
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

5-3-1991

Exploiting and/or Parallelism in Prolog Exploiting and/or Parallelism in Prolog

Bankim Shah
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Shah, Bankim, "Exploiting and/or Parallelism in Prolog" (1991). Dissertations and Theses. Paper 4223.
https://doi.org/10.15760/etd.6103

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4223
https://doi.org/10.15760/etd.6103
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Bankim Shah for the

Master of Science in Electrical Engineering presented

May 3, 1991.

Title: Exploiting AND/OR Parallelism in Prolog.

APPROVED BY THE MEMBERS OF THE THESIS

Warren Harrison

Logic programming languages have generated increasing

interest over the last few years. Logic programming languages

like Prolog are being explored for different applications.

Prolog is inherently parallel. Attempts are beirig made to

utilize this inherent parallelism. There are two kinds of

parallelism present in Prolog, OR parallelism and AND

parallelism. OR parallelism is relatively easy to exploit

while AND parallelism poses interesting issues. One of the

main issues is dependencies between literals.

2

It is very important to use the AND parallelism available

in the language structure as not exploiting it would result in

a substantial loss of parallelism. Any system trying to make

use of either or both kinds of parallelism would need to have

the capability of performing faster unification, as it affects

the overall execution time greatly.

A new architecture design is presented in this thesis

that exploits both kinds of parallelism. The architecture

efficiently implements some of the key concepts in Conery's

approach to parallel execution [5]. The architecture has a

memory hierarchy that uses associative memory. Associative

memories are useful for faster lookup and response and hence

their use results in quick response time. Along with the use

of a memory hierarchy, execution algorithms and rules for

ordering of literals are presented. The rules for ordering of

literals are helpful in determining the order of execution.

The analysis of response time is done for different

configurations of the architecture, from sequential execution

with one processor to multiple processing units having

multiple processors. A benchmark program, "query," is used for

obtaining results, and the map coloring problem is also solved

on different configurations and results are compared.

3

To obtain results the goals and subgoals are assigned to

different processors by creating a tree. These assignments and

transferring of goals are simulated by hand. The total time

includes the time needed for moving goals back and forth from

one processor to another.

The total time is calculated in number of cycles with

some assumptions about memory response time, communication

time, number of messages that can be sent on the bus at a

particular instant, etc. The results obtained show that the

architecture efficiently exploits the AND parallelism and OR

parallelism available in Prolog. The total time needed for

different configurations is then compared and conclusions are

drawn.

EXPLOITING AND/OR PARALLELISM

IN PROLOG

by

BANKIM SHAH

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL ENGINEERING

Portland State University
1991

TO THE OFFICE OF GRADUATE STUDI ES:

The members o f the Commitee approve t he t hesis o f

Bankim Sha h p resented May 3, 1991.

Michael

Robert Daasch

Warren Harrison

APPROVED:

Rolf Schaumann, Department of Electrical Engineering

c. William Savery, Intrim Vi ovost for Graduate studies
and Research

ACKNOWLEDGEMENTS

I would like to thank my M.S. advisor, Dr. Michael

Driscoll, for his outstanding support and encouragement during

my career as a graduate student. I am also grateful to Dr.

Robert Daasch and Dr. Warren Harrison for their constructive

comments and suggestions about the thesis. I am also thankful

to staff members of the Department of Electrical Engineering

for their continuing encouragement.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS . iii

LIST OF TABLES • . • vi

LIST OF FIGURES ••••••••••••••••• Ill •••••••••••••••••••••• vii

CHAPTER

I

II

III

IV

INTRODUCTION

INTRODUCTION TO PROLOG

1

4

Elements of Prolog . 4

Execution Model for Sequential Prolog...... 8

Model for Parallel Execution of Prolog...... 11

PARALLELISM IN LOGIC PROGRAMS 14

Models for OR Parallelism.................. 18

Models for AND Parallelism................. 20

Analysis of Sequential Prolog Programs...... 24

AND PARALLELISM•.•..... 30

Ordering of Literals........................ 33

Execution Algorithm........................ 43

V IMPLEMENTATIONS FOR AND/OR PARALLELISM

In PROLOG 55

Design of Architecture..................... 57

Memory Hierarchy 62

VI

VII

VIII

v

EXECUTION ON PROPOSED ARCHITECTURE............. 65

Detailed Example. • • 7 4

RESULTS AND ANALYSIS. 87

Differences Between Benchmark Programs..... 94

FUTURE WORK AND CONCLUSIONS.................... 96

REFERENCES . • . 9 8

APPENDIX . • 101

LIST OF TABLES

PAGE
TABLE

I Analysis of Sequential Prolog. 26

II Query Execution Time for Different Configurations,

for Different Memory Response Time in Cycles .. 89

III Query Execution Time for Different Configurations

with Same Memory Response but Different

Communication Time Between PUs 90

LIST OF FIGURES

PAGE
FIGURE

1. AND Parallelism vs. OR Parallelism. • . . . 17

2. OR Processes . 19

3 . AND Processes . 21

4.

s.

6.

7.

8.

9.

10.

11.

12.

Graph for Disjoint Subgoals ...••••.......••....•

Graph for Shared Variables•••••.•...•..

Graph for Deterministic Function••••.....•.

Graph for Map Coloring ••.....•••.........•••.•..

Graph for Detailed Example•••...•.....••..

Block Diagram of Architecture •.•......••••••...•

1-iernol:'l' li.i.ercti:-c::ll}' ••••••••••••••••••••••••••••••••

Graph for Number of PEs vs. Cycles •..•••......••.

Graph for Number of PUs vs. Speedup ••••••..••.••

36

38

40

42

49

58

61

92

93

CHAPTER I

INTRODUCTION

The past few years have seen an explosion of interest

in the field of logic programming as reported by Conery [6].

An indication of the interest is attendance at meetings of

researchers in the field. The attendance has gone up from

the 1980 meeting in Hungary to the attendance in the last

meeting. In addition two journals are devoted exclusively to

logic programming, and journals for artificial intelligence,

programming languages, and computer architecture regularly

feature articles related to logic programming.

Much of the current research involves techniques for

implementing logic programming languages, such as Prolog.

One of the attractions of logic programming is the clean

separation of semantics and control. It is easy to separate

specification of what a program should compute from how an

implementation can efficiently compute it as suggested by

Conery [6]. The major advantage of the separation of

semantics from control, however, is the potential for

parallelism. When it is clear what the final result of a

computation has to be, and that any of a number of different

sequences of operations will lead to the result, it is

reasonable to expect to do some of the operations in

parallel. Such is the case with logic programming.

2

The subject of this thesis is the importance of AND

parallelism in the Prolog language. Research presented here

provides a brief inside look at the Prolog language, a

discussion of potential parallelism in Prolog such as

AND/OR, its importance, problems associated with exploiting

the parallelism and some definitive ideas about implementing

an architecture.

Logic programming languages, like languages based on

applicative models, are often inefficient in comparison to

traditional languages when implemented on Von Neumann

architectures. One hope for more efficient implementation

lies in parallel architectures. The philosophy behind the

research presented here is that parallel architectures

should be designed in a "top-down" fashion, proceeding from

the formal model of computation to actual hardware.

The thesis starts with an introduction to logic

programming. The purpose of this chapter is to make the

reader familiar with some of the terms in logic programming.

Some definitions and concepts are presented and the chapter

ends with an example that covers the concepts and the

definitions presented.

The third chapter discusses the historical aspects of some

other concurrent languages. The chapter also presents the

sources of parallelism in Prolog. It provides a reference

point for understanding AND/OR process models. The third

chapter ends by showing the importance of AND parallelism

and some other techniques that can make execution of Prolog

faster.

The fifth chapter discusses some of the attempts made

over the time to exploit the parallelism (specifically AND

parallelism), and the rest of the chapters in the thesis

present the ideas developed for an architecture that is

capable of satisfying all the needs and requirements shown

in earlier chapters for more efficient and faster execution

of AND parallelism.

3

CHAPTER II

INTRODUCTION TO PROLOG

Prolog is a conversational language. Computer

programming in Prolog consists of (1) declaring some facts

about objects and their relationships, (2) defining some

rules about objects and their relationships, and (3) asking

questions about objects and their relationships [25]. The

fundamentals of Prolog are discussed below.

ELEMENTS OF PROLOG

Facts are a key component of Prolog programs. Facts

describe relationships between objects. For example, to

represent that john and mary are related by the fact that

john likes mary, Prolog uses:

likes(john,mary).

In Prolog, a collection of facts is called a database.

In Prolog, a "question" or "query" looks just like a

fact, except a special symbol is put before it. For example,

?- likes(john,mary).

is interpreted as, Does john likes mary ?

5

When a "question" is asked in Prolog, the Prolog

interpreter will search through the database that has been

entered and look for facts that match the fact in the

question. Two facts match if their predicates are the same

(spelled the same way), and if their corresponding arguments

each are the same. If, in response to a question, a match is

found then success is reported; otherwise, failure is

reported.

The objects in a query may be represented by variables.

When Prolog uses a variable, the variable can be either

instantiated or uninstantiated. An instantiated variable is

associated with a specific object, while an uninstantiated

variable is not associated with a specific object. When

Prolog is asked a question containing a variable, the Prolog

interpreter searches through all its facts to find an object

that the variable could stand for. Variables are represented

by words starting with a capital letter.

A "rule" is a general statement about objects and their

relationships. In a rule a variable can stand for different

object in each different use of the rule. In Prolog, a rule

consists of a head and a body. The head and body are

connected by the symbol :- . The " :-" is pronounced "if".

An example is

likes(john,X) :- likes(X,wine).

The above example presents the fact that

john likes anyone who likes wine, or, in other words,

john likes something if it likes wine, or, with variables,

john likes X if X likes wine.

6

A predicate is defined by a mixture of facts and rules.

These facts and rules are called clauses for the predicate.

The word clause is used while referring to either a fact or

a rule. Let us consider the following example.

A person may steal something if the person is a thief

and he likes the thing and the thing is valuable. In Prolog,

this is written as:

may_steal(P,T) :- thief (P) , likes(P,T) , valuable(T) .

Here the predicate being used is may_steal, which has two

variables P and T to represent the idea that some person P

may steal thing T. This rule depends on clauses for thief,

likes and valuable. These could be represented either as

facts or rules, whatever is most appropriate.

Suppose the following database is present:

likes(mary,food).

likes(mary,wine).

likes(john,wine).

likes(john,mary).

To ask if John and Mary like each other, the question

asked is "Does John like Mary and does Mary like John?".

7

The "and" expresses the fact that the motive of question

asked is interested in the conjunction of two goals. This is

represented as,

?- likes(john,mary) , likes(mary,john).

The comma is pronounced "and," and it serves to separate any

number of different goals that have to be satisfied in order

to answer a question. In the above question all the goals

have to be satisfied in order for the sequence to be

satisfied. A fact can cause a goal to be satisfied

immediately, whereas a rule can only reduce the task to that

of satisfying a conjunction of subgoals. If a goal cannot be

satisfied, or if the user asks to search for other possible

solutions, then backtracking will be initiated.

Backtracking consists of reviewing what has been done

and attempting to re-satisfy the goals with an alternative

solution path. When a failure is generated (because all the

alternative clauses for a goal have been tried, or because

another solution is requested by the user), the "flow of

satisfaction" passes back along the way it has come. In

other words, during the solution of a goal, whenever a

8

clause is selected a marker specifying its location is

placed in the database. Then for satisfying subgoals, search

and matching are performed over the existing database. But

when the result of the attempt is a failure, further

attempts start from the point at which the marker was

placed. But to do so it is first necessary to go back to the

point where the marker was placed for the selected clause.

