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AN ABSTRACT OF THE THESIS OF Linda Ruth Schaefer for the Master of Science in 
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Title: Analysis of a Coordination Framework for Mapping Coarse-Grain Applications to 

Distributed Systems. 

APPROv'ED BY THE MEMBERS OF THE THESIS COMMITTEE: 

W. Robert Daasch, Chair 
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A paradigm is presented for the parallelization of coarse-grain engineering and scientific 

applications. The coordination framework provides structure and an organizational strategy for 

a parallel solution in a distributed environment. Three categories of primitives which define the 

coordination framework are presented: structural, transformational. and operational. The proto-

type of the paradigm presented in this thesis is tne first step towards a programming develop-

ment tool. This tool will allow non-specialist prcgramrncrs to parallelize existing sequential 

solutions through the distribution, synchronizmior.. and 1:ollection of tasks. The distributed con-
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trol, multidimensional pipeline characteristics of the paradigm provide advantages which 

include load balancing through the use of self-directed workers, a simplified communication 

scheme ideally suited for infrequent task interaction, a simple programmer interface, and the 

ability of the programmer to use already existing code. Results for the parallelization of 

SPICE3Cl in a distributed system of fifteen SUN 3 workstations with one fileseiver demon­

strate linear speedup with slopes ranging from 0.7 to 0.9. A high-level abstraction of the system 

is presented in the form of a closed, single class, queueing network model. Using the Mean 

Value Analysis solution technique from queueing network theory, an expression for total execu­

tion time is obtained and is shown to be consistent with the well known Amdahl's Law. Our 

expression is in fact a refinement of Amdahl's Law which realistically captures the limitations 

of the system. We show that the portion of time spent executing serial code which cannot be 

enhanced by parallelization is a function of N, the number of workers in the system. Experi­

ments reveal the critical nature of the communication scheme and the synchronization of the 

paradigm. Investigation of the synchronization center indicates that as N increases, visitations 

to the center increase and degrade system performance. Experimental data provides the infor­

mation needed to characterize the impact of visitations on the perfoimance of the system. This 

characterization provides a mechanism for optimizing the speedup of an application. It is 

shown that the model replicates the system as well as predicts speedup over an extended range 

of processors, task count, and task size. 



ANALYSIS OF A COORDINATION FRAMEWORK FOR MAPPING 

COARSE-GRAIN APPLICATIONS TO DISTRIBUTED SYSTEMS 

by 

LINDA RUTH SCHAEFER 

A thesis submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE 
in 

ELECTRICAL AND COMPUTER ENGINEERING 

Portland State University 
1991 



TO THE OFFICE OF GRADUATE STUDIES: 

The members of the Committee approve the thesis of Linda Ruth Schaefer presented May 

31 , 1991. 

--) 

Laszlo Csanky" 
/ 

~ 

'-......-"' 

APPROVED: 

Rolf Schaumann, Chair, Department of Electrical Eng?neering 

C. William Savery, Vice Provost for Graduate Studi~ and Research 



ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my heartfelt thanks to Rob Daasch, my 

advisor and friend. Rob provided guidance, encouragement, and unwavering intellectual and 

emotional support, that directly contributed to my success. His patience and wisdom guided me 

through this endeavor and his confidence in my abilities provided me with confidence in myself. 

I wish also to thank Mike Driscoll for his friendship and intellectual support. His 

enthusiasm for this work lifted my spirits and his ideas and suggestions contributed greatly to 

this thesis. 

I would also like to thank my colleagues at the university for their contribution to my 

academic growth and the faculty and staff of the Electrical Engineering department for their 

encouragement and support in ways too numerous to mention. 

Finally, I would like to thank my many friends and my mother, Marguerite Schaefer, 

whose encouragement and understanding provided for my emotional wellbeing throughout my 

schooling. 



TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

LIST OFT ABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

CHAPTER 

I INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Parallelism and Distributed Computing . . . . . . . . . . . . . . . . . . . . 1 

Parallel Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

A Coordination Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Thesis Overview...................................... 8 

II THE PARADIGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Structural Primitives 
Transformational Primitives 
Operational Primitives 

Characteristics of the Paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Multidimensional Pipeline 
Distributed Control 

Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

System Configuration 
Control Programs 
Jobpools 
Workers 
Communication Topology 
Locks 
Load Balancing 
Job Partitioning and Granularity 



Summary............................................ 31 

III APPLICATIONS........................................ 33 

Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Selected Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Fault Simulation 
Database Searching 

Design Centering: A Detailed Example. . . . . . . . . . . . . . . . . . . . 40 

The Monte Worker 
The SPICE Worker 
The Pass/Fail Worker 
The Update Worker 

Summary............................................ 43 

IV STATISTICS........................................... 44 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Computer Systems Analysis....... . . . . . . . . . . . . . . . . . . . . . 45 

Queueing Theory versus Queueing Network Theory 
Queueing Network Models 
The Physical System 

Queueing Network Models ....... . 

The Single Oass Queueing Network 
Network Analysis 
The Complex Model 
The Simple Model 
Performance Metrics 

Explanation of Experiments ....... . 

Instrumentation 
Experimental Environment 

47 

61 

Experimental Basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Input2 
Input6 

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

Summary............................................ 95 

v 



SOI ........................................................ "XIGN3dcIV 

£01 ...................................................... S3::>N'.3)!3d'.3)! 

101 ........................... "){JOM. dltnnd prre SUO!l'Cl!WrI 

66 ......................................... "NOISfiUNO::> A 

}A 



LIST OFT ABLES 

TABLE 

I Queueing Network Performance Parameters ....................... . 

II Network Parameter Relationships ............................... . 

III Queueing Network Measurements ............................... . 

IV Average Total Work and Communication Time 500 Tasks, 

PAGE 

48 

51 

62 

6 Workers, Input6....................................... 72 

V Average Total Work and Communication Time 100 Tasks, 

6 Workers, Input6....................................... 72 

VI Average Total Work and Communication Time 50 Tasks, 

6 Workers, Input6....................................... 72 

VII Average Total Work and Communication Time 500 Tasks, 

12 Workers, Input2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

VIII Average Total Work and Communication Time 100 Tasks, 

12 Workers, Input2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

IX Average Total Work and Communication Time 50 Tasks, 

12 Workers, Input2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

X Average Total Work and Communication Time 100 Tasks, 

9 Workers, Input6....................................... 76 

XI Average Total Work and Communication Time 100 Tasks, 

13 Workers, Input6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

XII Average Total Work and Communication Time 100 Tasks, 

14 Workers, Input6...................................... 77 



Vlll 

XIII Average SPICE Times (in seconds)................................ 78 

XIV Service Center Averages Applied to Simple Model 

from Experiment Input2-100 Workers......................... 83 

XV Equations for Vc_lock Corresponding to Figure 18......... . . . . . . . . . . . . 86 

XVI Equations for Vc_lock Corresponding to Figure 19....... . . . . . . . . . . . . . . 87 

XVII Slope Values for Vc_lock Within Linear Range 

for Varying Numbers of Tasks............................... 89 

XVIII Equations for Vc_lock Corresponding to Figure 24..................... 93 

XIX Equations for Vc_lock Corresponding to Figure 25..................... 94 



FIGURE 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

LIST OF FIGURES 

Message passing architecture .................................. . 

Structure of the parallelized program ............................ . 

Workers obtaining and placing tasks in jobpools ................... . 

Graphical representation of a jobpool and transformations by workers .. . 

Job flow pipeline for the fault simulation application .............. . 

Job flow pipeline for the design centering application ............... . 

Queueing and delay service centers ............................. . 

The Complex model. ........................................ . 

The Simple model. .......................................... . 

Gantt chart of idle and work time ............................... . 

Cycle time for experimental data input2 ......................... . 

Cycle time for experimental data input6 ......................... . 

Experimental speedup within linear range ........................ . 

Experimental speedup for all data .............................. . 

Experimental data versus best fit line ............................ . 

Family of curves within linear range for input6 .................... . 

Family of curves within linear range for input2 .................... . 

Theoretical extrapolation versus experimental linear speedup for input6 . 

Theoretical extrapolation versus experimental linear speedup for input2 . 

Experimental versus piecewise linear best fit for input6-100 jobs ...... . 

PAGE 

3 

8 

10 

14 

38 

43 

47 

53 

54 

56 

68 

68 

69 

69 

82 

85 

85 

86 

87 

91 



x 

21. Theoretical breakdown extrapolation versus experimental speedup 

for input6-100 jobs.................... . . . . . . . . . . . . . . . . . . . 91 

22. Experimental versus piecewise linear best fit for input2-50 jobs . . . . . . . . . 92 

23. Theoretical breakdown extrapolation versus experimental speedup 

for input2-50 jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

24. Theoretical breakdown extrapolation versus experimental speedup 

for input6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

25. Theoretical breakdown extrapolation versus experimental speedup 

for input2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 94 

26. Simple model cycle time versus Complex model cycle time. . . . . . . . . . . . 96 

27. Simple model speedup versus Complex model speedup. . . . . . . . . . . . . . . . 96 



CHAPTER I 

INTRODUCTION 

PARALLELISM AND DISTRIBUTED COMPUTING 

It is generally recognized within the scientific and engineering communities that many 

problems in these fields would benefit from parallel processing. Many of the solution tech-

niques are computationally intensive and require hours of processing time on a single machine. 

Decomposition of these problems into smaller subproblems and simultaneously processing 

them on multiple processors can greatly speed up the solution process. There is no lack of can-

dictates for concurrent scientific programming. Nor is there lack of opinion as to which 

approach is the preferred method of choice. The following statements were reported as having 

been heard at various times around the Cornell National Supercomputing Facility in Ithaca, 

New York [l]. 

"Most parallel algorithms can be expressed in producer-consumer terms." 
- a computer scientist. 

"Almost all scientific codes are parallelizable at the DO loop level." 
- a physicist. 

"Master-slave is the most intuitive parallel programming model." 
- an engineer. 

"The pool of tasks is likely to be the basic paradigm ... " 
- high energy physics (sic) 

"To really incotp0rate natural processes into your program, you need to use domain 
decomposition." 
- a meteorologist. 

Fortunately, many computationally intensive problems exhibit potential for concurrency. 

But decomposition or partitioning of a problem is a significant task. The communication over-

head of the system, coordination of subtasks once the problem is partitioned, and minimization 
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of serial processing to exploit parallelism and decrease computing time must be taken into con­

sideration. In addition, paradigms for mapping these problems to an existing parallel environ­

ment are lacking. 

From the computation scientist's point of view, two important aspects of parallel comput­

ing include turnaround time and implementation complexity [2]. One of the objectives of paral­

lel processing is to reduce the total "wall-clock" or turnaround time required for a process. The 

time it takes to get results out of a particular computer configuration for a specific computation 

is critical to the user. In addition, the amount of effort the user must go to in order to utilize the 

computer system says something about the complexity of the problems to be undertaken. The 

question of what class of problems can be run efficiently with respect to turnaround arises. 

Other concerns, such as how much effort must be expended in learning a new operating system, 

new programming languages, or concurrency control functions used to implement a specific 

parallel paradigm all go into the decision making process as to whether or not to attempt the 

parallelization of an application. The user will want to have some knowledge of what is to be 

gained prior to rewriting application code or interfacing old code to a new system for parallel 

execution. 

The benefits of parallelizing an application can take the fonn of greater accuracy and 

detail of results, more problems solved in a shorter amount of time, and larger and more com­

plex problems solved when uniprocessor computation time for these solutions would be prohi­

bitive. In some respects, parallel processing may even offer a return to the more simplistic 

approaches to problem solving over complicated and hard to understand heuristics designed to 

cut back on computation time. 

The particular system on which to run the parallel solution must also be decided. Many 

architectures exist for the realization of parallelism. Some of these architectures are special­

purpose while others are more general. We will focus our attention on the Multiple Instruction 

Multiple Data (MIMD) architecture. The general principle behind the MIMD architecture is 
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based on the idea that given p processors operating on p independent but similar tasks of an 

application, performance improvements ideally will be linearly proportional to the number of 

processors [2]. This is rarely observed in practice. The way in which speedup scales with the 

addition of processors is bound to be different for each system configuration. Many factors 

must be recognized as affecting the speedup including system synchronization and communica-

tion topology. 

The MIMD subclass of network processors and distributed computing is the environment 

of interest for this thesis. Processors in the distributed environment have their own local 

memory and execute their own programs. Each processor has its own control unit and central 

processing unit Configurations for this environment can consist of quite diverse machines and 

are often comprised of heterogeneous, general purpose computers. The communication topol-

ogy is shown in Figure 1. It is a loosely coupled network of processors where interprocessor 

communication is implemented via a message passing protocol. 

Local 
Memory 

Local 
Memory 

••• 

••• 

Interconnection Network 

Local 
Memory 

Figure 1. Message passing architecture [3]. 

The individual workstation is becoming a more common item in the industrial, university, 

and commercial work place. By connecting these workstations together over a local area net-

work this computing power can be harnessed and used as a viable approach to solving computa-

tionally intensive problems. The distributed network of workstations is a promising environ-

ment and offers many challenges as a parallel processing platform. 
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One particular challenge is accessing global memory. For information to be global in a 

distributed memory system there must be some mechanism available for accessing other proces­

sors' local memory since no common physical address space exists. The message passing pro­

tocol is one solution to this problem. Other solutions include replication of memory in multiple 

processors and 1/0 capabilities for accessing memory. Regardless of what approach is used, it 

is guaranteed that contention for global memory will result in additional communic.ation over­

head, extra data movement, or both. 

Applications of a distributed parallel computer have been explored in a variety of ways. 

Three of the main focuses are: 

• The design of distributed processor algorithms specifically targeted to distributed 

parallel computers. Strictly speaking this approach is intended for a dedicated net­

work of processing elements such as an Intel iPSC and not a general purpose 

workstation network [ 4]. 

• The development of monitors that allow the sharing of unused computer cycles for 

cooperating processes in a local area network. Such a monitor provides a mechan­

ism for determining 'lightly' loaded machines but rarely provides a means for coor­

dinating a parallel task [5, 6]. 

• The specification of new coordination languages and program development tools 

that allow programmers to distribute and synchronize tasks and then collect the 

results of the completed computation [7, 8]. 

Our paradigm falls into the third category and is targeted for scientists and engineers who do 

not have the inclination to become proficient parallel programmers but have a desire to take 

advantage of parallelism in their computer problems. To do this we must develop a suitable 

technique to control and coordinate the actions of individual nodes so that they can contribute to 

the solution of complex problems. This technique takes the form of a problem solving tool that 

is matched to the distributed processing environment 
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PARALLEL PARADIGMS 

A paradigm provides the framework or structure within which the programmer can work 

to arrive at a solution. It is a problem solving strategy which allows for the structuring of dis­

similar problems in such a manner that they can be solved by similar means. A programming 

paradigm is a high-level methodology which serves as a specification for communication pat­

terns used to reference data [9]. 

Carriero and Gelernter distinguish between three basic paradigms for providing parallel­

ism on general purpose asynchronous parallel machines: result, agenda, and specialist (10]. 

Each of these paradigms lends itself to an identifiable group of problems and represents a dis­

tinct way of thinking about parallelism. The boundaries between the three sometimes become 

blurred and elements of each are often used to arrive at a final solution. Result parallelism 

focuses on a data structure which yields the final result. It is used most effectively in problems 

which require a series of values where each value represents a piece of the whole solution. 

Here, each worker constructs an individual piece of the finished product Agenda parallelism 

focuses on an agenda of tasks which many workers apply themselves to simultaneously. It is a 

versatile approach that adapts easily to many different problems. Here, a program executes in 

the same way regardless of the number of workers. Specialist parallelism assigns a worker to 

perform a specific task. This approach focuses on the make-up of the workers and is well suited 

to a pipeline where multiple transformations on identical tasks are required. Chapter III will 

expand on the characteristics of these three paradigms and discuss the suitability of each for 

implementation using our paradigm. 

In developing these three basic paradigms, Carriero refers to the term coordination as the 

process of "building programs by gluing together active pieces". The active pieces are the tasks 

or threads of the problem and the glue is what holds them together. We can think of this glue as 

the ingredient that addresses the need for communication and synchronization. 
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There are several coordination languages that have been developed for solving medium or 

coarse-grain problems in a distributed environment. These methodologies provide a language 

to facilitate the organization and structure of the parallel program which is written using a com­

puting language. Three such languages are Linda, Frame Works, and Paralex. 

Linda [10] is a memory model and the C-Linda compiler supports the combined language 

environment of the computing language of C and the coordination language of Linda. Memory 

is defined as a tuple space consisting of a collection of process and data tuples. Process tuples 

execute simultaneously and exchange data by generating, reading, and consuming data tuples. 

Linda supports all three types of parallelism discussed above. 

FrameWorks [7] is a coordination language which uses remote procedure calls to imple­

ment message passing communications. Here, the programmer writes sequential C procedures 

and encapsulates them in templates. Templates are the coordination language which defines 

how each process will interface with others within an application. Framework is a specialized 

system which provides a vehicle for mapping agenda and specialist parallelism to the distri­

buted system. 

Paralex [8] is a coordination language designed to facilitate the mapping of coarse-grain 

data flow problems to a distributed system. Nodes and links define a Paralex program where 

nodes are provided to identify computations and links to indicate flow. Paralex uses the 

ISIS [ 11] toolkit to support universal data representation and remote communication. Paralex 

addresses the specialist parallelism required in data flow computations where nodes are 

assigned a specific kind of work. 

A COORDINATION FRAMEWORK 

In this thesis we will develop, implement and evaluate a prototype of the paradigm 

designed to map applications exhibiting coarse-grain parallelism to the distributed network. In a 

loosely coupled system, communication costs are relatively high due to greater communication 
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frequency and limited bandwidth. The user can accommodate this drawback by choosing prob­

lems that have a coarse computational granularity and infrequent task interactions. Coarse­

grain parallelism entails a group of tasks working collectively towards a solution with a rela­

tively small amount of task interaction. 

For the paradigm to be useful to the general user, the distributed processing environment 

would ideally include: 

• A simple programmer interface. This would facilitate conversion of the uniproces­

sor application to the parallel environment 

• A simplified communication scheme ideally suited for infrequent task interaction. 

This results in less overhead which is important in a message-passing environment 

where bandwidth is low and communication is expensive. Furthermore, program­

ming is easier than with difficult communication protocols. 

• The ability to use already existing code. This includes sequential application code 

as well as standard system calls which facilitate portability. These applications will 

be identified with specialist workers. 

• A flexible approach to synchronization. This is needed to handle applications where 

an equitable distribution of work is difficult to arrange in advance. This will be 

accomplished using agenda parallelism. 

