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AN ABSTRACT OF THE THESIS OF Pitak Chenkosol for the Master of Science in 

Electrical Engineering presented February 21, 1992. 

Title: Spontaneous Coherent Pulsations in Standing-wave Laser Oscillators: 

Stability Criteria. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Lee W. Casperson, Chair 

W. Robert Daasch 

Carl Bachhuber 

The stability criteria for single-mode standing-wave laser oscillators in the 

strongly homogeneously broadened limit are reported for the first time. Two types of 

stability criteria are presented. The first type, called type 1, corresponds to the minimum 

value of threshold parameter for which an infinitesimal perturbation away from steady 

state grows into an oscillatory solution. Another type of stability criteria, called type 
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2, corresponds to the minimum value of threshold parameter for which large amplitude 

oscillatory solutions do not decay to the steady state solution. Undamped pulsations in 

single mode strongly homogeneously broadened standing-wave laser oscillators are found 

to occur at a much higher excitation level than that of ring-laser oscillators with the same 

type of line broadening. The effect of detuning on stability criteria is also investigated. 

We discovered that detuning tends to raise the type 1 instability threshold and to decrease 

the type 2 instability threshold. 
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CHAPTER I 

INTRODUCTION 

Instabilities and nonlinear dynamics of lasers are of great theoretical and 

experimental interests(l},(2). Conditions under which laser instabilities can occur have 

been given in many places<4>-<7>. In [8], Haken showed that, in the resonant tuned case, a 

single longitudinal mode homogeneously broadened ring laser has the same form of 

dynamic equations describing the behavior of the system as the most studied low­

dimensional convective hydrodynamic system, namely the Lorenz mode1<9),(10). 

Theoretical studies of the ring laser model also show results that conform to the results 

predicted by the Lorenz model(l},(2),(ll},(lS)-(20). It was discovered that in order to 

observe pulsation behavior in the homogeneously broadened ring laser system the laser 

must be operated at an excitation level at least nine times above the laser threshold<4> and 

must also satisfy the "bad cavity" condition which means that the decay rate of the cavity 

field is higher than the decay rate of polarization. Because of the "bad cavity" condition, 

the laser must have high gain in order to overcome the loss due to high cavity field decay 

rate. Much effort has also been spent in trying to experimentally observe various types of 

unstable output from homogeneously broadened ring lasers as predicted by the Lorenz­

Haken model, and recently there have been reports of success<12>-07>. In standing-wave 

lasers, however, the situation is different. Theoretical models for this type of laser<21>-<22> 

do not show the same similarity to the Lorenz model as those for the ring laser. In [21], 

Casperson developed a rigorous theoretical model for standing-wave lasers oscillators 

which provided good agreement between the theoretical and experimental pulsation data 

of xenon lasers. Our study here is also based on this model. 
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The stability criteria for single-mode standing-wave laser oscillators in the 

strongly homogeneously broadened limit are reported for the first time. The semi­

classical laser equations have been solved numerically for different sets of operating 

parameters. The instability boundaries obtained can be used to qualitatively test whether a 

continuously pumped laser will produce its output in the form of undamped pulsations. 

The results of the study are particularly useful for qualitatively testing the behavior of a 

laser under study even if they cannot provide direct information regarding the pulsation 

waveforms. This information and the temporal evolution of a laser system can be obtained 

by direct numerical integration of the dynamic equations governing the behavior of the 

laser system. 

In studies of the dynamic behavior of a laser system, the complexities of the laser 

equations usually prevent one from solving them analytically even if this can be done in 

some cases, but the numerical solutions of the laser equations can always be computed. 

The numerical solutions for homogeneously broadened ring lasers have been 

knownOS),(19) and those of both ring and standing-wave inhomogeneously broadened 

lasers have also been reported<20>-<22>. However, these numerical solutions are costly to 

carry out, compared to the results if they can be obtained analytically, because they require 

a considerable amount of computing resources, and after getting the results they can not be 

applied to other laser systems which correspond to different set of operating parameters. 

Therefore, it is practically useful to develop some kind of graphical representation that can 

be applied to broad -classes of lasers. An example of such a representation is the stability 

criteria 

In a graphical representation, the stability criteria are curves that show the ranges 
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of parameters for which a laser will produce stable continuous wave output and the ranges 

for which the output will consist of pulsations. Because only a small number of parameter 

variations can be represented by a two dimensional graph, the laser equations will be 

simplified so that the graphical representation of the stability criteria is useful. 

The stability criteria of both homogeneously and inhomogeneously broadened ring 

laser oscillators were reported by Casperson<4>.<23>.<24>and others<6),(?),(2S),(26>. As a 

comparison to the former results for ring laser oscillators, it is shown in this study that the 

minimum value of the excitation level needed for homogeneously broadened standing­

wave lasers to produce their output in the form of undamped pulsations is considerably 

higher than that for ring lasers. The results also show the difference between the 

configuration of instability boundaries in parameter space as compared to the results for 

the ring cavity laser model. 

In this study we emphasize two types of stability criteria that are associated with 

the nontrivial steady state solutions of the laser equations. The first criterion, which we 

will call type 1, corresponds to the minimum value of the threshold parameter for which 

an infinitesimal perturbation away from the steady state solution grows into an undamped 

oscillatory solution. The other criterion, which we call type 2, corresponds to the 

minimum value of the threshold parameter for which large-amplitude oscillatory solutions 

do not decay to the steady state solution. As noted<4>, the stability of the steady state 

solution depends on the magnitude of the perturbations to which it is subjected. A large 

perturbation may cause the onset of pulsations, whereas a small perturbation may not. 

The basic dynamic laser equations formulated by Casperson<21> are reviewed in 

Chapter II. In Chapter III, some simplifications to the dynamic laser equations and 
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results from Ref. [22] are reviewed and used. With the introduction of new dimensionless 

parameters, the simplified laser equations from Ref. [22] are transformed to a simpler set 

that is appropriate for numerical calculations. The linear stability analysis by which we 

determine the type 1 stability boundaries for the homogeneous broadened lasers is 

introduced in Chapter N. Also included in chapter 4 is the flow chart of the numerical 

calculations used in this study. The principal results of the study, type 1 and type 2 

stability boundaries, are reported in Chapter V. Also presented is graphs showing the 

effect on the stability boundaries of detuning from line center. We also compare the 

results of our study to those obtained for ring cavities. One can observe significant 

differences between the results of the two cavity models. 



CHAPTER II 

GENERAL MODEL 

THEORY 

The starting point in our study is a review of the semiclassical Maxwell­

Schrodinger laser equations which developed by Casperson<21> for standing-wave laser 

oscillators. The response of atoms, as a whole, which are subjected to an applied electric 

field can be conveniently described by the ensemble averaged density matrix equations<21>. 

<t, +v:z) Pab (v, roa, z, t) = -(iroa +y) Pab (v, roa, z, t) 

iµ 
-TiE(z,t) [Paa(V,CJlx,z,t)-pbb(v,CJli,Z,t)], (2.1) 

(gt+ v :Z) p aa ( v, roa, Z, t) = "-a ( v, roa, Z, t) - 'YaP aa ( v, roa, z, t) 

+yabPaa (v, roa, Z, t) -[ !:Jt-E (z, t) Pba (v, (l)a' z, t) + c.c J. 

-J:'_ra (v', v) Paa(v, roa, z, t) dv' 

+ J:'_ra (v, v') Paa (v, roa, z, t) dv', (2.2) 

<g, + v:z) pbb (v, roa, z, t) = Ab (v, roa, z, t) -ybpbb (v, roa, z, t) 
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+ 'YabP aa ( V, Ola, Z, t) - [ ~ E (z, t) Pba ( v, Ola, z, t) + C.C. J 

Joor I I 
- -oo b (v, v) pbb(v, Ola, z, t) dv 

+ J:,rb {v, v') pbb (v, roa, z, t) dv', (2.3) 

Pba (v, Ola, z, t) = ~b (v, Ola, z, t), (2.4) 

where the subscripts a and b denote the upper and lower laser levels, 

respectively, 'Ya and 'Yb are the total decay rates for these levels, 'Yab is the rate of direct 

decay from level a to level b, 'Y is the decay rate for the off-diagonal elements, A.a and 

A.b are the pumping rates, ~ is the center frequency of the laser transition for members 

of an atomic or molecular class a, µ is the electric dipole moment for the laser transition, 

1i = hi (21t) where h is Planck's constant, and the notation c.c. means the complex 

conjugate of the preceding terms. The integral terms in Eqs.(2.2) and (2.3) represent 

spectral cross relaxation, and in a low pressure xenon laser this cross relaxation results from 

velocity-changing collisions. Thus, the function r a ( v', v) dv' indicates the rate at which 

atoms in level a having velocity between v and v + dv will be bumped by means of 

collisions into a velocity range between v' and v' + dv'. Conversely, the 

functionr a ( v, v') dv' indicates the rate at which atoms in level a will be bumped by means 

of collisions from all possible velocities back into the range between v and v + dv. This 

spectral cross relaxation effect can also occur in non-Doppler lasers, and the integrals in 

Eqs.(2.2) and (2.3) could be generalized to included processes that distribute the intrinsic 

center frequencies, ~ . 

The set of density matrix equations above describes the behavior of the atomic or 

molecular populations and polarizations. An equation for the electric fieldE (z, t) must be 
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added to this set in order to make the whole set self-consistent. The wave equation for the 

electric field of a- linearized polarized wave in a laser medium can be written as 

~ (z, t) -µ cr9.E (z, t) _ µ £ ~ (z, t) = µ CJ
2
P (z, t) (2.5) 

az2 i a1 i ia12 tar 

The permeability µ1 and permittivity £ 1 include all the magnetic and dielectric 

properties of the laser medium except the polarization P, which is due to the lasing atoms 

or molecules. The polarization driving this field equation can be related to the off-diagonal 

element of the density matrix by 

P (z, t) = J~ J~µp ab ( v, coa, z, t) dvdcoa + c.c. (2.6) 

Equations (2.1 )-(2.6) form a complete set from which the time and space 

dependence of the electric field and of the atomic or molecular parameters can be 

determined, subject to the boundary conditions at the resonator mirrors. In our study here 

the solutions of particular interest are those that correspond to standing-wave lasers. By 

assuming that the losses, e.g. scattering, joule losses, etc., in a standing-wave laser are 

uniformly distributed, they may be absorbed into the conductivity term. One can also factor 

out the rapid time variations in Eqs. (2.1)-(2.6) by means of the substitutions 

E (z, t) = 4 sin (kz) E' (t) exp (-icot) + c.c. (2.7) 
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and Pab (v, coa, z, t) = 2~ P' (v, coa, z, t) exp (-icot). (2.8) 

where E' (t) and P' (v, coa, z, t) are slowly varying amplitude functions compared to the 

exponential terms. The angular frequency co would be considered as the actual lasing 

frequency of the electromagnetic wave in a laser cavity if the amplitude function E' is time 

independent, and the sin ( kz) spatial dependence means that the laser under consideration 

is assumed to operate in a single longitudinal mode. 

By applying the commonly used "rotating wave approximation" these 

substitutions reduce Eqs.(2.1)-(2.4) to a new set 

<gt+ vgz) P' (v, coa, z, t) = i (co- coa) P' (v, coa, z, t) -yP' (v, coa, z, t) 

. 2 

- 1~ sin(kz)E'(t) [Paa(v,coa,z,t)-pbb(v,coa,z,t)], (2.9) 

<gt+ vgz) Paa (v, coa, z, t) = A.a (v, coa, z, t) -YaPaa (v, coa, z, t) 

;1i sin (kz) [E (t') P'* (v, coa, z, t) -E'* (v, coa, z, t) P' (v, coa, z, t)] 

-J:_ra (v', v) p aa (v, coa, z, t) dv' 

+ J:_ra (v, v') p aa (v', coa, z, t) dv', (2.10) 

<gt+ vgz) pbb (v, coa, z, t) = Ab (v, coa, z, t) -ybpbb(v, coa, z, t) 

+ 'YabP aJ v, coa, z, t) 
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-dn sin (kz) [E' (t) P'* (v, c.oa, z, t) -E'* (t) P' (v, c.oa, z, t)] 

-J:~00rb (v', v) pbb (v, c.oa, z, t) dv' 

+ J~r b (v, v') pbb (v, c.oa, z, t) dv', (2.11) 

The same substitutions also reduce equation (2.5) to the new field equation 

[ 
iµ O'C.O (c.o

2
µ E k2) ] 

sin (kz) iµ1E1c.o;l' (t) + ~ E' (t) + 2
1 1 

- 2 E' (t) 

2 

- _ µl (t) Joo Joo P' ( V, (t)a' z, t) dvdc.oa, - 2 -00 -00 
(2.12) 

where the field and polarization amplitude functions are assumed to vary slowly with time, 

as stated earlier, so that their higher order derivatives can be neglected. 