After that Prolog attempts to find an alternative clause for

the appropriate goal. First all the variables that were

instantiated along that path for satisfying the goal are now

made uninstantiated. Then, the interpreter searches on in

the database from where the clause was selected. If it finds

another matching possibility, a marker is placed and the

execution is continued. If no other matching possibility can

be found, the goals fails, and the flow of execution

retreats further until it comes to another place marker

(i.e. backtracking to next high level).

EXECUTION MODEL FOR SEQUENTIAL PROLOG

The following example by Clocksin and Mellish [25]

shows how programs are executed in Prolog. The problem is

about a party and it is desired to speculate about who might

dance with whom. The program is written in the following

way.

possible_pair(x,y) :- boy(x) , girl(y) .

boy(john) .

boy(marmaduke) .

boy(bertram) .

boy(charles) .

girl(griselda) .

girl(ermintrude) .

girl(brunhilde) .

This program says that X and Y form a possible pair if

X is a boy and Y is a girl. Now, if the question asked is

"what are the possible pairs," or

?- possible_pair(X,Y) .

Prolog responds with following results,

X = john, Y = griselda;

X = john, Y = ermintrude;

x = john, Y = brunhilde;

X = marmaduke, Y = griselda;

X = marmaduke, Y = ermintrude;

X = marmaduke, Y = brunhilde;

X = bertram, Y = griselda;

X = bertram, Y = ermintrude;

X = bertram, Y = brunhilde;

X = charles, Y = griselda;

X = charles, Y = ermintrude;

X = charles, Y = brunhilde;

9

10

First of all Prolog looks for the matching rule, in

this case possible_pair(X,Y) and then Prolog attempts to

solve subgoals boy(X) and girl(Y). In attempting to satisfy

the subgoal boy(X), Prolog finds john, the first boy. Then

it satisfies girl(Y), finding griselda, the first girl.

Suppose at this point Prolog is asked for another solution

by causing a failure. Prolog attempts to resatisfy what it

did last, which is the girl subgoal within the satisfaction

of the possible_pair goal. It finds the alternative girl

ermintrude, and so the second solution is john and

ermintrude. Similarly it generates john and brunhilde as the

third solution. The next time it tries to resatisfy girl(Y),

Prolog finds that its placemarker is at the end of the

database, and so the goal fails. Now it tries to resatisfy

boy(X). The placemarker for this was placed at the first

fact for boy, and so the next solution found is the second

boy (marmaduke). Now that it has resatisfied this subgoal,

Prolog looks to see what is next - it must now satisfy

girl(Y) from the start again. So it finds griselda, the

first girl. The next three solutions now involve marmaduke

and the three girls. Next time when asked for an alternative

the girl subgoal cannot be resatisfied, so another boy is

found, and the search through girls starts again from

scratch, and so on.

11

Eventually, the girl subgoal fails and there are also

no more solutions to the boy subgoal either. So the program

can find no more pairs.

The above example shows how sequential execution and

backtracking are carried out.

If the same example is to be executed in parallel the

query possible_pair (X,Y) would be solved by looking in to

all such named goals and their solutions. This is a form of

OR parallelism. An example is presented below:

MODEL FOR PARALLEL EXECUTION OF PROLOG

Suppose the database is now

possible_pair(X,Y) :- boy(X) , wine(Y) .

possible_pair(X,Y) :- flower(X) , garden(Y) .

possible_pair(X,Y) :- university(X) , college(Y).

possible_pair(X,Y) :- boy(X) , girl(Y) .

boy(john) .

boy(marmaduke) .

university(psu) .

college (reed) .

flower(rose) .

flower(lotus) .

wine(champagne) .

garden(rosepark) .

girl(griselda) .

girl(michelle) .

And the question asked is

?- possible_pair(X,Y) •

12

There are three different matches for possible_pair and

all three can be solved by satisfying their respective

subgoals. A simultaneous attempt to solve all the three

possibilities is known as OR parallelism.

For AND parallelism attempts would be made to solve

boy(X) and girl(Y) simultaneously by creating separate

processes for them. OR parallelism would then be used to

solve subgoal boy(X) by trying to find all the possible

answers for it in parallel, by matching boy(X) to as many

facts in the database as possible. In this case the answers

will be marmaduke and john, and X is associated with them.

Similarly the girls griselda and michelle will be associated

with Y. The final answer would be found by matching these

results. Relating X and Y to different answers is known as

"unification" and is an important operation. With proper

implementation that facilitates unification, the execution

of programs can be made faster.

13

The reader may wish to go in to more detail. This

introduction to Prolog should help in further understanding.

More explanation for the basic concepts of Prolog can be

found in the book by Clocksin and Mellish [25]. The next

chapter gives insight into some other languages, covers

potential sources of parallelism and then deals with AND

parallelism.

CHAPTER III

PARALLELISM IN LOGIC PROGRAMS

The origins of Prolog are shrouded in mystery, as

discussed by Sterling and Shapiro [15]. All that is known is

that the two founders Robert Kowalski and Alain Colmerauer

worked on similar ideas during the early 70's, and even

worked together. The results were the formulation of the

logic programming philosophy and computation model by Robert

Kowalski (1974) and the design and implementation of the

first logic programming language, Prolog, by Alain

Colmerauer and his colleagues (1973).

Variations of Prolog with extra control features, such

as IC-Prolog by Clark and McCabe, 1979 [15] have been

developed, but have proved too costly in random overhead to

be seriously considered as alternatives to Prolog.

Another breed of logic programming languages, which

indirectly emerged from IC-Prolog, is concurrent logic

languages. The first was Relational Language by Clark and

Gregory, 1981 followed by Concurrent Prolog by Shapiro,

1983, Parlog by Clark and Gregory, 1984, GHC by Ueda, 1985,

[15] and a few other proposals. There is another language

"Strand," evolved from Parlog. Strand is available as a

commercial product.

15

The creation of these languages was motivated by

several ideas and requirements. The first was to create a

parallel execution model for logic programs to fully utilize

new parallel computer architectures. The advantage of using

parallel languages exists in a theoretical sense, but

practically it has some very clear disadvantages. In order

for a programmer to avoid various problems and extract

parallelism easily, languages should have clear semantics

and be inherently parallel themselves. Logic programming

languages provide good opportunities for parallelism with

their high level constructs and semantic clarity. But as

mentioned earlier, in order to make use of these

opportunities the user has to be a good programmer, because

logic concurrent languages are difficult to understand and

program.

The other way to exploit the parallelism is to utilize

the AND-OR goal tree in the languages. The AND-OR tree is

inherent in Prolog and so models and methods for efficient

processing of it can help in exploiting the parallelism.

They can be very well supported on some of the existing

architectures.

Execution of a logic program begins when the user

provides an initial goal statement. The execution can be

represented as an AND/OR goal tree, where multiple

descendants of a node indicate a choice of clauses for

resolving the goal at that node.

16

The two major forms of parallelism in logic programs

can be explained in terms of speeding up the search of the

goal tree as proposed by Conery [6]. OR parallelism refers

to a parallel search strategy - when a search process

reaches a branch in the tree, it can start parallel

processes to search each descendant branch. AND parallelism

corresponds to parallel construction of a branch - when the

interpreter knows a number of steps must be done to complete

a branch, it can start parallel processes to perform those

steps. The name for OR parallelism comes from the fact that

in nondeterministic programs, we are often satisfied with

any correct answer. When any of the processes started at a

choice point (a choice point is a point at which a

particular clause is selected initially for solution of the

goal) finds a result, the original goal is solved. The name

for AND parallelism is based on the fact that all steps must

succeed in order for a result to be produced. The following

example (Figure 1) by Conery [6] clarifies OR parallelism

and AND parallelism.

p q

a b q

D

DR Pora l le l 1sri :

parallel search of

different paths

c q

D

Figure 1. AND parallelism

d

17

e q

AND Parol tel ISM :

parallel execution of

steps within a path

vs OR Parallelism

Goal: p A q.

p - a A b.

p - c.

p - d A e.

Explained in terms of the structure of a program, OR

parallelism is the parallelism obtained from parallel

execution of different clauses for the goal clause. AND

parallelism is the parallelism obtained from parallel

execution of the goals in the body of a clause.

A third source of parallelism is parallelism in low

level operations, such as unification. Systems exploiting

parallelism at this level are typically but not limited to

sequential interpreters.

MODELS FOR OR PARALLELISM

18

Abstract models for OR parallelism fall into three

broad categories per Conery [5]. The first, called 11 pure 11

OR parallelism, consists of a parallel search of the goal

tree. The second form of parallelism is based on objects

called OR processes. Each process is responsible for

executing a small piece of the program (Figure 2). The third

form, called search parallelism is based on a physical

partitioning of the program. Clauses are stored in different

nodes of a machine such as a multiprocessor database

machine.

g
o

a
l

s
to

te
r1

e
n

t
w

 I
th

c
a

l
l

to

A

OR

P
ro

c
e
ss

f'

or

A

A

B

F
ig

u
r
e

2
.

O
R

P

r
o

c
e
ss

e
s

..
.;

..
,.

o,
,.

_,
.,

,.
,,

~~
c

""
""
'"
""
'"
'4
'<
~~
..
..
,-
r,
.'
~'
"°
""
'"
''
~·
""
'<
1<
7"
--
~-
~

c

p
ro

c
e
ss

e
s

to

so
lv

e

b
o

d
y

oF

c
la

u
s
e

.....

l.O

20

OR processes try to create as many results as possible,

but the results are passed back to the parent one at a time,

as the parent demands them. The models for AND parallelism

and AND processes are described by Conery [5] as follows.

MODELS FOR AND PARALLELISM

AND parallelism is the parallel solution of more than

one goal in a given goal statement. The central problem in

implementing this form of parallelism is management of

variables occurring in more than one literal of the goal

statement. In a goal statement such as

p(X) "' q(X) •

the variable X occurs in both goals. To solve the goal

statement we need to find a value for X that satisfies both

p and q. Most abstract models for AND parallelism handle

this problem the same way: they allow only one of the goals

to bind the shared variable, and postpone solution of the

others until the variable has been bound.

Stream parallelism interprets a clause such as,

p q "' r.

to mean " process p can be replaced by the system of

processes q and r" as shown by Conery [6]. In this

interpretation, literals in a goal statement are processes,

and variables occurring in more than one literal are

communication channels between the literals.

I l'1j
I I-'·
I \Cl
I r:::
I Ii
I (l)
I
I VJ
I .

l
i g;;
' 0

t'd
Ii
0
(')
(l)
tll
tll
(l)
tll

1Z

-lflu
:J 0 ..,
~o

CD<n
0 IU (\)

0 lfl
~~lfl

-f'D
lf\ .+ ln
c-t (()

0 J rl

rt 0 0
r1) ,-

3 lfl
r1)

/

:YD
(() :;:o
p
Q_--0

J
00
-rin

l1J
() lfl
~lfl

Pl1J
Clfl
lfl
(() -ri

0

'

22

AND Processes

In the AND/OR Process Model, an AND process solves the

body of a clause by creating an OR process to solve each

subgoal as shown in Figure 3. AND parallelism in this model

is a matter of having more than one OR process active at a

time. So the difference between the AND/OR Process Model and

the stream parallel models such as Parlog (as described

above) is that in the AND/OR process model all steps in the

solution of a generator are completed before any of the

consumers start. This means there is no overlapping of

execution when a shared variable is bound to a large

structure in a series of partial bindings. In the stream

models, parallel processes are started simultaneously for

each literal in the body of the clause, with consumers

blocking until the shared variable is bound to a nonvariable

terms. Another difference is in the number of results: the

stream models generate just one solution per procedure call,

due to the nature of committed choice nondeterminism, but

AND processes can generate a sequence of results.

