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AN ABSTRACT OF THE THESIS OF Bankim Shah for the 

Master of Science in Electrical Engineering presented 

May 3, 1991. 

Title: Exploiting AND/OR Parallelism in Prolog. 

APPROVED BY THE MEMBERS OF THE THESIS 

Warren Harrison 

Logic programming languages have generated increasing 

interest over the last few years. Logic programming languages 

like Prolog are being explored for different applications. 

Prolog is inherently parallel. Attempts are beirig made to 

utilize this inherent parallelism. There are two kinds of 

parallelism present in Prolog, OR parallelism and AND 

parallelism. OR parallelism is relatively easy to exploit 

while AND parallelism poses interesting issues. One of the 

main issues is dependencies between literals. 
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It is very important to use the AND parallelism available 

in the language structure as not exploiting it would result in 

a substantial loss of parallelism. Any system trying to make 

use of either or both kinds of parallelism would need to have 

the capability of performing faster unification, as it affects 

the overall execution time greatly. 

A new architecture design is presented in this thesis 

that exploits both kinds of parallelism. The architecture 

efficiently implements some of the key concepts in Conery's 

approach to parallel execution [5]. The architecture has a 

memory hierarchy that uses associative memory. Associative 

memories are useful for faster lookup and response and hence 

their use results in quick response time. Along with the use 

of a memory hierarchy, execution algorithms and rules for 

ordering of literals are presented. The rules for ordering of 

literals are helpful in determining the order of execution. 

The analysis of response time is done for different 

configurations of the architecture, from sequential execution 

with one processor to multiple processing units having 

multiple processors. A benchmark program, "query," is used for 

obtaining results, and the map coloring problem is also solved 

on different configurations and results are compared. 
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To obtain results the goals and subgoals are assigned to 

different processors by creating a tree. These assignments and 

transferring of goals are simulated by hand. The total time 

includes the time needed for moving goals back and forth from 

one processor to another. 

The total time is calculated in number of cycles with 

some assumptions about memory response time, communication 

time, number of messages that can be sent on the bus at a 

particular instant, etc. The results obtained show that the 

architecture efficiently exploits the AND parallelism and OR 

parallelism available in Prolog. The total time needed for 

different configurations is then compared and conclusions are 

drawn. 
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CHAPTER I 

INTRODUCTION 

The past few years have seen an explosion of interest 

in the field of logic programming as reported by Conery [6]. 

An indication of the interest is attendance at meetings of 

researchers in the field. The attendance has gone up from 

the 1980 meeting in Hungary to the attendance in the last 

meeting. In addition two journals are devoted exclusively to 

logic programming, and journals for artificial intelligence, 

programming languages, and computer architecture regularly 

feature articles related to logic programming. 

Much of the current research involves techniques for 

implementing logic programming languages, such as Prolog. 

One of the attractions of logic programming is the clean 

separation of semantics and control. It is easy to separate 

specification of what a program should compute from how an 

implementation can efficiently compute it as suggested by 

Conery [6]. The major advantage of the separation of 

semantics from control, however, is the potential for 

parallelism. When it is clear what the final result of a 

computation has to be, and that any of a number of different 

sequences of operations will lead to the result, it is 



reasonable to expect to do some of the operations in 

parallel. Such is the case with logic programming. 
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The subject of this thesis is the importance of AND 

parallelism in the Prolog language. Research presented here 

provides a brief inside look at the Prolog language, a 

discussion of potential parallelism in Prolog such as 

AND/OR, its importance, problems associated with exploiting 

the parallelism and some definitive ideas about implementing 

an architecture. 

Logic programming languages, like languages based on 

applicative models, are often inefficient in comparison to 

traditional languages when implemented on Von Neumann 

architectures. One hope for more efficient implementation 

lies in parallel architectures. The philosophy behind the 

research presented here is that parallel architectures 

should be designed in a "top-down" fashion, proceeding from 

the formal model of computation to actual hardware. 

The thesis starts with an introduction to logic 

programming. The purpose of this chapter is to make the 

reader familiar with some of the terms in logic programming. 

Some definitions and concepts are presented and the chapter 

ends with an example that covers the concepts and the 

definitions presented. 



The third chapter discusses the historical aspects of some 

other concurrent languages. The chapter also presents the 

sources of parallelism in Prolog. It provides a reference 

point for understanding AND/OR process models. The third 

chapter ends by showing the importance of AND parallelism 

and some other techniques that can make execution of Prolog 

faster. 

The fifth chapter discusses some of the attempts made 

over the time to exploit the parallelism (specifically AND 

parallelism), and the rest of the chapters in the thesis 

present the ideas developed for an architecture that is 

capable of satisfying all the needs and requirements shown 

in earlier chapters for more efficient and faster execution 

of AND parallelism. 

3 



CHAPTER II 

INTRODUCTION TO PROLOG 

Prolog is a conversational language. Computer 

programming in Prolog consists of (1) declaring some facts 

about objects and their relationships, (2) defining some 

rules about objects and their relationships, and (3) asking 

questions about objects and their relationships [25]. The 

fundamentals of Prolog are discussed below. 

ELEMENTS OF PROLOG 

Facts are a key component of Prolog programs. Facts 

describe relationships between objects. For example, to 

represent that john and mary are related by the fact that 

john likes mary, Prolog uses: 

likes(john,mary). 

In Prolog, a collection of facts is called a database. 

In Prolog, a "question" or "query" looks just like a 

fact, except a special symbol is put before it. For example, 

?- likes(john,mary). 

is interpreted as, Does john likes mary ? 
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When a "question" is asked in Prolog, the Prolog 

interpreter will search through the database that has been 

entered and look for facts that match the fact in the 

question. Two facts match if their predicates are the same 

(spelled the same way), and if their corresponding arguments 

each are the same. If, in response to a question, a match is 

found then success is reported; otherwise, failure is 

reported. 

The objects in a query may be represented by variables. 

When Prolog uses a variable, the variable can be either 

instantiated or uninstantiated. An instantiated variable is 

associated with a specific object, while an uninstantiated 

variable is not associated with a specific object. When 

Prolog is asked a question containing a variable, the Prolog 

interpreter searches through all its facts to find an object 

that the variable could stand for. Variables are represented 

by words starting with a capital letter. 

A "rule" is a general statement about objects and their 

relationships. In a rule a variable can stand for different 

object in each different use of the rule. In Prolog, a rule 

consists of a head and a body. The head and body are 

connected by the symbol :- . The " :-" is pronounced "if". 

An example is 



likes(john,X) :- likes(X,wine). 

The above example presents the fact that 

john likes anyone who likes wine, or, in other words, 

john likes something if it likes wine, or, with variables, 

john likes X if X likes wine. 
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A predicate is defined by a mixture of facts and rules. 

These facts and rules are called clauses for the predicate. 

The word clause is used while referring to either a fact or 

a rule. Let us consider the following example. 

A person may steal something if the person is a thief 

and he likes the thing and the thing is valuable. In Prolog, 

this is written as: 

may_steal(P,T) :- thief (P) , likes(P,T) , valuable(T) . 

Here the predicate being used is may_steal, which has two 

variables P and T to represent the idea that some person P 

may steal thing T. This rule depends on clauses for thief, 

likes and valuable. These could be represented either as 

facts or rules, whatever is most appropriate. 

Suppose the following database is present: 

likes(mary,food). 

likes(mary,wine). 



likes(john,wine). 

likes(john,mary). 

To ask if John and Mary like each other, the question 

asked is "Does John like Mary and does Mary like John?". 
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The "and" expresses the fact that the motive of question 

asked is interested in the conjunction of two goals. This is 

represented as, 

?- likes(john,mary) , likes(mary,john). 

The comma is pronounced "and," and it serves to separate any 

number of different goals that have to be satisfied in order 

to answer a question. In the above question all the goals 

have to be satisfied in order for the sequence to be 

satisfied. A fact can cause a goal to be satisfied 

immediately, whereas a rule can only reduce the task to that 

of satisfying a conjunction of subgoals. If a goal cannot be 

satisfied, or if the user asks to search for other possible 

solutions, then backtracking will be initiated. 

Backtracking consists of reviewing what has been done 

and attempting to re-satisfy the goals with an alternative 

solution path. When a failure is generated (because all the 

alternative clauses for a goal have been tried, or because 

another solution is requested by the user), the "flow of 

satisfaction" passes back along the way it has come. In 

other words, during the solution of a goal, whenever a 
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clause is selected a marker specifying its location is 

placed in the database. Then for satisfying subgoals, search 

and matching are performed over the existing database. But 

when the result of the attempt is a failure, further 

attempts start from the point at which the marker was 

placed. But to do so it is first necessary to go back to the 

point where the marker was placed for the selected clause. 

After that Prolog attempts to find an alternative clause for 

the appropriate goal. First all the variables that were 

instantiated along that path for satisfying the goal are now 

made uninstantiated. Then, the interpreter searches on in 

the database from where the clause was selected. If it finds 

another matching possibility, a marker is placed and the 

execution is continued. If no other matching possibility can 

be found, the goals fails, and the flow of execution 

retreats further until it comes to another place marker 

(i.e. backtracking to next high level). 

EXECUTION MODEL FOR SEQUENTIAL PROLOG 

The following example by Clocksin and Mellish [25] 

shows how programs are executed in Prolog. The problem is 

about a party and it is desired to speculate about who might 

dance with whom. The program is written in the following 

way. 

possible_pair(x,y) :- boy(x) , girl(y) . 

boy(john) . 



boy(marmaduke) . 

boy(bertram) . 

boy(charles) . 

girl(griselda) . 

girl(ermintrude) . 

girl(brunhilde) . 

This program says that X and Y form a possible pair if 

X is a boy and Y is a girl. Now, if the question asked is 

"what are the possible pairs," or 

?- possible_pair(X,Y) . 

Prolog responds with following results, 

X = john, Y = griselda; 

X = john, Y = ermintrude; 

x = john, Y = brunhilde; 

X = marmaduke, Y = griselda; 

X = marmaduke, Y = ermintrude; 

X = marmaduke, Y = brunhilde; 

X = bertram, Y = griselda; 

X = bertram, Y = ermintrude; 

X = bertram, Y = brunhilde; 

X = charles, Y = griselda; 

X = charles, Y = ermintrude; 

X = charles, Y = brunhilde; 

9 
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First of all Prolog looks for the matching rule, in 

this case possible_pair(X,Y) and then Prolog attempts to 

solve subgoals boy(X) and girl(Y). In attempting to satisfy 

the subgoal boy(X), Prolog finds john, the first boy. Then 

it satisfies girl(Y), finding griselda, the first girl. 

