcor5(count,1l)=r
LET sumdist=0
FOR i=1 to 4750
IF (xdata5(i,1)*10)<r then
LET sumdist=sumdist + 1
END IF
NEXT i

LET xcor5(count,2)=sumdist/ ((4750%4749)/2)

NEXT r

END SUB

khkhkdkkkkhkkkkkhkhkhkkhkhkhkhkkhkhkkkhkkhkkkhkkkkkkkkkkkkkkkk

SUB plot_1line5
Plots the log of the distance r
vs the log of the number of distances
less than r. Also calculates
sums to be used in finding
the slope in the subroutine
find_slope.
dhkkkkddhkdkkkkhkkkkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkikk

% % ¥ N ¥ X ¥
* % ¥ N * % *

SUB plot_line5

52

LET old_x=0
LET old_y=0
LET old_xy=0
LET old_xx=0
FOR i=1 to total_data_pts
IF xcor5(i,2)<>0 then
LET xcoord=log(xcor5(i,1)) Ir
LET ycoord=log(xcor5(i,2)*1le7) IC(N,r)
PLOT xcoord,ycoord
LET sumx=xcoord+old_x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy !sum of
x*y coord
LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old_ xx !sum of
x*x coord
LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy !sum of
Yy*y coord
LET old_yy=sumyy

END IF
NEXT i

END SUB

! kk
I % SUB line5 *
1 * Calls the routines to calculate and *
I o* plot the fifth line and return the *
1 % slope. *
|

khkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk

SUB line5
CALL make_xdata5
CALL make_xcor5
CALL plot_line5
CALL find_slope

END SUB

! kk
I % MAIN PROGRAM *
! * Calls subroutines to create each line. *
[}

% % % % d de K kK ek K dede ke Kk de ke ke ke de de ke ke de ke Kok de ke ok ke de e deode ke ok ok ke k ok ok k ok

SET COLOR "white"

CALL axis

CALL ticks (1,1) !distance apart on
x and y axis

CALL initialize_array

CALL make_points(x)

CALL linel

SET COLOR "yellow"
CALL line2

SET COLOR '"blue"
CALL line3

SET COLOR "“green"
CALL line4

SET COLOR "red"
CALL lineb

SOUND 300,.5

END

53

APPENDIX D

COMPUTER PROGRAM "DIM3"

% ke K ke ke K K ke kK Kk Kk ke ke k Kk ok ok ke ke Kk ok k kK ok ke ke kK ok ke ok k ok ok ke ok ok ok k ok ok ok ok ok ok ok ok
DIM3

Finds the dimension of the Henon attractor

using Guckenheimer's method.

Inverse slope of lines plotted approaches

the dimension of the attractor.
khkkkhkhkhkhkkkhkkhkkkkhkhkhkkkhkhkhkhkkkhkhkkkhkkkhkhkhkkkkkkkkkkkkkk

% % % * *
% % % % F

% % K J K J ok kK ke ok k Kk k ok ke ok ke ok ke ok ke ok ke k ke ok ke ok Kok ok ok ke ok Kk de ok ke ok ok ok ke k ok ok ok ok ok ok

* Initialize variables and constants. Declare *
* arrays. *
Khkhkkhkhkhkhkkhkkhkhkhkhkkhkhkkhhkhkhkkdkdkdhdkdhkdhdkkddkkdhkkhkkkkkkk

OPEN #1: printer

SET MODE "egahires"

SET WINDOW 0,8,0,5

DIM points(1000,2) !# of data pts
DIM xdatal(999,1)

DIM xdata2(998,1)

DIM xdata3(997,1)

DIM xdata4 (996,1)

DIM xdata5(995,1)

LET y=.

LET x=. !initial value
LET a=1.4 !constant

LET b=.3 lconstant

LET total_data_pts=1000 !4 of data pts

! khkkkkhkkhkhkhkkhkkkkhkkkhkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkk
I % SUB AXIS *
I % Draws x and y axis. *
|

hkkkhkkhkkhkkkkkhkkkkhkkdkhkkkkkkhkkhkkhkkkkkkkhkkkkkkkkk

SUB aXxis

ASK WINDOW x1,x2,yl,y2
PLOT x1,0;x2,0
PLOT 0,y1;0,y2

END SUB

55

I okdekdkhhkdhhkdhkhhhkhhhhhkhhhhhhkhkhhkhhhhkhhhhkhkhkhkhkdk
! % SUB TICKS *
!
!