We will view this paradigm as a coordinating framework which provides structure and an 

organizational strategy for resolving the decomposed problem into a viable distributed parallel 

program. A three level structure that illustrates our implementation is shown in Figure 2. At the 

bottom level is the original sequential program unencumbered by knowledge of a parallel plat­

form on which to run. The intermediate level is the interface between the parallel and sequen­

tial implementation. This provides an easier entry into parallel programming in the form of a 

'wrapper' around the original program. The vehicle used to deliver the parallelization is our 

coordination framework which sits on top of the interface. 
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coordination framework 

interface 

original sequential program 

Figure 2. Structure of the parallelized program. 

Central to the organizational strategy of our coordination framework are the concepts of 

the jobpool and worker. Similar tasks which can be run in parallel are found in jobpools and 

are placed there when it is time for execution. Any number of workers can be assigned to a 

jobpool and are assigned to processors at the discretion of the user. This leads to flexibility 

when gaining or losing processors on a network. Workers are self-scheduled and obtain work 

when it becomes available in the jobpool. Figure 3 provides a pictorial representation of work­

ers retrieving tasks from their assigned jobpools. 

THESIS OVERVIEW 

In this chapter we presented the general computing environment for the parallelization of 

coarse-grain applications. Our paradigm provides the basic framework within which the pro­

grammer can work to fashion a solution to a problem. It provides the structure and organiza­

tional strategy for mapping the application to the distributed environment. Several parallel 

paradigms were presented as problem solving tools for scientific applications and three coordi­

nation languages were discussed in accordance with these concepts of parallelism. 

In Chapter II our paradigm is defined and a nomenclature is developed that will be used to 

discuss the prototype in detail. This chapter presents the coordination framework and discusses 

the organizational primitives of this framework as well as issues of synchronization and com­

munication. 
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Problems which lend themselves to our paradigm are addressed in Chapter III. Several 

problems are presented along with possible implementation strategies. The methodology for 

the decomposition process will be explained by example. This will entail the complete mapping 

of an application called Design Centering to the paradigm. 

Experimental results are presented in Chapter IV. A model is developed to describe the 

topology of the physical system and is used as a template for the instrumentation of the experi­

ment. Graphs and tables detailing the experimental results are provided. With the help of 

queueing network theory we present a simple expression for the behavior of the system. Using 

this model we predict behavior of the system for large numbers of workers and determine how 

accurate our model is from the experimental results. 

Chapter V concludes the thesis with an evaluation of the research. A discussion on the 

limitations as well as the strengths of the paradigm is included. Comparisons to related work in 

this field are undertaken. Future work based on the conclusions drawn from the experimental 

results is considered. 
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CHAPfERII 

THE PARADIGM 

This chapter discusses the specifics of the coordination framework exhibited in our proto­

type which we have developed and implemented. Primitives are introduced and a nomenclature 

is developed to facilitate the discussion of the abstractions of the paradigm. Characteristics of 

the paradigm are addressed and the details of the implementation are presented. Topics of load 

balancing, job partitioning and task granularity are considered with respect to our paradigm. 

PRIMITIVES 

To support parallelization of applications in the distributed environment we developed a 

set of primitives to define the coordination framework used for synchronization and organiza­

tion of the parallel problem. The primitives fall into three categories: structural, transforma­

tional, and operational. 

Structural Primitives 

Structural primitives include the jobpool and worker. A jobpool is a resource shared by 

several concurrent processes. More specifically, it is a data structure designed to manage a col­

lection of independent tasks which are to be operated on in the same manner. It is assigned a 

unique name at the time of its creation which is used by all processes accessing the jobpool. 

Jobpools facilitate agenda parallelism by providing the organizational structure for a list of 

tasks to be performed. We have identified four characteristics of a jobpool which are as fol­

lows: 

1. A jobpool contains independent but similar jobs. 
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2. Tasks residing in the jobpool require the same type of worker. 

3. A jobpool is a source for a worker. 

4. A jobpool is a destination for a worker. 

Work is carried out on a specific jobpool by a collection of workers, identical in function, 

and designed strictly to service the jobpools. Workers take the form of specialist parallelism in 

their function and are the computational engines for the paradigm. Upon initialization, workers 

are permanently assigned to a source jobpool and a destination jobpool. Characteristics of a 

worker include: 

1. A worker facilitates the transformation between jobpools. 

2. A worker is data driven. 

Transformational Primitives 

There are several types of transformations that a worker can perform between a source and 

a destination jobpool. In this chapter it will be convenient to refer to specific workers by their 

transformational attributes. Prior to describing these transformations, the concepts of consum­

ing and spawning work must be defined. 

The consuming of a task begins when a worker removes it from a source jobpool and is 

finished when processing of the task is complete. The spawning of tasks occurs when a worker 

consumes work and generates one or more tasks, placing these in the assigned destination job­

pool. There may be any number of intermediate destinations for a particular task as dictated by 

the assigned worker. Regardless of the number of intermediate destinations an iteration is the 

same: the task is removed from a source jobpool and operated on (consumed) and placed in a 

destination jobpool (spawned). It will be seen in the special case that a worker will not neces­

sarily spawn a job after consuming a task. 

The first of the transformations to be discussed is the 1-to-many transformation. This 

entails a worker consuming a single task, operating on the task, and then spawning multiple 
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new tasks. The well known divide and conquer paradigm uses this transformation to divide up 

an original problem into smaller subproblems. Here we are using the same approach but also 

taking advantage of the fact that given sufficient parallelism the subproblems can be solved 

simultaneously. 

A second type of transformation is a many-to-1. A worker consumes two or more jobs 

from its assigned source jobpool and deposits only one job in the destination jobpool. This 

transformation would be typical of the recombining or accumulating of data from processes 

working on smaller subproblems in an effort to produce a single task. 

A third transformation is the l-to-1. Here, a worker consumes a single job from the 

source jobpool and places a single job in the destination jobpool. In the special case of initiali­

zation this destination jobpool may be null. A typical example of the use of this transformation 

might be in the execution of a pipeline stage. Each data object entering the pipeline stage is 

operated on in an identical manner and the output from the pipeline reflects these changes. 

Other possibilities include a many-to-many worker and a conditional worker. The condi­

tional worker allows for a question to be asked with respect to a task and provides different 

directions of flow depending on the decision. Any of the branches of the conditional worker 

can be of the form one or many. Figure 4 introduces a graphical representation for a jobpool 

and the various transformational workers which will later be used to construct a pictorial 

representation of an application pipeline. In this picture we show an example of a conditional 

worker with an input branch specifying multiple task consumption and two output branches for 

single task spawning. 

In our paradigm, the workers are data driven or self-directed. Using this approach there is 

no need for the traditional master-slave communication protocol. Workers check the jobpool 

periodically for any new work that has arrived and consume work upon availability. Workers 

who are dedicated to 1-to-1 transformations do not require knowledge about the number of jobs 

being processed through the jobpool. Workers who perform 1-to-many, many-to-1, or many-
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Figure 4. Graphical representation of a jobpool and transformations by workers. 

to-many transformations require additional information relative to the number of tasks to be 

consumed or spawned. 

The jobpool structure does not care, nor does it have any knowledge of, how many work­

ers are assigned to it Theoretically, it does not care how much work is processed through it 

From a practical point of view there will always be a limit to how much work a pool can con­

tain at an instant of time with respect to system limitations. 

Operational Primitives 

To facilitate transformations on jobpools we have created operational primitives for ob­

taining work from the jobpool and monitoring within the jobpool. When more than one process 

attempts to consume a task, problems can occur. To sequentialize the manner in which jobs are 

obtained by the workers, which in tum will maintain integrity of the jobpool, arrangements are 

made to guarantee that no more than one process has control of the jobpool at any one time. 

The lock and unlock primitives address the need for maintaining the integrity of the job­

pool. A worker obtains control of the lock, using the lock primitive, in order to consume work 
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from the source jobpool. After a task has been removed from the source jobpool the worker 

releases the lock, using the unlock primitive, and the jobpool is available for other workers to 

control. There are two primitives available for the consuming of a task. The first is the 

deliver _task primitive which allows for a single task to be consumed. The second is the 

deliver _jobpool which allows for multiple tasks from a jobpool to be consumed. Moving the 

task to the appropriate destination jobpool is done using the place _task primitive. 

In addition to the basic primitives already discussed, a primitive for monitoring the job­

pool has been supplied. This primitive enables the user to write to a data structure for the sake 

of internal monitoring of the processing. The user may be interested in developing a trail so 

that the resident time a task spends in a destination jobpool can be determined, as well as which 

worker consumed it, and how long the operations on the task took prior to the completion of the 

transformation. This primitive makes this possible. 

In an effort to simplify the transition to a distributed environment for non-specialist pro­

grammers, these primitives have been designed to mask the semantics of the operations required 

and to look like simple procedure calls to the user. There will be more discussion of the above 

primitives under the topic of implementation. 

CHARACTERISTICS OF THE PARADIGM 

The general description of the paradigm we have developed falls under the category of a 

distributed control, multidimensional pipeline. That is, the paradigm has attributes that can be 

described as distributed with respect to control or communication, multidimensional in struc­

ture, and pipelined in functionality. 

Multidimensional Pipeline 

The pipelining of processes requires that each process perform a specific function for the 

duration of its existence. Information is passed through the pipeline from one process, or stage, 

to the next as if moving through an assembly line. A process operates on each input data object 
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as it enters the stage and passes the results to the next stage in the pipeline upon completion. 

In his paper, King differentiates between pipelined and concurrent execution [4]. For con­

current execution, multiple processors execute multiple independent tasks at the same time. For 

pipelined execution, each processor takes on the role of a stage in a pipeline and operates on 

data as it enters the stage and passes output data on to the next processor. In our paradigm, we 

exploit concurrent execution in a pipelined fashion. Using King's definitions, our parallel exe­

cution style falls into both categories of execution. We allow for the running of multiple 

independent processes on multiple workstations thus allowing for different processors to exe­

cute different functions simultaneously. But we go beyond the classification of concurrent exe­

cution in parallel computation when we structure the pipelining of the execution process using 

jobpools. 

Jobpools with their respective workers represent the pipeline stages dedicated to various 

functions in the solution to an application. Here, workers are assigned a specific function to be 

performed on each data object that enters the jobpool. When operation on a task is complete, 

the task is moved to the next stage in the pipeline which we have defined as the destination job­

pool. Concurrency in computation is exploited in two ways: by the overlapping of computation 

between pipeline stages and by the parallel computation of multiple tasks in a single jobpool. 

Using Carriero's concepts, the collection of jobpools is the vehicle for implementing a list of 

tasks found in agenda parallelism while the workers provide a computational form of specialist 

parallelism by their assigned expertise. 

Distributed Control 

Pipeline control is often centralized to facilitate the movement of data from one pipeline 

stage to the next stage in lock-step fashion. Here, a system-wide clock signal is used to control 

the system and serves two purposes. The first purpose is that of a sequence reference. The tran­

sitions of the clock define instances in which the state of the system may change. The second 

purpose of the global clock signal is that of a time reference. The period, or interval, between 
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clock transitions determines the length of computation time allowed for a particular state of the 

system. In a centrally controlled pipeline, the stage which has the longest processing time con­

trols the clock period for the entire pipeline. This is an explicit dependency between processes. 

An example of a centrally controlled system as described above can be seen in a systolic array 

implementation of matrix multiply [12]. 

In a distributed control system, the clocking discipline is internal to the individual pro­

cess. Transition instances are determined in a manner such that each process has an internal 

clocking mechanism which regulates its own input and output phase. The period of this internal 

clock allows for the individual computation time of the process. A process which operates on 

its own independent clock is self-timed. With no global signal to synchronize operations 

between processors, a self-timed paradigm such as ours requires that parallel computations be 

data driven. 

No two workers assigned to the same jobpool will necessarily be at the same point in pro­

cessing at any given time. Worlc in a jobpool is not done in lock-step fashion nor is there any 

strict requirement that all work be completed in a particular jobpool before additional work can 

be made available to the next jobpool. Here, no global clocking mechanism dictates at what 

time a task is moved to the next stage. In fact, in a distributed system, it is actually hoped that 

the pattern of communication describing the moving of worlc from one stage randomizes over 

time. The overlapping of communication and computation leads to a more efficient use of the 

distributed system and less time spent blocking at the input phase of individual processes. If 

shared resources are accessed at random, on average, the throughput of the system will be 

greater due to less time spent spinning, or synchronizing, per processor and more time spent 

computing. 

As pointed out by Duba [13], if job partitioning and job allocation are not done correctly, 

an increase in the number of processors may actually result in the decrease of total throughput. 

For his implementation, this decrease can be directly related to the amount of messages that are 
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exchanged between processors. Duba uses a client-server communication topology to run a dis­

tributed fault simulator for VLSI circuits on a loosely-coupled network of general purpose com­

puters. Here the client process acts as a host, sending and receiving work to the server 

processes. The server processes perform simulations and send results to the client to collect. 

The bottleneck would occur in the communication protocol at the client processor when large 

numbers of server processes require servicing. In addition, a hand-shaking scheme factors into 

the communication overhead. It is precisely this bottleneck which we are attempting to minim­

ize with our paradigm. 

A distributed control approach to pipelining allows for a variability of time for each stage. 

In designing the control of the paradigm to be distributed we are able to surmount the limita­

tions that so often accompany the pipeline solution. The largest limitation being that of the glo­

bal timing mechanism employed for propagating data through the pipe. The concurrent pro­

cessing seen by the overlapping of pipeline stage computation allows for multiple independent 

threads to propagate through the pipe. This in tum allows for fast moving threads of the decom­

posed problem to proceed rapidly through the pipe resulting in scheduling efficiency since idle 

workers receive work as soon as it becomes available. 

The characteristics of the paradigm also allow for multiple iterations, as well as multiple 

algorithm threads, of a problem to co-exist in the same pipeline stage. Let us say, for example, 

that a problem has several different algorithms to use towards a solution and can branch and 

choose one of these algorithms at some designated point in the pipeline process. Now, let's ima­

gine that a 1-to-many worker spawns a number of red tasks and places them in the destination 

jobpool. Simultaneously, another 1-to-many worker spawns a number of blue tasks and places 

them in the same jobpool. Workers who consume red tasks are required to operate on these 

tasks using the red algorithm, while workers who consume blue tasks use the blue algorithm. If 

the work to be done on the tasks is the same regardless of the color of the deck, then that stage 

of the pipeline ignores the distinguishing colors. At the point where a new algorithm is to begin, 
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a new seed task would be color coded, reflecting the algorithm which was used to generate it. 

By tagging the new seed task with the color of the algorithm, the resulting tasks will again be 

color coded and may co-exist in the job pools. In effect this would be multiple algorithms of a 

solution to a problem being concurrently processed. Along the same lines, iteration threads 

could be color coded as they progress through a cyclic pipeline. 

The pipeline that has been discussed above is of a generic, multidimensional nature and 

can be used to implement a variety of topologies. The most obvious structure would be that of 

the single-dimension, linear pipeline. Systolic arrays that employ a two-dimensional square 

mesh would also be a superset of the form discussed here. Systolic arrays consist of a network 

of modular processing units with a regular structure and local interconnects. They also feature 

an important property of pipelinability. Here, a stage of the pipeline is uniquely assigned to a 

processor and a global clock is required to synchronize the point at which data is moved from 

one stage of the pipeline to the next. Since ti.ming for the systolic array is centralized at both 

input and output phases of each processors' clock, it is not necessarily a good structure to map 

to this paradigm. The close synchronization required in a systolic array is oriented more 

towards direct connections found in hardware designed for these specific applications rather 

than general networks. These centralized message systems are not particularly suited to distri­

buted control, message passing facilities. 

A topology more similar in execution to the paradigm is the wavefront array, a subset of 

the systolic array [14]. Wavefront arrays differ most from systolic arrays in their timing 

requirements and how they are driven. In a wavefront array, ti.ming requirements in the systolic 

array are replaced by the requirement for correct sequencing in the wavefront array [12]. In 

both array architectures, data transfer between processors is done through a simple handshaking 

scheme. This communication occurs at the mutual convenience of the processors but the com­

munication is not control driven as in the systolic array. Computation occurs when new data is 

available for a processor and the processor is ready for it. Thus, computation is self-timed. Data 
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can be passed without concern for a global clocking mechanism and there is no requirement to 

hold back faster processors in order to accommodate slower ones as is required in the systolic 

array. This is similar to what we have described in our paradigm to the extent that computation 

is data driven and self-timed. We have lowered the overhead of the handshaking scheme to pass 

work to a processor. Data objects are moved to the neighboring jobpool by the operating sys­

tem and will be consumed for additional computation by the next process at its convenience. 

Processes may acquire available new tasks to work on by simply checking the jobpool. 

Acquisition of this new task, once found in the jobpool, only requires the operating system. 

Properties of our distributed multidimensional pipeline can be summarized as follows: 

• modularity - the paradigm allows for flexible structure as well as standardized units 

in the form of jobpools for easy construction 

• simplified distributed communications 

• high degree of pipelining 

• dynamic asynchronous data flow computing - computations are data driven and 

self-timed 

• extendibility of computing structure - by the addition of more jobpools in both 

width and depth 

• flexibility and ease of adding or deleting processors 

IMPLEMENT A TI ON 

System Configuration 

The system configuration for our implementation consists of a local area network of SUN 

workstations running SUNOS 4.0.3. The network consists of a jobpool file server and twenty­

two diskless workstations comprised of 3/11 Os and 3/50s. All of the engineering workstations 

are equipped with Motorola 68881 math coprocessor chips. System calls used in the implemen­

tation are Berkeley 4.3bsd UNIX commands. 
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The shared file system contains the source and destination jobpools in the form of direc­

tories. Tasks to be processed by workers take the form of files. A parallel solution to a problem 

using our paradigm will entail the use of a directory tree. A single file server manages the struc­

ture to ensure that any changes made to directories functioning as jobpools are made serially. A 

separate file server provides swap space for the diskless workstations. Attention is focused on 

the directory file server for the jobpool subtree in our instrumentation. 

Executables that are to be initialized as workers are located in the top directory of the 

structure. Other information found in this top level directory includes control programs for vari­

ous aspects of initialization and shutdown, files used to collect data for run time statistics, and 

one or more tasks required to seed the computation at the very beginning of the parallelization 

process. 

Control Programs 

Control programs for various aspects of the parallel processing environment are provided 

in our implementation. These include programs to initialize the parallel process, shutdown a 

portion or all of the process, and collect statistics and generate graphs from data supplied by the 

worker programs. Some of these programs are in the form of C-shell scripts while others are 

written in C. 