Suppose at this point Prolog is asked for another solution 

by causing a failure. Prolog attempts to resatisfy what it 

did last, which is the girl subgoal within the satisfaction 

of the possible_pair goal. It finds the alternative girl 

ermintrude, and so the second solution is john and 

ermintrude. Similarly it generates john and brunhilde as the 

third solution. The next time it tries to resatisfy girl(Y), 

Prolog finds that its placemarker is at the end of the 

database, and so the goal fails. Now it tries to resatisfy 

boy(X). The placemarker for this was placed at the first 

fact for boy, and so the next solution found is the second 

boy (marmaduke). Now that it has resatisfied this subgoal, 

Prolog looks to see what is next - it must now satisfy 

girl(Y) from the start again. So it finds griselda, the 

first girl. The next three solutions now involve marmaduke 

and the three girls. Next time when asked for an alternative 

the girl subgoal cannot be resatisfied, so another boy is 

found, and the search through girls starts again from 

scratch, and so on. 
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Eventually, the girl subgoal fails and there are also 

no more solutions to the boy subgoal either. So the program 

can find no more pairs. 

The above example shows how sequential execution and 

backtracking are carried out. 

If the same example is to be executed in parallel the 

query possible_pair (X,Y) would be solved by looking in to 

all such named goals and their solutions. This is a form of 

OR parallelism. An example is presented below: 

MODEL FOR PARALLEL EXECUTION OF PROLOG 

Suppose the database is now 

possible_pair(X,Y) :- boy(X) , wine(Y) . 

possible_pair(X,Y) :- flower(X) , garden(Y) . 

possible_pair(X,Y) :- university(X) , college(Y). 

possible_pair(X,Y) :- boy(X) , girl(Y) . 

boy( john) . 

boy(marmaduke) . 

university(psu) . 

college (reed) . 

flower(rose) . 

flower(lotus) . 

wine(champagne) . 



garden(rosepark) . 

girl(griselda) . 

girl(michelle) . 

And the question asked is 

?- possible_pair(X,Y) • 

12 

There are three different matches for possible_pair and 

all three can be solved by satisfying their respective 

subgoals. A simultaneous attempt to solve all the three 

possibilities is known as OR parallelism. 

For AND parallelism attempts would be made to solve 

boy(X) and girl(Y) simultaneously by creating separate 

processes for them. OR parallelism would then be used to 

solve subgoal boy(X) by trying to find all the possible 

answers for it in parallel, by matching boy(X) to as many 

facts in the database as possible. In this case the answers 

will be marmaduke and john, and X is associated with them. 

Similarly the girls griselda and michelle will be associated 

with Y. The final answer would be found by matching these 

results. Relating X and Y to different answers is known as 

"unification" and is an important operation. With proper 

implementation that facilitates unification, the execution 

of programs can be made faster. 
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The reader may wish to go in to more detail. This 

introduction to Prolog should help in further understanding. 

More explanation for the basic concepts of Prolog can be 

found in the book by Clocksin and Mellish [25]. The next 

chapter gives insight into some other languages, covers 

potential sources of parallelism and then deals with AND 

parallelism. 



CHAPTER III 

PARALLELISM IN LOGIC PROGRAMS 

The origins of Prolog are shrouded in mystery, as 

discussed by Sterling and Shapiro [15]. All that is known is 

that the two founders Robert Kowalski and Alain Colmerauer 

worked on similar ideas during the early 70's, and even 

worked together. The results were the formulation of the 

logic programming philosophy and computation model by Robert 

Kowalski (1974) and the design and implementation of the 

first logic programming language, Prolog, by Alain 

Colmerauer and his colleagues (1973). 

Variations of Prolog with extra control features, such 

as IC-Prolog by Clark and McCabe, 1979 [15] have been 

developed, but have proved too costly in random overhead to 

be seriously considered as alternatives to Prolog. 

Another breed of logic programming languages, which 

indirectly emerged from IC-Prolog, is concurrent logic 

languages. The first was Relational Language by Clark and 

Gregory, 1981 followed by Concurrent Prolog by Shapiro, 

1983, Parlog by Clark and Gregory, 1984, GHC by Ueda, 1985, 

[15] and a few other proposals. There is another language 



"Strand," evolved from Parlog. Strand is available as a 

commercial product. 
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The creation of these languages was motivated by 

several ideas and requirements. The first was to create a 

parallel execution model for logic programs to fully utilize 

new parallel computer architectures. The advantage of using 

parallel languages exists in a theoretical sense, but 

practically it has some very clear disadvantages. In order 

for a programmer to avoid various problems and extract 

parallelism easily, languages should have clear semantics 

and be inherently parallel themselves. Logic programming 

languages provide good opportunities for parallelism with 

their high level constructs and semantic clarity. But as 

mentioned earlier, in order to make use of these 

opportunities the user has to be a good programmer, because 

logic concurrent languages are difficult to understand and 

program. 

The other way to exploit the parallelism is to utilize 

the AND-OR goal tree in the languages. The AND-OR tree is 

inherent in Prolog and so models and methods for efficient 

processing of it can help in exploiting the parallelism. 

They can be very well supported on some of the existing 

architectures. 



Execution of a logic program begins when the user 

provides an initial goal statement. The execution can be 

represented as an AND/OR goal tree, where multiple 

descendants of a node indicate a choice of clauses for 

resolving the goal at that node. 
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The two major forms of parallelism in logic programs 

can be explained in terms of speeding up the search of the 

goal tree as proposed by Conery [6]. OR parallelism refers 

to a parallel search strategy - when a search process 

reaches a branch in the tree, it can start parallel 

processes to search each descendant branch. AND parallelism 

corresponds to parallel construction of a branch - when the 

interpreter knows a number of steps must be done to complete 

a branch, it can start parallel processes to perform those 

steps. The name for OR parallelism comes from the fact that 

in nondeterministic programs, we are often satisfied with 

any correct answer. When any of the processes started at a 

choice point (a choice point is a point at which a 

particular clause is selected initially for solution of the 

goal) finds a result, the original goal is solved. The name 

for AND parallelism is based on the fact that all steps must 

succeed in order for a result to be produced. The following 

example (Figure 1) by Conery [6] clarifies OR parallelism 

and AND parallelism. 



p q 

a b q 

D 

DR Pora l le l 1sri : 

parallel search of 

different paths 

c q 

D 

Figure 1. AND parallelism 

d 
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e q 

AND Parol tel ISM : 

parallel execution of 

steps within a path 

vs OR Parallelism 



Goal: p A q. 

p - a A b. 

p - c. 

p - d A e. 

Explained in terms of the structure of a program, OR 

parallelism is the parallelism obtained from parallel 

execution of different clauses for the goal clause. AND 

parallelism is the parallelism obtained from parallel 

execution of the goals in the body of a clause. 

A third source of parallelism is parallelism in low 

level operations, such as unification. Systems exploiting 

parallelism at this level are typically but not limited to 

sequential interpreters. 

MODELS FOR OR PARALLELISM 

18 

Abstract models for OR parallelism fall into three 

broad categories per Conery [5]. The first, called 11 pure 11 

OR parallelism, consists of a parallel search of the goal 

tree. The second form of parallelism is based on objects 

called OR processes. Each process is responsible for 

executing a small piece of the program (Figure 2). The third 

form, called search parallelism is based on a physical 

partitioning of the program. Clauses are stored in different 

nodes of a machine such as a multiprocessor database 

machine. 
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OR processes try to create as many results as possible, 

but the results are passed back to the parent one at a time, 

as the parent demands them. The models for AND parallelism 

and AND processes are described by Conery [5] as follows. 

MODELS FOR AND PARALLELISM 

AND parallelism is the parallel solution of more than 

one goal in a given goal statement. The central problem in 

implementing this form of parallelism is management of 

variables occurring in more than one literal of the goal 

statement. In a goal statement such as 

p(X) "' q(X) • 

the variable X occurs in both goals. To solve the goal 

statement we need to find a value for X that satisfies both 

p and q. Most abstract models for AND parallelism handle 

this problem the same way: they allow only one of the goals 

to bind the shared variable, and postpone solution of the 

others until the variable has been bound. 

Stream parallelism interprets a clause such as, 

p q "' r. 

to mean " process p can be replaced by the system of 

processes q and r" as shown by Conery [6]. In this 

interpretation, literals in a goal statement are processes, 

and variables occurring in more than one literal are 

communication channels between the literals. 
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AND Processes 

In the AND/OR Process Model, an AND process solves the 

body of a clause by creating an OR process to solve each 

subgoal as shown in Figure 3. AND parallelism in this model 

is a matter of having more than one OR process active at a 

time. So the difference between the AND/OR Process Model and 

the stream parallel models such as Parlog (as described 

above) is that in the AND/OR process model all steps in the 

solution of a generator are completed before any of the 

consumers start. This means there is no overlapping of 

execution when a shared variable is bound to a large 

structure in a series of partial bindings. In the stream 

models, parallel processes are started simultaneously for 

each literal in the body of the clause, with consumers 

blocking until the shared variable is bound to a nonvariable 

terms. Another difference is in the number of results: the 

stream models generate just one solution per procedure call, 

due to the nature of committed choice nondeterminism, but 

AND processes can generate a sequence of results. 

Two different styles of AND parallelism are emerging as 

suggested by Conery [5]. One style, called stream 

parallelism, is exploited by Parlog, Concurrent Prolog, and 

other languages oriented toward system programming, where 

committed choice nondeterminism is a valuable programming 

technique. The other style, typified by the AND processes of 



the AND/OR Process Model, is oriented toward a more 

exploratory style of nondeterminism. 
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The research in this thesis seeks to exploit the AND/OR 

Process Model form of AND Parallelism. 

A later part of this thesis presents a different way to 

perform unification which helps to improve the overall speed 

of execution. 

The attempts to exploit parallelism in the AND/OR 

Process Model always cover both AND and OR parallelism. 

There are many papers that present work on OR parallelism, 

[2,11,14,16,20] the reason being OR parallelism is very 

natural to detect and relatively easy to implement. On the 

other side the research on exploiting AND parallelism is 

more limited. This may be because of the fact that to 

exploit AND Parallelism the issue of shared variables needs 

special attention. Each literal in the clause generates OR 

process and many results are produced. To find one unique 

solution and also to store the bindings and to maintain the 

bindings requires special attention. 

The goal in this thesis is to stress the importance of 

AND parallelism and speed of unification on the overall 

execution speed, and so arguments and results are now 
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presented to show that AND parallelism is important. 