Two different styles of AND parallelism are emerging as

suggested by Conery [5]. One style, called stream

parallelism, is exploited by Parlog, Concurrent Prolog, and

other languages oriented toward system programming, where

committed choice nondeterminism is a valuable programming

technique. The other style, typified by the AND processes of

the AND/OR Process Model, is oriented toward a more

exploratory style of nondeterminism.

23

The research in this thesis seeks to exploit the AND/OR

Process Model form of AND Parallelism.

A later part of this thesis presents a different way to

perform unification which helps to improve the overall speed

of execution.

The attempts to exploit parallelism in the AND/OR

Process Model always cover both AND and OR parallelism.

There are many papers that present work on OR parallelism,

[2,11,14,16,20] the reason being OR parallelism is very

natural to detect and relatively easy to implement. On the

other side the research on exploiting AND parallelism is

more limited. This may be because of the fact that to

exploit AND Parallelism the issue of shared variables needs

special attention. Each literal in the clause generates OR

process and many results are produced. To find one unique

solution and also to store the bindings and to maintain the

bindings requires special attention.

The goal in this thesis is to stress the importance of

AND parallelism and speed of unification on the overall

execution speed, and so arguments and results are now

24

presented to show that AND parallelism is important.

The execution speed of sequential logic programming

systems has been constantly improving since Warren's Prolog

interpreter/compiler for the DECsystem-10 proved the

usefulness of a logic as a practical programming tool as

shown by Kowalski [12].

Of the different sources of parallelism present in

logic programs, the study of AND parallelism is important,

because among other reasons it offers promising results even

for highly deterministic programs as proved by Hermengildo

[17].

ANALYSIS OF SEQUENTIAL PROLOG PROGRAMS

Onai, Shimizu, Masuda and Moritoshi [21] presents the

following results for a collection of Prolog programs.

(1) Average AND - literal count:

AND - literal count 3
::

Total OR relation count

Here the term AND-literal count means the number of

literals that can be executed in parallel within a clause,

while two or more clauses are included in the OR relation

25

count when they have same head predicate symbol and the same

number of arguments.

(2) Average evaluable predicate count:

evaluable predicate count

total OR relation count
:::

1.4

Evaluable predicate count is the number of predicates

that are evaluable, i.e., the predicates which upon

execution can be successfully unified.

(3) Average ratio of evaluable predicate count:

evaluable predicate count 0.5

AND literal count

The AND literals are defined as literals in a body of a

clause separated by ",". AND literal count is the total

number of literals in the body of a clause. So the above

ratio implies that half of the literals within the body (AND

subgoals) of a clause can be successfully unified.

Dynamic Analysis Result are shown in Table I:

26

TABLE I

ANALYSIS OF SEQUENTIAL PROLOG

OR - parallel degree AND/OR parallel degree
(AND sequential, OR (AND parallel OR parallel)
parallel)

Input 1 2.66 3.44
Input 2 3.00 4.84
Input 3 3.05 7.34
Input 4 3.19 8.78
Input 5 3.97 14.44

This table [21] shows that there is a significant

difference between the average reducible subgoal count (the

subgoals that can be unified successfully) per level in AND

sequential execution and in AND parallel execution. Input

goals become more complicated logic formulas as their number

increases. Thus AND parallel execution enables increased

processing speed in some programs.

The conclusion of the paper summarizes the results as

follows,

(1) DEC-10 Prolog enables only sequential execution and

has inadequate working memory space. This tends to cause

programmers to write deterministic programs. Some

programs however, can be converted into concurrently

executable form, by eliminating cuts according to a

conversion rule. The converted programs, when executed

in OR parallel, are expected to provide an OR relation

count equal to or greater than the static OR relation

27

count. Also, AND parallel execution may provide a higher

parallel degree.

(2) About half or more of executed subgoals are

evaluable predicates. The execution speed of evaluable

predicates affect that of the program.

(3) The static OR relation count for the database is

about four times higher than that of inference clauses,

which have a count of three. This ratio increases as

database clauses become larger. Therefor, the execution

speed of a program including large database clauses can

be significantly improved by speeding up unification of

database clauses.

When a set of OR related clauses has at least one rule,

these clauses are called inference clauses. When a set of

OR related clauses consists of unit clauses (clause having

only one literal), these clauses are called database

clauses.

It was important to reproduce results presented in [21]

in order to analyze them. The first conclusion states that

AND parallel execution provides higher parallel degree.

The second conclusion states that about half of the subgoals

are evaluable and the speed of execution for them affects

the speed of the execution of program. This is a very

important conclusion when combined with the first, because

28

AND parallelism gives higher degree of parallelism and if

the subgoals in clauses are executed faster (AND

parallelism) the overall execution speed of the program also

improves. So it is very clear that exploitation of AND

parallelism is important and also the better the execution

method the better the improvement in the program execution

speed.

The third conclusion states the fact that there are

more database clauses than inference clauses and so if

unification speed is improved the execution speed of

programs can be significantly improved.

So from this research it is made very clear that AND

parallelism is very important and unification speed is also

very important. Taking these results as a basis to design a

system that will provide higher speed for the execution of

Prolog programs, the rest of the thesis presents a design

that incorporates and supports efficient execution of AND

parallelism and faster unification.

The analysis presented in [21] analyzed about 39

programs. So the analysis covers a wide spectrum of logic

programs, and the results obtained are important.

29

Based on these conclusions, now the attempt is made to

describe the architectural design that will support AND

parallel execution and also the method for unification.

Attempts made for the same cause by some other researchers

are also discussed in the beginning of the next chapter.

CHAPTER IV

AND PARALLELISM

In Prolog the basic way of execution is as follows :

(1) A database is prepared and stored based on available

information.

(2) Prolog is asked to search and find an answer for a

particular question.

(3) Prolog looks in its database and replies "yes" or "no"

to report success or failure.

(4) In most cases the problem is solved here but if the user

is not satisfied with a particular answer it is possible to

ask Prolog for alternative solutions for that question.

Prolog would again look into its database and would report

any other solutions if alternatives exists, else it would

report failure.

As discussed earlier the database of Prolog consists of

facts or rules, and they are known as clauses. We have also

discussed how facts and rules are different from each other

and their format.

31

When Prolog starts the process of solving a question it

would look into the database starting from the top of

database for a matching fact or rule. Prolog would look for

only those rules that have rule head matching the head of

the rule in the question and also having the same number of

arguments.

If the question is of the form fact and if the

matchings are all facts then Prolog would go through all

matching facts one after another and would report an answer

every time. If the answer found at the very first matching

fact is the answer that is sufficient and if no other answer

is requested then Prolog would stop there. If that answer is

not a success or some other alternatives of that answer are

wanted then Prolog would continue, until it runs out of all

matching facts.

If the question asked is of the form rule and the

matchings are all rules with subgoals in their body (not a

unit clause which has only one literal) then the execution

now is not simply reporting "yes" or "no" as soon as a match

is found. After finding the matching rule Prolog will have

to seek a solution of that rule, because rules have some

subgoals and those subgoals need to be solved to determine

the success or failure. In parallel processing all the

possible matching rules are found and a concurrent search is

32

conducted for many or all of them depending upon the

available capacity. The procedure of seeking the solution of

all matching rules in parallel is known as spawning an OR

process for each match. Solutions from all of these OR

processes would be obtained after they attempt to solve

their rule.

Rules are of the form

head () :- subgoal 1(), subgoal 2(), •..•

After matching the head, the subgoals should be solved. AND

processes are created that would seek a solution for each

subgoal. There are different ways in which the solution of a

subgoal can be obtained. Some of the methods are not

efficient, like starting the execution by solving subgoal 1

first, then subgoal 2, etc. A detailed discussion of a

methodology for efficient execution of AND processes known

as ordering of subgoals (literals) described by Conery [6]

follows.

The basis for the ordering of literals in the body of a

clause is the sharing of variables. One way to solve the

dependence problem whenever two or more literals have a

variable in common is to designate one of the literals as

the generator for the variable. It should be solved before

the other literals. The solution of the generator literal is

intended to create a value for the corresponding variable.

33

After the generator is solved, the other literals containing

the variable, consumers, may be scheduled for solution. A

generator should be defined for every variable in a rule. It

is possible that the solution of a generator will not bind

the variable, and consumers will still have a variable in

common. In that case one of the consumers is then made

generator of that variable.

Here the difference between the AND/OR process model

and concurrent languages becomes evident. It appears that

concurrent systems do not require literals to be ordered,

since processes are started for all literals simultaneously

when the clause is invoked. However, some of those processes

immediately block, waiting for input via the solution of

other literals. In the AND/OR process model, we delay

creation of processes for the literals that would be blocked

immediately. So the difference is that in one system a

process is created and then blocked until a shared variable

is bound, while in the other type the process is not created

until the processes it depends on have completed.

ORDERING OF LITERALS

Some rules for ordering literals that have been

presented by Conery [6] are as follows. The first rule is

that the head of a clause is the generator for all variables

instantiated when the clause is invoked.

34

There are two other rules that can be used to complete

the process and make sure every variable has a generator.

Use of different rules alone or in different combinations

leads to different orderings, enabling more or less

parallelism in the solution, but in all cases the AND

process will not fail due to incorrect ordering.

The second rule, the connection rule, calls for

selection of the literal with the largest number of

instantiated variables. The third rule is the left most

rule, which simply says the first (left most) literal

containing a variable should be generator of that variable.

This is a reasonable assumption, since, in Prolog programs,

solution of a goal containing unbound variables often binds

the variables. When the left most rule selects the left most

occurrence of a variable it is selecting a literal that

would see the variable as unbound if the clause was solved

with the ordering generated so far. This rule is also a

useful safety feature, since, by itself, it guarantees every

variable will have a generator.

There is a rule for ordering literals based on I/O

modes known as the I/O mode rule. In this rule some of the

literals in the body may have I/O modes, and this mode has

to be declared by the user at the beginning. For example

mode (is, [?, +]) •

35

This declaration shows that the goal with predicate

"is" has two arguments. A plus means the corresponding term

must be a ground term when a goal is solved. In other words,

"is" can never be a generator for a variable occurring in a

term in this argument position. A minus sign (not shown

here) means the corresponding argument must be an

uninstantiated variable that will be bound during solution

of this literal. A question mark in the mode declaration

means the mode is neither plus nor minus, i.e., the literal

can be either a producer or a consumer.

Given the above mode declaration and the goal

A is B + C

a system may designate this call to "is" as the generator of

A (but it is allowed to choose another goal containing A),

but this call cannot be generator for either B or C.

Since mode declarations are known before a clause is

called, the I/O mode rule has to be applied at "compile

time", when the clause is first loaded into the system. The

other rules can be applied at runtime, when the AND process

is created, since they depend on the pattern of variable

instantiation in the clause and this is established by the

unification done by the parent OR process.

An example in [6] about how the rules work is presented

here.

~
/

I x
I t-:rj
I (D
I

"° I (:j
I ti
I CD
I
I

*'" I .
GJ
ti
Pl

tO
!:1"

t-n ---.., ---.., 0
ti

0
.....
Ul
w.
0
I-'·
::i
rt

(/)

=::;--- (:j
t1

"° 0
Pl
I-'
Ul

9£

EXAMPLE:

37

The ordering algorithm can be illustrated by

four examples, each showing a different pattern of variable

instantiation in the body of a clause.

Call:

f (A,B).

Clause:

f(X,Y) g(X) h(Y).

* Disjoint Subgoals (Figure 4):

f(X,Y) - g(X) ~ h(Y).

