Portland State University PDXScholar

Dissertations and Theses

Dissertations and Theses

8-9-1991

Hydrogeology of an Alluvial Aquifer in the Blue Lake Area, East Multnomah County, Oregon

James Mitchell Wilkinson Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Geology Commons Let us know how access to this document benefits you.

Recommended Citation

Wilkinson, James Mitchell, "Hydrogeology of an Alluvial Aquifer in the Blue Lake Area, East Multnomah County, Oregon" (1991). *Dissertations and Theses.* Paper 4289. https://doi.org/10.15760/etd.6172

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

AN ABSTRACT OF THE THESIS OF James Mitchell Wilkinson for the degree of Master of Science in Geology presented August 9, 1991.

Title: Hydrogeology of an Alluvial Aquifer in the Blue Lake Area, East Multnomah County, Oregon.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Ansel G. Johnson/Chair
Marvin H. Beeson
Richard E. Thoms

Daniel M. /Johnson

This thesis evaluates the hydraulic relationship between the Blue Lake gravel aquifer, the Columbia River, and Blue Lake. Hydrogeology, water levels, and stable isotopes were used to establish these hydraulic relationships.

The Blue Lake gravel aquifer consists of coarse channel deposits of the ancestral Columbia River. The sediments are

predominantly gravel, cobbles, and boulders in a silty to sandy matrix. The clasts are basalt, with lesser amounts of andesite and quartzite. The transmissivity was estimated to be 20,490 m^2/day and the hydraulic conductivity was estimated to be 683 m/day. A deposit of gravel, cobbles, and boulders that is submerged along the south shore of the Columbia River is interpreted to be Blue Lake gravel aquifer sediments, suggesting a hydraulic connection at this location.

Stable isotopes of oxygen and hydrogen were used as natural tracers to determine if water was being contributed to the aquifer from the Columbia River and Blue Lake. There was a pronounced change in isotopic composition of water sampled during a pump test indicating a contribution of water from the river, estimated to be 72% after 22 days of pumping. A small change in isotopic composition occurred in a sample taken near the lake.

Analysis of water level data showed that water levels in the aquifer and those in the Columbia River are not independent of each other. These water levels correlate very well and the response to river stage within the aquifer diminishes with distance. The water levels in Blue Lake and the aquifer were found to be independent of each other.

A strong hydraulic connection exists between the Columbia River and the Blue Lake gravel aquifer. The hydraulic connection of Blue Lake and the aquifer is weak and can only

2

be observed under stressed conditions.

-

HYDROGEOLOGY OF AN ALLUVIAL AQUIFER IN THE BLUE LAKE AREA, EAST MULTNOMAH COUNTY, OREGON

-

.

by

JAMES MITCHELL WILKINSON

A thesis submitted in partial fufillment of the requirements for the degree of

MASTER OF SCIENCE in GEOLOGY

Portland State University 1991 TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of James Mitchell Wilkinson presented August 9, 1991.

	Ansel G. Johnson, Chair
	/
	Marvin H. Beeson
	-{
	RICHARO E. THOMS
	Daniel M. Jonnson
	7
APPROVED	\bigcirc
Ansel G. Jonnson, Ch	arr, Department of Geology
C. William Savery, I	Interim Vice/Provost for Graduate Studies
and Research	\bigcup

ACKNOWLEDGEMENTS

I would like to extend my sincere appreciation to my advisor Ansel Johnson. Without his guidance and support, I could not have completed my thesis. I would also like to thank my other committee members, Marvin Beeson and Richard Thoms, for their valuable comments and suggestions.

My particular thank you goes to the Portland office of the U.S.G.S. Water Resources Division for the use of their resources and equipment. William McFarland deserves a special thank you for the many hours of conversations we had, from the inception to the completion of this thesis. I would also like to thank Kathy McCarthy for providing me with information about stable isotopes.

There have been many others among the faculty, students, colleagues, and friends who have contributed to my thesis. I can not express my gratitude enough to the people associated with me through the U.S.G.S. and Portland State University, Geology Department. Through these two entities I have learned so many things.

Finally, I come to my wife, Yaeko, without whose love, support and patience, this thesis would have forever remained a dream. I dedicate this thesis to Yaeko. My accomplishment is hers as much as mine.

TABLE OF CONTENTS

-

PAGE
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES
CHAPTER
I INTRODUCTION 1
Location and Setting 1
Purpose and Scope 3
Previous Work 4
II HYDROGEOLOGY 5
Methods of Investigation 5
Blue Lake Gravel Aquifer 9
Lithology and Extent Hydraulic Characteristics
Adjacent Units 16
Recent Alluvium (Qal) Troutdale Sandstone Aquifer (TSA) Confining Unit (CU) Sand and Gravel Aquifer (SGA)
Discussion
III STABLE ISOTOPE ANALYSIS
Methods of Investigation 27
Results 29
Discussion

IV	WATER LEVEL ANALYSIS	38
	Methods of Investigation	38
	Results	40
	Discussion	40
v	CONCLUSIONS	48
REFERENCES	S CITED	50
APPENDICES	S	
A	WELL IDENTIFICATION CROSS REFERENCE	53
В	HYDROLOGIC AND METEOROLOGIC DATA	55
с	COMPUTER PROGRAMS	75

PAGE

LIST OF TABLES

-

TABLE		PAGE
I I	Top and Bottom Elevations for the Blue Lake	
	Gravel Aquifer	11
II I	Drawdown Data for August 1990 Pump Test	12
III d	Calculated Values of Transmissivity and	
	Storage Coefficient	15
IV C	Oxygen ¹⁸ and Deuterium Values for Water	
	Samples Collected in March and August	
	1990 (Relative to SMOW)	30

LIST OF FIGURES

FIGURE		PAGE
1.	Location of the Study Area	. 2
2.	Well Locations and Identification	. 6
3.	Example of Geologic and Drillers	
	Lithologies	. 7
4.	Time vs. Drawdown Plot of the August 1990	
	Pump Test Data for Well 6	. 13
5.	Time vs. Drawdown Plot of the August 1990	
	Pump Test Data for Well 9	. 14
6.	Distance vs. Drawdown Plot of the August	
	1990 Pump Test Data	. 15
7.	Contour Map of the Top of the Blue Lake	
	Gravel Aquifer, Modified from	
	Hartford and McFarland (1989)	. 21
8.	Contour Map of the Bottom of the Blue Lake	
	Gravel Aquifer, Modified from	
	Hartford and McFarland (1989)	. 22
9.	North-South Hydrogeologic Section	
	Through the Blue Lake Area	. 23
10.	Drawdown Data for well 6 with Theis Type	
	Curve	. 24
11.	Drawdown Data for well 9 with Theis Type	
	Curve	. 25

FIGURE

Initial Composition of Oxygen¹⁸ and 12. Deuterium Before Pumping 31 Initial vs. Late Compositions of Oxygen¹⁸ 13. and Deuterium for Selected Locations . . 32 Oxygen¹⁸ and Deuterium Compositions 14. With Respect to Time for Well 19 35 Oxygen¹⁸ vs. Time, Well 19 \ldots \ldots \ldots 15. 36 Deuterium vs. Time, Well 19 16. 36 Columbia River Stage, February, 1991 17. 42 Water Levels in Well 6, February, 1991 . . . 18. 42 Water Levels in Well 4, February, 1991 . . . 19. 43 20. Barometric Pressure, February, 1991 43 21. Precipitation, February, 1991 44 Correlogram for Water levels 22. in Well 6 and the Columbia River 44 Correlogram for Water Levels 23. in Well 4 and the Columbia River 46 Correlogram for Water Levels 24. 46

PAGE

CHAPTER I

INTRODUCTION

LOCATION AND SETTING

The Blue Lake area is located along the southern shore of the Columbia River in east Multnomah County, Oregon (Figure 1). The study area extends from Fairview Lake to the Columbia River and from Taggart Bluff to Campbell Road. These boundaries encompass the known extent of the Blue Lake gravel aquifer (Hartford and McFarland, 1989).

The Blue Lake area is a small part of a much larger area, the Portland Basin, which the Columbia River flows through. The Portland Basin is a northwest trending sediment filled structural depression. The primary sedimentary units are the Sandy River Mudstone, Troutdale Formation, and catastrophic flood deposits. Several other local deposits occur within the Portland Basin to a lesser extent.

The City of Portland operates a well field which serves as a backup municipal water supply. The eastern portion of the well field extends to the Blue Lake area (see Figure 1). A park in the Blue Lake area is operated by Multnomah County and provides picnic and water activities to the public. In addition, there are several residences along the shores of Blue Lake and Fairview Lake. To the east and south of the

Figure 1. Location of the study area.

study area are some industrial districts. Groundwater south of the study area has been found to contain contaminants and is a source of concern to the City of Portland and other local groundwater users (Malin, 1989; Leighton, 1990; Lindberg, written communication). Land to the west is primarily farmland.

The climate of the study area is generally mild most of the year but can be unseasonably cold in winter due to the proximity of the mouth of the Columbia Gorge. The area receives about 117 to 127 centimeters of rain annually (D. Snyder, written communication) and is moderately drained with some ponding occurring in low lying areas.

PURPOSE AND SCOPE

The Blue Lake gravel aquifer is very productive as a groundwater source. There is the possibility that groundwater withdrawal and contamination in the area could adversely affect the quality and/or quantity of the groundwater. It is important to know the source of the groundwater and the general hydrogeologic characteristics of the aquifer. Successful use, future development, and protection of the aquifer is dependent upon knowledge and understanding of the hydrogeology and hydraulic characteristics of the aquifer.

The proximity of the Columbia River and Blue Lake suggest that there may be a relationship between the aquifer and these water bodies. The goal of this study was to evaluate and establish the relationships of the river and lake to the aquifer. This information will help to provide a better understanding of the hydrogeology of the Blue Lake gravel aquifer.

PREVIOUS WORK

There are several reports which describe the geology and hydrogeology in the Portland vicinity. Of these, there are two published reports which involve work in the Blue Lake area. Hoffstetter (1984) briefly describes the Blue Lake aquifer within his report of the geology of the Portland well field. A more detailed description is contained in a report by Hartford and McFarland (1989). In addition to these reports, there are some unpublished reports of limited distribution done by the City of Portland and by various consulting firms (eg. Landau Associates, Dames and Moore).

Other published reports for the vicinity include those by Griffin and others (1956), Hogenson and Foxworthy (1965), Swanson and others (in press), and Trimble (1963). These reports contain geologic and hydrogeologic descriptions covering the broad region, but not necessarily the Blue Lake gravel aquifer.

CHAPTER II

HYDROGEOLOGY

METHODS OF INVESTIGATION

The Blue Lake gravel aguifer was evaluated using a combination of methods. Initially, literature relevant to the area and subject were reviewed and compiled. Geologic and drillers well logs supplied by the U.S.G.S. were used to provide additional information at well locations in the Blue Lake area. Figure 2 shows the distribution and location of these wells. A well ID cross reference can be found in appendix A. Lithology from the geologic and drillers logs was coded and graphically drafted on a polyester film overlay. Figure 3 shows an example of this procedure. At locations which have both geologic and drillers logs, the lithologic descriptions were compared to examine differences in interpretation. This provided a method of control for interpreting those drillers logs which had no corresponding geologic logs. The lithologic description of the aquifer given in Hartford and McFarland (1989) was compared to the lithology on the graphic plot to determine the interval which represents the aquifer. The elevations of the top and bottom of the aquifer were picked from the graphic plot. An unpublished contour map of the bottom of Blue Lake

 $\begin{array}{c|cc}
cl & cl \\
gr & gr \\
gr & gr \\
geologic log \\
-28.3m \\
cl & cl \\
\end{array}$

well 17

EXPLANATION

cl	clay
gr	gravel
si	silt

lcm = 6m

Figure 3. Example of geologic and drillers lithologies.

(McFarland, written communication) provided additional control for estimating the altitude of the top of the aquifer below Blue Lake. These data were combined with those of Hartford and McFarland (1989) and contoured to create modified maps of the top and bottom of the aquifer.

The City of Portland provided discharge and drawdown data for a pump test at well 19 in August 1990. These data were used to calculate the hydraulic characteristics of the aquifer. Distance versus drawdown (see Figure 6) and time versus drawdown (see Figure 4, 5) were plotted and the resulting parameters were used to calculate transmissivity, storage coefficient, and hydraulic conductivity. The following relationships from Heath (1982) were used for distance versus drawdown:

$$T=2.3Q/(2\pi s)$$
 (1)

$$S=2.25Tt/r_0^2$$
 (2)

where T is transmissivity in square meters per day, Q is discharge in cubic meters per day, s is drawdown over one log cycle in meters, t is time of measurement in days since pumping started, and r_0 is the distance in meters (x intercept at drawdown = 0). For time versus drawdown, the following relationships were used from Heath (1982):

$$T=2.3Q/(4\pi s)$$
 (3)

$$S=2.25Tt_0/r^2$$
 (4)

where t_0 is x intercept at drawdown = 0 in days and r is the distance from the pumping well to the observation well in

meters. Hydraulic conductivity is calculated using K=T/b

where K is the hydraulic conductivity in meters per day and b is the thickness of the aquifer in meters (Heath, 1982).

Elevations above or below sea level are with respect to the National Geodetic Vertical Datum of 1929.

BLUE LAKE GRAVEL AQUIFER

Lithology and Extent

Lithologic data and descriptions recorded on drillers and geologic well logs provided data about the Blue Lake gravel aquifer sediments. Data from these well logs indicate that the sediments consist of 65% to 90% gravel to cobble size clasts with some boulders in a matrix of clayey to sandy silt based on the size classification given in Fetter (1988). The concentration of gravel to cobble size clasts is predominantly 75% to 85% throughout the sediments. Although the clast size varies, most are from fine gravel (6 mm) to small cobble (100 mm) size with cobbles up to 152 mm and boulders up to 355 mm reported.

Data from geologic logs indicate that the composition of the clasts is 60% to 90% basalt, with up to 30% andesite, and up to 30% quartzite. There are also minor amounts of other metamorphic rocks and occasional pieces of sandstone reported in the geologic logs. The average composition is 75% to 85% basalt, 15% to 20% andesite, and 10% quartzite.

(5)

The matrix varies from clayey silt to sand. Most descriptions are sandy silt to silty sand with some lesser amounts of coarse sand. Thin lenses of clay are reported in some of the wells at varying depths. There is no evidence of cementing in the aquifer.

The sediments of the aquifer are present at many well locations within the Blue Lake area. The westernmost occurrence of Blue Lake gravel sediments is at well 14 (see Figure 2 for location). The easternmost occurrence is at wells 20 and 25, and the southernmost occurrence is at well 27. All wells located within the boundary delineated by wells 14, 20, 25 and 27 penetrate the aquifer sediments. Drillers and geologic well logs for wells farther east and west were examined and no trace of the aquifer sediments was found. There is a submerged deposit of gravel, cobbles, and boulders along the south shore of the Columbia River just east of Taggart Bluff which is the only outcrop of aquifer sediments observed.

Geologic logs were used to pick the top and bottom extent of the aquifer based on one or more changes in sediment characteristics. These characteristics are cementation, size distribution, and lithology. Table I summarizes the results.

Hydraulic Characteristics

In August 1990, the City of Portland conducted a pump test at well 19. The screened interval for well 19 is

10

TABLE I

WELL	ELEVATION OF	AQUIFER (METERS)
<u>ID</u>	TOP	BOTTOM
1	-3.0	-70.7
2	-3.0	-70.7
3	0.9	-32.0
4	0.9	-32.0
5	0.9	-32.0
6	1.0	-52.1
7	1.8	-28.3
8	-2.4	-69.5
9	6.7	-36.0
10	6.7	-36.0
12	-0.6	-31.4
13	1.0	-52.1
14	3.0	-16.5
15	-0.9	-
16	-0.3	-
17	0.0	-50.9
18	-1.5	-
19	-0.6	-29.3
20	-19.5	-
21	0.0	-
23	-0.9	-
24	-0.9	-36.3
25	0.3	-
26	3.4	-
27	3.4	_

TOP	AND	BOTTOM	ELEVATIONS	FOR	THE	BLUE	LAKE
			GRAVEL AQU	IFER			

exclusively within the Blue Lake gravel aquifer. Well 19 was pumped at a rate of 37,900 m³/day for 22 days (August 7 - 29). Water levels at two locations, wells 6 and 9 (see Figure 2), were monitored by the City of Portland during the pump test. Pumping was halted on August 18 for a day due to technical problems. The data from the pump test were selected from the period of pumping prior to August 18 and are shown in Table II. Wells 6 and 9 are approximately 427

TABLE II

TIME SINCE PUMPING	DRAWDOWN	(METERS)
STARTED (DAYS)	<u>Well 6</u>	Well 9
0.68	0.49	0.27
1.02	0.55	0.34
1.70	0.61	0.43
2.05	0.64	0.46
2.67	0.70	0.52
3.75	0.73	0.55
4.74	0.79	0.61
5.74	0.94	0.73
6.87	1.01	0.82
7.73	0.98	0.85

DRAWDOWN DATA FOR AUGUST 1990 PUMP TEST

meters and 844 meters away from well 19, respectively.

The data in table II are shown in Figures 4 and 5 as plots of time versus drawdown. Logarithmic best fit lines are projected back to the point of no drawdown and the corresponding times were used for calculating transmissivities and storage coefficients. Figure 6 shows the data plotted as distance versus drawdown for the successive measurement times. Logarithmic best fit lines are projected through the data out to the point of no drawdown and the corresponding distances were used for transmissivity and storage coefficient calculations. Calculations were made using equations 1 and 2 for distance versus drawdown and equations 3 and 4 for time versus drawdown. These calculated values are summarized in Table III.

Figure 4. Time vs. drawdown plot of the August 1990 pump test data for well 6.

Figure 5. Time vs. drawdown plot of the August 1990 pump test data for well 9.

Figure 6. Distance vs. drawdown plot of the August 1990 pump test data.

TABLE III

CALCULATED VALUES OF TRANSMISSIVITY AND STORAGE COEFFICIENT

TRANSMISSIVITY	STORAGE	
(M^2/day)	COEFFICIENT	COMMENTS
20,410	0.006	well 6 (figure 4)
17,880	0.007	well 9 (figure 5)
19,270	0.007	t=0.68 (figure 6)
19,270	0.007	t=1.02 (figure 6)
22,480	0.005	t=1.70 (figure 6)
22,480	0.005	t=2.05 (figure 6)
21,630	0.005	t=2.67 (figure 6)
22,480	0.004	t=3.75 (figure 6)
22,480	0.004	t=4.74 (figure 6)
19,270	0.003	t=5.74 (figure 6)

Figures 4 and 5 show a break in slope at about 4 days. this change in hydraulic conditions represents a known bias and therefore values of transmissivity calculated from this point and later were not used for the average. The remainder of the values were used to calculate the average transmissivity. An average value of 20,490 m²/day for transmissivity was used to calculate hydraulic conductivity. Based on a thickness of 30 meters at well 19, a hydraulic conductivity of 683 m/day was calculated. Assuming an average thickness of 38 meters within the aquifer, the hydraulic conductivity is 560 m/day.