A control program initializes all subdirectories required by the parallel application. Sub­

directories consist of a directory to hold all data collected, a directory to manage messages gen­

erated during the shutdown sequence, and all directories used for managing and processing 

work, i.e. jobpools. At the time of initialization, data structures, in the form of log files, are 

created in each jobpool. These files can be written to via the monitoring primitives, mentioned 

earlier, which are available to the worker programs. 

The control program sees that all worker programs are initiated on specific processors and 

are assigned to their respective source and destination jobpools via the rsh remote shell com­

mand. At this point multiple copies of a worker may be assigned to as many processors as the 
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user deems necessary. Additionally, workers requiring information with respect to the consum­

ing and spawning of multiple tasks are passed this information upon initialization. Processing 

begins when the appropriate jobpool, i.e. directory, is seeded with the initial work, by the con­

trol program. 

Jobpools 

The control program creates the jobpools and establishes the structure of the jobpool sys­

tem. Each jobpool is created as a unique subdirectory where the structure of the jobpool system 

is defined by the user. Included in our implementation of the directory tree structure are inter­

mediate directories referred to as workpools. Each jobpool has a workpool associated with it. A 

workpool utilizes the same type of data structure as a jobpool but its use is somewhat different. 

It functions as a temporary work space where processing on a task takes place prior to moving 

the task to the next destination jobpool. Unlike the jobpool, a workpool is used by workers 

already assigned work. With this approach, the jobpool is used only to manage work that is 

available, while all processing occurs in the corresponding workpool. The structure may also 

be used for any temporary files required by the worker. 

Since a jobpool is a subdirectory, each jobpool must be labeled with a unique name. For 

our implementation, the unique name assigned to the jobpool is a directory name. At the time 

of initialization the user must know the number of source and destination pools, including inter­

mediate workpools, that will be required. Unique names are assigned to each jobpool which 

worker programs will use when accessing tasks. 

Workers 

In our paradigm, worker programs take the form of specialist parallelism in their function 

and are the processes which operate on the tasks found in the jobpools. In addition, workers 

move tasks between jobpools. It is possible for a worker to get single tasks from a jobpool, take 

exclusive control of a jobpool to get all or part of the tasks, place either single or multiple tasks 
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in a jobpool, and die gracefully. With the assistance of the monitoring primitives, the worker 

can write status information to the log files. 

Recall that in a distributed control system, the clocking discipline is internal to the indivi­

dual process. The input phase of a worker's clock enables a pseudo-blocked receive of input at 

the point of request for work. The receive is considered to be pseudo-blocked due to the low­

level synchronization mechanism of the lock which maintains integrity of the jobpool. Here, 

when the lock can not be obtained, the worker backs off and then tries again. A blocked receive 

would use a queue to guarantee processes access to the jobpool in some ordered fashion. Work­

ers consume a task found in their assigned jobpool, when they are idle and input is available. If 

there is no work to consume in a jobpool, a spin mechanism is employed. This low-level syn­

chronization technique inhibits the input phase of the individual worker's clock until there is 

work available. In addition, the locking mechanism facilitates the blocking of the receive until 

a single worker has been given control of the jobpool. 

When the worker reaches the output phase of its internal clock, data is exported by a non­

blocking send. A task is moved to the next stage in the pipeline when work on it is complete. 

The fulfillment of this send request hinges solely on the operating system. The clock phase of 

other workers has no impact on when this communication takes place. There is no explicit 

dependency on other processes as there is in a centralized implementation. 

Recall that a worker consumes a task by removing a file from its source jobpool, operates 

on the task in a workpool, and then places the results in the destination jobpool. Tasks are 

moved from one location to another by the use of the system call rename. Any file location on 

the UNIX system is described by a path which starts at the root directory of the tree structure 

and continues down through the subdirectories to the location of the file. The renaming of a file 

requires changing this path to reflect the new subdirectory name where the file is to be placed. 

This is seen at the user level as a file being moved from one directory to another. Between an 

initial source pool and a final destination pool there may be any number of interim moves to 
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facilitate processing of the task. The interim processing would be done using workpool data 

structures. 

In a workpool there is no contention for tasks because tasks are assigned to specific work­

ers upon removal from the original source pool. Each worker only has knowledge of its 

assigned task once it has been moved to the workpool. A worker never checks a workpool to 

see if others are using this shared resource. It is this intermediate location which allows for 

operations on the task, with no possibility of interference from other workers, and allows for the 

moving of the task from this pool to the next destination pool to be done strictly by the worker 

to which it is assigned. 

A control structure is imposed on the paradigm in the form of naming conventions. Nam­

ing conventions for tasks are imbedded in worker programs. Care must be taken to insure 

unique file names for all tasks. Process id, job number, and machine name are but a few of the 

components available to assist in this requirement. Since workers dedicated to 1-to-many and 

many-to-1 transformations can generate new tasks, an ascending number scheme is imbedded in 

these workers. In our implementation, all tasks destined for a specific jobpool are given the 

same base name and then made unique by attaching a number as an extension. In addition, each 

time a file is placed in a destination jobpool, identifying information is appended to the name as 

an extension. This information takes the form of the host name of the processor where the 

worker is executing. Since the file name was unique when it was originally generated, it 

remains unique throughout processing. A nice side effect to this is the ability of the user to visu­

ally trace the progress of a task through the jobpools and identify which workers on which 

workstations are obtaining which tasks. This can be facilitated by the use of the log files made 

available in each jobpool. These log files remain behind in their respective directories at the 

completion of execution. Other techniques can be envisioned for the separation of control 

information and job data. 
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Communication Topology 

The communication topology of the paradigm is based on the network file system (NFS). 

A request to move a file results in message packets sent to and received from the file server over 

the Ethernet connection. The Ethernet connection is a shared resource used by all workstations, 

including other workstations outside the SUN environment. Since both the Ethernet and the 

directory jobpools are shared resources, the possibility for contention exists. The system com­

mand used by a worker to move a file is an atomic action but this in itself does not guard 

against contention for a file. Problems may arise when several processes look into a jobpool 

and see the same file simultaneously. Only one process can actually move the file, but more 

than one may think they have done so. A locking mechanism is provided to ensure that there is 

no contention for the same file. 

Locks 

The simplest fonn of lock provides exclusive access by the process holding that lock to a 

data object or objects, in this case the data object is a directory [15]. By providing exclusive 

access, we ensure protection of the files contained in the directories. The locking mechanism we 

have employed uses a separate file lock associated with each jobpool. To gain access to the job­

pool, a worker must obtain exclusive access to the lock file. This lock file is created the first 

time a jobpool is accessed and remains in the jobpool for the duration of the processing. Prior 

to locking a directory, a test must be made of the status of the lock file. If the lock is free then 

an attempt is made by the worker to set the lock. If the attempt is successful then the resource 

may be exclusively accessed by that worker. If the lock has been set prior to the interrogation 

then the test will notify the worker that some other process has already obtained exclusive use 

of the resource. The setting of the lock is not attempted unless the resource is free. Many 

processes may test simultaneously and see the resource open for access but only one process 

will obtain the lock and earn the right to exclusive access. Processes which have failed to obtain 

the lock continue the cycle of checking the status and then attempting to lock. The atomic 
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action of setting the lock is guaranteed by the operating system call to the System V function 

lock[(). 

Once access to the jobpool has been obtained, a worker checks for tasks to consume. If a 

task exists, then the file is removed from the jobpool and the lock is released. Now, the process 

of setting the lock, consuming work and releasing the lock is an atomic action which is required 

to ensure integrity of the jobpool. 

There are two different types of locks available in our implementation: a lock file and a 

directory lock. The lock file is used when a jobpool is accessed to obtain a single job. Here the 

directory is locked long enough for a worker to obtain a single job and then the lock is released. 

A worker dedicated to 1-to-1 transformations between pools would expect to find this type of 

locking mechanism in the source jobpool. A directory lock is used when a jobpool is accessed 

exclusively and released only when all tasks have been consumed from the directory. A worker 

dedicated to many-to-1 transformations will need exclusive access to a jobpool in order to accu­

mulate all expected tasks. This worker will require a directory lock to facilitate this transforma­

tion. Since not all tasks will arrive at the source jobpool at the same time, the lock is acquired 

forever and released only when the worker completes all processing which has been defined by 

some user supplied parameter. In either case, if the directory is locked, no other process will 

have access to it. 

The function of the lock file and the directory lock could be extended to handle the lock­

ing of a jobpool for different colored tasks. A lock for each color would be required to maintain 

integrity of the jobpool, as discussed earlier. In the case of directory locks, one worker for each 

color could lock the directory and obtain multiple tasks. 

Depending on the implementation, when placing a new task in a jobpool the status of the 

lock may be ignored. Since we are using the file system to implement jobpools, the placing of a 

task into a jobpool is accomplished by moving a file from one directory to another. This action 

is guaranteed to be atomic by the operating system so there is no need for a lock. 
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As we noted before, in our implementation, there is no contention on the intermediate data 

structure we are using called a workpool. Each worker has already been preassigned the task 

prior to its placement in the workpool and knows nothing about the other processes using this 

temporary work space. In addition, each task has a unique name, so there is no need for a 

worker to acquire a lock prior to the processing of its task. 

By creating a data structure where interim processing can take place without fear of con­

tention, the shared resource of the jobpool is not tied up while a worker operates on a specific 

task. But exclusive access to the jobpool presents the potential bottleneck in this paradigm. It 

is to the paradigm's advantage to move the majority of the processing to a workpool where 

there will be no locking mechanism required. This isolates the potential bottleneck at the job­

pool level where the only objective is to obtain work. This in tum minimizes the time a worker 

will spend stuck at the bottleneck and maximizes the amount of time a worker will spend work­

ing versus time spent in the communication portion of the process. 

Load Balancing 

In Cvetanovic's [16] work, some of the issues to be considered prior to mapping an appli-

cation to a parallel processing environment include: 

• the amount of parallelism inherent in the problem 

• job partitioning or the decomposition of the problem into jobs 

• the grain size of the jobs 

• load balancing which includes: 

allocation of jobs to processors 

scheduling of jobs on the processors 

• communication overllead 

In a distributed system, load balancing and communication overllead are two major con­

cerns. Included in load balancing are the two issues of assignment of workers to processors and 
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scheduling of jobs among workers. The goal in scheduling is to distribute the work evenly so 

that all processors keep working as long as there is work to be done. The larger the fraction of 

time processes spend working, the sooner the job gets done. Two options for scheduling that 

the user has available are static and dynamic allocation of tasks to processors (17]. This is 

opposed to processor management policies done at run time by the operating system which are 

broadly classified as preemptive and nonpreemptive scheduling (18]. We will look at the user's 

options, recognizing that once the processor obtains the tasks there are other internal scheduling 

policies occurring. 

In static scheduling, all work is assigned to processes in advance of execution. This 

predetermined scheduling produces a static load at run time. With this approach, it is possible 

for some processes to finish their work and stand idle while other processes continue. This 

problem compounds if there are several processes running on the same processor. Here, it is 

conceivable that with a poor static assignment some processors might stand idle at a time when 

others are overloaded. This type of scheduling is only appropriate where the problem is parti­

tioned well and program behavior is very well understood. 

A more equitable distribution of work among processors might be realized by using 

dynamic scheduling. In dynamic scheduling, work is assigned to a processor when it becomes 

idle. There is the added overnead that the processor must go out and find work, but there is less 

likelihood of idle processors versus overloaded processors occurring. 

In our paradigm, at the time of jobpool initialization, workers are statically assigned to 

processors and jobpools and there is no migration of processes. Thus, there is no physical 

movement of executables or rerouting of communication paths for workers at any time. Work­

ers execute on individual workstations and multiple workers may execute on a single worksta­

tion. The distribution of workers to jobpools and workers to processors is entirely up to the 

user. With the assignment of workers to jobpools, dynamic mapping of tasks to workers will 

take place. Workers look in their assigned jobpools for work and are only idle when no work is 
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available. Multiple workers executing on a single workstation will be dynamically scheduled 

through the operating system scheduler. 

No effort has been made to automate the identification of idle processors for the assign­

ment of workers to workstations. The network file system (NFS) provides a remote procedure 

call environment which could be used to predetermine the state of each processor thereby ruling 

out any processor with work already assigned to it. Along these same lines, our implementation 

makes no effort to reassign worker programs in the event of other users requiring the use of an 

assigned processor once computation has begun. 

The user may have an intuitive feel for assigning workers to processors for a specific 

application. With a pipelined configuration, one example might be to assign one worker from 

each pipeline stage to the same processor. As work propagates through the pipeline, some 

workers may finish their work while others are just starting. This could result in less contention 

for CPU time on any one processor. In addition, multiple identical workers assigned to the 

same jobpools may be less likely candidates for residing on the same processor. 

Job Partitioning and Granularity 

The key to developing efficient parallel algorithms for a distributed environment is to 

maximize concurrency and minimize communication. In order to minimize communication and 

to assist in the parallelization of applications, the user must have intimate knowledge of the 

control flow of their application so that partitioning of the application is done to accommodate 

efficient use of the system. This is even more critical in a distributed system due to the manner 

in which communication is accomplished. 

Most applications lend themselves to one of two methods for partitioning computation: 

data-parallel and function-parallel [19]. Function-parallel computation deals with the partition­

ing of a program into subtasks which can then be executed in parallel. This particular type of 

partitioning is appropriate for programs which perform many different operations on the same 

data. This is consistent with Carriero's definition of agenda parallelism where an application is 
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partitioned in an agenda of tasks. Data-parallel computation involves the division of data among 

multiple processors. This approach to computation is appropriate for applications that perform 

the same operations repeatedly on a large amount of data. Data-parallel computation is ideally 

suited for either result or specialist parallelism. 

Implied in the issue of partitioning is the concept of granularity. Granularity is often 

defined at three basic levels: fine, medium, and coarse [14]. Fine granularity is found in vector 

processors where the same operation is applied to multiple data simultaneously. Medium 

granularity, is defined at the operational level where independent instructions can occur simul­

taneously. Finally, coarse-grain is defined at the task level where multiple tasks can be exe­

cuted concurrently. The choice of granularity depends on the number and type of processors 

available in the system configuration and on communication overhead. The grain size of a task 

given to a processor should take into consideration the possibility of a communication 

bottleneck. 

There are two dimensions of granularity that must be investigated in our paradigm. In 

this thesis we will refer to the amount of time spent processing during the interval between syn­

chronization occurrences as task size. Here we are interested in the total amount of time a task 

requires from the time it is consumed to the time results are placed in the destination jobpool. 

The second dimension of granularity relates to the total number of tasks processed by an indivi­

dual worker for a given application. We refer to this dimension of granularity as task count. 

King suggests that since communication is expensive compared to computation, it is 

important that the granularity of the tasks relative to the number of stages in the pipeline be 

sufficient to create a situation where there is a large ratio of computation to communication [4]. 

This addresses the second dimension of granularity which relates to the number of tasks found 

at a specific pipeline stage or the number of tasks processed in a jobpool. 

Cvetanovic points out that there are several tradeoffs to consider when manipulating the 

grain size of a particular subproblem for execution (16]. In her paper, she demonstrates the 
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interaction and quantifies the influence of problem partitioning, allocation, and granularity on 

shared memory, multi-processor systems. As an example, the simple case of decreasing the 

grain size of computations on processors may result in more rapid completion of the computa­

tion. But on the flip side, this may result in more frequent communication which in tum slows a 

processor down. We will see that this phenomena occurred in our experiments with respect to 

both task size and task count. On the other hand, increasing the granularity for some algorithms 

may tend to reduce the communication overhead but it may well reduce potential concurrency. 

Here the risk is starvation by workers and a poorly distributed work.load. 

In the decentralized multidimensional pipeline defined in this thesis, communication has a 

"hands-off' approach where packets of data are deposited and retrieved independently. This 

approach does not support an intimate communication topology as required at the subroutine or 

function level within a program, for example. Nor does it support a data-parallel or fine grain 

size computation. However, it provides an improved method for information exchange at the 

task level, where coarse-grain parallelism is used for function-parallel computation. 

SUMMARY 

The primary purpose of this chapter was to present a detailed description of our paradigm. 

The characteristics of the paradigm as well as the structural, operational, and transformational 

primitives upon which the paradigm is based were addressed in detail. 

The organizational framework is made up of two structural primitives: jobpools and work­

ers. Jobpools contain independent but similar tasks. They are implemented through the use of 

directories. Files residing in each directory are seen as tasks for that jobpool. 

Workers are assigned to a source jobpool and a destination jobpool and are implemented 

as processes assigned to individual workstations. Global memory for the processes is imple­

mented using the file system. Workers are self-directed in their quest for work and facilitate 

transformations between jobpools. 
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The coordination of these transformations is accomplished by specialist workers who con­

sume or spawn work. Methods for the consuming and spawning of tasks entail transformations 

such as 1-to-many, many-to-1, and l-to-1. Operational primitives facilitate the distributed con­

trol of our paradigm. 

The communication methodology of the self-directed worker is at the heart of the distri­

buted control mechanism. Coupling this with a multidimensional pipeline leads to the flexible 

overlapping of communication and computation and allows for a variability of time for each 

pipeline stage. The multidimensional pipeline is implemented through the use of a directory 

tree. 

The distributed control topology of our paradigm is argued to be a viable alternative to 

other recognized communication protocols such as the client-server topology. Our simplified 

approach requires no handshaking between processes which keeps message passing to a 

minimum. Handshaking adds to the complexity of the client-server topology and results in addi­

tional communication overhead. We propose that the overlapping of communication and com­

putation leads to less potential for a bottleneck at the shared resource and a more efficient use of 

the distributed system. 

In the next chapter we look at the characteristics of applications which lend themselves to 

the use of our paradigm. Several examples of problems found in the literature will be provided. 

In addition we will show how the coordination framework of the paradigm is used to map a 

specific application to the distributed system. 



CHAPTER III 

APPLICATIONS 

In this chapter we will discuss the characteristics of problems which map well to our para­

digm. The concepts of result, agenda, and specialist parallelism, and function-parallel partition­

ing are again addressed in the determination of applications best suited to our paradigm. An 

example of a distributed application from the literature is presented and an explanation of an 

implementation of the problem using our paradigm is imparted. Next, a brief discussion of the 

decomposition and implementation of a database search using our coordination framework is 

presented. Finally, the Design Centering application which we implemented for this thesis is 

discussed in detail. The application is decomposed into jobpools representing pipeline stages 

and the transformations provided by specialist workers for job flow between jobpools is 

developed. 

CHARACTERISTICS 

To use our paradigm, there is a need for some sense of the complexity of a worker versus 

the tasks it obtains. Ideally, a worker looks to its assigned jobpool and anonymously selects a 

task, creates output, and places this output in a destination jobpool. The refining of work by file 

name to aid workers in selecting particular tasks leads to a finer granularity. For the paradigm 

to be most effective workers should be able to select files by directory not by file name. As a 

practical matter, the less a work.er has to look for a specific file, the more effective the para­

digm. 