If neither X nor Y is bound when the clause is called,

or if they are bound to terms not containing a variable in

common, the literals are independent. Neither is a

predecessor of the other when both X and Y are

uninstantiated when the process is created. The left most

rule can be used to designate g(X) as the generator of X and

h(Y) as the generator of Y. If there are n solutions for

g(X) and m ways to solve h(Y), then the domain of results

for f [D(f)] would contain n * m pairs of X and Y values.

The remaining pairs, after the first, will be created in

response to redo messages.

,

x

j

BE

16 .J

j6

d

z

* Shared Variable (Figure 5):

Call :

:- gf (G,a)

Clause :

gf (X,Z) f(X,Y)
,..

p(Y,Z).

39

The two subgoals have the variable Y in common, and no

call to get gf can ever cause Y to be instantiated when a

process is started. If, when the AND process is created, Z

is instantiated but X is not, the connection rule selects

p(Y,Z) as the generator of the shared variable Y. Otherwise

f(X,Y) is designated, either through the connection rule(if

only X is instantiated) or the left most rule (if neither

or both head variables are instantiated).

* Deterministic Function (Figure 6):

Call :

:- f (xx,Q)

Clause

f (P,Q) div(P,Pl,P2) " f(Pl,Ql) " f(P2,Q2) "

comb(Ql,Q2,Q).

This clause illustrates the general form of a "divide

and conquer" style function expressed as a clause. On every

call, P will be bound to a term representing the input

problem, and as a result of the call Q will be bound to a

term representing the output of the function. The optimal

0

20 IO

2d

d

Ov

41

ordering of subgoals is : divide problem P into independent

subproblems Pl and P2; then solve Pl and P2 in parallel via

the recursive calls, instantiating Ql and Q2; when both are

done the answer can be constructed from Ql and Q2.

Map coloring

color(A,B,C,D,E)

next(A,B) A next(C,D) A next(A,C) A next(A,D) A

next(B,C) A next(B,E) A next(C,E) A next(D,E).

The goal of this procedure is to see if there is an

assignment of one of four colors to each region of the map,

such that no two adjacent regions have the same color. The

procedure for next is simply twelve ground assertions, one

for each legal pair of adjacent colors. For example,

next(red,blue) is asserted, but next(green,green) is not,

because two adjacent regions should not have the same color.

Also for each clause next (Cl,C2) we need the corresponding

clause next (C2,Cl). If it is assumed that every map be

colored by four colors, then the procedure for next has

twelve clauses.

Graph for Map coloring

When this procedure is called with none of the

variables in the head instantiated, the graph shown in

Figure 7 is created. The literal ordering shown in the

figure is produce by first using the left most rule to

designate next(A,B) as the generator for both A and B. After

C
a

1
l

:
c
o

lo
r

(
A

.B
.C

.D
.E

l

C
lo

u
s
e
:
c
o

lo
r

(A
.8

.C
.D

.E
l

n
e
x

l
[/

\.
 8

)

n
e
x

l
(

C
.D

 l

n
ex

t.
.

(A
.C

l

n
e

x
t.

(A

.
0

l

n~
xl

:.

(8
.C

l

'
(

B
 .
E

l
n

e
x

t.
-

n
c
x

l
(

C
 .
E

l

n
e
x

l
(
0

.
E

 l

~
A

.
B

A

~

/
8

c

C
.

E

F
ig

u
r
e

7
.

G
ra

p
h

fo

r

M
ap

C

o
lo

r
in

g

E

~

to
.)

43

that the connection rule was used to identify the three

literals in the middle row of the graph as the generators of

the other three variables, leaving the remaining four

literals as consumers. All nodes in the graph are calls to

next; the labels show the arguments of the call. The first

values from the generators in the middle row form an

unacceptable combination of values for some of the consumers

on the bottom row. The third and fourth literals working

independently and in parallel, assign the same color to

regions C and D, so one of the assignments will have to

change. The nodes in the top two rows are all immediate

predecessors of head clause.

EXECUTION ALGORITHM

Once the matchings of a clause have been found and a

clause (or clauses) is (are) selected, ordering of literals

is done using some combination of the rules. Then those

literals have to be executed. A methodology proposed by

Conery [6] is discussed here.

When execution begins then, depending on the ordering

of literals, some literals which are independent or

generators of variables are chosen for solution and OR

processes are created for those literals. When success is

obtained for some processes, OR processes can be started for

some other literals. When any descendant OR process fails

44

then backtracking is performed.

The execution of literals is explained by dividing them

into three categories. They can be either in solved,

pending (waiting for bindings) or blocked state.

At the beginning of execution all literals that are in the

body are put in the blocked category. The head goal is put

in the solved category and no goals are in the pending

state. The execution algorithm can be described as,

(1) Initialize Solved to HG (head goal), Pending to empty

set, and Blocked to the set containing every literal in the

body of the clause.

(2) Start an OR process for a literal, such that the

predecessors of the literal are elements of the solved set

and move the literal from the Blocked to the Pending set.

To process a success message for an OR process,

(A success message from an OR process for a literal contains

a copy of the literal with possibly some variable bound)

(3) Use the bindings contained in the head of the goal for

processing subgoals in the body of the clause.

(4) Those literals that are successful (i.e. the literals in

the body of the clause that are now bound to some value)

should be moved from Pending to Solved.

(5) When all the literals are in the Solved set, a success

message is sent to the parent process, otherwise continue.

(6) If the solved literal is a generator, and the terms

bound by the generator contain unbound variables, then

generators should be designated for those variables.

The next problem is to see what happens to the

solution of an AND process when one of its OR subprocesses

fails. Naturally there should be some way in which the

execution can be carried out. In sequential Prolog,

sequential backtracking is performed, but this is not

efficient for parallel processes. It would be advantageous

if there is some other way then sequential backtracking,

because sequential backtracking slows down the parallel

process. So a methodology to do backtracking for parallel

processes proposed by Conery [6] is now discussed.

45

There are two simple suggestions for making

backtracking faster for parallel processes. One is to follow

the syntactic order of literals in the body of the clause.

The other way is to backtrack per the data flow graph of

clause. But it is shown that backtracking per the syntactic

order of literals in a clause body results in many

unnecessary steps that can be avoided [6].

The other way is to have backtracking based on the data

flow graph, which gives results close to that of intelligent

backtracking and is comparatively easy to understand as

shown by Conery [6] and discussed below.

46

For the map coloring problem presented earlier,

consider the following nested loop implementation in Pascal.

for A :- Red to Blue do

for B :- Red to Blue do

for C :- Red to Blue do

for D :- Red to Blue do

for E :- Red to Blue do

if Next(A,B) and ... and next(D,E) then

writeln('success (A,B,C,D,E)');

In this program, initial values are assigned to all

variables, making the initial tuple <red,red,red,red,red>.

At each step, the current tuple is tested by the Boolean

expression in the body of the loop. The second tuple is

created by assigning the innermost value, E, its value.

Eventually, blue, the last value is assigned to the

innermost variable. The next tuple is obtained by resetting

the variable E to its first value while assigning the next

innermost variable D its next value. When the outer variable

has no more values, the inner variable is given a new value

and all later variables closer to the body of the loop are

reset to their initial value.

47

In this method 625 5-tuples of colors are generated,

where the first 81 have the form <red,red,C,D,E>. A and B

cannot have the same color - there is a literal next(A,B) in

the test - but the Pascal program blindly generates 81

unusable tuples. In a logic program the term

next(A,B) is the generator of A and B, and it never

instantiates both A and B to the same color, thus

effectively preventing the construction of a large number of

useless tuples. Now the backward execution algorithm is

presented which is more efficient than the type discussed

above.

Backward Execution Algorithm

When a fail message is received for a literal, the OR

process for one of the generators must bind its variables to

different values. The backward execution algorithm can be

divided into three sections. The first part identifies which

generator should bind its variable to a new value. The

second part updates the variables generated by the

generator. The third part resets other generators.

Selection of the generator is based on marks on all

literals in the candidate set. A mark on a generator means

that the generator may be directly or indirectly responsible

for the failure. So markers that are put on the generators

help in determining which generator should be selected. The

selected generator is the latest in the linear ordering

48

marked with L, where L is a literal.

Next, the AND process must decide which generators must

be reset after the selection of L as the backtrack literal

(now identified as BL). This potentially means every

generator following BL in the linear ordering. Only those

generators that contribute information to the solution of

any successors of BL and BL need to be reset. In other

words, the literals with BL in their candidate set must be

reset.

Now a detailed example is discussed by John Conery [6]

is presented below:-

This example (Figure 8) tries to solve a question about

paper, paper(P, 1978, uci), meaning that a paper P, written

by a author A in (1978) at uci.

The applicable rule is

paper(P,D,I) :- date(P,D) "'

"'

author(P,A)

loc(A,I,D).

After matching, the rule becomes

paper(P, 1978, uci) - date(P, 1978) "' author(P,A)

"'loc(A, uci, 1978).

I t'rj
I
I I-'·
I l.O
I ~
I ti
I CD
I
I

CX>

G)
ti
P>

"O
::t
1-h
0
ti

0
CD
rt

l I P>
I-'·

j I-'
I ! tr:!

x

~ I-'
CD

I
n

u
0
u
('J

J

u
0

" I\)

0
[
('"""

J
0
J

lJ

>

>

:,

(L

0
r-
ro

u
0

" w

0
0

>

0

0

lD
-<J
m

lJ

0

The data base is as follows,

author(fp, backus).

author(df, arvind).

author(eft, kling).

author(pro, pereira).

author(sem, vanemden).

author(db, warren).

author(sasl, turner).

author(xform, standish).

50

date (fp, 1978).

date(df, 1978).

date(eft, 1978).

date(pro, 1978).

date(sem, 1976).

date(db, 1981).

date(sasl, 1979).

title(db, efficient_processing_of_interactive ...).

title(df, an_synchronous_programming_language ..).

title(eft, value_conflicts_and_social_choice).

title(fp, can_programming_be_liberated ..).

title(pro, dec_lO_prolog_user_manual).

title(sasl, a_new_implementation_technique ..).

title(sem, the_semantics_of_predicate_logic ..).

title(xform, irvine_program_transformation_catalog).

loc(arvind, mit, 1980).

loc(backus, ibm, 1978).

loc(kling, uci, 1978).

loc(pereira, lisbon, 1978).

loc(vanemden, waterloo, 1980).

loc(turner, kent, 1981).

loc(warren, edinburgh, 1977).

journal(fp, cacm).

journal(sasl, spe).

journal(kling, cacm).

journal(sem, jacm).

tr(db, edinburgh).

tr(df, uci).

loc(warren, sri, 1982).

There are no mode declarations, so no literals are

designated as generators or non-generators in the static

analysis.

When the process is created, variables D and I are

bound to 1978 and uci respectively. The head goal, HG, is

designated as the generator of these variables, the set of

bound variables, G, is {D,I}, and the set of unbound

variables, U, is {P,A}. This is from the ordering rules

presented earlier.

51

The connection rule is applied to connect a set of

literals to the head, by looking for literals containing

variables in both G and U. The first pass through the list

of literals finds two that meet this criterion. date(P,D)

contains P, a variable with no generator yet and D, a

variable generated by the head, so it is designated as the

generator of P. Similarly, loc(A,I,D) becomes the generator

of A. U is now empty, and all literals have been ordered.

The order is literal date() is #1, author() is #2 and

loc() is #3.

52

Forward Execution

Literals #1 and #3 are both enabled- the predecessor

set for each is a subset of {HG}- so immediately OR process

for #1 and #3 are started. Those lists are moved from

blocked to Pending. After the success of date(Prolog, 1978),

#1 is added to the solved list. Since #3 is also a

predecessor of #2, and #3 is not yet solved, no new

processes are created. The next success occurs when

(loc(kling, uci, 1978)) is matched and variables are bound.

