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ABSTRACT 

An abstract of the thesis of David Malcolm Kuhn for the Master of Science in 

Geography presented June 8, 2005. 

Title: Fuel Model Development and Fire Simulation Analysis in the Wildland

Urban Interface: The Case of Forest Park, Portland, Oregon 

Forest Park, a 5,000 acre heavily-forested park within the city limits of 

Portland, Oregon was selected as the study area for performing a fire simulation 

analysis. A well-documented fire swept over a large area of the park in 1951, and 

provides both direct inputs, including the ignition point, and context for the present 

day fire simulations. The goal of the research was two fold. First, determine the 

difference between small area simulations using standard and custom surface fuel 

models. Second, determine if fire simulation can be an effective tool in assessing 

fire danger and behavior in a wildland-urban interface environment like Forest Park. 

Two separate simulations were performed. One used standard wildland fuel 

models (standard simulation) and the other used custom fuel models (custom 
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simulation) based on in situ fuel assessment. All other simulation inputs and 

parameters were the same. The primary difference between the fuel models was the 

live fuel components. The custom fuel models had substantially more live fuel 

loading and this caused the simulations to have notably different results. The 

standard simulation remained a low-intensity surface bum with uniform spread, an 

unlikely result given the weather inputs and topography of the study area. The 

custom simulation had a more natural spread pattern given the environmental inputs. 

The high intensity fire produced by the custom fuels culminated in large-scale 

spotting. 

The results pointed to weather being the key factor in fire potential and 

behavior in Forest Park. A drought, such as that experienced in 1951, could create a 

dangerous situation because the majority of the herbaceous live fuel would lose 

substantial levels of moisture leading to a much drier understory. With reduced fuel 

moisture in the live fuels the risk of fire increases. The results supported the 

development of custom fuel models for small scale fire simulations. Furthermore, 

the results demonstrated that fire simulation can be used as an effective management 

tool in the wildland-urban interface that Forest Park represents. 
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CHAPTER 1: FIRE IN THE WILDLAND-URBAN INTERFACE 

From an environmental perspective, there are three general types of fire: 

wildland, wildland-urban interface, and urban/building fire. In each environment the 

fuel types and amounts, the potential spread area, and the degree of economic damage 

are all different. For example, a wildland fire occurs in a wilderness area, burning 

only trees and vegetation over potentially thousands of acres. On the other end of the 

spectrum, an urban fire will typically consume a single structure on a street 

surrounded by other buildings and limited vegetation. Fire in a wildland-urban 

interface (WUI) combines these two scenarios and may occur in physical 

environments that vary along a gradient from more wildland to more urban. The focus 

of this study is to assess the use of fire models built for wildland fire environments on 

a WUI fire environment. However, before the discussion narrows in on fire in the 

WUI, a brief overview of wildland fire is required. 

Fire is a fundamental part of most forest ecosystems in the Western United 

States. In the short term fire is damaging and destructive; but, over the long term, fire 

enables the forest to develop through a natural progression and remain healthy. 

Forests have a natural pattern of succession which is dependent on a cycle of fire as a 

cleansing component. Fire frees nutrients back into the soil, thins out trees to prevent 

fuel accumulation, and allows some species to become dominant while removing 

others. The threat of catastrophic fire in wildland areas stems from a historical policy 

of fire exclusion in our national forests and other wilderness environments. 
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Many Western U.S. forests are adjacent to urban areas. The exclusion of fire 

from these previously fire-dependent ecosystems has led to unprecedented 

accumulation of fuel and a change in successional patterns away from fire climax 

communities (Miller and Wade 2003). Among the negatives ofremoving fire from 

the natural cycle are that: tree and understory vegetation become overcrowded; the 

risk of insect infestation, disease, and blowdown due to weakened trees increases; and 

overall stand health declines. The cumulative effect has been increased dead fuel as 

well as larger numbers of live trees, producing an increased fire hazard. National 

wildland fire statistics have been compiled dating back to 1960 and these data point to 

fewer but larger fires, at least over the past 45 years (Figure 1). Federal agency 

expenditures to fight fire have steadily increased, with the 2002 fire season setting the 

record at $1.66 billion (NIFC). 

Most wildfires are caused by humans, and not always accidentally. A Texas 

A&M study conducted on causes of Texas wildfires in 1993 found that 40% were 

arson (http://agnews.tamu.edu/graphics/newsgraph/tfsv/firecaus.html). It thus stands to 

reason that an increased number of people in an area will possibly lead to an increase 

in fire hazard. The October 2003 fires in Southern California were a stark reminder of 

the devastating effects of human-caused wildfire in an urban environment. 

The forest ecology and climate of Northwest Oregon are substantially different 

than that of Southern California, especially with respect to fuel moisture levels and 

fuel composition. Nonetheless, the temperate rain forests of Northwest Oregon are 

part of a fire dependent ecosystem, albeit one with a much longer fire cycle than that 

of the Southern California oak-grassland and chaparral. Fires will continue to occur in 
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Oregon's forests and, in the case where forests are part of a Wildland-Urban Interface 

(WUI) environment, fire frequency and intensity will likely increase. 
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Figure 1: Graphs showing the general trend ofwildland fires and acres burned since 1960. Compiled 
by the National lnteragency Fire Center based on data from Bureau of Land Management, Bureau of 
Indian Affairs , National Park Service, US Fish and Wildlife Service, USDA Forest Service and all State 
Lands. (Source: http: //www.nifc.gov/stats/wildlandfirestats.html .) 
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Forest Park - a heavily forested park within the city limits of Portland, Oregon 

- represents an environment where an urban forest fire could endanger thousands of 

people and result in substantial property loss. The ability to analyze the probability 

and behavior of a forest fire under different ignition scenarios would assist local 

officials to develop appropriate treatment, evacuation, and suppression plans. 

One tool that could be used to simulate such a set of fire scenarios is the 

Farsite fire simulation model. Developed by the USFS, Farsite is used to predict the 

behavior of fire in wildland environment for past, present, and future fires. The model 

uses thirteen standard fuel models, each based on a different vegetation environment. 

Additionally, custom fuel models can be developed for field-identified conditions in a 

local area, and then be analyzed by the application. The Farsite model was used in 

this research to examine possible scenarios for Forest Park. 

The goals of this research are two-fold. First, to determine the accuracy of 

custom surface fuel models versus standard wildland fuel models applied to the same 

urban forest environment. In this regard, is there negligible difference in the 

simulation outcome when using either standard fuel models or custom fuel models 

based on in situ fuel assessment? The different fuel models will be tested using the 

inputs from a 1951 fire that burned through a central area of the park. The ignition 

point, spread pattern, and final extent of the 1951 fire were documented. Each 

simulation will use the 1951 weather inputs prior to and during the fire. The results of 

the simulations will then be compared with each other and with the reconstructed 1951 

fire extent. This first goal can be accomplished within the course of this study. 
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The second goal of this research is to determine if fire simulation can be an 

effective management and planning tool in predicting urban forest fire behavior, 

specifically in Forest Park. The answer to the first question enables city officials to 

assess if the model can be used as the foundation for a comprehensive fire mitigation 

strategy. If the model is reliable enough to locate threats it can be used as a decision 

support tool to plan mitigation. Furthermore, the City of Portland can use this study as 

the basis for assessing the cost of applying similar analysis to other park areas. This 

study is thus the first step in incorporating fire modeling into a fire mitigation strategy 

that can be applied in the context of the City of Portland's 1995 Natural Resource 

Management Plan. 
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CHAPTER 2: THE DANGER AND COST OF URBAN WILDFIRE 

This chapter explains why fire is a growing threat to urban environments and 

how development in specific locations increases the threat. The different types of 

WUI environments are defined and aerial images are used as examples. Wildfires that 

occurred in WUI environments illustrate the potential for property and human loss. 

The chapter continues with an introduction to the use of fire behavior simulation as a 

tool for identifying areas that would be best served by active management. 

Economic Growth and Land Development 

Economic factors have led to an increase in development in areas considered 

part of the WUI. Economic prosperity of the last several decades has led to 

unprecedented growth in real estate development throughout the West. Established 

communities within WUI environments, such as the Oakland-Berkeley Hills in the 

Bay area or the West Hills in Portland, Oregon, have seen housing prices grow 10% or 

more year-after-year in the past decade, according to the National Association of 

Realtors. This level of growth has increased insurance risk and priced many 

moderate-income people out of these increasingly expensive neighborhoods. Part of 

what makes the established neighborhoods in WUI environments appealing is their 

location and setting. 

With the rise in real estate values, more affordable "suburban" housing has 

been developed further from urban centers. Many new developments are being put on 

rural or ex-agricultural land. However, developments are being placed on previously 

forested land. Even when the developments are clearcut prior to building, the adjacent 
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land remains forested. In some cases the latter developments are being built in areas 

that have the highest risk of fire, such as hillsides, in canyons, or on bluffs surrounded 

by nearby greenbelts or forests. 

A Spatial Framework for WUI Environments and Fire Risk 

The WUI can be defined by a variety of development density scales. Many 

state agencies in the west have adopted a set of definitions for four different types of 

WUI condition: including interface, intermix, occluded, and rural conditions (Figure 

2). The interface condition is defined by clear demarcation between structures and 

wildland fuels along constructed borders (e.g. roads or fences). Wildland fuels do not 

continue into developed areas where an interface condition exists. In an intermix 

condition there is no clear line of demarcation between development or wildland fuels, 

and structures are scattered throughout the wildland area. Typically an intermix 

environment will consist of resort or residential development. An occluded condition 

exists primarily in urban forest, greenbelt, park or open space environments where an 

island ofwildland fuels is surrounded by development. Rural conditions exist where 

small clusters of development, such as ranches or farms, are exposed to wildland fuels. 

Rural conditions are typically defined by their being embedded in a working landscape 

(Weatherford 2002). 
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Interface environment: cle ar demarcation exists 
between forested and urban development 

Intermix env ironment: Small clu ste rs of develop ment 
are nestled within areas dominated by forest 

Occluded environment: Forested area is surro unded 
by urban development 

Rura l environment: Pockets of development and 
clea re d land extend through areas dom inated by forest 

Figure 2: Examples of the four WUI environment types using remote sensing images (lm B&W 
DOQQ). The examples used came from images taken within the Portland metropolitan area or 
immediate environs. (Source: EROS Data Center, USGS Seamless Data Distribution Delivery System.) 
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Intermix and rural WUI environments by definition consist of more wildland 

than development. In intermix or rural environments only individual houses or small 

clusters of structures can be considered when employing mitigation practices. The 

surrounding wildland area may be treated, but only to the extent of avoiding the loss 

of tens or hundreds of thousands of acres to conflagration. 

The WUI environments that are focused upon in this paper are interface and 

occluded environments. The subject area of this paper is primarily an interface 

environment. However, patches of occluded environments abut the larger interface 

landscape. The danger posed by an occluded environment can be deceptive; the 

forested area does not have to be very large and may snake through areas of high 

density development. 

Occluded areas will also tend to have increased pressures; higher vegetation 

density, greater ignition potential, and potentially more non-native and less fire

resistant trees and shrubs. For example, pre-settlement vegetation in the hills around 

Oakland and Berkeley consisted of oak-savannah grassland. However, the fuel that 

burned there in 1991 consisted largely of planted groves and escaped ornamental 

shrubs, all of which were fire-prone species. 

Urban Wildfire Disasters 

According to the Insurance Information Institute (2005), four of the five most 

costly wildfires in U.S. history occurred in interface or occluded conditions. A table of 

the most devastating urban wildfires reveals that fire in the WUI is becoming more 

frequent, property losses are increasing, and the size of the fires are growing (Table 2). 
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Table 1: The top 5 most-costly wildfires in U.S. history all occurred between 1991and2003. The 
ranking is based on 2003 value of lost property. Of the 16 most costly urban wildfires, 8 have occurred 
since 1991, and none occurred before 1970. It is estimated that 2.3% of all insurance claims stem from 
wildfire. (Source: Insurance Information Institute.) 

!Fire Location 
"'Fire Name" 

The 1991 Oakland-Berkeley Hills "Tunnel Fire" was one of the most costly 

and deadly urban wildfires, burning only 1,520 acres (615 hectares), but destroying 

2,843 homes and killing 25 people. As a result, the Oakland-Berkeley Hills is 

considered one of the most costly natural catastrophes of all time (Cleaves 2001 ). 

Comparatively, the 1991 fire would have represented a small area in the "Cedar Fire" 

of2003 in San Diego County, which occurred over a month after the end of the fire 

season and destroyed 3,570 homes (Figure 3). 
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Figure 3: Photo by John Gibbins from the San Diego Union-Tribune taken during the fires that raged 
through San Diego County October 25 1

h through November 41
\ 2003 . The picture shows one of the fire 

fronts of the "Cedar Fire" in San Diego county, which killed 14, destroyed 2,232 homes, and consumed 
273 ,246 acres (110,579 hectares) . The "Paradise" and "Old" Fires, which burned during the same time 
in adjacent San Bernardino County killed 2 and 6, destroyed over 221 and 993 homes, and consumed 
56,700 (22,946) and 91 ,281 (36,940) acres (hectares) respectively. The three fires consumed a total of 
421 ,227 acres ( 170,465 hectares) . 

The Oakland-Berkeley Hills fire is a prime example of the danger posed by a 

fire-prone greenbelt inside an urban environment. The historic approach to fire in 

WUI conditions has been prevention through public education: providing residents in 

high-risk areas with information on creating fire-safe zones around their homes. This 

approach alone will not work in occluded and interface environments. With ever 

increasing density, fire outbreak in these areas may destroy homes and threaten people 

in minutes, despite an immediate and massive response. Fire mitigation needs to start 

inside the occluded or interface environment. Information about fire mitigation 

techniques, such as fire-safe zones, must be coupled with information about landscape 
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scale fire management. The public needs to be made aware that fire itself can play a 

role in the prevention process in the form of prescribed burns (Miller 1997). 

Urban Wildfire Mitigation Strategy 

The effect of development on fuel composition in an occluded environment 

takes years to manifest in the forest succession and ecology. With regular monitoring 

the impact can be measured over time. The monitoring data can be used to determine 

appropriate management solutions. However, increasing development can make 

mitigation management more difficult to accomplish because along with development 

comes increased land use regulation and designation to special categories (Miller and 

Wade 2003). Occluded environments are quickly designated "sensitive areas" and the 

ability to apply any kind of fuel treatments becomes difficult, legally and politically. 

An occluded environment is most likely a highly valued landscape for the 

surrounding developments. The loss of just that environment, let alone the 

surrounding homes and businesses, would have profound economic, social, and 

emotional impact on the population. Therefore, introducing "destructive" fire 

management practices into the environment is difficult without providing the public 

with proper justification. Fire management plans need to prove themselves 

ecologically and economically, while minimizing aesthetic impact. The easiest way to 

demonstrate the effectiveness of a comprehensive fire management plan is to show the 

potential fire behavior in the environment. 

Fire Simulation as a Tool 

Urban areas with interface or occluded environments need to prioritize the use 

of fire behavior modeling and simulation in the development of fire management 
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plans. Fires have many elements of uncertainty, especially in spread behavior at the 

point of interface and through developed areas. It has been proven that, at 

recognizable thresholds, the proper combination of weather and fuel produces and 

sustains simultaneous outbreaks of fires across the wilderness. Recognizing these 

conditions and assessing the potential of fire risks in WUI environments using 

simulation has been largely ignored as a pre-disaster strategy. However, historical 

review and development of local models could provide better decision support during 

real emergencies (Cleaves 2001). 

Fire behavior simulation was developed for use in wildland fire management. 

The original fire models were used to draw most likely spread rates and directions on 

maps for use by firefighters in planning suppression activities. Eventually the advent 

of computers enabled the models to be represented in algorithms with digital output. 

Fire simulations were no longer specifically for active fires, but could be used to 

analyze past fires, and compare events that occurred in the same location. In this 

regard, fire simulation became a tool for analyzing fire ecology. Today, fire 

simulation is used to analyze past, present, and potential fires. However, the use of 

this technology has focused on wildland environments and fuels. With increasing cost 

associated with the rising number of fires in the WUI, the need for effective tools in 

developing pre-disaster mitigation strategies is required. 

The ability to simulate and visualize fire behavior is a powerful tool for fire 

management planning in WUI environments. For example, fire simulation enables 

urban planners to assess an entire landscape, and pinpoint the locations of greatest 

threat and potential treatment. The simulation results can be used as input in cost-
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benefit analysis of various treatment protocols. As treatments are completed, 

additional simulations can be run to determine their effectiveness. Ecological 

assessment is made possible by the data collected during pre-treatment and post

treatment field work. The assessment data is fundamental in determining how the 

ecosystem is reacting to the treatment regime, especially if prescribed fire is used 

(Agee 2000). All the science, management, and planning aside, the most useful aspect 

of the simulation output is the educational value in demonstrating to the public the 

risks of doing nothing. 

Summary 

In this chapter we discussed how economic growth in the past 20 years has led 

to increasing home prices and rapid development in WUI environments across the 

West. Interface and occluded WUI environments have been the sites of the most 

devastating urban wildfires. Traditionally, mitigation strategy has been employed at 

the interface boundary, in the immediate vicinity of structures. However, firebrands 

and lofted embers can travel great distances during more intense fires. Therefore 

mitigation strategy needs to extend beyond the interface boundary and into the 

wildland environment. Fire simulation can be used to assess and demonstrate fire 

behavior at the landscape scale. Simulation output can be used by multiple 

stakeholders to determine the most appropriate locations, extent, and types of 

mitigation technique to employ. 
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CHAPTER 3: FOREST ECOLOGY AND FIRE MECHANICS 

This chapter is focused on the fire ecology of the western hemlock zone and 

the mechanics of fire movement. Agee, Fahnestock, and Flewlling are among the 

many researchers who have established theory on the cycle of fire in the forests west 

of the Cascade crest. Their efforts have shown that fire plays an integral role in the 

long-term health and development of these forests. 

Regional and Local Species Composition 

Douglas-fir typically regenerates and establishes itself as the dominant 

coniferous species in the foothills and low mountains west of the Cascades after a high 

intensity fire or other disturbance that kills all of the vegetation in a forest. Such a 

disturbance is typically referred to as a stand replacing event, and these are rare in the 

western Pacific Northwest. Much of this area is considered to be a part of the western 

hemlock vegetation zone, a classification based on western hemlock being considered 

the self-perpetuating and climax species (Figure 4). Typically the western hemlock 

zone is bounded by elevations ranging from 750 to 3,500 feet (Franklin and Dyrness 

1988). Forest Park is part of this zone, though in the lower elevation portion. 

However, the park's placement in a WUI environment has produced a somewhat non

standard species composition. 
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Figure 4: Two views of the Western Hemlock Zone using the national atlas forest cover type 
classification. The map on the left displays forests classed as Douglas-fir and western hemlock. The 
map on the right displays only the western hemlock forests . The red box outlines the Tualatin 
Mountains. Douglas-fir and western hemlock classes are found in the box . However, Douglas-fir and 
western hardwoods would be considered dominate at the current stage of development. (Source: 
National Atlas of the United States, the USDA Forest Service.) 

A fire protection plan written in 1950 concluded that the whole area had been 

logged within 50 to 70 years prior. Considerable logging had also been completed in 

the area between Germantown Road and Newberry Road between 1945 and 1950 

(Marshall 1950). Multiple fires of variable intensity have burned large portions of the 

Tualatin Mountains in the last 150 years since Euro-American settlement. Many of 

them started from slash pile burning. The repeated disturbance pattern has continually 

altered the natural succession. This cycle of fire has established a mixed hardwood 

forest composed of large stands of red alder (A/nus rubra) , and bigleaf maple (Acer 
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macrophyllum), interspersed with stands of Douglas-fir (Pseudotsuga menziesii 

Mirb.), western hemlock (Tsuga heterophylla), and younger western red cedar (Thuja 

plicata), and grand fir (Abies grandis). The current hardwood-confier mix, based on 

percentage of total trees per hectare measurements acquired from sampling plots, is 

51 % hardwood and 49% conifer. 

A natural, undisturbed, and mature western hemlock vegetation zone forest at 

an age of about 250 years would consist of three primary species: Douglas-fir, western 

hemlock, and western red cedar. Secondary species interspersed with the primaries 

would consist of grand fir, black cottonwood, red alder, bigleaf maple, madrone, and 

western yew. The hardwood species would start to be excluded from a maturing forest 

or relegated to riparian or edge environments once the conifers began over topping 

them. The forest understory would consist of a variety of well developed shrubs; 

sword fern, salal, Oregon grape, lady fern, red huckleberry, western hazel and vine 

maple (along trails and edges). Wildflowers such as wild ginger, Hooker's fairy bells, 

vanilla leaf, trillium, evergreen violet, and inside-out flower would also grow among 

the shrubs, primarily during the summer (Houle 1996). 

Bigleaf maple has become unusually dominant through out the park, but not 

abnormally so. Bigleaf maple was present prior to logging and abundant in areas that 

did not burn. In areas that were logged or burned Bigleaf maple stumps remained vital 

and re-sprouted, growing more quickly than other pioneer species and building a 

larger seed source. Conversely the repeated logging and burning reduced the seed 

source of conifers. 
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Red alder has dominated some areas of the park. In a natural environment red 

alder would be a pioneer species and grow primarily on riparian slopes. However, 

areas where humans have disturbed the successional pattern, either by intensive 

logging and subsequent repeated fires, the soils are leached of nutrients. At this point 

red alder can invade adjacent areas and out-compete all conifer trees. Young Douglas

fir, the pioneer evergreen after a disturbance, needs bare soil to gain a foothold and 

develop into a stand. If red alder gets there concurrently then it will take a long time 

for Douglas-fir to overtop the alder and develop into stands. In the environments 

devoid of Douglas-fir, shade-tolerant evergreen (western hemlock, western red cedar) 

struggle to survive in small numbers or are excluded from the area (Newton 1967). 

Regional and Local Forest Succession 

In remnant forests of the Pacific Northwest, hardwoods pioneer the early 

successional landscape. Hardwoods may continue to dominate along edges. 

Eventually the genetic predisposition of conifers to overtop hardwoods will cause the 

decline of the hardwoods during the stem exclusion stage. Hardwood decline will 

accelerate as stands transition through the understory reinitiation stage into a multiple 

cohort stand. A cohort simply refers to groups of trees of similar character, such as 

age. Typical of mixed Douglas-fir/hardwood forests, the disturbance events lead to a 

patchwork of multi-modal, and even-aged and-sized stands (Wills and Stuart 1994). 

Eventually the stand reaches equilibrium in biomass and productivity, and enters into 

an old-growth stage (Figure 5). 
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Figure 5: Western Hemlock Zone Forest Succession Pattern. About 20% of Forest Park is in the stand 
initiation stage, dominated by abundant Alder and Bigleaf maple. Over 50% of the park is in the stem
exclusion stage, in which Douglas-fir over 40 years old, is beginning to top the hardwoods, and the 
upper reaches of the canopy are about 100 feet tall. About 25% of the park has transitioned into the 
understory reinitiation stage, with hardwoods beginning to drop out of the stand. There are only a few 
acres of old-growth in the park, constituting less than 5% of the park area. (Source: concept by Houle 
1996, illustration drawn by Author.) 

The successional pattern for western hemlock zone forest involves 4 major 

stages. In the case of fire, for the first few years after a stand replacing event the 

landscape consists of burned snags and grasses that are able to quickly regenerate. 

This stage is called the stand initiation stage and will last for up to 30 years . Shrubs 

will establish and persist in the understory. At lower elevations hardwoods will 

pioneer the tree growth along with shade-intolerant conifers, such as Douglas-fir. For 

the first 30 years hardwood will dominate the canopy. 

Between 30 and 80 years Douglas-fir will top the hardwood and the 

successional pattern will shift into the stem exclusion stage. The stem exclusion stage 

is described as exhibiting decreasing stand density accompanied by canopy closure. 