By introducing a new frequency parameter Q = k (µ1E1f
112 

, Eq.(2.12) can be 

written as 

[ 

. 2 g2 ] 
sin (kz) i;

1
E' (t) + ~;1 E' (t) + c.o ;c.o E' (t) 

(t) JOOJOO = - 2£
1 

o -ooP' ( v, c.oa, z, t) dvdroa. (2.13) 
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The parameter Q is the nondispersed cavity frequency, i.e. the steady state lasing 

frequency if the dispersion or real part of P' were equal to zero. Because the assumed 

lasing frequency co is also close to both the nondispersed cavity frequency Q and the 

transition center frequency co0 , the term ( co2 
- '12

) I (2co) can be approximated by (ro-Q) 

and the co multiplying the polarization integral can be replaced by co0 • Multiplying 

Eq.(2.12) by sin ( kz) and integrating over the length L of laser cavity yields 

d
dE'(t) = -

2
cr E'(t) +i(co-Q)E'(t) 

t E1 

ico 
+LE~ J~ J:,J~ sin (kz) P' (v, coa, z, t) dzdvdcoa. (2.14) 

Eqs.(2.9)-(2.11) and (2.14) form a set of first order differential equations 

governing the laser behavior. These equations are complicated by the fact that the electric 

field amplitude£' (t) and the polarization amplitude P' (v, coa, z, t) are complex 

quantities. For computational purposes later on it will prove helpful to express these 

quantities in terms of their real and imaginary parts according to 

P'(v,coa,z,t) = P7 (v,coa,z,t) +iP;(v,coa,z,t), (2.15) 

and E' (t) = E7 (t) + ~E; (t) . (2.16) 

With these substitutions the governing equations reduce to a real set 
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<gt+ vgz) Pr (v, roa, z, t) = - (ro- roa) P; (v, roa, z, t) -"(Pr (v, roa, z, t) 

µ2 
+Tsin(kz)E;(t)D(v,roa,z,t), (2.17) 

(gt+ v tz) P; (v, roa, z, t) = ( ro - roa) Pr (v, roa, z, t) - "(P; (v, roa, z, t) 

µ2 . 
-T sm (kz) Er (t) D (v, roa, z, t) , (2.18) 

(gt+ V tz) D ( v, ma, Z, t) = A.a ( v, roa, z, t) - Ab ( v, roa, z, t) 

"ta +"fab +"(b "fa +"fab +"fb 
- D (v, roa, z, t) - '> M (v, roa, z, t) 

sin (kz) 
+ [Er (t) P; ( v, (J)a' z, t) - E; (t) Pr ( V, (J)a' z, t)] 

-4J:,ra(v',v) [M(v,roa,z,t) +D(v,roa,z,t)]dv' 

+ ~J:,ra (v', v) [M (v', roa, z, t) + D (v', roa, z, t)] dv' 

+ 4J:,r b (v', v) [M (v, roa, z, t) -D (v, roa, z, t)] dv' 

-~J:,rb (v', v) [M (v', roa, z, t) -D (v', roa, z, t)] dv', (2.19) 

cg,+ vtz) M (v, roa, z, t) = A.a (v, roa, z, t) +A.a (v, roa, z, t) 

"ta-"tab-"(b "ta-"tab+"fb 
- D ( v, roa, z, t) - '> M ( v, roa, z, t) 

-4J:,ra (v', v) [M (v, roa, z, t) + D (v, roa, z, t)] dv' 
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+ 4J:.ra (v', v) [M (v, coa, z, t) + D (v, coa, z, t)] dv' 

-4J:.rb (v, coa, z, t) [M (v, coa, z, t) -D (v, coa, z, t)] dv' 

+ 4J:.r b (v, coa, z, t) [M (v, coa, z, t) -D (v, coa, z, t)] dv', (2.20) 

d Er (t) 
-E (t) = ---- (co-Q)E.(t) 
dt r 2t 1 

c 

co 
O Joo Joo J' . -£

1
L - - osm(kz)P;(v,coa,z,t)dzdvdcoa., (2.21) 

d E; (t) 
-E.(t) = - -- + (co-Q)E (t) 
dt 1 2t r c 

co 
O Joo Joo J' . + £ L __ 

00 0 sm (kz) Pr (v, coa, z, t) dzdvdcoa, 
1 

(2.22) 

where we have also introduced the population difference 

D (v, coa, z, t) = Paa (v, coa., z, t) - pbb (v, coa, z, t), the population sum 

M(v,coa,z,t) = Paa(v,coa,z,t) +pbb(v,coa,z,t), and the cavity lifetime (field 

intensity decay time) tc = £ 1/cr. Also, the length of integration extends only over the 

amplifier length l because outside the amplifier P' ( v, coa, z, t) = 0. 

At this point it is necessary to make some assumption about the form of the 

spectral cross-relaxation kernels. We will assume that the spectral cross-relaxation 

integrals apply only to strong collisions in which the final velocities are distributed 

randomly across the Doppler profile. The weak collisions are phase interrupting collisions, 

and we assume that this effect is included in the decay rate y. Therefore the spectral cross-
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relaxation kernels can be written as 

r 2 2 
ra (v', v) = ~exp (-v /u ) = ra W(v) , (2.23) 

U1C 

rb 2 2 
(2.24) and rb(v', v) = -viexp (-v lu) = rbW(v), 

U1C 

where r a and r b are the total rates at which atoms in level a and b undergo strong velocity-

changing collisions, respectively and 

1 2 2 
W(v) = -viexp (-v /u) , 

U1C 
(2.25) 

is the Maxwell-Boltzmann velocity-distribution function with u the most probable speed of 

the atoms <28>. With this substitution for the kernels ra (v', v) and rb (v', v), Eqs.(2.19) 

and (2.20) for the population difference and sum become 

( g, +viz) D ( v, CJ.la' z, t) = A.a { v, CJ.la, z, t) - Ab { v, CJ.la, z, t) 

,./ + 'Y - "( "(a+ 'Yab - "( b ) 
la ab bD (v CJ.) z t) _ M (v, CJ.la, z, t 

- . ' a' ' '> 

sin (kz) 
+ _ [Er (t) P; ( V, CJ.la, Z, t) - E; (t) Pr ( V, CJ.la, Z, t)] 
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r 
+ al/l exp (-v2 I u2

) j:., [M ( v', roa, z, t) + D ( v', roa, z, t)] dv' 
2u1t 

r 
· b Vl exp (-v2 I u2

) J:., [M ( v', roa, z, t) - D ( v', roa, z, t)] dv' , (2.26) 
2u7t 

<g
1 
+viz) M (v, roa, z, t) = "-a (v, roa, z, t) +Ab (v, roa, z, t) 

,./ -"( -i i -"( +ib 
_ fa ab b D (v, roa, z, t) _ a ~b M (v, roa, z, t) 

r 
+ al/2 exp (-v2 I u2

) J:
00 

[M ( v', roa, z, t) + D ( v', roa, z, t)] dv' 
2u7t 

r 
· bl/2 exp (-v2 I u2) J:., [M (v', roa, z, t) - D ( v', roa, z, t)] dv', 
2u7t (2.27) 

where the new modified decay rates are defined by 'Ya' = 'Ya+ r a and 'Yb' = 'Yb+ r b . 

SPATIAL FREQUENCY EXPANSIONS 

One difficulty with the model described by Eqs. (2.17), (2.18), (2.21), (2.22), 

(2.26), and (2.27) is that it includes partial derivatives with respect to both space and time 

variables. Because of the high spatial frequency of the fields in the cavity of most lasers it 

is efficient to expand the polarization and the populations into the series of spatial 

harmonics of the electric field. Thus we introduce the expansion 

00 

Pr (v, roa, z, t) = L Pr, 2j + 1 ( v, roa, t) exp [ (2j + 1) ikz] , (2.28) 
j =-oo 
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00 

P; ( v, roa, z, t) = I, P;, 2j+ 1 (v, roa, t) exp [ (2j + 1) ikz], (2.29) 
j=-oo 

00 

D (v, roa, z, t) = L D2i {v, roa, t) exp [ {2j) ikz], (2.30) 
j=-oo 

00 

M (v, roa, z, t) = L M2j{v,roa,t)exp [(2j)ikz], (2.31) 
j=-oo 

where only odd harmonics of the polarizations and even harmonics of the populations are 

included. In this study we make the usual assumption that the pump rates are spatially 

uniform, and thus no additional harmonics are required. Additionally, the above spatial 

expansions also imply a high value of cavity mirror reflectivities (or small value of the 

mirror transmission coefficients). 

For the left-hand side of Eqs.(2.28)-(2.31) to be real, additional constraints on the 

expansion coefficients are required. These constraints can be written as 

* Pr,j(v, Ola, t) = P r,-j(V, Ola, t) (2.32) 

* P;,/v, Ola, t) = P i,-j(v, Ola, t) (2.33) 

* Dj(v, roa, t) = D -j(v, roa, t) (2.34) 

* Mj ( v, Ola' t) = M -j { v, Ola, t) (2.35) -

With the substitution of Eqs.(2.32)-(2.35) into Eqs.(2.17), (2.18), (2.21), (2.22), 
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(2.26), and (2.27) one can obtain 

g/r, 2j+ 1 (v, ma, t) = -( ro- roa) P;, 2j+ 1 (v, ma, t) 

- [ (2j + 1) ikv + y] Pr, 2j+ 1 (v, ma, t) 

. 2 zµ 
-'1Ji E; (t) [D2j ( v, roa, t) - D2j + 2 ( v, ma, t)] , (2.36) 

ili.2j+ 1 (v, Ola' t) = (Ol-Ola) Pr,2j+ 1 (v, Ola, t) 

-[ (2j + 1) ikv +y] P;, 2j+ 1 (v, Ola, t) 

. 2 1µ 
+2JiEr(t) [D2j(v,Ola,t)-D2j+ 2(v,Ola,t)], (2.37) 

g,n2i ( v, Ola, t) = [A a ( v, Ola' t) - Ab ( v, roa, t) ] oi0 

- [ (2j + 1) ikv +hi] D2j (v, Ola' t) - h2M2j (v, Ola, t) 

i 
-2h { [Er (t) Pi, 2j-1 (v, Ola, t) -Ei(t) Pr, 2j-1 (v, Ola, t)] 

-[Er (t) Pi, 2j+ 1 (v, Ola, t) -E; (t) Pr, 2j+ 1 (v, roa, t)] } 

r 
+ al/lexp (-v

2 !u2) J=: [M2j(v', roa, t) +D2j(v', Ola' t)] dv' 
2u7t 

r 
. __ bl/l-exp (-v2 !u2) J=: [M2j (v', Ola, t) -D2j (v', Ola' t)] dv', (2.38) 
2u7t 

g,M2i (v, roa, t) = [Aa (v, Ola, t) +Ab (v, Ola, t)] oi0 
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- [ (2j) ikv + h3 ] M2j (v, coa, t) - h4D2j (v, coa, t) 

r 
+ 

0
1/2 exp (-v

2 
I u

2
) J'.:'

00 
[M2j ( v', coa, t) + D2j ( v', coa, t)] dv' 

2u7t 

r 
+ b 1/2 exp (-v2 I u2) J:: [M2j ( v', coa, t) - D2j ( v', coa, t)] dv', (2.39) 

2u7t 

d ET (t) 
-E (t) = - -- - (co-!l)E.(t) 
df T 2f l c 

coolfoofoo P;,-1 (v, coa, t) -Pi, 1 (v, coa, t) 
- £

1 
L o --oo ,, ; dvdcoa, (2.40) 

d E;(t) 
-E.(t) = ---+ (co-!l)E (t) df l 2f T 

c 

+ coolfoofoo Pr,-1(v,coa,t)-Pr,1(V,COa,t) 
£

1
L o -oo ,.,. dvdcoa, (2.41) 

where the decay rates have been replaced by a new hybrid set 

, , 
('Ya+ 'Yab +'Yb) 

(2.42) hi = 2 ' 

, 
(Ya +yab -yb) 

(2.43) h2 = 2 ' 

, 
(Ya -'Yab +'Yb) 

(2.44) h3 = 2 ' 
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h
4 

= (Ya-'Yab -i) 
(2.45) 

The z integrations in the field equations have selected out the -1 and + 1 spatial 

hannonics of the polarizations, because the higher-order components averaged out to zero 

over long distances compared to the wavelength of the laser field. 

NORMALIZED EQUATIONS 

It is helpful to write the equations in a normalized form, one possibility is 

g/r, 2j+ 1 {V, U, t) = -y{ [ 1 + (2j + 1) iV] Pr, 2i+ 1 {V, U, t) 

+ (y - U) p ;, 2j + 1 ( V, U, t) 

+ iA; (t) [D2i (V, U, t) -D2j+ 2 (V, U, t)] } , (2.46) 

g/;, 2i+ 1 (V,U,t) = -y{ [1+(2j+l)iV]P;, 2j+l(V,U,t) 

- (y - U) pr, 2i + 1 ( V, U, t) 

-iAr (t) [D2j ( V, U, t) - D2j + 2 ( V, U, t)] } , (2.47) 

g
1
v 2i (V, U, t) = [A.