ADJACENT UNITS

Recent Alluvium (Qal)

These sediments include overbank deposits and current channel deposits of the Columbia River. The overbank deposits are part of the Columbia River flood plain and are up to 10 meters thick in the study area. The lithology of the overbank deposits is described by Hartford and McFarland (1989) as silty clay to sandy silt which is unsaturated.

The channel deposits are described by Hoffstetter (1981) as the Columbia River Sands Formation. These deposits are medium sands of quartz and basalt composition with interbedded thin beds of gravel, silt, and clay (Hoffstetter, 1981). The unit is up to 91 meters thick and overlies the Blue Lake gravel aquifer in well 20 (see figure 2)

Troutdale Sandstone Aquifer (TSA)

The Troutdale sandstone aquifer is a coarse vitric sandstone with lenses and beds of conglomerate, sand, and silt (Swanson and others, in press). In the Blue Lake area, this unit crops out and forms a ridge between Blue Lake and Fairview Lake (see Figure 9). It has a dip of 12 to 14 degrees to the south (Hartford and McFarland, 1989) and is interpreted by Swanson (1986) as a homoclinal feature. It consists of moderate to well sorted, angular to sub-rounded, indurated basaltic glass (Hartford and McFarland, 1989). Wells completed in this unit have been tested at rates up to 9.5 m³/min. (Swanson and others, in press).

Confining unit (CU)

The confining unit is described as confining unit 2 by Hartford and McFarland (1989) and Swanson and others (in press). It underlies the Troutdale sandstone aquifer and is encountered at depth in some of the wells in the Blue Lake area. Geologic logs for wells 14 and 19 indicate that it is composed of clay with silt and sand lenses and is described by Willis (1978) as a leaky confining layer. These sediments are interpreted to be lacustrine by Trimble (1963).

Sand and Gravel Aquifer (SGA)

The sand and gravel aquifer is the lowermost unit encountered in the Blue Lake area (see Figure 9). Data from well logs in the Blue Lake area indicate that this unit is predominantly fine sand. It is described by Swanson and others (in press) as composed of silty sand, clay, sand, and sandy gravel. Hartford and McFarland (1989) describe the upper unit of the sand and gravel aquifer as being partially eroded in the Blue Lake area, exposing a finer grained facies. Swanson and others (in press) reports that this aquifer is very productive and has been tested at rates up to 11.4 m³/min.

DISCUSSION

A comparison of geologic and drillers well logs for locations in the Blue Lake area shows that interpretations of the geologists and drillers are very similar. Differences exist mostly in the interpretation of grain size and cementation in units adjacent and below the Blue Lake gravel aquifer. Hartford and McFarland (1989) describe the Blue Lake gravel aquifer as coarse channel deposits of the ancestral Columbia River. This paleochannel has eroded into the Troutdale Formation and subsequently filled with coarse flood deposits. This suggests that the aquifer sediments are late Pleistocene in age corresponding with the catastrophic floods described by Bretz and others (1956). Mundorff

18

(1964) describes an aquifer with very similar characteristics on the north side of the Columbia River in the Camas, Washington area. These descriptions are consistent with those found in the geologic and drillers well logs.

The sediments in the adjacent units are all fine grained, ranging from the clayey silt in the confining unit to the medium sand in the Troutdale Sandstone aquifer. This is a sharp contrast to the clast supported coarse gravel and cobble deposits of the Blue Lake gravel aquifer. The aquifer sediments are easily distinguishable from the adjacent units.

The elevations of the top and bottom of the aquifer (see Table I) were compared to those presented by Hartford and McFarland (1989). These data were found to be in general agreement for locations common to their work and this study.

Figure 7 shows the elevation of the top of the aquifer, modified from Hartford and McFarland (1989). A notable high of 6.7 meters is present along the east side of the north shore of Blue Lake. From that area the elevation decreases gently to the northwest and more sharply to the south and northeast.

Figure 8 shows the elevation of the bottom of the aquifer, modified from Hartford and McFarland (1989). The bottom of the aquifer shows a distinct deepening trend to the east. The minimum depth encountered was 70.7 meters at wells 1 and 2. The pattern formed by the contours and the easterly dip indicate an east-west aligned trough, dipping to the east.

The southern and western extent of the aquifer follows the ridge of Troutdale Sandstone from the south side of Blue Lake to Taggart Bluff to the northwest (Hartford and McFarland, 1989). As noted by Hartford and McFarland (1989), the eastern extent is not clearly defined due to a lack of available data.

Figure 9 is a north-south oriented hydrogeologic section. The ridge-forming Troutdale Sandstone can be seen bounding the aquifer to the south of Blue Lake. The northern extent projects to just north of the south shore of the Columbia River, where the submerged gravel, cobble, and boulders were observed. The Columbia River Sands described by Hoffstetter (1981) are interpreted to project below the Columbia River, terminating the Blue Lake gravel aquifer to the north.

Drawdown data are shown plotted with a Theis type curve in Figures 10 and 11. The estimated transmissivities and storage coefficients are 17,740 m²/day and .008 respectively for well 6, and 16,760 m²/day and .009 respectively for well 9. The lack of early data for the time immediately after pumping started make this data less than adequate for use. The deviation from the curve at about 4 days is small but pronounced for both wells. This corresponds to the break in

Area where unit not present.

Figure 7. Contour map of the top of the Blue Lake gravel aguifer, modified from Hartford and McFarland (1989).

Figure 8. Contour map of the bottom of the Blue Lake gravel aguifer, modified from Hartford and McFarland, (1989).

EXPLANATION

BLGA	Blue Lake Gravel Aquifer
Qal	Recent Alluvium
TSA	Troutdale Sandstone Aquifer
CU	Confining Unit
SGA	Sand and Gravel Aquifer

Figure 9. North-south hydrogeologic section through the Blue Lake area.

Figure 10. Drawdown data for well 6 with Theis type curve. slope shown in Figures 4 and 5. This condition is indicative of an impermeable boundary being sensed (Driscoll, 1986; Heath, 1982).

The distance to the hydraulic boundary can be calculated using the relationship

$$\mathbf{r}_{\iota} = \mathbf{r}_{\sigma} \left(\mathbf{t}_{\iota} / \mathbf{t}_{\sigma} \right)^{1/2} \tag{6}$$

where r_i is the distance from the observation well to the image well, r_{σ} is the distance from the observation well to the pumping well, t_i is the time at which a drawdown s_i caused by the image well at the observation well, and t_{σ} is the time at which a drawdown of s_{σ} is caused by the real

Figure 11. Drawdown data for well 9 with Theis type curve.

pumping well at the observation well (Heath, 1982). Eguation 6 assumes $s_{a}=s_{a}$. Since the boundary is halfway between the observation well and the image well, the distance of the boundary becomes $r_{i}/2$ from a point halfway from the pumping well to the observation well (Heath, 1982). Based on these assumptions and conditions, the hydraulic boundary is calculated to be approximately 5,000 meters away. This distance is a hydraulic distance which is influenced by other hydraulic conditions and therefore does not represent the true The relationship of the aquifer to the Columbia distance. River shown in Figure 9 suggests that there may be a strong recharge boundary influencing the hydraulic conditions.

Assuming a recharge influence from the Columbia River, the boundary is probably much closer than 5,000 meters and represents the TSA.

The City of Portland has conducted several pump tests in the Blue Lake gravel aquifer from which hydraulic conductivities from 600 to 900 m/day have been estimated (W. McFarland, personal communication). The expected range of values for gravels is about 100 to 6,000 m/day (Heath, 1982). Values of 560 to 683 m/day calculated from the August 1990 pump test data are consistent with previous estimates and the expected range.

CHAPTER III

STABLE ISOTOPE ANALYSIS

METHODS OF INVESTIGATION

The traditional method of determining the relationship between an aquifer and a surface water body involves comparing water levels to determine the hydraulic gradient and measuring discharge along a stream. Another method is the use of naturally occurring stable isotopes as a natural This method can be used independently from traditracer. tional methods as a tool for corroborating or refuting hypotheses based on the traditional approach. In this study, stable isotopes of hydrogen and oxygen were used to determine the hydraulic relationship between the Blue Lake gravel aquifer and two surface water bodies, the Columbia River and Blue Lake. The two questions addressed are: 1) Is the Blue Lake gravel aquifer hydraulically connected to the Columbia River and/or Blue Lake?, and 2) What is the contribution of the Columbia River and Blue Lake to the pumping wells?

In March 1990, the City of Portland conducted a pump test, pumping five production wells (wells 12, 13, 17, 18, 19; see Figure 2 for locations) at a combined rate of 118 m^3/min . All of these wells are completed in the Blue Lake gravel aquifer. This provided an opportunity to collect water samples for stable isotope analysis under stressed hydraulic conditions.

Before, during and after this test, water samples were collected from the production wells (wells 12, 13, 17, 18, 19), observation wells (wells 1, 2, 3, 4, 5, 9, 10), the Columbia River, the Sandy River, and Blue Lake (see figure 2). Samples were collected with U.S.G.S. equipment and supplies by U.S.G.S. personnel including myself.

The procedure for sampling was developed by laboratory personnel at the Portland U.S.G.S. office. Prior to sampling at each observation well, the well was purged and the pH, specific conductance, and temperature of the effluent was monitored. Samples were taken after these parameters had stabilized and been recorded. A pneumatic pump using nitrogen was used for pumping water from the area adjacent to the well screen. Samples were collected by filling 50 ml glass bottles and sealing them with polyseal caps to minimize any effects from headspace. Samples taken from the production wells were collected directly from outlets at the Samples collected from the Columbia River, Sandy wells. River, and Blue Lake were obtained with a bailer lowered to a depth equal to half of the total depth at the collection location. These samples were also collected in 50 ml glass bottles with polyseal caps. Samples selected for analysis were sent to the U.S.G.S. Water Quality Laboratory in Menlo

Park, California where concentrations of $oxygen^{18}$ and deuterium were determined using mass spectrometry (K. McCarthy, personal communication). The data are expressed as per mil values of the isotopic ratios D/H and $^{18}O/^{16}O$ relative to standard mean ocean water (SMOW) (Craig, 1961). The isotopic ratios are defined as

$$\delta^{18}O(\text{per mil}) = ((({}^{18}O/{}^{16}O)_{\text{sample}}/({}^{18}O/{}^{16}O)_{\text{SMOW}}) - 1)1000$$
(7)

$$\delta D(\text{per mil}) = ((({}^{2}\text{H}/{}^{1}\text{H})_{\text{sample}}/({}^{2}\text{H}/{}^{1}\text{H})_{\text{SMOW}}) - 1)1000$$
(8)
for concentrations of ¹⁸O, ¹⁶O, ²H, ¹H.

The pump test of August 1990 provided another opportunity for sample collection. Samples were collected daily at the pumping well (well 19) for the 22 day duration of the test. The collection procedure was the same as that used in March and selected samples were analyzed by the same laboratory and procedure.

RESULTS

The results of the analysis of the water samples are shown in Table IV. The standard deviations of the reported data are 0.1 per mil for oxygen¹⁸ and 1.5 per mil for deuterium.

DISCUSSION

Figure 12 shows isotopic compositions of samples collected prior to the initiation of the pump test, relative to the global meteoric water line (Craig, 1961). The isotopic

TABLE IV

Well	Sample	δ ¹⁸ Ο	δD
ID	Date	(per mil)	(per mil)
19	03/05/90	-10.6	-78.0
	03/11/90	-12.9	-99.0
	08/10/90	-12.2	-94.0
	08/13/90	-12.5	-100.0
	08/16/90	-12.7	-102.0
	08/19/90	-12.8	-102.0
	08/22/90	-13.5	-106.0
	08/25/90	-13.6	-106.0
	08/29/90	-13.9	-109.0
13	03/05/90	-11.5	-84.0
	03/12/90	-13.2	-100.0
17	03/05/90	-11.5	-81.0
	03/12/90	-12.8	-98.0
1	03/02/90	-9.2	-71.0
	03/14/91	-11.4	-85.0
2	03/06/90	-10.2	-71.0
	03/14/90	-10.1	-75.0
18	03/05/90	-10.0	-73.0
	03/12/90	-10.0	-77.0
12	03/05/90	-9.7	-69.0
	03/11/90	-9.4	-68.0
3	03/02/90	-9.3	-68.5
4	03/02/90	-10.2	-67.5
	03/14/90	-8.3	-68.0
5	03/02/90	-9.8	-72.0
	03/09/90	-10.2	-75.0
9	03/02/90	-9.3	-70.0
	03/09/90	-9.8	-68.0
10	03/02/90	-8.0	-65.0

OXYGEN¹⁸ AND DEUTERIUM VALUES FOR WATER SAMPLES COLLECTED IN MARCH AND AUGUST 1990 (RELATIVE TO SMOW)

compositions of samples from the aquifer and the Sandy River form a cluster along the meteoric water line. The water of the Columbia River is significantly depleted in the heavy isotopes relative to local waters. The isotopic composition of Blue Lake appears to represent a point on an evaporation trajectory (Craig, 1961; Domenico and Schwartz, 1990) origi-

Figure 12. Initial composition of oxygen¹⁸ and deuterium before pumping.

nating from the cluster. Well 10, a shallow well adjacent to Blue Lake, has a water sample isotopic composition which falls along the Blue Lake evaporation trajectory. These initial values establish the isotopic signatures which characterize the different water sources.

Figure 13 shows initial and subsequent isotopic compositions in selected wells. All of these water samples show a significant shift in isotopic composition after

Figure 13. Initial vs. late compositions of oxygen¹⁸ and deuterium for selected locations.

pumping started. All of those which shifted toward the Columbia River are from wells proximal to the river. The sample which shifted in the general direction of Blue Lake is from well 4, located closer to Blue Lake, and suggests that the pumping drew the aquifer - Blue Lake transition zone closer to that well.

Assuming that the initial contribution of the river to the well is zero, and the isotopic composition of the Columbia River is constant, the percent contribution of water from the Columbia River to the pumping wells can be estimated using simple mixing theory. The relationship is

$$PR_{v} = 100(C_{i}-C_{v})/(C_{i}-CR)$$
(7)

where PR_{ν} is the percent river contribution at time t, C_{ι} is the initial composition of the groundwater at the well, C_{ν} is the composition of the well water at time t, and CR is the composition of the Columbia River.

The Sandy River is a relatively local drainage and the river water is representative of local meteoric water. The isotopic compositions of aquifer water samples are homogeneous as shown by the clustering in Figure 12. The isotopic composition of the Sandy River falls within this same cluster, indicating the aquifer water is of local origin. The Columbia River is a regional river which drains approximately $622,600 \text{ km}^2$. This drainage basin is inland to the north and east of the study area. The depleted isotopic composition of the Columbia River is characteristic of higher latitudes and inland regions (Domenico and Schwartz, 1990). The isotopic composition of the Columbia River is a composite of many sources and any one source is assumed to have an insignificant effect. Therefore the isotopic composition of the Columbia River is assumed to be constant.

Calculations were made using equation 7 based on these assumptions. Discharge from well 19 showed the largest percent contribution of river water with about 50% after six days. Well 13 had a 45% contribution from river water and well 17 had a 38 percent contribution after seven days. Water sampled from observation well 1 two days after pumping stopped showed a 33% contribution of river water. Although the δ D value in observation well 4 remained constant, the δ^{18} O value shows a 2 per mil enrichment, suggesting about a 28% contribution of water from Blue Lake. The constant δ D value at well 4 suggests that enough Columbia River water influenced the sample to hold the value steady. The amount of Columbia River water was probably relatively small, less than 10%.

The results of the analysis of samples collected in August (well 19) are shown in Figure 14 with data from March for the same well superimposed on it. As in March, the isotopic composition shifted toward the composition of the Columbia River. Although a sample was not collected prior to pumping in August, a comparison of data from day 6 for August and March shows very similar compositions. One notable difference is that the August data are slightly enriched in δ^{18} O values compared to March data. Although Blue Lake was not sampled during August, it is not unreasonable to assume a seasonal enrichment in heavy isotopes. The shift in the August data suggests a small contribution of Blue Lake water, probably less than 10%. An estimate of percent contribution from the river can be calculated based on the assumptions that the isotopic composition of the

Figure 14. Oxygen¹⁸ and deuterium compositions with respect to time for well 19.

Columbia River is nearly constant and that the initial isotopic composition of water in well 19 is nearly identical to that of March. The estimated contribution is calculated to be about 72% water from the Columbia River after 22 days of pumping.

Figures 15 and 16 show the isotopic values of δ^{18} O and δ D with respect to time. The isotopic composition of well 19 water did not reach a point of equilibrium after 22 days

Figure 15. Oxygen¹⁸ vs. time, well 19.

Figure 16. Deuterium vs. time, well 19.

of pumping. It is assumed that the isotopic composition will reach an equilibrium point at some point in time. By evaluating the components separately and projecting the trends with respect to time, a range of percent contribution can be established using the same relationship outlined earlier. These data can then be combined to give an estimated contribution at the projected point of equilibrium.

The trend of the data appears to be exponential, therefore an exponential best fit line was applied to the data and projected beyond 22 days. Equilibrium was arbitrarily chosen as the point at which the change is less than 0.3% of the isotopic value for the same period of time for both components. Using these parameters, a range of 73% to 94% is estimated. By using δ^{18} O and δ D values from this equilibrium point, an estimated contribution can be calculated. Using these projected values a contribution of about 82% water from the Columbia River can be expected after 30 days of pumping.

CHAPTER IV

WATER LEVEL ANALYSIS

METHODS OF INVESTIGATION

Water levels in the Blue Lake area were monitored to determine the relationships of the Blue Lake gravel aquifer, Blue Lake, and the Columbia River. Barometric pressure and precipitation were also monitored.

The U.S.G.S. supplied a Campbell Scientific Incorporated model CR21 digital recorder for recording the water level in the aquifer. It utilized a float and counterweight attached to a ten turn precision linear potentiometer. The circumference of the pulley on the potentiometer was 30.5 centimeters, giving the apparatus a 3 meter range of motion for water levels. The recorder was programmed to record the instantaneous water level at 30 minute intervals. The potentiometer has a rated accuracy of ± 1.0 %. The sensitivity of the apparatus was 6 millimeters. A frame was constructed to which the potentiometer apparatus was mounted. The frame was clamped to the well casing and the digital recorder enclosed in an airtight container. The entire assembly fit inside the well vault.

A water level recorder was installed in well 6 (see Figure 2 for location) in October, 1990. An additional recorder was installed in well 4 in January, 1991. Both recorders monitored water levels continuously until April, 1991 when they were removed. Both sites were visited semimonthly to download data and manually measure the water level with a steel tape. The difference between actual and recorded water levels was calculated and used as a correction factor for the recorded data. Elevations at the top of the wells had been previously surveyed by U.S.G.S. personnel and reference the National Geodetic Vertical Datum of 1929.