* Draws ticks on x and y axis. *
N Y T T I L T I ITITIIIY

SUB ticks(x,y) ! axis with ticks
x and y units apart ,

ASK SCREEN ul,u2,vl,v2

ASK WINDOW x1,x2,yl,y2

PLOT x1,0;%x2,0

PLOT 0,y1:0,y2

LET xu=640

LET pl=abs(v2-vl1l)*200 !pixels vertical
LET p2=abs(u2-ul) *xu !pixels horizontal
LET r=min(pl/50,p2/50) !small fraction
LET dl=r/pl*abs(y2-yl) !for x

LET d2=r/p2*abs(x2-x1) !for y

CALL mark(xl,x,1,dl)
CALL mark(x2,x,1,d1)
CALL mark(yl,y,2,d2)
CALL mark(y2,y,2,d2)

END SUB

| kkkkkkhkkkhhkkkhkkhkkkkhkkkhkkhkkkkkhkkhkkkhkkkhkkkkkkkhkkkkk
! % SUB MARK *
! * Used by SUB TICKS to draw a single tick. *
!

khkhkhkkhkkkhkhkhkkkhkhhkhkhkhkkhkhkkhkhkhkkkhkhkkhkhkkkkhkkhkkkkkhkkkkx

SUB mark(u2,us,c,d) !does 1 tick
IF u2=0 then EXIT SUB
FOR u=0 to u2 step sgn(u2) *us
IF c=1 then
P1OT u,-d;u,d

ELSE
PLOT -d,u;d,u
END IF
NEXT u

END SUB
| kkkkkkhkkkhkhkkhkhhkhkhkhkkhhkhkhhhkhhhhhkhkhhkhhkhhkhkdkdk
! % SUB FUNCTION *
! * Equations for Henon attractor. *
| kkkkkkkkkkkkkhhhhhhhhkhkhkhhhhhhhhhhhhhhkhkhkhkhkkkhkkkhkkkk

SUB function (x)
LET xXX=l-a*x*x+y
LET yy=b#*x
LET xX=xX
LET y=yy
END SUB

!
[
[
[
1

SUB MAKE_POINTS
Reads x & y values of strange attractor
equations into an array POINTS

SUB make_points (x)

*

5

*
*

FOR i=1 to total_data_pts !4 of data pts
CALL function (x)
LET points (i,1)=x
NEXT i
END SUB
1 kkkkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkkhkhkhkkkhkkkkhkkkxkk
1 % SUB INITIALIZE_ARRAY
I * Sets all elements in the arrays
I * to zero.
1 kkkkkhkhkkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhhkhkkhkhkhkhkkkhkhkkhkkkkkkk

SUB initialize_ array

MAT
MAT
MAT
MAT
MAT
MAT
END SUB

*
*
*

!
!
!
!
I %
!

points=0
xdatal=0
xdata2=0
xdata3=0
xdata4=0
xdata5=0

SUB MAKE_xdatal
Forms the array xdatal. Finds the
distance between each point and its
neighbor.

SUB make_xdatal

LET
LET
FOR

m=1
startx=points(m, 1)
j=m+1l to total_data_pts

hkkkkkkhkkkkhkkkkkkkkkkkkkhkkhkkkkkkhkkkhkkkkkkkkkkkkk

*
*
*
*

khkkkkkhkkhkkhkkkkkkkkkkkhkhkkkkkkkkkkkhkkkkkkkkkkkkk

LET difl=(startx-points(j,1l))*(startx-
points(j,1))

LET difsg=sqr(difl)
LET xdatal(j-1,1)=difsgq

NEXT 3

END SUB

!

1 %
1o
1o
1 %
!