The execution speed of sequential logic programming 

systems has been constantly improving since Warren's Prolog 

interpreter/compiler for the DECsystem-10 proved the 

usefulness of a logic as a practical programming tool as 

shown by Kowalski [12]. 

Of the different sources of parallelism present in 

logic programs, the study of AND parallelism is important, 

because among other reasons it offers promising results even 

for highly deterministic programs as proved by Hermengildo 

[17]. 

ANALYSIS OF SEQUENTIAL PROLOG PROGRAMS 

Onai, Shimizu, Masuda and Moritoshi [21] presents the 

following results for a collection of Prolog programs. 

(1) Average AND - literal count: 

AND - literal count 3 
:: 

Total OR relation count 

Here the term AND-literal count means the number of 

literals that can be executed in parallel within a clause, 

while two or more clauses are included in the OR relation 
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count when they have same head predicate symbol and the same 

number of arguments. 

(2) Average evaluable predicate count: 

evaluable predicate count 

total OR relation count 
::: 

1.4 

Evaluable predicate count is the number of predicates 

that are evaluable, i.e., the predicates which upon 

execution can be successfully unified. 

(3) Average ratio of evaluable predicate count: 

evaluable predicate count 0.5 

AND literal count 

The AND literals are defined as literals in a body of a 

clause separated by ",". AND literal count is the total 

number of literals in the body of a clause. So the above 

ratio implies that half of the literals within the body (AND 

subgoals) of a clause can be successfully unified. 

Dynamic Analysis Result are shown in Table I: 
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TABLE I 

ANALYSIS OF SEQUENTIAL PROLOG 

OR - parallel degree AND/OR parallel degree 
(AND sequential, OR (AND parallel OR parallel) 
parallel) 

Input 1 2.66 3.44 
Input 2 3.00 4.84 
Input 3 3.05 7.34 
Input 4 3.19 8.78 
Input 5 3.97 14.44 

This table [21] shows that there is a significant 

difference between the average reducible subgoal count (the 

subgoals that can be unified successfully) per level in AND 

sequential execution and in AND parallel execution. Input 

goals become more complicated logic formulas as their number 

increases. Thus AND parallel execution enables increased 

processing speed in some programs. 

The conclusion of the paper summarizes the results as 

follows, 

(1) DEC-10 Prolog enables only sequential execution and 

has inadequate working memory space. This tends to cause 

programmers to write deterministic programs. Some 

programs however, can be converted into concurrently 

executable form, by eliminating cuts according to a 

conversion rule. The converted programs, when executed 

in OR parallel, are expected to provide an OR relation 

count equal to or greater than the static OR relation 
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count. Also, AND parallel execution may provide a higher 

parallel degree. 

(2) About half or more of executed subgoals are 

evaluable predicates. The execution speed of evaluable 

predicates affect that of the program. 

(3) The static OR relation count for the database is 

about four times higher than that of inference clauses, 

which have a count of three. This ratio increases as 

database clauses become larger. Therefor, the execution 

speed of a program including large database clauses can 

be significantly improved by speeding up unification of 

database clauses. 

When a set of OR related clauses has at least one rule, 

these clauses are called inference clauses. When a set of 

OR related clauses consists of unit clauses (clause having 

only one literal), these clauses are called database 

clauses. 

It was important to reproduce results presented in [21] 

in order to analyze them. The first conclusion states that 

AND parallel execution provides higher parallel degree. 

The second conclusion states that about half of the subgoals 

are evaluable and the speed of execution for them affects 

the speed of the execution of program. This is a very 

important conclusion when combined with the first, because 
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AND parallelism gives higher degree of parallelism and if 

the subgoals in clauses are executed faster (AND 

parallelism) the overall execution speed of the program also 

improves. So it is very clear that exploitation of AND 

parallelism is important and also the better the execution 

method the better the improvement in the program execution 

speed. 

The third conclusion states the fact that there are 

more database clauses than inference clauses and so if 

unification speed is improved the execution speed of 

programs can be significantly improved. 

So from this research it is made very clear that AND 

parallelism is very important and unification speed is also 

very important. Taking these results as a basis to design a 

system that will provide higher speed for the execution of 

Prolog programs, the rest of the thesis presents a design 

that incorporates and supports efficient execution of AND 

parallelism and faster unification. 

The analysis presented in [21] analyzed about 39 

programs. So the analysis covers a wide spectrum of logic 

programs, and the results obtained are important. 
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Based on these conclusions, now the attempt is made to 

describe the architectural design that will support AND 

parallel execution and also the method for unification. 

Attempts made for the same cause by some other researchers 

are also discussed in the beginning of the next chapter. 



CHAPTER IV 

AND PARALLELISM 

In Prolog the basic way of execution is as follows : 

(1) A database is prepared and stored based on available 

information. 

(2) Prolog is asked to search and find an answer for a 

particular question. 

(3) Prolog looks in its database and replies "yes" or "no" 

to report success or failure. 

(4) In most cases the problem is solved here but if the user 

is not satisfied with a particular answer it is possible to 

ask Prolog for alternative solutions for that question. 

Prolog would again look into its database and would report 

any other solutions if alternatives exists, else it would 

report failure. 

As discussed earlier the database of Prolog consists of 

facts or rules, and they are known as clauses. We have also 

discussed how facts and rules are different from each other 

and their format. 
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When Prolog starts the process of solving a question it 

would look into the database starting from the top of 

database for a matching fact or rule. Prolog would look for 

only those rules that have rule head matching the head of 

the rule in the question and also having the same number of 

arguments. 

If the question is of the form fact and if the 

matchings are all facts then Prolog would go through all 

matching facts one after another and would report an answer 

every time. If the answer found at the very first matching 

fact is the answer that is sufficient and if no other answer 

is requested then Prolog would stop there. If that answer is 

not a success or some other alternatives of that answer are 

wanted then Prolog would continue, until it runs out of all 

matching facts. 

If the question asked is of the form rule and the 

matchings are all rules with subgoals in their body (not a 

unit clause which has only one literal) then the execution 

now is not simply reporting "yes" or "no" as soon as a match 

is found. After finding the matching rule Prolog will have 

to seek a solution of that rule, because rules have some 

subgoals and those subgoals need to be solved to determine 

the success or failure. In parallel processing all the 

possible matching rules are found and a concurrent search is 
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conducted for many or all of them depending upon the 

available capacity. The procedure of seeking the solution of 

all matching rules in parallel is known as spawning an OR 

process for each match. Solutions from all of these OR 

processes would be obtained after they attempt to solve 

their rule. 

Rules are of the form 

head ( ) :- subgoal 1( ), subgoal 2( ), •..• 

After matching the head, the subgoals should be solved. AND 

processes are created that would seek a solution for each 

subgoal. There are different ways in which the solution of a 

subgoal can be obtained. Some of the methods are not 

efficient, like starting the execution by solving subgoal 1 

first, then subgoal 2, etc. A detailed discussion of a 

methodology for efficient execution of AND processes known 

as ordering of subgoals (literals) described by Conery [6] 

follows. 

The basis for the ordering of literals in the body of a 

clause is the sharing of variables. One way to solve the 

dependence problem whenever two or more literals have a 

variable in common is to designate one of the literals as 

the generator for the variable. It should be solved before 

the other literals. The solution of the generator literal is 

intended to create a value for the corresponding variable. 
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After the generator is solved, the other literals containing 

the variable, consumers, may be scheduled for solution. A 

generator should be defined for every variable in a rule. It 

is possible that the solution of a generator will not bind 

the variable, and consumers will still have a variable in 

common. In that case one of the consumers is then made 

generator of that variable. 

Here the difference between the AND/OR process model 

and concurrent languages becomes evident. It appears that 

concurrent systems do not require literals to be ordered, 

since processes are started for all literals simultaneously 

when the clause is invoked. However, some of those processes 

immediately block, waiting for input via the solution of 

other literals. In the AND/OR process model, we delay 

creation of processes for the literals that would be blocked 

immediately. So the difference is that in one system a 

process is created and then blocked until a shared variable 

is bound, while in the other type the process is not created 

until the processes it depends on have completed. 

ORDERING OF LITERALS 

Some rules for ordering literals that have been 

presented by Conery [6] are as follows. The first rule is 

that the head of a clause is the generator for all variables 

instantiated when the clause is invoked. 
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There are two other rules that can be used to complete 

the process and make sure every variable has a generator. 

Use of different rules alone or in different combinations 

leads to different orderings, enabling more or less 

parallelism in the solution, but in all cases the AND 

process will not fail due to incorrect ordering. 

The second rule, the connection rule, calls for 

selection of the literal with the largest number of 

instantiated variables. The third rule is the left most 

rule, which simply says the first (left most) literal 

containing a variable should be generator of that variable. 

This is a reasonable assumption, since, in Prolog programs, 

solution of a goal containing unbound variables often binds 

the variables. When the left most rule selects the left most 

occurrence of a variable it is selecting a literal that 

would see the variable as unbound if the clause was solved 

with the ordering generated so far. This rule is also a 

useful safety feature, since, by itself, it guarantees every 

variable will have a generator. 

There is a rule for ordering literals based on I/O 

modes known as the I/O mode rule. In this rule some of the 

literals in the body may have I/O modes, and this mode has 

to be declared by the user at the beginning. For example 

mode (is, [?, +]) • 
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This declaration shows that the goal with predicate 

"is" has two arguments. A plus means the corresponding term 

must be a ground term when a goal is solved. In other words, 

"is" can never be a generator for a variable occurring in a 

term in this argument position. A minus sign (not shown 

here) means the corresponding argument must be an 

uninstantiated variable that will be bound during solution 

of this literal. A question mark in the mode declaration 

means the mode is neither plus nor minus, i.e., the literal 

can be either a producer or a consumer. 

Given the above mode declaration and the goal 

A is B + C 

a system may designate this call to "is" as the generator of 

A (but it is allowed to choose another goal containing A), 

but this call cannot be generator for either B or C. 

Since mode declarations are known before a clause is 

called, the I/O mode rule has to be applied at "compile 

time", when the clause is first loaded into the system. The 

other rules can be applied at runtime, when the AND process 

is created, since they depend on the pattern of variable 

instantiation in the clause and this is established by the 

unification done by the parent OR process. 

An example in [6] about how the rules work is presented 

here. 
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The ordering algorithm can be illustrated by 

four examples, each showing a different pattern of variable 

instantiation in the body of a clause. 

Call: 

f (A,B). 

Clause: 

f(X,Y) g(X) h(Y). 

* Disjoint Subgoals (Figure 4): 

f(X,Y) - g(X) ~ h(Y). 