The water stage in the Columbia River was obtained from the U.S.G.S. in 30 minute intervals from October, 1990 until April, 1991. The source of the data is a water stage recorder located on the Columbia River at Washougal, Washington (river mile 122.9). The datum for this recorder is along a variable Columbia River datum. Blue Lake is adjacent to river mile 118.

A microbarograph located at the U.S.G.S. in Portland, Oregon was the source of barometric pressure data. The microbarograph is a drum recorder which monitors barometric pressure continuously. The paper record was digitized to convert it to digital format in 30 minute intervals from October, 1990 until April, 1991. The microbarograph was monitored and found to have a timing error of no more than 10 minutes per week. Correction of barometric pressure for altitude was unnecessary because absolute magnitude was not used.

Values for precipitation were obtained from the National Weather Service in digital format. These were daily totals as measured at the Portland International Airport.

The water level in Blue Lake was not recorded. It is generally maintained at an elevation of 4.6 meters with a seasonal fluctuation of 0.3 meters (Hoffstetter, 1981).

A subset of data was selected from the overall data based on continuity. From this subset of data, water levels in the aquifer were cross-correlated with each other and with the Columbia River using the computer program CROSS. A listing of CROSS can be found in Appendix C. Precipitation and barometric pressure were examined visually.

RESULTS

Data for the month of February, 1991 were selected for analysis because they contain uninterrupted records of data for all five parameters, wells 4 and 6 water levels, Columbia River water level, barometric pressure, and precipitation. The data can be found in Appendix B. A correction factor was obtained by calculating the difference in recorded and measured water levels in the aquifer. This correction factor was applied to the aquifer water level data to obtain true water level elevations.

DISCUSSION

The data are shown in Figures 17, 18, 19, 20, and 21.

These figures show that there are some very obvious trends among the data sets. The strongest obvious effect on aquifer water levels is the Columbia River stage.

The Columbia River stage shows a considerable amount of fluctuation and periodicity (Figure 17). The period of the fluctuation is about two cycles per day, suggesting a strong tidal effect. The same tidal fluctuations can be seen to a lesser degree in the water level data of well 6 (Figure 18). Water level data of well 4 does not appear to be strongly influenced by tides (Figure 19). Instead it has the appearance of an averaged Columbia River stage. Any effects of local barometric pressure (Figure 20) and precipitation (Figure 21) appear to be overshadowed by the influence of the Columbia River.

The data for water levels in the aquifer and the Columbia River were analyzed using cross-correlation to determine the strength of the relationship and the offset in time phase. Figure 22 shows a plot of the correlation coefficient for water levels in well 6 and the Columbia River. The correlation for this relationship is 0.96. The significance of the correlation coefficient can be tested statistically to determine the independence of the two data sets. The null hypothesis states that the two data sets are independent, random sequences (Davis, 1986). Based on the standard t-test, the null hypothesis is rejected for a significance level of 0.1%. Therefore, the two data sets

Figure 18. Water levels in well 6, February, 1991.

Figure 20. Barometric pressure, February, 1991.

Figure 21. Precipitation, February, 1991.

Figure 22. Correlogram for water levels in well 6 and the Columbia River.

are not independent and the correlation is substantiated. The lag time to maximum correlation is about 3.5 hours and is indicative of the time it takes for the aquifer to respond to the river at well 6.

Figure 23 shows the correlation coefficients for water levels in well 4 and the Columbia River. The strength of this correlation is 0.94. Again, the statistical test substantiates this correlation as valid. The lag time for this maximum correlation is about 9 hours.

Figure 24 is a correlogram of water levels in wells 4 and 6. The correlation of these two data sets is 0.99. From the statistical test, there is no evidence to suggest independence of the data sets, substantiating the strong correlation. This strong correlation suggests that the variations in the two data sets are nearly identical except for the lag and magnitude. The lag between well 4 and 6 is about 3.5 hours.

Lag times calculated include a correction for the difference in location of the river stage recorder. A correction factor of 20 minutes (L. Hubbard, personal communication) per mile was used to correct time lag estimates.

A comparison of figures 17, 18 and 19 shows that the magnitude of the response of the aquifer to river stage decreases with distance. The small changes in river stage of less than 0.1 meters are not seen in the aquifer. Larger stage changes of 0.5 meters are translated to 0.13 meters in

<u>Figure 23.</u> Correlogram for water levels in well 4 and the Columbia River.

Figure 24. Correlogram for water levels in well 4 and 6.

well 6 and to 0.07 meters in well 4. Well 6 is about 150 meters from the Columbia River and well 4 is about 600 meters away. The magnitude of the response of the aquifer to the river is indeed inversely proportional to distance between them.

The relationship of water levels in Blue Lake and the aguifer has been shown when the level of the lake was lowered 3 meters in October, 1981 to alleviate a milfoil problem (Conley, 1981). The normal water level of Blue Lake is higher than in the aquifer and the subsequent lowering of the water level brought it down to an elevation equivalent to or lower than the water level in the aquifer. It was thought that the lake water level would recover naturally but this did not occur (W.D. McFarland, personal communication). The Troutdale sandstone on the south shore of the lake was assumed to be a source of recharge. If it is a source of recharge, it was insufficient to recover the water level in Blue Lake. In the October 1982 water was pumped into Blue Lake from well 12 and the Blue Lake water level was recovered. This event provides evidence that under static conditions, neither of the water sources has a significant effect on the other.

CHAPTER V

CONCLUSIONS

The question of whether a hydraulic connection exists between the Blue Lake gravel aquifer and the Columbia River has been evaluated. The northern extent of the aquifer was shown to be in contact with the river along the south shore of the river. It is suggested that a hydraulic conduit exists in this area. The correlation of water levels between the river and aquifer shows that there is a definite response of the aquifer to the changes in river stage. This correlation does not provide evidence for exchange and mixing of water between the two. The evaluation of stable isotopic compositions shows that under stressed conditions, water from the Columbia River enters the aquifer and penetrates at least as far as the pumping wells.

On the basis of these evidences, it is concluded that the Blue Lake gravel aquifer has a strong hydraulic connection with the Columbia River. Under stressed conditions the contribution of water from the river was estimated to be 72% and is significant. Under static conditions there is no evidence to suggest any significant mixing of waters. The hydraulic boundary between the river and the aquifer must be between the south shore of the Columbia River and the well closest to it (well 6). This delineates a zone about 122 meters wide within which the boundary exists.

The hydraulic relationship between the aquifer and Blue Lake was also evaluated. Mapping of the aquifer sediments showed no evidence to suggest a hydraulic connection. Furthermore, analysis of water levels under static conditions showed no influence. However, analysis of isotopic compositions under stressed conditions shows a small influence of Blue Lake water.

These evidences indicate that there is a weak hydraulic connection between the aquifer and Blue Lake, but only under stressed conditions. Under all other circumstances Blue Lake is considered to be isolated from the aquifer.

A need for further research in this area is indicated by the lack of information about the eastern and northern extent of the aquifer. Moreover, the hydraulic relationship of the aquifer to adjacent hydrogeologic units is not defined. Additionally but not lastly, the absence of Blue Lake and Columbia River waters in samples taken under static conditions indicates that other possible sources of recharge to the aquifer need to be explored.

REFERENCES CITED

- Bretz, J.H., Smith, H.T.U., and Neff, G.E., 1956, Channeled scablands of Washington: New data and interpretations: Geological Society of America Bulletin, v.67, no.8, p. 957-1049.
- Chow, V.T., Maidment, D.R., and Mays, L.W., 1988, Applied hydrology: New York, McGraw-Hill Book Company, 572 p.
- Conley, J.C., "Blue Lake to be lowered in attack on weeds, algae": Oregonian, 22 September, 1981.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, p. 1702-1703.
- Darling, W.G., Allen, D.J., and Armannson, H., 1990, Indirect detection of subsurface outflow from a rift valley lake: Journal of Hydrology, v.113, p. 297-306.
- Davis, J.C., 1986, Statistics and data analysis in geology (2nd edition): New York, John Wiley & Sons, 646 p.
- Domennico, P.A., and Schwartz, F.W., 1990, Physical and chemical hydrogeology: New York, John Wiley & Sons, 824 p.
- Driscoll, F.G., 1986, Groundwater and wells (2nd edition): St. Paul, Minnesota, Johnson Division, 1089 p.
- Fetter, C.W., 1988, Applied hydrogeology (2nd edition): Columbus, Ohio, Merrill Publishing Company, 592 p.
- Foxworthy, B.L., Hogenson, G.M., and Hampton, E.R., 1964, Records of wells and springs, water levels, and chemical quality of ground water in the East Portland area, Oregon: Oregon Ground-Water Report 3, 79 p., 1 pl.
- Griffin, W.C., Watkins, F.A., Jr., and Swenson, H.A., 1956, Water resources of the Portland, Oregon, and Vancouver, Washington area: U.S. Geological Survey Circular 372, 45 p., 2 pls.

- Hartford, S.V., and McFarland, W.D., 1989, Lithology, thickness, and extent of hydrogeologic units underlying the East Portland area, Oregon: U.S. Geological Survey Water-Resources Investigations Report 88-4110, 23 p., 6 pls.
- Heath, R.C., 1982, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hoffstetter, W.F., 1981, Blue Lake aquifer development potential study: Prepared for Portland Water Bureau (unpublished).
- ____1984, Geology of the Portland well field: Oregon Geology, v. 46, no. 6, p. 63-67.
- Hogenson, G.M., and Foxworthy, B.L., 1965, Ground water in the east Portland area Oregon: U.S. Geological Survey Water Supply Paper 1793, 78 p.
- Krabbenhoft, D.P., Bowser, C.J., Anderson, M.P. and Valley, J.W., 1990, Estimating groundwater exchange with lakes 1. The stable isotope mass balance method: Water Resources Research, v. 26, no. 10, p. 2445-2453.
- Krabbenhoft, D.P., Anderson, M.P., and Bowser, C.J., 1990, Estimating groundwater exchange with lakes 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume: Water Resources Research, v. 26, no. 10, p. 2455-2462.
- Leighton, J., 1990, Effects of Blue Lake aquifer pumping on groundwater levels, March 1990: Prepared for Portland Water Bureau (unpublished).
- Malin, R., 1989, Summary report east Multnomah County hydrogeologic study: Prepared for Oregon Department of Environmental Quality (unpublished).
- McCarthy, K.A., and Anderson, D.B., 1990, Ground-water data for the Portland Basin, Oregon and Washington: U.S. Geological Survey Open-File Report 90-126, 56 p.
- Mundorff, M.J., 1964, Geology and ground-water conditions of Clark County, Washington, with a description of a major alluvial aquifer along the Columbia River: U.S. Geological Survey Water-Supply Paper 1600, 268 p., 3 pl.

- Stichler, W., and Moser, H. 1979, An example of exchange between lake and groundwater. In: Isotopes in lake studies: Proceeding of the Advisory Group Meeting, International Atomic Energy Agency, Vienna, 1977. p.115-119.
- Swanson, R.D., 1986, A stratigraphic and geochemical study of the Troutdale Formation and Sandy River mudstone in the Portland Basin and lower Columbia River Gorge: M.S. thesis (unpublished), Portland State University, Portland, Oregon, 151 p.
- Swanson, R.D., McFarland, W.D., Gonthier, J.B. and Wilkinson, J.M., in press, A description of hydrogeologic units in the Portland Basin, Oregon and Washington: U.S. Geological Survey Water-Resources Investigations Report 90-4196.
- Trimble, D.E., 1963, Geology of Portland, Oregon and adjacent areas: U.S. Geological Survey Bulletin 1119, 1119 p.
- Willis, R.F., 1978, Pilot well study: Bureau of Water Works, Portland, Oregon, 150 p. 23 pls.

APPENDIX A

- ¹

WELL IDENTIFICATION CROSS REFERENCE

	WELL		CITY OF
WELL	LOCATION	U.S.G.S.	PORTLAND
ID	NUMBER	ID	ID
1	IN/3E-21acab2	6269	21ac(m1)
2	IN/3E-21acab3	6269	21ac(ml)
3	IN/3E-21accd2	6267	21ac(m2)
4	IN/3E-21accd3	6267	21ac(m 2)
5	IN/3E-21accd4	6267	21ac(m2)
6	IN/3E-21bdbal	6271	13TW
7	IN/3E-21bcbc1	6272	19TW
8	IN/3E-21adbc1	6266	18TW
9	IN/3E-21dbbb3	6268	21db(m3)
10	IN/3E-21dbbb6	6268	21db(m3)
11	IN/3E-21cbcd1	6273	-
12	IN/3E-21acca2	6270	12PW
13	IN/3E-21bdba2	6264	13PW
14	IN/3E-20adbc2	6245	14PW
15	IN/3E-21bd1	-	21bd(p2)
16	IN/3E-21ac3	-	21ac(p 5)
17	IN/3E-21acbb1	6265	17PW
18	IN/3E-21adbc2	6262	18PW
19	IN/3E-21bcbc2	6263	19PW
20	IN/3E-21adaa1	900260	21ad(p2)
21	IN/3E-adl	-	21ad(p1)
22	IN/3E-ddc	6278	-
23	IN/3E-21ac1	-	21ac1
24	IN/3E-21acc	900192	21ac2
25	IN/3E-21addc1	900261	21ad(p3)
26	IN/3E-21dbbb2	900268	21db(p1)
27	IN/3E-21dbbc1	900269	21db(p2)
28	IN/3E-21dbcc2	6274	-
29	IN/3E-21dbcc1	900271	-
30	IN/3E-21cbcd2	900266	-
31	IN/3E-21dcab	6277	-
32	IN/3E-21dd	-	21dd
	-		

APPENDIX B

2

HYDROLOGIC AND METEOROLOGIC DATA

RIVER STAGE, WATER LEVELS, AND BAROMETRIC PRESSURE FOR FEBRUARY, 1991

JULIAN DAY	TIME (MINUTES)	COLUMBIA RIVER STAGE (METERS)	WELL 6 WATER LEVEL (METERS)	WELL 9 WATER LEVEL (METERS)	BAROMETRIC PRESSURE (CENTIMETERS)
20	20	2 012	2 011	0 701	75 054
32	50	3,013	3,011	2.731	75.954
32	00	3 801	3 011	2.736	75 900
32	120	3,001	3 011	2.734	75,900
32	150	3 786	3 011	2.730	75 888
32	180	3 773	3 005	2 739	75 870
32	210	3 716	2 999	2 730	75 857
32	240	3 661	2 990	2 739	75 819
32	270	3 627	2.978	2.739	75.791
32	300	3.594	2,969	2.739	75.773
32	330	3.566	2,960	2,739	75.766
32	360	3.551	2.957	2.739	75.761
32	390	3.536	2.950	2.739	75.761
32	420	3.533	2.947	2.739	75.766
32	450	3.533	2.947	2.736	75.753
32	480	3.539	2.947	2.734	75.740
32	510	3.545	2.947	2.728	75.745
32	540	3.545	2.947	2.728	75.705
32	570	3.603	2.947	2.725	75.659
32	600	3.630	2.947	2.722	75.644
32	630	3.652	2.947	2.716	75.568
32	660	3.667	2.954	2.716	75.537
32	690	3.679	2.960	2.716	75.486
32	720	3.700	2.960	2.716	/5.461
32	/50	3.709	2.963	2.716	75.420
32	700	3.719	2,903	2.710	75.400
32	840	3 728	2,900	2.717	75 382
32	870	3 737	2.966	2.717	75 331
32	900	3 737	2.966	2.717	75.288
32	930	3,737	2,966	2.717	75.265
32	960	3.737	2,963	2.717	75.263
32	990	3.737	2.963	2,717	75.242
32	1020	3.740	2,963	2.717	75.222
32	1050	3.752	2.963	2.717	75.258
32	1080	3.770	2.978	2.717	75.268
32	1110	3.795	2.984	2.722	75.319
32	1140	3.816	2.990	2.722	75.301
32	1170	3.837	3.008	2.722	75.278
32	1200	3.862	3.014	2.722	75.230
32	1230	3.883	3.030	2.725	75.225
32	1260	3.904	3.042	2.733	75.199
32	1290	3,925	3.057	2.746	75.199
32	1320	3.938	3,066	2.752	75.220
32	1350	3.944	3.075	2.761	75.214
32	1410	3.950	3.075	2.761	75 202
32	1410	3.955	3.082	2.700	75 181
32	30	3 944	3 088	2 783	75 181
33	60	3 935	3.088	2.783	75.187
33	90	3 901	3.088	2.783	75.225
33	120	3.874	3.088	2.786	75.255
33	150	3.856	3.085	2,789	75.278
33	180	3.840	3.066	2.789	75.298
33	210	3.822	3.060	2.789	75.306
33	240	3.798	3.048	2.789	75.314
33	270	3.755	3.039	2.789	75.321
33	300	3.722	3.027	2.783	75.324
33	330	3.697	3.024	2.783	75.334
33	360	3.679	3.018	2.777	75.367
33	390	3.670	3.011	2.774	75.397
33	420	3.664	3,008	2.768	/5.451
33	450	3.664	3.008	2.768	75.480
33	480	3.6/3	3.008	2./5/	75.522
33	510	3.6/9	3.008	2.755	75.505
33	540	3,000	3 011	2.754	75 654
33	600	3.709	3.011	2.751	75,662
	000	0.,00	~. ~ * *		