Literal #3 is added to the solved list, and a new process is

created for #2. As #2 fails backward execution is started.

Backward Execution

In the linear ordering of this clause, the generator of

A comes after the generator P, so A corresponds to the

"innermost" variable. As discussed earlier in the

backtracking the first thing is to locate the generator

which would have to bind the variables. Now each time #2

fails, the first thing that will be tried is to get another

value for #3, the generator of A. When that fails a new

value for P is requested and A is reset.

When a fail message is received from #2, it is added to

the marks on all predecessors of #2. The generator latest in

the linear ordering marked with #2 is #3, and so #3 is

selected to generate new bindings. A redo message is sent to

#3 and it is moved from solved to pending. Waiting is done

53

here if another value is obtained from #3 or not. Marks are

removed from #3 but left on #1.

When the process for #3 fails, meaning there is no

additional binding for A that satisfies loc(A,uci,1978).

then HG, the immediate predecessor of #3 is marked. Search

is made through the generators, starting from the end of the

linear ordering, looking for #3 or #2 in a set of marks. #1

qualifies since it is marked with 2. #1 is moved from solved

to pending, and the process for #1 is sent a redo message.

The marks are removed from #1.

When a success message arrives from the process for #1

with the second binding for P, #1 is added to the list of

solved literals, and a new process can be created for

author(eft,kling), the current instantiation of #2. The

states of the literals are now: #1 and #3 solved, #2

pending.

When the process for #2 sends success all literals have

been solved. A success message containing a copy of the goal

statement with the bindings {P/eft,D/1978,I/uci,A/kling} is

sent to the parent OR process and execution is completed.

Summary

This chapter presented a detailed discussion about

ordering literals, forward execution and backward execution.

All important rules and methodologies were discussed. This

chapter showed how the operations are carried out at the

microscopic level. The next chapter will discuss the

implementation of all these ideas in an architecture.

54

For more information on these topics the reader is

referred to the Ph.D dissertation Conery on parallel

execution of logic programs [5]. The next chapter is unique

because no other work has combined the above ideas with the

use of content addressable memories, memory hierarchies and

the use of multiprocessors that would make use of AND

parallelism. In all senses, chapter V puts everything

together and presents a formal design.

CHAPTER V

IMPLEMENTATION FOR AND/OR PARALLELISM IN PROLOG

In this chapter two approaches to speedy execution of

Prolog are discussed : (1) Attempts that support AND

parallelism; and (2) Attempts that speed unification. Then

it will be shown that the design presented in this thesis

more closely fulfills the requirements outlined in previous

chapters.

There are so many papers that describe different

approaches that to pick a few and to omit others would not

justify the efforts made by all the researchers. The papers

discussed here summarize the key characteristics of most of

the approaches currently being explored.

Jian Lin and Vipin Kumar [27] present a method for

exploiting AND parallelism on shared memory multiprocessors.

Key features of implementation are (i) dependency analysis

between literals of a clause is done dynamically without

incurring excessive run-time overhead; (ii) backtracking is

done intelligently at the clause level without incurring any

extra cost for the determination of backtracking literal;

(iii) the implementation is based upon the Warren Abstract

56

Machine. Parallel implementation on a Sequent Balance 21000

shows linear speedup on a dozen processors.

Another paper that discusses AND parallelism is by

P.Raman and E.W.Stark [20]. They have presented an

implementation of AND parallelism on distributed memory

systems, in which a process is assigned to each node of the

AND/OR tree. They have developed an interpreter for this

model. The interpreter supports both AND and OR parallelism

in a completely unrestricted fashion. Bidirectional

communication occurs between two children of the same AND

node.

P.Biswas, S.C.Su, and David Y.Y.Yun [2] present an

Abstract Machine Model to Support Limited-OR (LOR)

Restricted AND Parallelism (RAP) in Logic Programs. In this

paper they define an abstract multiprocessor machine model

(LORAP) for parallel execution of logic programs. The

authors claim that they have developed a new execution

mechanism based on the concepts of late binding and copying

of uninstantiated variables across activation frames. M.V.

Hermengildo also presents an abstract machine for RAP [17].

Two very interesting papers introduce novel ideas for

memory designs. A. Shanker [l] gives a method of use of

hierarchical memories. C.D.Stormon, M.R.Brule, and J.C.D.F.

Ribeiro [22] talk about an architecture based on content

addressable memory.

57

The paper by Shanker presents a parallel implementation

of unification using CAMs. A hierarchy of CAMs is presented

along with a scheme for partitioning Prolog rules. The paper

analyzes the performance benefits of the interpretive CAM

approach. The paper by Stormon, Brule and Ribeiro presents

an architecture based on CAM. The authors present a custom

VLSI design for the CAM used in the architecture. The system

proposed by them has been simulated on the Connection

Machine by an instrumented Prolog interpreter. Their

simulated results show that their design is feasible and

they expect it to provide significant performance advantages

over compiled Prolog systems without CAM.

All the papers mentioned above present different and

unique ways to implement AND/OR parallelism. The design

presented here is different from all other designs, and it

focuses on faster unification and AND parallelism execution.

DESIGN OF THE ARCHITECTURE

The main features of this design are the use of Content

Addressable Memories, hierarchical memory, and

multiprocessors. As discussed in chapter III the speed of

unification affects overall execution speed of programs.

Memory - PU Bus

LM1

PU1

'~-CHICAL
~MEMORY

LM

PU

PU - PU Bus

Figure 9. Block diagram of architecture

FRONT
END

58

I - LMr: '~
I I

I_ PUr: I

59

Also AND parallelism provides higher parallel degree and

about half or more executed subgoals are evaluable

predicates, and the execution speed of them affects that of

the program. So efficient execution of AND parallelism is

important.

The block diagram of the architecture is shown in

Figure 9. The architecture consists of a memory hierarchy

and several processing units with their own local memories.

The hierarchical memory consists of different CAMs,

with recursive data (which is the largest part of Prolog

programs) stored in a fully parallel CAM. Simple facts are

stored in a semiparallel CAM (bit serial word parallel) and

the remaining types of data are stored in RAM. The rationale

for this type of arrangement is described later on in this

chapter.

In response to a question being asked matching is done

first at this top level and matching rules or facts are

obtained from the main memory. All such matching rules are

then passed on to the literal ordering unit. This unit

decides the order of execution of all literals in the rules

and then all matching rules and facts (clauses) are stored

in a buffer. The literal ordering unit is at the second

level after the main memory.

60

Different units of processing elements make up the

third level. These units each take one clause from the

buffer and start to solve it using AND parallelism. Each

processing unit has a local memory (LM), which is a CAM, and

a few simple processors. These processors are able to talk

with each other via a common internal bus. The literals

which do not share variables can be executed in parallel and

hence two different processing elements can work on two such

literals. The literals that share variables have to be

executed in respective order decided by the ordering rules.

So all such literals are stored in a buffer within the

processing unit. If one processing unit finishes the work

for one of the literals and unsolved literals remain and

dependence conditions are satisfied then it can start

execution on those literals. If there are no such literals

then it has to wait. All processing units operate in the

same fashion.

All the processing units are able to communicate with

each other via an interconnecting bus. Processes can be

transferred from one unit to another if there are no more

clauses in the global buffer and one unit has literals that

need to be solved stored in its internal buffer. Those

literals can be transferred to another unit if they can be

solved in parallel. All the processing elements and the

processing units actively seek work from their internal

4th level

3rd level

2nd level

1st level

SECONDARY MEMORY STORAGE

RAM

SEMIPARALLEL CAM
(BIT SERIAL WORD
PARALLEL)

FULLY PARALLEL CAM

l

Figure 10. Memory hierarchy levels

61

buffer, the global buffer, or from the other elements and

units.

MEMORY HIERARCHY

62

The memory hierarchy of the design (Figure 10) consists

of two kinds of memories as discussed above, content

addressable and random access. It has been shown by

A.Shanker [l], that there are two kinds of data structures

that are used in Prolog programs. They are known as database

clauses and recursive clauses. The recursive clauses have

the head predicate repeated in the body of the clause. The

database clauses are also known as facts or unit clauses

because they have only one literal in their structure. To

unify the head of the query with the clauses present in

memory faster look up helps. CAM helps in faster look up and

matching. The data structures that are stored in slower

random access memories are neither database or recursive.

Processing elements are divided into groups called

processing units. One processing unit is the master

processing unit and the others are slave units. The master

processing element in the master processing unit starts

execution of a query, and in the process it creates

different OR processes and AND processes. These processes

are stored in the local buffers of the master processor

unit. When there are enough processes, they are picked up by

63

other processing units. Variable bindings are stored in the

local memory of a processing unit. First the bindings of

variables of the master processor are stored in local memory

and when the OR and AND branches are picked up by different

processors they can access to these bindings. The LM also

stores the new bindings made by other processors. It is

assumed here that local memory can serve more than one

processor at one time. When some literals are transferred to

other processing units for unification then the matchings

are transferred from the parent processing unit. The other

processing unit makes all the possible unifications. Some of

these unifications will be thrown away by the parent

processing unit when it receives the results.

With the described arrangement AND execution can be

carried out on a number of processors and hence the

evaluable predicates have more chance for faster evaluation.

This can result in an improvement in program execution

speed.

It is important to look at the mechanism by which the

execution order is decided. This mechanism orders the

execution of subgoals in local buffers. When a processing

unit is finished with a certain subgoal, then it looks for

the next subgoal for execution. This information is

available from the ordering unit, which implements the

ordering mechanism using the ordering of literals for

chapter IV.

64

The analysis of programs by Onai, Shimizu, Masuda and

Moritoshi [21] has shown that unification speed is very

important in improving program execution speed. Content

addressable memories provide faster lookup than random

access memories, it is also shown by the same authors in

their paper [21] that the fraction of database clauses

increases as the database becomes larger and larger. For

unification of database clauses a query must be matched with

the database. Content addressable memory performs matching

very quickly. In content addressable memories the database

is stored in tabulated form and can be searched very fast.

It surely speeds unification and the benefit increases as

the database grows.

Other components in the architecture includes a control

unit and the bus for interprocessing unit communication.

CHAPTER VI

EXECUTION ON PROPOSED ARCHITECTURE

The top level description of the architecture is as

follows. A global memory stores the database needed for

unification. This memory is hierarchical and associative.

There are one or more processing units that access this

memory. Initially, all the data is stored in the global

associative memory. The distribution of data in different

levels of the memory hierarchy is done based upon the

following rules.

1. If the data is of type recursive, then store that in

the recursive unit.

2. If the data is of type fact, then store that in the

semiparallel memory unit.

3. Store everything else in RAM.

The distribution can be done in either hardware or

software. For implementing it in hardware the addresses are

distinguished for different memory units (representing

different hierarchy levels). To implement it in software the

interpreter or compiler decides where the data should be

stored. The fully associative memory acts as a global cache

and recursive data are stored in this unit. The

semiassociative memory unit and RAM make the rest of main

memory for the system. Facts are stored in the

semiassociative memory module. All other data is stored in

RAM.

66

Any query to the system is presented via a front end

computer. This query is then passed on to the master

processing unit. The query is presented to that unit through

the main memory and processing unit communication bus.

After receiving the query the master processing element

starts processing it. The master processing element receives

the query, asks the memory for matching clauses and then

creates AND processes and OR processes.

The main memory responds to a request from the

processing unit by searching and supplying the matching

clauses. All such clauses are stored in a global buffer.

From the global buffer the first clause is selected and the

literals in that clause are ordered.