0 
(V, U, t) -A.b (V, U, t)] oi0 

- [h1 + (2j)iyV]D2i(V, U,t) -h2M 2i(V, U,t) 

-iy1 { [Ar (t) P;, 2j- l (V, U, t) -A; (t) Pr, 2j- l (V, U, t)] 

- [Ar (t) P ;, 2j + 1 ( V, U, t) - A; (t) Pr, 2i + 1 ( V, U, t) ] } 
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Er 
+ 21t~ exp (-E

2v2) J:_ [M2j ( V', U, t) + D2i ( V', U, t)] dV' 

Er 
- 21C~ exp (-E

2v2) J:_ [M2j ( V', U, t) - D2i ( V', U, t)] dV', (2.48) 

itM2j (V, U, t) = [A.a (V, U, t) + A.b (V, U, t)] oj0 

- [h3 + (2j) iyV] M 2i ( V, U, t) - h4D2i ( V, U, t) 

Er 
+ 21C~ exp (-e

2v2) J:_ [M2j ( V', U, t) + D 2j ( V', U, t)] dV' 

Er 
+ 21C~ exp (-e

2v2) J:_ [M2j ( V', U, t) - D2i ( V', U, t)] dV', (2.49) 

d
dAr(t) = __ 21 [(Ar (t) + o (Y-Yo) A; (t)) 
t tc 

-J:_J:_P;, 1i (V, U, t) dVdU], 

d
d A; (t) = --

2
1 

[ (A; (t) - o (y-y0) Ar (t)) 
t IC 

+ J:00 J:_P;, 1i (V, U, t) dVdU]. 

where the new variables 

V=2'__kv 
EU - y' 

(2.50) 

(2.51) 

(2.52) 
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( ro a. - roo) 
(2.53) U= 

' 'Y 

( ro - roo) 
(2.54) y= 

' 'Y 

(il- roo) 
(2.55) Yo= , 

'Y 

2y a Yb 
'Yi = <r'a -rah +yb) ' (2.56) 

O = 2ytc, (2.57) 

and the normalized field components 

1/2 

µ [ h3 J E 
A, = 2h (h1 h3 - h2h4) 'Y r 

= ~['Ya' - 'Yab + rb'] l/2 
2h 2yy ''Y , E, , 

a b 
(2.58) 

A - µ 3 E. h Jl/2 
i - 2h[ (h1h3-h2h4)'Y l 

['Y 
, , 1/2 

= ~ a -rah +rb J 
2h 2yy ''V , E;, 

a 'b 
(2.59) 

have been introduced. The parameter E = ((Avh) I (Av d)) (In 2) 
112 

is the natural 
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damping ratio<30> which measures the relative magnitude of the homogeneous and the 

inhomogeneous linewidths and the parameter o = 2ytc measures the ratio of the 

polarization and the electric field decay rates. The Guassian velocity distribution in the 

pump functions has also been factored out according to 

"-a (v, roa) = 
La ( roa) 2 2 

112 
exp (-v lu) , 

U1t 
(2.60) 

and A.b(v,roa) = 
Lb (roa) 2 2 

112 
exp (-v /u) , 

U1t 
(2.61) 

where La and Lb are total pump rates to the upper and lower laser levels respectively. The 

symbol OjO is the so-called "Kronecker Delta" which has the property 

o.o = [1 
J 0 

if j = 0 

(2.62) 

if i*O 

MONOISOTOPIC LASER EQUATIONS 

Equations (2.46)-(2.51) form a general set which allows for the possibility of a 

distribution of the natural transition center frequency ( U in the normaliz.ed units). The 

value of this normaliz.ed transition center frequency, U can also be negative, and the lower 

limit of the integration over u has been extended to minus infinity. In our study here we 

will concentrate particularly on the stability criteria of monoisotopic lasers such as xenon 

laser. The result of this is that the polarization and the population variables may be regarded 

as delta functions of the parameter U and they can be replaced with a new set of 
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variables(21) 

Pr, 2j+ 1 {V, t) = J:.Pr, 2j+ 1 {V, t) 0 ( U) dU = J:.Pr,2j+ 1 (V, u, t) dU '(2.63) 

P;, 2j+ 1 (V,t) = J:.P;, 2j+iCV,t)o(U)dU = J:.P;, 2j+l(V,U,t)dU, (2.64) 

D2j(V,t) = J:.n2j(V,t)o(U)dU = J:.n2j(V, U,t)dU' (2.65) 

M 2i (V, t) = f:,M2i (V, t) o ( U) dU = f:,M2i (V, U, t) dU, (2.66) 

A.
0 

(V, t) = J:.1..
0 

(V, t) o ( U) dU = f:,1..
0 

(V, U, t) dU, (2.67) 

A.b (V, t) = f:,A.b (V, t) o ( U) dU = f:,1..b (V, U, t) dU, (2.68) 

where o ( U) is the Dirac delta function in the U variable. With these variable substitutions 

and with U set equal to zero, Eqs.(2.46)-(2.51) reduce to 

g/r, 2j+l(V,t) = -y{ [1+ (2j+l)iV]Pr, 2j+i(V,t) +yP;, 2j+l(V,t) 

+iA;(t) [D2i(V,t) -D2i+ 2(V, t)]}, (2.69) 

g/;, 2j+ 1 (V,t) = -y{ [1+ (2j+l)iV]P;, 2j+i(V,t)-yP;, 2j+l(V,t) 

-iAr (t) [D2i (V, t) -D2i+ 2 (V, t)] } , (2.70) 

gtn2j(V,t) = [l..a(V,t)-1..b(V,t)]ojO- [h1+ (2j)iyV]D2j(V,t) 

-h2M2i (V, t) - iy1 [Ar {t) P;, 2j- l (V, t) -A; (t) Pr, 2j- l (V, t)] 
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-[Ar (t) P;, Zj+ 1 (V, t) -A; (t) Pr, Zj+ 1 (V, t)] } 

er 
+ 21t~ exp (-e2 v2) l:_ [M2j ( V', t) + D2j ( V', t)] dV' 

er 
- 21t~ exp (-e

2 v2) l:_ [M2j ( V', t) - D2j ( V', t)] dV' , (2.71) 

gtM2j(V,t) = [Aa(V,t) +Ab(V,t)]ojO- [h3+ (2j)iyV]M2j(V,t) 

-h4D 2j (V, t) 

er 
+ 21t~ exp (-e

2 v2) l:_ [M2j ( V', t) + D2j ( V', t)] dV' 

er 
+ 21t~exp(-e

2v2)l:_[M2j(V',t)-D2j(V',t)]dV', (2.72) 

d 1 1-d l r (t) = -21 [Ar (t) + o (y - y0) A; (t) - -ooP;, 1i ( V, t) dV] , 
c 

(2.73) 

d 1 ~ 1-dtA; (t) = -21 [A; (t) - u (y-y0 ) Ar (t) + -oop r, 1i (V, t) dV] . 
c 

(2.74) 

This reduced form of the laser equations is the basis for our stability analysis in this study. 



CHAPTER III 

SIMPLIFIED MODEL 

The general laser model obtained earlier still contains more variables than 

necessary to determine the qualitative pulsation behavior of the system. At first glance one 

may observe that the difficulty in finding the solutions for this set of equations results from 

the large number of equations involved. This is inevitable because of the inherent 

complication of the laser system even in its simplest configuration. For example, one must 

consider a whole new set of equations for each velocity class of moving atoms or molecules 

of the laser medium in the inhomogeneously broadened gas laser. As previously 

studied (Zl), at least a hundred separate velocity classes must be considered in order to 

accurately represent the pulsation phenomena in a xenon laser. Another complication 

arises from the large number of spatial harmonics which are necessary for the explanation 

of some effects that are specific to standing-wave lasers, such as spatial hole burning. We 

find that at high values of saturation one may need to retain the number of the spatial 

harmonic up to 18. 

Before we proceed any further it is helpful to make some simplification to the 

general laser model above so that it will contain the minimum number of parameters that 

determine the pulsation behavior of the laser system but still give a qualitative agreement 

between theoretical and experimental results. In this chapter we will review and use the 

results of simplification of Ref. [22]. The simplification will help speed up the 

computation time, but when one needs quantitative agreement between the theoretical and 

the experimental results the general laser model is inevitably required. 
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One major complication in the model is the inclusion of spectral cross-relaxation, 

which is an important effect in achieving quantitative agreement with data obtained using 

xenon lasers. The noticeable effects of the spectral cross-relaxation are to speed up the 

pulsations and to stabilize them<21>. In addition, numerical averaging of laser intensity also 

shows that<21> the average intensity is higher when the spectral cross-relaxation is included. 

This is an expected result because with the inclusion of the spectral cross-relaxation, the 

saturating fields in the laser cavity can interact with a larger number of atoms or molecules 

of the amplifying medium. For the qualitative investigation purposes here we choose to 

switch off the spectral-cross relaxation effect by setting r a = r b = 0, the result of this is 

simpler equations for the parameters D2i(V, t) and M2i(V, t), Eqs. (2.71) and (2.72), 

which can be rewritten as<22> 

i
1
D2i(V,t) = [A.a(V,t)-A.b(V,t)]oi0 - [h1 + (2j)iyV]D2i(V,t) 

- h2M2i (V, t) - iy1 [Ar (t) P;, 2j- l (V, t) -A; (t) Pr, 2j- l (V, t)] 

-Ar(t)Pi,2j+l (V, t) +A;(t)Pr, 2j+l (V, t)], (3.1) 

and i
1
M 2i (V, t) = [A.a (V, t) + A.b (V, t)] oj0 - [h3 + (2j) iyV] M 2i (V, t) 

-h4D2i ( V, t) . (3.2) 

Another complication of the general model concerns the arbitrary energy-level 

model that has been chosen. The general laser model allows for arbitrary decay rates from 

each laser level and also an arbitrary decay rate between the upper and lower laser levels. 

As previously shown<22>, if 'Yb = 'Ya+ 'Yab• then the population sum parameter, Mand its 

dynamical equation, Eqs.(3.2), can be ignored from the general set because Eq. (3.1) 
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becomes independent of the parameter M2j. This will also help reduce the number of 

equations involved in the computation. It was shown that these simplified energy decay 

rates have little qualitative effect except for the laser operation close to threshold<22>. By 

setting 'Yb = 'Ya+ 'Yab = rd. and r a = r b = 0' the hybrid decay rate h1 simplifies to 

h 
- <ra' + 'Yab + rb') 

1 -

_ (Ya+ ra) +rab +(Yb+ rb) 
- 2 

=rd. (3.3) 

This rd will be shown shortly to be the "population decay rate". With these simplifications 

the general laser model can be rewritten as<22>: 

itr. 2j+ 1 {V, t) = -y{ [1 + (2j + 1) iV] Pr, 2j+ i(V, t) + yP;, 2j+ 1 {V, t) 

+iA;(t) [D2i(V,t) -D2j+ 2 (V,t)]}, (3.4) 

it;. 2j+ 1 {V, t) = -y{ [1 + (2j + 1) iV] P;, 2j+ 1 {V, t) -yP r, 2j+ 1 {V, t) 

+ iA, (t) [D2i (V, t) -D2j+ 2 (V, t)] } , (3.5) 

g
1
D 2i(V,t) = [A.