33	630	3.709	3.011	2.748	75.667
22	660	3 700	3 011	2 749	75 674
33	660	3.709	3.011	2.749	/5.0/4
33	690	3.706	3.011	2.748	75.677
22	700	2 700	2 011	2 748	75 684
33	/20	3.700	3.011	2.740	73.084
33	750	3.685	3.011	2.748	75.695
~~	700	0 670	2 005	0 7/0	75 710
33	/80	3.0/3	3.005	2.740	/3./12
33	810	3.658	2.999	2.748	75.758
	010	0.000	2.000	0.740	76 700
33	840	3.639	2.990	2.746	/5./83
22	970	3 624	2 081	2 746	75 814
22	0/0	3.024	2.901	2.740	/5.014
33	900	3.609	2.969	2.742	75.860
				0.700	76 000
33	930	3.587	2,957	2.733	/5.903
33	060	3 575	2 947	2 729	75 941
55	300	0.0/0	2.047	2.720	/5.041
33	990	3.560	2.932	2.723	75.951
22	1000	2 540	1 012	2 701	75 071
33	1020	3.340	2.923	2.701	/3.9/1
33	1050	3 548	2 911	2 690	76.002
	1050	0.540	0.011	0.007	70.005
33	1080	3.548	2,908	2.68/	/6.025
33	1110	3 548	2 908	2 684	76 045
55	1110	5.540	2.300	2.004	70.045
33	1140	3.557	2.908	2.679	76.083
22	1170	2 572	2 009	2 670	76 009
33	11/0	3.372	2.908	2.079	70.098
33	1200	3.587	2.908	2.676	76.116
22	1000	2 600	2 01/	2 676	76 140
33	1230	3.609	2.914	2.0/0	/0.142
33	1260	3.627	2.923	2.676	76.162
~~	1000	0.00/	0.000	0.070	70.000
33	1290	3.639	2.932	2.6/6	/6.192
33	1320	3 648	2 935	2 676	76 210
55	1020	5.040	2.305	2.070	70.210
33	1350	3.655	2.938	2.676	76.220
22	1200	2 655	2 029	2 676	76 2/9
22	1300	3.000	2,930	2.070	/0.240
33	1410	3.658	2.938	2.676	76.251
		0.000	0.000	0.070	76 0/0
33	1440	3.658	2.938	2.6/6	/6.248
34	30	3 658	2 938	2 676	76 251
34	50	5.050	2.300	2.070	70.251
34	60	3.658	2.938	2.676	76.258
34	00	2 662	2 020	2 676	76 261
34	90	3.052	2.930	2.0/0	/0.201
34	120	3.645	2.938	2.676	76.276
					70.001
34	150	3.636	2.935	2.6/6	/6.294
34	180	3 624	2 929	2 676	76 271
	100	5.024	2.323	2.070	/0.2/1
34	210	3.615	2.926	2.676	76.266
24	240	2 602	2 017	2 676	76 262
34	240	3.003	2.91/	2.070	70.203
34	270	3.587	2.911	2.676	76.256
21	200	2 601	2 009	0 676	76 261
34	300	3.301	2.908	2.070	70.231
34	330	3 572	2,905	2 676	76.256
	000	0.572	2.005	2.070	70.200
34	360	3.566	2.905	2.676	/6.246
34	300	3 563	2 902	2 676	76 238
	530	5.505	2.302	2.070	70.200
34	420	3.557	2.899	2.676	76.233
24	450	2 545	2 000	2 676	76 220
34	450	3.343	2.099	2.070	/0.220
34	480	3.542	2.899	2.676	76.203
	610	2 5/2	0.005	0 676	76 209
34	210	3.342	2.905	2.0/0	70.200
34	540	3 557	2 917	2 676	76 218
	540	0.557	2.01/		
34	570	3.566	2.926	2,6/6	/6.236
34	600	3 560	2 9 9 9	2 676	76 241
34	000	5.503	2.023	2.070	/0.241
34	630	3.578	2.932	2.676	76.243
24	660	3 581	2 032	2 676	76 241
34	000	3.301	2.952	2.070	70.241
34	690	3.581	2.932	2.676	76.241
	700	2 601	2 022	2 676	76 261
34	/20	3.381	2.932	2.070	/0.201
34	750	3.569	2,935	2.676	76.297
	750	0.500	0.005	0.070	76 014
34	780	3.560	2,935	2.6/6	/6.314
34	810	3 545	2 932	2 676	76 332
54	010	0.040	2.352	2.0/0	70.002
34	840	3.530	2.923	2.676	76.345
	070	2 611	2 014	2 676	76 263
34	870	3.511	2.914	2.070	70.303
34	900	3,496	2,905	2,676	76.383
	000	0 / 01	2 000	2 676	76 201
34	930	3.481	2.899	2.6/6	/6.391
24	060	3 4 50	2 886	2 667	76 406
54	300	0.400	2.000	2.00/	70.400
34	990	3.459	2.880	2.661	76.424
34	1020	3 450	2 877	2 656	76 420
54	1020	3.438	2.0//	2.050	/0.423
34	1050	3,463	2.862	2.650	76.472
2	1000	2 4 6 6	2 050	2 641	76 494
34	1080	3.466	2.856	2.041	/0.484
34	1110	3 472	2 853	2 641	76 482
54	1110	0.4/2	2.000	2.071	70.402
34	1140	3.475	2.844	2.635	/6.464
2/	1170	3 470	2 844	2 620	76 440
34	11/0	3.4/8	2.044	2.029	/0.449
34	1200	3,481	2.844	2,629	76.439
	1200	0.401		0.000	70 / 01
34	1230	3.484	2.844	2,629	/6.431
34	1260	3 400	2 853	2 629	76 426
54	1200	0.430	2.000		
34	1290	3.493	2.856	2.629	76.426
34	1220	3 406	2 862	2 620	76 420
34	1320	3,490	2.002	2.029	70.429
34	1350	3,499	2.868	2.629	76.418
	1000	2 500	0.050	2 620	76 373
34	1380	3.502	2.000	2.029	/0.3/3
34	1410	3.508	2.874	2,629	76.335
	1410	0.000	0.077	0.000	76 017
34	1440	3.511	2.877	2.629	/6.317
35	20	3 514	2 880	2 629	76 261
ل ن	30	0.014	2.000	2.023	,0.201

35	60	3.511	2.880	2.629	76.203
35	00	3 511	2 880	2 630	76 167
35	50	5.511	2.000	2.000	70.107
35	120	3.505	2.880	2.630	76.116
35	150	3 4 5 6	2 880	2.630	76.058
	100	0.450	2.000	0.005	76,000
35	180	3.429	2.880	2.635	76.002
35	210	3 405	2.880	2.641	75.949
		0.400	0.077	0.011	76 010
35	240	3.377	2.8//	2.644	12.910
35	270	3 310	2 865	2 644	75.898
55	2/0	0.010	2.005	0.011	75,000
35	300	3.264	2.856	2.644	75.890
25	220	3 252	2 844	2 644	75 883
35	330	3.232	2.044	2.044	/ 5.000
35	360	3.228	2.833	2.644	75.855
36	200	2 212	2 919	2 641	75 837
35	390	3.213	2.010	2.041	/5.00/
35	420	3.197	2.812	2.638	75.816
25	150	2 150	2 906	2 625	75 844
33	450	3.150	2.000	2.000	/5.044
35	480	3,149	2.798	2.621	75.910
		0 100	2 700	2 600	75 046
35	210	3.133	2./92	2.009	/3.940
35	540	3.136	2.787	2.597	75.989
	670	0.106	2 7 9 7	2 507	76 012
35	5/0	3.130	2./8/	2.39/	76.012
35	600	3.149	2.787	2.588	76.010
		0.170	0 707	0.500	76 007
35	630	3.1/0	2.787	2.300	/0.02/
35	660	3,179	2.787	2.586	76.032
		0.000	0 707	0 600	76 007
35	690	3.200	2.787	2.000	/0.02/
35	720	3 228	2.787	2.586	76.030
~~	200	0.000	0.707	0.600	76 040
35	/50	3.252	2.787	2.583	/0.048
35	780	3 258	2 787	2 583	76.063
	/00	0.250	2.707	2.500	70.000
35	810	3.271	2.787	2.583	/6.063
35	940	3 205	2 797	2 583	76 043
35	040	3.235	2.787	2.000	70.045
35	870	3,313	2.787	2.583	76.022
26	000	2 212	2 707	2 602	76 020
30	900	3.313	2./0/	2.303	70.020
35	930	3.322	2.787	2.583	76.025
~~	000	2,000	0 701	0 576	76 040
35	960	3.322	2.781	2.5/6	/8.040
35	990	3.322	2.777	2.574	76.048
~~		0.022	0.77/	0.574	76 0/0
35	1020	3.322	2.774	2.5/4	/6.048
35	1050	3.322	2,771	2.574	76.050
~~	1000	0.000	0.700	0.550	76 050
35	1080	3.322	2.766	2.568	/6.050
35	1110	3 319	2 765	2 566	76.048
	1110	0.010	2.703	2.500	70.016
35	1140	3.319	2.761	2.566	/6.045
35	1170	3 319	2,761	2 562	76.045
~~		0.010	0.700	0.550	76 050
35	1200	3.319	2.760	2.559	/6.050
35	1230	3 322	2.760	2.556	76.058
~~	1000	0.005	0,700	0.555	76 006
35	1260	3.335	2.760	2.556	/6.096
35	1290	3 374	2.760	2.553	76.103
	1200	0.0/4	2.700	2.000	76 100
35	1320	3.399	2.760	2.553	76.109
35	1350	3 417	2 769	2 553	76 121
	10.50	0.417	2.700	2.000	
35	1380	3.438	2.775	2.553	/6.149
35	1410	3 459	2 781	2 553	76 185
35	1410	5.455	2.701	2.555	70.105
35	1440	3.472	2.789	2.553	76.225
26	20	2 450	2 790	2 553	76 271
30	30	3.4.38	2.709	2.555	/0.2/1
36	60	3.444	2.789	2.553	76.330
26	00	3 420	2 780	2 553	76 378
30	90	5.420	2.703	2.555	70.070
36	120	3.408	2.789	2.553	76.441
26	150	3 302	2 786	2 553	76 515
30	100	3.352	2.700	2.555	/0.515
36	180	3.374	2.781	2.537	76.586
36	210	3 356	2 774	2 530	76 637
30	210	5.550	2.774	2.500	, 0, 00/
36	240	3.341	2,765	2.530	76.680
36	270	3 329	2 758	2 524	76 741
55	2/0	5.520	2.750	2.524	70.741
36	300	3.313	2.754	2.518	76.782
26	330	3 301	2 746	2 515	76 825
30	330	3.301	2.740	2.313	70.025
36	360	3.289	2.737	2.515	76.901
36	300	3 274	2 733	2 505	76 947
30	290	3.2/4	2.755	2.000	/0.94/
36	420	3.267	2.729	2.504	76.975
26	450	3 264	2 729	2 504	76 000
30	450	3.204	2.720	2.004	70.330
36	480	3.264	2.728	2.504	77.018
20	610	2 071	2 720	2 504	77 033
30	210	3.2/1	2.720	2.004	//.033
36	540	3.286	2.728	2.504	77.089
36	670	3 310	2 734	2 504	77 102
30	5/0	3.310	2.734	2. 304	//.102
36	600	3,325	2.746	2.504	77.132
26	630	3 395	2 759	2 504	77 147
30	030	3.300	2.750	2. 304	//.14/
36	660	3,426	2,763	2.504	77.175
26	600	3 460	2 779	2 504	77 201
30	690	3,409	2.110	2.004	//.201
36	720	3,502	2,793	2,502	77.201
20	750	2 607	2 810	2 507	77 170
30	/50	3.52/	2.810	2.307	//.1/0
36	780	3,551	2.816	2,515	77.147
20	010	3 666	2 820	2 525	77 100
30	910	3.300	2.030	6.222	//.122
36	840	3.581	2.838	2.537	77.099
36	870	3 501	2 841	2 545	77 081
30	0/0	3.391	2.041	2.343	77.001
36	900	3.597	2.847	2.551	77.081

					77 000
36	930	3.600	2.850	2.554	77.086
36	960	3,606	2.853	2.563	77.084
36	000	3 609	2 859	2 569	77 074
30	330	5.008	2.050	2.500	77.050
36	1020	3.608	2.865	2.5/4	11.028
36	1050	3.609	2.865	2.580	77.031
36	1080	3 609	2 868	2.583	77.015
	1000	0.000	2.000	0.500	76 070
36	1110	3.000	2.8/1	2.300	78.972
36	1140	3.606	2.871	2.589	76.962
36	1170	3 606	2 871	2 592	76 959
30	11/0	5.000	2.071	2.552	70.000
36	1200	3.606	2.8/1	2.393	/6.9/0
36	1230	3,606	2.871	2.595	76.980
36	1260	3 606	2 871	2 597	76 959
30	1200	5.000	2.0/1	2.557	70.335
36	1290	3,609	2.880	2.600	76.934
36	1320	3.624	2.883	2.608	76.911
26	1250	2 642	2 806	2 611	76 808
30	1320	3.042	2.090	2.011	70.090
36	1380	3.658	2.902	2.614	76.888
36	1410	3 667	2.908	2.618	76.896
26	1440	3 673	2 009	2 619	76 906
30	1440	3.073	2.908	2.010	70.030
37	30	3.679	2.917	2.623	76.886
37	60	3.685	2,920	2.630	76.876
27	00	2 670	2.026	2 625	76 940
3/	90	3.670	2.920	2.035	70.040
37	120	3.648	2,929	2.644	76.779
37	150	3 633	2,935	2.653	76.733
24	100	2,600	2.003	0.659	76 710
3/	180	3.630	2.941	2.050	/0./10
37	210	3.612	2.941	2.658	76.733
37	240	3 594	2 938	2 658	76 744
57	240	5.534	2.300	2.050	70.744
37	270	3.575	2,938	2.658	/6./11
37	300	3.569	2.938	2.661	76.688
27	220	3 560	2 022	2 661	76 675
3/	330	3.360	2.932	2.001	/0.0/5
37	360	3.548	2.926	2.661	76.672
37	300	3 536	2 923	2 661	76 680
3/	330	5.500	2,323	2.001	70.000
37	420	3.523	2.91/	2.001	/0.085
37	450	3,530	2,908	2.661	76.723
37	480	3 551	2 908	2 661	76 731
34	400	0.551	2.300	2.001	70.701
37	510	3.563	2.908	2.661	/0./30
37	540	3.575	2.908	2.661	76.731
37	570	3 597	2 914	2 661	76 726
57	570	5.557	2.314	2.001	70.720
37	600	3.615	2.920	2.661	10.090
37	630	3.633	2,932	2.661	76.670
27	660	2 620	2 0/1	2 661	76 660
37	000	5.059	2.541	2.001	70.000
37	690	3.655	2.947	2.662	76.629
37	720	3.655	2,957	2.667	76.589
~ ~	750	2 664	2,050	2 675	76 670
3/	/50	3.004	2.960	2.675	/0.5/0
37	780	3.673	2.969	2.679	76.556
37	810	3 682	2,975	2.685	76.533
ží	010	2,602	2.079	2.600	76 522
31	840	3.002	2.978	2.090	70.523
37	870	3.682	2.978	2.691	76.512
37	900	3 682	2.978	2.694	76.479
27	020	2 670	2 084	2 607	76 472
31	930	3.6/9	2.904	2.09/	/0.4/2
37	960	3.679	2.981	2.697	76.469
37	990	3.673	2,981	2.697	76.469
27	1000	2 659	2 081	2 607	76 477
31	1020	3.656	2.901	2.097	/0.4//
37	1050	3.655	2.978	2.697	76,490
37	1080	3,648	2,972	2,697	76.500
27	1110	2 649	2 066	2 607	76 407
3/	1110	5.040	2.300	2.007	70.407
37	1140	3.648	2.966	2.697	/6.492
37	1170	3.648	2.966	2.697	76.484
27	1200	2 645	2 062	2 607	76 492
3/	1200	3.045	2.903	2.09/	70.402
37	1230	3,636	2.963	2.697	76.487
37	1260	3 624	2,957	2.697	76.487
27	1200	2 616	2 054	2 607	76 400
3/	1280	3.015	2.954	2.09/	70.490
37	1320	3.606	2.947	2.697	76.502
37	1350	3,606	2,947	2,697	76.510
37	1290	2 600	2 044	2 604	76 517
5/	1200	3.000	4.044	2.004	70.517
37	1410	3.594	2.938	2.693	76.540
37	1440	3.581	2.938	2.691	76.553
30	20	3 575	2 039	2 600	76 550
30	30	3.3/3	2.330	2.090	70.550
38	60	3.575	2.935	2.690	76.561
38	90	3,575	2,935	2,685	76.578
20	100	2 575	2 020	2 602	76 501
38	120	3.3/3	2.929	2.002	70.59I
38	150	3.575	2.929	2.679	76.594
38	180	3 575	2.926	2.679	76.578
20	210	2 575	2,026	2 670	76 579
38	210	3.5/5	2.320	2.0/9	70.570
38	240	3.575	2.923	2.679	76.584
38	270	3,536	2,920	2,676	76.584
30	200	3 400	2 017	2 676	76 566
38	300	3.499	2.91/	2.0/0	70.000
38	330	3.499	2,908	2.676	/6.561