Then the master PU selects the first matching clause

from the global buffer. First the case of single PU is

considered and actions taken by additional PUs are added

later.

67

It is possible that there can be more than one matching

clause for the query asked. If so, the master processing

unit executes one clause at a time from the global buffer.

When a clause is received, its literals are placed in

processing unit buffers. There are three kind of buffers in

every processing unit. Literals that do not share variables

are stored in the pending buffer. Literals that share

variables are stored in the blocked buffer. The third buffer

is the solved buffer in which all solved literals are

stored. All the literals stored on the pending buffer are

independent and can be processed concurrently.

When a PE takes a literal from the pending buffer for

solution it asks the main memory to supply the matching

literals or rules, and these are stored in the local memory

of the processing unit. The processing element takes the

first matching fact or rule and tries to unify the

variables. Other matching literals are placed in the blocked

or pending buffer depending on shared or unshared variables

respectively. All bindings obtained for the variables are

stored back to local memory and hence they are available for

all other processing elements.

The PEs first take literals (generators of variables)

that are executable and store them on the pending buffer.

If the first literal taken by the master processing

element results in success and there are no other literals

to solve then success is reported to the front end.

68

If there is more than one matching literal then the

first literal (generator of variable) is tried first. After

execution of a generator literal the variables are bound and

if there are any blocked literals that can be executed

simultaneously, they are moved onto the pending buffer and

can be solved concurrently by two different processing

elements.

Whenever a literal from the clause is successfully

unified then it is stored on a solved buffer with its status

as success. If a literal does not get unified successfully

and if this literal is the generator of variable then the

literal ordering algorithm is called again and ordering of

literals is done using some other rule.

If the literal which is the generator of a variable is

unified successfully but other literals for the same clause

fail then backtracking has to be done.

For example, suppose there are 3 literals in the body

of a particular clause, X, Y and z. Assuming X is the

generator of certain variables that are also shared by z but

69

that literal Y does not share any variables with the other

two literals. Then Z is stored on the blocked buffer while X

and Y are stored on the pending buffer.

First the master processing element processes literal

x. Any other processing element can start processing literal

Y. If the attempt for unification for X fails, then the

ordering algorithm is called again and the literals ordered.

If unification for X succeeds, then Z is moved from the

blocked buffer to the pending buffer. In the meantime Y is

processed by some PE. Success for any literal is stored in

the solved buffer. If the attempt for unifying Z fails,

then another matching for Z has to be tried (backtracking).

If there is no other matching, then the unification attempt

for the whole query fails, even though X and Y are

successfully unified.

The important thing is that when the match for a

literal is a rule then the control for that rule stays with

the current processing element. In the above example,

suppose that the generator of all variables is X and that Y

and z share some variables. The master processing element

starts execution on literal X and after successful

unification of X, the variables needed for the execution of

literal Z are bound and hence Z can be processed. In the

70

meantime some other processing element starts execution for

literal Y. Now assuming that there are several matches for

literal Y, each match can be tried in turn until successful

unification occurs.

If a matching literal tried is a rule containing

subgoals then all those subgoals have to be unified

successfully. In this case the processing element that is

executing the literal Y is responsible for obtaining the

final result for the rule for literal Y. This processing

element can spawn different AND and OR processes (for the

subgoals) and put them on their respective buffers. Other

processing elements in that unit can execute the OR

processes for that matching rule for literal Y, and the

processing element which started execution for Y gets the

respective answers.

The master processing element is the parent of the

total clause solution, while the processing element

executing the literal Y is responsible for providing the

answer after the execution of literal Y to the master

processing element. So the master processing element remains

as parent to all the processes. Any other processes created

by the other processing elements report their answer back to

the parent processing element.

71

In the case of more than one processing unit, different

processing units can take different clauses that are

matching the query and can start processing them. In this

way OR parallelism can be exploited at the top level. There

are tradeoffs of having either one processing unit or more

than one processing unit. If there is only one processing

unit then this unit is responsible for the execution of all

different matching clauses. There can be more processing

elements in that processing unit, but then maintaining the

record of which clause is being executed where and

controlling all these processes becomes more complicated.

By having different processing units for the execution

of different clauses, it is assured that there is only one

clause executed in one processing unit at the beginning.

Once some processing unit runs out of work in its local

buffer as well as in the global buffer then it communicates

with other processing units over the interprocessing unit

bus. Different processes can be transferred from one unit to

other via this bus.

Within a processing unit the execution procedure is the

same as described above. Hence OR parallelism is exploited

by all the processing units and AND parallelism is exploited

inside the processing unit.

72

If a processing unit is done with executing all the

literals on both of its buffers, then the processing unit

puts a request for work to other processing units via the

bus. One way of doing that is that a processor in each

processing unit only handles interprocessing unit

communication, i.e., the processor requests control of the

bus and then takes care of transferring literals from other

processing units to its local memory.

When a processing unit puts the request for work on the

bus then there are chances that more than two processing

units have excessive work that can be shared with them and

in such cases the requesting processing unit can get the

work from the processing unit that is closest to it. By

doing so the traffic length on the bus is made shorter.

The forward execution algorithm is called by the

processing unit after it receives the clause from the other

processing unit and ordering of the literals is done.

The backward execution algorithm is invoked when one of

the literals in the clause fails to unify. When two or more

literals share a variable but for that (those) variable(s)

the head of the clause is the generator then OR processes

can be created for them simultaneously (explained in the

detailed example in the previous chapter, chapter IV). But

if any one literal fails in unification then the backward

execution algorithm is called.

73

The processing unit executing a particular literal

which fails is responsible for calling the backward

execution algorithm and as per the algorithm the generation

of new processes is done and new bindings are updated or

stored in the local memory.

It is important that all the information about ordering

of literals should be stored at the beginning of execution

and it is updated as processes are moved from one state to

other. When backtracking is done then the process associated

with a particular literal responsible for failure has to be

tried again. This is determined from the stored information

in the local memory of every processing unit. Some part of

local memory is reserved for storing the order of literals

for a particular clause and the rest of the memory space

stores the binding for different processes.

The other important thing is that when a literal is

moved to another processing unit for execution from the

pending buffer of the parent processing unit then in case of

failure to unify, the new processing unit needs to inform

the parent processing unit. The parent processing unit then

takes control for that literal back.

So, the following algorithms is used to control

backtracking

74

1. If a literal fails, then invoke the backtracking

algorithm; try the process for the innermost literal in the

loop; move the process to the buffer corresponding to its

new state.

2. If the new attempt at the unification fails then

backtrack again.

3. If a literal is moved to another processing unit and it

fails then let the parent processing unit know about it and

send the information back to a parent processing unit;

the processing unit executing that literal stops further

execution of that literal and tries to get another literal

and can work on it; the failed literal is stored back on

buffer in parent processing unit and execution proceeds from

there.

DETAILED EXAMPLE

A example is now presented that covers all the details

for execution. The example presented here is the

same example discussed briefly in chapter IV. (This example

is presented by Conery [6] to describe AND and OR processes,

and here it is used to show how the execution would be

75

carried out on the proposed architecture). Refer to Figure 6

on page 40,

The database for the example is as follows,

paper(P, D, I)

paper(P, D, I)

date(P, D), author(P, A), loc(A, I, D).

tr(P, I), date(P, D).

paper(xform, 1978, uci).

author(fp, backus). date(fp, 1978).

author(df, arvind). date(df, 1978).

author(eft, kling). date(eft, 1978).

author(pro, pereira). date(pro, 1978).

author(sem, vanemden). date(sem, 1976).

author(db, warren). date(db, 1981).

author(sasl, turner). date(sasl, 1979).

author(xform, standish).

title(db, efficient_processing_of_interactive ...).

title(df, an_synchronous_programming_language ..).

title(eft, value_conflicts_and_social_choice).

title(fp, can_programming_be_liberated ..).

title(pro, dec_lO_prolog_user_manual).

title(sasl, a_new_implementation_technique ..).

title(sem, the_semantics_of_predicate_logic ..).

76

title(xform, irvine_program_transformation_catalog).

loc(arvind, mit, 1980).

loc(backus, ibm, 1978).

loc(kling, uci, 1978).

loc(pereira, lisbon, 1978).

loc(vanemden, waterloo, 1980).

loc(turner, kent, 1981).

loc(warren, edinburgh, 1977).

loc(warren, sri, 1982).

journal(fp, cacm).

journal(sasl, spe).

journal(kling, cacm).

journal(sem, jacm).

tr(db, edinburgh).

tr(df, uci).

The above database is stored in the main memory of the

architecture. As per the rule for distribution of data to

different sections of the memory hierarchy for the above

database, the two clauses for "paper" would be stored in the

parallel section of the content addresable memory while all

other data would be stored in the semiassociative content

addresable memory section of the memory hierarchy. For this

particular example nothing would be stored in the RAM

section of the memory hierarchy.

Now through the front end computer the question asked

to the system is -? paper(P, D, I)

This question is forwarded to the master processing

unit. The master processing unit receives this question and

is responsible for sending the answer back to the front end

77

computer. For simplicity it is assumed here that there are 3

processing units, named for distinguishing purposes as

processing unit #1 (master processing unit), unit #2 and

unit #3. Also it is assumed here that there are 4 processing

elements in each processing unit.

The data storage format is discussed later on in this

chapter. First how the execution is carried out and

different units work is explained.

The master processing unit, after receiving the

question, puts the request to the memory to find all the

matching clauses from all the sections of memory. (The

request for matching is global to all the units of memory.)

Memory follows the order and so it first looks in the fully

parallel CAM unit then in the semiassociative CAM (bit

serial word parallel) and then in RAM. For this particular

example to find matchings for -? paper(P, D, I), memory

looks in the fully associative section and finds

paper(P, D, I)

paper(P, D, I)

date(P, D), author(P, A),

loc (A, I, D) and

tr(P, I), date(P, D).

After looking in the parallel CAM the search for

matching is made in the semiparallel section of memory and

78

from that section paper(xform, 1978, uci) is found. There is

nothing stored in the RAM section of the memory hierarchy

and hence the search finishes.

Actually in practical execution this search for

matchings is done very fast because of the content

addresable memories, and also with the fact that most of the

time the needed data is found in the CAM section of the

memory hierarchy.

Now these three matchings are stored in a global buffer

in FIFO strategy. The first matching is the clause for paper

with 3 literals, then the clause for paper with 2 literals

and finally the clause for paper which is a simple fact.

This part of the search and matching gives potential for

exploiting OR parallelism. With the assumption of having

three processing units that OR parallelism can be exploited

fully. Now let us assume here that all the possible answers

for the question asked are needed, so it now becomes

necessary to solve all matching clauses. If it would be a

case where only one answer is needed then there are options

of doing execution of matching clauses either sequentially

or doing execution in parallel but supplying only one answer

back.

Now the master processing unit takes the first clause

which has 3 literals and starts the process for executing

that clause.

79

Processing unit #2 takes the second matching clause

with 2 literals and unit #3 takes the third clause. If there

would have been more matchings then they would have to wait

until one of the processing units is free.

When the processing unit takes the clauses from the

global buffer it becomes necessary to order the literals if

there is more than 1 literals in a clause. So ordering of

literals is necessary for matching clauses 1 and 2 which

have 3 and 2 literals respectively. For the third matching

clause there is only one literal and so ordering of literals

is not necessary. (This also brings up a fact that all the

clauses that are obtained from the fully associative memory

section would always need to order literals while the

matching clauses obtained from the semiparallel CAM would

never need to call the ordering of literals algorithm as

data stored in that unit is of type fact. Hence an

implementation can be devised in which all the matching

clauses obtained from the fully associative CAM get ordered

automatically)

80

After ordering of literals for the processing unit #1,

the head goal is paper(P, D, I), the literals are

date(P, D), author(P, A) and loc(A, I, D).