0
(V,t)-A.b(V,t)]oi0 - [yd+ (2j)iyV]D2i(V,t) 

-iyd[ (A, (t) P;, 2j- l (V, t) -A; (t) P,, 2j- l (V, t)) 

-A, (t) P;, 2j+ 1 (V, t) +A; (t) P,, 2j+ 1 (V, t)], (3.6) 

:lr (t) = -ye [A, (t) + O (y- Yo) A; (t) - J~Pi, li ( V, t) dV] , (3.7) 
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d Joo df i (t) = -'Ye [A; (t) - O (y- y0) Ar (t) + __ Pr, Ii ( V, t) dV] . (3.8) 

From Eq. (3.6) for j = 0 and assuming no field, one can easily see that 'Yd is the 

decay rate of the population parameter, D2i. For numerical calculation purposes and for 

easier graphical display of the stability contours, it proves convenient to introduce the 

dimensionless parameters<4> o = y/ye, p = "fd/"f, and t' = 'Yet. With these definitions, 

Eqs.(3.4)-(3.8) can be written as 

ltRr, 2j+t(V,t') = -o{ [l+ (2j+l)iV]Pr, 2i+t(V,t') +yP;, 2j+t(V,t') 

+ iA; (t') [D2i (V, t') -D2i+ 2 (V, t')] }, (3.9) 

ltR;, 2j+t(V,t') = -o{ [1+ (2j+l)iV]P;, 2j+t(V,t')-yPr, 2j+t(V,t') 

+ iAr (t') [D2i ( V, t') - D2i + 2 ( V, t')] } , (3.10) 

d~,D2j(V,t') = ;c p .. a(V,t')-A.b(V,t')]ojO- [po+ (2j)ioV]D2j(V,t') 

-ipo[ (Ar (t') P;, 2j- l (V, t') -A; (t') Pr, 2j- t (V, t')) 

-Ar (t') P;, 2j+ 1 (V, t') +A; (t') Pr, 2i+ 1 (V, t')], (3.11) 

fr.,Ar (t') = - [Ar (t') + o (y - Yo) A; (t') - j:_P;, 1; ( V, t') dV] , (3.12) 

fr.,A; (t') = - [A; (t') - o (Y-Yo) Ar (t') + J:_p r, 1; (V, t') dV] . (3.13) 

As was suggested in the previous discussion<22>, we separate the population 
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difference into a broad Gaussian part and a narrow part, D' 2j ( V, t') which reflects the 

localized distortion caused by the saturating laser field as 

, EE2j (t') 2T .2 , , 
D2j(V, t) = c exp (-E v-) +D 2j(V, t) . (3.14) 

And the pumping functions can be written in the form 

£La (t') 
A.a ( V, t') = , exp (-e2v2), (3.15) 

ELb(t') 2T..2 
A.b(V, t') = , exp (-E v-), (3.16) 

where the background part of the population difference and pumping functions are assumed 

to posses the Maxwell-Boltzmann velocity distribution in the normalized velocity variable, 

V. By substituting these parameters into Eq. (3.11), the equation may be split into the two 

parts, 

/i-,E2j (t') = ~c [La (t') -Lb (t')] ojO - opE2j (t'), (3.17) 

c2 ·) ·ovE (t') 
and :i-)J' 2/V, t') = - [op+ (2j) iOV] D' 2j (V, t') - J 

1 

.Ii 2
j exp (-e

2v2) 

-iop[ (Ar (t') P;, 2j- I ( V, t') -A; (t') Pr, 2j- I (V, t')) 
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-Ar (t') P;, 2j + 1 (V, t') +A; (t') Pr, 2j+ 1 (V, t')] . (3.18) 

THRESHOLD PARAMETER 

At this point it is helpful to introduce the concept of the threshold parameter. This 

threshold parameter is useful because it provides a direct link between laboratory 

experiments and theoretical computations. The threshold parameter, r is usually defined as 

the ratio of the value of actual pump rate of the operating laser to the value of pump rate 

required for the laser to reach threshold. A relation between pump rates La, Lb and 

threshold parameter can be expressed as<22> 

L = rLath a 

-1 

= rJi { [(1- 'Yab)_!_- Lb/La]J:_ exp (-E2v2) dV} (3.19) 
E 'Yb 'Ya 'Yb 1 + y2 

where Lath is the total pump rate to the upper laser level when the laser is at threshold and 

we also assume that pumping rates, La and Lb, are time-independent. From Eq.(3.19), at 

threshold we have r = 1. In our study here we have Yb = 'Ya+ 'Yab = 'Yd, and together with 

Eq.(3.19) one can write 

L = r Jrr. [(Yb -yab)_!_ _ Lb/ La] Joo exp (-e
2

v2) dV}-l 
a E { 'V 'V 'V -oo r:l. ' lb la lb 1 + v-

= r/rr. { [ ((Ya+ 'Yab) -yab)_!_ _ Lb/La]J:. exp (-e
2v2) dV} -I, 

E 'Yb 'Ya 'Yb · 1 + y2 



Therefore, 

= rJX, {[('Ya)_!_- Lb/La]J:_ exp (-E
2V) dV}-l, 

E 'Yb 'Ya 'Yb 1 + V 

-1 

= rJX, [ (La-Lb)/La]s- exp (-e
2V) dV} , 

£ { 'Yd -00 1 + v2 

= r Ji x 'Y~a [J- exp <-e2v2) dv]-1 
£ (La-Lb) -- 1 + V 

(La-Lb) = rJi [Joo exp (-£2V) J-1 
£ 'Yd -- w:i. dV , 

1 + v-

and 0 ~Lb< La. From this one can easily write Eq.(3.17) as 

d I 1 [rJX, [s- exp (-£
2
V) J-l] 

dt,E2/t) = 'Ye £'Yd -oo l + V dV ojO - opE2j (t'), 

-1 

= r Ji 'Yd [s- exp (-e2V) dv] oio - opE2i (t') , 
£ 'Ye -oo 1 + V 

-1 

r,/i[f- exp(-e2v2) dv] <5. -opE2i(t'), =op- w:l 10 
£ -00 1 + v-

=op r,/i ) 
e(J:_ exp (-e2V) )oiO -E2i(t') . 

l + V dV 
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(3.20) 

(3.21) 

(3.22) 
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For numerical computation purposes, it is convenient to introduce a new numbering 

of the spatial harmonics for the dynamical variables. As suggested earliei22>, the same 

subscript k can replace both 2j + 1 in the polarization terms and 2j in the population terms. 

Equations (3.9), (3.10), (3.18), (3.22) can be replaced by 

0~;P r, k ( V, t') = - 0 [ { 1 + ( 2k - 1) i V} Pr, k ( V, t') + y Pi, k ( V, t') 

+ iA; (t') {£Ek (t') exp (-E2V) - EE (t') exp (-E2V) 
Jrr, k + 1 Jrr, 

+D'k(V,t')-D'k+l (V,t')}], (3.23) 

~;P; k(V, t') = -o[ {l + (2k-1) iV} P; k(V, t') -yPr k(V, t') 
ut • • • 

- iAr (t'){ £Ek (t') exp (-E2V) - EE (t') exp (-E2V) 
Jrr, k + 1 Jrr, 

+ D' k ( V, t') - D' k + 1 ( V, t') } ] , (3.24) 

0~,D' k (V, t') = - [op+ (2k- 2) iBV] D' k (V, t') 

-(2k- 2) ioVE (t') Eexp (-E2V) 
k Jrr, 

-iop[ (Ar (t') P;, k- l (V, t') -A; (t') Pr, k- l ( V, t')) 

- Ar ( t') P ;, k ( V, t') + A; ( t') Pr, k ( V, t') ] , (3.25) 
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Ji,Ek(t') =op! rJrr, I •(I:. expl~~v2) dV )°'I -E,(t') . 
(3.26) 

It was shown <22>that it is not necessary to carry out computations for k < 0. 

Eqs.(3.23)-(3.26), and (3.12)-(3.13) are valid fork> 1, and fork< 1 the equations can be 

eliminated by means of the following relations 

I * I Pr, -j ( V, t ) = P r,j ( V, t) , (3.27) 

I * I P;,-i(V, t) = P ;,j(V, t), (3.28) 

I * I D -i ( V, t ) = D i ( V, t ) . (3.29) 

However, for k = 1, Eq.(3.25) couples to a more negative value of k. In this case we will 

treat it separately and it proves easier if we work it out from the original equation in j 

numbering index instead of the equation in k numbering index. We can write Eq.(3.18) 

for j = 0 as 

0~,D0 (V,t') = -opD'0 (V,t')-iop[Ar(t')P;,-i(V,t') 

-A; (t') P r,-l (V, t') -Ar (t') P;, 1 ( V, t') +A; (t') Pr, 1 (V, t')] , (3.30) 

From the relations in Eqs.(3.27) and (3.28) we can write 
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I I $ 

Pr,-i(V, t) = (Pr,j(V, t)) , 

* = (Pr,jr (V, t') + iPr,ji) = Pr,jr (V, t') - iPr,ji• (3.31) 

I I * P._.(V,t) = (P . . (V,t)), 
I, "} I,) 

* = (Pi,jr ( V, t') + iP;,j;) = Pi,jr ( V, t') - iPi,ji• (3.32) 

where P r,jr ( V, t') and P r,ji ( V, t') are the real and the imaginary parts of P r,j ( V, t') , 

respectively. The same relation holds for P;,j ( V, t') .By separating P r,j ( V, t') and 

P i,j ( V, t') into their real and imaginary parts as in Eqs.(3.31 )-(3.32), one can easily write 

Eq. (3.30) for j = 0 as 

()~,D' 0 (V, t') = - opD' 0 ( V, t') - iop{ Ar (t') [P\ i(V, t') -P;, 1 (V, t')] 

A ( ') * I I + ; t [ P r, i( V, t ) - Pr, 1 ( V, t ) ] } , 

= -opD'o(V,t')-iop{Ar(t') (-i2P;,li(V,t')) 

+A; (t') (-i2Pr, 1i (V, t')) }, 

= -opD'o(V,t') -2Bp[Ar(t')P;,li(V,t') 

+A; (t') pr, li ( V, t') ]. (3.33) 

Because the case j = 0 corresponds to k = 1 in the k numbering index, from this we can 



write the equation for Dk ( V, t') with k = 1 as 

a~.,D' 1 (V,t') = -opD'1 (V,t') -2op[Ar(t')P;,i;(V,t') 

+A; (t') Pr, ti (V, t') ]. 

INITIAL CONDITIONS 

34 

(3.34) 

Equations (3.12)-(3.13), (3.23)-(3.26), and (3.34) form a complete set using k 

values of unity and larger. One can observe that this set of equations is general enough so 

that the pulsation behavior of lasers operating away from line center can also be 

determined. 

Before starting numerically solving time dependent solutions of the last set of 

equations above, it helpful to determine initial values for the dependent variables. This 

approach is useful in initiating the instability of the locally stable system. Casperson<4> 

showed that it is possible that one might be able to observe unstable behavior of the system 

even when the linear stability analysis showed that the steady state solutions are stable. The 

hard excitation of a steady state solution that is locally stable can cause undamped 

oscillation even at excitation levels below the instability threshold boundary imposed by 

linear stability analysis. We will consider these two separate instability threshold 

boundaries in a later chapter. 

A useful method in determini?g the initial values of dependent variables in the 

above laser equations is based on the idea of loss switching (or Q Switching). By this 

method the material is assumed to be pumped to some initial value of population difference 

which corresponds to a particular value of threshold parameter, while the field is held at 
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zero. Then a small value of field is injected to begin the computations. Therefore, at the 

outset the only nonzero dependent variables are the coefficients of the Gaussian population 

distribution in Eq.(3.14) 

At t' = 0 we have for Eq. (3.14) 

eE2j (0) 2 • .2 
D2i(V, 0) = ,- exp (-e v-). (3.35) 

The localized distortion terms D' 2i ( V, 0) are zero at t' = 0 because there is no field at 

t' = 0. With saturation effects set to zero one can write the steady state form of Eq. (3.26) 

as 

0 =op r,JX (3.36) 

One can easily observe that Ek = 0 for k :f:. 1 and in the case k = 1 one can write 

E1 ( V) = r JX [J- exp (-e2v2) ]-1 
E -oo • .2 dV , 

1 + v-
(3.37) 

This is the steady state value of E 1 at threshold and it is also the initial condition of E1 (t'). 

Fork = 1 one can also solve Eq. (3.26) for E1 (t'), according to, 
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r,/n; . 
A_E (t') + opE1 (t') = op _[_oo_ex-p.(-e2v2) dVJ 

dt' 

1 

E J- I+ V' 
(3.38) 

This is a first order differential equation in the standard form 

Ji,y ( t') + P ( t') y ( t') = Q ( t') which has a solution as 

J,. )'" - P(t") , P(t'")dt'" 
y (t') = e 0 

[ (J~ Q (t") 0 dt") + c]. (3.39) 

where c is an integration constant. Therefore one can write a solution of Eq. (3.39) as 

J,. l l - s dt" , .. 
E1 (t') = e o P J~ opr Jn; Jo f>pdt'" dt" + 

E (Joo exp ( -£2 v2) ) I c i ' 

-- w:i. dV 1 + v~ 

= e-Spt' opr,/n; 
E (Joo exp ( -E--;:;2-yz_)_) J~ e Spt" I + c i ' 

-oo dV 
1 + v2 

= e-Spt' r,/n; 

( 

--::--- Sp t' 

E J~ exp ( -£2 v2) d ) ( e - 1) + c i ' 

t+v2 v 
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= r,/it 
E (Joo exp (-E2v2) ) ( 1 - e-Spt') + ce --Spt' 

-oo dV ' 
1 + v2 

(3.40) 

At t' = 0 we have 

E
1 

(0) = r,Jrr. 
E (J:_ exp ( -E2 v2) ) ( 1 - 1) + c = c, 

l + v2 dV 

(3.41) 

and from the initial condition of E 1 (t') in (3.37) we had 

c = E1 = r,Jrr. 
E (Joo exp ( -e

2 v2) ) ' 
-00 T:l dV 

1 + v-

(3.42) 

Therefore one gets a solution of Eq. (3.38) as 

E
1 

(t') = r,Jrr. 
E (J:oo exp (-E2 v2) ) (1 - e -Sp t') 

1 + v2 dV 

+ r,Jrr. 
E (J:_ exp (-e2v2) )e-Spt', 

l + v2 dV 
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= r,Jic 
E (J~ exp (-E2y2) ) = E

1
. 