38	360	3.499	2.899	2.676	76,566
38	300	3 400	2 893	2 667	76 561
50	550	0.400	2.000	2.007	70.501
38	420	3.499	2.883	2.661	/6.558
38	450	3.499	2.877	2.658	76.571
38	480	3 499	2 871	2 653	76 576
	400	0.400	2.071	2.050	76.576
38	510	3.499	2.865	2.649	/0.000
38	540	3.499	2.859	2.644	76.622
38	570	3 400	2 859	2 640	76 639
50	570	5.435	2.053	2.040	70.000
38	600	3.499	2.859	2.638	76.647
38	630	3 499	2.859	2.635	76.657
20	660	2,400	2.050	2.600	76 666
38	660	3.499	2.859	2.630	/0.000
38	690	3.499	2.862	2.630	76.660
20	720	3 400	2 871	2 630	76 624
30	/20	5.455	2.0/1	2.000	70.024
38	750	3.499	2.883	2.630	76.589
38	780	3 499	2.890	2.630	76.576
20	,	2,400	2.000	2.000	76 661
30	810	3.499	2.690	2.630	76.561
38	840	3,499	2.896	2.629	76.540
38	870	3 400	2 902	2 630	76 538
50	070	5.455	2.302	2.000	70.500
38	900	3,499	2.902	2.630	76,535
38	930	3,499	2,902	2,630	76.535
20	060	2 502	2 002	2 620	76 690
30	960	3.302	2.902	2.630	76.530
38	990	3.502	2.902	2.632	76.525
38	1020	3 502	2 902	2 632	76 523
20	1050	2 500	2.002	2.002	76 500
38	1020	3.502	2.902	2.032	/0.523
38	1080	3.502	2.902	2.632	76.528
3.0	1110	3 502	2 002	2 632	76 538
	1110	0.002	2.002	2.002	70.000
38	1140	3.502	2.902	2.632	76.533
38	1170	3 502	2 899	2 633	76.535
~~	1000	2.502	2.000	2.000	70.505
38	1200	3.502	2.896	2.632	76.540
38	1230	3.502	2.890	2.632	76.545
38	1260	3 502	2 883	2 632	76 545
30	1200	3.302	2.005	2.032	70.545
38	1290	3.502	2.880	2.632	76.551
38	1320	3.502	2.877	2.632	76.551
20	1250	3 502	2 971	2 632	76 552
30	1350	3.302	2.8/1	2.032	70.555
38	1380	3.502	2.868	2.632	76.553
38	1410	3.502	2.862	2.633	76.548
20	1 1 1 0	0.502	2.002	2.000	70.540
38	1440	3.502	2.862	2.630	/0.048
39	30	3.502	2.859	2.630	76.540
30	60	3 502	2 850	2 627	76 545
55	00	3.302	2.055	2.027	70.545
39	90	3.496	2.856	2.626	/6.558
39	120	3,493	2.853	2.621	76.563
20	150	3 453	2 850	2 619	76 559
29	120	3.433	2.850	2.010	70.550
39	180	3.432	2.844	2.617	76.558
39	210	3 417	2 841	2 617	76.548
20	210	2 405	2.0.2	2 614	76 645
39	240	3.405	2.833	2.014	70.545
39	270	3.383	2.827	2.611	76.540
39	300	3 371	2 821	2 611	76 530
33	500	0.0/1	2.021	2.011	70.500
39	330	3.302	2.813	2.609	70.323
39	360	3.350	2.807	2.597	76.523
39	390	3 341	2 801	2 595	76.525
~~		0,005	0 705	0.500	76 520
28	420	3.335	2.795	2.392	70.530
39	450	3.325	2.787	2.580	76.543
30	480	3 325	2 778	2 574	76 548
55	400	0.025	0.775	0.570	76 540
39	510	3.34/	2.775	2.5/3	70.348
39	540	3.356	2.771	2.568	76.553
30	570	3 368	2 768	2 562	76 540
00	570	5.505	2.700	2.502	70.540
39	600	3.3/4	2.768	2.002	/0.533
39	630	3,386	2.768	2.557	76.528
30	660	3 300	2 769	2 557	76 545
39	000	3.388	2.700	2.00/	70.545
39	690	3.408	2.768	2.556	/6.525
39	720	3,420	2,768	2.556	76.510
20	750	3 447	2 760	2 556	76 482
28	/ 50	3.44/	2.709	2.550	70.402
39	780	3.472	2.780	2.556	76.454
39	810	3,487	2.792	2.556	76.436
20	040	2 502	2 705	2 554	76 431
28	840	3.302	2.785	2.554	70.431
39	870	3.520	2.800	2.554	76.431
30	900	3.530	2.801	2.554	76.439
22	000	0.500	2 802	2 554	76 446
39	930	3.551	2.803	2.334	/0.440
39	960	3.566	2,806	2.554	76.449
30	990	3 581	2 809	2.554	76 454
39	390	5.501	2.000	0.554	76 150
39	1020	3.591	2.812	2.554	/0.459
39	1050	3,600	2.815	2.554	76.464
20	1090	2 600	2 815	2 554	76 467
28	1080	5.009	2.013	2.554	70.407
39	1110	3.618	2.819	2.554	/6.4/4
39	1140	3,630	2,819	2,554	76.477
20	1170	2 626	2 824	2 554	76 482
28	11/0	5.050	2.024	2.004	70.402
39	1200	3.642	2.824	2.554	76.490
39	1230	3,642	2.824	2.554	76.497
-----	------	-------	---------	---------	--------
30	1260	3 636	2 824	2 554	76 545
55	1200	0.000	2.024	0.554	70.545
39	1290	3.62/	2.824	2.354	/6.5/1
39	1320	3.615	2.824	2.554	76.586
39	1350	3.606	2.824	2.554	76.589
20	1200	3 600	2 821	2 556	76 589
39	1300	5.000	2.021	2.550	70.503
39	1410	3.575	2.821	2.556	76.596
39	1440	3.560	2.818	2.556	76.609
	1440	2.500	2.010	0.555	76 604
40	30	3.342	2.812	2.336	70.004
40	60	3.527	2.809	2.556	76.584
40	90	3 514	2 809	2 556	76 568
	30	0.514	2.000	2.550	70.500
40	120	3.508	2.809	2.556	/0.000
40	150	3.505	2.809	2.556	76.556
	100	3 406	2 800	2 556	76 540
40	100	3.490	2.809	2.550	70.540
40	210	3.484	2.809	2.556	76.525
40	240	3 466	2.806	2.556	76.530
	070	0.400	2.000	2.555	76 660
40	270	3.41/	2.801	2.556	/0.555
40	300	3.380	2.793	2.556	76.573
40	330	3 353	2 783	2 556	76 599
40	330	5.555	2.700	2.550	70.000
40	360	3.331	2.7/1	2.551	/6.614
40	390	3.307	2.761	2.544	76.617
40	420	3 280	2 755	2 542	76 606
	420	0.203	2.755	2.542	70.000
40	450	3.280	2.749	2.542	76.558
40	480	3.274	2.746	2.542	76.553
40	510	3 259	2 740	2 542	76 553
-	510	5.250	2.740	2.542	70.555
40	540	3.252	2.729	2.528	76.553
40	570	3 240	2.720	2.524	76.551
10	600	3 335	2 710	2 510	76 5/5
40	600	3.225	2.710	2.519	70.345
40	630	3.222	2.704	2.513	76.543
40	660	3 222	2 697	2 509	76 543
	000	0.222	2.007	2.500	70.540
40	690	3.228	2.696	2.505	/6.505
40	720	3.240	2.696	2.504	76.472
40	750	3 240	2 696	2 505	76 449
40	750	5.245	2.030	2.505	70.440
40	780	3.261	2.696	2.505	/6.424
40	810	3.258	2.684	2,493	76.406
40	940	3 246	2 685	2 493	76 301
40	040	5.240	2.005	2.435	70.001
40	870	3.228	2.685	2.492	76.385
40	900	3 222	2.684	2.492	76.378
	000	2 202	2 6 9 5	2 4 9 7	76 370
40	930	3.203	2.005	2.407	70.370
40	960	3.188	2.684	2.487	76.370
40	990	3 179	2 684	2 483	76 360
	1000	2 172	2 670	2 4 9 1	76 357
40	1020	3.1/3	2.6/9	2.401	/0.33/
40	1050	3.155	2.673	2.473	76.355
40	1080	3 142	2.665	2 472	76.350
70	1000	0.142	2.005	0.460	76.050
40	1110	3.158	2.030	2.403	70.330
40	1140	3.173	2.650	2.458	76.380
40	1170	3 179	2 643	2 451	76 396
70	1000	0.170	0.600	2.452	76 411
40	1200	3.1/9	2.033	2.441	70.411
40	1230	3.179	2.629	2.434	76.411
40	1260	3 176	2 621	2 432	76.418
	1000	0.167	2,612	2,426	76 421
40	1290	3.16/	2.012	2.420	70.421
40	1320	3.152	2.606	2.416	76.426
40	1350	3 136	2.597	2.412	76.434
	1000	2 116	2.500	2 412	76 431
40	1280	3.115	2.309	2.412	70.431
40	1410	3.100	2.582	2.402	76.418
60	1440	3 088	2.576	2,399	76.406
		2,000	2 555	2 204	76 206
41	30	3.069	2.366	2.394	70.390
41	60	3.060	2.556	2.385	76.388
41	90	3 051	2 554	2.377	76.385
41	50	5.051	2.334	0.067	76 201
41	120	3.042	2.34/	2.307	70.391
41	150	3.039	2.541	2.364	76.401
41	180	3 039	2.536	2.364	76.403
	100	0.000	2.500	2 256	76 409
41	210	3.039	2.533	2.350	70.408
41	240	3.039	2.531	2.350	76.411
41	270	3 039	2.525	2.344	76.411
7.1	270	2.000	0.504	2 220	76 202
41	300	3.039	2.524	2.330	/0.383
41	330	3.042	2.524	2.338	76.385
41	360	3 048	2 524	2.338	76.378
41	000	0.040	0.504	2.220	76 300
41	390	3.085	2.524	2.338	70.300
41	420	3.109	2.524	2.335	76.368
41	450	3 124	2. 524	2,333	76.363
41	4.50	0.127	0.504	2 220	76 360
41	480	3.139	2.524	2.329	70.300
41	510	3.152	2.524	2.326	76.365
41	540	3 173	2.524	2,323	76.363
41	540	0.1/0	0.504	2.222	76 353
41	570	3.185	2.524	2.323	70.332
41	600	3.188	2.524	2.323	76.342
41	630	3 194	2.524	2,323	76.340
	000				

41	660	3,194	2.524	2.318	76.312
41	600	3 107	2 524	2 318	76 286
71	700	0.107	2.524	0.016	76 256
41	/20	3.19/	2.524	2.310	10.230
41	750	3.194	2.528	2.316	76.241
41	780	3 194	2.536	2.316	76.213
71	,00	0.104	2.500	0.016	76 176
41	810	3.203	2.541	2.310	/6.1/5
41	840	3.210	2.547	2.316	76.164
41	970	3 228	2 559	2 316	76 162
4 I	0/0	3.220	2.339	2.510	70.102
41	900	3.237	2.562	2.316	76.142
41	030	3 243	2 569	2 316	76 134
71	330	5.240	2.500	2.010	76.144
41	960	3.252	2.5/6	2.316	/0.144
41	990	3,264	2.580	2.321	76.147
41	1020	2 274	2 595	2 321	76 144
41	1020	3.2/4	2.303	2.521	70.144
41	1050	3.271	2.585	2.321	76.144
41	1080	3 200	2.585	2.321	76.144
7.	1000	0.200	0.505	0.001	76 144
4 I	1110	3.222	2,385	2.321	/0.144
41	1140	3.228	2.585	2.321	76.149
41	1170	3 231	2 585	2 321	76 152
41	11/0	5.251	2.505	2.021	70.152
41	1200	3.231	2.585	2.321	/6.154
41	1230	3.231	2.580	2.321	76,159
41	1260	2 229	2 576	2 221	76 150
41	1200	3.220	2.576	2.321	70.139
41	1290	3.228	2.573	2.321	76.144
41	1320	3 225	2.569	2.321	76.134
	1020	0.016	2.500	0.001	76 101
41	1350	3.216	2.300	2.321	/0.131
41	1380	3.213	2.559	2,321	76.134
11	1410	2 206	2 554	2 321	76 131
41	1410	3.200	2.334	2.521	70.131
41	1440	3.200	2.550	2.323	76.124
42	30	3 191	2.547	2.321	76.111
		0.100	0.510	0.001	76 076
42	60	3.188	2.342	2.321	/6.0/6
42	90	3.182	2.539	2.323	76.043
12	120	3 182	2 531	2 323	76 045
42	120	5.102	2.331	2.020	70.045
42	150	3.200	2.531	2.323	76.040
42	180	3,213	2.530	2.323	76.010
10	210	2 220	0 521	2 2 2 2 2	75 002
42	210	3.220	2.331	2.323	73.992
42	240	3.246	2.534	2.323	76.010
42	270	3 267	2 539	2 318	76.012
	2/0	0.207	2.500	0.010	76.000
42	300	3.280	2.544	2.318	72.999
42	330	3.301	2.557	2.318	75.969
12	260	2 225	2 560	2 319	76 002
42	300	3.325	2.500	2.510	70.002
42	390	3.350	2.560	2.318	/6.02/
42	420	3.359	2.565	2.318	76.065
10	4.50	2 265	2 565	2 215	76 111
42	450	3.305	2.305	2.315	/0.111
42	480	3.368	2.574	2.315	76.106
42	510	3 377	2 579	2 315	76.109
42	510	5.077	2.5/5	2.015	70.100
42	540	3.395	2.5/9	2.315	70.091
42	570	3.399	2.583	2.315	76.093
12	600	3 405	2 586	2 323	76 096
42	000	5.405	2.500	2.020	70.000
42	630	3.411	2.586	2.323	76.103
42	660	3.414	2.588	2.323	76.098
42	600	3 417	2 588	2 323	76 093
42	090	5.41/	2.500	2.020	70.000
42	720	3.414	2.594	2.326	76.083
42	750	3.408	2.594	2.329	76.073
	700	2 4 1 4	2 504	2 220	76 0/3
42	/80	5.414	2.594	2.330	70.043
42	810	3.420	2.603	2.335	76.022
42	840	3.426	2.614	2,339	76.007
10	070	0.400	2 621	2 244	75 007
42	8/0	3.441	2.021	2.344	/3.99/
42	900	3.456	2.637	2.348	75.997
42	030	3 478	2.649	2.353	75.994
74	330	0.7/0	0.040	0.000	76 000
42	960	3.502	2.005	2.302	70.002
42	990	3.514	2.675	2.365	76.012
4.2	1020	3 530	2 682	2 371	76 022
42	1020	0.555	2.002	0.071	76 040
42	1050	3.557	2.688	2.3/4	70.048
42	1080	3,563	2.696	2.380	76.060
40	1110	3 575	2 701	2 384	76 088
42	TITO	3.3/3	2.701	2.004	70.000
42	1140	3.581	2.707	2.387	/6.114
42	1170	3,609	2,711	2.391	76.142
10	1000	2 600	2 716	2 202	76 167
42	1200	3.630	2./10	2.353	70.107
42	1230	3.648	2.720	2,400	/6,190
42	1260	3 664	2.725	2.403	76.203
42	1200	3.004	0.705	0.400	76 000
42	1290	3.676	2.725	2.408	/0.233
42	1320	3,676	2.733	2.411	76.253
12	1250	3 667	2 733	2 414	76 266
42	1320	3.00/	2.755	0.414	70.007
42	1380	3.655	2.733	2.419	/6.297
42	1410	3.645	2.733	2.420	76.312
10	1//0	2 626	2 733	2 423	76 317
42	1440	3.030	2.733	2.420	70.017
43	30	3.597	2.733	2.426	76.317
13	60	3 579	2 733	2 432	76.317
43	00	3.3/0	2.700	2.402	

43	90	3,563	2.733	2.434	76.337
10	100	2 515	0 722	0 4 3 4	76 260
43	120	3.345	2.733	2.434	78.330
43	150	3,505	2.733	2.434	76.368
4.3	100	3 401	2 733	2 434	76 383
40	100	3.401	2.755	2.434	70.303
43	210	3.444	2.733	2.434	76.416
43	240	3 426	2 733	2 434	76 434
	240	0.420	2.700	2.404	70.404
43	270	3.383	2.733	2.434	76.439
43	300	3 350	2 733	2 434	76 434
	000	0.000	2.700	2.404	70.404
43	330	3.338	2.733	2.434	76.429
43	360	3 319	2 728	2 434	76 439
	500	0.010	2.720	2.404	70.400
43	390	3.301	2.723	2.434	/0.454
43	420	3.286	2.714	2.434	76.477
		0.200	0.711	2 4 2 4	76 400
43	450	3.26/	2./11	2.434	76.490
43	480	3.252	2,702	2.434	76.505
		0.004	0,000	0 4 9 4	76 616
43	510	3.234	2.690	2.434	/0.010
43	540	3.213	2.681	2.434	76.523
4.2	670	2 216	0 670	0 4 2 1	76 696
43	570	3.210	2.0/2	2.431	76.525
43	600	3.219	2.667	2.431	76.523
1.2	620	3 240	2 661	2 426	76 515
43	030	5.245	2.001	2.420	/0.515
43	660	3.264	2.656	2.425	76.507
43	690	3 277	2 653	2 420	76 479
75	030	0.277	2.050	2.420	70.475
43	720	3.286	2.653	2.420	76.446
43	750	3 292	2 652	2 420	76 426
12	700	3 301	2 650	2 / 20	76 400
43	/80	3.301	2.000	2.420	/0.406
43	810	3.301	2.650	2.420	76.388
43	840	3 307	2 650	2 420	76 375
	040	5.307	2.050	2.420	10.015
43	870	3.335	2.650	2.420	76.363
43	000	3 368	2 650	2 420	76 352
45	300	5.500	2.050	2.420	70.002
43	930	3.399	2.661	2.420	76.335
43	960	3 429	2 675	2 420	76.324
		0.420	2.0/5	2.120	70.024
43	990	3.48/	2.690	2.420	70.319
43	1020	3.533	2.707	2.420	76.314
43	1050	3 566	2 720	2 420	76 314
40	1050	3.500	2.720	2.420	70.314
43	1080	3.600	2.733	2.425	76.319
43	1110	3 624	2.745	2 432	76.319
	1110	2 660	0.755	0.402	76.010
43	1140	3.052	2.755	2.43/	/0.322
43	1170	3.670	2.761	2.443	76.330
43	1200	3 682	2 772	2 451	76 335
40	1200	5.002	2.772	2.451	70.000
43	1230	3.697	2.783	2,455	76.340
43	1260	3 703	2 783	2 460	76 345
	1000	0.700	2.700	2.100	70.015
43	1290	3.709	2.789	2.467	76.355
43	1320	3,719	2.793	2.472	76.355
	1050	0 705	2,709	0 470	76 257
43	1330	3.725	2.798	2.4/0	10.357
43	1380	3.728	2.806	2.481	76.365
43	1410	3 731	2 806	2 489	76 373
75	1410	0.701	2.000	2.400	70.070
43	1440	3./34	2.810	2.493	76.380
44	30	3,737	2.813	2.501	76.378
	60	3 737	2 810	2 504	76 301
44	00	3.737	2.019	2.304	70.331
44	90	3.737	2.821	2.509	76.398
44	120	3 737	2 821	2 512	76 411
	100	0.707	0.001	0.610	76 412
44	120	3./3/	2.821	2.515	/0.413
44	180	3.737	2.829	2.521	76.416
	210	3 710	2 835	2 524	76 426
44	210	3.719	2.035	2.324	70.420
44	240	3.703	2.835	2.525	76.444
44	270	3 661	2 844	2.531	76.459
17	2/0	2	2.044	0 607	76 474
44	300	3.033	2.84/	2.53/	/0.4/4
44	330	3.615	2.850	2.542	76.490
4.4	360	3 606	2 850	2 548	76 502
	300	3.000	2.000	2.340	70.502
44	390	3.630	2.856	2.551	76.528
44	420	3 642	2.865	2.554	76.548
77	1.50	2,642	0.071	2 667	76 672
44	450	3.048	2.8/1	2.55/	/0.5/3
44	480	3.658	2.871	2.563	76.609
44	510	3 679	2.880	2.563	76 629
	510	0.075	2.000	0.500	76 660
44	540	3.694	2.883	2.568	/0.660
44	570	3.709	2.890	2.571	76.670
	600	2 700	2 800	2 577	76 695
44	600	5.722	2.090	2.5//	/0.005
44	630	3.722	2.896	2.583	76.703
	660	3 725	2 800	2 585	76 711
44	000	3.725	2.033	2,505	70.711
44	690	3.740	2.902	2.592	/6,713
44	720	3.746	2,908	2,600	76.708
	, 20	0.740	2.000	2.500	76 700
44	/ 50	3.731	2.914	2.008	70.708
44	780	3,716	2.917	2.614	76.711
4.4	910	3 706	2 917	2 620	76 708
44	910	3.700	2.51/	2.020	70.700
44	840	3.703	2.926	2.621	/6./03
44	870	3,697	2,926	2.627	76.708
77	0/0	0.007	2.020	2 620	76 729
44	900	3.697	2.932	2.630	/0./28
44	930	3.700	2.941	2.632	76.744