Problems that lend themselves to coarse-grain, function-parallel partitioning will benefit 

most from the use of our paradigm. There are two levels of decomposition required for map-
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ping these applications. The first level of decomposition is based on the pipeline and the second 

level is the contents of an individual pipeline stage. Decomposition into sequential stages in 

order to exploit the pipeline characteristic of the paradigm is necessary. Each of these sequen­

tial stages is made up of a collection of independent jobs or tasks which can be run in parallel. 

Tasks within a pipeline stage need to be self-contained. Communication overhead requires that 

these tasks be computationally independent guaranteeing infrequent task interactions. As dis­

cussed previously, the granularity of the tasks should ideally accommodate a high computation 

to communication ratio for the paradigm to be effective. 

Agenda parallelism tends towards medium and coarse-grain problems and readily lends 

itself to our paradigm by focusing on an agenda of tasks which many workers apply themselves 

to simultaneously [10]. The pipeline characteristic of our paradigm is the vehicle for imple­

menting the list of tasks found in agenda parallelism and the specialist approach to our workers 

makes it feasible to implement specialist and result parallelism using an agenda approach. An 

application which has an agenda of tasks could be implemented using separate jobpools for 

each item on the agenda. Ensembles of specialists workers would be assigned to individual job­

pools to complete the tasks. 

Agenda parallelism covers a variety of applications such as parametric sensitivity 

analysis, optimization, and computer aided design. Parametric sensitivity analysis [20] is used 

in many fields as diverse as economics to aerospace and involves trial runs using different input 

parameters to test a model's sensitivity. Optimization problems such as fault simulation [21, 13] 

and design centering [22] often entail Monte Carlo simulations [23] which generate a large 

number of statistically representative trials suitable for computing simultaneously. Computer 

graphics and imaging techniques such as ray tracing are also possible candidates for our para­

digm [24]. In addition, database management [25] where files need to be built, joined, sorted 

and searched could be handled as well. 

Recall, from Chapter I, that result parallelism focuses on the data structure which yields 
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the final results of a solution [10]. Each element is a separate process that leaves behind a sin­

gle datum in the data structure as its contribution to the final result. This occurs upon comple­

tion of the process. Here, every data object is pennanently associated with some process and 

processes communicate by referencing each other as elements of the data structure. It is used 

most effectively in problems which require a series of values where each value represents a 

piece of the whole solution and results are often stored in tables, vectors, or matrices. Applica­

tions using result parallelism often create large numbers of processes with relatively little com­

putation being done by each process. This manifests itself in a granularity which is too fine to 

allow for efficient execution on a distributed system. To correct this inefficiency, one solution 

would be the transfonnation of the result parallel solution into an agenda parallel solution 

through the grouping of elements into larger data objects. Now a collection of worker processes 

can compute sub-blocks of the result. This provides more work per communication event and 

uses the distributed system more efficiently. 

Specialist parallelism tends towards problems which have network-type solutions [10]. 

Typically, these applications exhibit the finer granularity found in data-parallel partitioning. 

Specialist parallelism assigns a worker to perfonn a specific task and is suitable for pipelining 

multiple transformations on identical tasks. Neural network emulators, graphing algorithms, 

and circuit simulations are all specialist parallelism candidates. Here, the system has well 

known communication paths between nodes and individual nodes have self-governing computa­

tions. Often a single process is mapped to a single node in the network and each process is only 

responsible for updating the state of its assigned node. Here, processes communicate by 

exchanging messages since no data objects are shared among processors. This approach is used 

in data analysis where data can be thought of as broken down into pieces and then organized 

into a hierarchical graph that represents the conceptual hierarchy of the problem. Carriero calls 

this form of software architecture a process trellis [10]. Intrinsic to this parallelism is the need 

for multiple transformations on a given set of data. One approach to implementing specialist 

parallelism with our paradigm is to exchange messages through distributed data structures. 
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Transformation of a specialist parallel solution to an agenda parallel solution may result in a 

more efficient implementation when using our paradigm. One approach is to transform node 

states into tasks which require updating and assign workers to do the updating process. Now, 

processes are no longer mapped to nodes so when nodes are added the problem grows in task 

size not processor size. 

SELECTED EXAMPLES 

Fault Simulation 

Circuit faults caused by local disturbances has led to the development of distributed yield 

simulators for VLSI [13,21]. Building on previous work, Walker uses a yield simulator called 

VLASIC (VLSI Layout ~imulation for Integrated 9rcuits) to develop the distributed version 

called DVLASIC [21]. This version is based on a master process which controls many daemon 

processes assigned to evaluate multiple Monte Carlo samples in parallel. A fabrication process 

description and the IC layout geometry is required for each defect analysis and is stored in a 

database. Walker's implementation uses a replicated database on each daemon process where 

the master initializes and distributes the process description and the daemons initialize the lay­

out geometry. Daemons request work, perform analysis and return results to the master process. 

Defect analysis generates data structures containing circuit fault information that must be col­

lected by the master worker. 

In Walker's implementation, Remote Procedure Calls (RPC) are used for the interface 

between master and daemon and a handshaking protocol is required for communication 

between the two. The master is the potential bottleneck for DVLASIC when many daemons 

request service from the master. It is this bottleneck we are trying to address with the distri­

buted control of our paradigm. 

Fault simulation provides an example for our paradigm of initialization. Workers initially 

require process technology information prior to fault analysis. This information could be con-
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tained in particular colored tasks, say red, where there is one red task for each worker. Workers 

could be constructed to recognize red tasks as initialization information and blue tasks as work. 

After a worker consumes a red task from the jobpool it is then free to consume any number of 

blue fault simulation tasks. 

One example of the implementation of this application would consist of four jobpools and 

their respective workers. The first jobpool requires 1-to-many workers, the second requires l­

to-1 workers, and the third requires many-to-1 workers. The fourth jobpool will contain the 

solution set. Although a graphical interface is not included as part of the paradigm implementa­

tion, Figures 5a through 5d represent a graphical depiction of the jobpools used for the fault 

simulation application. Using the graphical representations introduced in Figure 4 we construct 

a four stage pipeline using jobpools and transformations that take place between each jobpool. 

In Figure 5a an individual task containing process technology, defect statistics and simula­

tion control infonnation is deposited in the first jobpool. The 1-to-many worker which con­

sumes this task will replicate and spawn all process technology infonnation in the fonn of one 

red task per worker. These red tasks are placed in the second jobpool which is the source job­

pool for the l-to-1 workers. In addition, the 1-to-many worker would handle the Monte Carlo 

spawning of blue tasks to the second jobpool. Figure 5b shows red and blue tasks waiting to be 

processed. Multiple 1-to-1 workers, assigned to the second jobpool, first consume a red task 

and initialize their database. Next, each 1-to-1 worker consumes blue fault simulation tasks and 

spawns results which are placed in the third jobpool as depicted in Figure 5c. The first many­

to-1 worker to obtain a task from the third jobpool will lock the directory and accumulate all 

results. We see in Figure 5d that final composite results will be deposited in the fourthjobpool. 



O=SeedTask 

~=RedTask 
0 =Blue Task 
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Q =Final Solution 

(d) 

Figure 5. Job flow pipeline for the fault simulation application. 
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Database Searching 

A completely different type of problem could entail the searching of a large relational 

database. Waltz proposes one such problem which requires the searching of a database made up 

of medical patient records [25]. Each record consists of features such as age, sex, patient his­

tory, diagnosis, test results and so on. To find diagnostic hypotheses for a new patient, the first 

step is one of initialization so that workers receive all relevant features of the new patient. 

Next, workers do comparisons and compute a numerical measure of closeness to each feature 

and sum the total for each record in the database. Patients whose total scores are closest to that 

of the new patient are selected from the database for analysis. This comparison function is just 

one example of what could be perfonned for an exhaustive database search. What is important 

is how we would coordinate and organize the strategy for manipulating the database and not the 

specific function being perfonned on the database. 

In our paradigm, we could implement this search using four jobpools with a 1-to-many 

worker assigned to the first jobpool in the pipeline. Initialization would be perfonned, as in the 

fault simulation example, using two colors to differentiate between work and initialization 

tasks. After initialization tasks are generated, the I-to-many worker would be dedicated to 

reading the database and spawning individual records as tasks for the second jobpool in the 

pipeline. Multiple 1-to-1 workers would keep track of the records which meet the comparison 

requirements and place information pertaining to records which match the search criteria in the 

third jobpool. A many-to-1 worker would specialize in collecting, compiling, and perhaps filter­

ing the match information. Final composite results would be placed in the fourthjobpool. 

In many cases it may be necessary to implement some extra synchronization to control the 

amount of data in global memory. This could take the form of an upper and lower limit. The 

upper limit avoids flooding the global memory and the lower limit guards against worker star­

vation. 
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DESIGN CENTERING: A DETAILED EXAMPLE 

The application we have chosen to implement using the distributed control, multidimen­

sional pipeline is a circuit optimization problem called design centering [22). Design centering 

is a method to improve circuit performance by adjusting nominal values to improve yield. 

Component variation in electrical circuits can lead to variation in overall circuit performance. 

Often this results in a low yield of circuits which meet design specifications. This fraction of 

acceptable circuits defines the manufacturing yield. Design centering is one means of maximiz­

ing the yield by adjusting the nominal values of the parameters keeping tolerances fixed. 

Most design centering methods are based on the random exploratory character of the 

Monte Carlo analysis [26, 22). The yield maximization problem is very hard to solve because it 

involves the evaluation of an integral in multidimensional space. Monte Carlo analysis for yield 

estimation allows us to avoid the evaluation of the integral. Random sampling of the mul­

ti.parameter component space simulates the manufacturing process and dispenses with the need 

for derivatives and/or linear search methods that can become cumbersome and complicated. 

From the probability density function of the current nominal point, sample points are ran­

domly selected using Monte Carlo analysis and concurrent circuit simulations are done on all 

sample points using the SPICE analysis package. No rewriting of SPICE was undertaken to 

accommodate this concurrency. Parallelism is exploited through the concurrent execution of 

multiple SPICE tasks running on multiple processors. Results of the simulations are then col­

lected and used to determine the yield estimate for the current nominal point and the direction 

in which the nominal point should be moved in an effort to maximize yield. Yield is defined as 

the ratio of the number of points that meet specifications to the total number of points sampled. 

A new position for the nominal point is determined and the procedure is repeated until an 

acceptable yield has been obtained. Many methods have been proposed for adjusting the nomi­

nal point [27, 22). The Center of Gravity method was chosen for its ease of implementation and 

its convergence properties [28]. 
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Intense computational time spent evaluating each circuit simulation provides the incentive 

to parallelize this application. In addition, using a distributed processing system allows for 

many more sample points to be considered than when estimating circuit yield within the 

timeframe used by a uniprocessor. With the addition of more sample points the accuracy of the 

solution is expected to increase. 

The flow of the design centering problem can be modeled by a cyclic pipeline using our 

paradigm primitives. This pipeline terminates when an optimum yield has been met as 

specified by the user. Decomposition of the problem into individual jobpools of tasks is as fol­

lows: 

1. Monte Carlo generation of SPICE jobs. 

2. Execution of SPICE jobs. 

3. Analysis of output from SPICE jobs for pass or fail criteria. 

4. Updating of the nominal point to describe the next circuit to be input to the Monte 

Carlo process for the next iteration. 

Decomposition of the problem is followed by the assignment of workers to individual jobpools 

representing pipeline stages. Recall that workers are assigned a source jobpool from which to 

obtain work and a destination jobpool where the task is deposited upon completion of the com­

putation. 

The Monte Work.er 

Monte Carlo workers are dedicated to a 1-to-many transformation required for the spawn­

ing of many SPICE tasks from a single input specification. Workers get an input file from the 

assigned source jobpool and spawn multiple SPICE jobs. These jobs are placed into the destina­

tion jobpool which activates the next set of workers. 

The number and size of the SPICE tasks spawned will play a role in determining how 

many workers will be producing tasks. Parallelization of the Monte Carlo sampling can be 
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facilitated by multiple input tasks being placed in the source jobpool. 

The SPICE Worker 

Each SPICE worker performs a 1-to-l transformation which entails a SPICE circuit 

analysis on each task obtained from the source jobpool. Output from the execution is con­

catenated onto the original task and placed into the destination jobpool. SPICE workers con­

tinue with 1-to-1 transformations until all work is exhausted. 

The Pass/Fail Worker 

The pass/fail workers also perform a 1-to-1 transformation. Jobs are consumed from the 

source jobpool and analyzed for pass or fail by criteria provided by the user. Results of this 

pass or fail are concatenated onto each task and the result is deposited in the destination job­

pool. Pass/Fail workers continue processing jobs from the source jobpool until the work is 

exhausted. 

The Update Worker 

An update worker performs a many-to-1 transformation requiring the source jobpool to be 

locked for the duration of the calculations. This exclusion of other workers from the source job­

pool is performed by the first worker to obtain a task from the jobpool. The lock is not released 

after the task is consumed but instead remains locked for the update worker to obtain all tasks. 

It would also be possible to have several update algorithms working concurrently. Here 

the idea of different colored tasks would come into play and a many-to-1 worker for each color 

would lock the jobpool. Each colored directory lock would be released after the appropriate 

worker finished consuming all expected work for the assigned color. 

In our implementation the update algorithm performed by the workers is referred to as the 

Center of Gravity (COG) method [28]. Here, a center of gravity is computed for every com­

ponent that is to be updated. Accumulated component values for both pass and fail circuits are 

compiled and are divided by the respective number of pass and fail circuits. The nominal point 
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for each component moves in the direction along the line from the center of gravity for the fail 

points towards the center of gravity of the pass points. 

If the number of pass circuits meets the yield criteria of the user then processing halts, oth­

erwise another iteration is required. For the iterative process, a single task is produced from the 

new nominal points generated by the COG method. This task is placed in the source jobpool 

for the Monte Carlo workers to begin the next design centering iteration. 

Figure 6 represents a graphical depiction of the flow control of the design centering appli­

cation. Again, we have used the graphical representations introduced in Figure 4 to construct 

the four stage pipeline. This figure introduces the use of a conditional worker. 

Start 

Figure 6. Job flow pipeline for the design centering application. 

SUMMARY 

In this chapter we have addressed the question of what types of applications can benefit 

from this paradigm. Two examples were briefly discussed and suggestions as to how they 

would be implemented were presented. The design centering application was introduced as a 

representative example for the types of problems which will benefit from this paradigm. 

Decomposition of the design centering problem is a working example of how an engineering 

application maps to a distributed system using the coordination framework developed in 

Chapter II. In the next chapter we introduce the actual experiments which were developed from 

the design centering application to study the organization and coordination of the paradigm. 



CHAPTER IV 

STATISTICS 

INTRODUCTION 

In this chapter queueing network theory is used to develop two models that serve as 

analysis tools for determining system behavior during the experimental process. A model to 

describe the topology of the physical system is developed and is used as a template for the 

instrumentation of the experiments. We will refer to this model as the Complex Model. A 

second model which is simpler in form is introduced and a closed form expression for this 

model is derived and used to predict theoretical behavior of the system for large numbers of 

workers. This model will be referred to as the Simple Model. Experimental basis as well as 

instrumentation and the experimental environment are discussed in detail. Performance meas­

ures calculated from experimental data are presented and analysis of our implementation is dis­

cussed. Overall system behavior as well as interesting performance measures are presented in 

the form of graphs and tables. 

To obtain information about a general stage in the distributed control, multidimensional 

pipeline we chose the SPICE stage of the design centering application, introduced in Chapter 

Ill, for our data collection. Instrumentation was applied to the second jobpool of this pipeline, 

i.e. the SPICE stage. Workers obtain a task from the source jobpool, pass the task to the SPICE 

analysis package for processing, and place the results in the destination jobpool. The fact that 

we are interested in exploiting already coded work makes this stage especially representative of 

what we are trying to accomplish with this paradigm. 
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COMPUTER SYSTEMS ANALYSIS 

Queueing Theory versus Queueing Network Theory 

To demonstrate that parallelism has effectively been exploited, performance measures 

must be resolved. A tool is required in order to analyze these performance measures. There are 

two theories from which to choose when it comes to analyzing computer systems: queueing 

theory [29] and queueing network theory [30]. 

Queueing theory is based on the study of random events and the analysis of the probabilis­

tic, stochastic parameters of a computer system. These random processes are used to model 

queues and are described by differential equations. Much of queueing theory revolves around 

the modeling of a computer system as a single service center made up of a queue where transac­

tions wait to be serviced by a server. Due to the probabilistic nature of the service center, the 

characteristics are quite complex. This requires sophisticated mathematics for the analysis of 

queueing theory models which often results in detailed performance measures based on distri­

butions. 

In queueing network theory, directly measured values are used to replace the stochastic 

parameters in queueing theory. Equations have been derived that relate quantities measurable 

in the network and are used to characterize the performance of the system. Queueing network 

theory is based on the modeling of computer systems using a network of queues. The network 

of queues is comprised of multiple service centers and customers which represent transactions 

requiring service. The characteristics of the service center used in queueing network theory are 

quite simple and performance measures are in the form of averages. 

Queueing network theory has, in recent years, become the tool of choice for the analysis 

of computer systems because of its simplified nature of network description, parameterization 

and evaluation. In addition, in the context of computer modeling, computer network models 

have been shown to be accurate within a level required for a wide variety of design and analysis 
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applications. For these very reasons we have chosen to use it as our tool for the analysis of our 

implementation. 

Queueing Network Models 

There are three major uses of queueing network models in studying the performance of a 

system: performance calculation, consistency-checking, and performance prediction [31]. Per­

formance calculation utilizes directly measured values and equations relating these values to 

compute quantities not measured. Consistency-checking is a method of validation. Comparing 

the model performance to the actual measured performance of the system is the approach used 

to identify inconsistencies in the model and its accuracy in calculating performance measures. 

Performance prediction uses a validated model to estimate performance measures for the system 

where measured data is unavailable. 

The first use of the Simple model will be for validation. This is done to determine the 

accuracy of the model in calculating performance measures. The validation approach we will 

use for the model starts with experiments that apply a typical workload to the system. During 

the experiment, performance quantities are measured. Next, measured parameters are applied to 

the model and compared to actual system performance. If the validation phase is successful, we 

will employ the model for predicting future behavior. 