Lower branches interlock and lateral expansion slows. As the canopy closes, less light 

is available to suppressed trees and lower branches. Unless the suppressed trees are 

very shade tolerant, their ability to photosynthesize is hindered and they die. Leaves 
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on lower branches die and the limbs become non-functional and die. The net effect is 

that dominant trees become less randomly distributed throughout the stand (Oliver and 

Larson 1990). 

The understory reinitiation stage begins when trees in the upper canopy begin 

to succumb in small groups or individually. The gaps left by these trees enable shade 

tolerant trees to release and ascend into the overstory. Individual stands may stay in 

this stage for a long time. Young and old trees coexist and occasional disturbances, 

such as wind throw, insects, or disease, clear trees gradually to let climax species grow 

into dominance. As gaps in a stand are created and filled, a stable balance of trees of 

different species, sizes, and ages will become established (Baker, et.al. 1996). 

The pattern of increasing conifer dominance should persist for 250 years, at 

which time an old growth environment becomes established as Douglas-fir gives way 

to western hemlock and more shade tolerant species. This model only applies as long 

as no other severe disturbance events occur as the process is unfolding (Franklin and 

Dyrness 1988). 

The succession pattern that has emerged in Fore st Park after the frequent 

disturbances of the late 1800s and first half of the last century is normal, given the 

elevation and orientation of the area. Past analysis estimates that the majority of the 

park is in the stem-exclusion stage of development (City of Portland 1995). The 

City's assertion that the 5,000 acre forest is mostly in a single stage of development is 

a generalization. This is especially true given the witnessed disturbance history and 

placement in an urban interface. 
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There are areas of the park that are well described by the stern-exclusion 

definition, but others that have begun to transition to understory reinitiation of a single 

cohort. However, the 50/50 canopy mix is likely to continue for some time, even 

without further disturbance. 

Invasive Species at the Interface 

The herbaceous understory of Forest Park is most impacted by its interface 

condition. There is widespread evidence of ornamental escape in the form of English 

ivy (Hedera helix L.), which has overtaken areas of the forest along the southern edges 

of the park. Yellow Clematis (Clematis tangutica) has also invaded the same areas 

and grown high into the canopy. Unchecked, these vines will choke trees to death or 

add enough weight to cause blowdown during a storm (Figure 6). 

Figure 6: Photo taken by author of invasive English ivy. Ivy will out-compete other ground cover and 
eventually grow up into the canopy via tree trunks and out onto limbs. The added weight can bring 
down trees during storms, creating forest openings, and causing ecological change. 
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Another invasive of particular concern is Garlic mustard (Alliaria petiolata ), 

which is able to compete independent of the presence or cover of native species can 

alter habitat suitability for native insects. These types of invasive species can 

eventually alter the fauna and flora of the environments they invade. However, the 

most dominant understory species in Forest Park is the Sword fem (Polystichum 

munitum ). The Sword fem accounted for over 80% of the ground cover measured at 

sampling plots within the park. 

Understanding the Cycle of Fire. 

Fire cycle modeling is used to predict regularly occurring fire patterns. In this 

regard two concepts are critical. The first is the fire cycle, which is used to suggest 

that fire returns to an area with some regularity and in some instances leads to stand 

replacement. Second is fire return interval (FRI), the time between fires in a specified 

area of forest. The FRI is typically how fire cycles are gauged. Even a low intensity 

surface bum that may only kill a handful of seedlings resets the FRI. In many cases 

there will be multiple FRis in a fire cycle (Figure 7). 
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Figure 7: The 230 year series represents a FRI more similar to the dynamic observed in Forest Park 
since the time of settlement and logging. The bottom series represents a single "natural" FRI, where 
fire of any intensity has not returned to the forest in 250 years. (Source: concept by Agee 199 l , 
illustration drawn by Author) 

Many studies have attempted to establish a fire cycle for the forests west of the 

Cascades crest. Most studies have found that the fire cycle in wet-to-mesic forests is 

far more complex than the drier environments east of the Cascade Range. A regional 

average FRI for the western and coastal Pacific Northwest forests dominated by 

Douglas-fir was determined to be approximately 230 years. This average was based 

on an analysis of forest survey records from the 1930s. The study used the records to 

calculate the time between fires for the various stands from which the samples were 

collected. This information can then be extrapolated to establish the average FRI for 

the larger areas. The results of the modeling suggest that substantial spatial variability 

is included in the estimate, as well as considerable temporal variability due to climatic 
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shifts (Fahnestock and Agee 1983). 

Studies of the long-term fire history of the western Pacific Northwest have 

been based on lightning as the ignition source. The lightning ignition portion of a fire 

cycle model developed for the Olympic peninsula (Agee and Flewlling 1983) was 

applied to 4 locations in western Washington and Oregon. The model parameters used 

were probability of long-term drought, a rain exceeding 0.25 cm, occurrence of a 

thunderstorm, and an east wind, which is usually drier and stronger than the typical 

westerly flow. The model results were presented as the probability of ignition per year 

that would result in a fire that would grow beyond 1 hectare. 

The model was applied to areas of 175,000 hectares (675 mi2) across the entire 

region. The general trend showed that probability of ignition increases in an easterly 

and southerly direction from the western Olympics through the Siskiyou Mountains of 

southwest Oregon. Results from the 4 test sites indicated that ignition per year in the 

Western Olympics was equal to 0.1, Wind River area equal to 0.3, McKenzie River 

area equal to 0.5, and the Siskiyous equal to 1.0, ten times the likelihood of ignition 

relative to the Western Olympics. Agee cautions that the model results should be 

interpreted as relative numbers between sites, rather than an absolute estimate at any 

one site. 

The fire history of the Pacific Northwest is undoubtedly tied to weather. The 

fire season typically extends from June to September, largely due to the maritime 

climate, which produces moderate temperature and humidity, and only light 

precipitation during these months. It is during droughts that major fires occur and will 

often bum with great intensity. Because the region is wet most of the year fuel loads 
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can exceed several hundred tons per acre, from understory growth. The overstory 

fuels are not the cause for concern as much as the prodigious understory, which can 

dry out during drought. Additionally, severe weather can blow down large swaths of 

forest. The Columbus Day storm, in 1962, felled 7 billion board feet worth of trees 

over several hundred square miles in Oregon and southwest Washington. This level of 

dead fuel can develop into a cycle of reburns that can extend over decades. The 

Tillamook bums are a good example of this phenomenon (Pyne 1998). 

Little evidence exists that fires lit by Native Americans culminated in large 

stand replacing events. Furthermore, these events could not have altered the fire cycle 

of the western Pacific Northwest in any meaningful way. Stories of catastrophic fires 

can be found in Native American legend. However, the case for widespread 

aboriginal fires throughout the region can not be established (Agee 1991). Most 

anthropogenic fires were surface bums lit by Native Americans to clear lowland and 

non-forested areas for the purpose of game management. Many of these fires burned 

vast areas, especially in the Willamette Valley. The frequency with which they were 

set served to establish prairies in the river valley bottoms with isolated groups or 

individual ash, oak, pine, and fir in special conditions, usually on the margins of the 

valleys or along streams. At the time of the first survey of the Willamette Valley in 

1853 the surveyors frequently found no trees on the flats of the valley (Johannessen et 

al. 1971). 

Conversely, the upland areas adjacent to the valleys had abundant forest cover. 

In the period 1845-1855 seven times as much land was deforested as in any of the 

three previous decades as large scale Euro-American settlement of the Willamette 
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Valley occurred. During this same time period anecdotal accounts exist of great fires 

occurring from escaped cooking or slash fires throughout the coastal areas of Oregon. 

Some of these events have been corroborated by journals kept by expeditions 

dispatched to the southern coast (Morris 1934). 

Finding evidence of fires on living trees is also troublesome in Douglas-fir 

forests, since fire scars tend to be buried in the tree record. Most scars used to 

reconstruct fire history occur after the tree is 50 years old (Barrett and Arno 1988). 

Because of the growth rates experienced in the wetter climate, scars heal within the 

first 5-15 years after a moderate severity fire. Moderate severity fires burn only the 

small deep furrows of the bark which end up being recorded in the tree's growth rings. 

Species dominance changes as the FRI lengthens in wet-to-mesic Douglas-fir 

forests. Douglas-fir will drop out of a stand if fire is absent for over 700 years and 

western hemlock and Pacific silver fir will take over as the dominant species. Areas 

with 300 to 600 year FRI will typically produce stands of mixed-dominance of 

Douglas-fir and western hemlock or Pacific silver fir. Areas with FRI ofless than 300 

years maintain forests dominated by Douglas-fir. While, FRI of under 100 years on 

drier or warmer environments may exclude western hemlock (Agee 1991). 

Mesic-to-dry Douglas-fir forests found on the western slopes of the Cascades 

are dominated by a moderate severity fire cycle. This type of fire cycle is represented 

by more frequent but less intense fires, which leave substantial survivorship within a 

stand. The survivors may represent multiple age classes, adding to the patchwork of 

stands at the landscape scale (Stewart 1984, Agee and Krusemark 2001). Medium size 

canopy gaps are created by moderate severity FRI leading to stands of mixed 
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dominance and multi-modal age structure. Stand composition resulting from such fire 

cycles are correlated more heavily with the fire events than successional stand 

development dynamics (Wills and Stuart 1994). Even in a moderate severity FRI zone 

canopy gaps can vary in size, leading to release of suppressed trees within a single 

stand after lower intensity fires. Alternatively, after more intense fires, regeneration of 

pioneers may take place on a more coarse scale (Spies and Franklin 1989). 

A more localized study conducted on 4,800 acre area of western hemlock zone 

forest in the central western Cascades revealed an average FRI of 95 years for the 

years 1150 to 1985. The topography of the study area consisted of steep, dissected 

slopes. A consequence of a moderate severity fire regime is that old growth 

characteristics can be sustained or established at both the stand (area of single age 

class) and landscape (large area of multiple stands) scale over time. Human influence 

on the fire record was also reviewed within the study area. It was found that the time 

ofleast human inhabitance in the area (1810 to 1850) yielded the shortest FRI at 72 

years, while the period of most rapid settlement (1850 to 1910) had a 213 FRI 

(Morrison and Swanson 1990). 

Human influence (native or foreign) on the regional fire cycle is negligible. 

An explanation for this may be that fire history in the Western Hemlock Zone is such 

a long-term cycle of moderate bums that human influence either by suppression or 

ignition has not had time to show up in the record. 150 years of settlement, and 100 

years of active suppression is not a long time considering that the complete fire cycle 

in these forests can be over 1000 years. The alternative is that few human-caused fires 

burned large enough areas to significantly alter the fire cycle. Working from the 
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perspective of an urban forest fire cycle, the regional fire cycle established from the 

study oflarge wildland environments may be of limited utility, which strengthens the 

case for conducting more fire cycle analysis in WUI environments. 

Factors and Mechanics of Forest Fire 

Fuels are the most fundamental fire behavior factors, representing the organic 

material consumed during a fire. Fuels are typically stratified vertically through the 

forest canopy. The arrangement and components of a stratified canopy determine the 

character and connectivity of fuel loads. Once the fuel load is established, fuel 

moisture content can be quantified. The fuel load and fuel moisture components help 

determine the seasonal variation in flammability. This data becomes a primary input 

to fire simulation. 

When evaluating fire potential at the landscape and regional scale, fuel and fire 

behavior relationships are emphasized, while species composition is less important 

(Key and Benson 2001). Therefore, when developing fuel models for a small, 

localized fire, fuel data will more strongly reflect the ecological components of the 

forest. Simulation results will enable the analysis of ecological processes, as well as 

the general fire behavior. 

Plant composition, population, and cover data from the overstory to the 

substrate is used to stratify, quantify, and aggregate fuel loads. A typical strata 

structure consists of substrates, understory, and overstory (Table 3/Figure 8). 

Substrate material consists of dead woody debris, as well as litter and duff. Substrate 

measurements provide the majority of the fuel loading information that makes up a 

surface fuel model. The forest understory consists of herbs, low shrubs, and small 
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trees including all grasses and forbs under a meter in height. Herbs are plants that die 

back each year. Shrubs retain perennial woody stems and grow year to year. Small 

trees, including tree seedlings, typically have only one central stem, and potentially 

grow out of the understory. The understory provides much of the ecological context 

of a plot and is representative of the forests successional health. The overstory 

consists of trees that make up the various levels of the canopy. Intermediate trees 

receive little direct sunlight from above. In this regard the actual size of the 

intermediate trees is relative to height of upper levels of the canopy. Big trees occupy 

the uppermost canopy, and usually receive direct sunlight from above. 

Table 2: Recommended Firemon Landscape Assessment strata type and sub-components. 
(Source: Firemon.) 

Strata Components 
Substrate inert surface materials, duff, litter, downed woody fuels 
Understory herbs, low shrubs, saplings, small trees 
Overstory intermediate trees (pole-sized, subcanopy), big trees (mature, dominant, 

upper canopy) 

The process of how fire behaves under certain conditions is well understood. 

Forest fires have some basic behavior regardless of the fuel type that makes up the 

forest being consumed. Surface, crown, and spot fires are the three types of fire that 

fire behavior analysis attempts to simulate. 

Surface fires (Figure 8a) are the most common and the easiest fires to suppress. 

Fire will remain on the floor of the forest for a variety of reasons. The first may be 

because the fuel load is light and therefore the fire does not bum with great intensity. 

Second, the surface fuel may be sufficient for more intense burning, but the 

wind at the surface may not be strong enough to push the fire along to take advantage 
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of the heavier fuel load. In some circumstances ladder fuel may be available to the 

surface fire, but only ladder and torch individual trees (Figure Sb). 

Third, the surface fuel load may be moderately heavy and the wind may be 

sufficient enough to create a more intense and rapidly spreading fireline, but the 

canopy base height may be too high for the surface fire flame length to reach the 

canopy (Figure Sc). 

If an active crown fire does not result from laddering then the canopy density 

may not be sufficient to support the spread of fire or the wind may not be strong 

enough to sustain the spread into surrounding tree crowns. However, an active crown 

fire has the ability to loft embers high into the air, which can be carried by the wind 

above the canopy and start spot fires ahead of an advancing fire (Figure Sd). 

Lastly, the forest composition may be such that the canopy base height is high 

and no ladder fuels exist that will enable the surface fire to ladder up into the canopy 

structure. However, when the right conditions exist a surface fire will transition into a 

crown fire (Figure Se). Spot fires that start in the right fuel conditions will spread and 

grow like any other surface fire. 
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Figure 8: Fire movement through a forest. Fire needs ladder fuel and canopy cover to transition into a 
crown fire. Some areas have ladder fuels, but the canopy is sparse enough and weather conditions only 
pennit torching of individual or small groups of trees. Locations that have the right set ofladder, 
canopy, and weather conditions will develop into active crown fire . Crown fires may produce 
firebrands that will create spot fires ahead of the advancing fire . (Source: illustration drawn by Author) 

Factors and Mechanics of Fire Environments 

Fire simulation attempts to predict fire behavior by using a set of known fire 

environment factors as inputs . Weather, wind, topography, and fuel are the primary 

fire behavior factors, each of which has multiple themes. The topographic themes are 

the first data layers developed for a fire behavior model. Changes in elevation, aspect, 

and slope impact wind movement and vegetation growth. Therefore, topographic data 

for fire simulation has a significant effect on the pattern of fire spread. Weather and 

wind make up the next set of themes. Wind and weather data is used as a data stream 

directly into the fire simulation model. Weather parameters include the daily 

minimum and maximum temperature and relative humidity, the time and elevation at 
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which the observations where taken, and any precipitation. These parameters are used 

to establish fuel moisture levels. The wind data is fed into the simulation on a much 

smaller temporal scale, a 10-minute average is preferred, but hourly readings will 

suffice. Wind parameters include open conditions for wind speed, wind direction, and 

percent cloud cover. A typical model may have to rely on data collected from a 

weather station that is tens of kilometers away from the fire area. Therefore, the data 

are assumed to apply uniformly over the entire area. 

Weather has a direct effect on fuel moisture levels and therefore ignition 

potential. In most cases these daily figures would be used to approximate the diurnal 

pattern of temperature and humidity variation. However, in an urban environment 

several stations may be available within a few kilometers of the fire area. Hourly or 

sub-hourly data could provide the real diurnal pattern, as well as wind data in close 

proximity to the projection point. When combined with stand height the wind data is 

used for computing spotting distances, wind reduction to midflame height, and crown 

fire characteristics. The midflame height is the point at which the middle of the flame 

length is above the fuel bed. Open conditions reflect the conditions at 6.1 meters (20 

feet) above the vegetation layer. However, wind is slower near the surface and must 

be adjusted to represent wind conditions at the midflame height. The midflame height 

is obtained by multiplying the 6.1 meter wind by an adjustment factor (Rothermel 

1983). The adjustment factor is based on the level of sheltering the surface fuels have 

from direct exposure to the open wind speed (Figure 9). 
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Figure 9: Surface fuel exposure based on open wind conditions aloft and canopy cover. Adjustment 
factors are applied to the 6.1 m winds to predict the wind speed closer to the surface and where the fire 
would experience its influence most (midflame height) . (Source: concept and language by Rothennel 
1983, illustration by Author) 

The topography of Forest Park would be a serious concern for any fire suppression 

efforts. The Tualatin Mountain ridge has topographic features that positively 

influence fire spread and negatively impact fire suppression (Figure 10). The park 

area has a series of steep slope that poses potential rapid upslope spread and downhill 

spotting due to rolling burning material. The steep terrain of the park consists of 

topographic features such as box canyons, chutes, and chimneys that have potentially 

rapid upslope spread fed by updrafts of air called "the chimney effect." Saddles can 

also be found in the park along the more prominent ridges (Figure 11). Wildfires get 
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pushed through saddles faster during upslope fire runs due to the squeezing action the 

terrain has on the air feeding the fire. 

Figure 10: Visual aid of general topographic features found in the Tualatin Mountains and Forest Park. 
(Source: The reporter's hazardous assignment handbook: wildfires.) 
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Saddle 

- ......... - '4 

Steep Slopes 

Figure l l : Perspective view of the canyons and other topographic fea tures just South of Saltzman Road. 
The black double line represents Leif Erickson Drive. This image in upper right corner represents the 
same area from a planimetric view with shaded relief. The orange arrow indicates the box canyon for 
visual reference. The blue line is Leif Erickson. The yellow line is Saltzman. The red line is Highway 
30 along the Willamette River. (Base Map Source: USGS) 

Narrow canyons also dot the landscape. NaITow canyons pose two potential 

possibilities for rapid fire spread. The first possibility is radiant or convection spotting 

up slope or across the canyon. The second is in the form of fire backing down one 

slope and suddenly running up the other. The combination of topographic features 

and heat build up in front of the leading edge of fire can cause eITatic wind patterns 
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and severe microclimatic effects. Many mid-slope roads cut through the park, which 

increases access, but an active crown fire could easily bridge the gap. 

Summary 

This chapter discussed the merits and shortcomings of understanding the 

regional fire cycle to better interpret the results of fire simulation for specific forests 

within the region. The fire cycle of the Douglas-fir and western hemlock forests of the 

western Pacific Northwest has been studied extensively. There is substantial evidence 

that anthropogenic fires have had no impact on the fire cycle. Furthermore, the fire 

cycle and FRI lengthens the farther north and west the forest extends. The FRI of 

these forests is typically longer than the fire cycle of most other types of forests 

throughout the west. The established fire cycle for Pacific Northwest forests may be 

oflimited utility for the examination of Forest Park. The pressures placed on the park 

because of its placement in a WUI environment coupled with the forests elevation in 

the Tualatin Mountains make it difficult to apply the Western Hemlock Zone fire cycle 

characteristics in their entirety to the area. 

37 



CHAPTER 4: PORTLAND'S FOREST PARK: A CASE STUDY 

As a study area this research will examine Portland's Forest Park, a more than 

5,000 acre second-growth forest on the edge of downtown. To better understand the 

site, a brief history of the forest and surrounding development will be presented. 

Historic fires will also be examined to demonstrate how large fires have altered the 

landscape. Finally, City of Portland planning and natural resources management, 

focusing on a 1995 plan will be discussed. 

Pre-Park History 

The Tualatin Mountain ridge trends in a northwesterly-southeasterly direction 

along the west bank of the Willamette River. Dixie Mountain is the highest point of 

the ridge at 1,609 feet, and represents the northern terminus of the range. The ridge 

rises steeply along the eastern side and averages between 1000 and 1,200 feet along 

the ridge line (Figure 12). Forest Park is situated on the southeastern slopes of the 

Tualatin Mountains. 
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Figure 12: The Tualatin Mountains dominate Portland 's Westside. They separate the Tualatin Valley 
from the Columbia basin. Forest Park boundary is outlined in orange. The subdivisions in the outline 
are due to roads and private property that bisect the park. (Base Map Source: USGS, City of Portland) 

39 



Steepness varies between the western and eastern slopes. Slopes are generally 

20% or less on the western side of the range. The eastern slopes, including the area of 

Forest Park, are far steeper and frequently in the 25% range. The east side is bisected 

by numerous chutes and narrow canyons, and slopes in many of these ravines are 75% 

or greater. Figure 13 illustrates the steepness of the Tualatin Mountains through 3 

sample elevation profiles. 
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Figure 13: Elevation profiles at three points across the Tualatin Mountains ridge. A two-times vertical 
exaggeration has been added to the profiles. The olive green shaded areas in the profiles indicate slopes 
inside Forest Park ' s boundary. The elevation is in meters , as well as the transect lengths. (Base Map 
Source: USGS, City of Portland, RUS; elevation data from ldrisi output by Author.) 

41 



In the early 1840s, pioneer farmers constructed trails that traversed the 

Tualatin Mountain ridge, situated between the Tualatin Valley to the west and the 

Willamette River to the east. They used the trails to traverse the steep ridge and 

deliver wheat and produce to settlements along the Willamette, including Portland. 

Between 1845 and 1849 the trails were widened and improved. The paths of these 

trails became the foundations for future roads, most notably Cornell, Germantown, 

and Newberry (Figure 14). 

In this initial period all of the land was considered property of the Federal 

government, but through donation land claims most of the Tualatin Mountains was 

deeded to settlers between 1850 and 1855. Homestead development increased on the 

level land along the ridge and farms extended to the base of the hillsides. The steeper, 

slide-prone land on both sides of the range between the ridge and the Tualatin Valley 

and the Willamette River was left either undeveloped or logged (Munger 1960). 
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Figure 14: Original trails that traversed the Tualatin Mountain ridge. These trails have subsequently 
become the Major Roads from the Tualatin Valley to the Willamette River and Portland. All of these 
trails (roads) wind through Forest Park. (Munger 1960; Base Map Source: USGS, Metro RLIS.) 
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In 1899 the Municipal Park Commission for Portland was established. 

Through personal connection, the founder of the Commission, Rev. Thomas Eliot, 

established a relationship with John Charles Olmsted of the respected Olmsted 

Brothers, landscape architecture firm, from Brookline, Massachusetts. The Olmsted 

Brothers firm was contracted to develop a comprehensive park plan for the rapidly 

growing City of Portland and in March of 1903 John Charles Olmsted and an assistant 

visited Portland. The plan was eventually submitted to the Commission in December 

of 1903. In reference to the Tualatin Mountain ridge John Charles Olmsted wrote, 

" ... such primeval woods will become rare about Portland as they 

are now about Boston. If these woods are preserved, they will surely 

come to be regarded as marvelously beautiful. .. No use to which this 

tract of land could be put would begin to be as sensible or as profitable 

to the city as that of making it a public park or reservation, leaving out 

of it, if it should be found necessary for economy, the top of the ridge, 

which might come to have special value for country residences." (1903, 

41) 

Forty-four years later Olmsted's vision was realized with the dedication of 

Forest Park. However, the land for the park was available not because of a conscious 

acquisition effort and careful planning, but only because of a real estate fiasco. In 

1910 the city of Linnton incorporated on the Willamette River at the foot of the 

Tualatin ridge. Its city limits included most of the park area. Richard Shepard, a 

member of the Linnton town council and realtor, promoted the idea that a scenic 

Hillside Drive be constructed along a contour at about the mid-point of the ridge 
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running from Germantown Road to the end of Thurman Street in northwest Portland. 