1 + v2 dV 

(3.43) 

which is time-independent. For the case of k *- 1 one can write 

fi,Ek (t') +op Ek (t') = 0. (3.44) 

By method of separation of variables one can solve for Ek ( t') as 

dEk (t') = -opdt', (3.45) 

lnlEk(t')I = -opt'+c1• (3.46) 

Ek (t') = Ce-f,pt' (3.47) 

where" In " is the natural logarithmic function and C = / 1 is the integration constant. 

From (3.36) we already knew that Ek (0) = 0 fork*- 1 so we have for Eq. (3.47) 

Ek(O) = 0 = C, (3.48) 

The final result for the case k *- 1 is 
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Ek(t') = 0 (3.49) 

for t' ~ 0. Typically the dependent variables in Eqs. (3.12)-(3.13), (3.23)-(3.26), and 

(3.34) are initially set to zero, and our derivation above yields E 1 (0) = E 1 in Eq. (3.43) 

as the only nonrero dependent variables at the starting point of the computation. 

STRONGLY HOMOGENEOUSLY BROADENED LASER EQUATIONS 

In the strongly homogeneous limit, Eqs. (3.12)-(3.13), (3.23)-(3.26), and (3.34) can 

be simplified further. The laser equations for this limit are obtained by integrating Eqs. 

(3.12)-(3.13), (3.23)-(3.26), and (3.34) over velocity while remembering that V is small. 

Eq. (3.26) has a solution as shown in Eqs. (3.37) and (3.49). The strongly homogeneous 

limit of Eq. (3.37) is obtained by integrating the equation over the velocity variable, V in 

the limit as E goes to infinite and V goes to rero. That is, from Eq. (3.37), 

E1 = lim E1 (V) = lim (r./i[Joo exp (-e
2
v2) J-l) 

V-+0,£--+oo V-+0,£--+oo E -oo 1 + v2 dV ' 

= r Ji ( lim [J:oo exp (-e2v2) dVJ-1). 
E V--+ 0, e--+ oo 1 + \J2 

r./i (~) = r. =--e Ji 

Next, we introduce new parameters 

Pr,k(t') = J~Pr,k(V, t')dV, P;,k(t') = J~Pi,k(V, t')dV, 

and D' k (t') = J~D' k (V, t') dV. 

(3.50) 



Eqs. (3.12)-(3.13), (3.23)-(3.25), and (3.34) can be rewritten as 

0~,Pr,k(t') = -o[Pr,k(t') +yP;,k(t') +iA;(t') 

(E1 oklD' k (t') -Dk+ 1 (t')) ], 

0~,l';, k (t') = - o[P;, k (t') -yPr, k (t') - iA; (t') 

(E1 oklD' k (t') -Dk+ 1 (t')) ], 
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(3.51) 

(3.52) 

0~.,D'k(t') = -opD'k(t') -iop[Ar(t')P;,k-l (t') -A;(t')Pr,k-l (t') 

-Ar (t') P;,k (t') +A; (t') Pr,k(t') ], (k > 1) (3.53) 

0~.,D' 1 (V, t') = - opD' 1 (V, t') -2op[Ar (t') P;, li (V, t') 

+A; (t') Pr, li (V, t') ], 

E1 (t') = r, Ek(t') = 0, (k> 1) 

fr-;Ar (t') = - [Ar (t') - O (Y-Yo) A; (t') - P;, 1i (t')], 

fr-;A; (t') = - [A; (t') - () (y - Yo) Ar (t') +Pr, li (t')] · 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

Eqs. (3.51)-(3.57) have been programmed, by considering the case of k = 1 and k:I: 1 

separately, and numerically solved to study the stability criteria of strongly homogeneously 

broadened standing-wave laser oscillators. The numerical calculation results have proved 

useful especially in determining the type 2 stability threshold and for lasers that operate at 

off-line center which we will discuss in a later chapter. 



CHAPTER IV 

STABILITY ANALYSIS 

The stability criteria curves are of substantial practical important. They 

helps one to easily determine qualitatively the characteristics of the output that a laser with 

a particular set of operating parameters will produce. In this chapter the methods of finding 

these stability criteria curves will be studied. As previously studied <4>, there are two types 

of stability criteria that are of special interest and must be distinguished. The first type or 

"type 1 stability" is the so-called "perturbation stability". Its concerns the smallest value of 

the threshold parameter for which infinitesimal perturbations of the steady state solutions 

will increase with time. Qualitatively, what usually is done in this case is, after solving for 

a steady state solution of a parameter, one introduces a small value of disturbance 

(perturbation) into that steady state solution and calculates the time dependent value for that 

parameter. If the perturbation that one introduces does not grow with time, one says that the 

steady state is stable. But if the perturbation grows with time, one says that the steady state 

is unstable. In this study we will use the method of "Linear Stability Analysis" to determine 

this type 1 stability of laser systems. 

The second type or "type 2 stability" corresponds to lasers that are initially 

pulsing, and the threshold parameter is smoothly reduced until the pulsations stop. In this 

chapter we will apply the model that we have from previous sections to determine these two 

different types of stability criteria particularly in the limit of strongly homogeneous line 

broadening. We will study the effects of line center and off line center operations. 
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LINEAR STABILITY ANALYSIS 

In determining the type 1 stability curves, we will use the method .of linear 

stability analysis. The method of linear stability analysis is a useful method in the study of 

dynamical systems that can be used to test whether the steady state solutions of a linear 

system under consideration are stable when subjected to an infinitesimal perturbation. In 

simple terms, the method deals with the expansion (linearization) of the unknown (linear 

or non-linear) solutions of a problem in the small neighborhood of a steady state solution 

as a sum of that steady state solution plus an infinitesimal perturbation. The linearized 

equations, which are usually a set of coupled first order differential equations, are then 

solved by assumed solutions in the exponential form with a complex rate constant. By 

substituting these assumed solutions into the dynamical equations one can obtain an 

algebraic equation of this complex rate constant. By solving for solutions of this complex 

rate constant one can determine whether the steady state solution is stable. The criterion 

used here is that if all solutions of the complex rate constant equation have negative real 

part, the steady state solution is stable but if any one of the solutions has positive real part 

the steady state solution is unstable. 

From Eqs.(2.17)-(2.22) if we set r a = r b = 0, according to [29], we have 

(gt+ v tz) Pr (v, roa, z, t) = - { ro- roa) P; (v, roa, z, t) - 'YP r (v, roa, z, t) 

µ2 . 
+ 1i sm (kz) E; (t) D (v, roa, z, t), (4.1) 

<it+ vtz) P; ( v, roa, z, t) = ( ro - roa) Pr (v, roa, z, t) - 'YP; (v, roa, z, t) 
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µ2 . 
- 11 sm ( kz) Er (t) D ( v, O>cx, z, t) , (4.2) 

<it+ vgz) D (v, O>a, z, t) = Aa (v, O>a, z, t) -Ab (v, O>a, z, t) 

'Y + 'Y + 'Y 'Ya+ 'Yab -yb ) 
_ a ab b D (v, O>a, z, t) _ ,, M (v, O>a, z, t 

sin (kz) 
+ ~ [Er(t)P;(v,0>a,z,t)-E;(t)Pr(v,0>a,z,t)], (4.3) 

<it+ vgz) M (v, O>a, z, t) = Aa (v, O>a, z, t) +Ab (v, O>a, z, t) 

'Y - 'Y - 'Y 'Y - 'Y b +'Yb 
- a ab bD(v,O>a,z,t)- a ~ M(v,O>a,z,t), (4.4) 

d Er(t) 
-E (t) = ---- (ro-Q)E.(t) 
dt r 2t 1 

c 

(l) 

0 JOOJOO J' • -E
1
L o -- 0 sm(kz)P;(v,0>a,z,t)dzdvd0>a, (4.5) 

E.(t) 
JJ...E.(t) = --'-+ (ro-Q)E (t) 
dt 1 2t r c 

(l) 

0 JOOJOO J' • + El L o -oo o sm ( kz) Pr ( v, O>a, z, t) dzdvdroa, (4.6) 

The assumption r a = r b = 0 implies that there are no strong velocity changing collisi~ns 

between gas atoms. This exclusion of the strong velocity collision does not affect the 

qualitative behavior of the laser system under consideration<22>. On the other hand, as 

pointed out in chapter III, if one wants quantitative agreement between the theoretical and 

experimental results, this strong velocity collision effect must be retained. 
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HOMOGENEOUS BROADENING 

In a medium with homogeneous line broadening, all atoms or molecules of 

the laser medium interact with the electromagnetic (laser) field in the cavity in the same 

manner. The response of all atoms, as a whole, can be represented by the response from a 

single atom member of the laser medium. In gas lasers, especially the high pressure type, 

the gas atoms or molecules move very rapidly due to thermal or Brownian motion and 

collide with other atoms in a random manner or with the walls of the laser cavity. These 

collisions are elastic in the sense that there is no energy loss in the collisions. The 

collisions, on the other hand, scramble and randomize the phases of oscillations of the 

colliding atoms or molecules. This dephasing process makes the response of the system to 

the driving field the same, on average, as that of the individual atoms or molecules of the 

laser medium and is the major physical process in determining the homogeneously 

broadened response of gas lasers. 

Besides the collision process described, there are also other physical 

processes which lead to homogeneously broadened response of the collection of laser 

atoms or molecules; for example, the "lifetime broadening"<35> which is due to the finite 

lifetimes of the energy levels of the laser atoms. The thermal vibrations of the crystal lattice 

in solids will modulate the exact distances between laser atoms and nearby host atoms. 

This will affect the energy level spacings of laser atoms and will modulate the transition 

frequencies of the laser atoms by small but random amounts with time. This effect is called 

"phonon broadening"<35). Another example, especially in materials where the laser atoms 

are sufficiently dense, is the effect of the weak mutual coupling of the oscillating laser 

atoms which is caused by the local time-varying electromagnetic field generated by a 

member of the laser atoms is felt by neighboring atoms. This is called "dipolar 

coupling"<35>. This coupling between the individual resonant systems tends to randomize 
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and to broaden the response of the whole resonant system. Even if there exists different 

physical mechanisms which lead to the homogeneous broadened response of the laser 

transitions, in gas lasers the contributions from these effects are small compared to the 

dominant part which dues to the physical collisions between atomic members of the gas. 

Consider lasers operating in strong homogeneous limit by setting 

ma = m0, v = 0 in Eqs. (4.1)-(4.6), and also introduce a new set of variables<29> 

Pr (z, t) = J~ J:_p r (v, ma, z, t) dvdma, (4.7) 

P; (z, t) = J~ J:_P; (v, ma, z, t) dvdma, (4.8) 

D (z, t) = J~ J:_v (v, ma, z, t) dvdma, (4.9) 

M (z, t) = J~ J:_M (v, ma, z, t) dvdma, (4.10) 

A.a (z, t) = J~ J:'00 A.a (v, roa, z, t) dvdroa, (4.11) 

A.b (z, t) = J~ J:_A.b (v, ma, z, t) dvdma. (4.12) 

The condition ma = m0 means that all laser atoms have the same resonant frequency, and 

v = 0 means that the average velocity of the laser atoms is zero and we do not need to 

consider the Doppler broadening effect. The Doppler broadening effect leads to the 

inhomogeneous broadening response in some types of gas lasers. The velocity integrals 

that appear in Eqs. (4.7)-(4.12) are integrated over all possible velocities of the moving 

atoms. 