The Physical System 

The first step of queueing network theory is to define a model of the physical system 

which will facilitate the data collection for performance measures [30]. The basic component in 

queueing network theory is the service center. There are two types of service centers: queueing 

and delay. Figure 7 illustrates both centers. The queueing service center is made of a queue 

where workers wait to receive service from the server. Requests for system resources which 

require sequential servicing are represented by queueing service centers. On our local area net­

work, the directory file server must queue all worker requests for NFS transactions. As an 
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example, any request to move a file, open a file, close a file, or search a directory would have to 

enter a queue along with other similar requests and wait to be setViced. Any communication 

with the file server can be thought of as time spent in a queueing service center. This could be 

further broken down into time spent waiting in the queue and time spent being serviced. 

server 

queue server 

-D 
Queueing Center Delay Center 

Figure 7. Queueing and delay service centers [30). 

Delay service centers suggest concurrent activity where workers are allocated their own 

server. It is assumed that any computation, or work, done locally at the workstation requires no 

competition for setVice, provided only one worker is assigned to a workstation. Processing at 

delay service centers, across multiple workstations, can be viewed as parallel processing since 

there is no contention for the resources. The time spent at a delay service center is exactly the 

amount of time spent processing a customer's service demand. For our purposes, a customer in 

queueing network theory is the same as a worker in our implementation. The delay center in 

Figure 7 reflects this multiple server, concurrent processing attribute. 

QUEUEING NETWORK MODELS 

The Single Class Queueing Network 

Using the two basic components described above, multiple, or separable networks can be 

combined to model an entire system. The network can be developed by connecting the com-

ponents in the same configuration as the system. We have used this approach to formulate two 

closed, single class, queueing network models [30] for our physical system: the Complex model 
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and the Simple model. Single class models view customers as indistinguishable from one 

another. In our implementation, the workers are identical except for the tasks they consume and 

tasks are so similar as to be inconsequential. Service demands at each service center represent 

the average customer, or worker, in the system. Since workers are sufficiently similar, service 

demands can be viewed as belonging to a single set. The fact that the model is closed specifies 

that the number of workers in the system is bounded, or fixed, and no external arrivals or depar-

tures from the system are allowed. Queueing network parameters which will be referred to 

throughout this thesis are defined in Table I. 

TABLE I 

QUEUEING NETWORK PERFORMANCE PARAMETERS [30) 

Dk avg service demand at center k 
vk avg number of visits to center k 

service Uk avg utilization of center k 
center Rk avg residence time at center k 
parameters sk avg service requirement per visit at center k 

h avg number of idle workers at center k 
Qk avg number of workers at center k 
x cycle throughput 

cycle I number of workers idle in all queues 
parameters c cycle time 

N number of workers active in the system 

Network Analysis 

The analysis of a closed system begins with the fact that the number of workers is known. 

There are also several laws that are central to the parameters used to evaluate queueing network 

models. One of these is Little's Law [30]. Little's law states that the average number of re-

quests in a system, Q, is equal to the product of the throughput, X, of the system, and the aver-

age residence time, R, of the request in the system. This can be stated as 

Q = XR 
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Another law of importance is the Forced Flow Law. This law states that throughputs or 

flows throughout the system must be proportional to one another. The throughput of center k is 

stated in Eq.(l) as: 

Xk(N) = Vk(N)X (1) 

In addition, we will assume the system satisfies the flow balance property. This states that 

arrivals equal departures at every center in the system. 

The technique used to solve a closed queueing network model is called mean value 

analysis (MVA) and is outlined in detail in Lazowska's book on queueing network theory [30]. 

All useful relationships between the parameters used in the MV A solution technique are listed 

in Table IL Three equations from this table form the backbone for this analysis. Two of these 

equations are direct applications of Little's law. Eq.(2) is a direct application of Little's law 

applied to a closed queueing network as a whole: 

N 
X(N)= F-(N) 

(2) 

where X( N) is throughput as seen at the cycle level with N workers active in the network and 

Rk (N) is the residence, or response, time for service center k. For a queueing center, such as 

that shown in Figure 7, throughput is the rate at which the resource is satisfying requests and 

residence time is the average length of time a request spends at the center during a single visit. 

The average number of requests at a queue includes both requests waiting in the queue and 

those being serviced. Applying Little's law to the service centers individually yields Eq.(3): 

Qk(N) =X(N)Rk(N) (3) 

where Qk is the average number of requests at center k. Individual service center residence 

times, Rb are defined in Eq.(4) where Qk (N-1) is the average number of requests in the queue 

upon the arrival of a new worker. The average service demand at center k is defined as Dk. For 

closed, separable networks we can say that any time a worker arrives at a queueing service 

center we are guaranteed that the worker was not in the queue at the time of the arrival. 
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Therefore, the average queue length, upon an arrival of a new worker, can be no more than the 

average number in the queue with N-1 workers in the system [30). This is reflected in the fol-

lowing equation. 

R,(N) ~ {~:[1.o+Q,(N-l)l ( delay centers ) 
( queueing centers ) (4) 

The MV A algorithm we are using is based on the iterative application of Eqs.(2)-(4). These 

equations compute residence times, system throughput, and average queue lengths for N custo-

mers in the system given the average queue lengths for N-1 customers in the system. This itera-

tive process is based on the knowledge that the queues are empty for the first iteration and that 

Dk, average service demand for any center k, is known. 

We apply a modified MVA disk subsystem model to our shared resource of the directory 

file server. This disk subsystem is composed of a queue and a disk. Workers wait in the queue 

prior to obtaining access to the disk. Once workers obtain access to the disk there are four basic 

components which make up the effective service demands at the disk: seek, latency, transfer, 

and contention. Contention is defined as the time spent waiting for access to the channel by a 

request associated with the disk. In other words, average effective service demand at center k 

can be expressed as 

Dk = Vk [seekk + latencyk +trans/ erk+ contentionk J 

where V k is the average number of visits to center k. 

To compute the MV A solution exactly for a disk subsystem it is suggested that the effec-

tive service demand be computed iteratively using an estimate for contention. This value is 

then used in the MV A algorithm, as discussed above. The mechanism for including the effect of 

the queue in the disk subsystem where workers wait for access to the disk is provided by the 

MV A solution. We will see presently that our accumulated measurements for each queueing 

service center combine to represent the total effective service demand for the file server includ-
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ing contention. Weighted averages calculated from all experiments were used for effective ser-

vice demand times instead of iteratively computing these values. We recognize that there will 

be some double counting of time for workers stalled because of contention versus workers wait-

ing in the queue. This will result in a pessimistic weighted average used for the MV A estimate 

of demand service time. But comparison of theoretical values to experimental results will show 

that this does not significantly affect the behavior of the model. 

TABLE II 

NETWORK PARAMETER RELATIONSHIPS [30] 

Xk(N) = Vk(N)X (1) 

X(N) N 

= IRk(N) 
(2) 

Qk(N) = X(N)Rk(N) (3) 

Rk(N) {D' (delay) 
= Dk [ 1.0 + Qk(N-1)] (queueing ) 

(4) 

Qk(O) =0 (5) 

Uk(N) = X(N)Dk(N) (6) 
lk(N) = Qk(N)- Uk(N) (7) 

Dk(N) = SkVk(N) (8) 
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The Complex Model 

Separable queueing networks used to define a larger system, such as those seen in Figure 

8, allow us to characterize the complex system behavior taking place during an experiment. To 

develop the topology of the system specifically for our instrumentation we assume (falsely) that 

the service centers are separable. Figure 8 of the Complex model characterizes the behavior of 

a worker, with respect to processing requirements, for the SPICE stage of the pipeline we have 

chosen to characterize. The behavior of the system will be captured implicitly in the measure­

ment data used to parameterize individual service centers. Using Figure 8, we can define a cycle 

as starting and ending just prior to the delay service center labeled "obtain lock". Workers be­

gin a new cycle each time the process of obtaining the lock file in the source jobpool is under­

taken. Later it will be seen that a basic unit of performance measurement is one cycle time. 

Identification of individual service centers as seen in the Complex model plays an impor­

tant role in detennining where primary and secondary bottlenecks exist during the data analysis. 

By defining work, which is processed at delay centers in parallel, and communication, which 

must be handled sequentially at queueing centers, we are able to differentiate between the criti­

cal attributes of the system. This makes the Complex model useful in defining a topology of the 

physical system and necessary for detennining how instrumentation must be distributed 

throughout the experiment. This, in tum, allows us to microscopically study the behavior of the 

system at the service center level. Unfortunately, the characteristics of the model cannot be 

represented as a mathematical closed fonn expression. Therefore we will define a second and 

simpler model for analyzing the behavior of the system while using the Complex model to 

describe the topology of the physical system as well as a template for our instrumentation. 
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The Simple Model 

In our implementation, the physical system is made up of only one large queue for all 

NFS transactions. Delay service centers in the Complex model accurately reflect parallel pro-

cessing within the system but the individual queueing service centers do not. In the Complex 

model the queueing effect is only factored in at the individual service center. In an effort to 

model all queueing service centers as a single file server, we collapse the entire Complex model 

into the easily evaluated Simple model, shown in Figure 9. Later in our discussion we will 

compare the Simple and Complex models and see how well each reflects the behavior of the 

physical system. 

Parallel 

Sequential 

Figure 9. The Simple model. 

The Simple model is also a closed, single class, queueing network model. But because of 

its simplicity, applying the MV A analysis technique to this network yields a mathematical 

closed form expression. We begin by deriving an expression for total cycle time. For this 

derivation we define the following: 

T = total time interval 
W = total amount of work accomplished in seconds 
n = number of total cycles completed 
N = number of workers in the system 
N*T = total CPU time 
I (t) = number of workers idle at time t 

From the topology of the instrumentation, as defined by the Complex model, the sum of the 



55 

service demand for all delay centers is represented by d and defined by 

d = "5'. Dk(N) = "5'. Sk Vk(N) 
kedelay keaelay 

(9) 

Since all delay centers represent work done locally at the work.station, where there is no conten-

tion or queueing, we can represent all work done in the system as taking place at multiple delay 

centers executing in parallel. Summing the average service demand times for all delay centers 

in the Complex model gives us a single value for average delay or work for a single cycle. The 

value q represents the sum of the average effective service demand for all queueing service 

centers in the Complex model and is defined by 

q = L Dk(N) = L sk vk(N) 
ke queueing ke queueing 

(10) 

This provides a single cycle value for the average effective service demand for the disk, 

representing the directory file server, as shown in the queueing service center in the Simple 

model. This effective service demand includes the disk contention component discussed earlier. 

The MVA solution evaluates the effects of the queue. In Eqs.(9) and (10), Sk and Vk(N) are 

average service time and average number of visits to center k respectively. We will see from 

our experiments that the average number of visits to center k is a function of the number of 

workers for particular centers and a primary value for predicting experimental results. 

In order to derive an equation for total time for the Simple model we will refer to Figure 

10. Figure 10 is a Gantt chart describing the general behavior of the system. It shows that given 

N workers, some amount of total work, W, gets done within time T where the rectangles 

represent work done by a specific worker. The amount of work done from zero to time T is 