In speculation of the construction of the Drive linking to Portland, residential 

subdivisions were platted all along the river front, on either side of Germantown Road 

and Springville Road, and along Skyline Road. However, only the lots at the foot of 

the mountain along the river were built on (Wilson 1945). 

In 1914-1915 Hillside Drive was quickly graded; unfortunately the cost of 

construction was almost twice what the engineers had expected. In July of 1915 

Portland annexed Linnton and, in January of 1916, to pay for the road grading work 

the newly platted subdivisions were each assessed a fee. At the time there were 

thousands of lots, but only a third of the assessments were ever paid. Liens were put 

on the properties, and all were eventually foreclosed on (Munger 1960). 

In the meantime, the steep hillside proved too much for Hillside Drive. The 

road quickly fell into disrepair as winter landslides came down on it, and the cost of 

maintenance increased. In 1933 Hillside Drive was renamed Leif Erickson Drive 

through a city ordinance sponsored by the Sons of Norway. 

The City Club, a powerful civic-minded group, formed a committee of five in 

1944 to address the repeated demands that the northwest hills be granted park status. 

The City Club report was originally printed in the City Club bulletin of August 31, 

1945. The recommendations in the report were approved by the membership on 

September 7, 1945. 

The City Club's recommendations were not officially acted upon until 

November 12, 1946, when a public meeting was held to formulate a plan to create the 

proposed park. Soon after, a permanent committee of fifty representatives, forty of 
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which represented various civic, commercial, educational and recreational agencies, 

were mobilized to finalize detailed plans for the park. 

The first meeting of the "Committee of Fifty" was held on February 5, 1947. 

Dated June 9, 194 7 the committee made a recommendation that the city dedicate all 

city-owned land in the Tualatin Mountains to the park, asked Multnomah County to 

convey the city its land, and urged adopting a policy of acquiring private lands within 

the park boundary. The City Planning Commission also endorsed the 

recommendations and drafted large scale maps of the proposed park boundary. On 

July 9, 1947 the City Council held a public hearing on the recommendation and 

adopted unanimously the recommendations of the Planning Commission and the 

Committee of Fifty. The transfer and consolidation of the land holdings to the city 

parks bureau was cumbersome, but on September 25, 1948 Forest Park was formally 

dedicated (Munger 1960). 

The area within the original exterior boundary was estimated at 6, 168 acres 

(2,496 hectares), but because of extensive private inholdings, only 4,200 acres (1,700 

hectares) was actual park land (Munger 1960). The park stretches north-northwest for 

7 .5 miles along the east side of the Tualatin Mountain ridge. It is approximately 

bordered by Skyline Road to the west and St. Helens Road/Highway 30 at the edge of 

the Willamette to the east. The City of Portland has continued to acquire private land 

adjacent to the park and within the original boundary. Today, there are 5,004 acres 

(2,025 hectares) of park land. However, the City's ability to expand the park is 

limited given the surrounding urbanization (Figure 15). 
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Figure 15 : Forest Park is outlined in orange. The yellow shading represents Census 2000 urbanized 
area (UA) and urban clusters (UC). A UA consists of contiguous, densely settled census block groups 
(BGs) and census blocks that meet minimum population density requirements (1000 persons per square 
mile/500 ppsm), along with adjacent densely settled census blocks that together encompass a population 
of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks 
that meet minimum population density requirements, along with adjacent densely settled census blocks 
that together encompass a population of at least 2,500 people, but fewer than 50,000 people. However, 
much area not shaded still has substantial development. Parcels Northwest of the park offer the only 
significant expansion. (Source: USGS, City of Portland, Census 2000) 
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Historic Land Use and Development 

In 1806, during the return trip of the Lewis and Clark expedition eastward, 

Captain William Clark and a few members of the expedition made a side trip up the 

Willamette River and are believed to have camped in the area where University of 

Portland now stands. Looking from the bluff upon which he stood Clark would have 

looked at the hillside that is now a part of Forest Park. He wrote, "The timber on them 

[Tualatin Mountains] is abundant and consists almost exclusively of the several 

species of fir already described [Douglas-fir, grand fir, and western hemlock], and 

some of which grow to a great height (Lewis and Clark, 1961)." 

The virgin forest described by Captain Clark was exploited early by settlers, 

with most of the big timber being removed by the 1860s. Wood-cutting camps for the 

unemployed and needy were sponsored by the city in 1914 and again in 1937. High

lead logging was in progress up until 1951 (Munger 1960). Today, only a small patch 

of old-growth forest exists in the extreme north end of the park area. 

Even though most of the land within the modem park boundary was platted for 

development, only a few small private parcels within the park were ever developed. 

The only development on park land has been road building and logging activity. 

However, development has continuously occurred right up to the park boundary since 

its dedication. A map of the southern half of the park area illustrates the patchwork 

pattern and type of development over time (Figure 16). Figure 17 is the same type of 

map for the northern half of the park. Much simpler in pattern are the maps of current 

land use, portrayed in Figure 18 and 19. 
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Figure 16: Development around the southern end of Forest Park since 1870. The first parcel developed 
into a homestead is located just below the center of the map. The majority of the development on the 
western slope (Bonny Slope) has been completed since 1990. The green shading represents park land. 
(Source: USGS, Metro RLIS) 
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Figure 17: Development around the northern end of Forest Park since 1870. The green shading 
represents park land. The parcels of land tend to be larger than around the southern half of the park. As 
in the southern end the majority of the development has been completed since 1990. The hillshade 
extends 1.24 miles from the Park's boundary; this represents the buffer used throughout the study. 
(Source: USGS, Metro RLlS) 
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Figure 18: Building zone designation around the southern half of Forest Park based on 2004 metro 
taxlot data. The figure illustrates the dominance of residential interface on the western slopes of the 
Tualatin Ridge and abutting the park. The industrial zone is dominated by petroleum refineries, and rail 
operations. (Source: USGS, Metro RLIS) 
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Figure 19: Building zone designation around the northern half of Forest Park based on 2004 metro 
taxlot data. The green shading represents park land. The figure illustrates the dominance of estate size 
parcels in around the northern end of the park. Substantial parcels of private forest are also present. 
Many of the larger parcels designated as single-family and vacant have significant forest cover. 
(Source: USGS, Metro RLIS) 
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Figure 18 illustrates the pattern ofresidential dominance south and west of the ridge, 

while commercial and industrial dominates the southeastern area. A significant 

amount ofland is also set aside as green space and right-of-way. For example, the 

majority of vacant property intermixed with the residential zones adjacent to the 

southern park area is environmental greenbelt and other mandated set aside. The 

largest vacant parcel in the industrial zone is railroad right-of-way. Figure 19 clarifies 

the pattern of larger land holdings, estates, and private forests adjacent to the northern 

section of the park. 

Development along the southeastern boundary (Northwest Portland) was 

largely in place in 1948. Development in this area consists of neighborhoods of single 

and multi-family development perched on the hills and slopes adjacent to the park. No 

new development is likely in the northwest hills, which has reached a limit in allowed 

density. 

The western boundary, along the top of the ridge, is largely developed as single 

family homes. The development becomes more sparse and rural as you move north 

along Skyline Road. Eventually large estates, farms, horse stables, and private forests 

dominate the development to the north and west. The extreme northern boundary is 

structurally undefined, in that the stand continues into privately held properties where 

management has ranged from unmanaged growth to clearcutting. 

A large industrial zone lies along the park's eastern boundary and the 

Willamette River. Originally the industrial area was a large lake called Guilds Lake 

and was home to the 1905 Lewis and Clark Exposition. Olmsted's 1903 plan had 
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called for the whole site to be converted to public open space. However, due to a lack 

of funds and the interest of the business community in the land for industrial use the 

site was not converted to a park. The Portland Development Company bought the 

land and most of the major buildings built for the expo were cleared by 1906. 

Construction on the hills above the lake caused silt to fill it in between 1910-1913. 

Little development was completed in the area with the exception of the Montgomery 

Ward building in 1921. Emergency war housing was constructed on the western 

portion of the mudflats in 1942 (Abbott 2004). 

Today the industrial zone consists of light and heavy manufacturing, shipping, 

and fuel refining operations. The businesses that back up to the park include a heating 

oil depot, wood pallet dump, and welding company (Figure 20). The development 

figures in Table 4 demonstrate the explosive growth that has occurred adjacent to the 

park. The period between 1990 and 2004 has experienced almost three times the 

development than any other 20-year period prior, dating back to the 1870s. 

Table 3: Table includes all development within a 1.24 mile (2 km) buffer around Forest Park. The 
Willamette River delineates the eastern boundary of development included in the table. The table 
includes residential, commercial, and industrial development. Developed acreage includes only 
residential development (source: Metro RLIS) 

Lots/Parcels Residential Acreage 
Time Period Developed Developed 
1870 - 1889 100 8 
1890 - 1909 1038 115 
1910 - 1929 1244 233 
1930 - 1949 853 279 
1950 - 1969 1071 281 
1970 - 1989 1146 248 
1990 - 2004 3299 632 
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Figure 20: The aerial photo shows the intersection of Highway 30 and St. Helens Rd. The North Pacific 
Rail yard can be seen next to Cheveron and Phillips refinery storage facilities in the upper left comer of 
the image. Taxlot lines overlay the photo and Forest Park is shaded green. lnset photo, taken by 
Author, shows a wood pallet depot that abuts the park boundary on St. Helens Rd. Many businesses on 
St. Helens Rd. transfer or use hazardous and flammable materials , including fueling stations, fuel 
distribution and storage. (Source : air-photo courtesy of Spencer B. Gross, Inc.) 
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Human Impact Fire Factors of Forest Park 

Quantifying the impact of the wildland-urban interface (WUI) on Forest Park 

as it relates or contributes to the forest's combustibility is largely subjective. How 

various urban pressures, such as pollution or development, impact the vegetation and 

microclimate of Forest Park is beyond the scope of this study. However, the degree 

and variety of human-park interaction as dictated by WUI development has 

implications in terms of the probability and location of potential ignition sites. A 

network of trails and roads traverse the park, facilitating human access for recreational 

activities such as hiking, biking, jogging, wildlife observation, and solitary 

contemplation. A large transient population camps within the park and evidence of 

campfires is present (Figure 21 ). 
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Figure 21: A transient fire lit on the side of a trail in Hoyt Arboretum, which is part of the Forest Park 
complex. (Source: Photo Taken by Dan Moeller, Plant Collections Man'ager, Hoyt Arboretum, April 
2005) 

According to the park managers and Portland Fire Bureau, transient caused 

fires have set small areas (>5 acres) on fire in the last five years. Additionally, rail 

lines run parallel to the park 's boundary. Sparks from dragging chains or metal-to-

metal friction can ignite brush that is not cleared from the rail right of way. Utility 

corridors, both gas lines and high voltage power lines run through the park and across 

the ridge at several locations (Figure 22). Residential or industrial development 

borders the park on two sides. As the level of potential threats have increased 
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precautions have been taken to improve firefighting access to all areas of the park. 

Some trails have been turned into roads and numerous fire lanes have been built since 

the park's dedication. 
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Figure 22: Two utility corridors transect the park, one at the extreme northern end of the park and the 
other in the central management unit, which includes a subterranean gas line. Wood is naturally a poor 
conductor of electricity, except at extremely high voltages . The utility owners clear many of the trees 
and branches from the area under the power lines. However, during hot summer days lines sag and in 
windy conditions trees can blow into or fall across power lines and creating potential for arcing and fire . 
After larger fires occurred in the park, firelanes and roads were improved to support firefighting efforts 
within the park. (Source: City of Portland, Metro RLIS , Friends of Forest Park) 
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Fire History of Forest Park 

An unfortunate result of logging and road building was more frequent fires. 

There have been three large fires in recent record in the Tualatin Mountains - 1889, 

1940, and 1951. Newspaper articles, aerial photos, and city archives provide enough 

details to establish an ignition point and burned area for each fire. The information on 

these fires is of importance for this study but of varying utility. 

The first fire broke out several days prior to September 18th, 1889 on the Irving 

tract between Barnes and Cornell Roads. The cause of the fire was never determined. 

The fire spread northwest toward Guilds Lake, currently the northwest industrial 

district, and southwest through the Kings tract, which are now the developments of 

Willamette and Kings Heights. The fire continued to spread in a westerly direction to 

Cedar Mill (Miller 1928). The fire burned through the canyons and over the hills 

along Canyon, Barnes, and Cornell Roads (Figure 23). The most intense fire was 

along Cornell and Barnes, destroying most everything in its path except for the largest 

trees (Oregonian 1889). The reason the fire was so intense in this area was the 

chimney effect that the steep chutes and canyons of the area had on the fire spread. 

The fire extent as illustrated in Figure 23 has been compiled by the author based on 

descriptions from the 1889 Oregonian article. The arrows on Figure 23 indicate the 

spread direction, and the width of each arrow indicates the relative intensity. The 

arrows have been placed as general guides of fire spread and intensity based on The 

Oregonian article, which offered details about the spread of the fire. The article 
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included the time at which farms and homes were damaged or destroyed by the fire, 

which helped determine the rate and direction of spread. 
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Figure 23: The orange shaded area is a rough estimate of the 1889 fire extent, overlaid on the current 
roads. White line indicates Forest Park boundary. The arrows represent fire spread as described by the 
Oregonian article. The width of the arrow indicates areas of greater fire intensity. (Base map source: 
USGS, Metro RLIS; fire boundary information: The Oregonian 1889; fire boundary drawn by Author) 
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However, the landscape of the area affected by this fire has been modified and 

developed extensively over the past 125 years. In addition, the majority of the burned 

area is outside of Forest Park. Though this fire is not being used for analysis, it is of 

historical significance and did affect the southern tip of the modem park. Based on 

the reconstructed fire boundary it would appear that less than 400 acres of park area 

burned. However, the exact fire extent can not be documented, and it is unclear if 

timber that may have survived the fire was subsequently logged. 

The second large fire in the Forest Park area began August 1 ih, 1940, and is 

known as the Bonny Slope fire (Figure 24). This fire devastated about 1000 acres 

both east and west of the ridge, with most of the area south of Saltzman Road (Munger 

1960). The fire also destroyed 11 buildings on the western slope, Bonny Slope area. 

The cause of the fire could not be determined. The fire burned for less than two days 

(Morris 1954). The fire was poorly documented, except for a map that was drawn in 

1948 that outlined the Bonny Slope bum and few smaller subsequent fires in the same 

area. The map was drawn to outline the Mazama forest, an area were the Mazama 

Club had supposedly planted 9,000 trees. A fire protection plan written in 1950 

described the landscape created by the Bonny Slope fire as being dominated by snags 

that left little protective cover for surviving trees and shrubs. The plan highlighted 

Bonny Slope as the second most hazardous fuel type after logging slash, even after the 

1940 fire. The report stated that "fire occurring in this area would have a high rate of 

spread and be very difficult to control" (Marshall 1950). 
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Figure 24 : The orange shaded area is a rough estimate of the 1940 fire extent overlaid on the current 
roads. White line indicates Forest Park boundary. Although the fire was of significant size it was 
poorly documented. (Base map source: USGS, Metro RLIS; fire boundary information: Mazama map 
1948; fire boundary drawn by Author) 
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The third large fire to occur in the Tualatin Moutnains originated in the park 

and burned for five days from Saturday, August 181
h through August 22nd, 1951. 

Weather during the spring and summer of 1951 played a critical role in the outbreak of 

the fire. Only two inches ofrain fell between April 181 and August 181
h, compared to 

an average at the time of7.5 inches. There were only 17 days with measurable rain 

compared to a normal of 42. The fire originated about two-thirds the way up the ridge 

in an area between Leif Erickson and Skyline Boulevard, north of Saltzman Road near 

city reservoir number 4 (Figure 25). The prevailing winds during the fire were from 

north-northeast. 
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Figure 25 : Red shaded area represents the 195 l fire extent. White line indicates Forest Park boundary. 
2004 taxlots are included in the map to demonstrate the development that has occurred since the fire . 
The arrows represent fire spread as described by the William Morris from the USFS who observed the 
fire . (Base map source: USGS, Metro RLlS ; fire boundary information: Morris 1954, The Oregonian 
1951 ; fire boundary drawn by Author) 
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The fire is believed to have been started by a maintenance crew working near a 

small tank reservoir in a gully off of Leif Erickson. It is unknown if the ignition was a 

result of the work they were doing or carelessness during a cigarette break, but it is 

likely that the fire smoldered in that area for several days before it broke away during 

the afternoon of the 18th. Regardless, the fire burned over 2,200 acres, about 900 of 

which were in the park. The fire was not brought under control until the evening of 

Tuesday, August 21st. As figure 26 illustrates the 1951 fire over-burned the majority 

of the 1940 fire area. 
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Largest Fires to Occur 
Since Time of Development 

_ 1889 Fire 

- 1940Fire 

- 1951Fire A 

Figure 26: Large scale fires to bum in or around Forest Park since Anglo-American settlement. The 
white outline is the park boundary. (Source: USGS, City of Portland, fire boundaries drawn by Author) 
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The northerly spread of the fire was slow and left largely unattended 

throughout the fire's duration. The fire did eventually spread north nearing 

Springville Road, where it was presumably extinguished (Figure 25: arrow A). Fire 

also spread slowly down slope from the point of origin primarily to the northeast 

(arrow B). Little is known about the tactics or force that was brought to fight the 

northern fire lines. It is assumed that the fire burned slowly and controllably through 

most of the area. 

The southern and western spread of the fire was far more active and 

unpredictable. U.S. Forester William Morris observed the fire along this front from 

Saturday, August 18th until Wednesday morning, August 22nd. He wrote detailed 

descriptions of the weather, vegetation, and spread rate from the point of ignition until 

it was brought under control during the evening of August 21st. The first night of his 

observation he wrote, 

From 10:30 that night [August 18th] to 3:00 a.m. the 
temperature in the vicinity of the fire ranged from 66° to 71°, the 
relative humidity ranged from 28% to 37%, and the wind on 
exposed ridges was north 8 to 16 miles per hour. The fuel was the 
usual mixture of brush and weeds, scattered Douglas-fir saplings, 
snags, and old logs found on poorly stocked old cuttings in this 
region. (1953, 2) 

The fire moved south about 0.4 miles in the first 12 hours after it broke away 

(arrow C). By 10 a.m. on Sunday the 19th the fire had spotted a short distance across 

a gully and moved only Y4 mile south of its overnight position (arrow D). However, 

by Sunday night the terrain and weather combined to produce the most rapid rate of 

spread. 
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The afternoon temperature reached a maximum of 88° and at 8 p.m. the 

temperature was still 79° with a relative humidity of 34%. At the same time gusts 

across the ridge top were 20 miles per hour. By this time the fire had spread south-

southeast an additional% of a mile (arrow E). The fire crossed Skyline road for the 

first time about Yi a mile northwest of the oil well. At this point the fire spread on 

both sides of the ridge. Morris observed the eastern flank of the fire from the oil well 

view point from 8 p.m. until 10:45 p.m. and wrote, 

At 8 p.m. the nearest point of the flank was 0.4 miles northwest 
near the top of the main ridge [along Skyline]. The fuel was largely 
standing and fallen poles killed by [the 1940 Bonny Slope fire] ... 
This part of the flank spread only about 0.2 miles per hour because it 
was moving along the contours interrupted by several small 
gullies ... Another finger from the main flank appeared farther down 
the spur ridge toward the river 0.4 miles north-northwest from the 
view point, and within 15 minutes two spots appeared 0.1 and l/i 
mile south of that finger [arrow F]. (1953, 4) 

Morris stayed at the oil well view point with the fire burning toward him. He 

was eventually forced to leave the location because of continued spot fires. At 10:30 

p.m. he made his final observation from the oil well site, 

... a spot started in the nearest gully about 0.1 miles north of the 
observation point. It spread at about o/s of a mile per hour up the 
[nearest drainage gully] where it received the full force of the wind 
and passed over the view point ridge and oil well road at 10:45. 
Flames on the slope were about 50 feet high. The wind and draft 
soon increased from the 20 mile per hour gusts that had prevailed all 
evening to gusts estimated at 40 miles per hour. Standing snags 
cracked. New spots quickly appeared on a north slope l/i mile farther 
south [arrow G] ... (1953, 5) 

At 11 :30 p.m. the temperature was still 72° and the relative humidity was 

42%. By 3 a.m. Monday morning the fire, that had passed the oil well, moved 
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farther south where it entered a large block of Douglas-fir south-southeast of the oil 

well. Most of the spot fires that had started northeast of the view point reached a 

partial canopy of trees, where spread slowed (arrow H). 

The western flank of the fire consisted of several prongs that had developed 

from spot fires. By noon on Monday, August 201
h fire was still active about Yi mile 

west of the Skyline-Thompson Road intersection (arrow I). According to Morris the 

fuel was consistent with a post-bum mixture of tall brush, bracken, and weeds. 

Flames were 4 to 10 feet high in 3 to 4 foot high green bracken. 

The southeastern flank had been slowed once it entered the taller timber and 

thinner ground fuel. By Monday afternoon the temperature had reached 92° and 

relative humidity was at 23% with winds north-northeast 8 to 10 miles per hour. At 

this point the fire was backing down the slopes with flames only 1 foot high in the 

litter and sword fem. The boundary of the fire was eventually contained by the 

construction of a fire road, now called Firelane 2. Backfires lit along Firelane 2 

stopped the advancing fire within 200 yards of the newly constructed road (arrow J). 

The fire continued to slowly spread throughout Monday, but by Tuesday the fire was 

under control and mop up had begun. 

The 1951 fire was the most recent large-scale stand replacing fire to bum in 

the Tualatin Mountains and is central to this study because it is well-documented. 

The detail provided by Morris on the fire's development, combined with the weather 

data he collected at the fire, provides a real-world situation against which to test the 

fire simulation model. 
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The factors necessary to run the fire simulation model include: ignition source, 

wind, temperature, relative humidity, topography, and fuel. Taken together these 

factors produce a particular outcome in terms of areal extent of a bum. For the 1951 

fire Morris provides the details of the outcome, as well as the wind, temperature, and 

humidity information. The ignition location is known and topographic data is 

available in digital map form. Although the fuel composition of 1951 is not known, 

the general characteristic of the vegetation that burned is described by Morris. His 

fuel composition descriptions are detailed enough to compare the simulation results 

with the actual 1951 fire outcome (Figure 27 and 28). 
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Figure 27: Photo taken on August 22nct, 1951 of burned area on the western slopes of the Tualatin range, 
west of Skyline Blvd. The photo indicates the view is to the west (Source: City of Portland Archives). 
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Figure 28: Photo taken on August 22nd, 1951 of burned area on the western slopes of the Tualatin range, 
west of Skyline Blvd looking down onto Bonny Slope. The photo is taken from an almost due west 
aspect (Source: City of Portland Archives) 

Assumptions regarding the 1951 fire spread can be made based on Morris's 

fuel description. Even though is does not enable scientific analysis or simulation 

recreation because field data can not be collected, it provides a better understanding of 

how fire moves over the landscape and highlights specific areas that, given the right 

combination of fuel, exposure, and weather, could support a high intensity fire. This 

enables the study's fire simulation results to be compared to an actual event. 

Management Objectives 

An interdepartmental team from Portland Parks and Recreation and the Bureau 

of Planning, with additional support from citizen and technical advisory committees 

73 



developed a comprehensive natural resource management plan (NRMP) in 1994. The 

city felt that without a revised plan in place, overuse and encroachment would place 

too much pressure on the park's resources. Adopted by the Portland City Council in 

1995, the NRMP outlines objectives for resource inventory, impact assessment, 

resource management, use management, monitoring, and environmental regulation 

compliance. 