If neither X nor Y is bound when the clause is called, 

or if they are bound to terms not containing a variable in 

common, the literals are independent. Neither is a 

predecessor of the other when both X and Y are 

uninstantiated when the process is created. The left most 

rule can be used to designate g(X) as the generator of X and 

h(Y) as the generator of Y. If there are n solutions for 

g(X) and m ways to solve h(Y), then the domain of results 

for f [D(f)] would contain n * m pairs of X and Y values. 

The remaining pairs, after the first, will be created in 

response to redo messages. 

, 
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* Shared Variable (Figure 5): 

Call : 

:- gf (G,a) 

Clause : 

gf (X,Z) f(X,Y) 
,.. 

p(Y,Z). 
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The two subgoals have the variable Y in common, and no 

call to get gf can ever cause Y to be instantiated when a 

process is started. If, when the AND process is created, Z 

is instantiated but X is not, the connection rule selects 

p(Y,Z) as the generator of the shared variable Y. Otherwise 

f(X,Y) is designated, either through the connection rule( if 

only X is instantiated) or the left most rule ( if neither 

or both head variables are instantiated). 

* Deterministic Function (Figure 6): 

Call : 

:- f (xx,Q) 

Clause 

f (P,Q) div(P,Pl,P2) " f(Pl,Ql) " f(P2,Q2) " 

comb(Ql,Q2,Q). 

This clause illustrates the general form of a "divide 

and conquer" style function expressed as a clause. On every 

call, P will be bound to a term representing the input 

problem, and as a result of the call Q will be bound to a 

term representing the output of the function. The optimal 
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ordering of subgoals is : divide problem P into independent 

subproblems Pl and P2; then solve Pl and P2 in parallel via 

the recursive calls, instantiating Ql and Q2; when both are 

done the answer can be constructed from Ql and Q2. 

Map coloring 

color(A,B,C,D,E) 

next(A,B) A next(C,D) A next(A,C) A next(A,D) A 

next(B,C) A next(B,E) A next(C,E) A next(D,E). 

The goal of this procedure is to see if there is an 

assignment of one of four colors to each region of the map, 

such that no two adjacent regions have the same color. The 

procedure for next is simply twelve ground assertions, one 

for each legal pair of adjacent colors. For example, 

next(red,blue) is asserted, but next(green,green) is not, 

because two adjacent regions should not have the same color. 

Also for each clause next (Cl,C2) we need the corresponding 

clause next (C2,Cl). If it is assumed that every map be 

colored by four colors, then the procedure for next has 

twelve clauses. 

Graph for Map coloring 

When this procedure is called with none of the 

variables in the head instantiated, the graph shown in 

Figure 7 is created. The literal ordering shown in the 

figure is produce by first using the left most rule to 

designate next(A,B) as the generator for both A and B. After 
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that the connection rule was used to identify the three 

literals in the middle row of the graph as the generators of 

the other three variables, leaving the remaining four 

literals as consumers. All nodes in the graph are calls to 

next; the labels show the arguments of the call. The first 

values from the generators in the middle row form an 

unacceptable combination of values for some of the consumers 

on the bottom row. The third and fourth literals working 

independently and in parallel, assign the same color to 

regions C and D, so one of the assignments will have to 

change. The nodes in the top two rows are all immediate 

predecessors of head clause. 

EXECUTION ALGORITHM 

Once the matchings of a clause have been found and a 

clause (or clauses) is (are) selected, ordering of literals 

is done using some combination of the rules. Then those 

literals have to be executed. A methodology proposed by 

Conery [6] is discussed here. 

When execution begins then, depending on the ordering 

of literals, some literals which are independent or 

generators of variables are chosen for solution and OR 

processes are created for those literals. When success is 

obtained for some processes, OR processes can be started for 

some other literals. When any descendant OR process fails 
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then backtracking is performed. 

The execution of literals is explained by dividing them 

into three categories. They can be either in solved, 

pending (waiting for bindings) or blocked state. 

At the beginning of execution all literals that are in the 

body are put in the blocked category. The head goal is put 

in the solved category and no goals are in the pending 

state. The execution algorithm can be described as, 

(1) Initialize Solved to HG (head goal), Pending to empty 

set, and Blocked to the set containing every literal in the 

body of the clause. 

(2) Start an OR process for a literal, such that the 

predecessors of the literal are elements of the solved set 

and move the literal from the Blocked to the Pending set. 

To process a success message for an OR process, 

(A success message from an OR process for a literal contains 

a copy of the literal with possibly some variable bound) 

(3) Use the bindings contained in the head of the goal for 

processing subgoals in the body of the clause. 

(4) Those literals that are successful (i.e. the literals in 

the body of the clause that are now bound to some value) 

should be moved from Pending to Solved. 

(5) When all the literals are in the Solved set, a success 

message is sent to the parent process, otherwise continue. 

(6) If the solved literal is a generator, and the terms 



bound by the generator contain unbound variables, then 

generators should be designated for those variables. 

The next problem is to see what happens to the 

solution of an AND process when one of its OR subprocesses 

fails. Naturally there should be some way in which the 

execution can be carried out. In sequential Prolog, 

sequential backtracking is performed, but this is not 

efficient for parallel processes. It would be advantageous 

if there is some other way then sequential backtracking, 

because sequential backtracking slows down the parallel 

process. So a methodology to do backtracking for parallel 

processes proposed by Conery [6] is now discussed. 
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There are two simple suggestions for making 

backtracking faster for parallel processes. One is to follow 

the syntactic order of literals in the body of the clause. 

The other way is to backtrack per the data flow graph of 

clause. But it is shown that backtracking per the syntactic 

order of literals in a clause body results in many 

unnecessary steps that can be avoided [6]. 

The other way is to have backtracking based on the data 

flow graph, which gives results close to that of intelligent 

backtracking and is comparatively easy to understand as 

shown by Conery [6] and discussed below. 
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For the map coloring problem presented earlier, 

consider the following nested loop implementation in Pascal. 

for A :- Red to Blue do 

for B :- Red to Blue do 

for C :- Red to Blue do 

for D :- Red to Blue do 

for E :- Red to Blue do 

if Next(A,B) and ... and next(D,E) then 

writeln( 'success (A,B,C,D,E)'); 

In this program, initial values are assigned to all 

variables, making the initial tuple <red,red,red,red,red>. 

At each step, the current tuple is tested by the Boolean 

expression in the body of the loop. The second tuple is 

created by assigning the innermost value, E, its value. 

Eventually, blue, the last value is assigned to the 

innermost variable. The next tuple is obtained by resetting 

the variable E to its first value while assigning the next 

innermost variable D its next value. When the outer variable 

has no more values, the inner variable is given a new value 

and all later variables closer to the body of the loop are 

reset to their initial value. 
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In this method 625 5-tuples of colors are generated, 

where the first 81 have the form <red,red,C,D,E>. A and B 

cannot have the same color - there is a literal next(A,B) in 

the test - but the Pascal program blindly generates 81 

unusable tuples. In a logic program the term 

next(A,B) is the generator of A and B, and it never 

instantiates both A and B to the same color, thus 

effectively preventing the construction of a large number of 

useless tuples. Now the backward execution algorithm is 

presented which is more efficient than the type discussed 

above. 

Backward Execution Algorithm 

When a fail message is received for a literal, the OR 

process for one of the generators must bind its variables to 

different values. The backward execution algorithm can be 

divided into three sections. The first part identifies which 

generator should bind its variable to a new value. The 

second part updates the variables generated by the 

generator. The third part resets other generators. 

Selection of the generator is based on marks on all 

literals in the candidate set. A mark on a generator means 

that the generator may be directly or indirectly responsible 

for the failure. So markers that are put on the generators 

help in determining which generator should be selected. The 

selected generator is the latest in the linear ordering 
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marked with L, where L is a literal. 

Next, the AND process must decide which generators must 

be reset after the selection of L as the backtrack literal 

(now identified as BL). This potentially means every 

generator following BL in the linear ordering. Only those 

generators that contribute information to the solution of 

any successors of BL and BL need to be reset. In other 

words, the literals with BL in their candidate set must be 

reset. 

Now a detailed example is discussed by John Conery [6] 

is presented below:-

This example (Figure 8) tries to solve a question about 

paper, paper(P, 1978, uci), meaning that a paper P, written 

by a author A in (1978) at uci. 

The applicable rule is 

paper(P,D,I) :- date(P,D) "' 

"' 

author(P,A) 

loc(A,I,D). 

After matching, the rule becomes 

paper(P, 1978, uci) - date(P, 1978) "' author(P,A) 

"'loc(A, uci, 1978). 
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The data base is as follows, 

author(fp, backus). 

author(df, arvind). 

author(eft, kling). 

author(pro, pereira). 

author(sem, vanemden). 

author(db, warren). 

author(sasl, turner). 

author(xform, standish). 
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date ( fp, 1978). 

date(df, 1978). 

date(eft, 1978). 

date(pro, 1978). 

date(sem, 1976). 

date(db, 1981). 

date(sasl, 1979). 

title(db, efficient_processing_of_interactive ... ). 

title(df, an_synchronous_programming_language .. ). 

title(eft, value_conflicts_and_social_choice). 

title(fp, can_programming_be_liberated .. ). 

title(pro, dec_lO_prolog_user_manual). 

title(sasl, a_new_implementation_technique .. ). 

title(sem, the_semantics_of_predicate_logic .. ). 

title(xform, irvine_program_transformation_catalog). 

loc(arvind, mit, 1980). 

loc(backus, ibm, 1978). 

loc(kling, uci, 1978). 

loc(pereira, lisbon, 1978). 

loc(vanemden, waterloo, 1980). 

loc(turner, kent, 1981). 

loc(warren, edinburgh, 1977). 

journal(fp, cacm). 

journal(sasl, spe). 

journal(kling, cacm). 

journal(sem, jacm). 

tr(db, edinburgh). 

tr(df, uci). 



loc(warren, sri, 1982). 

There are no mode declarations, so no literals are 

designated as generators or non-generators in the static 

analysis. 

When the process is created, variables D and I are 

bound to 1978 and uci respectively. The head goal, HG, is 

designated as the generator of these variables, the set of 

bound variables, G, is {D,I}, and the set of unbound 

variables, U, is {P,A}. This is from the ordering rules 

presented earlier. 
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The connection rule is applied to connect a set of 

literals to the head, by looking for literals containing 

variables in both G and U. The first pass through the list 

of literals finds two that meet this criterion. date(P,D) 

contains P, a variable with no generator yet and D, a 

variable generated by the head, so it is designated as the 

generator of P. Similarly, loc(A,I,D) becomes the generator 

of A. U is now empty, and all literals have been ordered. 