SUB SORT_xdatal
Produces a list of distances sorted
from smallest to largest and puts
them in xdatal(i,l).

khkkkhkkkhkhkhkhkhkkkkhkhkkkhkkkkhkkhkkkkhkkkhkkkkkkkkkkkkkkk

*
*
*
*

khkkkhkkkkkkkkkkkkkkkkhkkkkkkkkhkkhkkhkkkkkkkkkkkkkk

6

hkkkkkhkkhkkhkkkkkkkkkhkkhkkhkkkkkkkkkkkhkkkhhkkhkhkkhkkdkkkik

*
*
*

hhkdkhkhkdkkhkhhkhkhhkdhhkkdkkkhkhkkkhkhhkhkhkhkkkhkhkhkhkhkkkhdkkhkkkkkik

57

SUB sort_xdatal
FOR first=1 to total_data_pts-1

then

LET smallest=first
FOR current=first to total_data_pts-1
IF xdatal(current,l)<xdatal(smallest,1)

LET smallest=current
END IF
NEXT current
LET temp=xdatal(smallest, 1)
LET xdatal(smallest,l)=xdatal(first, 1)
LET xdatal(first,l)=temp

NEXT first

END SUB

*
*
*
*
*
*
*
*

kkkkkkhkkhkhkhkhkhkhkkhkhkkhkhkhkkkkdkhkkkkkkkkkkkhkkhhkikxxx

hkkkkkhkhkkkhkhkhkkkhkhkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkx

SUB PLOT_XLINE1l
Plots the log of the distance
vs the log of the number of distances
less than the distance. Also
calculates sums to be used in finding
the slope in the subroutine

*
*
*
*
*
*
FIND SIOPE. *
*

SUB plot_xlinel

LET
LET
LET
LET
LET
FOR

old_x=0

old_y=0

old_xy=0

old_xx=0

old_yy=0

i=1 to total_data_pts-1

IF xdatal(i,1)<>0 then
LET xcoord=log(xdatal(i,1l)*1000)
LET ycoord=log((i/total_data_pts)*100)
PLOT xcoord,ycoord
LET sumx=xcoord+old x !sum of x coord
LET old_x=sumx
LET sumy=ycoord+old_y !sum of y coord
LET old_y=sumy
LET sumxy=xcoord*ycoord+old_xy !sum of

xX*y coord

LET old_xy=sumxy
LET sumxx=xcoord*xcoord+old xx !sum of

x*x coord

LET old_xx=sumxx
LET sumyy=ycoord*ycoord+old_yy !sum of

y*y coord

LET old_yy=sumyy
END IF

NEXT i

58

END SUB

! % J K Je e Je K Kk kK ok kK ke ok ok ok k% Kk ok k ok k ok ok ok k kK k gk k ok Kk kkkkkkkkkk
1 * SUB LINEl *
I % Calls the routines to calculate and *
I % plot the line and return the slope. *
[}

% % % % K de Je K K Kk K K K de e K K de e ke K K g ek de ke ke ke de ek ok ke ke Kk ke ke ke ke ke ok ok ok ke ok

SUB linel
CALL make_xdatal
CALL sort_xdatal
CALL plot_xlinel
CALL find_slope
CALL find_dim

END SUB

b ok vk ok e v ok g e % %k K e ok o gk ok K ok kg g e Kk % ok g Kk o gk kK o ke ok ke ok ok ke ok
I o* SUB MAKE_xdata2 *
!o* Forms the array xdata2. Finds the *
[distance between pairs of points. *
1

khkhkdkkhkkkkhkhkkkhkhkkkkhkhkkkhkhkkkkhkhkkhkkkhkkkhkhkdkkdkkkkkk

SUB make_xdataz2
LET m=1
LET startx=points(m,1)
LET startx2=points(m+1,1)
FOR j=m+1 to total_data_pts-2
LET difl=(startx-points(j,1l))*(startx-
points(j,1))
LET dif2=(startx2-points(j+1,1))*(startx2-
points(j+1,1))
LET difsqg=sqr(difi+dif2)
LET xdata2(j-1,1)=difsq

NEXT j

END SUB

! dhkhkdkhkhkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikikkkkkxk
1o SUB SORT_xdata2 *
! * Produces a list of distances sorted *
! % from smallest to largest and puts *
! % them in xdata2(i,1). *
|

khkkkkkkkkkkhkkkkkkkkhkkhkkkkkkkkkkkkkkhkkkkkkkkkkk

SUB sort_xdata2
FOR first=1 to total_data_pts-2
LET smallest=first
FOR current=first to total_data_pts-2
IF xdataZ2 (current,l)<xdata2(smallest,l)
then
LET smallest=current
END IF
NEXT current