The NRMP recommends the implementation of a sustainable resource program 

that would monitor vegetation (exotic and native) and wildlife (native and pests), 

establish core preserves, and implement ecological restoration projects as necessary. 

Within the context of this program the issue of fire hazard management is to be 

addressed. Fire simulation modeling would support recommendations outlined in the 

Forest Park Natural Resource Management Plan by enabling park managers to prevent 

or minimize the impact of fire. The plan states, 

... Fire hazard should be evaluated at regular intervals. 
Monitor significant risk factors including illegal camps, ignition 
from adjacent areas, overhead utility lines, and arson. Take 
appropriate action to eliminate or reduce risk factors. (1995, 48) 

The NRMP is primarily concerned with sustainability and access. The report 

has a one-page synopsis of the fire hazard risk in the park. The plan's authors suggest 

that the "current and short-term projection of wildfire hazard is low, due to lack of 

snags, large woody debris and fine fuels as compared with natural forest residues in 

similar forest types" (City of Portland 1995). 

The NRMP bases most of its fire hazard assessment on a shaded fuel break 

concept. According to the NRMP a shaded fuel break requires high overstory canopy 
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that keeps the humidity and moisture content of the understory relatively high. The 

shaded fuel break would usually be cleared of flash fuels (e.g. litter) and heavier 

ladder fuels (e.g. snags, blowdown logs) (Figure 29). This also assumes "moderate" 

burning conditions exist. Moderate conditions would include less than normal fuel 

moisture, low humidity, and above average temperature. An alternative definition is 

that a shaded fuel break is created by altering surface fuels , increasing the height to the 

base of the live crown, and opening the canopy by removing trees (Figure 30). 

Typically a shaded fuel break is also used with additional area treatment such as 

prescribed bum to reduce the understory fuel load (Agee, et al 2000). 
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Surface Fuel 
(no ladder or crown fuel) 

Ladder Fuel 
(limited crown fuel ) 

Crown Fuel 
(limited ladder fuel) 

Figure 29 : Vertical fuel structures that can lead to crown fires. For fire to ladder into the crown, the 
surface and crown fuels must have the appropriate level of vertical connectivity and density to sustain 
combustion into the crown. The surface fuel must burn intensely enough to ignite and sustain ladder 
fuel ignition. Surface fuel burns at a given flame length and intensity, which dictates the height and 
density at which the ladder fuel must be available. Living and dead material can act as ladder fuel. The 
ladder fuel must have the density to sustain combustion and ignite the crown fuel at the crown base 
height. The illustration represents an environment that may not support laddering fire . (Source: 
illustration drawn by Author) 
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Tree whorls thinned, trees removed , 
and understory removed 

Figure 30: Shaded fuel breaks are placed at strategic locations to minimize fire 's ability to ladder into 
tree crowns. Areas with heavy fuel loads and low canopy base heights and tall understory vegetation 
are likely areas for fire to ladder into the canopy. (concept by Rothermel 1983, Agee 1999, illustration 
drawn by Author) 

The NRMP concludes that the relative abundance of hardwood stands within 

the park provides similar fire protection as shaded fuel breaks because the fuel 

composition changes and would therefore impede fire movement. There has been no 

active management within the hardwood stands of the park. Therefore, the surface 

and ladder fuels are still present and contiguous throughout the various stands. The 

shaded fuel break theory proposed in the NRMP will be tested by the fire simulations. 

The plan also recommends that conditions be reassessed on a ten year schedule. The 

fieldwork completed for this research was conducted exactly ten years after the NRMP 

studies. 

76 



Summary 

The events that led to the establishment of Forest Park were both deliberate 

and serendipitous. A visionary design for a city-wide park system and subsequent 

failed land deals created a unique and rare park setting. Development has inched up to 

the boundary of the park over the last fifty years, but the interior has remained 

untamed. Although the species mix has been altered from that of a native wildland, 

the forest has followed the typical succession pattern for its location and orientation in 

the Western Hemlock Vegetation Zone. 

The study area has experienced more frequent fires of varying intensity than 

would be expected in a similar wildland area based on the fire cycle studies presented 

in Chapter 3. The increased fire activity is likely contributable to the historic landuse 

of the area, especially the logging activity. Understanding Forest Park's inimitable 

place among the nation's city parks, the City of Portland has developed a natural 

resource management plan that has a long-term vision for maintaining the forest. The 

need to better understand the role of fire in achieving the city's vision is a goal of this 

study. 
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CHAPTER 5: MODEL IMPLEMENTATION: STEPS AND RESULTS 

Fire behavior simulation has opened new avenues in research by analyzing 

forest fires without having to bum down the forest. Many different types of fire 

simulation models have been developed, all of which require the same basic inputs of 

terrain, weather, and fuel. Farsite is the fire behavior model used in this study. The 

process begins with field work to collect the fuel data that will support the custom fuel 

model and crown fuel inputs to Farsite. In order to develop a fuel map of the study 

area the entire landscape must be classified accordingly. Multi-spectral remote 

sensing imagery was used to apply a vegetation index that would simplify the process 

and improve the fuel map accuracy. At the end of this process the basic fuel map was 

complete, and could be used as the basis for other fuel layers. 

Fire Model History 

Publications regarding fire behavior, fuel analysis, and fire weather in the West 

date back to the 1920s. In 1913, USFS Forester J.A. Larsen began gathering 

meteorological data while conducting silviculture studies at the Priest River 

Experimental Forest in Idaho. He discovered a correlation between weather and fire 

behavior and in 1921 published several reports about the influence of precipitation, 

relative humidity, wind, and temperature on forest fires. 

In 1928, Harry Gisbome, a USFS Forest Examiner, published the first 

technical report comparing duff and wood moisture content with various weather 

elements. Gisbome later developed a fire danger meter and related administrative 

system that provided action plans for current or probable fire danger. Gisbome's 
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system was implemented in 1931, but not used nationally until 1934 (USDA, Fore st 

Service, Rocky Mountain Research Station). 

L.G. Homby developed the standards and instructions for fuel type mapping in 

1933. By the 1930s the primary concern of the USFS was fire control planning. Fuel 

classification was used to gauge how difficult a fire would be to suppress. In 1935 

Homby developed a fuel classification system that formalized the description of rate 

of spread and resistance to control into classes oflow, medium, high, and extreme. 

In the Homby model the potential rate of spread and the 'resistance to control' 

class ratings were determined based on the 'average worst' burning conditions. 

Average worst conditions were defined as burning conditions typical of the worst part 

of the average fire season. Rate of spread was estimated through statistical analysis of 

individual fire reports. Resistance to control was estimated by measuring the amount 

of time needed to construct a fireline by hand. The Homby system was the fuel 

mapping standard for over 40 years (Anderson 1982, Sandberg, Ottmar, and Cushon 

2001). 

W.R. Fons had pioneered the mathematical representation of fire spread in the 

1940s by focusing on the heating dynamic at the fire front. He theorized that fire 

spread can be visualized based on a series of successive ignitions across a fuel bed, the 

rate of which is determined by ignition time and distance between fuel particles. 

Frandsen in 1971 applied the conservation of energy principles to a unit of fuel ahead 

of an advancing fire in a homogenous fuel bed. 

It was not until 1972 that Richard Rothermel introduced for the first time a 

mathematical model for the quantitative evaluation of both the rate of surface fire 
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spread and intensity based on in-situ fuel and weather inputs. Rothermel developed 

two basic fire spread equations; rate of spread (ft/min), and reaction intensity (Btu/ft2 

min.). Each equation had sub-equations. He also developed a list of 11 input 

parameters that would be either collected directly from field data or derived from field 

data in a laboratory. Ultimately, Rothermel's equations were used to create the first 

standard set of fuel models based on various vegetation regimes. However, 

Rothermel' s model did not account for firebrands (spotting) or vertical spread into the 

canopy and crown fire (Rothermel 1972). 

The advent of computers with powerful computational and graphical ability 

enabled fire prediction to move beyond tables and graphs. Fire simulation can be 

presented in three-dimensional multi-angle scenes displaying the fire spread across the 

topographic details of a landscape. A fire simulation system combines the fire 

behavior model with a fire simulation technique (Albright and Meisner 1999). There 

are multiple types of fire behavior models and simulation techniques that have been 

developed over time and incorporated in a variety of fire simulation applications. 

There are four types of fire behavior models: physical, physical-statistical, 

statistical, and probabilistic. 

Physical models predict fire spread based the physics of combustion regarding 

heat transfer from conduction, convection and radiation. Physical models require 

large amounts of detailed data about distribution and density of fuel across a fuel bed 

(Albini 1986). 

Physical-statistical models use both physics and statistical correlation to 

generate fire behavior formulas. Rothermel's equations based on the conservation of 
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energy principles and statistical data from laboratory experiments are an example of 

this type of model. 

Statistical models use test fire data to derive fire behavior equations of best fit. 

In statistical models, rate of spread, fuel consumption, and fire intensity are 

independent variables and the physical relationships between parameters is not 

considered. 

Probabilistic models are based on contingency tables of discrete categories 

each representing an environmental variable. The probabilities in the table are then 

used to simulate the likelihood of fire spread from one location to the next. 

Probabilistic models are usually used for predicting a series of hypothetical fires over 

a wide area instead of the rate of spread for a specific fire (Albright and Meisner 

1999). 

Fire simulation techniques use probability of occurrence or mathematical 

functions in addition to the fire behavior model to simulate fire spreading across a 

defined landscape. There are three simulation techniques: bond percolation, cellular 

automaton, and elliptical wave propagation (Figure 31 ). 

Bond percolation uses a lattice of square, hexagonal or triangular cells to 

represent the landscape. Fire spread through out the cell lattice is based on probability 

of spread from cell to cell. 

Cellular automaton also represents the landscape in a cellular fashion. Each 

cell has set values for fuel and environmental parameters. Fire spread is based on 

rules that are applied to all cells. The rules relate the future state of one cell to its 

initial state and the state of neighboring cells at given time steps. 
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Elliptical wave propagation projects the landscape as a continuous surface. 

This technique requires no local tuning based on the assumption that the fuels, 

weather, and topography in the area where the input parameters were recorded are 

uniform (Albright and Meisner 1999). 
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Figure 31 : Fire simulation model types, inputs, and output generation schematic . The cell shapes of 
each model depicted in the diagram represent common cell shape for the model type. However, the 
actual cell shape for each model may vary. For example , a bond percolation model can have 
rectangular cells. (Source: diagram by Author) 

There are some practical advantages to using elliptical wave propagation 

models . First, they have been developed most recently and therefore can be used on a 

PC platform. Earlier models were primarily developed and compiled on UNIX 

workstations. Furthermore, the PC-based applications have been continually updated. 

Many of the UNIX-based applications have not been maintained. Additionally, the 

older fire models have fixed spatial resolution, which is not the case for the elliptical 

wave, PC-based applications. 
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Fire Modeling Applications 

In this study a series of computer applications were used to develop the 

datasets used in the test simulations. The first was Firemon, which is a field collection 

protocol, database, and reporting tool developed for monitoring effects of recent 

wildland fires and effectiveness of treatments (Appendix B). The Firemon protocol 

was established by a consortium of government agencies and a non-profit research 

corporation, USFS Firelab, NASA, USGS, and Systems for Environmental 

Management. The output from Firemon reports is used for further data creation using 

'·: 
Fuelcalc arid Farsite. 

Fuelcalc is a prototype application under development by the USFS. It is used 

to calculate canopy fuel characteristics. 

The roots of fire behavior estimation lie in Rothermel's equations. Fuel bed 

characteristics used in this study are based on the format of fire behavior models used 

in Farsite. A fuel model refers to the surface fuel characteristics used for fire 

behavior. The fuel model parameters are the same for Anderson's (1982) 13 standard 

fuel models and user-defined custom fuel models as the described in Table 5. 
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Table 4: Description of fuel model fields derived from Firemon and Behave output. 
(Source: Finney 2004) 

Fuel Model Fields 
Field Description Data Type Metric Units 

Fuel Model number: number 1-13 is reserved 
for the standard fuel models (Anderson 
1982). Custom fuel models use numbers 14 

FMod through 50. Integer Number 1-50 
1 hour timelag fuel load (woody litter under 

1H 0.6 cm diameter) Decimal Tons/hectare 
10 hour timelag fuel load (woody litter under 

10H 2.5 cm diam.) Decimal Tons/hectare 
100 hour timelag fuel load (woody litter under 

100H 8 cm diam.) Decimal Tons/hectare 

LiveH Live herbaceous plants Decimal Tons/hectare 

LiveW Live woody plants Decimal Tons/hectare 

DSAV Dead fuels surface area to volume ratio lnteQer 1/cm 
Live herbaceous fuels surface area to volume 

LHSAV ratio lnteQer 1/cm 

LWSAV Live woody fuels surface area to volume ratio lnteQer 1/cm 

Depth Depth of the fuel bed Decimal Cm 
Moisture of extinction, percent moisture 
content of the fuels 0.6 cm in diameter or less 

XtMoist where the fire will not continue to readily burn. lnteQer Percent 

DHt Heat content in Joules for dead fuels Integer J/kg 

LHt Heat content in Joules for live fuels lnteoer J/kg 

Farsite enables a user to initialize a custom fuel model from a standard fuel 

model using an automated worksheet. The process of developing a custom fuel model 

is more complex than just filling in the worksheet. Once the parameter values have 

been set, a fuel model must go through a process of evaluation and revision (Andrews, 

Bevins, and Seli 2003). 

Farsite is fire simulation software used to visualize fire spread over landscape 

data layers developed in ArcGIS. Farsite consists of a set of fire behavior algorithms 

that calculate fire spread and intensity across a continuous landscape based on various 

fuel, weather, and topographic inputs (Appendix A). Separate fire behavior models 
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are used for surface fire, crown fire, spotting fire acceleration. Each model is 

calculated in a two-dimensional plane, but together the behaviors are an abstraction of 

a three-dimensional process (Finney 2004). The linkage of the models relies on an 

assumed sequence of events starting in the substrate fuels (surface fire). Based on 

model inputs the fire may achieve a spread rate that enables it to transition to burning 

aerial fuels and laddering out of the understory (surface fire) and into the overstory 

(crown fire). 

The Farsite model uses two-dimensional surfaces as the inputs into the 

equations that predict fire behavior and spread over a landscape (Figure 32). 

Topographic, as well as surface and aerial fuel data are developed into raster layers in 

ArcGIS (Table 6). Raster resolutions of 25-50 meters are widely available for 

topographic and remote sensing data and provide an acceptable level of detail (Finney 

2004). However, since the area of interest for this study is small relative to most 

wildland fire simulations, the raster resolution of the data layers have been reduced to 

10 m (Figure 32). Ten meter USGS digital elevation models (DEMs) were used for 

this study. 
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Table 5: Explanation of the raster inputs to Farsite (Source: Finney 2004). 

Raster Theme Units Usage 
Elevation Used for adiabatic adjustment of temperature and humidity from the reference 

m elevation input with the weather stream. 
Slope Used for computing direct effects on fire spread, and along with Aspect, for 

determining the angle of incident solar radiation (along with latitude, date, and time of 
percent day) and transforming spread rates and directions from the surface to horizontal 

Aspect Az See Slope 
Fuel model Provides the physical description of the surface fuel. Fuel model parameters are 

described in detail in Table 2. 
Canopy cover useo to oeterm1ne an average snaoing or me sunace rue1s mat anects rue1 moisture 

calculations. It also helps determine the wind adjustment factor that decreases 
windspeed from the reference velocity of the input stream (6.1 m above the 

percent vegetation) to a level that affects the surface fire. 
Canopy height u l vv•~ lllC l v >u" v 1-'v ~><>v>llll~ V I a •v::lullllllllll, VVll l U fJIVlllC lllOl I;:> CAlCl>vvv u~vVC lllC 

terrain . Along with canopy cover, this influences the wind adjustment factor, the 
starting position of embers lofted by torching trees, and the trajectory of embers 

m descending through the wind profile. 
Crown base height Used along with the surface fire intensity and foliar moisture content to determine the 

m threshold for transition to crown fire 
Crown bulk density kg m·3 Used to determine the threshold for achieving active crown fire 

~4"°Alr~ArAr.4"'.4F.ar·--4P"~JP'Ar..e.-., ....... I ~ ...... ;IP ................ 11 ...v ...... ....., ......... ,,, 
..r ...................... ,,,, ..................... ~ ..... ,,,, ~~ .................... ,,,, .................... ~ ••• ,,,, 
-llf_ ........... .._..__,,, 
~llf_ .................. J'I I ...................... ,1 
A"' ................... \t.( 

~'~~'1-"i,,. i ._,Q~ 
'";fo ~ 'f1'1'i - .. ...-. "" 1 ~ 1 i ~·--.... ~1~ · ~ ... ~ 1~ 1 · ,;i_. 

1. "~l"'"'P' :.. ~ · 

Elevatio 
Slope 
Aspect 
Fuel Model 
Canopy 
Canopy 
Crown Base 
Crown Bulk 

-ArAr ................ Ar'~ ...... ~-., ..,. ............ ~ ............ ...,....,.~ 
..,..~~ ............................. ... ..,. .............................. . ~ ....................... ..,. ...... ..., __ 

10 meter grid reso us input value h ridcell/ lution: Eac g 
homogeno 

representst:r layer theme for the ras 

86 



Rate o(Spread: R =IR~ (1-<l>w+<l>s) I f)b£ Qig 

R = forward steady state spread rate (m min- 1
) 

IR= reaction intensity (kJ min-1 m-2
) 

; = the propagating flux ratio 

<l>w = wind coefficient (result of wind-slope vector and wind speed) 

<I>.= slope coefficient (result of wind-slope vector and radian azimuth) 

Ph = ovendry bulk density (kg m-3
) 

£ = dimensionless effective heating number (proportion of fuel mass that must be raised 

to ignition temperature) 

Qig = heat of pre-ignition (kJ kg-1
) 

Fire Intensitv: lb= hwR/60 = (IR/60) * (12.6R/cr) 

lb = fire intensity at leading edge 

h = heat yield of the fuel, total heat less the energy required to vaporize moisture (kl kg-

1) 

w = weight of the fuel per unit area (kg m-2
) 

R = leading edge steady state spread rate (m min-1
) 

IR= reaction intensity (kJ min-1 m-2
) 

u = surface area to volume ratio of fuel bed (m-1
) 

Ladder Fire: I0 = (0.010*CBH(460 +25.9M))312 

I0 = threshold for transition to crown fire 

CBH = crown base height that incorporates the presence or effect of ladder fuel 

M = foliar moisture content (percent on dry weight basis) 

Crown Fire Rate o(Spread: RAC= 3.0 I CBD 

RAC = active crown fire spread rate 

3. 0 = empirical constant defining critical mass flow rate through the crown for 

continuous flame (0.05 kg m-1 s-2
) and a conversion factor (60 s min-1

) 

CBD = crown bulk density (kg m-3
) 

Crown Fire Intensify: le= 300 (lb I 300R = CFB*CBD(H-CBH)) * Rcaetual or R 
le = crown fire intensity 

H = crown height 

Heat content of surface and crown fuels is assumed to be 18,000 kl kg-1 

Max. Crown Spread Rate: Rcmax = 3.34*R10* E1 

Rcmax = maximum crown fire spread rate 
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3.34 = coefficient to minimize accounting for individual tree torch or the possibility that 

spotting could be accounted for twice 

R10 = forward steady state spread rate for fuel model 10 using 0.4 wind reduction factor 

E1 = fraction of the forward crown spread rate achievable at the ith perimeter vertex 

given orientation of the vertex to the maximum spread direction and elliptical 

dimension of the crown fire 

Crown Burned: CFB = 1- e-ac(R-Ro) 

CFB = crown fraction burned 

e-ac = exponent where ac = -ln(0.1) I 0.9 (RAC- Ro) 

Ro= critical surface fire spread rate where Ro= I0 (R I ) 

Spread Distance per timestep: Dt = R (T1 + (e-aan I aa)- (1 I aa)) + D1+1 

D1 = spread distance require to achieve the current spread rate under current conditions 

R = forward steady state spread rate (m min-1
) 

T1 = time required to achieve the current spread rate under current conditions 

aa = constant that determines the rate of acceleration (set to 0.115 or 0.300) Crown 

fires use equation aa = aa - 18. 8 * CFB2
·
5 e<-8 

CFB) 

D1+ 1 = desired spread distance in next timestep 

Figure 32: Farsite landscape layers developed in ArcMap and exported into ASCI. Layers represent 
real fuel and topographic situation of the fire area. Farsite uses the data of each layer as inputs into 
algorithms and functions to simulate fire spread. The key functions and parameters are listed. All 
parameters related to data collected in the field are bold. All parameters or constants developed from 
laboratory tests are italic. (Source: Finney 2004) 
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Control of the spatial and temporal resolution is critical for the fire simulation. 

The total length of the simulation is broken into timesteps or "iterations". Within a 

single timestep each active fire polygon grows at a rate based on fire behavior 

equations. At the end of the defined timestep the fire polygons are merged to show the 

full fire extent and growth since the last timestep. 

The maximum timestep, distance resolution, and perimeter resolution 

parameters control the spatial and temporal resolution of the simulation. The 

maximum time step is based on the length of time fire spreads through environmental 

conditions that are assumed constant. 

The distance resolution specifies the level of spatial detail required during a 

timestep. The distance resolution is defined as the maximum horizontal spread 

distance before new environmental inputs are required (i.e. radial spread direction). 

The perimeter resolution is the maximum distance allowed between vertices of 

the fire polygon (Finney 2004). Perimeter resolution is based on the topography as 

related to the rate of spread. As the fire spreads over convex areas (hills or ridges) the 

vertices separate more quickly over time. If the maximum perimeter resolution is 

exceeded by the fire spread rate then a mid-point vertex is inserted in the fire polygon 

perimeter. 

The perimeter resolution enables the fire growth to be rasterized because of the 

changing vertex densities along the different fire polygons. Rasterizing the spread can 

visualize the aggregation of sub-timesteps for each individual fire polygon as fire 

spread rates change due to heterogeneity of the fire environment. The end result is a 
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representation of the merged fire polygons for a complete timestep over varying 

topography (Richards 1990). 

Farsite in the Field 

Farsite has been used extensively by the USFS and other state and federal 

agencies. Farsite's versatility and features make it an appropriate application for 

analysis of past, present, and potential fires. The USFS used Farsite to identify and 

prioritize the fire management zones in New Mexico's Gila National Forest. The 

State of Alaska and the Kenai Peninsula Borough used Farsite in 2001 to determine 

the bum scenarios for their Coho fire exercise, which resulted in the managed burning 

of forest that had recently been attacked by bark beetle outbreak. Farsite is used as a 

decision support tool for just about every large-scale wildfire every year. Farsite has 

an extensive set of tools that enable fire managers to apply suppression strategies to 

currently burning fires. The NPS and USFS use the resulting suppression maps to 

deploy firefighters and aerial resources (Finney 2004). Farsite has also been used to 

analyze past fires to determine how they burned and gauge the effectiveness of fire 

mitigation techniques that may have been employed in the bum area. The 2000 

Bitterroot fire in Montana was extensively researched using Farsite to determine 

spread rate and smoke emissions (Keane, et al. 2000). 

Farsite has also been used in academic research. Students and faculty at 

schools including the University of Texas and Humboldt State University have used 

Farsite to predict fire behavior or assess fire dependent ecosystems. The University of 

California at Santa Barbara and NASA jointly manage the Southern California 
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Wildfire Hazard Center and use Farsite as their primary tool for fire hazard prediction 

(Regents of the University of California 2005). 

Additionally, Farsite is a public domain application, which enables anyone to 

acquire and use it to analyze fire behavior in a local environment. Its use at all levels 

of government, acceptance in the academic community, interoperability with ArcGIS 

output, and no cost of ownership made it the best candidate for use in this study. 