Next we assume a simplified energy-level model, line center operation, and 
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consider the empty cavity mode frequency to also be at line center. These conditions can 

be mathematically represented as 

'Yb = 'Ya+ 'Yab = 'Yd, (4.13) 

m = mo, (4.14) 

n = mo, (4.15) 

respectively, where 'Yd is the population difference decay rate as stated before, m is the 

assumed lasing frequency, '1 is the empty cavity resonant frequency, and m0 is the resonant 

frequency of the laser atoms. Equations (4.1)-(4.6) can be rewritten as<29> 

2 

gl,(z,t) = -yP,(z,t) +~ sin(kz)E;(t)D(z,t), (4.16) 

2 

il; (z, t) = -"(P; (z, t) - ~ sin (kz) E, (t) D (z, t), (4.17) 

g
1
v (z, t) = 'Ad (z, t) - ydD (z, t) 

+ sin~kz) [E,(t)P;(z,t) -E;(t)P,(z,t)], (4.18) 

d E,(t) mo J' . 
d
-E,(t) = --

2
---L 0 sm(kz)P;(z,t)dz, 

t tc E1 
(4.19) 

d - E; (t) mo J' . -d E; (t) - - -
2
- + -L 0 sm (kz) Pr (z, t) dz, 

t ~ E1 
(4.20) 
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where Ad (z, t) = A
0 

(z, t) - Ab (z, t). From the last set of equations above one may 

notice that there is no dynamical equation for the population sum parameter,M ( z, t) this 

is the result of the above assumptions in Eqs. ( 4.13)-( 4.15). The population sum parameter, 

M (z, t) does not appear in dynamical equations of other parameters, so its dynamical 

equation is dropped out without loss of information. From this set one can arbitrarily set 

Pr (z, t) = 0, E; (t) = 0, and assume a constant (spatially and temporally) pumping term 

Ad (z, t) = Ad = constant. The effect of this is to reduce the number of parameters 

involved and also reduce the number of dynamic equations. One sees that the equations for 

the real part of the polarization, Pr ( z, t) and the imaginary part of the field, E; ( t) can be 

dropped out, and the equation for the population difference, D (z, t) reduces to<29> 

a - sin (kz) 
atD(z,t) - Ad-yp(z,t) + 1i Er(t)P;(z,t). (4.21) 

It proves helpful to write the laser equations in a normalized form because the normalized 

set of equations is simpler. A convenient normalization can be obtained from the steady 

state versions of the equations. At steady state, gt= 0 one has from Eqs.(4.17), (4.21), 

and (4.19), respectively 

µ2 . 
0 = -yPis (z) - Tsm (kz) ErsD s (z), (4.22) 

sin (kz) 
0 = Ad -ydD s (z) + 1i Erspis (z), (4.23) 
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0 - Ers O>o 
- - 2tc - elLJ~sin(kz)P;s(z)dz. (4.24) 

The subscript s indicates steady state values of the parameters. From Eq. (4.22) one can 

solve for Pis (z) as 

µ2 . 
Pis (z) = - 'Y1i sm (kz) ErsD s (z). 

Substitute the value of Pis ( z) into Eq. ( 4.23) and solve for D s ( z) as 

µ2 
0 = Ad-'YJJs(Z) - 2sin2 (kz) £2rsDs (z), 

rn 

2 

= Ad-('Yd+ ~2 sin2 (kz)£2rs)Ds(z), 

Ds (z) = (Ad/yd) 
µ2 

1 + - 2 sin2 (kz) £2 
YYili rs 

From Eq. (2.58) we have 

A = ~["(a - 'Yab +Yb] 
112 

r 2n 2y'( "" Er, alb 

(4.25) 

(4.26) 

(4.27) 
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1/2 _ ~[Ya -yab +yb] Er, 
- 21i 2yya Yb (4.28) 

forYa = 'Ya+ra,ib = yb+rb,andra = rb = 0. Bysubstitutingyb = 'Ya+'Yab ='Yd 

into Eq. (4.28) one gets 

A = ~['Ya -yab +'Ya+ 'Yab] l/2 
r 21i 2yy 'Y Er, 

a d 

1 ]112 - ~[- Er. - 21i yyd (4.29) 

2 

Therefore in Eq. (4.27) we will let A
2 

rs = µ ? ff rs in order to get the same 
4yyd;,, 

normalization factor as in Eq. (4.29). Equation (4.19) can be rewritten in terms of the new 

2 112 

normalized field amplitude Ar = [ µ 2] Er as<29) 
4yyd;,, 

d [ roo µ [ 1 J 112 
1 J' . J dA,(t) =-Ye A,(t) +L21i - - 0sm(kz)P;(z,t)dz, 

t El 'Y'fd 'Ye 

wh~re 'Ye = 2~ is the electric field amplitude decay rate. 
c 

Next we introduce a new variable ~ where<29> 

(4.30) 
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s = kz, ds = kdz, (4.31) 

f P;(z,t)dz = f P';(s,t)ds = fkP';(s,t)dz, (4.32) 

and P;(z,t> = kP';(s,t), (4.33) 

then rewrite Eq. (4.30) as 

;l,(t) =-+,(I)+ ~~~[~dr ~)~'sin(~)P';(~,l)d~J. (4.34) 

7t 2kl 
where s1 = kl = ( 2) ( 7t) . We define a new variabte<29> 

roo µ [ I J 1/2 I 2kl , 
P;(~,t) = E1L21i yyd Ye (1t)P ;(s,t), 

_ roo µ [ I J 112 I 2kl P; ( z, t) 
- E L 21i yy ;y ( 7t) • ' 

1 d 'c 
(4.35) 

this helps us again in rewriting Eq.(4.34) as 

;l,(t) = -yc[A,(t) + J~12 sin(l;)P;(l;,t)dl;], (4.36) 

where the integration J~' sin ( l;) P'; ( l;, t) dl; is approximated by<29> 
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J~' sin (s) P'; ( s, t) ds:: 
2
:

1 J~12 sin (s) P'; ( s, t) ds. (4.37) 

Equation ( 4.17) can be rewritten in term of the new parameter P; ( s, t) as 

2 

it; (s, t) = -y{ P; (s, t) +~sin(~) [ 2
: (yyd) 

112
Ar (t) J 

x [mo~ (-1 ) 
112 

_!_ 2k/D(z, t) J }. 
e1L 21i 'YYd 'Ye 7t k 

(4.38) 

Define a new parameter D ( s, t) as<29> 

µ2 21i 112 [ mo µ 1 1/2 1 2kl]D ( ) D (r t) = - (- (yy ) ) - - (-) -k- z, t ' 
~, 'Y1i µ d e1L21i 'YYd 'Ye 7t 

2 = ~mo 1 2kl 
'Y1iE1L'Yek -:;cD (z, t). (4.39) 

Therefore, 

il;(s,t) = -y[P;(s,t) +sin(~)Ar(t)D(~,t)], (4.40) 

and Eq. ( 4.21) can be rewritten in terms of the new variables P; ( ~, t) and D ( ~, t) as 



where 

a Ad sin (s) [21i 1/2 J 
;rD (z, t) = -yd{ D (z, t) - - - - (yyd) Ar (t) 

t 'Yd 'Yd1i µ 

[
ElL 21i 1/2 7t J 

x roo µ (yyd) 'Yck2klP;(s. t) }, 

µ
2 

ro0 1 2kl (Ad) 
C>D<s.t> = -rd{D(s.t)-rnE1Lrck 7t rd dt 

2 _!:__ roo _1_ 2kl 1 21i 112 
11iE

1
Lyck x 'Yd1i (µ (yyd) ) 

(
ElL 21i 112 ) 

x (J)o µ (yyd) 'Yck sin ( s) Ar (t) P; ( S· t) }, 

= -rd[D(s,t) -D0 -4sin(s)Ar(t)P;(s,t)], 

µ
2 

roo 1 2kl (Ad) 
Do = 'Yh e1Lyck X 'Yd . 
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(4.41) 

(4.42) 

(4.43) 

(4.44) 

One can easily observe that D0 is the steady state population difference at threshold. 

Next if we let P;(s,t) = 2P';(z,t) and D(s,t) = 4D'(s,t), Eqs. (4.36), 

(4.40), and (4.43) can be rewritten in a more symmetrical format as<29) 

it'; ( s. t) = -y[P'; ( s. t) + 2sin ( s) Ar (t) D' ( s. t)], (4.45) 

g
1
n' ( s. t) = -yd [D' (s, t) - D' 0 - 2sin ( s) Ar (t) P'; ( s. t)], (4.46) 



:lr (t) = -ye [Ar (t) + 2 J~/2 sin { l;) P' i { l;, t) dl;], 

where D' _ Do o- 4· 
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(4.47) 

This last set of equations forms a basis from which the dynamical behavior of the 

laser system can be studied. Of particular importance for the study of the type 1 stability 

is the steady state value of the field intensity ls which equals to A
2 
rs+ A7s• where Ars• and 

Ais are the real and imaginary parts of the steady state value of the complex field amplitude, 

A, respectively. In our derivation here A;s = 0, therefore Is = A;s· At steady state, 

gt = 0, we have, for Eq. (4.45) 

P'is {~) = -2sin (~)ArsD's (~). (4.48) 

With this result the steady state value of the population difference from Eq. ( 4.46) is 

D's(~) = D'0 +2sin(l;)ArsP'is(~), 

= D' 0 -4sin2 (~) A;sD's (~). (4.49) 

This equation may be solved to obtain 

D'o 
- . D's(~) = 1 +4sin2 (~)Ars (4.50) 

Finally, from Eq.( 4.47) the steady state field is 

Ars = -2 J~/2 sin ( ~) P;/ ( ~) d~, (4.51) 



= -2 J~12 sin ( ~) [ -2 sin ( ~) ArsD' s ( ~)] d~, 

= 4ArsJ~12 sin2 (~)D's(~) d~. 

Dividing by the field amplitude Ars one obtains 

1 = 4J~12 sin2 (~)D's(~) d~. 

At threshold of the laser operation there is no field, A rs = 0, therefore 

D'sth (~) = D'o· 

From Eq. (4.52), considering the steady state condition at threshold one has 

D' 
1 = 4J~12 sin2 (~)D'0d~ = 4 2 °; = D'01C, 

I 
D'o = 1t 

Define the threshold parameter, r where<29> 

or 

r = D'01C. 

r 
D'o = 1t 

Therefore from Eq. (4.50) one can write 

D'o 

2 ' D's(~) = 1 +4sin2 (~)Ars 
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(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

(4.57) 
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r/TC 
- 2 . 

1 + 4sin2 ( l;) A,
8 

(4.58) 

At laser threshold the value of the threshold parameter equals one. At steady state we have 

from Eq. (4.52) 

1 = 4 J~12 sin2 ( s) D's (s) ds, 
D' 

J
1t/2 2 s> o ds, 

= 4 o sin ( t + 4sin2 ( s) A;s 

- 4rJ1t/2 sin2 ( s) 2 ds, 
- 1C 

0 
1 +4sin2 (s)A,s 

= 4r !J1t ( 1 - cos (2s) 
2 

)ds, 
1C 2 o 1 + 4sin2 ( s) A,

8 

= 2r J1t ( 1 - cos (2s) 
2 

)ds. 
1C 

0 
1+4sin2 (s)Ars 

The integration in Eq. (4.59) can be carried out by making use of the formula<31> 

~2n r/2 cos (2nx)dx = (-l)n1C (l -.Jl -a-) 
o l-a2sin2(x) 2J1-a2 a , 

where n is a positive integer and a
2 < 1. From Eq. ( 4.59) 

(4.59) 

(4.60) 

(4.61) 
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2r1t ( 1 ) 2r ( (-1) 1t ) (1-J..--1+4-A
2 

)

2 

l = 7t"2 J1+4A;s - 7t 2J1+4A;s i (2Ars) rs , 

= r r ( 1 - J 1 + 4A 2 )

21 . 
J1+4A;s 1 + i (2Ars) rs ' 

_ r [ 1-2J1+4A;s+(1+4A;s)] 
- 1 + 2 , 

j1 +4A2 -4A rs rs 

= r [-4A;s + 1-2Jl +4A;s + 1+4A;s] 

J1+4A2 -4A2 , rs rs 

r [1-J1 +4A
2

] = 2 rs Jt +4A2 -4A
2 

' rs rs 

2r [ (1-Jl + 4A;s) (1 + J1 +4A;s) J 
- J1 + 4A;s (-4A;s) ( 1 + J1 + 4A;s) , 

[ 
2 ] 

2r 1-1-4Ars 

- J1 + 4A;s (-4A;s) ( 1 + J1 + 4A;s) ' 

2r 

- (1+4A;s) + J1+4A;s 
(4.62) 

Equating Eq.(4.58) and (4.61) we obtain a useful fonnula<29) 
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· 2 (") 2r 
4rJx/2 sm ~ d~ = 1 = ' 
1t O I +4sin2 (~)A;s (1 +4A;s) +Ji +4A;s 

• 2 (") 7t/2 
Jx/2 sm ~ d~ = ..---:--• 

O 1 + 4sin
2 

( ~) A;s ( 1 + 4A;s) + Jt + 4A;s 
(4.63) 

which we will use it later. From Eq. (4.62) we write 

cJ~1_+_4_A_2_rs> 2 
+ J1+4A2 TS - 2r = 0, (4.64) 

which is a quadratic equation in the parameter J 1 + 4A 
2 
rs with solutions 

Jt+4A2 - -l±J1+8r 
TS - _ (4.65) 

Because the quantity J 1 + 4A 
2 

rs is positive, we choose the solution with the plus sign in 

the middle or 

J1+4A2 - -1+Jt+8r 
TS - ----::,..._.----=.:.. 

"" ' (4.66) 

From this one can solve for A;s as follows 

1+4A2rs = !o-2J1+8r+l+8r) = ~(1+4r-J1+8r), 

A2 = (4r-1-J1+8r) 
rs (4.67) 

This value of A;s is the normalized steady state value of the laser field intensity which is an 
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important parameter that will be used to test the quantitative agreement between the 

analytical and numerical computational results. 