expressed as 

t=T 

W = ,lN -l(t) dt 

t=T t=T 

W = f N dt - f l(t) dt 
t!!-0 t!!-0 



workers 

N3 idle idle 

Nz 

idle Nl 
~~~~-+~~-time 

T 

Figure 10. Gantt chart of idle and work time. 

t=T 

W - NT = - f I (t) dt 
t=O 

Now let I (t) become some average value of I such that 

I(t) =I 

and replacing I (t) with I in the equation yields 

and simplifying 

W - NT= -TT 

T= w 
N-T 
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where W must represent all service demand time accumulated for both queueing and delay 

centers. In the case of the Simple model 

W = n * average time through a cycle 

or 

W = n (d +q) 

where n is the number of cycles, where 1 task is completed per cycle. The equation for total 

time becomes 

T = n (d +q) 
N-T 

(11) 
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For a multitasking operating system, the numerator of Eq.(11) includes contention components 

due to a common resource. The numerator is an estimate of how long it takes to complete n 

tasks, where 1 task is completed per cycle. The term T, found in the denominator, can be 

identified as an estimate of the effects of worker starvation and synchronization. Synchroniza-

tion blocks workers from obtaining access to the disk thus rendering them idle. 

Now that we have an expression for total time we can derive the closed form expression 

for the Simple model using the equations from Table II provided for us by queueing network 

theory. Table II lists the equations of interest For the next set of equations we will continue to 

refer to the number of workers active in the system as N. In the following development the 

dependence on N, as expressed in the equations of Table II, is understood and will be retained 

only for clarity. We begin with no workers in the system and all queues empty. Simply stated 

Qk(O) = 0 (5) 

For this derivation, the values of q and d are defined in Eqs.(9) and (10) respectively. From 

Eq.(4), average residence time for the single file server queueing service center can be 

represented by 

R = (1.0+Q(N-l))q (12) 

For clarity we define 

ex = 
">'. SkVk(N) 

delay time = ke"attay = ..4 
queueing time L . St Vt(N) q 

kequeuemg 

(13) 

Using Eq.(2) we will express the Simple model throughput as 

N N N 
X(N) = -y-- = d+R = d+(I.O+Q(N-l))q 

ltf k 

(14) 

Utilization for the queue service center is represented by Eq.(6) 

U = q * X(N) = N (15) 

Substituting Eq.(12) and Eq.(14) into Eq.(3) yields the average number of workers at the 



queueing service center 

N (l.0 + Q (N -1)) for N ;;:: 1 
Q = RX(N) = a+ l.O+Q(N 1) 
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(16) 

which includes both idle workers and those being serviced. Average number of workers idle at 

the queueing center is defined in terms of utilization and queue length by Eq.(7) where 

T = Q-U = N Q(N-1) 
a+ l.O+Q(N-1) 

Substituting Eq.(17) into Eq.(11) yields 

(d+) nq(a+l) 
T = n q = NlJ (N 1) 

N -/ N - a+ 1.0+Q(N 1) 

which after simplification becomes 

T = nq (a+l.O+Q(N-1)) 
N 

(17) 

(18) 

To express T(N) in terms of known, measured values of q and d, we must find an expression 

for Q in terms of a. For N ~ 1 the general form for Q is (see Appendix for proof) 

N-IN!aj 
N aN + (N - a) 1~ j ! for N ~ 1 

Q = f ~,! ai 
,~J. 

Equivalently, total time can be expressed as 

* 1 + N-1 <JI 

[ r# l T = nq N!1~]T 

(19) 

Our closed form expression of the MV A solution for a single cycle of the Simple model then 

becomes 

* 1 + N-1 a} 

[ 
aN l cycle time = q N ! ,~ 7T (20) 
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Turning to the well known Amdahl's Law [32] the execution time for N processors can be 

expressed in terms of the fraction 

a= IL - Ts 

where Tp is the time the program spent executing code that can be enhanced by parallelization 

and Ts is the time the program spends executing serial code that cannot be parallelized. The 

execution time for a parallelized program is expressed as 

TN = T, * [I + ~1 (21) 

where TN is the total execution time when N workers are assigned to the problem. Our Eq.(20) 

for cycle time is consistent with the expression for TN in Eq.(21). Our serial factor, nq, is 

equivalent to Amdahl's total serial time, Ts. Representing the body ofEq.(20) as 

aN 
[ f(a,N)] where f(a,N) = (N-l)!NY1* 1+ N 1~ 

is a refinement of 

[1 + ~1 
in Eq.(21 ). From Eq.( 13) we see in our expression for cycle time that a is now a function of the 

number of processors. 

Performance Metrics 

Now that we have defined the model we look next at the actual experimental performance 

metrics. Using Figure 8 for the representation of the model used to describe our instrumenta-

lion we define the effective cycle time for an experiment. This can be be thought of as the aver-

age completion rate of tasks. More precisely, the effective cycle time, C (T' ,t ,N ,A), of applica-

lion A , requiring t tasks to be processed using N workers is defined as 

T' 
cycle time = t * N 
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The total amount of time accumulated for all workers for a specific experiment is defined as T', 
where 

N 
T' = e~Te 

and Te is the total run time for the executable assigned to processor e . From this definition, T, 

the time required for N workers to finish all tasks can be expressed as 

T' = T 
N 

and 

T _ 1 
t - throughput 

If a task is completed every y seconds, the effective cycle time = y . This value could also be 

thought of as the inverse of throughput. 

In order to determine whether the parallelized solution of an application is really 

worthwhile, some measure of performance must be defined. Speed is the definitive value when 

discussing the performance of a program. For our experiments, speed is quantitatively measured 

in the form of effective cycle time. Comparing the speed of the parallel solution to the speed of 

the sequential solution is referred to as speedup . The speedup of application A , for t tasks, 

using N processors is defined as 

S(t,N,A) = C(T',t,I,A) 
C(T',t,N,A) 

As discussed earlier, speedup is typically less than N due to the overhead of communication as 

additional processors are used in the parallelizing of an application. In our calculations for 

speedup, uniprocessor effective cycle times were established per input deck. We saw no need 

to reevaluate the uniprocessor cycle time for a particular input deck because this value does not 

vary with respect to number of tasks. For each SPICE simulation these performance measures 

were used for all speedup analyses. 
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EXPLANATION OF EXPERIMENTS 

Instrumentation 

The cornerstone to our experimental instrumentation is the UNIX system call gettimeof­

day used in obtaining time intervals within the code. Total execution time for a worker was bro­

ken down into two categories: communication and work. These two categories reflect the vari­

ous delay and queueing service centers depicted in Figure 7. Time collected at queueing service 

centers was directly related to NFS processing requests and all file server requests were viewed 

as queueing service center requests. Examples of these types of requests are: opening a file, 

reading a directory, moving a file, and closing a file. All computations fall into the category of 

delay center time intervals. 

Calls to gettimeofday were distributed in an effort to minimize the impact on measured 

code. Accumulated service times for each queueing and delay service center shown in Figure 8 

were collected. One important objective was to account for all executable run time. For each 

SPICE worker executable, a total run time was obtained and checked against the accumulation 

of total time for all service centers within the same executable. Differences for the two values 

ofless than 3% were consistent across all experiments. 

Measured parameters obtained from our instrumentation are listed in Table III. We will 

refer to the total number of visits to each service center as VTk. The total accumulated time 

spent at each service center is DTk. We remind the reader that effective service time for a 

queueing service center includes the component of contention for the file server. Total effective 

service time was obtained on a per worker basis for each experiment. From these aggregate 

values we can calculate service center parameters defined on a per-cycle basis for any individual 

service center k. 
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TABLE III 

QUEUEING NETWORK MEASUREMENTS 

T total execution time 
N worker population 

system II DTk total effective service time at center k 
measures VTk total number of visits to center k 

n total number of completed cycles. 
t total number of tasks obtained 
m total number of attempts for the lock 

By using the two measured parameters mentioned above, Sk can be calculated by 

sk = ~:__:_ 

where Sk is the average service requirement per visit at service center k. The average number of 

visits to center k as defined by Vk(N) is calculated from 

Vk(N) = -'"-"'-

where n is defined as the total number of completed cycles. System level parameters are aggre-

gate values accumulated over an entire experiment. Cycle parameters are aggregate values 

accumulated over a single cycle. A cycle-level interaction would be defined with reference to a 

single cycle. By obtaining direct measurements of total effective service demand time and total 

visits relative to each center, we can compute solutions to all other performance measures, listed 

in Table II, through the parameters of Vk and Sk. These two values are related by 

Dk(N) = Sk Vk(N) (8) 

where Dk(N) signifies the effective service demand at center k with N workers active in the 

system. 

There were some difficulties in separating delay time from queueing time in the code. An 

example of this is the actual call to SPICE. Timestamping was done prior to the call to SPICE 

and directly upon the return from SPICE. The distinction of work versus communication inter-

vals inside the analysis package was not available. The time spent loading the SPICE binary 
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into memory was not a value that was accessible. Consequently, the entire time spent using the 

SPICE analysis package had to be accumulated in a single delay service center. Other problems 

entailed atomic system calls which could not be broken down into their work and communica­

tion components. All system calls were handled as communication or queueing service center 

requests. 

In addition, it was observed during data analysis that isolated queueing service centers 

showed unexplained deviations from expected behavior. The source of these deviations is 

unknown and can only be explained as systematic failure in the measuring process. Although 

these deviations exist, we will see that the single server, multiple delay center model of Figure 9 

is a resilient model for the overall behavior of the experiment in spite of these system failures 

and proves to be insensitive to them. 

Experimental Environment 

In an effort to isolate the test system, logins were inhibited to all workstations connected 

to the Sun Local Area Network. Nineteen processors were available, seven 3/1 lOs and twelve 

3150s. During the course of the experiments it was determined that there was no significant 

difference in the computation time between the two types of processors. But in an effort to 

maintain some sort of homogeneity, all 3/50 processors were used exclusively for experiments 

requiring less than twelve processors. Only experiments that required more than twelve proces­

sors used 3/llOs. A SPARC workstation was used as the directory file server and a dedicated 

3/50 was used as the monitor for running the experiments. 

Traffic on the Ethernet was not curtailed for other systems connected to it and probably 

played a role in some of the irregularities seen in the data. Due to the fact that the network is 

never dedicated strictly to testing we were at no time working under isolated, ideal conditions. 

Sendmail, backups and calendar updates took place when required. Every effort was made to 

work around large jobs that were scheduled on a regular basis and for which the scheduled start­

ing times and duration were known. 
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Prior to assigning workers to processors, a Monte Carlo worker generated a specified 

number of tasks from a given input deck and placed all tasks in the assignedjobpool. Using this 

approach, the source jobpool for the SPICE worker contained all tasks to be completed at the 

time of initialization. Initialization of the SPICE worker took place via the rsh command which 

was implemented by a shell script cycling through a list of available processors. SPICE work­

ers were assigned one worker to a processor to realize maximize speedup. Assigning one worker 

to a processor ensures a dedicated processor to an individual worker. More than one worker to a 

processor would have complicated the data analysis by introducing the variable of timeslicing 

between executables on a single workstation. During the course of the experimental explanation 

worker and processor are used synonymously. 

Spice workers obtained tasks from their assigned source jobpool, initiated the SPICE 

analysis package, and attached the results from the SPICE analysis to the original task before 

moving it to the destination jobpool. All workers were killed after all tasks were accounted for 

in the destination jobpool. A routine was used to check the number of files in the destination 

jobpool every y seconds. The value of y was chosen as large in the beginning of the experi­

ment This guaranteed that the file server spent minimal time implementing the request of the 

kill routine to count the number of tasks in the destination jobpool so as not to impact the exper­

iment. To keep idle time to a minimum, the time y was made smaller as the experiment pro­

gressed in order to kill the workers as soon as possible after all tasks were completed. Time y 

was made smaller as the experiment progressed in order to kill workers as soon as possible after 

all tasks were completed. This was in an effort to keep idle time to a minimum. 

Due to the inaccuracy of the process used to kill the workers, information accumulated in 

our data may have been obscured. Ideally, the amount of time a worker spends looking for 

work in an empty jobpool would be accumulated as idle time. In our implementation, obtaining 

the lock, reading an empty directory, and unlocking the lock file is seen as accumulated time at 

the respective service centers. Idle time is not accumulated as a separate interval of time. 
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Since workers were not killed until all tasks were accounted for in the destination jobpool, 

there was a lag time imbedded in every experiment where all workers were idle. A shell script 

was used to cycle through a list of the appropriate process identification numbers and workers 

were killed via the rsh command. This approach interjects a fairly constant amount of time 

between each kill command. This means that workers were not all killed at the same time and 

some workers accumulated more idle time than others. With this approach, the amount of time 

a worker spends idle is a random value dependent on several variables. The order of the proces­

sor identification numbers in the list, length of time the last task took to complete, and the qual­

ity of the fine tuning of the kill routine all contributed to the amount of time a worker spent idle. 

EXPERIMENT AL BASIS 

For this thesis, experimental cycle time, theoretical cycle time, experimental speedup, and 

theoretical speedup are reported. Two different circuits were used and experiments were run 

using 500, 100, and 50 jobs for each circuit. Time limitations on the system precluded an 

exhaustive set of experiments for one through fifteen processors for each input deck. The 

number of processors varied across the input decks but data was obtained for the same number 

of processors for 50,100, and 500 tasks for a given input deck. The two experimental circuits 

will be referred to as input2 and input6. 

Input2 

This circuit analyzed an enhancement mode, MOS bootstrapped inverter made up of four 

NMOS transistors. An MOS capacitor was used to facilitate the bootstrapping. Monte Carlo 

sampling was done with respect to the model used for the MOS transistors. The specific param­

eter sampled was the threshold voltage, VTO, using a Gaussian distribution and a relative toler­

ance often percent. A transient analysis was performed on this circuit for 16ns. Deck size, prior 

to combining the SPICE results with the original deck, was 1346 bytes. After attaching the 

SPICE results to the original deck, the size of each task was a file of approximately 10 Kbytes. 
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Input6 

This circuit compared two MOS multiplexers: one using transmission gates and one using 

gated inverters. The circuit was made up of five PMOS transistors and five NMOS transistors. 

Sampling was done with respect to the models used for the transistors. Specific parameters 

sampled were the threshold voltages, VTO, for both PMOS and NMOS models. A Gaussian 

distribution and a relative tolerance of ten percent was assumed for each. A transient analysis 

was performed on this circuit for 30ns. Deck size prior to combining the SPICE results with the 

original deck was 2131 bytes. After attaching the SPICE results to the original deck, the size of 

each task was approximately 36 Kbytes. 

The two circuits were chosen because of their difference in SPICE batch processing time. 

Circuit input2 takes 30 seconds to process as a batch SPICE job. Circuit input6 runs for a factor 

of four times as long, taking 120 seconds to complete. To emphasize the expected performance 

improvement, input6 would take roughly 16 hours of computation for 500 tasks when run on a 

single processor and input2 would take approximately 4 hours. We will see that both these cir­

cuits benefit greatly from the parallelization process. 

EXPERIMENT AL RESULTS 

The nature of the decomposition of an application into computationally independent 

stages leads to the conclusion that the bottleneck in our paradigm exists at the locking or syn­

chronization mechanism, required for exclusive access to the jobpool. In this section we present 

graphs and tables that will explain the behavior of the system and focus attention on the 

bottleneck of the jobpool. Graphs will be used to present the global picture of the experiments 

and how the system performed overall. Tables summarize the instrumentation of the experi­

ments for a more narrow focus on what is happening at the worker and service center level. 

Data collected for both experiment input2 and input6, for various task counts, is plotted in 

Figure 11 and Figure 12 in the form of cycle time per number of workers. Figure 11 presents 
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data accumulated for the fastest running SPICE deck which we refer to as input2. Figure 12 

presents data accumulated for the longest running SPICE deck, input6. Both graphs exhibit the 

same shape curves for the decrease in cycle time for all experiments but performance improve­

ment is greater and more consistent for the larger granularity task count of 500. Better perfor­

mance improvement overall is exhibited in the longer running experiment of input6. The least 

improvement, along with an obvious decrease in performance, is exhibited in the shortest exe­

cuting experiment of input2, and the smallest task count The behavior of the cycle time for 

small task counts of 50, for both experiments, presents questions about performance degrada­

tion. We will attempt to discover what variables are involved that impact smaller grain tasks, 

both size and count, in such a manner that they respond less favorably to parallelization than 

larger grain tasks. 

A more graphic representation of what is actually occurring is displayed in the plots of 

speedup versus number of workers, shown in Figure 13 and Figure 14. The reference lines on 

both graphs have slopes of 1.0 and 0.5 corresponding to 100% linear speedup and 50% linear 

speedup respectively. In Figure 13, we observe that speedup is linear across all experiments. 

Experiment input6-500 tasks, with a uniprocessor cycle time of 120 seconds, shows the greatest 

consistent performance improvement. This is followed closely by the input2 experiment of 500 

tasks and that of input6 with 100 tasks. In addition, this graph reflects a consistency across each 

experiment that emphasizes the relationship of task count to speedup; the smaller the number of 

tasks the less speedup is gained. In fact, there are indications that performance may be flatten­

ing out for the experiments of smaller granularity in Figure 13. Regardless of the input, it is 

evident that the 500 task experiment out-performs the 100 which in turn out performs the 50 

task experiment. 

Figure 14 is the same data as seen in Figure 13 but with additional data included for some 

experiments. Although linearity has been established, it is important to recognize that not all 

the experiments continue in this fashion. The 500 task experiments contain no additional data 
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and we see no inclination for either of them to flatten out. In the experiment for input2-100 

jobs, speedup exhibits a leveling off and for input2-50 jobs the rolloff is more pronounced. For 

input6, both sets of data for 100 tasks and 50 tasks show a dramatic breakdown in performance. 

It should be noted that none of the points on these graphs are superlinear. 

After viewing these four graphs, it is apparent that there is a direct impact on performance 

related to both task size, as represented by uniprocessor cycle time, and number of tasks. The 

longer run time circuit consistently shows better performance than the shorter run time circuit 

and larger numbers of tasks perform better than the smaller task counts. This leads to the con­

clusion that the smaller the uniprocessor task cycle time, plus the smaller the task granularity, 

the less speedup will be gained. Not unexpectedly, given this view, input2 with 50 tasks shows 

the least performance improvement overall. 

In addition, as explained earlier, there are startup costs incurred with the addition of each 

new worker. With the shortness of the task cycle time and a granularity of 50 jobs there is less 

total time over which to amortize the cost of additional worker startup. The longer run time of 

input6, with a task cycle time four times greater than for experiment input2, has more total time 

over which to amortize the startup cost for additional workers for any task count. Workers exe­

cuting tasks which complete in a short amount of time encounter more collisions in their 

attempt for access to the jobpool. As we increase the number of workers this problem will 

exaggerate. Recall that workers are started via the rsh system command and that there is a 

measurable and uniform interval of time between the initialization of workers. It is our theory 

that the greater the number of tasks for each worker to complete, the more accumulated time 

there is for the desynchronization of the workers from the uniform pattern in which they were 

initialized. This results in fewer collisions over time and greater availability of the jobpool. 

The time between requests for the lock among workers approaches a more random distribution 