The set of variables that have a generator is

G = {P, D, I}. The set which contains variables for which a

generator is not specified is U = {A}. Now the connection

rule is used to search through the clause, and the

connection rule decides the generator for a variable if that

variable is present with another variable in a literal but

the other variable has its generator already decided. So for

the variable A the literal loc(A, I, D) becomes the

generator as loc has two other variables that have the head

of the goal designated as their generator.

So the order of literals will be, date as literal #1,

loc as literal #2 and author as literal #3. For date and loc

there is one common variable, D. If the head goal would have

some value to bind this literal then OR processes for both

literals could have been started but in this case the head

variable does not bind variable D to any value and hence the

execution of literal loc has to wait until literal date

binds variable D to some value. The date literal is moved to

the pending buffer and the other two literals are moved to

the blocked buffer as they have to wait until execution for

date is completed.

81

Looking into the database it becomes clear that there

are many matching literals for date and loc and the main

memory provides these matchings to the local memory of the

processing unit. The first matching for literal date from

the local memory would be date(fp, 1978), binding variable P

to fp and variable D to 1978. This binding is stored in the

local memory of the processing unit. The controlling unit

senses the binding of variable D to value 1978 and moves the

loc literal to the executable state (pending state).

The processing element that executes the literal loc

gets the first binding as loc(backus, ibm, 1978). At this

point variable A is bound to backus and variable I is bound

to ibm. The execution of literal author is now possible and

the matching found from the local memory would be

author(fp, backus). The execution ends in success. The

important thing in this part of the example is that

execution has to be carried on sequentially because all

literals share the variables and no variable was bound to

any value by the head goal.

If the question asked was

-? paper(P, 1978, uci)

the variable D would be bound to the value 1978 and in

that case the pending buffer would have two literals, date

82

and loc, ready for execution and the blocked buffer will

have the literal author. So two processing elements can

start execution on literals date and loc. In that case the

execution for date would bind P to fp, D is already bound to

1978 and execution of loc (carried out simultaneously with

date) would bind A to kling and I is already bound to uci.

There is no matching literal for author(fp, kling) in the

database and hence author fails and backtracking has to be

performed. The backtracking algorithm would be called and

literal loc would be tried again. But loc would fail

immediately as there is no other binding for A with D and I

bound to 1978 and uci respectively. So again backtracking

will be done and date would be tried again. It turns out

that when P is bound to eft then the execution of the goal

would succeed.

A very important thing here is that when a processing

element takes the literal date for execution there is more

than one matching available from local memory. The decision

to try the first matching and if that fails then try the

second matching is one way of doing it. The other way to do

this is to move all matching date literals on the pending

buffer and hence the other idle processing elements can try

them one after the other and the different bindings can be

stored in local memory in FIFO order. When needed they can

be obtained from the local memory and no time is lost at

83

that point. This method is very efficient when all possible

solutions are needed in response to the query asked. It may

not be a good way to solve all matching literals when only

one answer is needed.

The same way of processing is used in unit #2. Literals

tr and date are stored on the blocked buffer as they share

variable P. The first execution cycle gives the final answer

as tr(db, edinburgh) and date(db, 1981). In case of the

query paper(P, 1978, uci), the variable Pis not bound by

the head goal and hence execution proceeds sequentially. The

final result in this case will be date(df, 1978) and tr(df,

uci).

In processing unit #3 the execution is very simple and

variable P is bound to xform, while D to 1978 and I to uci.

The results from all the three units are then given back to

the front end computer and the execution ends there.

There are some details to discuss for the way things

are carried out for execution, e.g.,how the communication

between processing unit and the memory is done. It is

mentioned that a processing element from a processing unit

asks the memory to search and supply all the matching

clauses and then memory replies back to that processing

element. The communication at this level needs some more

84

explanation.

When a request is put forward by the processing element

to the memory over the memory to processing unit bus, the

CAM and RAM searches and supplies the clauses. The request

is put forward with the head name of the goal and number of

variables for that head goal. The memory receives that

request and matches that head goal name to its stored data

but also it looks to only those names that have same number

of variables. This kind of search can be made possible

because of the particular type of storage method. For

example, when the clauses are stored in memory there can be

a small field (tag) that contains the information about

number of variables in that particular head goal. The tag

field match is made simultaneously with the head goal name

match and all such matchings can then be supplied to the

processing unit's local memory. So memory can be thought of

supplying back the matching head goals with number of

literals.

The other kind of communication that takes place is

between processing elements of different processing units.

This happens when some literals on the pending buffer of a

particular processing unit are transported to other

processing unit for execution.

85

In such case a large amount of information gets

transferred between two processing elements. The processing

unit asking for work puts the request on the bus and that

request is received by all the PUs (processing units). The

PU which is closer physically to the "hungry" PU gets the

first priority for sending work. The parent PU sends the

work to the other PU from the pending buffer. The

information sent from the parent PU contains the total

number of literals sent, the matching literals, and most

importantly the parent PU's address so the answers can be

sent back to the parent PU. Also the parent unit keeps note

of what literals are sent to which PU. In cases when work is

sent to other units and results come back to the parent unit

then the processing element which is executing the clause

looks for results in the solved buffer, which stores all

such results. In this way the PE (processing element) can

find answers.

Things start to become complicated when communication

and execution of literals is done at another unit. The work

sent is literals to be executed with their matching literal

database from the local memory of the sender and the answer

sent back is bindings of variables for literals and the

success or failure message.

86

The communication between a PE and the local memory is

of the same nature as that of main memory and a processing

element at the beginning of execution.

CHAPTER VII

RESULT AND ANALYSIS

To analyze and evaluate the proposed design the

architecture was parameterized as described here. Main

memory is assumed to have either one or two ports. There are

two buses in the architecture, with one bus supporting

communication between main memory and PUs and the other bus

supporting communication between different PUs. Also, the

communication time between main memory and the PUs and

between PUs are set to two different values. Communication

time is the total of the time needed to transfer work, to

calculate the result and to send the result back to the

parent PU.

There can be different configurations depending on the

number of PUs and the number of PEs and the parameters

described above. An architecture with m PUs and n PEs per PU

is classified as m * n. Execution time results are obtained

for different configurations and they are then compared to

draw conclusions.

Some assumptions are made for the analysis of the

architecture. First, the main memory is assumed to be large

BB

enough to hold the entire database, i.e., secondary memory

is not required. Second, the local memory is assumed to

store all local information so that local information does

not have to be stored in main memory. Third, it is assumed

that the access time for the local buffers is independent of

the number of PEs in a PU.

One of the test programs chosen is the benchmark

program "query" (Appendix 1), which has potential for both

AND and OR parallelism. This program is selected because it

is a database dependent program with easily traceable AND

and OR parallelism. This helps in mapping it to different

configurations of the architecture. The second test program

"coloring of map" (Appendix 1), is chosen because it

contains goals that fail, so the use of multiple solutions

is important.

The results are obtained by performing hand simulation

(assigning different goals to different processing elements

in different PUs) and the time is calculated in number of

cycles including memory time. All the results are optimized

for every configuration and the results for different

configurations obtained are a function of the parameters m,

n, time for main memory bus, time for PU - PU bus, and

TABLE II

QUERY EXECUTION TIME FOR DIFFERENT CONFIGURATIONS
FOR DIFFERENT MEMORY RESPONSE TIME IN CYCLES

Single port Single port Dual port

1 cycle Meriory 2 cycle Meriory 2 cycle Meri or y

f'1 • n f'1 n eye le' f'1 • n f'1 n cycle f'1 • n rl n cycles

l . 1 1 l 82 l . 1 J 1 89 1 . 1 1 l 82

2 • 1 2 1 48 2 • 1 2 1 89 2 • 1 2 l 48

4 • J 4 l 37 4 • l 4 1 44 4 • 1 4 J 40

1 • 2 J 2 51 J • 2 1 2 58 l • 2 l 2 49

2 • 2 2 2 41 2 • 2 2 2 48 2 • 2 2 2 41

3 • 2 3 2 39 3 • 2 3 2 46 3 • 2 3 2 -

4 • 2 4 2 35 4 • 2 4 2 42 4 • 2 4 2 33

1 • 4 1 4 35 1 • 4 1 2 42 1 • 4 1 2 33

2 • 4 2 4 33 2 • 4 2 4 40 2 • 4 2 4 32

3 • 4 3 4 27 3 • 4 3 4 34 3 • 4 3 4 27

1 • 8 l 8 26 1 • 8 1 8 33 1 • 8 I 8 27

2 • 8 2 8 26 2 • 8 2 8 33 2 • 8 2 8 27

4 8 4 81 26 4 • 8 4 8 33 4 • 8 4 8 27

8 • 8 8 8 26 8 • 8 8 8 33 8 • 8 8 8 27

15 • el 15 8 26 16 • 8 16 8 33 16 • 8 16 8 27

1 16 1 16 24 J . 16 1 16 32 1 . 16 J 16 23

2 16 2 J 5 24 2 • 16 2 161 32 2 • 16 2 16 23

4 . i6 4 16 24 4 • 16 4 161 32 4 • 16 4 16 23

8 • 16 8 , 16 24 8 • J 6 8 16 32 8 • 16 8 16 23

is· 16 16 16 24 is· 16 16 161 32 1s·16 16 16 23

89

TABLE III

QUERY EXECUTION TIME WITH SAME MEMORY RESPONSE TIME
BUT DIFFERENT COMMUNICATION TIME

~

Config. 2 cycle Mem 2 cycle Mem
' response response

m * n m n single port dual port

1 * 1 1 1 89 82

2 * 1 2 1 55 50

4 * 1 4 1 43 43

1 * 2 1 2 58 4

2 * 2 2 2 55 44

4 * 2 4 2 65 5

1 * 4 1 4 42 3

2 * 4 2 4 48 39

3 * 4 3 4 57 57

1 * 8 1 8 33 27

1 * 16 1 16 32 23

90

91

the number of main memory ports.

The results obtained from the first test program are

very interesting (Tables II and III). As expected, the

performance of sequential processing is the poorest of all

the configurations. The speed of execution increases as the

number of PEs is increased. Speed also increases with an

increase in the number of PUs. The results can be presented

in different ways, for example increasing the number of PEs

but keeping the number of PUs constant, keeping the number

of PEs the same but increasing the number of PUs, comparing

all the results with the sequential execution time with only

one PE. Figure 11 (graph 1) shows results for the first

class, figure 12 (graph 2) shows example results for the

second class.