Farsite Inputs 

Running a simulation in Farsite requires that the Farsite environment be set up 

within the application specific to the fire simulation area. The fuel, weather, and 

topographic inputs have been discussed previously. They are the primary inputs and 

are used to create the necessary Farsite files. The Farsite interface (Figure 33) 

provides a simple view of how the primary inputs are organized for the simulation. 
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Figure 33 : Farsite project view. The active dialog window is for the landscape file that contains all the 
topographic, fuel , and crown-fuel related inputs . (Source: screenshot by Author) 

There are four types of files that make up the data inputs to run a fire 

simulation in Farsite. They include a landscape file , weather files , wind files, and 

conditional fuel files. The files are organized into a project file to which universal 

settings, such as the duration of the simulation can be applied. The landscape file is a 

combination of multiple imported geographic infonnation system files that represent 

various terrain and canopy parameters. The fuel files actually adjust fuel inputs 

provided by the landscape file . The weather files provide temperature and humidity 

data that help adjust fuel moisture levels . The wind files supply the wind speed, gust, 
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and direction data that are used as direct inputs into the rate and spread of the 

simulated fire. 

Wind information is input as a data stream that consists of frequent 

observations. The more the observation the more accurate the wind can be depicted 

across the simulation area. The weather files contain daily observations on 

temperature and humidity as well as precipitation that depict a temporal weather 

stream. The weather stream greatly oversimplifies actual variation in weather. 

However, this format is an attempt to limit to a practical level the amount of weather 

information required for a simulation. The file format is the same as the wind file. 

Both wind and weather inputs apply to the entire simulation area during the specified 

time of observation. 

There are two conditional fuel files required for all simulations - the 

adjustment file and the moisture file. Both files impact how the different fuel models 

and associated data are used by the Farsite model. The adjustment file can reduce or 

accelerate the rate of spread factors for particular fuel models during a simulation. The 

other required conditional fuel file is the moisture file, which set the initial fuel 

moistures for each fuel model at the beginning of the simulation. Specific fuel 

moisture values provide the initial moisture percentages for the 1-hour, 10-hour, and 

100-hour down woody debris, and the live woody, and live herbaceous fuels for each 

fuel model. 

Up until now we have discussed only the text file inputs. However, in order to 

implement a fire simulation a geographic information system (GIS) is required to 
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develop several themed raster inputs, which are used to create a landscape file. A 

landscape file consists of all the raster data themes imported from a GIS. 

There are three terrain related themes in the landscape file. The elevation 

theme is necessary for adiabatic adjustment of temperature and humidity and for 

conversion of fire spread between horizontal and slope distances. The slope theme is 

necessary for computing slope effects on fire spread and solar radiance. The aspect 

theme consists of azimuth values (degrees clockwise from north) for the slopes of the 

study area and is necessary for calculating the slope effects and adjustment on the 

prevailing wind direction and speed. 

In addition to the terrain themes there are five fuel related themes in the 

landscape file. Two of the files are specific to the surface fuel composition and the 

other three pertain to the canopy fuel composition. The fuel model file is the primary 

surface fuel theme in the landscape file. Two fuel model files were developed for this 

study. One represented the custom surface fuel composition based on data collected at 

sampling plots located within the park. The other was based on a standard set of fuel 

models discussed later in this chapter. The canopy cover file is also specific to the 

surface fuel model. Canopy cover regulates the surface fuel moisture levels based on 

the amount of sunlight and wind that reaches the surface fuels. Conversely, as the 

canopy cover increases, humidity at the surface remains high, thus increasing the fuel 

moisture. 

The three additional files are related to the canopy fuel composition. The first 

is stand height, which provides the model with the average height of the canopy as it 

may fluctuate over the simulation area. In the case of a crown fire the stand height 
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will be directly related to the flame length, probability of fire branding, and potential 

for spot fire ignition. The canopy base height file provides the model with the 

distance from the surface at which the canopy starts. A low canopy base height 

increases the likelihood of tree torching and crown fire outbreak. The last canopy 

related input is the crown bulk density file. Crown bulk density provides the model 

with the amount of fuel located in the crown. As crown bulk density increases more 

fuel is found in the crown; if a fire were to ladder into the crown it would bum longer 

and more intensely. 

The fuel themes described above were developed from a fuel mapping process 

using in situ data collected from the study area and analysis of multi-spectral remote 

sensing data. Additional information on the Farsite inputs and specific fieldwork 

protocol instructions can be found in Appendix B. 

Fuel Map Development: Standard Fuel Models Selection Process 

Based on the vegetation stratum found at the sampling plots, five fuel classes 

were identified that represented the entire landscape. Each class was based on 

correlation between Anderson's (1982) fuel models and the observed stand 

composition during field data collection. The fuel models selected from Anderson's 

13 standard models were intended for use in the Pacific Northwest. Table 7 defines 

the tree species composition of each of the sampling plots and identifies the standard 

fuel model that best represents the plots fuel stratum. Canopy composition was used 

to identify the representative fuel model of an area because aerial multi-spectral 

remote sensing imagery was used to develop study area fuel maps. The accuracy of 
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selecting the appropriate fuel model is critical, as small variations in fuel models can 

have significant impact on fire behavior prediction (Keane, et al. 2000). 
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Table 6: Stand composition of each plot. Plot 1 and 5 represent standard surface fuel model 10. Plot 2 
and 4 represent fuel model 9. Plot 3, 6, and 7 represent fuel model 8. (Source: author and Anderson 
1982) 

Plot2 I Model 9 
I 

Western hard- ACMA 260 68.4% 

woods with ALRU 20 5.2% 

leafv litter PSME 80 21.1% 

TSHE 20 5.2% 

Plot4 Model 9 

ABGR 20 4.0% 

ACMA 240 48.0% 

ALRU 220 44.0% 

Plot6 I Model 8 
I 

ABGR 240 44.4% 

ACMA 160 29.6% 

ALRU 20 3.7% 

PSME 100 18.5% 

TSHE 20 3.7% 
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Areas classified as urban were treated as non-fuel. This decision does pose 

some interesting questions regarding the potential for fire spread through the wildland-

urban interface. Most houses and structures are flammable, but for this study all 

elements of development were considered non-fuel sources. This point will be 

revisited in the Discussion and Recommendation chapter. 

Areas that had been disturbed and allowed to regenerate, such as areas under 

utility lines or adjacent to rail lines, had Anderson's fuel model 5 applied (Figures 34 

and 35). According to Anderson (1982, 5) fires in fuel model 5 are, 

generally carried in the surface fuels that are made up of litter cast 
by the shrubs and the grasses or forbs in the understory. The fires are 
generally not very intense because surface fuel loads are light, the 
shrubs are young with little dead material, and the foliage contains 
little volatile material. Usually shrubs are short and almost totally 
cover the area. Young, green stands with no dead wood would qualify: 
laurel, vine maple, alder, or even chaparral, manzanita, or chamise. 

The areas represented by this fuel model in the study area may have increased 

volatility because of the larger and more mature shrubs, as well as an abundance of 

Scotch broom (Cytisus scoparius), which is highly flammable. 
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Figure 34: Anderson 's photo of fuel model 5, "Regeneration shrublands after fire or other disturbances 
have a large green fuel component, Sundance Fire, Pack River Area, Idaho." (Source: Anderson 1982) 

Figure 35 : None of the sampling plots were placed in an area representing Anderson ' s fuel model 5. 
However, a visual comparison and a walk-through of these areas in the study area confirmed that fuel 
model 5 had appropriate fuel loading values. (Source: photo taken by Author) 
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Locations within the study area dominated by western hemlock or mixed 

conifer/deciduous stands were equated to fuel model 8 (Figures 36 and 37). Anderson 

describes fire movement through this type of fuel model as, 

Slow-burning ground fires with low flame lengths are generally the 
case, although the fire may encounter an occasional "jackpot" or heavy 
fuel concentration that can flare up. Only under severe weather 
conditions involving high temperatures, low humidity, and high winds 
do the fuels pose fire hazards. Closed canopy stands of short-needle 
conifers or hardwoods that have leafed out support fire in the compact 
litter layer. This layer is mainly needles, leaves, and occasionally twigs 
because little undergrowth is present in the stand. Representative 
conifer types are white pine, and lodgepole pine, spruce, fir, and larch. 
(1982, 11) 
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Figure 36: Anderson ' s photo of fuel model 8, "Surface litter fuels in western hemlock stands of Oregon 
and Washington." (Source: Anderson 1982) 

Figure 37: Photo taken by Author ofa sampling plot selected to represent fuel model 8. The live 
ground cover is more abundant in the sampling plot location than in Anderson ' s photo representation. 
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Areas dominated by Douglas-fir or mixed conifer stands were equated with 

fuel model 10 (Figures 38 and 39). Based on Anderson's observations, 

Fires [in this fuel type] bum in the surface and ground fuels with 
greater fire intensity than the other timber litter models. Dead-down 
fuels include greater quantities of 3-inch (7.6 cm) or larger limbwood 
resulting from overmaturity or natural events that create a large load of 
dead material on the forest floor. Crowning out, spotting, and torching 
of individual trees are more frequent in this fuel situation, leading to 
potential fire control difficulties. Any forest type may be considered if 
heavy down material is present; examples are insect- or disease-ridden 
stands, windthrown stands, overmature situations with deadfall, and 
aged light-thinning or partial-cut slash. (1982, 13) 
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Figure 38: Anderson's photo offuel model 10, "Old-growth Douglas-fir with heavy ground fuels. " 
(Source: Anderson 1982) 

Figure 39: Photo taken by Author of a maturing stand dominated by Douglas-fir. There is little old 
growth environment in the study area. The heavy ground fuels referred to by Anderson are rare. 
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Areas dominated by Bigleaf maple or deciduous stands were equated to fuel 

model 9 (Figures 40 and 41 ). Anderson describes fire spread in this fuel type, 

Fires run through the surface litter faster than model 8 and have 
longer flame height. Both long-needle conifer stands and hardwood 
stands, especially the oak-hickory types, are typical. Fall fires in 
hardwoods are predictable, but high winds will actually cause higher 
rates of spread than predicted because of spotting caused by rolling 
and blowing leaves. Closed stands of long-needled pine like 
ponderosa, Jeffrey, and red pines, or southern pine plantations are 
grouped in this model. Concentrations of dead-down woody material 
will contribute to possible torching out of trees, spotting, and 
crowning. ( 1982, 12) 
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Figure 40: Anderson ' s photo of fuel model 9, "Western Oregon white oak fall litter; wind tumbled 
leaves may cause short-range spotting that may increase rate of spread above the predicted value." 
(Source: Anderson 1982) 

Figure 41 : The fall litter potential for this stand type in the study area is most likely less than that 
expected by Anderson for this fuel model. However, the dead herbaceous vegetation in the late summer 
and early fall would result in comparable fuel loads. (Source: Photo taken by Author) 
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The photos in Figures 35, 37, 39, and 41 were taken at sampling plots within 

the park. They may be visually compared to the photos in Figures 34, 36, 38, and 40, 

respectively, which are photos from Anderson's 1982 paper that were taken to 

represent the standard fuel models he defined and described. The most visible 

difference is the quantity of ground cover found in the park photos, which has 

significant impact on the fuel loading of the custom fuel models. Table 8 compares 

Anderson's standard fuel model loading figures with those derived for the custom fuel 

models. 

Table 7: Comparing the fuel loading quantities between Anderson's standard fuel models and the 
custom fuel model equivalents for the study area. Note the substantial difference in live vegetation 
quantities (the "Live Herbaceous" and "Live Woody" columns). Source: author and Anderson 1982). 

Surface Fuel Model Fuel Loading Comparison 
Anderson's 1-hour 10-hour 100-hour Live Live Fuel Bed 
Fuel (tonnes/ha) (tonnes/ha) (tonnes/ha) Herbaceous Woody Depth 
Models (tonnes/ha) (tonnes/ha) (cm) 

8 3.36 2.24 5.60 0.00 0.00 6 
9 6.55 0.92 0.34 0.00 0.00 6 

10 1.66 2.80 8.00 0.00 0.00 30.5 
Custom 
Fuel 
Models 

18 1.63 5.46 4.60 1.23 3.75 100 
19 0.60 5.00 6.30 3.60 1.65 50 
20 0.70 3.00 4.60 4.50 1.10 78 

Fuel Map Development: Remote Sensing and Vegetation Index 

The processed field data had to be translated into fuel themes for input into 

Farsite. In order to accomplish this, a fuel map representing the different fuel types 

for the entire park landscape had to be extrapolated from the sample data. Delineation 

of contiguous stands and variations in canopy was performed through a supervised 

106 



classification based on multi-spectral imagery. A relationship between the spectral 

response pattern (SRP) of each pixel from the classified image and the various fuel 

themes is the basis for propagating the fuel themes over the entire landscape. The 

field data sampling plots provide known fuel values at known locations and were used 

to train the classification process. 

Only the visible red and near-infrared (NIR) bands were necessary for the 

analysis. Multiple spectral response classes were expected to be observed within each 

plot because of the variability within response pattern. In theory when SRP values are 

identified within a sampling plot, the plot's fuel type will be represented by the SRP 

values. Each pixel with a similar response pattern found within the plot area will be 

assigned the same fuel variable values across the entire multi-spectral image. 

However, the process is not that simple. Response pattern variability will cause the 

same SRP to be found in several plots of varying fuel types because of shadow and 

vegetative similarity. This dilemma is partially mitigated by applying a vegetation 

index to the data to better identify and differentiate the SRP of canopy types. 

The weighted difference vegetation index (WDVI) was selected because of its 

ability to differentiate bare soil from vegetation, and because it exaggerates the 

differences between vegetation types (Figure 42). Traditionally WDVI uses Landsat 

TM red band (band 3 0.63-0.69 µm) and near-infrared (band 4 0.76-0.90 µm) data. 

Although TM data is not being used in this analysis, the CIR data bandwidth is almost 

identical. The WDVI is calculated as WDVI = NIR-g*red, where g is the slope of the 

soil line (Clevers 1988). Additional technical aspects of the multi-spectral data and 

the WDVI transformation are discussed in Appendix C. 
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Figure 42: NIR and Red bands were extracted from the CIR image and a new raster with a soil line 
slope value was created to derive the WDVI surface. lllustration by author. 

Fuel Map Accuracy Assessment 

The goal of the multi-spectral analysis is to identify fuel model variations over 

the entire study area. This process will result in fuel data at a much finer spatial 

resolution and greater accuracy than the FP NVCS dataset. However, fire simulations 

using fuel themes developed from remotely sensed data have been most successful for 

grasslands and shrubland, with only limited success for assessing surface fuels in 

forested areas (Friedl, et al. 1994). To increase the likelihood of fuel assessment 

accuracy the multi-spectral imagery was enhanced to emphasize vegetation differences 

using the WDVI model. The in-situ sampling provides a priori knowledge of the area. 

The use of the sampling data further mitigates the limitations ofrelying solely on 

remotely sensed data. 

The process of classifying the WDVI output was based on a combination of 

image sampling, a priori knowledge of the vegetation stratum in the park, and 

definitions of standard fuel model environments. About 75 sampling locations, 

including the locations of all the sampling plots were selected throughout the image to 

determine the spectral response pattern thresholds of the canopy vegetation types. 
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After the thresholds were identified for the canopy, classes were assigned to the image 

using Anderson's (1982) fuel model descriptions as guidelines. This process was the 

basis for the standard surface fuel model map, which served as the base fuel map for 

all other fuel-related themes. 

The most difficult areas to class were found in deep ravines where upslope trees 

cast shadows down slope. The areas in shadow had similar SRP to the urban 

landscape class. The index range for the urban class was from 1 to 25. The index 

thresholds for the mixed conifer class were 26 to 56. The mixed conifer and 

hardwood class range was from 57 to 91. The index values for mixed deciduous class 

were 92 to 138. Index values above 138 were considered scrub and brush. However, 

no contiguous areas had an index value above 138, only pockets of a few cells 

scattered over areas that consisted of shrub and regenerative growth. 

While the other classes performed well, the shrub class was consistently 

classified incorrectly. Areas such as utility corridors with woody shrub regeneration 

or previously harvested clearcuts had to be reclassed based on ground truth. The 

accuracy of the classification was reviewed using georectified 1 foot natural color 

imagery overlaid on the WDVI (Figure 43). An error matrix was developed to assess 

the accuracy of the WDVI classification (Table 9). 
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Table 8: Accuracy assessment of the WDVI classification of study area (Source: Author.) 

WDVI Error Matrix Trainin Set Data known cover es 
99 10 8 9 5 Row total 

Classification Data 
Urban/non-fuel (fuel models 
99,98,0} OI 1 I 1 I OI 48 
Mixed confierous (fuel model 
10} I ?ll~ ~~,,. - '"·'- _,...,,_,,,_ 31 51 1 l 56 
Mixed conifer and hardwood 
fuel model 8} I 51 s•~ll 17 I 13 1 76 

Mixed hardwood (fuel model 
9} I 21 1 I 7 ... ~ 1 I 69 
Shrub and regeneration (fuel 
model 5 0 0 0 1 3 
Column total 60 46 47 82 17 252 

Producer's User's 
Accuracy Accuracy 

99 77% 99 96% 
10 87% 10 71% 
8 77% 8 47% 
9 71% 9 84% 
5 12% 5 67% 

I Overall Accuracy 72%1 
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Figure 43: 1,000 points were randomly generated over the WDYl image. High-resolution natural-color 
imagery was georectified by township and range section with the WDVl image. 252 points fell within 
the high-resolution imagery, WDVI, and areas of interest for the fire simulation. The points used for 
the accuracy assessment have white halos around them. (Source data from: City of Portland, Spencer B. 
Gross, Inc.; illustration of sampling by author) 
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Spatial Alignment of All Inputs 

The final steps for developing the farsite inputs require that the base fuel map 

be resampled and reclassified. The base fuel map had a spatial resolution of 1.1 

meters and represents the standard surface fuel theme based on Anderson's ( 1982) fuel 

definitions . The resolution for the simulation inputs is 10 meters and based on the 

DEM resolution. A 10 meter fishnet grid was developed from the DEM. A gridpoly 

command was then used to change the vector fishnet into a 10 meter polygon grid. 

The polygon grid was used as a resampling mask over the fuel map. A majority rule 

was applied to the 1.1 meter fuel map: whichever fuel model represented the majority 

of cells inside the 10 meter mask, then that fuel model was assigned to the 10 meter 

output (Figure 44). 

~1Ql 99 99--;-99-; 99 9 
·t· 

10 8 10 10 99 99 99 99 9 

10 10 10 10 10 10 

8 -"'. 10 10 10 1-9 -9i 5 5 
- t"' -- -

10 t 9 10 10 8 

~ ~ajj .. -
9 9 Majority Function 

9 9 9 9 
·f" l· 

9 9 9 9 9 ~ I +---- 1. 1 meter input cell 

9 9 . . 
10 meter output cell ____. 

Figure 44: The majority rule processing of the l . l meter original fuel map to the resampled I 0 meter 
Farsite input. For the majority kernel to include the cell value in the majority calculation the cell center 
must be within the I 0 meter kernel. The cells must also be contiguous about the center of the filter 
kernel. For example, there are 38 cells with a value of ten and 38 cells with a value of nine. In the case 
of a tie the majority rule will apply the last value calculated that created the tie . ln the case above the 
majority kernel started the cell count in the upper left corner, the last value input was the nine in the 
lower right corner. Therefore, the nine was the last value calculated and nine was applied to the l 0 
meter output cell. (Source: illustration by Author) 
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The new 10 meter fuel map is then used as the basis for the fuel theme 

reclassification process (Figure 45). The resampling process ensures that all the raster 

themes are spatially identical. Once the raster themes have been developed they are 

converted to the American Standard Code for Information Interchange (ASCII) 

format. All spatial inputs for Farsite require a space delimited ASCII format. 
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Figure 45 : The output of the majority rule function applied to the classified WDVI image was used as 
the base fuel layer for all other fuel inputs. The raster was reclassified to create the subsequent fuel 
layers. For example the primary crown fuel inputs developed from the original fuel map are above. 
(Base map source: City of Portland, Metro RLIS, fuel themes from Author using ArcGIS) 
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Farsite Input Preparation and Simulation Ignition. 

There are a few subjectively chosen parameters not derived from field data 

required for the model to run successfully. The first of these are the time step and 

distance parameters. For this study the time step was 15 minutes, with visible time 

steps set at 30 minutes. That means that each calculation result represented 15 

minutes of bum time before the model acquired new inputs from the point at which 

the fire spread during the last time interval. Then after 30 minutes the fire behavior 

variables, such as the time of arrival or rate of spread are recorded permanently. The 

distance parameters were set to ten meters to mimic the input layer spatial resolution. 

By setting the maximum distance between vertices to ten meters, the simulation 

guaranteed that a new vertex would be inserted within a single fuel cell. 

Some of the subjectively chosen settings affect fire behavior calculations. 

These settings include all the crown fire parameters that enable ladder fuel ignition 

and crown fire. Crown fire and spot fire were enabled for these simulations. When 

crown fire is initiated the calculation includes the lofting of embers from torching 

trees. With spot fire growth enabled a spotting ignition frequency and possible 

ignition delay must be specified. The spot fire ignition frequency for these 

simulations was set to 7% with an ignition delay of 5 minutes. Embers that land on 

consumable fuel would only ignite that fuel 7% of the time. The ignition delay further 

reduces the likelihood of ignition because it provides a timelag for immediate fuel 

heating. These values are within recommended thresholds given the initial fuel 

moisture conditions expected at the time of ignition (Finney 2004). 
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The last subjective parameters set the fire duration or length of the simulation. 

Since the simulations were based on the 1951 fires, the ignition time was set for 5:00 

p.m. on August 1 ih. The simulation was allowed to run unencumbered until 12:00 

a.m. August 22nd, the same amount of time that it took to bring the 1951 fire under 

control. The fuel conditioning period is also set with these controls. The fuel 

conditioning period uses the maximum and minimum daily temperatures and relative 

humidity to calculate daily fuel moisture fluctuation leading up to the fire. 

The last item to be selected before the simulation begins is the ignition point or 

points. The point of ignition in 1951 was known, in fact the fire had actually been 

smoldering for some time before it began to spread outside of this immediate area. 

Therefore, a series of points was selected for ignition, instead of a single point, which 

would occur in the case of a lightning caused ignition. Once the ignition points were 

selected they were saved and reused for each subsequent simulation. After the 

ignition points are selected the simulation can be run with a touch of a button. 

Summary 

In this chapter we reviewed the origins of fire modeling and the development 

of fire behavior simulation applications. We narrowed the discussion to Farsite, the 

modeling application used in this study. We focused on the process of developing the 

data necessary for running a fire simulation model using Farsite. The process requires 

field work that is both quantitative and qualitative in nature. The field work enabled 

me to observe the different stand types first hand. Being in the park helped me 

visualize the transition between stands and see the terrain that a fire would have to 
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traverse. Selecting the sampling plots established permanent locations that can be 

revisited to quantify the fuel loads of the stand types they represent. The field data 

was a precursor to the lab work. In the lab the landscape could be broken down into 

individual themes and data layers. Using remote sensing techniques the fuel data 

collected and observed in the field could be propagated across the entire landscape. 

With landscape-wide data layers the fire simulation model is assembled in Farsite. 

Once the Farsite inputs are set fire simulations can be ignited and run from any point 

in the park. 
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CHAPTER 6: MODEL RESULTS 

This chapter examines the results of the two fire simulations. We review the 

differences and similarities, and both the custom and standard models are compared in 

area and predicted destruction to the actual 1951 fire. 

The Fire Model Results for Forest Park 

Two fire simulations were run through Farsite. Both simulations had exactly 

the same weather, topography, crown fuel inputs, fire behavior settings, temporal and 

distance parameters, and ignition points. The only difference between the initial states 

of the simulation models was the surface fuel inputs. The first simulation (standard 

simulation) used standard surface fuel model values based on standard fuel models 

developed by the USFS specific to the Pacific Northwest region. The second (custom 

simulation) used custom surface fuel model values based on in situ field work specific 

to Forest Park. 