LET temp=xdata2(smallest,1)
LET xdata2(smallest,l1l)=xdata2(first,1)
LET xdata2(first,1)=temp

NEXT first

END SUB

59

khkkhkhkkkkkkkkkdkkkhkkkkhkkkkkhkdhkkdkdkdkkkkdkkkkkkikkxk

¥ % N X ¥ X *

SUB plot_xline2

LET old_x=0
LET old_y=0

SUB PLOT_xline2

Plots the log of the inverse distance
vs the log of the number of distances
less than the distance. Also
calculates sums to be used in finding
the slope in the subroutine

FIND_SLOPE.
hhkkkkkhhhhhhhhhhkhhkhhhhhhhhhhhhkkkhhhhhkkkhhkk

LET old_xy=0

LET old_xx=

0

LET old_yy=0

FOR i=1 to

total_data_pts-2

IF xdata2(i,1)<>0 then

LET xcoord=log(xdata2(i,1)*1000)

*
*
*
*
*
*
*
*

LET ycoord=log((i/total_data_pts) *100)

PLOT
LET
LET
LET
LET
LET

X*y coord

LET
LET

xX*x coord

LET
LET

y*y coord

LET
END IF
NEXT i

END SUB

xcoord, ycoord

sumx=xcoord+old_x !sum of x coord

old_x=sumx

sumy=ycoord+old_y !sum of y coord

old_y=sumy
sumxy=xcoord*ycoord+old_xy

old_xy=sumxy
sumxx=xcoord*xcoord+old_xx

old_xx=sumxx
sumyy=ycoord*ycoord+old_yy

old_yy=sumyy

{sum of

Isum of

!sum of

% J % K K Kk % Kk d do d Kk Kk kK K gk Kk ok Jod ok Kk d ok Kk ke ko ok ok de ke ok ok ok ok ok ok ok ok kkkk

*

* Calls the routines to calculate and
* plot the line and return the slope.

SUB LINE2

*
*
*

kkkkkkkkkkkkkkkkhkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkk

SUB line2
CALL make_ xdata2

60

CALL sort_xdata2
CALL plot_xline2
CALL find_slope
CALL find_dim

khkkkkdkhkkhkhkhkkkkkkkkkkkhkhkkkhkkkkkkhkkkkhkkkkkkkkkik

END SUB

I kkdkkkkkkkkkkkkkkkkhkkkhdkhkkkkhkkkkkkkkkkkkkkkkkk
1o SUB MAKE_xdata3 *
! o* Forms the array xdata3. Finds the *
! % distance between three points. *
1

SUB make_xdata3
LET m=1
LET startx=points(m,1)
LET startx2=points(m+1,1)
LET startx3=points(m+2,1)
FOR j=m+1 to total_data_pts-3
LET difl=(startx-points(j,1))*(startx-
points(j,1))
LET dif2=(startx2-points(j+1,1))*(startx2-
points(j+1,1))
LET dif3=(startx3-points(j+2,1))*(startx3-
points(j+2,1))
LET difsg=sqr(difl+dif2+dif3)
LET xdata3(j-1,1)=difsqg

NEXT 3j

END SUB

1 kkkkkkkkkkkkhhkkkkhhkkkkhkkkkhkkkkhkhkkhkkkkkkkkkkk
!o* SUB SORT_ xdata3 *
! ox Produces a list of distances sorted *
I % from smallest to largest and puts *
! them in xdata3(i,1). *
]

% d % K K d K ok ke ke ok ke de ke ok ok de ke ok ok ok ke ke ok de ke ok ke de ke Kok ke ok ke ke ke ke dkok ok ok ok ok ok

SUB sort_xdata3
FOR first=1 to total_data_pts-3
LET smallest=first
FOR current=first to total_data_pts-3
IF xdata3 (current,l)<xdata3 (smallest,l)
then
LET smallest=current
END IF
NEXT current
LET temp=xdata3(smallest,1)
LET xdata3(smallest,l)=xdata3(first,1)
LET xdata3(first,1l)=temp
NEXT first
END SUB