over a longer run time. This suggests that desynchronizing the workers at startup time, particu­

larly when there are fewer and shorter tasks to complete, may result in improved throughput. 
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Further investigation of our data will lead to a strong interest in the value of Ve jock which is 

defined to be the average number of attempts for the lock per successful lock of the jobpool. 

Next we will introduce three sets of tables which will help to support our theories and 

increase our understanding of what is occurring at the processor level. Tables IV through XII 

present total average work time and total average communication for each processor participat­

ing in typical experiments. Recall that the time spent in the SPICE analysis package is modeled 

strictly as a delay center. Therefore the accumulated average for SPICE shows up in its entirety 

under the category of work. Our first approach will be to hold the number of workers constant 

and vary the number of tasks for a given input For this we have chosen to look at two different 

slices of the job spectrum to focus on the deviation of speedup early in the process with six pro­

cessors and then later with twelve processors. The inverse of this is to hold the number of tasks 

constant and vary the number of workers. The tabulated data reflects all experimental points. 

Workers are listed in the tables in the order in which they were initialized during the experi­

ments. 

Table IV, V, and VI present total average work time and total average communication 

time for six processors assigned to the jobpool containing tasks for experimental circuit input6. 

The tables contain information for 500, 100 and 50 tasks respectively. Using this approach we 

can compare the behavior of the experiments through investigation of work and communication 

times as task count decreases. 

Tables vn, VITI, and IX look at the same type of information only for experimental circuit 

input2 using twelve workers. Tables X, XI, and XII again present information in the form of 

total average work and total average communication but now the number of tasks is fixed and 

the number of workers is varied. Using this approach we can compare the behavior of the 

experiments through the investigation of accumulated work and communication times as work­

ers increase. Finally, analysis of the model will complete the discussion of what role communi­

cation and work each play in the behavior of the system. 



TABLE IV 

AVERAGE TOT AL WORK AND COMMUNICATION TIME 
500 TASKS, 6 WORKERS, INPUT6 

work comm 
worker in sec. %diff in sec. %diff tasks 

Lady 119 0.8 1.8 -0.0 84 
Goofy 121 -0.8 1.6 5.6 83 
Huey 120 0.0 1.6 5.6 83 
Louie 119 0.8 1.9 -5.6 84 
Scrooge 120 0.0 2.0 -11.1 83 
Dumbo 119 0.8 1.6 5.6 83 

work: mean = VO variance = 0.6 stddev = ).8 
comm: mean= 1.8 variance= 0.02 stddev = 0.1 

TABLEV 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
100 TASKS, 6 WORKERS, INPUT6 

work comm 
worker in sec. %diff in sec. %diff tasks 
Lady 120 0.8 2.4 0.0 17 
Goofy 120 0.8 2.6 -8.3 17 
Huey 119 1.6 2.2 8.3 17 
Louie 127 -5.0 3.3 -37.5 16 
Scrooge 119 1.6 2.9 -20.8 17 
Dumbo 119 1.6 1.1 54.1 16 

work: mean= 121 variance= 9.9 stddev = 3.1 
comm: mean = 2.4 variance = 0.6 stddev = 0.8 

TABLE VI 

AVERAGE WORK AND COMMUNICATION TIME 
50 TASKS, 6 WORKERS, INPUT6 

work comm 
worker in sec. %diff in sec. %diff tasks 
Lady 121 0.0 4.2 -40.0 9 
Goofy 120 0.8 3.8 -26.7 9 
Huey 119 1.6 1.3 56.7 8 
Louie 124 -2.5 3.9 -30.0 8 
Scrooge 119 1.6 2.3 23.3 8 
Dumbo 120 0.8 2.4 20.0 8 

work: mean= 121 variance= 3.5 stddev = 1.9 
comm: mean= 3.0 variance= 1.3 stddev = 1.2 
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As the number of tasks decreases from 500 to 100, as seen in Tables IV and V, the mean 

communication time increases from 1.8 seconds to 2.4 seconds. At the 50 task level, we see 

even more increase in communication mean over the 500 and 100 task experiments. Across the 

three tables we see no change in the average total work mean. 

Tables VII, VIII, and IX present a more dramatic example of the increase in communica-

tion as the number of tasks decreases. The model will substantiate that communication is the 

dominant factor in the degradation of speedup. Less dramatic, but of importance also, is the 

increase in average total work time as the task count decreases. Specifically, for 50 tasks there 

is a 19% increase in the average total work mean over the 500 and 100 task experiments. Look-

ing at average total communication time for 50 tasks we see an increase of 263% over the 100 

task experiment. Average total communication is approximately 7 times more when 50 tasks 

are processed than when 500 task are processed. This increase reflects the dramatic fall off in 

speedup from 11, to 7, to 3, for 500, 100, and 50 tasks respectively, as seen in Figure 14. 

TABLE VII 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
500 TASKS, 12 WORKERS, INPUT2 

work comm 
worker in sec. %diff in sec. %diff tasks 

Dumbo 33 -3.1 2.0 9.1 42 
Goofy 32 0.0 2.0 9.1 43 
Tramp 32 0.0 2.3 -4.5 43 
Huey 32 0.0 2.2 0.0 43 
Louie 31 3.1 2.3 -4.5 43 
Peterpan 34 -6.3 2.6 -18.2 40 
Tinkerbell 31 3.1 2.0 9.1 42 
Mickey 32 0.0 2.5 -13.6 42 
Dewey 32 0.0 1.6 27.3 41 
Sleezy 32 0.0 2.5 -13.6 41 
Scrooge 32 0.0 2.3 -4.5 40 
Lady 32 0.0 2.2 0.0 40 

work: mean= 32 variance = 0.6 stddev = 0.8 
comm: mean= 2.2 variance= 0.08 stddev = 0.3 



TABLE VIII 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
lOOTASKS, 12 WORKERS, INPUT2 

work comm 
worker in sec. %diff in sec. %diff tasks 

Huey 32 0.0 4.4 -2.3 10 
Louie 32 0.0 4.2 2.3 10 
Scrooge 32 0.0 3.8 11.6 9 
Dumbo 32 0.0 4.5 -4.7 9 
Geppetto 32 0.0 5.8 -34.9 9 
Goofy 32 0.0 1.8 58.1 8 
Mickey 32 0.0 4.2 2.3 8 
Dewey 32 0.0 5.7 -32.6 8 
Lady 32 0.0 5.2 -21.0 8 
Peterpan 32 0.0 3.1 28.0 7 
Sleezy 33 -3.1 4.9 -14.0 7 
Tinkerbell 32 0.0 4.3 0.0 7 

work: mean= 32 variance = 0.1 stddev = 0.3 
comm: mean= 4.3 variance = 1.2 stddev = 1.1 

TABLE IX 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
50 TASKS, 12 WORKERS, INPUT2 

work comm 
worker in sec. %di ff in sec. %diff tasks 

Lady 36 5.3 14.1 9.6 5 
Scrooge 39 -2.6 13.5 13.5 7 
Peterpan 37 2.6 14.6 6.4 5 
Sleezy 35 7.9 14.3 8.3 4 
Huey 36 5.3 17.4 -11.5 5 
Louie 37 2.6 13.0 16.7 4 
Goofy 38 0.0 17.3 -10.9 4 
Dewey 38 0.0 16.1 -3.2 4 
Dumbo 40 -5.3 15.7 -0.6 4 
Geppetto 39 -2.6 19.3 -23.7 3 
Mickey 40 -5.3 14.9 4.5 2 
Tramp 38 0.0 17.5 -12.2 3 

work: mean= 38 variance= 2.6 stddev = 1.6 
comm: mean= 15.6 variance= 3.7 stddev = 1.9 

74 



75 

Up to this point, there has been no discussion as to how the increase in the number of 

workers affects behavior of these experiments. Tables X, XI, XII, are introduced here for a 

closer look at total average work time and total average communication time for individual pro­

cessors as number of workers increases. This data is again focusing on experiment input6 and 

has the fixed task granularity of 100 jobs. The reader may refer back to Table V, in addition to 

the three tables presented here, to include the data presented for six workers for 100 jobs in the 

discussion. The important issue presented in this collection of four tables is the fact that as the 

number of workers grows, the mean work values increase and the mean communication values 

increase dramatically. 

Referring to Tables V, X, XI, and XII we see a dramatic increase in communication times 

as the number of workers increases. The mean communication time for nine workers increases 

by approximately 46% over the six processor experiment. Increasing the number of processors 

to thirteen increases communication by 54% over nine workers and 125% over the data com­

piled for six workers. When the number of workers is increased to fourteen the average total 

communication mean grows to a factor of 4.5 times greater than that for thirteen workers. In 

addition, the average total work mean for fourteen workers is significantly higher but no where 

near as large as the communication increases. It is this increase in average communication as 

workers are added, plus the less obvious increase in average work time, which causes speedup 

to increase from 5, to 7, to 10.5, and then decrease to 6, for 6, 9, 13, and 14 workers respec­

tively. 



TABLEX 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
100 TASKS, 9 WORKERS, INPUT6 

work comm 
worker in sec. %diff in sec. %diff tasks 

Lady 120 0.0 1.5 57.1 11 
Goofy 119 0.8 4.1 -17.1 12 
Huey 119 0.8 2.4 31.5 11 
Louie 120 0.0 3.7 -5.7 11 
Scrooge 127 -5.5 4.3 -22.8 11 
Dumbo 119 0.8 3.6 -2.8 11 
Peterpan 120 0.0 4.1 -17.1 11 
Sleezy 119 0.8 4.6 -31.5 11 
Tinkerbell 118 1.6 3.6 -2.8 11 

work: mean = 12~ ) variance= 7.1 stddev = 2.7 
comm: mean = 3.5 variance = 1.0 stddev = 1.0 

TABLE XI 

AVERAGE TOTAL WORK AND COMMUNICATION TIME 
lOOTASKS, 13 WORKERS, INPUT6 

work comme. 
worker in sec. %diff in sec. %diff tasks 

Pinocchio 121 0.0 5.8 -7.4 8 
Lady 119 1.6 5.4 0.0 8 
Goofy 121 0.0 5.9 -9.3 8 
Huey 119 1.6 6.9 -27.8 8 
Louie 129 -6.6 3.4 37.0 7 
Scrooge 120 0.8 6.3 -16.7 8 
Dumbo 123 -1.6 6.3 -16.7 8 
Peterpan 123 -1.6 6.4 -18.5 8 
Sleezy 121 0.0 6.0 -11.1 8 
Tinkerbell 119 1.6 6.2 -14.8 8 
Tramp 121 0.0 3.4 37.0 7 
Dewey 120 0.8 4.8 11.1 7 
Mickey 119 1.6 3.2 40.7 7 

work: mean= 121 variance= 7.5 stddev = 2.7 
comm: mean= 5.4 variance = 1.6 stddev = 1.3 
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TABLE XII 

AVERAGE TOT AL WORK AND COMMUNICATION TIME 
lOOTASKS, 14 WORKERS, INPUT6 

work comm 
worker in sec. %diff in sec. %diff tasks 

Lady 125 0.0 23.5 5.24 10 
Scrooge 125 0.0 20.9 15.7 8 
Peterpan 126 -0.8 14.9 39.9 6 
Huey 124 0.8 23.2 6.5 7 
Louie 128 -2.4 22.6 8.9 6 
Goofy 126 -0.8 27.1 -9.3 6 
Dewey 126 -0.8 29.9 -20.6 6 
Dumbo 125 0.0 20.8 16.1 7 
Geppetto 127 -1.6 39.0 -57.3 6 
Mickey 126 -0.8 28.8 -16.1 7 
Tramp 125 0.0 24.7 0.4 6 
Tinkerbell 129 -3.2 26.1 -5.2 10 
Doc 121 3.2 25.0 -0.8 7 
Dopey 118 5.6 20.4 17.7 8 

work: mean= 125 variance= 7.6 stddev = 2.8 
comm: mean= 24.8 variance= 31.4 stddev = 5.6 
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Now that increases in average total communication and average total work have been 

identified, we focus our attention on determining exactly where these increases are occurring. 

This requires investigation at the service center level. In the previous set of tables, increases in 

average total work and a dramatic increase in average communication were directly associated 

with the increase in the number of workers. We first tum our attention to the increase in total 

average work. Recall that all of the time spent in the SPICE analysis package is accumulated in 

a single delay service center. Therefore, the majority of the time accumulated for total average 

work is due to the SPICE analysis package. Average SPICE time is measured at the SPICE 

delay center as seen in Figure 8 of the Complex model. Table XIII demonstrates how the aver-

age SPICE time behaves as the number of workers increases. 

In the experiment run with 50 tasks, the average SPICE time increases slowly up through 

eight processors and then shows a large increase with twelve processors. This increase in 

SPICE time coincides with the breakdown in performance seen in Figure 14. In addition, this 

phenomena is observed for the experiment with input6-100 tasks. Here the average SPICE time 
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jumps from 121 seconds to 125 seconds with an increase from thirteen to fourteen processors. 

This is directly reflected in the speedup graph of Figure 14 where performance takes a nosedive. 

Further decay in performance is reflected with fifteen workers, where time increases to 128 

seconds. This phenomena was observed in each of the experiments that display dramatic rolloff 

in performance. Notice also in Table XIII, that an experiment that does not show a dramatic 

breakdown in performance, such as input2- l 00 tasks, does not reflect significant change in the 

average SPICE time. This correlates to the gradual leveling off, seen in this speedup graph of 

Figure 14. 

TABLE XIII 

AVERAGE SPICE TIMES (IN SECONDS) 

input6- l 00 tasks input2-50 tasks input2-100 tasks 
workers SPICE workers SPICE workers SPICE 

1 119 1 31 1 31 
4 - 4 32 4 31 
6 120 6 33 6 33 
8 - 8 33 8 32 
9 120 9 - 9 -

10 - 10 - 10 32 
12 - 12 38 12 32 
13 121 13 - 13 -
14 125 14 - 14 34 
15 128 15 - 15 -

We believe that the increase of average SPICE times is another consequence of the break-

down in communication and we offer two possible reasons for this behavior. Computation for 

the SPICE package takes place at the individual workstation and input and output is handled by 

the directory file server. One possible explanation is that the increase is a function of the com-

munication occurring within the SPICE analysis package which we cannot instrument. Recall 

that a second file server was used to handle swap space for the diskless workstations. It is this 

file server which provides the SPICE binary for each worker. It is possible that the SPICE 

binary is taking longer to load and that this behavior is a microcosm of the behavior we are see-

ing at the directory file server. The main point to be made here is that these increases in work 
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are still small compared to the increases in communication that are occurring. 

To determine where communication increases are occurring, we tum our attention to the 

the individual queueing service centers, as represented in Figure 8 for the Complex model. 

Here, large increases in communication were observed as the number of workers grew. When 

fourteen workers were used to process input6-100 jobs, increases of approximately 95% over 

uniprocessor averages were observed at all but one queueing service center. The locking queue­

ing service center showed an increase in average time of 66% over the uniprocessor average. 

For experiment input2-100 tasks, when four workers were used, we observed increases of 17% 

over uniprocessor averages up to 87% which was observed at the locking mechanism. An 

increase to fourteen workers increased all queueing center values to above 80% with the lock 

service center average climbing to 97% over uniprocessor averages. 

These increases in communication indicate that either the jobpool file server is starting to 

bog down or the Ethernet is swamping. It is our belief that the problem resides in the file 

server. With a task granularity of 500, it was impossible to collect information for more than 

thirteen workers for experiment input6. The same can be said for experiment input2 and twelve 

workers. System behavior that was observed when these runs were attempted was dramatic. 

The SP ARC workstation that was used as the jobpool file server accumulated large amounts of 

time at the lock daemon and response on the workstation came to a grinding halt. It appeared 

that so much time was spent responding to requests for the lock that actual work ceased. 

On SUN 0/S it costs approximately 3.4ms of compute time to send a 256 byte unreliable 

datagram packet (UDP). The Ethernet is used only O. lms or less of the total time. For 97% of 

the send time the Ethernet is idle [11]. The Ethernet is a common resource for both our jobpool 

file server and the file server handling swap space for the diskless workstations. If the Ethernet 

were swamped we would see failure at both servers. In our observations we only saw failure at 

the directory file server. Given that the System V call to lockf() uses UDP as its message passing 

protocol and that UDP is considered unreliable, it is possible that messages requesting the lock 
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or responses from lockf() are getting lost [33]. 

At this point it should be noted that the tabulated total average communication values 

include some inconsistencies. As an example, we see in Table V that Louie has a smaller total 

average communication value than all other workers in this experiment. This inconsistency can 

also be seen in Table VI for Huey. As mentioned previously, over the course of the experi­

ments it was observed that isolated queueing service centers showed unexplained deviations 

from expected behavior. Earlier, we explained these deviations as systematic failure in the 

measuring process. Here, then, is an example of this anomaly. It is important to note, that 

although these deviations exist, we will show that the single server, multiple delay center model 

is resilient in spite of these system failures and appears to be insensitive to them. We mention 

these idiosyncrasies as a matter of completeness. 

We have seen in the speedup graph of Figure 14 that some experiments show an obvious 

breakdown in performance, some indicate a leveling off, and two look like they will continue 

linearly as workers are added. It is now time to employ the Simple model in our evaluation of 

the behavior of these experiments. First we will examine the Simple model and its behavior 

using only the data from the speedup graph of Figure 13. This data falls within what we will 

refer to as the linear range. No data points that even hint of a leveling off or a breakdown are 

included in this graph. Theoretical analysis will be done to project behavior for a large number 

of worlcers for which we were unable to collect data. The theoretical analysis will be compared 

to the experimental data and we will see how well the model validates the experimental 

behavior. Next we will examine the Simple model using all experimental data points as seen in 

Figure 14. Theoretical behavior will again be presented for a large number of workers. This 

two step approach validates the model within the linear range and then validates it outside this 

range where breakdowns in speedup occur. 

Examining the model reveals that there are two parameters affiliated with each service 

center. The first component is the service time for service center and the second is the number 
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of visits to that center. We have already examined the instrumentation tabulated for service 

center values for average accumulated time. Now we will look at the parameter of visitations. 

Earlier, the parameter Vk was defined in Table II as the visit count of resource k, or the average 

number of visits that a worker makes to a service center. Referring to previously defined 

Eqs.(20),(13),(9), and (10) for the Simple model we see how Vk impacts communication and 

work values. 

where 

N-1 a) cycle time = q * [l + a!' l 
N!Y-.1 ,~ J. 

a= !l_ 
q 

and the sum of the service times for delay and queueing centers is 

d = Y Dk(N) = Y. Sk Vk(N) 
ke'ailay ke'ailay 

q = :L Dk(N) = :L sk vk(N) 
ke queueing ke queueing 

(20) 

(13) 

(9) 

(10) 

In our instrumentation, we tabulated the number of total attempts for the lock , and the 

number of successful attempts for the lock for each worker. From these two numbers we will 

calculate the average number of visits to the queue and delay service centers in Figure 8 labeled 

"obtain lock". We will refer to the average visitation for the queueing, or communication, ser-

vice center as Vc_lock and to the delay, or work, service center as Vw_lock where 

Since the visitation value is the same for both the delay and queueing center we may altema-

tively refer to these two values as c _lock. From this we can graphically depict what is occur-

ring at the synchronization center as the number of workers increase. 
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The average service center visitations for c_lock have been plotted on Figure 15 as 

discrete points for increasing number of workers. A best fit line over the range of one to four-

teen workers, has been calculated and is shown here as a solid line. We see that Ve lock is a 

linear function for this particular experiment and is represented by the line 

Vc_lock = 0.76 + (0.211 * N). 

where N represents the number of workers in the system. 

4.0 

3.5 

3.0 

C_lock 

2.0 

1.5 

1 

C_lock = 0.76 + 0.21 l(N) 
t> = Experimental Data 

100 iobs - inout2 

Ii 
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Number of Workers 

Figure 15. Experimental data versus best fit line. 

Recall that experiment input2 with 100 tasks indicated a gradual leveling off. Including 

the discrete points of Vc_Iock for twelve and fourteen processors changed the slope of the line 

less than 5% in this particular case so the points were included for completeness. In this experi-

ment we observe that the values for Vc_Iock are linear beyond the points where speedup levels 

off. Following the detennination of Vc_lockt this equation was then used in the Simple model to 

represent average number of visits to both the queueing lock seivice center and the delay lock 

seivice center. 
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Table XIV is an example of data from experiment input2-100 tasks, that was used to 

parameterize the Simple model. Input to the computer calculations for both the Simple and 

Complex models take the form shown in this table. As discussed previously, the average ser-

vice times for individual service centers, Sk, are calculated by taking accumulated totals for 

each center and dividing by the total number of accumulated visits to a specific service center. 

This table represents average service times calculated from accumulated totals for data collected 

within the linear range as represented in Figure 13 for the experiment input2- l 00 workers. Here 

we see average service time, in seconds, for each service center, as well as the variable 

representing the average number of visitations to each center. In this table Ve lock is the linear 

extrapolation of the behavior at the synchronization service center. 

TABLE XIV 

SERVICE CENTER AVERAGES APPLIED TO SIMPLE MODEL 
FROM EXPERIMENT INPUT2 - 100 WORKERS 

Work Comm. 
Service Center Service Times Visits Service Times Visits 

in sec. in sec. 
obtam lock U.•HHJl_lf_HJ Ve lock l.U'7U5LI~ Ve lock 
read jobpool 0.000000 Q 0.157300 Q 
move input 0.000343 Q 0.118600 Q 
miss 0.000000 1-Q - -
remove lock 0.001359 Q 0.225601 Q 
prepare input 0.000971 Q 0.000371 Q 
spice 32.179886 Q - -
combine in/out 0.000000 Q 0.781514 Q 
move output 0.004057 Q 0.334371 Q 
no work 0.000000 1-Q - -
Sum 32.186616 2.647305 

Sum Total= 34.833921 Total Time= 35.76 %Error = 2.67% 

For our analysis of the experiment we have chosen to denote the model value Vk(N) with 

variables of either Vc_locb Q or 1-Q. We have chosen to set the value for Q to the optimistic 

value of 1.0. This says that service centers, which are visited if work is found in the jobpool, 

have an average number of visits during a single cycle of 1.0, or 

Vk(N) = 1.0. 
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Centers which handle the branches in Figure 8 relating to an empty jobpool, where no work is 

found, have an average visitation value per cycle of zero, or 

Vk(N) = 0. 

By these definitions, we are guaranteeing that work was always found in the jobpool during the 

experiment. We will see that although not completely accurate, this value is a good approxima­

tion for the analysis of system behavior. 

For each experiment plotted on Figure 13, model values were calculated. Using the Sim­

ple model and the assumption that c_lock is linear we have plotted theoretical cycle time for 

large numbers of workers. Here we assume that as the number of workers increases, all service 

times are constant and only visitations relating to c_lock change. Figure 16 shows the results of 