Each simulation took approximately two days to run on 1.53 GHz computer 

with 1 GB of RAM. The duration of each simulation was not typical. However, the 

typical spatial resolution ofFarsite inputs is 30 or 50 meters. The spatial resolution of 

the inputs for this study was 10 meters - that's nine times the spatial information 

density of a 30 meter simulation, and 25-times the density of a 50 meter simulation. 

From a data processing perspective the duration of each simulation is understandable. 

The simulation results were compared using 4 measures: rate of spread, fire 

and heat intensity, flame length, and final extent. Each category of comparison 

provides a perspective on the general behavior of the fire, as well as points in the fire's 
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lifecycle that would be considered most threatening. These threat points can be 

analyzed further to determine what combination of factors make those specific 

locations more dangerous than others. Once the threat points are understood, then 

appropriate management techniques or mitigation strategies can be adopted to deal 

with the specific sites. 

The rate of spread is the simplest way to interpret a fire. A fire with a high rate 

of spread that consumes fuel and area quickly is a greater threat than a slower moving 

fire. While the custom simulation, by comparison, was the more threatening fire. The 

standard simulation demonstrated a slow-moving surface bum. However, the custom 

simulation rarely exhibited fire lines that were sustained, unified, and quick moving. 

In fact the time of arrival for both simulations was similar during the first 48 hours, 

with the standard simulation consuming 584 acres and the custom simulation covering 

568 acres (Figure 46). 
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Figure 46: The yellow shaded area represents the burned extent after 48 hours of the standard 
simulation. The blue shaded area is the burned extent of the custom simulation over the same time 
period. The greenish shade is burnt area shared by both simulations within the first 48 hours of the 
simulation runs. (Base map source: City of Portland, USGS, fire data from Author using Farsite) 
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The custom simulation was a larger and potentially more destructive fire than 

the standard simulation. A comparison of the time of arrival output from the 

simulations paints a story of two completely different fires (Figures 47 and 48). This 

is most likely attributable to fuel loads. The custom simulation had fuel models that 

simply had more fuel. However, when comparing the rate of spread of each 

simulation, the fires seem to have similar behavior (Figures 49 and 50). The rate of 

spread similarities can again be contributed to the fuel loads. Even though the custom 

simulation fuel models had greater fuel quantities, a large percentage of that fuel was 

live. Live fuels will bum, but will not bum as readily and as intensely as dead fuel. 

When fire burns through live fuel loads a lot of energy is consumed in heating and 

drying the fuels to reach the point of combustion. This is why the custom simulation 

has select areas of higher rates of spread, but not a greater sustained rate of spread 

throughout its extent. 

It is also worth noting in Figure 48 the absence of fire spread in areas occupied 

by houses. This may or may not be a realistic representation of where the fire would 

have spread in a real bum scenario. However, for these simulations it was impossible 

for fire to spread or ignite in an area occupied by a structure because all structures and 

developed areas, such as roads, were assigned non-fuel status. When reviewing the 

fire intensity output from the custom simulation, which is the only simulation that 

spread into residential areas, there were only a few locations where the fire grew 

intense enough to ignite a house from radiative heating. However, many embers were 

lofted from the main fire into residential areas through out the simulation, and many 

spot fires were ignited from these embers, but if those embers landed on structures it 
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was impossible for a spot fire to develop. This illustrates a significant shortcoming in 

the utility of Farsite to simulate fires in a wildland-urban interface environment. This 

point is discussed further in the next chapter. 
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Figure 4 7: Time of arrival spread of the standard simulation. The white line is the park boundary. The 
fire spread in a consistent manner through out the simulation. This kind of spread pattern was not 
expected given the topography or weather inputs . (Base map source: City of Portland, USGS, fire data 
from Author using Farsite) 
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Figure 48: Time of arrival spread of the custom simulation. The white line is the park boundary. This 
pattern of spread is more consistent with the expected fire behavior given the topography and weather 
inputs. (Base map source: City of Portland, USGS, fire data from Author using Farsite) 
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Figure 49 : Rate of spread across the entire standard simulation extent. The white line is the park 
boundary. This image demonstrates the relatively slow advance of the fire. The areas with the highest 
rates of spread coincide with the utility corridors. The fuels in the corridors were among the most 
flammable. Excess slash and regenerative brush and shrubs (e .g. Scotch broom) occupy many corridors 
because of the clearing that is completed by the utility line owners. (Base map source: City of Portland, 
USGS, fire data from Author using Farsite) 
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Figure 50: Rate of spread calculated for the custom simulation. The white lines are the park boundary. 
As in the standard simulation results the utility corridors experienced some of the highest rates of 
spread. Inset images A and B are areas of interest because they demonstrate increased rate of spread 
due to a combination of topographic features and weather inputs . Inset A also demonstrates the 
increased rate of spread found in the utility corridor fuels . (Base map source: City of Portland, USGS, 
fire data from Author using Farsite) 
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Two significant measures of fire intensity are the fire line intensity (FLI) and the 

heat produced per unit area (HPA). FLI is measured in kilowatts per meter, and HPA 

is measured in Kilojoules per square meter. Fire intensity is measured by two factors: 

the rate of spread, calculated by the number of meters burned per minute, and energy 

flux, the amount of kilowatts a fire generates per meter burned. 

The simulations had completely different results in these categories by an order 

of magnitude. The custom simulation produced FLI and HP A that topped out at 

71,804 kW/m and 727,683 kJ/m2
, respectively (Figures 51 and 52). The highest 

values in the standard simulation were 912 kW/m and 15,404 kJ/m2
. However, there 

are varying values suggested for the threshold intensity for an uncontrolled fire. 

Chapman (1999) suggests 4000 kilowatts per meter, while Hesseln, Rideout and Omi 

(1998) suggest 1730. Regardless of which value is used, the standard simulation never 

reached the intensity threshold of an uncontrollable fire, while the custom simulation 

easily exceeded the threshold in multiple areas. 
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Figure 51 : Fire line intensity of the custom simulation. The white line is the park boundary. The white 
transparent shaded area represents the final extent of the custom simulation. Substantial energy release 
can be seen along the utility corridors. The map inset is an enlargement of an area that experienced 
some of the highest energy release. The highest intensity was typically observed on Northern facing 
slopes and near the tops of ridges . (Base map source: City of Portland, USGS, fire data from Author 
using Farsite) 
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Figure 52: Heat per area of the custom simulation. The white line is the park boundary. The same 
areas that exhibited the highest fire line intensity in Figure 42 also produced the greatest heat. It would 
be safe to conclude that the fire in these areas would be uncontrollable from the ground. (Base map 
source: City of Portland, USGS, fire data from Author using Farsite) 
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To put these values in better perspective a typical gas burner on your stovetop 

turned to high is producing 23,000 kl Firewood heat output is measured in kJ per 

kilogram; an average for cured wood at 15% saturation is 15,400 kJ/Kg. The heat 

produced throughout the most of the extent of the standard simulation was intense 

enough to evaporate about a half gallon of water instantly. On the other hand the heat 

produced in a few areas of the custom simulation was intense enough to evaporate 85 

gallons of water instantly. The impact of this can be understood if we note that a 

typical fire hose will deliver about 20 gallons per minute. However, the majority of 

the standard simulation experienced fire line intensities and heat production similar to 

or less than, that observed throughout the custom simulation. This level of heat and 

intensity would lead to a controllable surface fire. 

At first the fire intensity and heat values observed in the custom simulation 

seemed like a mistake, but based on the fuel loading differences between simulations 

the energy release is plausible. Logically, more fuel increases the likelihood of 

combustion. More combustion increases flame length and fire intensity, and 

subsequent consumption oflarger surface fuels and ladder fuels. As the flame length 

continues to increase, more fuel becomes available as the fire reaches into the 

understory fuels and begins the laddering process. The cycle reinforces itself and 

grows at an increasing rate, as long as the same or heavier fuel load is available ahead 

of the fire line. 

Flame length plays a pivotal role in determining if a fire will ladder into the 

crown and torch small stands of trees. Flame length is a good indicator of risk of 

conflagration. Anderson provided a risk ranking based on his standard fuel models. 
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For standard fuel models 8 and 9 flame lengths ofless than 2 feet (0.6 meters) were 

considered to have low risk of conflagration in standard weather. Standard weather is 

considered a 5 mph mid-flame height wind, 8% dead fuel moisture, and 100% live 

fuel moisture. In contrast for standard fuel model 10, a flame length greater than 4.5 

feet (1.5 meters) was considered high risk. The simulation's dead fuel moisture was 

considerably less than 8%, more in the range of 5-6%. The mid-flame height wind 

was at or below 5 mph throughout most of the simulations run. Live fuel moisture 

was considered to be 100% across all the simulations fuels. The risk is elevated across 

all fuel models for the simulations because of the dead fuel moisture difference. 

The difference in calculated flame lengths between the simulations was 

extreme. The flame length across the majority of the standard simulation was less 

than 1 meter and never exceeded 3 meters (Figure 53). The custom simulation had 

flame lengths that reached 46 meters, which means that crown fires were burning in 

those areas (Figure 54). 
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Figure 53 : The flame length of the standard simulation. Most flame lengths calculated for the standard 
simulation represent a low risk fire . Any area not colored experienced flame lengths less than 0.6 
meters . Increased flame length is observed in the utility corridors. The standard simulation exhibits 
increased fire behavior on the north facing slopes due to the prevailing wind direction. (Base map 
source: City of Portland, USGS, fire data from Author using Farsite) 
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Figure 54: Flame lengths of the custom simulation. Flame lengths tended to be longer in areas with 
increased fire activity in the custom simulation compared to the standard simulation. The inset map 
shows an area where flames would have been greater than 6 feet tall at many places along the 
advancing fire line. (Base map source: City of Portland, USGS, fire data from Author using Farsite) 
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Many of the figures from the custom simulation have inset maps from a series 

of chutes near the ridge top. In the case of the custom simulation, this specific 

location was the location of the fire when the most intense winds and gusts occurred. 

Most of the extreme fire behavior from the simulations occurred in this environment. 

The simulated fire became more active and intense as it moved up the northeastern 

slopes and reached the tops of the chute ridges. This happened for two reasons. First, 

the north-northeast facing slopes were perpendicular to the oncoming wind. Second, 

the fuel on those slopes was primarily mixed conifer, which had greater fuel loads and 

lower crown base heights (Figure 55). 
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Figure 55: There is high correlation between elevated fire intensity and flame lengths that would 
increase the fires rate of spread and laddering probability on slopes with northeastern aspects. (Base 
map source: City of Portland, USGS, fire data from Author using Farsite) 

Simulation Results Compared to the 1951 Fire 

The simulations were allowed to run the same duration as that of the 1951 fire 

before they were brought under control. The 1951 fire was allowed to bum for almost 

three days before city resources were brought in against the advancing flames. The 

fire was brought under control within two days. For most of the time the fire was a 

slow moving surface fire. Keep in mind that a major portion of the 1951 fire over-

burned an area that had burned only 11 years earlier. In these areas the fire was 
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burning through primarily grasses and shrubs, as no trees had had time to grow back 

into stands. However, the areas that experienced the most significant rate of spread 

and intensity were heavily timbered, and caused spot fire outbreaks (Morris 1953). 

Figure 25 (Chapter 4) details the spread of the fire as described by Morris. 

The final extents of the simulations were vastly different from one another. 

However, when compared to the extent of the 1951 fire, the custom simulation was 

closer in total area and area overlap (Figures 56 and 57). For example, during the 

1951 fire when winds picked up to gusts of 40 mph, the fire spotted to the western 

slopes and crested the top of the ridge. The custom simulation did the same when the 

simulation reached that point in the weather stream. A comparison of fire behavior 

between the simulations and the 1951 fire reveal a closer association between the 

custom simulation and the actual event in acres burned (Table 9). 

Table 9: A comparison of fire behavior parameters between the standard and custom simulation results 
and the reconstructed 1951 fire. The rate of spread for all fires was similar. However, the fire intensity 
and flame length calculations were dramatically different between the standard and custom simulations. 
The 1951 fire was 55% larger than the standard simulation result, but was only 84% of the total area 
consumed by the custom simulation. Source: Morris 1953, simulation data by author. 

Fire Behavior Comparison 
Maximum Rate Maximum Fire Maximum Final Extent 

Fire of Spread (m/min) Intensity (kw/m) Flame Length (m) (acres) 
1951 10 N/A N/A 2268 
Standard 10 912 2 1459 
Custom 13 71,800 46 2693 
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Figure 56: The red shaded area represents the reconstructed 1951 fire boundary. Blue shaded areas 
represent the simulation extents. The purple shaded areas represent areas that both simulated fires and 
the 1951 fire burned. The top image represents the 1951 and custom simulation. The bottom image 
represents the 1951 and standard simulation. (Base map source: City of Portland, USGS, fire data from 
Author using Farsite) 
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Figure 57: The circles represent the total area burned during the fires represented. The overlapping 
portions of the circles represent the area that both fires consumed. Even though the greatest proportion 
of overlap seems to be between the custom and standard simulation, the relative size difference of the 
fires masks the truth . The 1951 and custom simulation have the most accurate overlap. lllustration by 
author. 
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The primary reasons the 1951 and the custom simulation share similar extents 

were that significant spotting occurred in the custom simulation. The spotting and 

subsequent fires get to the heart of the difference between the simulations. The 

custom simulation had the right fuel load in the exact location during the time that the 

weather was most conducive to rapid fire spread and torching trees. This occurred at a 

point where the fire had reached the top of the ridge and entered into a primarily 

coniferous dominated area. For the next several hours the wind shifted from a 

Northerly flow to a Northeasterly direction and reached speeds of up to 40 mph 

(Figure 58). During that time the standard simulation advanced consuming 111 acres, 

but did not spot (Figure 59). Until the wind shifted back to the north, the custom 

simulation consumed 352 acres in four hours and started over 20 spot fires. 
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Figure 58: The images show a four hour sequence (hours 57 to 60) in the fire spread of the custom 
simulation. No spotting has occurred in hour 57. In hour 58 the first few spot fire have ignited and 
started to spread. In hours 59 and 60 the spot fires continue to grow and some of them backfire into the 
main fire. (Base map source: City of Portland, USGS, fire data from Author using Farsite) 
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Figure 59: These images from the Standard simulation represent hours 57 and 58, no spotting occurs 
and the fire does not take on a new dimension as it does at this point in the custom simulation. (Base 
map : City of Portland, USGS, fire data from Author using Farsite) 

For the purpose of comparing time of arrival rates of the 1951 fire and the 

simulation results a time of arrival probability map was developed for the 1951 fire . 

The probability map was based on Morris' descriptions of the fire, which included the 

time and location of his observations. Points were placed across the reconstructed 

1951 fire extent; each point was given a time of arrival value based on Morris' report. 

The points were then used as the inputs to develop a semivariogram. A 

semivariogram is a mathematical form to express spatial autocorrelation. The 

semivariogram was used for an Ordinary Kriging model, which is applied to data that 

seems to have a trend. ln this regard we can assume that the spread of the 1951 fire 

trended in specific directions, which is substantiated and fundamentally based on 

Morris ' observations. The result of the Kriging model is a continuous surface of 

predicted time of arrival values. The analysis was masked with the 1951 fire extent so 

that the time of arrival values could be compared with the simulations. The limitation 

of using Ordinary Kriging is that it assumes a constant mean for the input distribution, 
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which is a reasonable assumption for this analysis, given that the duration of the event 

being modeled is known. 

When comparing the time of arrival differences between the simulations and 

the 1951 prediction map it was clear that the custom simulation was much more 

similar in behavior to the 1951 fire. The custom simulation spread pattern was quite 

different from the described spread pattern of the 1951 fire, but the locations that the 

fire ultimately spread to were nearly identical. The custom simulation spreads much 

farther north and west than the 1951 fire before it spreads back south into the 1951 fire 

area. This spread pattern is the primary difference in time of arrival. 

Furthermore, both the 1951 fire and custom simulation reached critical areas 

within similar time intervals (Figure 60). A histogram of the mapped time of arrival 

difference demonstrates the spatial variability of the fire spread (Figure 61). For 

example, the fire had reached the ridge top at the time the highest wind gusts were 

blowing across the ridge top in 1951. The custom simulation also reached the ridge 

top by that time in the weather stream. In 1951 the fire spotted down the western 

slopes of the ridge at this time, as did the custom simulation. Most of the spot fires 

that developed in the custom simulation within the 1951 fire extent did so within 4 

hours of the predicted 1951 fire spread to those locations. When considering the total 

duration of the simulations and the 1951 fire was 108 hours, the time of arrival 

difference to these critical spread locations is only 4%. 
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Figure 60 : Time of arrival (TOA) comparison between the predicted TOA values of the 195 1 fire and 
the TOA values of the custom simulation. Dark blue areas indicate that the custom simulation arrived 
at those locations between 30 minutes and 12 hours before the 1951 fire. Red areas indicate that the 
predicted TOA of the 1951 fire arrived at those locations 56 hours or more before the custom 
simulation. (Base map source: USGS, City of Portland, fire spread prediction by Author using ArcGlS) 
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Figure 61: Histogram of the distribution of pixels for the time of arrival difference map comparing the 
1951 fire and the custom simulation. The blue lines with numbers indicate the class breaks of the map. 
The mean value of the distribution was -28 with a standard deviation of 19.6. Histogram developed in 
ArcGIS by author. 

The comparison between the 1951 fire spread prediction map and the standard 

simulation yields a substantially different result than the previous comparison. There 

is an increasing gap in the predicted time of arrival between the 1951 and standard 

simulation as the distance from the ignition point increases (Figure 62). A Histogram 

of the pixel value distribution further illustrates the point (Figure 63). However, given 

the low volatility of the fire in the standard simulation this result is not surprising. In 

1951 when the fire was approaching the top of the ridge it was spreading at over 11 

meters per minute, where the standard simulation experienced a rate of spread of only 

3 meters per minute or less in the same area. 

144 



lime of Arrival (TOA) Comparison 
1951 Fire to Standard Simulation 

- 51 TOA < 0.5 - 5 hours 

- 51 TOA= Custom TOA 

D 51TOA>0 .5 - 11 hours 

- 51TOA> 12 -23 hours 

- 51 TOA> 24 -35 hours 

- 51 TOA> 36 hours 

0 0.25 0.5 Miles & 

Figure 62 : Time of arrival (TOA) comparison between the predicted TOA values of the 1951 fire and 
the TOA values of the standard simulation . Dark blue areas indicate that the standard simulation 
arrived at those locations between 30 minutes and 5 hours before the 1951 fire. Red areas indicate that 
the predicted TOA of the 1951 fire arrived at those locations 36 hours or more before the standard 
simulation. (Base map source: USGS, City of Portland, fire spread prediction by Author using ArcGIS) 
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Figure 63: Histogram of the distribution of pixels for the time of arrival difference map comparing the 
1951 fire and the standard simulation. The blue lines with numbers indicate the class breaks of the 
map. The mean value of the distribution was -20 with a standard deviation of9. Histogram developed 
in ArcGIS by author. 

Potential Property Loss in Forest Park's Wildland-Urban Interface 

The potential for structural property loss because of wildland-urban forest fire 

in the developed areas around Forest Park is great. Based on the simulation analysis it 

is a matter of timing. The majority of both simulations consisted of controllable levels 

of burning. However, when the right combination of topography, weather, and fuel 

align, as seen in the image sequence in Figure 58, the results are dramatic. These 

results get to the heart of the conflict between policy and management in the wildland-

urban interface. 

A simple cost analysis and comparison can highlight the worst case scenario. 

In Table 10 the final extents of the 1951 fire and both simulations are used to calculate 

the total property value based on 2004 taxlot data within each boundary. The results 

are sobering: based on the taxlot data 1,648 structures (1,519 homes) are built within 

the area that burned in 1951. The total building value exceeds the real value lost in the 

146 



4th most costly urban wildfire which occurred in the Topanga Canyon area, North of 

Los Angeles in 1993 (values have been adjusted to 2003 dollars). The custom 

simulation results are less catastrophic, with the estimated loss of 756 homes, worth an 

estimated $272 million. The standard simulation scenario is far more palatable, with 

only 36 homes lost. It is likely that none of the homes within the standard simulation 

boundary would be lost, given the intensity of the fire. It is just as likely that only a 

limited number of the estimated home losses in the custom simulation results would 

actually occur. 

Table 10: The values in the table are based on tax assessment records and therefore do not reflect the 
real value of the properties, which would exceed the values given. (Source: Metro RLIS) 

Current Taxlot Property within the 1951 Fire, Custom and Standard Simulation Extents 

Fire Structures DwellinQs Total Buildinq Value Total Land Value Total Property Value 

1951 129 1519 $ 536,459,942 $ 223,142,080 $ 759,602,022 

Custom 11 756 $ 271,892,977 $ 143,718,620 $ 415,611,597 

Standard 0 36 $ 15,509,020 $ 26,177,040 $ 41,686,060 

There are clear differences between the simulations. Even though certain fire 

behavior results - such as fire intensity and flame length - were similar over wide areas 

of the simulations, the spread of the fires was fundamentally different. The custom 

simulation spread over twice the area as the standard simulation. The custom fire also 

exhibited uncontrollable fire behavior in fire intensity and heat production. In areas 

where this behavior was located, the fire reached the upper canopy and spawned spot 

fires ahead of the advancing fire line. This type of behavior was never observed in the 

standard simulation. Upon comparing the simulation results with the spread of the 

1951 fire, the custom simulation again behaved in a similar manner to the actual event. 

Unfortunately this type of behavior and spread would pose a greater threat to the 
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development adjacent to Forest Park. In conclusion, based on the simulation results 

and comparison to a real event, the custom fuel models developed for the park offered 

a more reliable illustration of potential fire spread and behavior than the simulation 

using standard fuel models. 
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CHAPTER 7: DISCUSSION AND RECOMMENDATIONS 

In this final chapter we discuss what the results mean to the stakeholders who 

either live within this WUI environment or are charged with the preservation and 

protection of Forest Park. Potential management decisions are reviewed in the context 

of fuel treatment techniques and application. Two additional simulations are run 

based on potential accidental ignition scenarios using the custom fuel models and 

weather data collected during the summer of 2004. Finally, we discuss the limitations 

of this analysis and the future requirements to improve the use of fire simulation in the 

wildland-urban interface. 

Summary 

In this thesis I have tested the use of wildland fire simulation modeling for a 

wildland-urban interface environment. The results of the study support the use of 

custom fuel models for small scale simulations. Custom and standard fuel models 

were used, but the standard fuel models under-represented the live fuel components of 

Forest Park. The net result was homogenous fire spread and behavior regardless of 

changing weather and topographic inputs. 

From the simulation results we learn that weather is a key factor in fire 

potential in the park. Drought conditions like those experienced in 1951 could create a 

dangerous situation because the majority of the park's plant life would lose substantial 

levels of moisture, leading to a significantly drier understory. As the live fuel 

moisture decreases, fire intensity and flame length would be greater. 
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Furthermore, the effect of the Tualatin ridge on easterly winds is conducive to 

fire spread. East winds from the Columbia gorge run into the ridge and move in a 

northwesterly direction down the ridge line. As east winds strengthen, the steep 

canyons and saddles of the Tualatin ridge enhance the chimney effect. Under this 

condition fire will move rapidly up and over the ridge top. 

Fire Mitigation Techniques 

Introducing "destructive" fire management practices, such as prescribed 

burning or thinning, into a wildland-urban interface environment is difficult without 

providing the public with feasible and tangible results. In order to mitigate the risk of 

fire entering or exiting an interface area, mitigation techniques need to be employed at 

a landscape scale. The impact of various techniques along the edges of, and within, 

fire-prone environments range widely. Techniques will vary depending on fuel 

composition, topography, and edge development density. Traditional wildland 

techniques such as shaded fuel breaks and prescribed burning may not work in smaller 

occluded environments. For extended edge environments the development of crown

fire-free-zones, stepped walls, or selective whorl pruning and vertical fuel reduction 

may be the only feasible approach (Scott 2002). 