The order is literal date() is #1, author() is #2 and 

loc() is #3. 
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Forward Execution 

Literals #1 and #3 are both enabled- the predecessor 

set for each is a subset of {HG}- so immediately OR process 

for #1 and #3 are started. Those lists are moved from 

blocked to Pending. After the success of date(Prolog, 1978), 

#1 is added to the solved list. Since #3 is also a 

predecessor of #2, and #3 is not yet solved, no new 

processes are created. The next success occurs when 

(loc(kling, uci, 1978)) is matched and variables are bound. 

Literal #3 is added to the solved list, and a new process is 

created for #2. As #2 fails backward execution is started. 

Backward Execution 

In the linear ordering of this clause, the generator of 

A comes after the generator P, so A corresponds to the 

"innermost" variable. As discussed earlier in the 

backtracking the first thing is to locate the generator 

which would have to bind the variables. Now each time #2 

fails, the first thing that will be tried is to get another 

value for #3, the generator of A. When that fails a new 

value for P is requested and A is reset. 

When a fail message is received from #2, it is added to 

the marks on all predecessors of #2. The generator latest in 

the linear ordering marked with #2 is #3, and so #3 is 

selected to generate new bindings. A redo message is sent to 

#3 and it is moved from solved to pending. Waiting is done 
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here if another value is obtained from #3 or not. Marks are 

removed from #3 but left on #1. 

When the process for #3 fails, meaning there is no 

additional binding for A that satisfies loc(A,uci,1978). 

then HG, the immediate predecessor of #3 is marked. Search 

is made through the generators, starting from the end of the 

linear ordering, looking for #3 or #2 in a set of marks. #1 

qualifies since it is marked with 2. #1 is moved from solved 

to pending, and the process for #1 is sent a redo message. 

The marks are removed from #1. 

When a success message arrives from the process for #1 

with the second binding for P, #1 is added to the list of 

solved literals, and a new process can be created for 

author(eft,kling), the current instantiation of #2. The 

states of the literals are now: #1 and #3 solved, #2 

pending. 

When the process for #2 sends success all literals have 

been solved. A success message containing a copy of the goal 

statement with the bindings {P/eft,D/1978,I/uci,A/kling} is 

sent to the parent OR process and execution is completed. 

Summary 

This chapter presented a detailed discussion about 

ordering literals, forward execution and backward execution. 



All important rules and methodologies were discussed. This 

chapter showed how the operations are carried out at the 

microscopic level. The next chapter will discuss the 

implementation of all these ideas in an architecture. 
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For more information on these topics the reader is 

referred to the Ph.D dissertation Conery on parallel 

execution of logic programs [5]. The next chapter is unique 

because no other work has combined the above ideas with the 

use of content addressable memories, memory hierarchies and 

the use of multiprocessors that would make use of AND 

parallelism. In all senses, chapter V puts everything 

together and presents a formal design. 



CHAPTER V 

IMPLEMENTATION FOR AND/OR PARALLELISM IN PROLOG 

In this chapter two approaches to speedy execution of 

Prolog are discussed : (1) Attempts that support AND 

parallelism; and (2) Attempts that speed unification. Then 

it will be shown that the design presented in this thesis 

more closely fulfills the requirements outlined in previous 

chapters. 

There are so many papers that describe different 

approaches that to pick a few and to omit others would not 

justify the efforts made by all the researchers. The papers 

discussed here summarize the key characteristics of most of 

the approaches currently being explored. 

Jian Lin and Vipin Kumar [27] present a method for 

exploiting AND parallelism on shared memory multiprocessors. 

Key features of implementation are (i) dependency analysis 

between literals of a clause is done dynamically without 

incurring excessive run-time overhead; (ii) backtracking is 

done intelligently at the clause level without incurring any 

extra cost for the determination of backtracking literal; 

(iii) the implementation is based upon the Warren Abstract 
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Machine. Parallel implementation on a Sequent Balance 21000 

shows linear speedup on a dozen processors. 

Another paper that discusses AND parallelism is by 

P.Raman and E.W.Stark [20]. They have presented an 

implementation of AND parallelism on distributed memory 

systems, in which a process is assigned to each node of the 

AND/OR tree. They have developed an interpreter for this 

model. The interpreter supports both AND and OR parallelism 

in a completely unrestricted fashion. Bidirectional 

communication occurs between two children of the same AND 

node. 

P.Biswas, S.C.Su, and David Y.Y.Yun [2] present an 

Abstract Machine Model to Support Limited-OR (LOR) 

Restricted AND Parallelism (RAP) in Logic Programs. In this 

paper they define an abstract multiprocessor machine model 

(LORAP) for parallel execution of logic programs. The 

authors claim that they have developed a new execution 

mechanism based on the concepts of late binding and copying 

of uninstantiated variables across activation frames. M.V. 

Hermengildo also presents an abstract machine for RAP [17]. 

Two very interesting papers introduce novel ideas for 

memory designs. A. Shanker [l] gives a method of use of 

hierarchical memories. C.D.Stormon, M.R.Brule, and J.C.D.F. 



Ribeiro [22] talk about an architecture based on content 

addressable memory. 
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The paper by Shanker presents a parallel implementation 

of unification using CAMs. A hierarchy of CAMs is presented 

along with a scheme for partitioning Prolog rules. The paper 

analyzes the performance benefits of the interpretive CAM 

approach. The paper by Stormon, Brule and Ribeiro presents 

an architecture based on CAM. The authors present a custom 

VLSI design for the CAM used in the architecture. The system 

proposed by them has been simulated on the Connection 

Machine by an instrumented Prolog interpreter. Their 

simulated results show that their design is feasible and 

they expect it to provide significant performance advantages 

over compiled Prolog systems without CAM. 

All the papers mentioned above present different and 

unique ways to implement AND/OR parallelism. The design 

presented here is different from all other designs, and it 

focuses on faster unification and AND parallelism execution. 

DESIGN OF THE ARCHITECTURE 

The main features of this design are the use of Content 

Addressable Memories, hierarchical memory, and 

multiprocessors. As discussed in chapter III the speed of 

unification affects overall execution speed of programs. 
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Also AND parallelism provides higher parallel degree and 

about half or more executed subgoals are evaluable 

predicates, and the execution speed of them affects that of 

the program. So efficient execution of AND parallelism is 

important. 

The block diagram of the architecture is shown in 

Figure 9. The architecture consists of a memory hierarchy 

and several processing units with their own local memories. 

The hierarchical memory consists of different CAMs, 

with recursive data (which is the largest part of Prolog 

programs) stored in a fully parallel CAM. Simple facts are 

stored in a semiparallel CAM (bit serial word parallel) and 

the remaining types of data are stored in RAM. The rationale 

for this type of arrangement is described later on in this 

chapter. 

In response to a question being asked matching is done 

first at this top level and matching rules or facts are 

obtained from the main memory. All such matching rules are 

then passed on to the literal ordering unit. This unit 

decides the order of execution of all literals in the rules 

and then all matching rules and facts (clauses) are stored 

in a buffer. The literal ordering unit is at the second 

level after the main memory. 
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Different units of processing elements make up the 

third level. These units each take one clause from the 

buffer and start to solve it using AND parallelism. Each 

processing unit has a local memory (LM), which is a CAM, and 

a few simple processors. These processors are able to talk 

with each other via a common internal bus. The literals 

which do not share variables can be executed in parallel and 

hence two different processing elements can work on two such 

literals. The literals that share variables have to be 

executed in respective order decided by the ordering rules. 

So all such literals are stored in a buffer within the 

processing unit. If one processing unit finishes the work 

for one of the literals and unsolved literals remain and 

dependence conditions are satisfied then it can start 

execution on those literals. If there are no such literals 

then it has to wait. All processing units operate in the 

same fashion. 

All the processing units are able to communicate with 

each other via an interconnecting bus. Processes can be 

transferred from one unit to another if there are no more 

clauses in the global buffer and one unit has literals that 

need to be solved stored in its internal buffer. Those 

literals can be transferred to another unit if they can be 

solved in parallel. All the processing elements and the 

processing units actively seek work from their internal 
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Figure 10. Memory hierarchy levels 

61 



buffer, the global buffer, or from the other elements and 

units. 

MEMORY HIERARCHY 
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The memory hierarchy of the design (Figure 10) consists 

of two kinds of memories as discussed above, content 

addressable and random access. It has been shown by 

A.Shanker [l], that there are two kinds of data structures 

that are used in Prolog programs. They are known as database 

clauses and recursive clauses. The recursive clauses have 

the head predicate repeated in the body of the clause. The 

database clauses are also known as facts or unit clauses 

because they have only one literal in their structure. To 

unify the head of the query with the clauses present in 

memory faster look up helps. CAM helps in faster look up and 

matching. The data structures that are stored in slower 

random access memories are neither database or recursive. 

Processing elements are divided into groups called 

processing units. One processing unit is the master 

processing unit and the others are slave units. The master 

processing element in the master processing unit starts 

execution of a query, and in the process it creates 

different OR processes and AND processes. These processes 

are stored in the local buffers of the master processor 

unit. When there are enough processes, they are picked up by 
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other processing units. Variable bindings are stored in the 

local memory of a processing unit. First the bindings of 

variables of the master processor are stored in local memory 

and when the OR and AND branches are picked up by different 

processors they can access to these bindings. The LM also 

stores the new bindings made by other processors. It is 

assumed here that local memory can serve more than one 

processor at one time. When some literals are transferred to 

other processing units for unification then the matchings 

are transferred from the parent processing unit. The other 

processing unit makes all the possible unifications. Some of 

these unifications will be thrown away by the parent 

processing unit when it receives the results. 

With the described arrangement AND execution can be 

carried out on a number of processors and hence the 

evaluable predicates have more chance for faster evaluation. 

This can result in an improvement in program execution 

speed. 

It is important to look at the mechanism by which the 

execution order is decided. This mechanism orders the 

execution of subgoals in local buffers. When a processing 

unit is finished with a certain subgoal, then it looks for 

the next subgoal for execution. This information is 

available from the ordering unit, which implements the 



ordering mechanism using the ordering of literals for 

chapter IV. 
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The analysis of programs by Onai, Shimizu, Masuda and 

Moritoshi [21] has shown that unification speed is very 

important in improving program execution speed. Content 

addressable memories provide faster lookup than random 

access memories, it is also shown by the same authors in 

their paper [21] that the fraction of database clauses 

increases as the database becomes larger and larger. For 

unification of database clauses a query must be matched with 

the database. Content addressable memory performs matching 

very quickly. In content addressable memories the database 

is stored in tabulated form and can be searched very fast. 