The highest speedup is obtained when there is only one

PU and the number of PEs in that PU is increased. This is

interesting because the communication time is totally

absent, as there is only one processing unit. But it is

assumed here that the pending and blocked buffers are able

to support multiple PEs at the same time inside the

processing unit. The performance is also improved when the

number of PUs is increased, but after reaching a certain

point the saturation in speedup is reached and then

increasing the number of PUs does not increase the

GRAPH 1
% ~~s~p~e~ed~u~p~~~~~~~~~~~~~~~~~~~---,

400~

)()()()()()()()()()()()()()()()(

300 - -- - __ - ·- --- ---i :J= iAL .i=_ i .. :2. JI

200

7j; jj Ji: L;IL:j; ______ -- - - - - - -

-'l~ _ _!__!__~---~~_!__-----'_! ___ ' _ _!__' _________ _

100 --'----·-·-·--------·-·----·-------·--------·-----------·--·-··-·.:.·--------·-----·---·

0
0

- Series A

--*- Series E

5 10

No.of PUs
-t- Series 8 """*-- Series C

This graph shows no. ol PUs Y /S Speedup

15

-a- Series D

Figure 11. Graph for Number of PEs vs Cycles

20

92

93

•

Graph2
No. of Cycles

100~~~.:__~~~~~~~~~~~~~~~~-:-~~~~-,

so~·

50 ,_ ________ , ·- -- -·-· ·- _ ----·-·- -· .. ------------------·-·-----.. ·---·--··-·-·--. -·-·-·-·-··-·- _________ .. __________ . ________ .. _ ·-

40

20 >--·-·-----·-·--·------------·-··-·-----------------·------·----------·--·-··-----··-··-·-·-·--·---·-·---·-·-

Q'--~~~~_._~~~~~..._~~~~-'-~~~~--'

0 5 10 15 20

No. of PEs

- Series A -t- Series B -*-- Series C

This graph is PEs VIS Cycles

Figure 12. Graph for Number of PUs vs speedup

94

performance further. Similarly the saturation in speed is

also reached after a certain number of PEs inside a single

PU. In fact, keeping all the PEs in one PU is better than

dividing them among several PUs as communication affects the

speed of execution.

The results for the map coloring problem are also

interesting. The solution obtain with one processor and one

processing unit takes about 42 cycles. The configuration of

architecture with 2 processing unit each having 4 processing

units takes about 19 cycles. The speedup obtained with 2 PUs

and 4 PEs inside one PU is 221 % faster than sequential

execution.

DIFFERENCE BETWEEN BENCHMARK PROGRAMS

The difference between the two programs selected for

analysis is discussed here. The map coloring program has all

the AND goals and then the OR subgoals for AND goals are

spawned. So initially all the AND goals (a total of 4 at the

bottom row in the graph in Figure 7 in chapter IV) are

blocked. In the query program two AND subgoals are blocked

initially. The number of OR subgoals is higher in the query

program and hence the work that can be transferred to other

units is great. There is not enough work to transfer to

other units in the map coloring program. Hence a

configuration which has PEs in only one PU is more suitable

95

for the map coloring problem than the same number of PEs

distributed over multiple PUs. The advantage with a similar

configuration for the query program exists but it is not as

evident as in the map coloring problem. In the map coloring

problem the extra work (binding of a region to more than one

color) is done and is then not utilized, while in the query

program no extra work is done and efforts are not wasted.

The results have allowed us to conclude that the

architecture and execution algorithm increase the

performance greatly, in some cases by as much as 300 %

compared to sequential execution.

CHAPTER VIII

FUTURE WORK AND CONCLUSIONS

There are some issues that were left out of the

analysis but are too important to ignore for an actual

implementation purpose. It would be worthwhile to explore

these issues in the future to get more accurate results.

Issues to be explored include the following. First, the

response time of the memory system when needed data is not

found and has to be retrieved from the secondary memory.

Second, the limitation on the number of PEs that can be

served at a particular time by the pending and blocked

buffers would seriously affect the time it takes to solve a

particular goal. Finally, when there are enough goals to be

transferred to other PUs and communication increases, then

the PU - PU bus may become a bottleneck and so other

communication methods may be needed.

One of the future goals might be to develop an

interpreter that would be helpful for actual simulation of

the results. The interpreter would be responsible for the

execution algorithms and goal ordering also. The proposed

architecture should be tested on other benchmark programs to

get more accurate results about the overall performance. A

97

simulation done with the use of the interpreter will provide

different results and these results can be compared.

CONCLUSION

The work presented here covered different types of

parallelisms in logic programs, an introduction to Prolog,

other logic programming languages and their origins, a brief

description of other attempts to exploit parallelism in

Prolog, the method used here to exploit parallelism in

Prolog, the structure of an architecture to carry out the

work and make use of parallelism present in Prolog, the

parametrization of the architecture, analysis with

assumptions and finally results obtained showing the

performance of the architecture.

It is shown in this thesis that AND parallelism is an

important source of parallelism [21] and unification speed

affects the overall speed [l]. The proposed architecture

design is able to exploit the AND parallelism and has the

capability for faster unifications and reduced total

execution time (Tables II,III).

REFERENCES

[l] A. Shanker. "A Hierarchical Associative Memory
Architecture for Logic Programming Unification,"
Proceedings of the Fifth International Conference and
Symposium on Logic Programming,1988, 1123-1141.

[2] Biswas Presnjit, Shyh - Chang Su, and David Y. Y. Yun.
"A Scalable Abstract Machine Model to Support
Limited - OR (LOR) I Restricted - AND Parallelism
(RAP) in Logic Programs," Proceedings of the Fifth
International Conference on Logic Programming, 1988,
1160-1179.

[3] Borgwardt, P. "Parallel Prolog Using Stack
Segments on Shared Memory Multiprocessors," Proceedinas
of the International Symposium on Logic Programming,
(Atlantic City, NJ, Feb 6-9), 1984, 2-11.

[4] Chang, J-H, Despain, A.M., and DeGroot."AND
Parallelism of Logic Programs Based on Static Data
Dependency Analysis," COMPCON, 1985, 218-225.

[5] Conery, J.S."The AND/OR Process Model for
Parallel Interpretation of Logic Programs," Ph.D
thesis, Univ. of California, Irvine. 1983.

[6] Conery, J.S. Parallel Execution of Logic
Programs. 1987.

[7] Crammond, J.A. and Miller, C. D. F. " An
Architecture for Parallel Logic Languages," Proceedings
of the Second International Logic Programming

Conference. 1984, 183-194.

[8] Dobry, T., Despain, A. M., and Patt, Y.
"Performance studies of a Prolog Machine Architecture,"
Proceedings of the 12th International Symposium on
Computer Architecture. 1985, 180-190

[9] Dwork, C., Kanellakis, P.C., and Mitchell, J.C. June
"On the Sequential Nature of Unification,"
Journal of Logic Programming l, (June 1984), 35-50.

[10] Keller, R.M., Lin, F.C.H., and Tanaka, J.
"Rediflow Multiprocessing," COMPCON spring 84,
Feb 1984,410-417.

[ll] Khayri A. M. Ali. "OR Parallel Execution of
Prolog on BC - Machine," Proceedings of the Fifth
International Conference and Symposium on Logic
Programming, 1988, 1531-1545.

[12] Kowalski, R.A. "Predicate Logic as a Programming
Language," Information Processing 74, IFIPS, 1974,
569-574.

[13] Kuman, K., Masuzawa, H., Itashiki, A., Satoh, K., and
Sohma, Y. KABU-WAKE. "A New Parallel Inference

99

Method and its Evaluation," COMPCON spring 86, 1986.

[14] Kale L. v., B. Ramankumar, and W. Shu. "A Memory
Organization Independent Binding Environment for AND
and OR Parallel Execution of Logic Program,"
Proceedings of the Fifth International Conference and
Symposium on Logic Programming, 1988, 1223-1240.

[15] Leon Sterling and Ehud Shapiro. Art of Prolog.
1986.

[16] Lindstrom, G. "OR Parallelism on Applicative
Architectures," Proceedings of the Second International
Logic Programming Conference, 1984, 159-170.

[17] M. v. Hermengildo. "An Abstract Machine for
Restricted AND Parallel Execution of Logic Programs,"
Proceedings of 3rd International Conference on Logic
Programming, July 1986.

[18] Mats Carlson, Ken Danhof and Ross Overback. "A
Simplified Approach to the Implementation of AND
Parallelism in an OR parallel Environment," Proceedings
of the Fifth International Conference on Logic
Programming, 1988, 1565-1577.

[19] Nakazaki, R., et al. "Design of a High-Speed
Prolog machine (HPM)," Proceedings of the 12th
International Symposium on Computer Architecture,
1985, 191-197.

[20] Prabhakaran Raman and Eugene w. Stark. "Fully
Distributed AND-OR Parallel Execution of Logic
Programs," Proceedings of the Fifth International
Conference on Logic Programming, 1988, 1188-1203.

[21] Rikio Onai, Hajime Shimizu, Kanae Masuda and Moritoshi.
"Analysis of Sequential Prolog Programs,"
Journal of Logic Programming, Vol. 3, Number 2,
July 1986, 119-141.

100

[22] Storman c. o., Brule M. R. and Ribeiro J. C. o. F.
Ribeiro. "An Architecture Based on Content Addressable
Memory for the Rapid Execution of Prolog," Proceedings
of the Fifth International Conference on Logic
Progranuning,1988, 1448-1473.

[23] Tamura, N. and Kaneda, Y. "Implementing parallel
Prolog on a multiprocessor machine," Proceedings of the
1984 International Symposium on Logic Progranuning,
1984, 42-48.

[24] Tick, E. and Warren, o. H. D. "Towards a
Pipelined Prolog Processor," Proceedings of 1984
International Symposium on Logic Progranuning,
1984, 29-40.

[25] W. F. Cloksin and C. s. Mellish. Programming in
Prolog, 1984.

[26] Warren, D.H.D., Pereira, L.M., and Pereira, F.C.N.
"Prolog - The Language and its Implementation
Compared with LISP," ACM SIGPLAN, 1977, 109-115.

[27] Y.J.Lin and V. Kumar. "AND - Parallel Execution
of Logic Program on a Shared Memory Multiprocessor: A
Summary of Results," Proceedings of Fifth International
Conference on Logic Programming, 1988, 1123-1142.

APPENDIX

This Appendix contains the benchmark programs that

were used in this thesis.

1. Benchmark Program query :

This program returns the solution to a database query

to find countries of similar population density.

? - query(X)

query([Cl,Dl,C2,D2]) :- density(Cl,Dl), density(C2,D2)

01 > 02, 20*01 < 21*02.

density(C,D) :- pop(C,P), area(C,A), Dis (P*lOO)/A.

pop(china, 8250). area(china, 3380).

pop(india, 5863). area(india, 1139).

pop(ussr, 2521). area(ussr, 8708).

pop(usa, 2119). area(usa, 3609).

pop(indonesia, 127 6) . area(indonesia, 570).

pop(japan, 1097) . area(japan, 148).

pop(brazil, 1042). area(brazil, 3288).

pop(bangladesh, 7 50) . area(bangladesh, 55).

pop(pakistan, 682). area(pakistan, 311).

pop(w_germany, 620). area(w_germany, 96) .

pop(nigeria, 613) . area(nigeria, 373).

102

pop(mexico, 581). area(mexico, 764).

pop(uk, 559). area(uk, 86) .

pop(italy, 554). area(italy, 116).

pop(france, 525). area(france, 213).

pop(philippines, 415). area(philippines, 90) .

pop(thailand, 410). area(thailand, 200).

pop(turkey, 383). area(turkey, 296).

pop(egypt, 364). area(egypt, 386).

pop(spain, 352). area(spain, 190).

pop(poland, 337) . area(poland, 121).

pop(s-korea, 335). area(s-korea, 37) .

pop(iran, 320). area(iran, 628).

pop(ethiopia, 272) . area(ethiopia, 350).

pop(argentina, 251). area(argentina, 1080) .

2. map coloring program

Call:

color(A,B,C,D,E).

Clause:

color(A,B,C,D,E)

(1) next(A,B) "

(2) next { C , D) "

(3) next (A, C) "

(4) next(A,D) "

(5) next (B, C) "

(6) next (B, E) "

(7) next (C , E) " (B) next (D , E) .

next(green,yellow).

next(green,red).

next(green, blue).

next(yellow,green).

next(yellow,red).

next(yellow,blue).

103

next (red, green) .

next(red,yellow).

next(red.blue).

next(blue,green).

next(blue,yellow).

next(blue ,red).

	Exploiting and/or Parallelism in Prolog
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1522876737.pdf.vp53K