Mitigation techniques around structures, such as planting fire resistant 

ornamentals or delineating defensible spaces with fuel reduction, may reduce the 

probability of ignition but never eliminate the possibility. Houses ignite from a 

variety of sources including direct flame, radiation from other structures, and lofted 
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embers. Fire safe zones only reduce the risk of ignition from direct flame and 

radiation, but lofted embers come from further afield than a typical fire safe zone. 

The situation changes dramatically, if a fire enters an urban environment as a 

crown fire. Crown-fire-free-zones (CFFZ) are necessary to keep fires near WUI 

environment out of the forest crown. The size of the CFFZ is dependent on the fuel 

moisture conditions, which may vary throughout the year. The less fuel moisture the 

more flammable the fuel. This can also be viewed from a drought condition 

perspective - the more severe the drought the greater the potential for fire, and the 

more intense the bum. A CFFZ can range in distance from a structure of 50 feet to 

over 800 feet. In many WUI environments the feasibility of this level of management 

is impossible because of land use regulations, neighborhood CC&R' s (covenants, 

conditions, and restrictions), or the physical size of the environment (Scott 2002). 

Some occluded environments may be less than 200 feet across, but still pose serious 

fire risk. 

Creating and maintaining fire-safe landscapes is a complex process (Clark 

1995). Clark breaks it down into five key elements. The first is knowledge and 

awareness of the problem. To mitigate the risk of fire, property owners and public 

officials need to recognize the problem and work together to mitigate the risks at 

lowest level. Second, the physical infrastructure has to be in place that enables the 

responsible fire bureau to react and initiate their plan. Third, and more importantly, a 

plan needs to be in place. The responsible government agencies need to react in a 

prescribed and rehearsed manner in the case of an event. Fourth, structural design 

should be location appropriate and building code should mandate basic fire-resistant 
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building materials. Property owners and communities need to be aware of points of 

weakness in the defenses. Points at which fire fuel and structures coexist need to be 

treated to minimize the potential for fire to cross-over into the developed environment. 

Lastly, Clark advocates fuel treatment at a landscape scale. He includes pruning and 

removal of fuel, but most importantly fire needs to be a part of the treatment regime. 

Clark (1995) states, "Programs of prescribed burning must be included, despite 

adverse air quality effects." 

The application of fire management techniques in a wildland-urban interface 

can prove ecologically beneficial. Forest management in greenbelt and remnant 

environments is a function of scale and structure (Agee 1995). Scale is typically 

measured by the size of the forest and the level of fragmentation that exists. Structure 

is typically measured by the characteristics of the forest within the area under 

consideration. A significant factor in determining scale and structure is the size of the 

buffer, if any, that exists between the edges and the inner forest. A long and narrow 

environment may be composed of all edge environments. Therefore, the level and 

intensity of management will vary. However, the development of a buffer to limit the 

edge effect is important to the ecological stability and health of an urban forest. Fire is 

an ecological tool that can be used to improve the health of a forest. 

There is an ecological component to this model. The protocol with which the 

fieldwork was conducted is based on ecological sampling. With additional field 

research on a recurring basis the fuel dataset could be developed to test vulnerability at 

various stages of succession. As the forest structure changes in various locations the 

potential impact on fire behavior can be modeled. As additional areas enter into those 

152 



stages, fire behavior can be reviewed and areas that may need treatment can be 

identified to increase or establish buffer. The model can also provide a way to stress 

test the forest. Fuel moisture scenarios can be applied that can mimic long and 

protracted drought conditions. Fire behavior scenarios done in advance of these 

conditions can help direct mitigation and response planning in the case of an actual 

event. 

Additional Fire Simulation Scenarios within the Study Area 

To mitigate the risk of fire intensity at the interface boundary, fire management 

plans need to be drawn at the landscape scale and need to incorporate multiple 

mitigation strategies that reduce intensity well before the fire reaches development. 

However, this may not be practical in many scenarios. Take for example, a scenario 

where a fire starts within a residential area green space. This type of scenario is a 

strong possibility given the level of development and green space adjacent to Forest 

Park. In Figure 64 the custom fuel models were used along with weather data 

collected during the summer of 2004 to perform a short-term simulation. Only the 

first 4 hours of the simulation are illustrated because a fire in this location likely would 

be quickly responded to and the full resources of the responsible fire agency would be 

brought to bear. The weather at the time of the simulated fire was windy with gust 

exceeding 20 mph and there had been no measurable rain for over a month. Since the 

fire took place in July, the initial fuel moisture was set at normal levels of 8 to 15% for 

the dead fuels. Within an hour of ignition the fire had spread and spotted across the 

green space gully and up to houses on both sides. 
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First Four Hours of a 
Fireworks Fire Scenario 

- Spread during first hour 

f:.'•_tl:J Spread after first hour 

- Spread after second hour 

- Spread after th ird hour 

- Spread after fou rth hour 

0.125 

Figure 64: Accidental fire start in green belt within a residential development. The scenario of fire 
spreading from developed areas into the park is as likely as fire spreading from the park into developed 
areas . (Base map source: USGS, City of Portland, fire simulation by Author using Farsite) 
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The designation of houses and development as non-fuel is a significant factor 

in this analysis. Consider that any lofted ember that may have landed on a cedar shake 

roof, where the roof material is likely to ignite under these conditions is impossible in 

the simulation. Roof fires can quickly spread and ignite neighboring homes. Over 8 

spot fires started in heavily developed areas during the custom simulation. Had 

houses been considered fuel, then more spot fires would have been likely. Subsequent 

fire spread within the neighborhoods would be much greater than the results indicate. 

Another likely ignition scenario is along utility corridors occupied by high

voltage power lines (Figure 65). Several power line corridors traverse the park. Fire 

that may accidentally start along these lines because line-tree contacts can remain 

undetected while they smolder or grow in the more volatile fuels found in these utility 

corridors. Under the right weather and wind conditions these fires can grow and spot 

rapidly in locations that are relatively inaccessible for fire fighting equipment. 

There are no fire hydrants or large water sources within the park. Fires will 

likely have to be fought by hand crews or brush units that can get close to the fire's 

edge via fire lanes or park roads. For an urban fire department this can pose 

significant challenges. As Figure 65 illustrates, the simulated fire spotted to several 

locations down slope and across the canyon from the point of ignition. Only the first 

four hours of the simulation are presented, but the fire spotted within the first hour of 

ignition. The point of ignition for this fire is actually in a best-case location: Saltzman 

Road runs parallel to the main fire and a fire lane is close to the spot fire across the 

canyon. The simulated fire also started between Saltzman and Leif Erickson, which 

would enable fire fighters to light back fires from those roads. However, there are 
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more areas that are less accessible in Forest Park than are accessible to fire fighters 

and their heavy equipment. 

These two short-term simulations are not presented as definitive model runs. 

Rather, they are presented just to suggest how local emergency management planners 

might utilize the simulation tool that Farsite represents. Many additional simulations, 

using a variety of input parameters, would help planners gain greater insights to the 

likelihood and behavior of fire in Forest Park. 
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First Four Hours of a 
Power Line Fire Scenario 

Spread during first hour 

Spread after first hour 

- Spread after second hour 

- Spread after third hour 

- Spread after fourth hour 

Power Lines and Tow ers 

0.125 

Figure 65 : Accidental fire start from power line-tree contact. Power lines traverse the park at several 
locations. During very hot weather power lines can droop and initiate contact with vegetation that can 
arc and ignite. Trees can also fall or be blown across power lines causing the same arc and combustion 
scenario . This fire can start and remain undetected for some time and then quickly grow under the right 
weather and wind conditions. (Base map source : USGS, City of Portland, fire simulation by Author 
using Farsite) 
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Analysis Limitations and Recommended Model Improvements 

The single most limiting aspect of using this model to assess fire behavior in 

the wildland-urban interface environment within the study area is the designation of 

houses and structures as non-fuel. A fuel model specific to houses and structures 

needs to be developed that will take into account the ignition thresholds of the 

building materials and the behavior of the structural fire. This would enable the model 

to be used to assess fire mitigation techniques that may be employed in the immediate 

vicinity of structures. 

Furthermore, additional sampling plots within the study area could improve the 

fuel map accuracy. For example, no sampling plots were located within the utility 

corridors. The use of Anderson's fuel model 5 for these locations was based solely on 

visual assessment. Having local data for this fuel environment could impact the fire 

behavior of future simulations. Future fuel assessments at the permanent plots should 

also include substrate moisture calculations, which were not possible to record during 

this study because the cost of the equipment was beyond the means of the project. 

However, the fuel moisture values used for the simulations were based on the 

literature reviewed and were chosen so as to fall within a reasonable range. 

Increased accuracy of the measurement of canopy height and density would 

also improve the crown fire portion of the simulations. This would require LiDAR 

(light detection and ranging) data that would provide accurate heights of the canopy as 

well as its cover density. This type of a data set could provide a second fuel-related 

base map from which to derive the fuel themes for the Farsite landscape file. 
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Although the standard in wildland fire simulation, a single source base fuel map was 

limiting given the study area's size and complexity. 

The time which the simulations took to run was also a limiting factor. Even 

minor adjustments to the inputs required that the simulations be re-run. Each new 

simulation took a couple of days to complete for a matrix of cells 10 m by 10 m in 

size. A computer with faster processors and memory may reduce the simulation run 

time. However, for simulations to be used for decision support during a real event the 

simulation would have to run within an hour. For this to occur the spatial resolution 

of the inputs will need to be changed. However, the size of the study area, coupled 

with the location of an ignition, may not enable the model to be used as a suppression 

planning tool because a fire event may move too quickly through the environment. 

Improved Fire Planning and Management of Forest Park 

From a policy perspective it is difficult to manage to a worst case scenario. 

The cost associated with planning and managing for all contingencies is not feasible or 

fiscally responsible. Therefore, management plans must be focused on the points in 

the landscape that are of greatest risk. 

The model as it is would be an effective tool to determine the likely spread 

from locations of what would be considered maximum threat. The two short-term 

scenarios discussed previously had points of ignition in elevated threat areas. Some of 

the areas of elevated threat are obvious; the utility corridors, residential areas with 

adjacent green space, the industrial areas adjacent to the southeastern comer of the 

park, and the rail lines that run along the Willamette River and most of the eastern 
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park boundary. However, the model could identify locations of highest threat within 

these higher risk areas. This model could be used to test the combination of terrain, 

weather, and location that represent the highest threat locations. Once identified the 

threat location can be targeted for mitigation. 

Conclusion 

Fire is a natural part of Forest Park's landscape and ecology. However, the 

unique orientation of Forest Park to the city of Portland presents certain challenges in 

establishing sustainable resource management tactics that consider the spatial 

distribution of the different forest stands, and their development patterns in the context 

of a healthy successional pattern. Counter-balancing sustainable resource planning 

with the potential property loss in the event of conflagration is a real issue for city 

officials. This research focused on demonstrating the utility of spatial modeling for 

decision support. The fire model provides city officials with a high-resolution fire 

simulation and visualization tool for Forest Park. This allows them to generate 

information that enables localized stand management decisions from a fire hazard 

perspective. This evaluation of the model will be considered successful if it can 

provide input to the debate and offer real data for the cost-benefit analysis of proposed 

restoration projects or evacuation strategies. 

This study was not intended to be a policy document. Although there are 

policy issues discussed and management techniques introduced, I have tried not to 

endorse a position. The study was intended to; first, address the difference in fire 

simulation results when using standard and custom fuel models, holding all other 
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simulation inputs constant; second, illustrate the utility of the simulation model as a 

management tool. In this regard, the custom fuel models developed from in situ field 

work out-performed the standard fuel models. The standard simulation produced a 

fire that never reached a point of uncontrollable spread. The simulation using the 

custom fuel models at times burned uncontrollably, but this behavior was not 

sustained for very long. 

The net result of my research is intended to help city officials predict and 

analyze fire danger. First, using the fire model appropriately, city officials can assess 

the conditions necessary for serious fire given an ignition event and location. Second, 

the model can be used as a predictive tool in assessing how a fire would likely behave 

under a given set of ignition conditions within Forest Park. For this model to be used 

accurately in the future, additional fuel assessment and weather monitoring will be 

required. Third, from a resource management perspective, the model predictions can 

be used as the basis for ecological restoration recommendations to establish and 

sustain a native fire-dependent ecology. Finally, this research will support the 

adoption of a management plan that strives to establish a healthy urban forest that will 

develop into a late-successional stage for future generations to enjoy. 
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APPENDIX A 

Farsite Algorithms and Inputs 

F arsite uses a vector or wave approach to fire growth modeling. The 

applications algorithms are based on Huygens' Principle using elliptical wavelets 

(Figure 66). Under constant conditions the wavelets would propagate uniformly over 

time, maintaining an elliptical shape. However, nonuniform conditions exist along a 

fire front. The propagation in both size and direction of wavelets is impacted by the 

local fuel type and orientation on the local wind-slope vector (Finney 2004). 

Fuel 

Wind t Ill 

Figure Al: Wavelet size dependency on nonuniform conditions. The fire front expands most rapidly in 
the direction where the wind is moving directly upslope and faster burning fuel is available. Source: 
Finney 2004. 

The fire front spreads as a continuously expanding polygon at specified time 

intervals (time steps). The fire polygon is defined by a series of points (vertices) with 

X, Y coordinates, and new polygons expand independently from each vertex based on 
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the landscape. The wind-slope vector determines the shape and direction of the 

propagating ellipses. The size of each ellipsis at the leading edge of the fire is based 

on the various fire behavior model inputs and the time interval between steps (Finney 

2004). 

Farsite uses four fire behavior models to create the three-dimensional process 

of fire spread. The four models consist of surface fire spread, crown fire spread, fire 

acceleration, and spotting. The surface fire spread model is based on Rothermel' s 

steady-state fire spread equation (Equation 1 ). Additionally the surface fire model 

uses a fireline intensity equation that describes the rate of energy release per unit 

length of the leading edge of the fire (Equation 2). In order for the equations to 

calculate appropriately fuel characteristics and moisture, windspeed and direction, and 

topographic slope and aspect must be available at all times at any point on the 

landscape. The equations are applied at every vertex along a plane parallel with the 

surface (Finney 2004). 

All equation inputs related to data collected in the field are bold. 

All equation inputs or constants across developed from laboratory test are italic. 

speed) 

Equation 1: 

where: 

R = IR~ (1-<l>w +<l>s) f Pb E Qig 

R = forward steady state spread rate (m min-1
) 

IR= reaction intensity (kJ min-1 m-2
) 

~ = the propagating flux ratio 

<l>w = wind coefficient (result of wind-slope vector and wind 

<I>, = slope coefficient (result of wind-slope vector and radian 

azimuth) 

Ph = ovendry bulk density (kg m-3
) 
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£ = dimensionless effective heating number (proportion of fuel 

mass that must be raised to ignition temperature) 

Qig = heat of pre-ignition (kJ kg- 1
) 

Equation 2: 

where: 

lb= hwR I 60 =(IR I 60) * (12.6R Io) 

lb = fire intensity at leading edge 

h = heat yield of the fuel, total heat less the energy required to 

vaporize moisture (kl kg-1
) 

w = weight of the fuel per unit area (kg m-2
) 

R = leading edge steady state spread rate (m min-1
) 

IR= reaction intensity (kJ min- 1 m-2
) 

a = surface area to volume ratio of fuel bed (m-1
) 

There are numerous equations that make up the crown fire model in farsite. 

Most of the equations are based on the work Charles Van Wagner who first researched 

crown scorch and the conditions necessary for crown fire ignition and spread scenarios 

(Van Wagner 1977). He and others in the Forestry Canada Fire Danger Group 

focused on crown foliar moisture as a primary indicator of whether a fire will ladder 

from the surface and torch a single tree or spread actively through the crowns (Van 

Wagner 1989, Forestry Canada Fire Danger Group 1992). The first equation 

incorporated into Farsite identifies the transition threshold at which surface fire will 

ladder into the overstory (Equation 3). The second equation determines the active 

crown fire spread rate (RAC) (Equation 4). The actual active crown fire spread rate is 

determined from a theoretical maximum crown fire spread rate (Equation 5). The 

maximum crown fire spread rate is determined from a correlation with the forward 

surface fire spread rate using a 0.4 wind reduction factor and a coefficient designed to 
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minimize the possibility that spotting could be accounted for twice (Equation 6). The 

next crown fire equation calculates the crown fraction burned (CFB) or the proportion 

of trees involved in the crowning phase of the fire (Equation 7). The CFB depends on 

an exponent that scales it to equal 0.9 when the surface fire reaches 90% of the 

difference between RAC and the critical surface fire spread rate and intensity that 

would initiate a crown fire. Crown fire intensity is the last crown fire equation and is 

a modification of the surface fire intensity equation that includes the combined loading 

of crown fuel and surface fuel consumed (Equation 8) (Finney 2004). 

Equation 3: 

where: 

lo= (0.010 * CBH (460 +25.9M))312 

Io = threshold for transition to crown fire 

CBH = crown base height that incorporates the presence or effect 

of ladder fuel 

M = foliar moisture content (percent on dry weight basis) 

Equation 4: 

where: 

RAC= 3.0 I CBD 

RAC = active crown fire spread rate 

3.0 = empirical constant defining critical mass flow rate through 

the crown for continuous flame (0. 05 kg m-1 s-2
) and a 

conversion factor (60 s min-1
) 

CBD =crown bulk density (kg m-3
) 

Equation 5: 

where: 

Rcactual = R + CFB (Rcmax - R) 

Rcactual = actual active crown fire spread rate at the f1h vertex 

R = forward steady state spread rate (m min- 1
) 

CFB = crown fraction burned 

Rcmax = maximum crown fire spread rate 
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Equation 6: 

where: 

Rcmax = 3.34 * R10 * E1 

Rcmax = maximum crown fire spread rate 

3.34 = coefficient to minimize accounting for individual tree torch or 

the possibility that spotting could be accounted for twice 

R10 = forward steady state spread rate for fuel model 10 using 0.4 

wind reduction factor 

E1 = fraction of the forward crown spread rate achievable at the ith 

perimeter vertex given orientation of the vertex to the 

maximum spread direction and elliptical dimension of the 

crown fire 

Equation 7: 

where: 

CFB = 1 - e-ae(R-Ro) 

CFB = crown fraction burned 

e-ae = exponent where ae = -ln(0.1) I 0.9 (RAC-Ro) 

Ro= critical surface fire spread rate where Ro= 10 (R I ) 

Equation 8: 

orR 

le= 300 (lb I 300R = CFB*CBD(H-CBH)) * Rcaetual 

where: 

le = crown fire intensity 

H = crown height 

Heat content of surface and crown fuels is assumed to be 18,000 kl 

kg-] 

Farsite compares the values of the surface and crown fire equations to 

determine the type of crown fire expected. Passive crown fire or individual torching 

of trees will be exhibited in the simulation if lb greater than or equal to 10 but Rcactual is 

less than RAC. An active crown fire will ensue if lb greater than or equal to 10 and 
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RcactuaI is greater than or equal to RAC. Independent crown fire only occurs in 

conjunction with very high windspeeds, crown bulk density, and percent cover. For 

independent crown fire lb is greater than 10 and RcactuaI is greater than or equal to RAC 

(Finney 2004). 

Fire acceleration is represented by two equations that define the rate of 

increase in spread rate for a given ignition source assuming constant environmental 

conditions. The equations control time and space resolution. They calculate the 

spread distance required achieving the current spread rate at current conditions plus 

the spread distance in the next timestep provided a new equilibrium spread rate 

(Equations 9 and 10). The fire acceleration calculations eliminate instantaneous jumps 

to faster spread rates because of sudden environmental changes (Finney 2004). 

Equation 9: 

where: 

Dt = R (Tt + (e·aan I aa) - (1 I aa)) + Dt+1 

Dt = spread distance require to achieve the current spread rate 

under current conditions 

R = forward steady state spread rate (m rnin-1
) 

T1 = time required to achieve the current spread rate under current 

conditions 

a0 = constant that determines the rate of acceleration (set to 0.115 

or 0.300) Crown fires use equation a0 = a0 - 18.8 * CFB2·5 e<-
8 CFBJ 

Dt+I = desired spread distance in next timestep 

Equation 10: Tt = ln(l-Rt IR) I aa 

The last set of equations used in Farsite predicts the ignition and spread of spot 

fires. Spotting is caused by embers lofted from torching trees and carried by wind 
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ahead of the fireline. The spotting distance is dependent on ember size, vertical wind 

speed profile, and the surface topography. The spotting function in Farsite is based on 

Albini's (1979) model that calculates the height to which an ember lofts as a function 

of the length of time a torching tree(s) creates enough buoyant flow equal to the time 

required for an ember to travel upward from its source (Equation 11 and 12). Farsite 

uses several assumptions in the application of Albini' s model. Embers are assumed to 

originate at the top of the canopy. The base of the flame is assumed to be half the 

stand height. Ember shape is assumed to be cylindrical with constant specific gravity 

and drag coefficient. Lastly, embers are assumed to loft vertically directly above the 

burning tree. Only after the maximum lofting height is calculated does the program 

calculate downwind descent. 

Equation 11: tr= to+ 1.2 +ax I 3 ((bx+ (z I Zp) I axili _ 1) 

where: 

tr= duration of the buoyant flow structure of torching tree 

to = time of steady burning of tree crowns 

Zp = flame height (m) 

z = ember height (m) 

ax= flame structure constant (5.963) 

bx= flame structure constant (4.563) 

Equation 12: ti= to+ t1 +ti + t3 

t1 = time required for ember to travel upward from its source 

to = time of steady burning of tree crowns (dependent on species, 

diameters and number of trees torching in a group) 

t1 = time for ember to travel from its initial height to the tip of the 

flame above the torching tree 

ti = time for ember to travel through the transition zone between 

the flame tip and the buoyant plume 
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t3 = time for ember to travel in the buoyant plume 

Additional equations account for ember descent and downwind travel distance 

given terminal velocity and drag, density and volume loss due to burning, and ambient 

windspeed after the ember leaves the buoyant plume. Once the ember touches down it 

may ignite a new fire if three conditions are met. The ember can not fall within an 

already burned area. The landing site must contain combustible material. Lastly, the 

combustible material is ignitable given the embers thermal properties. 
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APPENDIXB 

Weather and Wind Files 

Wind information must be input as a stream of data contained in a text file. 

The file contains data in columns that are in a space delimited ASCII format. The data 

in the file consists of the hour of observation which is specified as 0-2400, to the 

nearest minute. The speed specified in miles per hour. The direction specified in 

degrees, clockwise from north (0-360), and the cloud cover at the time of observation 

specified as a percentage, 0 to 100. 

The data contained in the weather file consists of precipitation representing the 

daily rain amount specified in hundredths of an inch. The hour that corresponds to the 

minimum temperature was recorded (0-2400). The hour that corresponds to the 

maximum temperature observed followed by the minimum and maximum 

temperatures in Fahrenheit. The file also includes minimum and maximum relative 

humidity observed during the day as a percentage (0-99). The elevation at which the 

weather readings were taken is also included so that adjustments can be made to the 

data stream if the difference between the fire location and the observation post is too 

great. If there was precipitation during the day the time that is started and the time 

that it stopped is specified. 

Multiple wind and weather files can be used in a single simulation by 

identifying the location of weather monitoring stations at particular locations on the 

simulated landscape. The locations are linked to individual wind and weather files 

customizing the resolution and spatial location of those data streams on the landscape. 
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In this study wind and weather data recorded and collected during the 1951 fire 

was used to create the wind and weather files. 1951 weather data are available from 

three sources: the Troutdale airport, Portland International Airport (known as the 

Portland airport in 1951 ), and a USFS forester's report of conditions at the fire. 

The first weather station was located at the Troutdale airport located about 16 

miles from the Tualatin ridge, at the mouth of the Columbia River Gorge. Ultimately 

the Troutdale data was discarded for two reasons. First, the influence of the Columbia 

River Gorge on the weather skewed the temperature and wind data. Second, the wind 

speed and direction reading were taken inconsistently at the Troutdale station. 