It surely speeds unification and the benefit increases as 

the database grows. 

Other components in the architecture includes a control 

unit and the bus for interprocessing unit communication. 



CHAPTER VI 

EXECUTION ON PROPOSED ARCHITECTURE 

The top level description of the architecture is as 

follows. A global memory stores the database needed for 

unification. This memory is hierarchical and associative. 

There are one or more processing units that access this 

memory. Initially, all the data is stored in the global 

associative memory. The distribution of data in different 

levels of the memory hierarchy is done based upon the 

following rules. 

1. If the data is of type recursive, then store that in 

the recursive unit. 

2. If the data is of type fact, then store that in the 

semiparallel memory unit. 

3. Store everything else in RAM. 

The distribution can be done in either hardware or 

software. For implementing it in hardware the addresses are 

distinguished for different memory units (representing 

different hierarchy levels). To implement it in software the 

interpreter or compiler decides where the data should be 

stored. The fully associative memory acts as a global cache 



and recursive data are stored in this unit. The 

semiassociative memory unit and RAM make the rest of main 

memory for the system. Facts are stored in the 

semiassociative memory module. All other data is stored in 

RAM. 
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Any query to the system is presented via a front end 

computer. This query is then passed on to the master 

processing unit. The query is presented to that unit through 

the main memory and processing unit communication bus. 

After receiving the query the master processing element 

starts processing it. The master processing element receives 

the query, asks the memory for matching clauses and then 

creates AND processes and OR processes. 

The main memory responds to a request from the 

processing unit by searching and supplying the matching 

clauses. All such clauses are stored in a global buffer. 

From the global buffer the first clause is selected and the 

literals in that clause are ordered. 

Then the master PU selects the first matching clause 

from the global buffer. First the case of single PU is 

considered and actions taken by additional PUs are added 

later. 
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It is possible that there can be more than one matching 

clause for the query asked. If so, the master processing 

unit executes one clause at a time from the global buffer. 

When a clause is received, its literals are placed in 

processing unit buffers. There are three kind of buffers in 

every processing unit. Literals that do not share variables 

are stored in the pending buffer. Literals that share 

variables are stored in the blocked buffer. The third buffer 

is the solved buffer in which all solved literals are 

stored. All the literals stored on the pending buffer are 

independent and can be processed concurrently. 

When a PE takes a literal from the pending buffer for 

solution it asks the main memory to supply the matching 

literals or rules, and these are stored in the local memory 

of the processing unit. The processing element takes the 

first matching fact or rule and tries to unify the 

variables. Other matching literals are placed in the blocked 

or pending buffer depending on shared or unshared variables 

respectively. All bindings obtained for the variables are 

stored back to local memory and hence they are available for 

all other processing elements. 

The PEs first take literals (generators of variables) 

that are executable and store them on the pending buffer. 



If the first literal taken by the master processing 

element results in success and there are no other literals 

to solve then success is reported to the front end. 
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If there is more than one matching literal then the 

first literal (generator of variable) is tried first. After 

execution of a generator literal the variables are bound and 

if there are any blocked literals that can be executed 

simultaneously, they are moved onto the pending buffer and 

can be solved concurrently by two different processing 

elements. 

Whenever a literal from the clause is successfully 

unified then it is stored on a solved buffer with its status 

as success. If a literal does not get unified successfully 

and if this literal is the generator of variable then the 

literal ordering algorithm is called again and ordering of 

literals is done using some other rule. 

If the literal which is the generator of a variable is 

unified successfully but other literals for the same clause 

fail then backtracking has to be done. 

For example, suppose there are 3 literals in the body 

of a particular clause, X, Y and z. Assuming X is the 

generator of certain variables that are also shared by z but 
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that literal Y does not share any variables with the other 

two literals. Then Z is stored on the blocked buffer while X 

and Y are stored on the pending buffer. 

First the master processing element processes literal 

x. Any other processing element can start processing literal 

Y. If the attempt for unification for X fails, then the 

ordering algorithm is called again and the literals ordered. 

If unification for X succeeds, then Z is moved from the 

blocked buffer to the pending buffer. In the meantime Y is 

processed by some PE. Success for any literal is stored in 

the solved buffer. If the attempt for unifying Z fails, 

then another matching for Z has to be tried (backtracking). 

If there is no other matching, then the unification attempt 

for the whole query fails, even though X and Y are 

successfully unified. 

The important thing is that when the match for a 

literal is a rule then the control for that rule stays with 

the current processing element. In the above example, 

suppose that the generator of all variables is X and that Y 

and z share some variables. The master processing element 

starts execution on literal X and after successful 

unification of X, the variables needed for the execution of 

literal Z are bound and hence Z can be processed. In the 
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meantime some other processing element starts execution for 

literal Y. Now assuming that there are several matches for 

literal Y, each match can be tried in turn until successful 

unification occurs. 

If a matching literal tried is a rule containing 

subgoals then all those subgoals have to be unified 

successfully. In this case the processing element that is 

executing the literal Y is responsible for obtaining the 

final result for the rule for literal Y. This processing 

element can spawn different AND and OR processes (for the 

subgoals) and put them on their respective buffers. Other 

processing elements in that unit can execute the OR 

processes for that matching rule for literal Y, and the 

processing element which started execution for Y gets the 

respective answers. 

The master processing element is the parent of the 

total clause solution, while the processing element 

executing the literal Y is responsible for providing the 

answer after the execution of literal Y to the master 

processing element. So the master processing element remains 

as parent to all the processes. Any other processes created 

by the other processing elements report their answer back to 

the parent processing element. 
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In the case of more than one processing unit, different 

processing units can take different clauses that are 

matching the query and can start processing them. In this 

way OR parallelism can be exploited at the top level. There 

are tradeoffs of having either one processing unit or more 

than one processing unit. If there is only one processing 

unit then this unit is responsible for the execution of all 

different matching clauses. There can be more processing 

elements in that processing unit, but then maintaining the 

record of which clause is being executed where and 

controlling all these processes becomes more complicated. 

By having different processing units for the execution 

of different clauses, it is assured that there is only one 

clause executed in one processing unit at the beginning. 

Once some processing unit runs out of work in its local 

buffer as well as in the global buffer then it communicates 

with other processing units over the interprocessing unit 

bus. Different processes can be transferred from one unit to 

other via this bus. 

Within a processing unit the execution procedure is the 

same as described above. Hence OR parallelism is exploited 

by all the processing units and AND parallelism is exploited 

inside the processing unit. 
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If a processing unit is done with executing all the 

literals on both of its buffers, then the processing unit 

puts a request for work to other processing units via the 

bus. One way of doing that is that a processor in each 

processing unit only handles interprocessing unit 

communication, i.e., the processor requests control of the 

bus and then takes care of transferring literals from other 

processing units to its local memory. 

When a processing unit puts the request for work on the 

bus then there are chances that more than two processing 

units have excessive work that can be shared with them and 

in such cases the requesting processing unit can get the 

work from the processing unit that is closest to it. By 

doing so the traffic length on the bus is made shorter. 

The forward execution algorithm is called by the 

processing unit after it receives the clause from the other 

processing unit and ordering of the literals is done. 

The backward execution algorithm is invoked when one of 

the literals in the clause fails to unify. When two or more 

literals share a variable but for that (those) variable(s) 

the head of the clause is the generator then OR processes 

can be created for them simultaneously (explained in the 

detailed example in the previous chapter, chapter IV). But 



if any one literal fails in unification then the backward 

execution algorithm is called. 
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The processing unit executing a particular literal 

which fails is responsible for calling the backward 

execution algorithm and as per the algorithm the generation 

of new processes is done and new bindings are updated or 

stored in the local memory. 

It is important that all the information about ordering 

of literals should be stored at the beginning of execution 

and it is updated as processes are moved from one state to 

other. When backtracking is done then the process associated 

with a particular literal responsible for failure has to be 

tried again. This is determined from the stored information 

in the local memory of every processing unit. Some part of 

local memory is reserved for storing the order of literals 

for a particular clause and the rest of the memory space 

stores the binding for different processes. 

The other important thing is that when a literal is 

moved to another processing unit for execution from the 

pending buffer of the parent processing unit then in case of 

failure to unify, the new processing unit needs to inform 

the parent processing unit. The parent processing unit then 

takes control for that literal back. 



So, the following algorithms is used to control 

backtracking 
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1. If a literal fails, then invoke the backtracking 

algorithm; try the process for the innermost literal in the 

loop; move the process to the buffer corresponding to its 

new state. 

2. If the new attempt at the unification fails then 

backtrack again. 

3. If a literal is moved to another processing unit and it 

fails then let the parent processing unit know about it and 

send the information back to a parent processing unit; 

the processing unit executing that literal stops further 

execution of that literal and tries to get another literal 

and can work on it; the failed literal is stored back on 

buffer in parent processing unit and execution proceeds from 

there. 

DETAILED EXAMPLE 

A example is now presented that covers all the details 

for execution. The example presented here is the 

same example discussed briefly in chapter IV. (This example 

is presented by Conery [6] to describe AND and OR processes, 

and here it is used to show how the execution would be 
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carried out on the proposed architecture). Refer to Figure 6 

on page 40, 

The database for the example is as follows, 

paper(P, D, I) 

paper(P, D, I) 

date(P, D), author(P, A), loc(A, I, D). 

tr(P, I), date(P, D). 

paper(xform, 1978, uci). 

author(fp, backus). date(fp, 1978). 

author(df, arvind). date(df, 1978). 

author(eft, kling). date(eft, 1978). 

author(pro, pereira). date(pro, 1978). 

author(sem, vanemden). date(sem, 1976). 

author(db, warren). date(db, 1981). 

author(sasl, turner). date(sasl, 1979). 

author(xform, standish). 

title(db, efficient_processing_of_interactive ... ). 

title(df, an_synchronous_programming_language .. ). 

title(eft, value_conflicts_and_social_choice). 

title(fp, can_programming_be_liberated .. ). 

title(pro, dec_lO_prolog_user_manual). 

title(sasl, a_new_implementation_technique .. ). 

title(sem, the_semantics_of_predicate_logic .. ). 
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title(xform, irvine_program_transformation_catalog). 

loc(arvind, mit, 1980). 

loc(backus, ibm, 1978). 

loc(kling, uci, 1978). 

loc(pereira, lisbon, 1978). 

loc(vanemden, waterloo, 1980). 

loc(turner, kent, 1981). 

loc(warren, edinburgh, 1977). 

loc(warren, sri, 1982). 

journal(fp, cacm). 

journal(sasl, spe). 

journal(kling, cacm). 

journal(sem, jacm). 

tr(db, edinburgh). 

tr(df, uci). 