44	960	3,712	2.950	2.638	76.756
4.4	000	3 728	2 969	2 644	76 761
	1020	3 746	2 081	2 653	76 766
44	1020	3.740	2.501	2.055	70.700
44	1050	3.764	2.996	2.662	76.777
44	1080	3.786	3.008	2.672	76,805
44	1110	3,828	3.024	2.678	76.807
44	1140	3 862	3 033	2,690	76.802
77	1170	3 993	3 051	2 704	76 799
44	11/0	3.003	3.051	2.704	70.788
44	1200	3.895	3.066	2./1/	76.805
44	1230	3.904	3.078	2.726	76.810
44	1260	3.911	3,085	2.737	76.807
	1200	3 011	3 091	2 748	76 799
	1290	3.311	5.031	2.740	76.703
44	1320	3.895	3.097	2.755	76.767
44	1350	3.883	3.097	2.765	76.777
44	1380	3.874	3.103	2.774	76.789
44	1410	3 868	3,103	2.780	76.802
	1440	3 963	3 103	2 780	76 787
44	1440	3.862	3.103	2.700	70.707
45	30	3.859	3.103	2.769	76.701
45	60	3.847	3.103	2.801	76.741
45	90	3.844	3.103	2.804	76.726
45	120	3 844	3 109	2 807	76 718
75	150	3 844	2 105	2,007	76 703
45	150	3.844	3.108	2.807	70.703
45	180	3.844	3.105	2.813	/6.65/
45	210	3.847	3.106	2.816	76.632
45	240	3.859	3,115	2.822	76.624
45	270	3 868	3 121	2 829	76 591
	2/0	2.000	2 120	2.020	76 660
45	300	3.883	3,130	2.835	/0.558
45	330	3.904	3.139	2.847	76.510
45	360	3,929	3,155	2.853	76.477
45	390	3 953	3 167	2 862	76.457
45	420	3 078	3 170	2 874	76 449
45	420	3.978	5.1/5	2.0/4	70.448
45	450	3,987	3.188	2.880	76.441
45	480	4.002	3.197	2.883	76.441
45	510	4,002	3.203	2.886	76.436
45	540	4 005	3 210	2 893	76 434
75	570	4.005	2 212	2,000	76 441
45	570	4.020	3.213	2.899	70.441
45	600	4.042	3.219	2.902	/6.454
45	630	4.048	3.219	2.905	76.454
45	660	4.051	3.225	2.905	76.429
45	690	4 054	3 231	2 917	76 383
15	720	4.057	3 340	2 022	76 375
45	/20	4.037	3.240	2.923	70.375
45	750	4.057	3.246	2.935	/6.363
45	780	4.060	3.249	2.938	76.324
45	810	4,060	3.252	2.941	76,309
45	840	4 057	3 258	2 947	76 309
	040	4.007	2.250	2.047	76 200
40	870	4.036	3.230	2.950	70.299
45	900	4.020	3.258	2.950	76.294
45	930	4.011	3.258	2.954	76.289
45	960	4.005	3.258	2,960	76.302
45	000	4 005	3 261	2 960	76 289
75	1000	4.005	2.201	2.000	76 274
45	1020	4.005	3.204	2.960	70.2/4
45	1050	4.005	3.2/4	2.963	76.294
45	1080	4.008	3,283	2,969	76.312
45	1110	4.029	3.286	2,969	76.314
	1140	4 042	3 202	2 972	76 312
45	1170	4.042	2 201	2.070	76 210
45	11/0	4.048	3.301	2.9/0	70.319
45	1200	4.048	3.301	2.984	76.312
45	1230	4.048	3.307	2.984	76.299
45	1260	4.048	3,313	2,993	76.291
15	1200	4.040	3 313	2 006	76 289
45	1290	4.048	3.313	2.990	76.203
45	1320	4.042	3.313	2.999	76.281
45	1350	4.033	3.313	2.999	76.269
45	1380	4.026	3.313	3.005	76.266
45	1410	4,020	3,313	3.008	76.261
15	1640	4 011	3 313	3 008	76 253
45	1440	9.011	3 213	3 000	76 249
40	30	3.990	3.313	5.008	70.240
46	60	3,984	3.313	3.008	76.246
46	90	3.965	3.313	3.008	76,236
46	120	3 947	3.304	3,008	76.220
10	160	2 025	3 201	3 008	76 210
40	120	5,855	3.301	2.000	76 200
46	180	3.920	3.295	3,008	70.208
46	210	3.911	3.289	3.008	76.203
46	240	3,901	3.280	3.008	76.200
46	270	3 892	3.277	3.008	76.200
40	200	3 880	3 271	3 008	76 197
40	300	2 000	3 371	3 008	76 203
46	330	3.889	3.2/1	0.000	70.203
46	360	3,889	3.271	3.008	/0.205

46	390	3.892	3,271	3.008	76.208
10	400	2 001	2 271	2 009	76 212
40	420	3.901	5.2/1	3.000	/0.215
46	450	3.908	3.271	3.002	76.220
46	480	3 017	3 271	2 999	76 225
40	400	5.517	0.271	2.333	70.225
46	510	3,920	3.2/1	2.999	76.228
46	540	3,926	3,271	2,999	76.225
	670	0.000	0.071	2.000	76,000
46	5/0	3.929	3.2/1	Z.999	/0.223
46	600	3,929	3.271	2.999	76.223
10	620	2 020	2 271	2 000	76 220
40	630	3.929	3.2/1	2.999	78.230
46	660	3.926	3.271	2.999	76.223
46	600	3 041	3 271	2 000	76 208
40	090	3.941	3.2/1	2.999	70.200
46	720	3.950	3.271	2.999	76.192
46	750	3 053	3 271	2 999	76 175
	/ 50	0.000	0.271	2.000	70.175
46	780	3,962	3.2/1	2.999	/6.15/
46	810	3,962	3.271	2,999	76.144
10	010	0.000	0.071	2.000	76 101
40	840	3.902	3.2/1	2.999	/0.131
46	870	3,962	3.271	2.999	76.129
46	900	3 965	3 271	2 999	76 126
	300	0.000	0.271	2.000	70.120
46	930	3.968	3.2/1	2.999	/6,121
46	960	3,975	3.271	2.999	76.114
1.0	000	2 087	3 371	2 000	76 111
40	990	3.907	3.2/1	2.999	/0.111
46	1020	3.996	3.271	2.999	76.114
46	1050	4 011	3 271	2 999	76 116
40	1050	4.011	0.271	2,333	70.110
46	1080	4.033	3.277	2.999	76.119
46	1110	4.057	3.289	2,999	76.119
16	1140	4 081	2 204	2,000	76 124
4D	1140	4.081	3.304	2.999	/0.124
46	1170	4,100	3.313	2.999	76.119
	1200	4 110	2 210	3 005	76 124
40	1200	4.110	3.319	3.005	70.124
46	1230	4.130	3.328	3,008	76.121
46	1260	4 145	3 331	3 008	76 144
10	1200	4.145	0.001	0.000	70.144
46	1290	4.148	3.335	3.014	/6.149
46	1320	4.157	3.335	3.018	76.147
16	1250	4 161	3 344	3 021	76 157
40	1350	4.101	3.344	3.021	/0.15/
46	1380	4.161	3.344	3.027	76.164
46	1410	4 161	3 347	3 027	76 175
10	1410	4 101	2.047	0.027	76 175
40	1440	4.161	3.34/	3.030	/0.1/5
47	30	4.124	3.347	3.033	76.175
17	60	4 100	3 347	3 036	76 197
4/	60	4.100	3.34/	3.030	/0.10/
47	90	4.072	3.347	3,036	76.195
47	120	4 051	3 347	3 036	76 200
74	120	4.001	0.047	0.000	70.000
4/	150	4.029	3.34/	3.036	76.203
47	180	4.014	3.338	3.036	76.203
47	210	3 000	2 225	2 026	76 205
4/	210	3.990	3.335	3.030	70.205
47	240	3.975	3,325	3,036	76.215
47	270	3 962	3 319	3 036	76 225
74	2/0	0.002	0.010	0.000	76 041
47	300	3.950	3.316	3.036	/6.241
47	330	3.938	3.307	3.036	76.238
47	360	3 038	3 307	3 033	76 243
4/	300	5.556	3.507	5.000	70.245
47	390	3.938	3.307	3.033	76.266
47	420	3,938	3.307	3,030	76.284
	4.50	2 028	2 207	2 020	76 201
4/	450	3.838	3.307	5.030	10.291
47	480	3.938	3.307	3.027	76.302
47	510	3 941	3 307	3 027	76 309
74	510	0.017	2 207	2 007	76 010
47	540	3.94/	3.307	3.027	10.318
47	570	3,953	3,307	3.027	76.330
47	600	3 053	3 307	3 027	76 330
	000	5.555	5.507	0.027	70.000
47	630	3.950	3.307	3.027	76.332
47	660	3,947	3,304	3,027	76.309
	000	0.01/	2 001	2 001	76 007
47	690	3.944	3.301	3.024	/0.29/
47	720	3,950	3,295	3.027	76.286
17	750	3 063	3 205	3 027	76 276
4/	/50	5.902	3.295	3.027	/0.2/0
47	780	3.968	3.295	3.027	76.251
47	810	3 968	3,295	3.027	76.228
74	010	0.000	2 205	2 027	76 005
47	840	3.9/2	3.295	3.02/	10.225
47	870	3.975	3.295	3.027	76.220
47	000	3 075	3 280	3 027	76 223
4/	900	3.8/5	5.205	0.027	70.220
47	930	3.972	3.283	3.027	/6.223
47	960	3,968	3,283	3,021	76.225
74	300	0.000	2 077	2 010	76 000
47	990	3.959	3.2//	3.018	70.230
47	1020	3,959	3.274	3.014	76.233
47	1050	3 055	3 274	3 014	76 233
4/	1020	3.850	5.2/4	3.014	70.200
47	1080	3.950	3.274	3.014	76.238
47	1110	3,950	3.274	3,011	76.241
74	11/0	2 052	3 374	3 011	76 242
47	1140	3,953	3.2/4	3.011	70.243
47	1170	3.962	3.274	3.011	76.253
47	1200	3 968	3 274	3,011	76.269
4/	1200	3.500	0.274	0.011	76 060
47	1230	3.975	3.2/4	3.011	/0.209

47	1260	3.984	3.274	3.011	76.269
17	1200	3 084	3 274	3 011	76 263
	1220	2 084	3 374	3 011	76 266
4/	1320	3.904	3.2/4	3.011	76.200
47	1350	3.984	3.274	3.011	/0.2/1
47	1380	3.981	3.274	3.011	76.291
47	1410	3.978	3.274	3.011	76.324
47	1440	3 968	3.274	3.011	76.340
10	20	3 047	3 274	3 011	76 342
40	30	3.94/	5.2/4	5.011	70.042
48	60	3.929	3.2/4	3.005	76.363
48	90	3.911	3.264	3.002	76.375
48	120	3 895	3.252	2,996	76.385
10	150	2,000	3 240	2 000	76 401
40	150	3.880	5.249	2.330	70.401
48	180	3.862	3.237	2.990	70.441
48	210	3.844	3.228	2.984	76.497
48	240	3.828	3.219	2,975	76.517
1.8	270	3 819	3 206	2 957	76 538
40	270	2.013	3,200	2.057	76 563
48	300	3.804	3.200	2.947	70.503
48	330	3.795	3.188	2.941	76.586
48	360	3.789	3.185	2.938	76.606
48	390	3.789	3,185	2,932	76.632
10	420	3 780	3 185	2 929	76 660
40	420	3.709	3.105	2.323	76.670
48	450	3.792	3.185	2.926	/0.0/0
48	480	3.801	3.185	2.923	76.690
48	510	3.810	3.185	2.923	76.711
48	540	3 819	3 185	2,923	76.728
40	570	3 822	3 195	2 020	76 744
40	570	5.022	3.105	2.920	70.744
48	600	3.825	3.185	2.920	/0./04
48	630	3.856	3.185	2.917	76.777
48	660	3.874	3,185	2,917	76.784
40	600	2 880	3 185	2 017	76 774
40	090	3.889	5.105	2.317	76.779
48	720	3.901	3.185	2.91/	/6.//9
48	750	3.908	3.185	2.917	76.782
48	780	3,914	3.185	2.917	76.777
48	810	3,917	3.185	2,917	76.777
40	840	3 017	3 185	2 917	76 779
40	040	3.317	5.105	2.517	76 707
48	870	3.91/	3.179	2.911	/0./0/
48	900	3.904	3.176	2.911	76.789
48	930	3.895	3.176	2.911	76.794
48	960	3 892	3,176	2.911	76.797
40	000	3 880	3 170	2 011	76 810
40	990	3.880	5.170	2.311	76.010
48	1020	3.8/1	3.170	2.911	70.020
48	1050	3.865	3.164	2.911	76.843
48	1080	3,862	3.164	2,905	76.860
4.8	1110	3 862	3 164	2,905	76.868
40	1140	3 962	3 164	2 002	76 881
40	1140	3.862	3.104	2.902	70.001
48	1170	3.880	3.164	2.902	76.090
48	1200	3.892	3.164	2.899	76.909
48	1230	3.904	3.164	2.899	76.911
48	1260	3 917	3,170	2.899	76.919
40	1200	3 917	3 173	2 899	76 916
40	1290	5.517	0.170	2.000	76 014
48	1320	3.91/	3.1/3	2.099	70.914
48	1350	3.914	3.179	2.899	76.914
48	1380	3,908	3.179	2.899	76.921
4.8	1410	3 901	3 179	2.899	76.924
70	1410	2 805	3 170	2 800	76 034
48	1440	3.895	3.1/9	2.033	70.934
49	30	3.886	3.1/9	2.899	76.934
49	60	3.877	3.176	2.899	76,942
49	90	3,856	3,170	2.899	76.947
40	120	3 937	3 167	2 899	76 944
49	120	3.837	3.10/	2.033	76.010
49	150	3.819	3.104	2.099	70.919
49	180	3.801	3.158	2.899	/6.919
49	210	3,786	3.152	2.899	76.919
49	240	3,770	3,139	2,899	76.919
40	270	3 752	3 136	2,896	76 914
49	2/0	0.752	2 1 2 7	2 000	76 006
49	300	3.740	3.12/	2.890	70.900
49	330	3.728	3.121	2.890	76.895
49	360	3.722	3,118	2.890	76.886
40	390	3 719	3.115	2.883	76.876
10	100	2 710	3 115	2 883	76 868
49	420	3.719	3.113	2.000	76.000
49	450	3.719	3.115	2.880	/0.803
49	480	3.728	3.115	2.880	76.863
49	510	3,740	3.115	2.874	76.865
40	540	3 752	3 115	2.874	76.863
10	570	3 761	3 115	2 874	76 863
49	570	5.701	3.113	2.0/4	76 065
49	600	3.770	3.118	2.8/4	70.003
49	630	3.773	3.118	2.874	76.873
49	660	3.776	3.118	2.874	76.883

49	690	3.776	3.118	2.874	76.881
49	720	3 776	3,118	2.871	76.876
40	750	3 776	3 119	2 871	76 865
49	750	3.770	2 110	2.071	76.005
49	780	3.776	3.118	2.8/1	/0.033
49	810	3.770	3.118	2.871	76.848
49	840	3.761	3.115	2.871	76.850
49	870	3,752	3,109	2.868	76.845
40	000	3 740	3 106	2 862	76 848
49	900	5.740	5.100	2.002	70.040
49	930	3.728	3.097	2.859	76.848
49	960	3.719	3.091	2.856	76.850
49	990	3,709	3.085	2.853	76.855
40	1020	3 607	3 072	2 847	76 863
49	1020	3.097	3.072	2.04/	70.005
49	1050	3.685	3.063	2.844	/6.8/8
49	1080	3.676	3.054	2.832	76.881
49	1110	3,670	3.051	2.825	76.886
40	1140	3 667	3 045	2 822	76 909
49	1140	5.007	3.045	2.022	70.000
49	11/0	3.667	3.045	2.819	76.921
49	1200	3.667	3.045	2.819	76.926
49	1230	3.670	3.045	2.813	76.929
40	1260	3 679	3 045	2 813	76 929
40	1000	2,600	2.045	2,010	76.024
49	1290	3.082	3.045	2.813	70.934
49	1320	3.685	3.045	2.813	76,937
49	1350	3.691	3.045	2.813	76,959
49	1380	3.691	3.045	2.807	76.957
40	1410	3 691	3 045	2 807	76 937
43	1410	3.031	0.045	2.007	76.062
49	1440	3.691	3.045	2.807	/0.003
50	30	3.691	3.045	2.807	76.835
50	60	3.679	3.036	2.807	76.886
50	00	3 673	3 033	2 807	76 004
50	100	5.075	0.000	2.007	76.014
50	120	3.661	3.030	2.807	76.914
50	150	3.652	3.024	2.801	76.896
50	180	3.642	3.021	2.801	76.876
50	210	3 633	3 014	2 801	76 838
50	210	0.000	2.005	2.001	76.000
50	240	3.62/	3.005	2.792	/0.020
50	270	3.615	2.999	2.792	76.797
50	300	3.609	2.993	2.786	76,792
50	330	3 603	2,984	2.777	76.792
50	360	3 504	2 081	2 774	76 700
50	300	3.384	2.501	2.774	70.733
50	390	3.594	2.981	2.761	/6.80/
50	420	3.594	2.978	2.761	76.812
50	450	3,606	2.978	2.757	76.832
50	480	3 621	2 978	2 754	76.840
50	510	2 620	2 091	2 754	76 953
50	510	3.039	2.981	2.754	70.033
50	540	3.667	2.993	2.754	/0.8/1
50	570	3.679	3.002	2.754	76.888
50	600	3.697	3,008	2.754	76,916
50	630	3 700	3 014	2 754	76 924
50	660	2 706	2 019	2.754	76 034
50	860	3.708	3.018	2.734	70.934
50	690	3.712	3.021	2.754	76.934
50	720	3.719	3.021	2.754	76.934
50	750	3,722	3.021	2.754	76.924
50	780	3 722	3 027	2 754	76 916
50	210	0.722	2 027	2.754	76.000
20	810	3.722	3.027	2.734	70.909
50	840	3.722	3.027	2.754	76,893
50	870	3.722	3.027	2.754	76.878
50	900	3 728	3 027	2.754	76.868
50	020	3 729	3 027	2 754	76 865
50	930	3.720	3.027	2.754	70.005
50	960	3.728	3.027	2.754	/0.8/0
50	990	3.725	3.024	2.754	76.873
50	1020	3.712	3.021	2.754	76.865
50	1050	3 706	3 014	2 754	76 865
50	1000	3.700	2 011	2.754	76 963
50	1080	3.706	3.011	2.734	70.003
50	1110	3.706	3.008	2.754	/6.855
50	1140	3.709	3.008	2.754	76.853
50	1170	3,709	3,005	2.754	76.825
50	1200	3 716	3 005	2 754	76 807
50	1200	0.710	2.005	2.754	76 007
50	1230	3.725	3.005	2./54	70,802
50	1260	3.737	3.011	2.754	76.799
50	1290	3,749	3,014	2,754	76.789
50	1320	3 761	3 021	2 754	76 784
50	1020	0.701	2 021	2.754	76 704
50	1350	3.773	3.021	2./54	70.704
50	1380	3.786	3.027	2.754	76.761
50	1410	3,795	3.033	2.754	76.749
50	1440	3 804	3 033	2.754	76.746
50	1440	2 007	3 030	2 754	76 746
21	30	3.807	3.039	2.754	70.740
51	60	3.807	3.039	2.754	76.741
51	90	3.804	3.039	2.754	76.754