Gmn fum (e=p Gon f=w fow fes fom S
* ¥ ¥ ¥ ¥ ¥ ¥

SUB plot_xline3
LET old_x=0

LET old_y=0

LET old_xy=

LET old_xx=

LET old_yy=

FOR i=1 to

IF xdat

LET xcoord=log(xdata3(i,1)*1000)

SUB PLOT_xline3

Plots the log of the inverse distance
vs the log of the number of distances
less than the distance. Also
calculates sums to be used in finding
the slope in the subroutine

FIND SLOPE.
FTkkhkdkhkkdkdhhhkhkdhkhkhkhkhhkhkhkhdhkhkhkhhkdkhhkhdhhkhkdhhkdhdhkx

0
0
0
total_data_pts-3
a3(i,1)<>0 then

61

% % K g K do Kk K Kk de ok d kK ek ek g KKk kK ek ek ok ok ok ke ok ok ok kok ok ok kkkkkk

* % ¥ ¥ ¥ ¥ ¥

LET ycoord=log((i/total_data_pts)*100)

PLOT
LET
LET
LET
LET
LET
X*y coord
LET
LET
x*x coord
LET
LET
y*y coord
LET
END IF
NEXT i
END SUB

xcoord, ycoord

sumx=xcoord+old_x !sum of x coord

old_x=sumx

sumy=ycoord+old_y !sum of y coord

old_y=sumy
sumxy=xcoord*ycoord+old xy

old_xy=sumxy
sumxx=xcoord*xcoord+old_xx

old_xx=sumxx
sumyy=ycoord*ycoord+old_yy

old_yy=sumyy

!sum of

Isum of

{sum of

K d de Je d de e ke de K K K F g K K Fe Je ke K K K de K K F de K K de K e de de Je ke K kK K kK k ok ok ok

*

* plot the line and return the slope.

SUB LINE3

*
*
*

hkkkkkkhkkkkkkkkkkkkhkhkkhkkhkhkkhkhkhkhkkkhkhhhkkhkhkkkkkkkk

SUB line3

!
!
! % Calls the routines to calculate and
[}
|

CALL make_xdata3
CALL sort_xdata3

CALL plot_x

CALL find_s

CALL find d
END SUB

line3
lope
im

62

khkhkkkkhkkhkkkhkkhkkhkkkkkhkkkhkkhkkkkhkhkkhkkkkkkkhkkkkk

1
!o* SUB MAKE_xdata4 *
! o* Forms the array xdata4. Finds the *
!ox distance between four points. *
]

% de d ke ok de e ke K Kk de e K de de ke K K ke ok ke ke ke ke dede ek K de ke K de e K Kok ok ok kk ok kk ok kk

SUB make_xdata4
LET m=1
LET startx=points(m,1)
LET startx2=points(m+1,1)
LET startx3=points(m+2,1)
LET startx4=points(m+3,1)
FOR j=m+l1 to total_data pts-4
LET difl=(startx-points(j,1))*(startx-
points(j,1))
LET dif2=(startx2-points(j+1,1))*(startx2-
points(j+1,1))
LET dif3=(startx3-points(j+2,1))*(startx3-
points(j+2,1))
LET dif4=(startx4-points(j+3,1))*(startx4-
points(j+3,1))
LET difsg=sqr(difl+dif2+dif3+dif4)
LET xdata4(j-1,1)=difsq

NEXT 3j

END SUB

| kkkkhhhkhkhkkhkkhhkhkhkkhkkhhkhkkkhkhkhkhkkhhkhkhkkhkhkkhkhkkkkkhkkk
!ox SUB SORT_xdata4 *
1 * Produces a list of distances sorted *
! % from smallest to largest and puts *
! % them in xdata4(i,1). *
]

khkkkkkkkhkhkkhkkhkhkhkkkhkkhkhkkhkhkhkkkhkkkkkhkkhkkkkhkkkkkkk

SUB sort_xdata4
FOR first=1 to total_data_pts-4
LET smallest=first
FOR current=first to total_data_pts-4
IF xdata4 (current,l)<xdata4 (smallest,1)
then
LET smallest=current
END IF
NEXT current
LET temp=xdata4 (smallest,1)
LET xdata4 (smallest,l)=xdata4 (first,1)
LET xdata4 (first,1l)=temp
NEXT first
END SUB