The above database is stored in the main memory of the 

architecture. As per the rule for distribution of data to 

different sections of the memory hierarchy for the above 

database, the two clauses for "paper" would be stored in the 

parallel section of the content addresable memory while all 

other data would be stored in the semiassociative content 

addresable memory section of the memory hierarchy. For this 

particular example nothing would be stored in the RAM 

section of the memory hierarchy. 

Now through the front end computer the question asked 

to the system is -? paper(P, D, I) 

This question is forwarded to the master processing 

unit. The master processing unit receives this question and 

is responsible for sending the answer back to the front end 
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computer. For simplicity it is assumed here that there are 3 

processing units, named for distinguishing purposes as 

processing unit #1 (master processing unit), unit #2 and 

unit #3. Also it is assumed here that there are 4 processing 

elements in each processing unit. 

The data storage format is discussed later on in this 

chapter. First how the execution is carried out and 

different units work is explained. 

The master processing unit, after receiving the 

question, puts the request to the memory to find all the 

matching clauses from all the sections of memory. (The 

request for matching is global to all the units of memory.) 

Memory follows the order and so it first looks in the fully 

parallel CAM unit then in the semiassociative CAM (bit 

serial word parallel) and then in RAM. For this particular 

example to find matchings for -? paper(P, D, I), memory 

looks in the fully associative section and finds 

paper(P, D, I) 

paper(P, D, I) 

date(P, D), author(P, A), 

loc (A, I, D) and 

tr(P, I), date(P, D). 

After looking in the parallel CAM the search for 

matching is made in the semiparallel section of memory and 
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from that section paper(xform, 1978, uci) is found. There is 

nothing stored in the RAM section of the memory hierarchy 

and hence the search finishes. 

Actually in practical execution this search for 

matchings is done very fast because of the content 

addresable memories, and also with the fact that most of the 

time the needed data is found in the CAM section of the 

memory hierarchy. 

Now these three matchings are stored in a global buffer 

in FIFO strategy. The first matching is the clause for paper 

with 3 literals, then the clause for paper with 2 literals 

and finally the clause for paper which is a simple fact. 

This part of the search and matching gives potential for 

exploiting OR parallelism. With the assumption of having 

three processing units that OR parallelism can be exploited 

fully. Now let us assume here that all the possible answers 

for the question asked are needed, so it now becomes 

necessary to solve all matching clauses. If it would be a 

case where only one answer is needed then there are options 

of doing execution of matching clauses either sequentially 

or doing execution in parallel but supplying only one answer 

back. 



Now the master processing unit takes the first clause 

which has 3 literals and starts the process for executing 

that clause. 

79 

Processing unit #2 takes the second matching clause 

with 2 literals and unit #3 takes the third clause. If there 

would have been more matchings then they would have to wait 

until one of the processing units is free. 

When the processing unit takes the clauses from the 

global buffer it becomes necessary to order the literals if 

there is more than 1 literals in a clause. So ordering of 

literals is necessary for matching clauses 1 and 2 which 

have 3 and 2 literals respectively. For the third matching 

clause there is only one literal and so ordering of literals 

is not necessary. (This also brings up a fact that all the 

clauses that are obtained from the fully associative memory 

section would always need to order literals while the 

matching clauses obtained from the semiparallel CAM would 

never need to call the ordering of literals algorithm as 

data stored in that unit is of type fact. Hence an 

implementation can be devised in which all the matching 

clauses obtained from the fully associative CAM get ordered 

automatically) 
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After ordering of literals for the processing unit #1, 

the head goal is paper(P, D, I), the literals are 

date(P, D), author(P, A) and loc(A, I, D). 

The set of variables that have a generator is 

G = {P, D, I}. The set which contains variables for which a 

generator is not specified is U = {A}. Now the connection 

rule is used to search through the clause, and the 

connection rule decides the generator for a variable if that 

variable is present with another variable in a literal but 

the other variable has its generator already decided. So for 

the variable A the literal loc(A, I, D) becomes the 

generator as loc has two other variables that have the head 

of the goal designated as their generator. 

So the order of literals will be, date as literal #1, 

loc as literal #2 and author as literal #3. For date and loc 

there is one common variable, D. If the head goal would have 

some value to bind this literal then OR processes for both 

literals could have been started but in this case the head 

variable does not bind variable D to any value and hence the 

execution of literal loc has to wait until literal date 

binds variable D to some value. The date literal is moved to 

the pending buffer and the other two literals are moved to 

the blocked buffer as they have to wait until execution for 

date is completed. 
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Looking into the database it becomes clear that there 

are many matching literals for date and loc and the main 

memory provides these matchings to the local memory of the 

processing unit. The first matching for literal date from 

the local memory would be date(fp, 1978), binding variable P 

to fp and variable D to 1978. This binding is stored in the 

local memory of the processing unit. The controlling unit 

senses the binding of variable D to value 1978 and moves the 

loc literal to the executable state (pending state). 

The processing element that executes the literal loc 

gets the first binding as loc(backus, ibm, 1978). At this 

point variable A is bound to backus and variable I is bound 

to ibm. The execution of literal author is now possible and 

the matching found from the local memory would be 

author(fp, backus). The execution ends in success. The 

important thing in this part of the example is that 

execution has to be carried on sequentially because all 

literals share the variables and no variable was bound to 

any value by the head goal. 

If the question asked was 

-? paper(P, 1978, uci) 

the variable D would be bound to the value 1978 and in 

that case the pending buffer would have two literals, date 
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and loc, ready for execution and the blocked buffer will 

have the literal author. So two processing elements can 

start execution on literals date and loc. In that case the 

execution for date would bind P to fp, D is already bound to 

1978 and execution of loc (carried out simultaneously with 

date) would bind A to kling and I is already bound to uci. 

There is no matching literal for author(fp, kling) in the 

database and hence author fails and backtracking has to be 

performed. The backtracking algorithm would be called and 

literal loc would be tried again. But loc would fail 

immediately as there is no other binding for A with D and I 

bound to 1978 and uci respectively. So again backtracking 

will be done and date would be tried again. It turns out 

that when P is bound to eft then the execution of the goal 

would succeed. 

A very important thing here is that when a processing 

element takes the literal date for execution there is more 

than one matching available from local memory. The decision 

to try the first matching and if that fails then try the 

second matching is one way of doing it. The other way to do 

this is to move all matching date literals on the pending 

buffer and hence the other idle processing elements can try 

them one after the other and the different bindings can be 

stored in local memory in FIFO order. When needed they can 

be obtained from the local memory and no time is lost at 
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that point. This method is very efficient when all possible 

solutions are needed in response to the query asked. It may 

not be a good way to solve all matching literals when only 

one answer is needed. 

The same way of processing is used in unit #2. Literals 

tr and date are stored on the blocked buffer as they share 

variable P. The first execution cycle gives the final answer 

as tr(db, edinburgh) and date(db, 1981). In case of the 

query paper(P, 1978, uci), the variable Pis not bound by 

the head goal and hence execution proceeds sequentially. The 

final result in this case will be date(df, 1978) and tr(df, 

uci). 

In processing unit #3 the execution is very simple and 

variable P is bound to xform, while D to 1978 and I to uci. 

The results from all the three units are then given back to 

the front end computer and the execution ends there. 

There are some details to discuss for the way things 

are carried out for execution, e.g.,how the communication 

between processing unit and the memory is done. It is 

mentioned that a processing element from a processing unit 

asks the memory to search and supply all the matching 

clauses and then memory replies back to that processing 

element. The communication at this level needs some more 
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explanation. 

When a request is put forward by the processing element 

to the memory over the memory to processing unit bus, the 

CAM and RAM searches and supplies the clauses. The request 

is put forward with the head name of the goal and number of 

variables for that head goal. The memory receives that 

request and matches that head goal name to its stored data 

but also it looks to only those names that have same number 

of variables. This kind of search can be made possible 

because of the particular type of storage method. For 

example, when the clauses are stored in memory there can be 

a small field (tag) that contains the information about 

number of variables in that particular head goal. The tag 

field match is made simultaneously with the head goal name 

match and all such matchings can then be supplied to the 

processing unit's local memory. So memory can be thought of 

supplying back the matching head goals with number of 

literals. 

The other kind of communication that takes place is 

between processing elements of different processing units. 

This happens when some literals on the pending buffer of a 

particular processing unit are transported to other 

processing unit for execution. 
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In such case a large amount of information gets 

transferred between two processing elements. The processing 

unit asking for work puts the request on the bus and that 

request is received by all the PUs (processing units). The 

PU which is closer physically to the "hungry" PU gets the 

first priority for sending work. The parent PU sends the 

work to the other PU from the pending buffer. The 

information sent from the parent PU contains the total 

number of literals sent, the matching literals, and most 

importantly the parent PU's address so the answers can be 

sent back to the parent PU. Also the parent unit keeps note 

of what literals are sent to which PU. In cases when work is 

sent to other units and results come back to the parent unit 

then the processing element which is executing the clause 

looks for results in the solved buffer, which stores all 

such results. In this way the PE (processing element) can 

find answers. 

Things start to become complicated when communication 

and execution of literals is done at another unit. The work 

sent is literals to be executed with their matching literal 

database from the local memory of the sender and the answer 

sent back is bindings of variables for literals and the 

success or failure message. 
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The communication between a PE and the local memory is 

of the same nature as that of main memory and a processing 

element at the beginning of execution. 



CHAPTER VII 

RESULT AND ANALYSIS 

To analyze and evaluate the proposed design the 

architecture was parameterized as described here. Main 

memory is assumed to have either one or two ports. There are 

two buses in the architecture, with one bus supporting 

communication between main memory and PUs and the other bus 

supporting communication between different PUs. Also, the 

communication time between main memory and the PUs and 

between PUs are set to two different values. Communication 

time is the total of the time needed to transfer work, to 

calculate the result and to send the result back to the 

parent PU. 

There can be different configurations depending on the 

number of PUs and the number of PEs and the parameters 

described above. An architecture with m PUs and n PEs per PU 

is classified as m * n. Execution time results are obtained 

for different configurations and they are then compared to 

draw conclusions. 