TYPE 1 (PERTURBATION) STABILITY 

For the study of type 1 (perturbation) stability based on the method oflinear 

stability analysis we will expand solutions of the dynamic equations governing the behaVior 

of the system in terms of the steady state solutions plus small perturbations. That is 

P';<s.t) = P';s<s) +P";<s.tL (4.68) 

D' ( s. t) = D / ( s) + D" ( s. t) , (4.69) 

A, (t) = A,s +A", (t), (4.70) 

where the subscript s indicates the steady state solutions and the double primed quantities 

represent the infinitesimal perturbations of the corresponding parameters<29>. Substituting 

these linearized parameters into their dynamic equations, Eqs. (4.45)-(4.47), and noting 

that the time derivative, g
1 

of the steady state solutions is zero, we obtain 

gl";<s.t) = -y{P';s<s) +P";<s.t) +2sin(s) 

x [A,sD's (s) + A,sD" ( s, t) +A", (t) D's ( s) +A", (t) D" ( s, t)] }, (4.71) 

fp" {s, t) = -yd{ D'/s) + D" (s, t) -D' 0 - 2sin ( s) 

x [A,sP'is(s) +A,sP/'(~,t) +A",(t)P;/(s) +A",(t)P/'(s,t)] }, (4.72) 
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J
1
A"r (t) = -re[ Ars +A" r (t) + 2 J~12 sin (s) (P'is(~) + P"; ( l;, t)) dl;J. (4.73) 

The quantities A" r ( t) D" ( ~. t) , A" r ( t) P;" ( l;, t) can be neglected from this set of 

equations because their values are second order smaller than other parameters in the same 

equations. By neglecting these second order small terms, the equations reduced to 

fit";(l;,t) = -r[P";(l;,t) +2sin(l;) (ArsD"(~,t) +A"r(t)D'8 (~))], (4.74) 

ttD"(~,t) = -rd[D"(~,t) -2sin(l;) (ArsP";(~,t) +A"r(t)P';8 (~))], (4.75) 

:tA "r (t) = -re [A" r (t) + 2 J~12 sin ( s) P"; ( ~. t) dl;] . (4.76) 

This is a set of coupled first order nonlinear differential equations which in 

general is difficult to solve analytically but one still can always solve it numerically. Of 

particular interest here, however, is not the value of the solutions themselves (but if one can 

solve for them, it will be the best), instead it is the qualitative temporal dynamic behaviors 

of the solutions. In this case we assume solutions of the above equations in the exponential 

form as<29> 

P"; ( ~. t) = P"' i ( ~) exp (st) , 

D" ( ~. t) = D"' (~)exp (st), 

A"r (t) = A"' rexp (st), 

(4.77) 

(4.78) 

(4.79) 
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where the temporal behaviors of the solutions are assumed to be absorbed into and 

determined only by the complex rate constant s. With these solutions substituted into 

Eqs.(4.74)-(4.76) we get 

sP"';(~) = -y[P"';(~) +2sin(~) (ArsD"' (~) +A"'rD's(~))], (4.80) 

sD"' (~) = -rd [D"' (~) -2sin (~) (ArsP"'; (~) +A"' rp'is (~))], (4.81) 

sA"' r = -re [A"' r + 2 J~12 sin(~) P"'; (~) d~]. (4.82) 

Rearrange the equations as 

(s+y)P"';(~) = -2ysin(~) [A"'rD's(~) +ArsD"' (~)], (4.83) 

(s +'Yd) D'" { ~) = 2ydsin ( ~) [A"' rP'is ( ~) + ArsP"' i ( ~)], (4.84) 

(s +'Ye) A"' r = -2'Yef~12 sin ( s) P"'; ( s) d~, (4.85) 

and solve for P"' ; ( ~) , D"' ( s) , and A"' r as 

P"' (Y) - A 2 rs ~ ' 2ysin(~) [ "' ( r/x )+A D"' (r)J (4.86) 
i ~ - (s + 'Y) r 1 + 4sin2 ( ~) Ars 

2ysin(~) ( ( r/x )) 
D"' (~) = (~+rd) [A"'r -2sin(~)Ars 1+4sin2(~)A;s 

+ ArsP"' i { ~) ], 
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= 2ydsin(~) l- A"' 7sin(~)A7s(¥) l 
(s+yd) 1+4sin2(r)A2 +ArsP"';(~) ' 

'=> rs 
(4.87) 

2y 
A"' r = , n __._ :. \ f ~12 sin ( ~) P"' ; ( ~) d ~. (4.88) 

where we also use Eq.( 4.48), and ( 4.58) to substitute for parameters D's ( ~) and P' is ( ~) . 

Next we eliminate D"' ( ~) from the last set of equations by substituting 

D"' ( ~) from Eq. ( 4.87) into Eq. ( 4.86): 

P
"' (Y) _ 2ysin(~) A"'/rht) 2y~rssin(~) 
·':>-- { +-c-----
1 (s + Y) 1+4sin2 ( ~) A;s (s +'Yd) 

X _ rs 7t 
t + 4sin2 (~)A2 +A,,P"' ,ml}, [ 

A"' 
7
sin (~)A (2r) 

rs J 

[ 
4yy~;ssin2 (~) ]P"' ;(~) = 

1 + (s+y) (s+yd) 

2ysin (~)A"' r (r/1t) 

(s + y) ( 1+4sin2 ( s) A;s) 

[ 
4y~;ssin2 (s)] 

x 1-----
(s+yd) ' 

P"'; (s) 
[ 

2ysin(~)A"' 7 (r/7t) 2 ][l- 4y~;ssin2 (s)] 
(s + y) ( 1+4sin2 ( s) ATS) (s +'Yd) 

= [
1 

+ 4yy~;8 sin2 (s)] 
( s + 'Y) ( s + 'Yd) 

(4.89) 
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Then substitute this value of P"'; (z) into Eq. (4.88) and pull A"' r out of the integral 

sign(29). 

[ 
4ytt4;ssin2 ( ~)] 

sin
2 
(~) 1 

- (s +'Yd) d~. 
4yycA"' r(rht) Jx/2 [ 4yytt4;ssin2 (~)] 

A"'' = (s +y) (s +'Ye) o (I+ 4sin2 (~)A;,) I+ (s + y) (s +yd) 

1 = 
[ 

4ytt4;ssin2 ( ~)] 
sin

2 
( ~) 1 - (s +'Yd) d~, 

4yyc (rht) J~/2 [-4'YY:_:~JA;-:ss,--in72 ::(~\)] 
(s + y) (s +ye) (I+ 4sin2 (~)A;,) I+ (s + y) (s +yd) 

(4.90) 

=Ii +I2, (4.91) 

where 

sin
2 (~) d~, 

Ii = C o 
2 

4YYtt4rssm ~ J x/2 2 · 2 ( ") ] 

(I +4sin
2 (~)A,,) [ 1 + (s +y) (s+yd) 

(4.92) 

12 = c[ 2 
[sin

2 (~)] d~, 
4ytt4;s ]Jx12 [ 4'YYtt4;ssin2 (~) J 
(s +yd) o (I+ 4sin2 (~)A;,) I+ (s +y) (s +yd) 

(4.93) 

and 
4yyc (rht) 

C= . 
(s + y) (s +Ye) 

(4.94) 

One can observe that the integrands of Eqs. ( 4.92)-( 4.93) are in the forms 
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2 

x , and , • . : ,. . , , , which can be written in terms of partial 

fractions as<29) 

x 
(1 +ax) (1 +bx) -

c d --+--
(1 +ax) (1 +bx)' 

c+cbx+d+adx 
= ' (1 +ax) (1 +bx) 

= 
(c+d) + (ad+ cb)x 

(1 +ax) (1 +bx) ' 

then c + d = 0, and (ad+ cb) = 1, which can be solved for c, and d as 

c = -d, 

1 
c = (b- a)' 

and d= 
1 

(b-a) · 

2 

The partial fraction of , • . ~ , • . • , 1s 

2 

x = x[ (1 +ax)x(l +bx)} 

= x[ (1 :ax)+ (1 :bx)} 

(4.95) 

(4.96) 

(4.97) 

(4.98) 
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ex dx 
= +--(l+ax) (l+bx)· 

(4.99) 

From Eqs. (4.92)-(4.93) we have for a, b, and x 

a = 4A2rs• (4.100) 

4 ~2 
b = YY rs 

(s+'Y) (s+1d)' 
(4.101) 

= 
yy~ 

(s+1) (s+'Yd)' 
(4.102) 

x = sin2 (l;). (4.103) 

We have from Eq. ( 4.63) 

/ 2 sin2 ( l;) 1t/2 
JJt dl; = ==· 

O 1+4sin
2 

( l;) A;s ( 1+4A;s) +Ji+ 4A;s 

Jx/2 sin
2 

( l;) dl; = 1t/2 ..... , 
0 1 +a sin2 ( l;) ( 1 +a) + JI +a 

(4.104) 

and from Eq. (4.61) we have 

JJt/2 dl; - 1t/2 
0 

1-a2 sin2 (l;) - J1 -a2 ' 
(4.105) 



or Jx/2 d~ 
0 l+asin2 (~) 

7t/2 
- Jt +a· 

Therefore Eqs. (4.92), and (4.93) can be rewritten as 

11 = c[cJx12 d~ +djx12 d~ ]· 0 1 + asin2~ 0 1 + bsin2 ~ 

12 = c( 4ytt4;s)[cJ1t/2 sin2 ~d~ +df1t/2 sin2 ~d~ ]· 
s+yd 0 1 +asin2 ~ 0 1 +bsin2~ 

which can be evaluated with the aid of Eqs. (4.104), and (4.106) as 

I = C- + , 7t[ c d J 
1 2 J1 +a J1 +b 

( 4ytt4;s)7t [ C d J I - C - + . 2 
- s +yd 2 1 +a+ J1 +a 1 + b + J1 + b 

1 
From Eqs. ( 4.97)-( 4.98) we also have c = -d = , • , , therefore 

7t 1 [ 1 1 J 
11 = c2 (b-a) J1 +a - J1 + b ' 
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(4.106) 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 



66 

and 

2 - c( 4y~rs)~ 1 [ 1 - 1 ]· (4.112) 1
2 - s+yd 2 (b-a) l+a+Jl+a l+b+JI+b 

Substitute the values of 11, 12, a, b, and C from Eqs. (4.94), (4.100), (4.101), and (4.111)-

(4.112) into Eq. (4.91) we get the result<29> 

( 
4yy (rht) )7t 1 

1 = (s+y} (s+yc) 2 ( yyd(4A2rs) -4A2rs) 

(s+y) (s+yd) 

x{,j 4A2 
1 + rs 

1 1 
2 

'YYd( 4A rs) 
1+----­

(s+y) (s+yd) 

2 

(4'Y~rs) 1 
- [ 2 2 

s+yd 1 +4A rs+ J1 +4A rs 

1 ]}, 
2 2 

'YYd { 4A rs) 'YYd { 4A rs) 
1+ + 1+-----

(s+y) (s+yd) (s+y) (s+yd) 

2yy r ) 1 

1 = (cs+y) (:+ye) ( yyd(4A2,,) -4A2,.) 

(s+y) (s+yd) 

X {I J 2 
1 +4A rs 

1 1 
2 

'YYd(4A rs) 
1+----­

(s+y) (s+yd) 

2 

(
4Ytt1rs) 1 

- s+yd [ (1 +4A2rs) + J1 +4A2rs. 
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1 ]}. 