* % ¥ % ¥ ¥ ¥

SUB plot_xline4
LET old_x=0
LET old_y=0

SUB PLOT_xline4

Plots the log of the inverse distance
vs the log of the number of distances
less than the distance. Also
calculates sums to be used in finding
the slope in the subroutine

FIND SLOPE.
hkhkdkhhkhkhhhkhkhkhhhkhkhhkhhkhhhkhkhhhhkhhhhkhkhhkhhkkkkkkkk

LET old_xy=0
LET old_xx=0
LET old_yy=0

FOR i=1 to

total_data_pts-4

IF xdata4(i,1)<>0 then

LET xcoord=log(xdata4(i,1)*1000)

63

khkkhkhkhhkhkhhhkhkhkkkhkhkhkkhkhkhkkkhkkhhkdkkhkhkkkhkkkkkkkkkk

* ¥ ¥ ¥ ¥ ¥ ¥

LET ycoord=log((i/total_data pts)*100)
PLOT xcoord, ycoord
sumx=xcoord+old_x !sum of x coord

LET
LET
LET
LET
LET

X*y coord
LET
LET

xX*x coord
LET
LET

y*y coord
LET
END IF

NEXT i

END SUB

old_x=sumx

sumy=ycoord+old_y !sum of y coord

old_y=sumy
sumxy=xcoord*ycoord+old_xy

old_xy=sumxy
sumxx=xcoord*xcoord+old_xx

old_xx=sumxx
sumyy=ycoord#*ycoord+old_yy

old_yy=sumyy

!sum of

Isum of

Isum of

khkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhkhhkkkhhkkhkkkkkkkkkkkkhkkhkkkx

*

* plot the line and return the slope.

SUB LINE4

!
!
Po* Calls the routines to calculate and
[}
|

*
*
*

khkkkkkhkhkhkhkhkhkhkhkkkkhkhkhkhkhkkhkhkhkhkhhhkhkhkhkhkkhhhhkhkhkkkkkkxk

SUB line4

CALL make_xdata4
CALL sort_xdata4
CALL plot_xline4

CALL find_s
CALL find_d
END SUB

lope
im

64

kkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkhkkkkkkkkkkkkkkkk

!
L% SUB MAKE_xdata5s *
1 % Forms the array xdata5. Finds the *
! % distance between five points. *
|

e Jede g de e ke g dedede ke ok de ke ok dek ok kode ok ok ok ok dkokkkkkdkkkdkkkdkkkkkkkk

SUB make_xdatab
LET m=1
LET startx=points(m,1)
LET startx2=points(m+1,1)
LET startx3=points(m+2,1)
LET startx4=points(m+3,1)
LET startx5=points(m+4,1)
FOR j=m+l1 to total_data_pts-5
LET difl=(startx-points(j,1))*(startx-
points(j,1))
LET dif2=(startx2-points(j+1,1))*(startx2-
points(j+1,1))
LET dif3=(startx3-points(j+2,1))*(startx3-
points(j+2,1))
LET dif4=(startx4-points(j+3,1))*(startx4-
points(j+3,1))
LET dif5=(startx5-points(j+4,1))*(startx5-
points(j+4,1))
LET difsg=sqr(difl+dif2+dif3+dif4+dif5)
LET xdata5(j-1,1)=difsq

NEXT 3j

END SUB

| kkhkkkkhkkhkkkhhkhkhkkhkkkhhkhkhkkkhkhkhkkkkkkkhkkkkkkkk
! o* SUB SORT_xdatab *
I % Produces a list of distances sorted *
! % from smallest to largest and puts *
1 % them in xdata5(i,1). *
|

kkkkhkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkk

SUB sort_xdata5s
FOR first=1 to total_data_pts-5
LET smallest=first
FOR current=first to total_data_pts-5
IF xdata5(current,1l)<xdata5(smallest,1)
then
LET smallest=current
END IF
NEXT current
LET temp=xdata5(smallest,1)
LET xdata5(smallest,l)=xdata5(first,1)
LET xdata5(first,1l)=temp
NEXT first
END SUB