Some assumptions are made for the analysis of the 

architecture. First, the main memory is assumed to be large 



BB 

enough to hold the entire database, i.e., secondary memory 

is not required. Second, the local memory is assumed to 

store all local information so that local information does 

not have to be stored in main memory. Third, it is assumed 

that the access time for the local buffers is independent of 

the number of PEs in a PU. 

One of the test programs chosen is the benchmark 

program "query" (Appendix 1), which has potential for both 

AND and OR parallelism. This program is selected because it 

is a database dependent program with easily traceable AND 

and OR parallelism. This helps in mapping it to different 

configurations of the architecture. The second test program 

"coloring of map" (Appendix 1), is chosen because it 

contains goals that fail, so the use of multiple solutions 

is important. 

The results are obtained by performing hand simulation 

(assigning different goals to different processing elements 

in different PUs) and the time is calculated in number of 

cycles including memory time. All the results are optimized 

for every configuration and the results for different 

configurations obtained are a function of the parameters m, 

n, time for main memory bus, time for PU - PU bus, and 



TABLE II 

QUERY EXECUTION TIME FOR DIFFERENT CONFIGURATIONS 
FOR DIFFERENT MEMORY RESPONSE TIME IN CYCLES 

Single port Single port Dual port 

1 cycle Meriory 2 cycle Meriory 2 cycle Meri or y 

f'1 • n f'1 n eye le' f'1 • n f'1 n cycle f'1 • n rl n cycles 

l . 1 1 l 82 l . 1 J 1 89 1 . 1 1 l 82 

2 • 1 2 1 48 2 • 1 2 1 89 2 • 1 2 l 48 

4 • J 4 l 37 4 • l 4 1 44 4 • 1 4 J 40 

1 • 2 J 2 51 J • 2 1 2 58 l • 2 l 2 49 

2 • 2 2 2 41 2 • 2 2 2 48 2 • 2 2 2 41 

3 • 2 3 2 39 3 • 2 3 2 46 3 • 2 3 2 -

4 • 2 4 2 35 4 • 2 4 2 42 4 • 2 4 2 33 

1 • 4 1 4 35 1 • 4 1 2 42 1 • 4 1 2 33 

2 • 4 2 4 33 2 • 4 2 4 40 2 • 4 2 4 32 

3 • 4 3 4 27 3 • 4 3 4 34 3 • 4 3 4 27 

1 • 8 l 8 26 1 • 8 1 8 33 1 • 8 I 8 27 

2 • 8 2 8 26 2 • 8 2 8 33 2 • 8 2 8 27 

4 8 4 81 26 4 • 8 4 8 33 4 • 8 4 8 27 

8 • 8 8 8 26 8 • 8 8 8 33 8 • 8 8 8 27 

15 • el 15 8 26 16 • 8 16 8 33 16 • 8 16 8 27 

1 16 1 16 24 J . 16 1 16 32 1 . 16 J 16 23 

2 16 2 J 5 24 2 • 16 2 161 32 2 • 16 2 16 23 

4 . i6 4 16 24 4 • 16 4 161 32 4 • 16 4 16 23 

8 • 16 8 , 16 24 8 • J 6 8 16 32 8 • 16 8 16 23 

is· 16 16 16 24 is· 16 16 161 32 1s·16 16 16 23 

89 



TABLE III 

QUERY EXECUTION TIME WITH SAME MEMORY RESPONSE TIME 
BUT DIFFERENT COMMUNICATION TIME 

~ 

Config. 2 cycle Mem 2 cycle Mem 
' response response 

m * n m n single port dual port 

1 * 1 1 1 89 82 

2 * 1 2 1 55 50 

4 * 1 4 1 43 43 

1 * 2 1 2 58 4 

2 * 2 2 2 55 44 

4 * 2 4 2 65 5 

1 * 4 1 4 42 3 

2 * 4 2 4 48 39 

3 * 4 3 4 57 57 

1 * 8 1 8 33 27 

1 * 16 1 16 32 23 

90 
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the number of main memory ports. 

The results obtained from the first test program are 

very interesting (Tables II and III). As expected, the 

performance of sequential processing is the poorest of all 

the configurations. The speed of execution increases as the 

number of PEs is increased. Speed also increases with an 

increase in the number of PUs. The results can be presented 

in different ways, for example increasing the number of PEs 

but keeping the number of PUs constant, keeping the number 

of PEs the same but increasing the number of PUs, comparing 

all the results with the sequential execution time with only 

one PE. Figure 11 (graph 1) shows results for the first 

class, figure 12 (graph 2) shows example results for the 

second class. 

The highest speedup is obtained when there is only one 

PU and the number of PEs in that PU is increased. This is 

interesting because the communication time is totally 

absent, as there is only one processing unit. But it is 

assumed here that the pending and blocked buffers are able 

to support multiple PEs at the same time inside the 

processing unit. The performance is also improved when the 

number of PUs is increased, but after reaching a certain 

point the saturation in speedup is reached and then 

increasing the number of PUs does not increase the 
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performance further. Similarly the saturation in speed is 

also reached after a certain number of PEs inside a single 

PU. In fact, keeping all the PEs in one PU is better than 

dividing them among several PUs as communication affects the 

speed of execution. 

The results for the map coloring problem are also 

interesting. The solution obtain with one processor and one 

processing unit takes about 42 cycles. The configuration of 

architecture with 2 processing unit each having 4 processing 

units takes about 19 cycles. The speedup obtained with 2 PUs 

and 4 PEs inside one PU is 221 % faster than sequential 

execution. 

DIFFERENCE BETWEEN BENCHMARK PROGRAMS 

The difference between the two programs selected for 

analysis is discussed here. The map coloring program has all 

the AND goals and then the OR subgoals for AND goals are 

spawned. So initially all the AND goals (a total of 4 at the 

bottom row in the graph in Figure 7 in chapter IV) are 

blocked. In the query program two AND subgoals are blocked 

initially. The number of OR subgoals is higher in the query 

program and hence the work that can be transferred to other 

units is great. There is not enough work to transfer to 

other units in the map coloring program. Hence a 

configuration which has PEs in only one PU is more suitable 
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for the map coloring problem than the same number of PEs 

distributed over multiple PUs. The advantage with a similar 

configuration for the query program exists but it is not as 

evident as in the map coloring problem. In the map coloring 

problem the extra work (binding of a region to more than one 

color) is done and is then not utilized, while in the query 

program no extra work is done and efforts are not wasted. 

The results have allowed us to conclude that the 

architecture and execution algorithm increase the 

performance greatly, in some cases by as much as 300 % 

compared to sequential execution. 



CHAPTER VIII 

FUTURE WORK AND CONCLUSIONS 

There are some issues that were left out of the 

analysis but are too important to ignore for an actual 

implementation purpose. It would be worthwhile to explore 

these issues in the future to get more accurate results. 

Issues to be explored include the following. First, the 

response time of the memory system when needed data is not 

found and has to be retrieved from the secondary memory. 

Second, the limitation on the number of PEs that can be 

served at a particular time by the pending and blocked 

buffers would seriously affect the time it takes to solve a 

particular goal. Finally, when there are enough goals to be 

transferred to other PUs and communication increases, then 

the PU - PU bus may become a bottleneck and so other 

communication methods may be needed. 

One of the future goals might be to develop an 

interpreter that would be helpful for actual simulation of 

the results. The interpreter would be responsible for the 

execution algorithms and goal ordering also. The proposed 

architecture should be tested on other benchmark programs to 

get more accurate results about the overall performance. A 
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simulation done with the use of the interpreter will provide 

different results and these results can be compared. 

CONCLUSION 

The work presented here covered different types of 

parallelisms in logic programs, an introduction to Prolog, 

other logic programming languages and their origins, a brief 

description of other attempts to exploit parallelism in 

Prolog, the method used here to exploit parallelism in 

Prolog, the structure of an architecture to carry out the 

work and make use of parallelism present in Prolog, the 

parametrization of the architecture, analysis with 

assumptions and finally results obtained showing the 

performance of the architecture. 

It is shown in this thesis that AND parallelism is an 

important source of parallelism [21] and unification speed 

affects the overall speed [l]. The proposed architecture 

design is able to exploit the AND parallelism and has the 

capability for faster unifications and reduced total 

execution time (Tables II,III). 
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APPENDIX 

This Appendix contains the benchmark programs that 

were used in this thesis. 

1. Benchmark Program query : 

This program returns the solution to a database query 

to find countries of similar population density. 

? - query(X) 

query([Cl,Dl,C2,D2]) :- density(Cl,Dl), density(C2,D2) 

01 > 02, 20*01 < 21*02. 

density(C,D) :- pop(C,P), area(C,A), Dis (P*lOO)/A. 

pop(china, 8250). area(china, 3380). 

pop(india, 5863). area(india, 1139). 

pop(ussr, 2521). area(ussr, 8708). 

pop(usa, 2119). area(usa, 3609). 

pop(indonesia, 127 6) . area(indonesia, 570). 

pop( japan, 1097) . area(japan, 148). 

pop(brazil, 1042). area(brazil, 3288). 

pop(bangladesh, 7 50) . area(bangladesh, 55). 

pop(pakistan, 682). area(pakistan, 311). 

pop(w_germany, 620). area(w_germany, 96) . 

pop(nigeria, 613) . area(nigeria, 373). 
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pop(mexico, 581). area(mexico, 764). 

pop(uk, 559). area(uk, 86) . 

pop(italy, 554). area(italy, 116). 

pop(france, 525). area(france, 213). 

pop(philippines, 415). area(philippines, 90) . 

pop(thailand, 410). area(thailand, 200). 

pop(turkey, 383). area(turkey, 296). 

pop(egypt, 364). area(egypt, 386). 

pop(spain, 352). area(spain, 190). 

pop(poland, 337) . area(poland, 121). 

pop(s-korea, 335). area(s-korea, 37) . 

pop(iran, 320). area(iran, 628). 

pop(ethiopia, 272) . area(ethiopia, 350). 

pop(argentina, 251). area(argentina, 1080) . 

2. map coloring program 

Call: 

color(A,B,C,D,E). 

Clause: 

color(A,B,C,D,E) 

(1) next(A,B) " 

( 2 ) next { C , D) " 

( 3) next (A, C) " 

(4) next(A,D) " 

( 5 ) next ( B, C ) " 



( 6 ) next ( B, E ) " 

( 7 ) next ( C , E ) " ( B ) next ( D , E ) . 

next(green,yellow). 

next(green,red). 

next(green, blue). 

next(yellow,green). 

next(yellow,red). 

next(yellow,blue). 
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next (red, green) . 

next(red,yellow). 

next(red.blue). 

next(blue,green). 

next(blue,yellow). 

next(blue ,red). 
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