•

51	120	3,798	3.039	2.754	76.774
51	1 50	3 792	3.039	2.754	76.802
61	100	3 796	2 020	2 754	76 945
21	100	3.700	3.039	2.734	70.045
51	210	3.783	3.039	2.754	76.853
51	240	3.783	3.039	2.754	76.863
51	270	2 792	3 030	2 754	76 873
21	2/0	3.785	3.039	2.734	/0.0/5
51	300	3.783	3.039	2.754	76.891
51	330	3 783	3.039	2.754	76.914
		0.700	0.000	0.75	76,000
21	360	3,783	3.039	2.754	70.920
51	390	3.783	3.045	2.754	76.934
61	400	2 702	3 057	2 758	76 080
1	420	5.705	5.057	2.750	70.300
51	450	3,795	3.066	2.761	76.998
51	480	3,810	3.088	2.766	77.005
£1	£10	2 025	2 106	2 790	77 010
21	510	3.825	3.108	2.780	//.010
51	540	3.847	3.127	2.795	77.020
51	570	3 874	3 146	2 804	77 031
51	5/0	5.074	0.140	2.004	77.001
51	600	3.895	3.167	2.813	//.028
51	630	3.917	3.185	2.829	77.031
51	660	3 026	3 200	2 847	77 028
51	000	0.320	0.200	2.047	77.020
21	690	3.94/	3.219	2.862	//.015
51	720	3,959	3.228	2.877	77.008
51	750	3 072	3 243	2 803	77 003
11	750	5.572	5.245	2.035	77.005
51	780	3.978	3.255	2.908	77.000
51	810	3.981	3.264	2.917	76.990
6.1	0,0	2,000	2 071	0.006	76 075
21	840	3.990	3.2/1	2.926	/0.9/5
51	870	3.993	3.274	2.938	76.972
51	900	3 003	3 283	2 944	76 972
11	300	5.335	5.205	2.344	70.072
51	930	3,993	3.289	2.957	/6.9/5
51	960	3,993	3,289	2,963	76.970
61	000	2 002	2 209	2 072	76 070
21	990	3.993	3.290	2.972	70.970
51	1020	3.993	3.298	2.981	76.975
51	1050	3,993	3.298	2.984	76.985
61	1000	2,002	2 201	2 097	77 003
21	1080	3.993	3.301	2.907	//.003
51	1110	3.987	3.301	2.990	77.005
51	1140	3 984	3 301	2 993	77 005
	1170	2.004	2 201	2.000	77 000
21	11/0	3.981	3.301	2.999	//.003
51	1200	3,981	3.307	3.005	76.995
51	1220	3 000	3 307	3 011	77 005
11	1230	5.550	3.307	5.011	77.005
51	1260	3.999	3.310	3.011	77.003
51	1290	4.029	3.319	3.021	77.000
61	1220	4 049	2 225	2 024	77 000
21	1320	4.048	3.325	3.024	//.000
51	1350	4.063	3.335	3.030	76.995
51	1380	4 087	3 341	3 030	76 990
	1/10	4.007	0.041	0.000	76.005
21	1410	4.100	3.350	3.039	/0.985
51	1440	4.112	3.356	3.042	76.982
52	30	4 124	3 368	3 051	76 977
52	50	4.124	5.500	0.001	70.377
52	60	4.133	3.374	3.057	76,980
52	90	4.142	3,380	3.063	76.970
52	120	4 145	3 380	3 066	76 062
52	120	4.145	5.505	5.000	70.002
52	150	4.106	3.395	3.072	76.942
52	180	4.081	3,395	3.078	76.914
52	210	4 066	3 305	3 085	76 901
52	210	4.000	0.000	0.000	70.001
52	240	4.045	3.395	3.088	/6.8/6
52	270	4.029	3.395	3.091	76.868
52	300	4 011	3 395	3 094	76 850
	000	2 001	3,005	2.004	76.000
52	330	3.996	3.395	3.094	70.840
52	360	3.978	3.395	3.094	76.820
52	300	3 962	3 395	3 094	76 805
52	000	0.002	0.005	2.004	76 005
52	420	3.953	3.395	3.094	10.805
52	450	3.947	3.392	3.094	76,802
52	490	3 0/1	3 396	3 004	76 700
52	400	3.541	5.505	0.004	70.735
52	510	3.938	3.386	3.094	76.794
52	540	3,938	3,386	3.094	76.736
50	670	2 0/1	3 396	3 004	76 709
52	570	5.941	3.300	5.084	70.700
52	600	3.953	3.386	3.094	76.695
52	630	3,965	3.386	3.100	76.667
50	660	2.005	2 202	2 102	76 650
52	660	3.8/5	3.392	3.103	70.050
52	690	3.984	3.395	3.109	76.601
52	720	3 990	3 399	3,112	76 563
	720	1.000	2 400	0 101	76 600
52	/50	4.005	3.402	3.121	10.338
52	780	4.020	3.408	3.127	76.487
52	810	4 039	3 408	3 127	76.446
52	010	4.000	0.400	0.127	70.440
52	840	4.051	3.408	3.133	10.444
52	870	4.054	3.414	3.139	76.441
52	000	4 063	3 414	3 130	76 403
52	300	4.005	0.414	0.100	76.400
52	930	4.0/2	3.414	3.139	/0.3/5
52	960	4.075	3.414	3.139	76.363

52	990	4.081	3.414	3.142	76.340
52	1020	4 081	3 414	3 142	76 319
52	1020	4.001	0.414	0.142	70.010
52	1050	4.081	3.414	3.142	/6.32/
52	1080	4.081	3.414	3.142	76.337
52	1110	4 081	3 417	3 142	76.342
52	1110	4.001	0.41/	0.140	76.370
52	1140	4.078	3.414	3.142	76.370
52	1170	4.078	3.417	3,142	76.380
52	1200	4 075	3 414	3 142	76 393
52	1200	4.075	0.414	0.142	70.000
52	1230	4.069	3.414	3.142	/6.464
52	1260	4.066	3.405	3.139	76.477
	1000	4 063	2 402	3 136	76 487
52	1290	4.063	3.402	3.130	/0.40/
52	1320	4.063	3,402	3.136	76.490
52	1350	4 042	3 402	3 136	76.487
52	1350	4.042	0.402	0.100	70.407
52	1380	4.036	3.402	3.136	76.492
52	1410	4.029	3.402	3.130	76.500
	1110	4 000	2 205	2 1 2 7	76 525
52	1440	4.020	3.395	3.12/	70.525
53	30	4.020	3.395	3.127	76.535
53	60	4 020	3 392	3 121	76 533
55	00	4.020	5.532	0.121	70.500
53	90	4.039	3.392	3.121	/6.548
53	120	4.054	3,392	3.121	76.566
50	150	4.057	2,202	2 110	76 560
53	120	4.057	3.392	3.110	70.500
53	180	4.063	3.392	3.118	76.566
53	210	4 069	3 392	3 118	76 571
55	210	4.003	0.032	0.110	70.571
53	240	4.075	3.392	3.115	/6.586
53	270	4.075	3,392	3.115	76.632
50	200	4 075	3 390	3 115	76 637
53	300	4.075	3.389	3.115	70.037
53	330	4.042	3.389	3.115	76.650
53	360	4 017	3 383	3 115	76 672
22	300	4.017	5.555	0.115	70.072
53	390	3.947	3.371	3.115	/6./26
53	420	3,911	3.359	3,100	76.759
60	1.50	2 021	2 244	3 001	76 770
23	450	3.831	3.344	3.091	10.775
53	480	3.786	3.328	3.078	76.794
53	510	3 746	3 313	3 075	76.815
50	510	2,740	3 201	2 060	76 935
23	540	3.709	3.301	3.009	70.035
53	570	3.679	3.289	3.063	76.848
53	600	3 648	3 277	3.060	76.855
55	000	5.040	0.2//	0.000	70.000
53	630	3.630	3.267	3.054	/6.800
53	660	3.612	3,258	3.042	76.868
62	600	3 600	3 240	3 030	76 863
23	690	3.800	5.245	5.055	70.000
53	720	3.584	3.240	3.033	76.848
53	750	3 572	3 237	3 027	76.848
55	/ 50	5.572	0.207	0.027	76.010
53	780	3.55/	3.228	3.027	/6.830
53	810	3.539	3,222	3.021	76.827
60	010	3 533	3 210	3 018	76 822
55	040	3.323	5.210	5.010	70.022
53	870	3.511	3.197	3.002	76.825
53	900	3 496	3,185	2,999	76.825
	000	2,470	3 173	2 0 8 4	76 930
53	930	3.478	3.1/3	2.904	70.030
53	960	3.466	3,158	2.978	76.838
53	990	3 484	3,146	2,966	76.845
50	1000	2 4 9 4	3 126	2 05/	76 959
53	1020	3.404	3.130	2.954	70.050
53	1050	3.484	3.121	2.938	76.878
53	1080	3 472	3,109	2,932	76.886
55	1000	0.472	2,100	2.017	76 000
53	1110	3,400	3.100	2.91/	/0.090
53	1140	3.450	3.085	2.911	76.906
53	1170	3 487	3,069	2,902	76 914
55	1000	0.407	2 060	2 000	76 03/
53	1200	3.51/	3.063	2.890	70.934
53	1230	3.551	3.057	2.880	76.944
52	1260	3 581	3 054	2 874	76,952
55	1200	0.501	0.051	0.000	76.054
53	1290	3,609	3.054	2.868	/6.954
53	1320	3,636	3.051	2.859	76.952
52	1250	3 670	3 051	2 850	76 944
55	1350	3.0/0	3.051	2.055	70.044
53	1380	3.700	3.051	2.853	/6.939
53	1410	3.728	3.051	2.853	76.942
		2 766	3 061	2 963	76 062
22	1440	3.755	3.051	2.010	70.902
54	30	3.776	3.051	2.847	76.957
54	60	3 801	3,057	2,847	76.954
		0.001	2.000	0.017	76 06/
54	90	3.828	3.066	2.84/	/0.954
54	120	3.853	3.082	2.847	76.952
5/	160	3 690	3 099	2 947	76 047
54	120	3.000	3.000	2.04/	/0.94/
54	180	3.901	3.097	2.847	76.957
54	210	3,923	3,103	2,847	76.970
	240	2 0/1	3 100	2 9/7	76 080
54	240	3.941	3.109	2.04/	70.900
54	270	3.965	3.115	2.847	76.990
54	300	3 978	3.121	2.847	76,998
	200	2.070	3 120	2 047	77 000
54	330	3.990	3.130	2.04/	//.000
54	360	4.011	3.142	2.847	77.005
54	300	4 023	3,149	2 850	77.015
	390	4.020	0.140	2.000	

54	420	4 042	3 155	2 853	77.023
	420	4.042	0.100	2.050	77 000
54	450	4.039	3.161	2.859	//.036
54	480	4.029	3,167	2.862	77.048
	510	3 079	3 170	2 965	77 051
54	210	3.978	3.170	2.005	//.051
54	540	3.926	3.170	2.868	77.051
54	570	3 850	3 170	2 871	77 048
24	570	5.050	5.170	2.071	77.040
54	600	3.819	3,170	2.874	/7.046
54	630	3 813	3 170	2 874	77.038
	000	0.010	0.170	2.071	77 000
54	660	3.816	3.170	2.8/4	//.036
54	690	3.819	3,170	2.874	77.010
	700	0.010	0 170	0 000	76 005
24	/20	2.919	3.170	2.000	10.907
54	750	3.819	3.170	2.883	76,962
	700	2 010	2 170	2 800	76 034
54	/80	3.810	3.170	2.090	70.934
54	810	3.776	3.170	2.890	76.919
	040	3 706	2 170	2 803	76 004
54	040	3.708	3.170	2.095	70.904
54	870	3.670	3.170	2.893	76.883
61	000	3 630	2 164	2 803	76 865
54	900	3.630	3.104	2.093	70.005
54	930	3.594	3.152	2.893	76.850
E /.	060	2 557	2 120	2 803	76 933
74	900	3.337	3.135	2.035	70.032
54	990	3.523	3.127	2,893	76.822
54	1020	3 487	3 115	2 893	76 815
	1050	0.467	2 007	2.000	76 000
54	1020	3.453	3.097	2.890	/0.022
54	1080	3.417	3.078	2.883	76.838
54	1110	3 377	3 057	2 871	76 845
	1110	0.077	0.007	2.071	70.045
54	1140	3.350	3.042	2.859	76.855
54	1170	3 417	3 027	2 847	76.863
	1000	0.100	2 01/	0.020	76 066
54	1200	3.429	3.014	2.838	/0.803
54	1230	3,466	3,002	2.829	76.876
	1060	2 406	2 006	2 910	76 002
54	1200	3.490	2.990	2.019	70.003
54	1290	3.533	2.990	2.816	76,886
54	1320	3 566	2 990	2 807	76 883
27	1020	0.500	2.350	2.007	70.000
54	1350	3.591	2.984	2.801	/0.000
54	1380	3.612	2,984	2.792	76.883
51	1410	3 630	2 084	2 780	76 808
24	1410	5.055	2.304	2.703	70.030
54	1440	3.664	2.984	2.786	76.906
55	30	3 682	2 984	2 777	76 909
		0.002	2.004	0.777	70.000
22	60	3.700	2.984	2.///	70.910
55	90	3,700	2.984	2.771	76.919
5.5	120	3 607	2 084	2 771	76 021
55	120	5.037	2.304	2.771	70.321
55	150	3.697	2.984	2.771	76.924
55	180	3 697	2 984	2 771	76,919
	100	0.00/	2.004	0.771	70.010
22	210	3./34	2.984	2.//1	/0.924
55	240	3.755	2,987	2.771	76.926
	270	2 776	2 006	2 771	76 020
22	270	3.776	2.990	2.771	70.929
55	300	3.795	3.002	2.771	76.924
55	330	3 813	3 011	2 771	76 921
		0.010	0.011	0.700	70.001
55	360	3.825	3.011	2.768	/6.926
55	390	3.789	3.021	2.768	76.944
66	420	3 761	3 021	2 769	76 065
22	420	3.761	3.021	2.700	70.905
55	450	3.682	3.021	2.768	76.975
55	480	3 606	3 021	2 768	76 980
	510	0.000	2 011	0.760	76.000
22	510	3.004	3.011	2.768	/0.982
55	540	3.514	2.999	2.768	76.982
55	570	3 472	2 990	2 760	76 977
	570	0.4/2	2.330	2.700	70.077
55	600	3.429	2.978	2.757	76,965
55	630	3.386	2.966	2.757	76,952
6.5	600	2 260	2 054	2 740	76.001
22	660	3.362	2.954	2.749	70.924
55	690	3.338	2.944	2.746	76.909
6.6	720	2 212	2 038	2 7/3	76 999
	/20	3,313	2.500	2.743	70.000
55	750	3.301	2.929	2.742	/6.865
55	780	3 283	2,929	2,737	76.835
5.5	910	2 274	2 020	2 727	76 910
22	810	5.2/4	2.920	2.757	/0.010
55	840	3.258	2.920	2.734	76.782
55	870	3,243	2,908	2.725	76.769
6.5	000	2 001	2 000	2 700	76 764
22	900	3.231	2.902	2.720	/0./04
55	930	3.216	2.893	2.714	76.746
55	0.00	3 194	2 886	2 707	76 726
22	000	2.134	2.000	0.000	76 700
22	990	3.1/9	2.880	2.699	/6./23
55	1020	3,164	2,862	2,684	76.726
55	1050	3 122	2 847	2 675	76 729
22	1020	3.133	2.04/	2.0/5	/0./20
55	1080	3.109	2.838	2.661	76.736
55	1110	3.088	2.816	2.653	76.741
	11/0	0.000	2,010	0.640	76 7/0
22	1140	3.066	2.806	2.043	/0./49
55	1170	3.042	2.792	2.632	76.751
55	1200	3.018	2.774	2.620	76 756
55	1000	2 000	0 766	2 600	76 760
22	1230	3.002	2.755	2.009	/0./36
55	1260	3.014	2.743	2.600	/6.766