the Simple model using input data from experiment input6 for 50, 100, and 500 tasks. This 

graph suggests a slight increase in cycle time as the model extrapolates beyond the experimen­

tal data values. Unfortunately, this is not a particularly useful graph since it is hard to differen­

tiate what is occurring as number of workers increases. To obtain a more clear picture of the 

behavior of the model, we have plotted this same theoretical extrapolation in Figure 18 in the 

form of speedup. For comparison, the experimental speedup from Figure 13 is included. 

Figure 17 represents the theoretical cycle time for experiment input2 for 50, 100, and 500 

tasks. The degradation of speedup in Figure 13 is depicted here in the gradual increase of cycle 

time as extrapolated over thirty-five workers. In Figure 19 we see this theoretical information 

plotted in the form of speedup with the experimental speedup included on the graph for 

clarification. In both theoretical speedup graphs of Figure 18 and Figure 19, we see that the 

model reflects the experiments optimistically. 
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TABLE XV 

'El 

35 

EQUATIONS FOR Ve lock CORRESPONDING TO FIGURE 18 

jobs Ve lock Nworkers 
500 Ve lock = 1.03 + 0.123(N) 1-35 
100 Ve lock = 0.55 + 0.236(N) 1-35 
50 Ve lock = 0.59 + 0.249(N) 1-35 
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TABLE XVI 

35 

EQUATIONS FOR Ve lock CORRESPONDING TO FIGURE 19 

jobs Ve lock Nworkers 
500 Ve lock = 0.87 + 0.106(N) 1-35 
100 Ve lock = 0.76 + 0.213(N) 1-35 
50 Ve lock = 0.60 + 0.249(N) 1-35 
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It is comforting to note that as expected, each theoretical speedup curve for both sets of 

experiments, input2 and input6, reach a peak performance and then gradually decay as the 

number of workers continues to increase. Intuitively, this is what we would expect as the value 

of c_lock continues to increase with the number of workers. Common sense tells us that as 

workers increase, there will be more contention for the lock reflected in more time spent trying 

to obtain the lock. This, in tum, means less time is spent doing actual work. We see better 

speedup performance for greater number of workers as we increase the number of tasks from 50 

to 500 and a smaller slope for Vc_lock as the tasks increase. 

We can explain the decay process of the speedup graphs for any given theoretical extrapo-

lation using the model. Recall that the number of visitations for the lock queueing service 

center is defined by Vc_lock where all other queueing servers have visitations set to 1.0. This 

reduces the summation of all queueing servers, except one, to a constant value. The time asso-

ciated with the lock queueing service does not reduce to a constant because of Ve lock· Recall 

from Eq.(20) that cycle time for the Simple model is 

N-1 aJ cycle time = q * [l + aN l 
N!Y-.1 J"';;/J J. 

For large numbers of workers (N) 

goes to zero which reduces cycle time to 

aN 
N-1 aJ 

N!1~JT 

cycle time = q . 

From Eq.(10) the summation of all queueing centers reduces to 

q = constant + (Sc lock * Ve Lock) - -

where Ve lock has been shown to be linear. So 

q =cycle time =A +BN ::::: BN for N »A 

(20) 
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where 

A = constant terms 

B = Sc_lock * (slope of Vclock) 

We see that q changes by B for the addition of each new processor. This change is reflected in 

the decay of speedup at a steady rate of liq. Speedup reduces to the equation: 

Speedup = uniprocessor cycle time 
q 

In an effort to gain more understanding of what role c_lock plays in the behavior of the 

system, Table XVII was compiled. The most interesting aspect of this table is how comparable 

the slopes are for the same number of tasks regardless of the experimental cycle time for each 

experiment. This, coupled with the decrease in the slope as the number of tasks increases, lends 

support to the theory mentioned earlier which suggests that c_lock is larger for fewer tasks and 

that the more tasks run in an experiment, the more time there is for the workers to desynchron-

ize from their startup pattem This results in fewer collisions in an attempt to obtain the lock 

for larger numbers of tasks. 

TABLE XVII 

SLOPE VALUES FOR Ve lock WITHIN LINEAR RANGE 
FOR VARYING NuMBERS OF TASKS 

50 100 500 
input2 0.249 0.211 0.106 
input6 0.249 0.236 0.123 
%diff 0.0% 10.6% 13.8% 

Let us now look at c_lock for those experiments which result in a dramatic breakdown of 

speedup as the number of workers increases. Figure 14 contains three such experiments from 

which to chose. We tum our attention specifically to experiment input6-100 tasks. Speedup for 

this experiment continues to be linear out to thirteen processors. With the addition of one more 

processor, speedup drops dramatically and then continues to drop with the addition of the 
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fifteenth processor. In Figure 20 we plot all experimental values for c_lock, as number of work­

ers increases, and then calculate a piecewise linear best fit for these points. C_lock is linear up 

to thirteen processors and then increases sharply reflecting the simultaneous breakdown in 

speedup seen in the aforementioned plot. Using the accumulated values for all data shown in 

Figure 14, and the piecewise linear equations for c_lock, we next plot the theoretical speedup 

for this experiment. Figure 21 indicates that the model does reflect the experimental results, 

given the piecewise linear behavior of c_lock. 

Figure 22 is another example of the breakdown of c_lock. This experiment is input2 with 

50 tasks. In Figure 14 we see that this particular experiment breaks down when the number of 

workers is increased from eight to twelve. We see this same breakdown reflected in c_lock. 

Here again, we have experimental values of c_lock plotted on the same graph with the calcu­

lated piecewise linear best fit for these data points. In Figure 23 this change in c_lock is 

reflected in the plot of the theoretical model. The model depicts a clear representation of the 

behavior of the actual experiment. 

Figure 24 and Figure 25 now reflect theoretical speedup versus experimental speedup for 

all data accumulated for all experiments, including break points outside the linear range of 

speedup. For experiment input6-100 jobs in Figure 24, the recalibration of Sk for all centers 

changed the predicted speedup in the linear range by less than 10%. Similar results were noted 

for other experiments. 

In these graphs we still continue to see the behavior of improved speedup as the number 

of tasks increases. Even more obvious now is the behavior related to c_lock. The steeper the 

slope of c_lock, the steeper the decay of speedup past the break point. In Figure 25, the 100 

jobs experiment does not show an obvious breakdown for the experimental data. The average 

effective service demand times for the queueing service centers provided for the theoretical cal­

culations of the Simple model obviously reflect enough of an increase in contention for the file 

server that the theoretical model predicts a gradual rolloff would appear likely. 
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TABLE XVIII 

EQUATIONS FOR Ve lock CORRESPONDING TO FIGURE 24 

jobs Ve lock Nworkers 
500 Ve lock = 1.03 + 0.123(N) 1-35 
100 Ve lock = 0.55 + 0.236(N) 1-13 

Ve-lock= -137.16 + 10.85(N) 13-35 
50 Ve lock = 0.59 + 0.249(N) 1-11 

Ve-lock = -56.16 + 5.53(N) 11-35 
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TABLE XIX 

EQUATIONS FOR Ve lock CORRESPONDING TO FIGURE 25 

jobs Ve lock Nworkers 
500 Ve lock= 0.87 + 0.106(N) 1-35 
100 Ve lock= 0.76 + 0.213(N) 1-35 
50 Ve lock= 0.60 + 0.249(N) 1-8 

Ve-lock= -9.24 + l.44(N) 8-35 
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SUMMARY 

In this chapter, queueing network theory was used to develop two models that serve as 

analysis tools for determining system behavior during the experimental process. The Complex 

model was used to describe the topology of the physical system and served as a template for the 

instrumentation process of the experiments. The Simple model was used to replicate, as well as 

predict, the behavior of the system. The most obvious difference between these two models is 

the characterization of the system with respect to the synchronization mechanism. The Complex 

model treats each queueing service center as independent and mutually exclusive and the Sim­

ple model provides a single queueing service center for modeling the jobpool file server. 

Figures 26 and 27 compare the results of the Complex model with the Simple model. 

Evaluation of the Complex model is done using the iterative process outlined in Lazowska's 

MV A solution technique assuming (falsely) that service centers are separable for this 

model [30]. The Complex model analysis of cycle time is a more optimistic representation than 

the Simple model. This results in a more optimistic graph for speedup. From Figure 26 it is 

difficult to tell which model represents the experimental data more closely. But from Figure 27 

it seems indisputable that the experiment is more realistically modeled by the Simple model. 

The two models are similar for smaller numbers of workers but diverge as the number of work­

ers increase. This seems reasonable given the difference in how the jobpool file server queue­

ing factor is handled. The Complex model definitely describes the behavior of the system but 

does not do a particularly good job of modeling the queueing factor as the number of workers 

increases. The Simple model appears to represent the actual behavior of the queueing factor as 

defined by the jobpool file server. 
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The Simple model has proven to be a resilient model. We were able to isolate and iden­

tify the essential characteristics of the system and to represent these and only these in the 

model. We obtained measurements to support our beliefs about the primary effects on perfor­

mance and through the techniques provided by Mean Value Analysis were able to accurately 

replicate the behavior of the system. The key to the Simple model's resilience is in the simpli­

city of the essential characteristics and the fact that we are using average values to analyze the 

system. Observations that we have noted throughout this chapter can be summarized as fol­

lows: 

• Performance of the system is directly influenced by both task size and the number 

of tasks in a jobpool. Larger tasks and larger numbers of tasks perform best. 

• As the number of workers increases, average effective service demand time for the 

Simple model queueing service center increases. Contention for the file server is 

reflected in large increases in visitations resulting in a large increase in total service 

demand time. 

• As the number of workers increases, average effective service demand times for 

delay service centers reflect only small increases. 

• Experimental discontinuities observed at the synchronization center in the form of 

Vc_lock have been shown to reflect discontinuities in experimental speedup. 

• Using piecewise linear equations for Vc_lock in the evaluation of the Simple model 

provides for an accurate representation of the system behavior before and after 

breakdown. 

• The slope of Vc_lock appears to relate to the number of tasks and not the task size. 

This supports the theory that the more tasks in the jobpool, the more time workers 

have to desynchronize from their startup pattern, resulting in fewer collisions at the 

shared resource. 
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• A dramatic change in slope for Vc_lock reflects a breakdown in performance. 

• Using the linear range Vc_tock curve, a change of a factor of 3 in the average service 

time, Sk> at the synchronization center shows less than a 10% variation in speedup 

for the Simple model. 



CHAPTERV 

CONCLUSION 

In this thesis we have developed a paradigm for mapping a large class of computationally 

intensive problems to a distributed environment. The distributed control, multidimensional 

pipeline characteristics of the paradigm provide advantages which include load balancing 

through the use of self-directed workers, a simplified communication scheme ideally suited for 

infrequent task interaction, a simple programmer interface, and the ability of the programmer to 

use already existing code. 

The paradigm is built on a three level structure of original existing sequential code, an 

interface, and a coordination framework. The coordination framework of the paradigm is based 

on structural primitives in the form of jobpools and workers, transformational primitives pro­

viding job flow between jobpools, and operational primitives which facilitate the synchroniza­

tion mechanism required for the jobpool. 

The complete mapping of the Design Centering application shown in Chapter III provides 

information as to the decomposition of an application into jobpools representing pipeline stages 

and specialist workers dedicated to computations and transformations required by the applica­

tion for the job flow between jobpools. Experiments were run on a network of SUN 3/50s and 

data collected from the instrumentation applied to the SPICE stage of the Design Centering 

application was presented. 

Experiments indicate that significant speedup can be obtained by parallelizing native 

sequential code using this paradigm. Specifically, using 13 workers, experiment input6 for 500 

jobs ran approximately 12 times faster when processed in parallel than on a uniprocessor. This 

translates into a wall-clock turnaround time of approximately 1 hour and 20 minutes as 
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compared to the uniprocessor turnaround time of 16 hours and 40 minutes. For experiment 

input6 for 50 tasks using 11 workers the execution was 8 times faster over a uniprocessor. The 

50 jobs were completed in 13 minutes compared to a 1 hour and 40 minute turnaround time 

when processing on a single machine. Performance speedup for experiment input2 for 500 jobs 

using 12 workers was shown to be a factor of 11. This experiment took 4 hours and 27 minutes 

to complete on a single machine and 24 minutes using our distributed system paradigm. Even 

at the low end of the performance spectrum we see an improvement in turnaround time of 6 

minutes to complete 50 tasks for input2 using 8 workers as compared to a uniprocessor time of 

27 minutes. This is a speedup factor of 4.5. These improvements in turnaround time would 

please any computational engineer. 

To facilitate analysis of the paradigm we developed the Simple model based on queueing 

network theory. We have seen that the Simple model faithfully replicates the behavior of the 

system as well as predicts speedup in the linear range and is resilient in the face of a multitude 

of factors which contribute to the overall behavior of the system. In addition, the model repro­

duces the system bottleneck shown by experiment to be located at the synchronization center. 

Other similar schemes provide comparable approaches to distributed computation but ter­

minate their discussion of speedup prior to saturation of their respective bottlenecks [34, 8, 7]. 

In the DVLASIC approach to distributed fault simulation [21] and the traveling salesman 

implementation using workstation clusters [34] the client-server paradigm produces a potential 

bottleneck when servers request service from the client. Frame Works7 provides a contractor 

process which hires and fires employees dynamically at execution time depending on the work­

load. Each of the schemes we have mentioned in this thesis contains a bottleneck directly 

related to the addition of processors. Regardless of the implementation, as the number of pro­

cessors increases, the number of messages in the system increases. No reported mechanism for 

predicting the behavior of these systems with the addition of processors has been noted. An 

analysis tool is needed that will add a modicum of intelligence to the assignment of additional 
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processors so that breakdown in speedup can be avoided. 

In our implementation, processors may be added or deleted with ease and at the 

programmer's control. But we have seen in our experiments that a dramatic breakdown in per­

formance can result with the addition of processors. Queueing network theory provides us with 

a mechanism for obtaining the optimum speedup given some known parameters within the sys­

tem. 

LIMITATIONS AND FUTURE WORK 

A large class of distributed applications where synchronization, scheduling and communi­

cation is much more restricted cannot be handled efficiently using our paradigm. In addition, 

dedicated point to point communication is not directly provided. Applications recognizing 

strict constraints are more easily parallelized using specialized languages and architectures 

rather than a general purpose paradigm. 

Currently, work is in progress to make the paradigm more accessible to the amateur paral­

lel programmer. This includes a Graphical User Interface (GUI) which will allow the user to 

represent the flow of the application and its communication patterns via a pictorial representa­

tion. Emphasis is on high-level, external control and efforts are in progress to make the inter­

face layer of the three level structure in Figure 3 as small as possible. Ideally, all the code 

needed to distribute the application across the system would be provided for the user. We 

believe that the fewer changes to software for cooperation with the controlling facility the 

better. 

No features currently are available to handle failure of a processor during run time. Fault 

tolerance in a distributed system most often takes the form of a workstation being rebooted by 

an unsuspecting owner. Node failure can be catastrophic to the application which contains a 

many-to- I worker who has no contingency plan for an incomplete set of tasks. 

This work has characterized the synchronization mechanism of a distributed computing 
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paradigm by examining the visitations to the synchronization center. Our expression for total 

execution time is a refinement of the well known Amdahl's Law which realistically captures the 

limitations of the system. We show that the portion of time spent executing serial code which 

cannot be enhanced by parallelization is a function of N, the number of workers in the system. 

Experiments reveal the critical nature of the communication scheme and the synchronization of 

the paradigm. Investigation of the synchronization center indicates that as N increases, visita­

tions to the center increase and degrade system performance. Experimental data provides the 

information needed to characterize the impact of visitations on the performance of the system. 

This characterization provides a mechanism for optimizing the speedup of an application. 

Although work remains to be done, it is anticipated that this thesis provides the foundation 

for calibration of the synchronization mechanism through a suite of prototypes. The result of 

the calibration can then be used by the amateur parallel programmer to guide decisions about 

when and how many workers are to be assigned to specific jobpools. The calibration of the sys­

tem requires a simple model which retains valuable information. Keeping the model simple 

helps to alleviate the dependence of the model on the prototype experiments. Ideally, the user 

would be able to graphically depict the job flow of an application using a GUI, provide some 

specifications about the application and receive back information from the GUI in the form of 

optimum number of workers assigned to jobpools and perhaps number of file servers required. 
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APPENDIX 

From queueing network theory the iterative expression for Q (N) is given in Eq.(16) as 

Q(N) = RX(N) = N (l.O+Q(N-l)) for N ~ 1 
a+ 1.0 + Q(N-1) 

A closed fonn of this equation is shown in Eq.(19) 

N 
N N-lNI a +(N-a) >-.-,·aj 

Q(N) = 1";;1J J · f N_! aj 
l";;fJ}T 

Our conjecture is the following: 

for N ~ 1 

Q ~ N (1.0+ °o_(N I~ Na!'+ (N -a/f'
1 

N! aJ 
a+ 1.0 + (N -1 = 1";;1J 1 ! · ~N N 1 . for N ~ 1 

;tal 
1 ]. 

and we will verify this is the case using proof by induction. 

(16) 

(19) 

By induction, show that Eq.(19) is true for Q (N) where N = 1 as the base step. Using 

Eq.(5) 

Q(O) = 0 (5) 

our expression for Q (1) as expressed in Eq.(16) shows 

- 1 + Q (0) - 1 + 0 - 1 
Q(l) - l+a+Q(O) - l+a+O - l+a (16) 

By conjecture Eq.(19) for Q (1) becomes 

Q(l) _ (la)+ (1-a.)1 = ~ 
- 1 ·~ 1+a (19) 

which verifies that the base step is true. 



Now we assume that the conjecture is true for N = P . Then 

P a.P + (P -Ct.) Pfl />_
1
! oj 

Q(P) = ~ J. 

~
PP! . 

11al 
J J. 

From Eq.(16) the definition for Q (P + 1) is 

Q(P+l) = (P+l)(l+Q(P)) 
a+ 1 +Q(P) 

Substituting Eq.(21) into Eq.(22) yields 

(P + 1) 

PaP +(P-a)Pfl[P! ·] 
1 + JJ.;;f) ya! 

p [p' ·] 
Q(P+l) = ~ 1~ ya! 

PaP + (P - a{fl[.f_l ·] 
a+ 1 + 1~ J! al 

,t[ ~!ail 
p [p ! ·] >.-.,al 
}~ J. 

Multiplying by and simplifying yields 

p [p ! ·] >-.,al 
}~ 1· 

<P +1) ~t[7H +PnP +<P-a):~[7H] 
Q(P+l) = = A(P+l) 

p t . P-1 I . [ l [ l 
B (P+l) 

(o.+1)1~ 5ia1 +PaP+(P-a.)1~ 5ia1 
To simplify the numerator we first distribute (P + 1) 

A(P+I) = (P + l)Pa' + ,t[ <Pji1l1 ai] + (P -a):~[ (Pj?)! ai] 
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(21) 

(22) 

(23) 
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Next we add CP,:-~)! <J.P inside the rightmost summation and then subtract it outside the sum-

mation to get 

A (P+I) = (P + l)P a' - (P -o:)[ (P;/l' a" l + 
1
t,[ <Pjll! ail + (P -0:)

1
t,[ (P~l)! ail 

Combining the summations and simplifying yields 

A (P+l) = (P + l)Pa.P -(P - a.)(P + l)a.P + (P + 1- a.) f[CP~l)! ail 
,~ J. 

Further simplification yields 

A(P+l) = (P +!)Pa' -(P +!)Pa' +(P + l)a'+I +(P + 1-o:)}t[ (PN)! ail 
which becomes 

A (P+l) = (P + l)o:P+I + (P +I - o:)}t[ (PN)! ail (24) 

Now we simplify the denominator 

P[pl ·] p P-l[pl ·] B (P+l) = (a.+ 1) ~ -.rw +Pa + (P -a.) y -. ,· (J} 
,"';;b } • ,~ } • 

by adding , 0 1:_; .... 1 a.P+I to the leftmost summation and then subtracting it outside the summa­

tion. This results in 

pl P+l[pl ·] P-l[pl ·] B(P+l) = -(a.+1) 70 ,;\ 1 a.P+l+(a.+1)1~ j((J} +Pa.P+(P-a.)1~ j((J} 

Adding and subtracting both ;+a.P and 701:; \I a.P+I inside and outside the right summation 

yields 

B (P +!) = - (o:+ !)[ (P~\il a'+l] + (o:+ !):~[ 5 i cJ l + p o:P 

-(P-a.)[?i-a.P + P! I a.P+l] +(P-a.{~1 [P_l oil P. (P+l). 1-';;b J. 
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Combining the summations yields 

P+l P+l I P+l . r ., [ l B(P+l) =-(a.+l)ff +1-(P-a.)la.P+7+1j+Pa.P+(a.+l+P-a.)1~ 5lw 
Simplifying and rearranging tenns yields 

B (P + 1) = - _..,. __ -- _..,. __ ·-P a.P - _...,._ + a,P+l + _u-__ + p a,P + Y.· aJ ,..,P+2 ,,,P+l p ,..,P+l -.P+2 P+l [ (P+l)I ·] 
p + 1 p + 1 p + 1 p + 1 J";tj j ! 

which when simplified again looks like 

( l P+l P+l P+l . 
B (P+l) = pa; - a + a,P+l + Y. l (P7p1 CJl 

p + 1 J.<;;fJ J. 

The final reduction of the denominator yields 

B (P+l) = P{'lr.(P":+-,1)! cJ lJ 
J";tj J . 

I.. 

(25) 

Substituting Eqs.(24) and (25) into Eq.(23) gives us 

p ( 1 (P + l)a.P+l + (P + 1- a.) Y.l (P;-,1)! er) 
J";t) J • 

Q(P+l)= . 

P+lr(P+l)! ·] y ·1 a.I 
}";/] J • 

l 

which is exactly the same result given in Eq.(19) which satisfies the conjecture ofEq.(19). 
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