* ¥ ¥ ¥ ¥ ¥ ¥

SUB plot_xline5
LET old_x=0
LET old_y=0

SUB PLOT_xline5

the slope in the subroutine

FIND_SLOPE.
hkkkkkkkkhkhhhkhhkhhkhkkhkhhhhhhhrkhkhhkhkhhhhkkhkhk

LET old_xy=0
LET old_xx=0
LET old_yy=0

FOR i=1 to
IF xdat

LET xcoord=log(xdata5(i,1)*1000)

total_data pts-5
a5(i,1)<>0 then

65

khkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkk

*

Plots the log of the inverse distance *
vs the log of the number of distances *
less than the distance. Also *
calculates sums to be used in finding *
*

*

*

LET ycoord=log((i/total_data_pts)*100)
PLOT xcoord, ycoord
sumx=xcoord+old_x !sum of x coord

LET
LET
LET
LET
LET

x*y coord
LET
LET

x*x coord
LET
LET

y*y coord
LET
END IF

NEXT i

END SUB

old_x=sumx

sumy=ycoord+old_y !sum of y coord

old_y=sumy
sumxy=xcoord*ycoord+old_xy

old xy=sumxy
sumxx=xcoord*xcoord+old_xx

0ld_xx=sumxx
sumyy=ycoord*ycoord+old_yy

old_yy=sumyy

Isum of

!sum of

Isum of

hhkhkhkhkhkhkhkAkAkAkAkkkkhkkhkkhhkkhkhkhkkkkkkkkkkkkkkkhkkkkkkxk

*

* plot the line and return the slope.

SUB LINES

!
!
1 * Calls the routines to calculate and
]
]

*
*
*

% 5 % J % K J d %k K K J g K K de de K de d ke K d de Je ke K de de ke K de Kk ke gk ok dok ok kk ok kk

SUB lineS5

CALL make_xdatas
CALL sort_xdata5

CALL plot_x

CALL find_s

CALL find_d
END SUB

line5
lope
im

!
1%
1 %
1%
1%
!

SUB FIND_SLOPE
Calculates the slope of a line using
linear regression, and the correlation
coefficient, r.

SUB find_slope

LET
LET
LET
LET
LET
LET
END SUB

!
[
| o*

1o

I o kkkkx

pts=total_data_pts-1

sxy=sumxy-((sumx*sumy) / ((2*pts)-1))
sxx=sumxx- ((sumx*sumx)/ ((2*pts)-1))
syy=sumyy- ((sumy*sumy)/((2*pts)-1))
slope=sxy/sxx

r=sxy/ (Sqr(sxx*syy))

khkkhkhkkhkkkkhkkhkhkkkhkhkkkkkhkkkkkkhkkkkkkkkdkkkkkkkkkk

SUB FIND_DIM *
Calculates the dimension as the *
inverse of the slope. *

khkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

SUB find_dim

LET

dimension=1/slope

PRINT "s=", K slope;
PRINT "d=",dimension:

END SUB

*kdkkk
*
*

!
!
!
| kkkkk

khkkhkkkhkkkhkhkkkkhkkkkkhkkkhkhkkhkkkhkkkkkkkkkkkk

MATIN PROGRAM *

Calls subroutine to create line. *
khkkkkhkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkkxk

SET COLOR "white"
CALL axis

CALL ti

cks(1,1)

CALL initialize_array
CALL make_points(x)
CALL linel

SET COLOR "yellow"
CALL line2

SET COLOR '"red"
CALL line3

SET COLOR "blue"
CALL line4

SET COLOR "green"
CALL line5

SOUND 3
END

00,.5

% J Jc Je g Je Je de d Je Je ke K dede Je de de Je ke dede e ke de dede ke K dede ke ek g dededekhkkkkkkk

*
*
*
*

khkkkkkhkkhkhkhkkhkkkhkhkhkkhkkhkhkhkhkrhkhkhkhkhkhkdhhkrhkkdhkhkhkhkddk

66

	The Dimension of a Chaotic Attractor
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1521142274.pdf.ilkyX