2 J 2 Yf d ( 4A rs) Yfd ( 4A rs) 
1 + + 1 + 

( (s+y) (s+yd)) (s+y) (s+yd) 

(4.113) 

One observes that it is impossible to solve the last equation for the values of s 

analytically because of the complication of the radicals but one can still solve it 

numerically. However, Eq. ( 4.113) still contains too many variables which complicate the 

form of equation. By introducing the dimensionless parameters o = ylyc, and p = yd/"(, 

as in chapter III, one can write Eq. ( 4.113) as 

2or 1 
1 = 

(s' + 1) (s' + o) [ o2p ( 4A;s) _ 4A2] 

(s' + o) (s' +op) rs 

x {. J 2 
1 +4Ars 

1 1 
( 

4A
2 

op ) 1 

- (s' ~sop) [ (1 +4A;s) + J1 +4A;s 2 2) 0 P (4Ars 
1 + (s' + o) (s' +op) 

1 ]}, 

( 
o
2
p4A

2 
) o

2
p4A

2 
l + rs + l + rs 

(s' + o) (s' +op) (s' + o) (s' +op) 

(4.114) 

where the new complex rate constant s' = !_. Next we introduce a new set of parameters 
'Ye 



a= (s'+B) (s'+Bp), 

2 2 ~2 b = 4ArsB p = C ( u p), 

c = 4A2 
TS' 

f = 1 1 
J1 + 4A 2 = J1 + c' 

rs 

e = _ 1 

(1+4A;s) +J1+4A;s - (l+c) +Jl+c' 

1 

and with these new parameters one can rewrite Eq. ( 4.114) as 

2Br [ 1 ] 
I= (s'+I) (s'+ll) (~-c) 

[[r-gl-ll(s'!llp) [•--(1+-~) I_+ R-+~Jl, 
2Br [ a J 

- (s'+l)(s'+o) (b-ac) 

f 1 
- - b (1+ ~ b 

(1 + -) - (1 b . a +-) a 

With some algebraic manipulations one can obtain 
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(4.115) 

(4.116) 

(4.117) 

(4.118) 

(4.119) 

(4.120) 

(4.121) 



where 

u 
----------2 = 0, 
[ob (s' + 1) (b-ac) a2 (a+ b)] 

u = {a2bo(a+b)[2r{fo(s'+op) + (a-be)}]-[(s'+l) (b-ac)] }2 

2 
-{2ora2b[o(s'+op) +a]} a(a+b). 
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(4.122) 

(4.123) 

Therefore in order to satisfy Eq. (4.122), the value of u has to be zero. One sees that the 

radical equation, Eq. (4.120) has been transformed to a polynomial equation, Eq. (4.122) 

which can be programmed and solved numerically. If one expands Eq. (4.123), the result 

will be a polynomial degree 18th in the parameter s' which is the normalized complex rate 

constant. In this study Eq. (4.123) has been programmed and solved by using a 

mathematical software package called "Mathematica" version 1.2. The solutions of the 

equation were also substituted back into Eq. (4.120) in order to check their validity because 

in the process of transforming the radical equation into the polynomial equation above we 

have introduced some excess roots into the original equation. These excess roots can be 

filtered out by substituting the solutions of the polynomial equation into the radical 

equation. If the radical equation is satisfied, that root is the real solution of the original 

radical equation. On the other hand, if the radical is not satisfied, the root is an excess (or 

"spurious") root and we discard it from the final result. The results of the calculation will 

be presented in the next chapter. 
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TYPE 2 STABILITY 

For this type of stability criteria, the result is curves in laser parameter space 

that correspond to the minimum values of threshold parameter with which large amplitude 

oscillations will not decay with time. This threshold condition corresponds to a laser that 

initially pulsing. The threshold parameter is then gradually reduced until the pulsation stop. 

The boundaries are most convenient obtained by direct numerical solution of the laser 

equations, Eqs. (3.51)-(3.57), for different sets of operating parameters as initial conditions. 

The time integrations had been performed by using a modified second order Runge-Kutta 

method<32>. The value of the number of spatial harmonics was chosen so that the 

numerically computed steady state value of laser intensity differs from the analytical result, 

Eq. ( 4.67), by less than 1 percent and that the numerical calculations have to show unstable 

behavior in the unstable area of parameter space which is predicted by type 1 stability 

criteria, that is above the type 1 stability boundaries. The value of the number of spatial 

harmonics used in the numerical is 18. The flow chart of the numerical calculation routine 

is shown in Figure 1. The computer program used is genaral enough to apply to lasers that 

are detuned away from line center. The type 2 stability boundaries will be presented in the 

next chapter. 

DETUNING EFFECT 

The next study is to observe the effect of detuning away from line center of the 

atomic gain profile to stability criteria. The theoretical models obtained in chapter II and 

III also include this effect in the dynamic equation describing the electric field, Eqs. 

(2.73)-(2.74), (3.12)-(3.13), and (3.55)-(3.56). In the models there are three different 

values of frequency, i.e. atomic center transition frequency, ro0, nondispersed (or empty) 

cavity frequency, n, and laser frequency, ro. In the normalized form they are represented 
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by the parameters U, y, and y0, according to Eqs. (2.53)-(2.55),respectively. One usually 

sets the value of y equal to zero by assuming that the laser frequency is close in value to 

that of the atomic transition frequency. The detuning effect can be taken into 

consideration by changing the value of the parameter y0 • This corresponds to changing 

the nondispersed cavity frequency. In practice, this can be done by modifying the distance 

between the two mirrors of a standing-wave laser resonator. Because the parameter Yo is 

normalized to the atomic center transition frequency, ro0, see Eq. (2.55), the change in the 

value of Q will cause the mode frequency that the laser cavity supports to be shifted away 

from the atomic center transition frequency, ro0 which is the meaning of detuning. 

Let the detuning be represented by Av = xA v h, where Av is frequency 

difference, x is the detuning factor, Av h = Tl is the homogeneous linewidth, and T 2 is 
1C 2 

the coherence time. Therefore, 

Av= 0- Olo = xAvh' 

'Y 

27tXAVh 

'Y 

Yo = 2x, 

1 
21CXnr; 

= 1 

T2 

(4.124) 

(Q - roo) 
where Eq. (2.55), Yo = ,.., , is used. From Eq. (4.124) one sees that the amount of 

detuning can be changed by changing the value of detuning factor, x. The stability criteria 

for detuned lasers will be shown in the next chapter. 



CHAPTER V 

RESULTS 

TYPE 1 (PERTURBATION) STABILITY CRITERIA 

As stated earlier, in order to determine the perturbation stability of the system 

under consideration, the real part of the normalized complex rate constant s' plays the 

important role. If the real part is negative, the steady state solution of the system is locally 

stable when subjected to an infinitesimal perturbation. The small perturbation, if 

introduced into the system will decay with time. If the real part of the complex rate 

constant is positive, on the other hand, the small perturbation that was introduced into the 

system will grow, and the steady state solution is locally unstable. By observing Eq. 

(4.120), one can see that the solutions of the equation are normalized complex rate 

constants as functions of the operating parameters. In our study we develop graphical 

representations that summarize the dynamic behaviors of laser systems based on the above 

perturbation analysis. The result for type 1 stability (perturbation stability) is shown in 

Figure 2. 

From the figure, each curve is a boundary that separates the stable and unstable 

regions of operation in parameter space. The parameters o, p, and r represent the ratio of 

polarization decay rate to cavity field decay rate, the ratio of population difference decay 

rate to polarization decay rate, and threshold parameter, respectively. The threshold at 

which a laser starts lasing corresponds to the threshold parameter, r equal to one. Above 

each curve is where the real parts of the normalized complex rate constants s' are positive, 

so operation in that region is unstable. The small perturbation will grow with time if one 



T
yp

e 
1 

S
ta

bi
lit

y 
C

ur
ve

s 
25

0 

20
0 

~ \
\ 

\ 
\ 

\2.0
 

\ 
1.

0 
\0.5

 
\ 0

.2
 

\ 
0.

1 

'- ...:
 

Q
) -Q) 

15
0 

E
 

ca .....
 

ca
 

0.
. 

"O
 

0 .c.
 

10
0 

C
f)

 
Q

) .....
 

.c.
 

I-

50
 0 

0 
0.

02
 0

.0
4 

0.
06

 0
.0

8 
0.

10
 0

.1
2 

0.
14

 0
.1

6 
0.

18
 0

.2
0 

0.
22

 0
.2

4 
0.

26
 0

.2
8 

0.
30

 
8 

E
~
r
e
 2

. 
T

yp
e 

1 
(P

er
tu

rb
at

io
n)

 S
ta

bi
lit

y 
C

ri
te

ri
a 

fo
r 

St
an

di
ng

-w
av

e 
L

as
er

 O
sc

ill
at

or
s 

(L
in

e 
C

en
te

r T
un

in
g)

. 

-...
.J 
~
 



75 

operates a laser in this region. Below the same curve, on the contrary, is where the real parts 

of the normalized rate constants are negative or the stable area. Linear stability analysis 

says that the small perturbation will die out with time for lasers operating in this region. 

One of the most interesting results regarding this figure is that the value of threshold 

parameter required to reach the unstable region is very high. The minimum value of the 

threshold parameter to reach an unstable boundary is about 34 times above the lasing 

threshold. Comparing this result with the result for the ring laser mode1<4>, also see Figure 

3, which stated that the minimum value of threshold parameter to reach the perturbation 

boundary is 9 times above lasing threshold yields the conclusion that there is a greater 

possibility that one can observe pulsation behavior in the ring laser than in the standing­

wave laser. This assumption is based only on the interpretation of the type 1 stability curves 

which does not mean that one will not be able to observe pulsation phenomena in standing­

wave lasers at all. This conclusion has to be delayed until one gets the results of the type 2 

stability curves, which are curves showing minimum values of the threshold parameter 

where pulsation phenomena are possible to be observed. The type 2 results will be 

presented in the next section. 

TYPE 2 STABILITY CRITERIA 

For this type of stability criteria, the results show curves in laser parameter space that 

correspond to the minimum values of the threshold parameter for which large amplitude 

oscillations will not decay with time. This threshold condition corresponds to a laser that 

initially is pulsing. The threshold parameter is then _gradually reduced until the pulsations 

stop. The new criteria corresponding to the parameters used in Figure 2 are shown in 

Figure 4. The parameters o, p, and r are as defined for the type 1 stability criteria. One can 

see that there is not much difference between the two types of stability criteria. The 
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minimum value of threshold parameter corresponds to this type 2 criteria is about 33 times 

above the lasing threshold. Now it is clear that the pulsation behavior in single-mode 

homogeneously broadened standing-wave lasers is difficult to observe. It requires a very 

high threshold value in addition to the "bad-cavity" condition. By comparing the result in 

Figure 4 with the ring laser result, Figure 5, the pulsation behavior in a ring laser can be 

observed outside the so-called "bad cavity" region, but in a standing-wave laser operating 

at line center this situation can not happen. 

DETUNING EFFECT 

The stability criteria of both type 1 and type 2 for detuned lasers are shown in 

Figure 6 and Figure 7. We choose the detuning value of a half of the homogeneous 

linewidth (detuning= 11v h• where 11v h is the homogeneous linewidth),see Figure 8, to 
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coincide to the edge of the Lamb dip in inhomogeneously broadened standing-wave laser 

oscillators. At this particular position in the atomic gain profile, the gain of the laser drops 

to a half of the maximum value at the line center. This causes a change in the value of the 

threshold parameter that the laser needs to start lasing. For a detuning of half of the 

homogeneous linewidth, the value of the threshold parameter to start lasing is equal to 

two, which means that a laser needs to be pumped twice as hard as for line center 

operation because only half of the maximum gain value at line center is available. 

From Figure 6 and Figure 7, one can observe that the effect of detuning is to raise 

the type 1 stability boundary and decrease the type 2 stability boundary. This similar effect 

was also reported for the ring laser mode1<33>. Because of the lower value of the type 2 

stability boundary compared to that for line center tuning, a large amplitude induced 
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instability is expected to be observed experimentally easier in the detuned case. On the 

other hand. the increasing in the type 1 boundary is expected because increased pumping 

is also required to reach the lasing threshold. 

1.0 
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1 _____ Awh- T2 )Ii .. 
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Avh = 211' r 2 
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0 2 0 2 

T 
Fi~re 8 Normalized Homogeneously Broadened Gain Profile ('t2 = 

2
2

, 

T2 =Coherence Time). Source: [34]. 



CHAPTER VI 

CONCLUSION 

In this study we have developed, for the first time, stability criteria for single mode 

strongly homogeneously broadened standing-wave laser oscillators. The results show 

a significant difference between the stability criteria of standing-wave laser oscillators and 

those obtained for ring-laser oscillators. In the case of line center tuning, we discover 

from type 1 stability criteria that undamped pulsations in single mode strongly 

homogeneously broadened standing-wave laser oscillators are found to occur at a much 

higher excitation level than in ring-laser oscillators with the same type of line broadening 

(at about thirty-four times above laser threshold as opposed to nine). The type 1 stability 

criteria also shows that in order to be able to observe the undamped pulsations, the "bad 

cavity" condition must be satisfied, especially for lasers that are operating at line center 

tuning. Another interesting feature that was observed is the effect of detuning on the 

stability criteria. It was found that detuning tends to raise the type 1 instability threshold 

and decrease the type 2 instability threshold as observed before in ring laser mode1<33>. 

This also leads to a wider "marginal" area. One might expect that at larger detuning, large 

amplitude induced undamped pulsations could be observed at a lower threshold value. 

Future study about these topics can pe pursued in several ways. Because the 

interesting effect of detuning on stability boundaries, the lower limit of the type 2 stability 

boundary as a function of detuning can be determined. By taking into account the effects 

of both homogeneous and inhomogeneous line broadening, one can obtain stability 

criteria for a large class of lasers, because all lasers, in practice, posses a combination of 
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homogeneous and inhomogeneous line broadening. One can also investigate further the 

behavior of a laser as it makes the transition across the boundary from a stable region into 

an unstable region for different value of operating parameters. If one relaxes the plane 

wave approximation in a cavity field by considering the field with transverse variation, 

e.g. Gaussian profile, new stability criteria for the laser can also be obtained. 
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