					70 704
55	1290	3.042	2.726	2.589	/6./64
55	1320	3 051	2 716	2 577	76 766
22	1320	3.051	2.710	2.5//	/0./00
55	1350	3.057	2.704	2.568	/6./66
66	1380	3 063	2 607	2 557	76 764
22	1300	3.003	2.097	2.557	/0./04
55	1410	3.063	2.688	2.551	76.766
	1440	2 066	2 676	2 542	76 772
22	1440	3.000	2.070	2.342	/0.//2
56	30	3.066	2.665	2.531	76.777
		0.000	0,000	0.604	76 777
56	60	3.066	2.659	2.524	/6.///
56	00	3 066	2 653	2 518	76 774
20	30	3.000	2.055	2.510	/0.//4
56	120	3.066	2.647	2.509	76.764
	1.60	2 072	2 6/7	2 504	76 754
20	120	3.072	2.04/	2.304	70.754
56	180	3 085	2 647	2.502	76.749
					70 740
56	210	3.130	2.647	2.493	/6./46
56	240	3 161	2 647	2 4 9 2	76 746
20	240	3.101	2.047	2.432	70.740
56	270	3.188	2.647	2.481	76.749
		0.010	0 647	0 4 0 0	76 764
30	300	3.219	2.04/	2.400	70.754
56	330	3 237	2 647	2 473	76.754
50		0.207	2.047	0.100	70 760
56	360	3.258	2.64/	2.469	/6./56
56	300	3 274	2 647	2 469	76 756
20	330	0.2/4	2.047	2.405	70.750
56	420	3.298	2.647	2.469	76.756
56	450	3 344	2 6 5 0	2 460	76 764
30	430	3.344	2.000	2.403	/0./04
56	480	3.389	2.656	2.461	76.794
	510	2 / 20	0 666	0 461	76 700
30	210	3.429	2.000	2.401	/0./99
56	540	3 478	2 669	2.461	76.799
			0.075	0 / 01	76 707
56	570	3.517	2.6/5	2.461	/6./9/
56	600	3 527	2 691	2 461	76 784
50	000	5.527	2.001	2.401	70.704
56	630	3.530	2.697	2.461	76.779
	660	3 636	2 704	2 /61	76 766
20	660	3.530	2.704	2.401	70.700
56	690	3 539	2.713	2.461	76.761
	000	0.500	0.710	0.461	70 740
56	720	3.542	2.719	2.461	/6./49
56	750	3 530	2 728	2 464	76 733
20	/ 50	5.553	2.720	2.404	70.700
56	780	3,548	2.739	2.469	76.695
60	010	2 554	2 7/6	2 / 73	76 665
30	910	3.334	2.740	2.4/3	70.005
56	840	3.560	2.761	2,483	76.639
	070	0.500	0.700	0 105	70 004
56	870	3.560	2.780	2.495	76.624
56	900	3 554	2 789	2 501	76.609
50	300	0.554	2.700	2.501	70.000
56	930	3.554	2.795	2.507	76.591
56	060	3 554	2 801	2 513	76 571
20	900	5.554	2.001	2.510	/0.5/1
56	990	3.548	2.809	2.518	76.561
	1000	3 545	2 016	2 525	76 539
30	1020	3.343	2.810	2.323	70.538
56	1050	3 542	2.816	2.528	76.530
	1000	0.507	0.010	0 601	76 520
56	1080	3.52/	2.816	2.531	70.520
56	1110	3 527	2 816	2 534	76.517
50	1110	5.527	2.010	2.504	70.517
56	1140	3.527	2.816	2.536	76.520
	1170	2 5/0	2 916	2 536	76 520
20	11/0	3.340	2.010	2.550	/0.520
56	1200	3,569	2.816	2.539	76.515
	1000	2 601	0 016	2 5/2	76 505
30	1230	3.281	2.010	2.342	70.505
56	1260	3.606	2.816	2.545	76.500
			0.010	0.515	76 500
56	1290	3.615	2.810	2.345	76.500
56	1320	3 627	2.816	2.547	76.505
	1010	0.027	0.005	0.510	76 / 07
56	1350	3.606	2.825	2.548	/0.49/
56	1380	3 581	2 825	2 551	76 492
50	1000	0.501	2.025	2.001	
56	1410	3.566	2.825	2.551	/6.48/
56	1440	3 548	2 825	2 551	76 479
50	1440	5.540	2.025	2.331	70.470
57	30	3.536	2.825	2.551	76.479
57	60	3 617	2 825	2 551	76 470
5/	60	5.51/	2.023	2. JJI	/0.4/8
57	90	3.487	2.825	2.551	76.459
	100	2 460	0.010	2 661	76 490
5/	120	3.469	5.918	2.551	/0.439
57	150	3 447	2,809	2.551	76 429
	100	5.77/	2.003	2.331	70.400
57	180	3.429	2.809	2.551	/6.408
57	210	3 / 23	2 800	2 551	76 401
5/	210	5.425	2.009	2.551	70.401
57	240	3.417	2.809	2.551	/6.393
57	270	3 414	2 800	2 551	76 383
5/	2/0	5.414	2.009	2.331	70.000
57	300	3.414	2.809	2.551	76.368
	200	0 / 11	2 800	2 661	76 353
5/	330	3.411	2.809	2.001	/0.352
57	360	3,411	2,809	2,551	76.350
	000	0.711	0.000	0.551	70 050
57	390	3.411	2.809	2.551	76.350
57	420	3 414	2 809	2 551	76 355
57	420	3.414	2.009	2.331	70.000
57	450	3.432	2.803	2.551	76.355
	4.00	2 444	2 802	2 551	76 255
5/	480	5.444	2.003	2.331	10.333
57	510	3,484	2,803	2,551	76.347
		0 500	0.000	0 661	76 997
57	540	3.508	2.803	2.551	10.32/
57	570	3 548	2 803	2 551	76 319
57	570	0.540	2.000	2.331	70.015
57	600	3.575	2.803	2.551	/6.307
67	620	3 606	2 803	2 551	76 207
5/	030	3.000	2.005	2.331	10.201
57	660	3.627	2.804	2.551	76.266
	000	0 640	0 00/	0 661	76 000
<u>ر</u>	690	3.048	2.004	2.331	/0.230

57	720	3 661	2.810	2,551	76.205
57	750	2 646	2 922	2 551	76 167
57	/50	3.045	2.022	2.551	/0.10/
57	780	3.636	2.822	2.557	76.131
57	810	3.633	2.827	2,560	76.111
57	940	3 636	2 833	2 565	76 088
57	040	3.030	2.000	2.505	70.000
57	870	3.645	2.841	2.566	76.068
57	900	3 652	2.850	2.573	76.040
	300	0.052	2.000	0.670	76 016
57	930	3.6/6	2.802	2.5/9	78.015
57	960	3.691	2.874	2.583	75.997
57	000	3 706	2 996	2 501	75 982
57	990	3.708	2.800	2.331	75.302
57	1020	3.728	2.899	2.597	75.954
57	1050	3 746	2 911	2 605	75,933
5/	1050	0.740	2.011	0.010	75.016
57	1080	3.758	2.920	2.012	12.910
57	1110	3,770	2.929	2,620	75.898
67	1140	2 700	2 020	2 627	75 880
5/	1140	3.780	2.929	2.02/	/5.000
57	1170	3.789	2.941	2.632	75.865
57	1200	3 795	2 944	2 638	75 847
5/	1200	5.755	2.344	2.000	75.000
57	1230	3.801	2.944	2.644	/5.832
57	1260	3 801	2,950	2,649	75.824
	1000	2 001	2,050	2 652	75 910
5/	1290	3.801	2.950	2.052	/5.019
57	1320	3.801	2.950	2.655	75.804
57	1350	3 801	2 950	2 659	75 794
5/	1000	5.001	2.000	2.000	75,704
57	1380	3.801	2,960	2.661	/5./89
57	1410	3,798	2,960	2,664	75.786
67	1440	2 709	2 060	2 665	75 783
57	1440	3.790	2.900	2.005	/5./05
58	30	3.764	2.960	2.667	75.783
58	60	3 746	2 960	2 670	75.773
50	00	0.740	2.000	0.070	76 740
58	90	3.719	2.960	2.670	/5./40
58	120	3.694	2,960	2.672	75.715
50	1.50	2 692	2 060	2 672	75 605
28	120	3.682	2.900	2.6/2	/5.095
58	180	3.676	2.960	2.672	75.672
5.9	210	3 673	2 960	2 672	75 662
50	210	5.075	2.300	2.072	75.002
58	240	3.676	2.960	2.672	75.649
58	270	3.688	2,960	2.672	75.644
50	200	3 703	2 060	2 672	75 618
20	300	3.703	2.900	2.072	/5.010
58	330	3.719	2.960	2.673	75.603
58	360	3 734	2,960	2.676	75.603
50	200	2 755	2.062	2 670	75 500
28	390	3.755	2.963	2.6/9	75.590
58	420	3.789	2.972	2.685	75.580
58	450	3 828	2 975	2 684	75.575
50	450	0.020	2.075	2.004	75 500
58	480	3.868	2.981	2.690	/5.562
58	510	3,898	2,993	2.693	75.555
50	510	2 025	3 002	2 600	75 512
28	540	3.935	3.002	2.099	/5.512
58	570	3.947	3.008	2.710	75.466
58	600	3 953	3 021	2 716	75.446
50	000	0.000	0.021	0.700	75 (20
58	630	3.938	3.030	2.722	/5.438
58	660	3,935	3,030	2,733	75.420
50	600	3 020	3 030	2 736	75 410
20	090	3.323	3.030	2.750	75.410
58	720	3.920	3.030	2.740	75.382
58	7 50	3,901	3.036	2.745	75.331
50	700	2 996	2 026	2 740	75 275
20	/80	3.000	3.036	2.749	/5.2/5
58	810	3.853	3.036	2.754	75.232
58	840	3 822	3 036	2 760	75.184
50	040	0.022	2,000	0 760	75 170
28	870	3./92	3.036	2.700	/5.1/6
58	900	3.770	3.036	2.768	75.138
58	030	3 740	3 036	2 768	75.098
	550	5.740	0.000	2.700	75.000
58	960	3.725	3.036	2.//1	/5.05/
58	990	3,712	3.045	2.774	75.021
50	1000	3 706	3 045	2 780	74 081
29	1020	3.700	3.045	2.700	74.901
58	1050	3.700	3.060	2.783	74.960
58	1080	3 697	3.060	2.786	74,948
50	1110	2 600	2,050	2 700	7/ 039
28	1110	3.000	3.060	2.700	74.938
58	1140	3.685	3,060	2.786	74.905
58	1170	3 682	3,060	2,789	74 882
50	11/0	0.002	0.000	0.700	74.002
58	1200	3.673	3.060	2.789	74.869
58	1230	3,661	3,060	2,789	74.859
60	1260	3 640	3 060	2 780	74 833
29	1200	3.048	3.000	2./09	74.033
58	1290	3.645	3.054	2.789	74.813
58	1320	3 636	3.048	2,789	74 808
50	1020	5.000	0.040	2.700	74.300
58	1350	3.615	3.039	2.789	74.788
58	1380	3,600	3,033	2.786	74.752
50	1410	3 570	3 024	2 786	74 600
28	1410	3.5/8	3.024	2,700	/4.099
58	1440	3.554	3.021	2.786	74.676
50	30	3 530	3 005	2 786	74 651
29	30	3.335	0.000	2.700	74.001
59	60	3.517	2.993	2.783	74.633
59	90	3,505	2.987	2.780	74.592
	100	2	2.007	2 774	74 544
29	120	3,490	2.9/0	4.//4	/4.344

59	150	3.478	2.963	2.771	74.508
59	180	3.466	2.954	2.763	74.475
59	210	3.450	2.950	2.754	74.460
59	240	3.447	2.944	2.748	74.435
59	270	3.447	2.944	2.745	74.414
59	300	3.447	2.935	2.745	74.384
59	330	3.456	2.935	2.743	74.351
59	360	3.469	2,935	2.742	74.331
59	390	3.484	2.935	2.740	74.308
59	420	3.499	2.938	2.740	74.290
59	450	3.563	2.938	2.740	74.285
59	480	3.603	2.938	2.736	74.272
59	510	3.667	2.938	2.736	74.270
59	540	3.706	2.941	2.723	74.259
59	570	3.734	2.950	2.723	74.265
59	600	3.761	2.950	2.723	74.270
59	630	3.783	2.957	2.722	74.275
59	660	3.798	2.957	2.722	74.272
59	690	3.825	2.966	2.722	74.257
59	720	3.850	2.972	2.723	74.206
59	750	3.831	2.972	2.723	74.163
59	780	3.816	2.981	2.723	74.140
59	810	3.807	2.981	2.723	74.099
59	840	3.798	2.981	2.725	74.082
59	870	3.792	2.981	2.728	74.074
59	900	3.789	2.981	2.728	74.064
59	930	3.786	2.981	2.729	74.059
59	960	3.786	2.993	2.729	74.044
59	990	3.764	2.999	2.733	74.036
59	1020	3.758	3.011	2.736	74.044
59	1050	3.764	3.014	2.737	74.059
59	1080	3.780	3.036	2.740	74.054
59	1110	3.825	3.045	2.745	74.054
59	1140	3.862	3.060	2.749	74.041
59	1170	3.868	3,066	2.755	74.033
59	1200	3.868	3.078	2.761	74.031
59	1230	3.871	3.078	2.768	74.028
59	1260	3.874	3.088	2.774	74.023
59	1290	3.892	3.088	2.780	74.016
59	1320	3.892	3.088	2.783	74.011
59	1350	3.880	3.088	2.786	74.003
59	1380	3.877	3.088	2.786	73.990
59	1410	3.856	3.088	2.789	73.980
59	1440	3.831	3.088	2.792	73.975

PRECIPITATION FOR FEBRUARY 1991 (RECORDED AT PORTLAND INTERNATIONAL AIRPORT)

-

JULIAN DAY	PRECIPITATION (CENTIMETERS)
32	0.56
33	0.84
34	0.66
35	0.81
36	0.81
37	0.00
38	0.00
39	0.00
40	0.00
41	0.00
42	0.00
43	0.89
44	0.94
45	0.61
46	0.00
47	0.36
48	0.00
49	0.00
50	0.23
51	1.63
52	1.50
53	0.00
54	0.00
55	0.00
56	0.00
57	0.00
58	0.00
59	0.00

APPENDIX C

COMPUTER PROGRAMS

PROGRAM 5.9 DAVIS PG 249 BY AG JOHNSON 1/28/86 VERSION 1.1 ADDED PRINT OPTIONS С 3/20/86 С MODIFIED 7/12/91 BY JM WILKINSON С PRINT OPTION REMOVED С ADDED ABS() TO SQRT FUNCTIONS С INCREASED FILE SIZES С OUTPUT TO DISK FILES С С ROUTINE CROSCR С С PROGRAM TO PERFORM CROSSCORRELATION BETWEEN TWO SEQUENCES OF DATA С С XIN1 CONTAINS THE FIRST DATA SEQUENCE OF NIN1 ELEMENTS С XIN2 IS THE SECOND DATA SEQUENCE OF LENGTH NIN2 THE CORRELATION COEFFICIENTS CALCULATED AT EACH MATCH С POSITION ARE С С STORED IN ARRAY XOUT. THE NUMBER OF CORRELATION COEFFICIENTS IN С XOUT IS NOT = NIN1 + NIN2 - 5. С С IB1 = FIRST TERM OF XIN1 IN THE OVERLAPPED SEGMENT IE1 = LAST TERM OF XIN1 IN THE OVERLAPPED SEGMENT С С IB2 = FIRST TERM OF XIN2 IN THE OVERLAPPED SEGMENT С IE2 = LAST TERM OF XIN2 IN THE OVERLAPPED SEGMENT LEN1 = NUMBER OF TERMS OF XIN1 IN THE OVERLAPPED С SEGMENT LEN2 = NUMBER OF TERMS OF XIN2 IN THE OVERLAPPED С SEGMENT С С THE SUBROUTINES REQUIRED ARE READM THE MAXIMUM LENGTH OF EACH INPUT DATA SEQUENCE IS 2000 С ELEMENTS. С DIMENSION XIN1(2000), XIN2(2000), XOUT(4000) CHARACTER*1 RESPONS CHARACTER*14 FILENAME, TIM, DAT, DATOUT, MATOUT IMX=2000 С С READ IN THE TWO DATA SEQUENCES TO BE CROSSCORRELATED WRITE (*,*) ' INPUT THE DATE eg 10/5/90 '

```
READ (*,910) DAT
      WRITE (*,*) ' INPUT THE TIME eg 10:21 PST '
      READ (*,910) TIM
  206 WRITE (*,900)
  900 FORMAT (' INPUT DATA FILE NAME - eq A:CROSCR.DAT ')
      READ (*,910) FILENAME
      WRITE (*,903)
  903 FORMAT (' INPUT NAME OF OUTPUT FILE eq. A:DAT.OUT')
      READ (*,910) DATOUT
      WRITE (*,906)
  906 FORMAT (' INPUT NAME OF MATCH OUTPUT FILE eq.
A:MATCH.MAT')
      READ (*,910) MATOUT
  910 FORMAT (A)
      OPEN (5, FILE=FILENAME)
      OPEN (7, FILE=DATOUT, STATUS='NEW')
      OPEN (8, FILE=MATOUT, STATUS='NEW')
      WRITE (8,920) FILENAME, DAT, TIM
  920 FORMAT (1H0, ' PROGRAM CROSCR DAVIS PG 249 VERSION
1.1 3/20/86',
     1/, ' DATA FILE = ', A14, ' DATE ', A14, ' TIME ', A14, /)
      CALL READM(XIN1,NIN1,MN,IMX,1)
  200 FORMAT (A1)
  201 CALL READM(XIN2,NIN2,MN,IMX,1)
  202 WRITE (8,2000)
      NOT=NIN1+NIN2-5
      IB1=1
      IE1=3
      IB2=NIN2-2
      IE2=NIN2
      LEN1=3
      DO 100 I=1,NOT
      SX=0.0
      SY=0.0
      SXY=0.0
      SXX=0.0
      SYY=0.0
      DO 101 J=1, LEN1
      J1=IB1+J-1
      J2=IB2+J-1
      X1=XIN1(J1)
      X2 = XIN2(J2)
      SX=SX+X1
      SY=SY+X2
      SXY=SXY+X1*X2
      SXX=SXX+X1*X1
      SYY=SYY+X2*X2
```

101 CONTINUE AN=LEN1

R = (AN*SXY-SX*SY) / SQRT (ABS((AN*SXX-SX*SX)*(AN*SYY-SY*SY)))

```
T=R*SQRT(ABS((AN-2.0)/(1.0-R*R)))
      XOUT(I) = R
      WRITE (8,2001) I, IB1, IE1, IB2, IE2, LEN1, R, T
      IE1=IE1+1
      IF (IE1-NIN1) 2,2,1
    1 IB1=IB1+1
      IE1=NIN1
    2 IB2 = IB2 - 1
      IF (IB2) 3,3,4
    3 IB2=1
      IE2=IE2-1
    4 LEN1=IE1-IB1+1
      LEN2=IE2-IB2+1
      IF (LEN1-LEN2) 5,100,6
    5 IB1=1
      IE2=IE2-1
      GO TO 4
    6 IB1=IB1+1
      IE2=NIN2
      GO TO 4
  100 CONTINUE
      DO 199 I=1,NOT
      WRITE (7,198) I,XOUT(I)
  199 CONTINUE
  198 FORMAT (1X, I4, ', ', F10.4)
  205 WRITE (*,*) ' DO YOU WANT TO DO ANOTHER DATA SET? '
      WRITE (*,*) ' IF YES, TYPE Y, IF NOT RETURN '
      READ (*,200) RESPONS
      IF (RESPONS .EQ. 'Y') THEN
             CLOSE (5, STATUS='KEEP')
             CLOSE (7, STATUS='KEEP')
             CLOSE (8, STATUS='KEEP')
             GO TO 206
      ENDIF
      STOP
 2000 FORMAT (1H1,14X,'TERMS WHICH ARE MATCHED',7X,'NUMBER'/
     14X, 'MATCH', 8X, 'FIRST', 9X, 'SECOND', 6X, 'OF TERMS',
     23X, 'CORRELATION', 7X, 'T'/3X, 'POSITION', 4X, 'DATA
SET', 6X,
     32X, 'DATA
SET', 6X, 'MATCHED', 2X, 'COEFFICIENT', 5X, 'VALUE'/)
```

```
2001 FORMAT(1X,618,2F14.6)
      END
С
      PROGRAM 4-1
С
С
      SUBROUTINE TO READ A MATRIX
С
      HAVING N ROWS AND M COLUMNS
С
      SUBROUTINE READM(A,N,M,N1,M1)
      DIMENSION A(N1,M1)
С
      READ SIZE OF MATRIX
      READ(5,1000) N,M
С
      READ MATRIX
      DO 100 I=1,N
      READ (5,1001) (A(I,J),J=1,M)
  100 CONTINUE
      RETURN
 1000 FORMAT(214)
 1001 FORMAT(10F8.0)
      END
```