The second weather station was located at the Portland airport, which is only 

7 .5 miles from the Tualatin ridge. The dataset from the Portland airport station was 

complete. Readings are available at regular 6-hour intervals, taken at 0400, 1000, 

1600, and 2200 hours. Unfortunately this is less than the recommended wind input 

interval for fire simulation. The greatest elevation difference between the station and 

the study area was 1,200 feet, which does not pose a serious problem in using the data. 

The net affect on temperature or humidity over a 1,200 foot elevation difference does 

not warrant adjustment of the inputs. However, given the proximity and consistency 

of readings the Portland airport station was used as the primary source of weather and 

wind input for the fire simulations. 

The last data source came from a fire report filed by William Morris, a USFS 

forester who observed the 1951 fire and took wind, temperature, and relative humidity 

readings throughout his observations. As the fire burned he moved to various 

locations within the bum area. He noted the times and locations at which he took the 
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readings. Although his time intervals were not consistent his observations filled in the 

gaps between the Portland airport data. Furthermore, during the fires greatest rate of 

spread he took a greater number of readings. The combination of his observations and 

the regular weather reports at the Portland airport enabled the development of weather 

and wind files with acceptable time intervals. 

Conditional Fuel Files 

There are four conditional fuel files - the adjustment file, the moisture file, the 

custom fuel model file, and the conversion file. The adjustment file can be used by an 

experienced modeler or in conjunction with local data to tune the simulation to 

observed or actual fire spread patterns. The adjustment file values for all fuel models 

used in this study were set to 1.0, which maintains the original spread rate for the fuel 

model. 

The fuel moisture file provides fuel moistures required to begin the process of 

calculating site specific fuel moistures at each time step throughout the simulation. 

The initial fuel moisture is based on Rothermel's (1991) drought summer moisture 

content percentages for standard timelag fuel components (lh, 1 Oh, lOOh and live). 

For drought summer conditions and late summer severe drought condition the initial 

fuel moisture values for each fuel model would be: 

Fuel: 

lh: 
lOh: 
lOOh: 
live: 

Summer 
Drought(%) 

4 
5 
7 
78 

Late Summer 
Severe Drought (%) 

3 
4 
6 
70 
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For this study the summer drought moisture values were used because the 

summer of 1951 was considered a drought year. The fuel moisture was used to 

condition the fuel prior to the simulated fires. Fuel moisture is calculated based on the 

inverse diurnal fluctuations of relative humidity and temperature at the forest floor. 

Furthermore, the percentage of tree cover over an area also impacts fuel moisture. 

Tree cover is part of the landscape file discussed later in this section. For example, as 

the percentage of tree cover increases the relative humidity remains higher and the 

temperature lower. The result would be higher fuel moistures because less heated air 

flows over the fuels and they dry out at a slower rate. Weather and wind data from 

August 2nd, 16 days prior to the outbreak of the 1951 fire were applied to the initial 

fuel moisture values. 

The other fuel files are only required if the simulation will use custom fuel 

models. Simulation in this study used custom fuel models. Therefore, a custom fuel 

model file was developed. A custom fuel model consists of the same fuel model 

parameters discussed in Chapter 5. Additionally, when the fuel map for this study was 

developed it was generated using standard fuel model numbers because one of the 

simulations tested was based on Anderson's standard fuel models. Therefore a 

conversion was created in order to use the custom fuel models file in a simulation. 

The conversion file is necessary if the fuel model numbers specified in the landscape 

file do not correspond directly to the fuel model numbers in the custom fuel model 

file. 
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The Landscape File 

The data is imported from the GIS as a binary file (ASCI) comprised of a 

header and a body of short integers for each of the themes it contains. The header 

contains information on the bounds of the study area, the resolution of the cells, and 

the units of the themes. The landscape file must contain five basic themes; elevation, 

slope, aspect, fuel model, canopy cover. The file may also include optional files for 

stand height, crown base height, and crown bulk density. Files were developed for 

each of these themes for this study. 

Landscape File: Topographic Themes 

The study area spread across three lOm Quadrangle DEMs, which were 

subsequently put in a single mosaic. The mosaic had a mask applied to reduce the 

data to the park area plus a 1.24 mile buffer around the park boundary. The buffer 

distance was selected to account for development adjacent to the park. Since fire will 

not stop at the park boundary the buff er provides additional area for fire spread. The 

buffer enables placement of an ignition point outside of the park to see if a fire will 

spread into the park. The buffer is also large enough to observe where fire is likely to 

escape from a fire started in the park. 

Landscape File: Fuel Map Development Process 

The landscape file is developed from GIS raster datasets. The terrain themes 

are derived from USGS DEMs as discussed previously, but the fuel-related themes 

require a fuel map of the study area. The quickest way to inventory the fuel of an area 

is through the interpretation and classification of multi-spectral imagery. Therefore, 

multi-spectral imagery of the study area was acquired and used to develop a base fuel 
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map. Additionally, the original imagery was transformed using a vegetation index 

model. 

The indexed fuel map was derived from the spectral response pattern of the 

canopy and therefore represents the vegetative cover of the area. Based on the canopy 

cover found in the area assumptions can be made about the vegetation and 

composition of the understory and substrate fuels. Fuel models represent the substrate 

fuel loads. The base fuel map represents the standard fuel models that were selected 

to represent the fuel types found in the study area. The following sections of this 

chapter explain the process of developing the initial fuel map and subsequent fuel

related themes for use in the landscape file. 

The development of an accurate fuel map is critical to the success of this study, 

since the fuel map is the basis for all of the fuel-related raster themes. Development of 

the fuel map was a multi-step process (Figure Bl) that began during the summer of 

2004 with the identification of sampling plots within the park. These plots were used 

to collect data for developing the custom surface fuel models and providing canopy

related data for the simulations. 
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Figure Bl: steps involved in fuel mapping process. (Source: flowchart drawn by Author) 

The total study area includes a 1.24 mile buffer around the park boundary. The 

buffer was based created from a set of polygons representing the Forest Park National 

Vegetation Classification Standard (FP NVCS) unit data, which extends to the park 

boundary (Figure B2). The FP NVCS was developed by the City of Portland to study 

the ecology of the park. The polygon units classify areas of Forest Park into 
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vegetation classes and subclasses based on national vegetation classification standards. 

The FP NVCS is too coarse to use as the basis for fuel themes. Un-realistically 

"smoothed" fire spread can occur when fuel themes are too homogenized and do not 

accurately represent fuel variations over the simulation area (Finney 1998). 
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Figure B2: Forest Park vegetation zones. l.24 mile buffer is represented by the colored image. The 
fuel map extends to the edge of the buffer. (Base Map Source: USGS, City of Portland, Metro RLIS) 
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The FP NVCS was used as a guide for conducting reconnaissance for 

placement of sampling plots in the park. Since the FP NVCS extended to the park 

boundary it was also convenient to use as the basis for developing the boundary of the 

simulation area. However, the multi-spectral imagery used to develop the fuel map 

did not extend 1.24 miles beyond the park's southeastern boundary (Figure B3). 

Subsequently, many of the fuel maps will have missing data in the lower-right comer. 

Figure B3 : The extent of the multi-spectral image compared to the 1.24 mile buffer. The white line 
represents the 1.24 mile buffer. The red outline is the Forest Park boundary. (Base map source: City of 
Portland) 
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Landscape File: Canopy Themes 

Three additional canopy-related themes were used in the landscape file. The 

themes included stand height, crown base height, and crown bulk density which are 

necessary for simulation of crown fire potential and behavior. The data used to 

develop the themes was based on output from the Firemon and FuelCalc applications. 

Stand height, and crown base height (CBH) data was calculated using data from 

Firemen. The crown bulk density (CBD) data was calculated using FuelCalc. 

The stand height calculations were based on weighted average heights from the 

sampling plot tree species data. The formula used the species basal area per hectare 

divided by the total basal area per hectare as a weight upon which to base a 

representative average height for a fuel model type. For example: plot 1 represents 

model 10 based on tree species composition. The total basal area per hectare was 82.2 

m2 /ha. The weighted percentages for the plot were: 

ACMA3 (bigleaf maple) basal area was 13.6 

equaling a weight of 13.6/82.2 = 16.5% 

PSME (Douglas-fir) basal area was 68.1 weight 

equals 68.1/82.2 = 82.8% 

TSHE (Western Hemlock) basal area was .5 weight 

equals .5/82.2 = .6% 

The average species tree height was multiplied by the weighted average. 

ACMA3 avg height* ACMA3 weight= 27.9 * 16.5 = 

460.35 

PSME avg height* PSME weight= 47.4 * 82.8 = 

3924.72 

TSHE avg hgt* TSHE weight= 7.6 * .6 = 4.56 
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The sum of all weighted average heights divided by 100 equals the plot stand height to 

represent the associated fuel model. 

Plot 1 stand height= 43.9m 

The stand height for each plot were calculated this way and then aggregated and 

averaged to represent the appropriate fuel model. 

plot 1=43.9 m 

plot 4 = 25.3 m 

plot 7 = 23.5 m 

plot 2 = 33.7m 

plot 5 = 27.5 m 

plot 3 = 22.3 m 

plot 6 = 20.3 m 

The subsequent Stand Height by fuel model was calculated for fuel models: 

8=22 m 9 =29.5 m 10=35.7m 

The CBH was based on sapling/snag heights found in the plots and live crown 

base height of the trees. The delta between the average sapling heights and the live 

crown base height was used as the crown base height. Since the saplings act as ladder 

fuel, the fire would have to be intense enough with the proper flame length to 

transition to the tree crowns by leaping the gap. 

CBD was calculated for each sampling plot using FuelCalc. CBD density is 

volume of vegetation in the canopy. The greater the volume of fuel the greater the 

potential for higher intensity crown fire. FuelCalc's plotting tool provided a visual 

perspective on the average canopy height and base height. The plotted data also acted 

as an abstract of the profile of sampling plots vegetative stratum. For example, in 

sampling plot 3 (Figure B4) there was a bi-modal distribution in the vegetation 

stratum, the understory trees were mature and dense enough to produce significant 
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bulk density. In this regard the ladder capacity in that stand type would be much 

greater than that found in sampling plot 1 (Figure BS). 
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Figure 84: FuelCalc Canopy Bulk Density profiles calculated from the tree data collected at sampling 
plot 3. Plot 3 has a low calculated canopy base heights and significant crown bulk density from the 
understory to the overstory. This type of fuel stratum has high potential for laddering fire, which leads 
to torching trees and active crown fire . (Source: FuelCalc output, tree illustration drawn by Author) 
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Figure 85: FuelCalc Canopy Bulk Density profiles calculated from the tree data collected at sampling 
plot 1. This is also a good example of how low calculated canopy base heights are not necessarily 
indicative of high ladder potential and crown fire . (Source: FuelCalc output, tree illustration drawn by 
Author) 

Fieldwork Data Collection and Vegetation Sampling 

Fieldwork began on August 3rd and was concluded on September i'\ 2004. 

The process began by conducting recomrnissance in the area for the placement of 

study plots. The criteria for selecting the plots were a function of environment, time, 

and resources . Plots were selected based on a releve approach, which is an ecological 

sampling technique similar to a stratified random sample. Plots were placed in 

representative portions of the stand "without preconceived bias", meaning that the 

plots are located in order to represent the general conditions of a sampling stratum 

(Firemon 2003). 

This approach is a qualitative classification method. The dominant, sub-

dominant, and vegetation layers are considered homogeneous and visually 
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distinguishable from other sample stands. The presence and absence of species is 

considered more important than variations in quantity. The method relies on recurring 

plant assemblages from the substrate to the overstory as the primary means of 

classification (Mueller-Dombois and Ellenberg 2002). 

Firemon standards were adopted in keeping with the theme of using only 

wildland fire behavior techniques to see if the same practices could be used in the 

urban interface. There are multiple rationales for this decision. First, analytical tools 

and fire models specific to urban forests do not exist. Second, given the size of the 

park and unmanaged growth the same field measurements and assessment procedures 

used for a wide-area wildland environment would be applicable. Third, the ability to 

design a custom fuel model based on Firemon reporting and FuelCalc tools provided 

the necessary inputs for Farsite. Lastly, using applications already integrated with 

ArcGIS minimizes the learning curve and enables the simulations to be conducted on 

an available and familiar platform. 

The plot selection criteria considered fire history, forest composition, and 

topographic orientation. Plots had to vary in elevation, aspect, and slope. Forest Park 

has heterogeneous stand development. The heterogeneity extends to species 

composition and fuel strata. The number of plots was a consideration based on the 

time to complete the study and the availability of research assistants. 

Seven suitable study plots were identified based on the selection criteria. Plot 

density was based on previous wildland area studies where 0.05% of the total area was 

sampled (Keane, et al, 2000). Plot selection was coordinated through the staff of 

Portland Parks. In order to retrieve the desired data from each plot, a team of three 
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field workers was required. The field workers had to be trained and monitored to 

ensure proper measurements were taken. All the data had to be collected during the 

fire season. The plot density of this study equated to 0.35% of total area sampled. 

Each plot was marked using a permanent center marker. The plots have a 

radius of 12.62 meters representing an area of .05 hectares. The center of each plot 

was identified using a GPS (Figure B6). Establishing permanent plots has the long-

term advantage of enabling the city of Portland to maintain a spatial constant for the 

assessment of fire hazard as the forest succession changes. 

Duff and litter sampling 
, center point of each sampling cylinder 

Permanent Marker 

1<_8,,, 
· <l'J?r8 ,.,. 

"'ils 

_/ 

-·-·-. ·-·--- .. ~····· 

,, ,, 

2m ground vegetation 
sampling\ cylinder 
cylinder extepds to 1 Am above ground 

Figure B6: Example of a sampling plot and subplot sampling methods. Ground vegetation sampling 
cylinders, 2m (lhr/lOhr) sampling transects, and 5m (lOOhr) sampling transects are placed randomly 
along the box transects. (Source: illustration drawn by Author) 
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The data from each plot was recorded in spreadsheets and then entered into the 

Firemon database. Plot-level tree summary (Figure B7a and B7d) and fuel loading 

summary reports were calculated and printed from Firemon. The fuel loading 

summary (Figure B7b) report was divided into down woody debris (DWD) and 

vegetation reporting. The DWD report included kg per m2 for 1, 10, 100, 1000-hr 

timelag fuel, duff, and litter. The vegetation summary (Figure B7c) reported average 

shrub and herbaceous height, as well as live and dead shrub and herbaceous biomass 

(kg/m2
). These reports were the initial inputs for the custom surface fuel models and 

canopy fuels. 

A. 

Tree Summary 

Basal 
Avg.Live 

Avg. Tata! Crcwm Sa. TRlllS Area(sq. Basa Height QMO Saplings Seedlings Tnoes Snags 
ReglO PnljlD PlollO Date EYlllll {perha) m/ha) H.ight{m) (m) {cm) {perha) {perha) {perha) {perha) 

Mature Trees------

fpfln fp-sim I 81DSJ04 Pl 380.0 82.2 18.0 34.0 52.5 120.!l .0 500.0 60.0 

fptrn fp~m 2 6112164 P1 380.0 63.9 12.3 24.9 46.3 24ll.O .ll e2!!.0 60.0 

fptrn fpsjm 3 5/lll/04 P1 680.0 49.6 11.5 22.1 30.5 340.0 0 1020.0 120.0 

fplm fp>lm 4 6119164 Pl 500.0 43.7 15.6 24.3 33.4 160.0 .0 660.ll 100.0 

fplm fp~m 5 91U7J04 P1 260.0 32.5 11.9 23.9 39.9 120.0 .0 380.0 100.0 

fptrn fpsim 6 5117164 P1 540.0 66.S 8.0 17.1 39.6 500.0 .0 1040.0 260.D 

fplm fp>lm 7 6/03164 Pl 580.0 68.6 11.9 232 38.8 .0 .0 580.0 180.ll 
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B. 

Fuel Loading Summary 

Sample 1-ttr 10-lir 100-hr MOO-hr 1000""' 10l)()..flr 1-1000-hr Dutr Litter Total DUIT Litter Total 
ReglD ProjlD PlotlD Date Event SOl.llld Rotten 

Kiiograms per square Meter------- Oepth(cm) 

lpfm - l 8i05!04 Pl 0.07 024 0.7 1-0 1.43 .6 3.2 4.3 2.0 9.5 12-4 11.4 23.8 

lpfm - 2 8112!04 P1 0.03 0.62 0.61 1.26 0.32 .2 l.8 32 2.1 7.1 9.4 11.9 21.3 

fpfm - 3 8118!04 P1 0.00 0.57 0.5 1.13 2.51 2.1 5.4 2.9 3.2 12.4 8.3 16.4 2€.7 

l'pfm - 4 8119/04 Pl O.!l9 0.38 0.66 1.!3 0.71 .2 2.0 1.5 3.0 6.S 44 17.5 21.9 

!pin fpMm 5 9!07/04 P1 0.07 0.36 D.46 0.9 6.76 2.1 9.6 3.3 1.5 14.6 9.5 6.9 18.4 

lpfm Ip..., 6 8117/04 P1 0.29 0.6! 0.4 1.3 1.14 2 2.7 2.6 3.D 82 7.4 17.1 24.4 

!pin - 7 8/03/04 Pl 0.14 0.46 o.36 1.45 0.9 1.8 4.2 2.3 22 8.7 6.6 12.9 19.5 

C. 

Fuel Loading Vegetation Summary 

Shlllb Hertraceous Biomass (l<llograms per sq. 

Sample Cover% Shrub CoVer% Herbaceous Shrub Herbaceous 
ReglO ProjlO PlollO Date Ewnt live Dead Helghl(m) Live Dead Helghl(m) l.IVe Dead Live Dead 

lplm fpsim 1 M}<_,/04 P1 738 4.'Q 0.89 94.5 61.25 0.67 0.17 0.05 0.51 0.3 

lpfm 1p.;m 2 8112/04 Pl 11.5 125 0.46 82.0 55.0 0.56 0.24 0.03 0.38 0.23 

lpfm lpsim 3 B/1811!4 P1 7.56 0.0 D.34 92.S 46.S 0.35 0.18 0.0 0.26 011 

lpfm fpsim 4 8119104 Pl 3.0 0.0 0.4 71.0 51.0 0.56 0.09 0.0 0.34 0.21 
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D. 

Tree Summary by Species 
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Figure B7: Firemon reports and data exports were used to develop many of the fuel related themes for 
the fire simulations. Fuel loading and vegetation summary data were used as direct inputs for the 
custom surface fuel models. The tree summary and species data served as the basis for many of the 
canopy-related fuel themes. See Appendix A for species code definitions. (Source: Firemon output 
based on data compiled by Author) 
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Sampling Methods. The Firemon sampling methods specific to this type of 

analysis are the Tree Data (TD) Sampling Method and Fuel Load (FL) Sampling 

Method (Keane, et al. 2000). The TD methods are used to sample individual live and 

dead trees within the plot area. The data is used to estimate tree density, size, and 

canopy characteristics for a contiguous stand's overstory. FL methods include all 

measurements for the substrate and understory. The FL methods are used to tally 

standard fire size classes for dead and down woody debris on the forest floor (Firemon 

2003). 

Both methods provide ecological and quantitative estimates for fire behavior 

inputs. Because of the subjective nature of the classification processes incorporated in 

each sampling method the class values are determined by committee. Each plot had 

minimally four people working at it at a time, usually in groups of two. Before a tree 

or fuel class was assigned the pair had to agree on the class value in question. The FL 

sampling procedure is conducted first. The TD sampling process requires a fair 

amount of tromping and traversing through the plot. The disturbance of the 

understory and substrate could adversely impact the surface fuel data. This was 

especially true given the slope and substrate characteristics encountered in Forest 

Park. 

Fuel Load: Woody Debris, Substrate and Understory Vegetation. Dead 

woody debris (DWD) can be classified into two components, fine woody debris and 

coarse woody debris. The primary difference between fine and coarse woody debris is 

the diameter of the piece (Table Bl). Fine DWD data is most associated with fire 

behavior because smaller twigs and sticks reach ignition temperature faster than coarse 

194 



DWD. Coarse DWD is more closely associated with fire effects because of the longer 

emission and combustion process. Burning logs have longer term effects on both the 

floral and faunal components of the ecosystem. Therefore the coarse DWD 

components play a reduced role in the development of surface fuel models (Firemon 

2003). 

Table Bl: Dead woody debris components and size class thresholds. (Firemon 2003). 

DWD Components Classes Piece Diameter (cm} Length 
1-hr 0.0 - 0.6 undefined 

DWD 
FDWD 10-hr 0.6 - 2.5 undefined 

100-hr 2.5 - 8.0 undefined 
CDWD 1000-hr 8.0 or greater 1 m or greater 

Fine DWD is hand-counted along sub-plot transects laid out in a box shape 

within the sampling plot. The length of transect is based on the DWD size class. One-

hour and 10-hour fine DWD size classes are counted along a 2m transect. Hundred-

hour fine DWD is counted along a 5m transect. The starting point of both the 2m and 

5m fine DWD transects are randomly placed at the same point along the 17.5m leg of 

the box transect within the sampling plot. Thousand-hour coarse DWD is counted 

along the entire length of the 17.5m leg (Figure B6). A measuring tape is laid down as 

close to the surface as possible and each piece that crosses the plane of the tape is 

counted and classed (Figure B8) 
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Figure B8: Example of tape placement and piece counting for fine DWD using the transect 
sampling method (Firemon 2003). 

Fore each transect leg two randomly selected locations are chosen for ground 

cover vegetation sampling (Figure B6). The sampling area consists of a 2m cylinder 

with a sampling plane that extends 1.8m above the surface. Within each sampling 

cylinder the live and dead understory vegetation cover is recorded. The coverage area 

for both live and dead members of a species occupying the cylinder is recorded. For 

example: five sword fems are found within the sampling cylinder, four are living and 

one is dead. The four living specimens cover over 90 percent of the cylinder, the dead 

fem covers 20 percent. Two records would be logged, one for the dead fem and one 

for the four living fems. Fore the study area vegetation coverage within the cylinder is 

expected to be greater than 100%. The measurement collected from this sampling are 

used to calculate the tons per hectare for live herbaceous and woody plant material, as 

well as the surface area to volume ratio for dead fuels, and live herbaceous and woody 

fuels. 

Duff and litter depth measurements are taken at the center points of every 

sampling cylinder (Figure B9). Litter is usually more closely associated with fire 

behavior. Duff is mostly associated with fire effects. Litter bums and helps sustain 
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combustion because it is loosely packed and has lower moisture and mineral content. 

The duff which lies beneath the litter contains more moisture and mineral content 

because it is comprised of more decomposed plant materials. By its very nature duff 

is more compacted with less exposure to air, further decreasing its combustibility 

(Firemon 2003). The total litter/duff profile depth and the percent litter estimation 

help calculate the total fuel load of the substrate. 

Figure B9: Example of measuring the litter/duff profile. The litter/duff delineation is 
identified by the decomposition state of the litter. When litter gets to the point where it can not 
be discerned from which plant it originated then it is considered duff. Below the duff layer is 
mineral soil (Firemon 2003). 

Tree Data: Ecology and Canopy Measurements. Plot size was largely 

determined by the expected median tree diameter, height, and density. As a general 

rule at least 20 trees above the breakpoint diameter should occupy the plot. The 

breakpoint diameter is the diameter at 1.4m above the ground also known as diameter 

at breast height (DBH). The breakpoint diameter separates the trees classified as 

mature from those classified as samplings (Firemon 2004). Seedlings by definition are 

young trees less than 1.4m tall and were not tallied during the study. Seedling data is 

more associated with fire effects and ecological impact. The breakpoint diameter for 

this study was set at 1 Ocm DBH. Trees with a DBH or less than 1 Ocm were classified 
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as samplings and went through a different sampling method. Snags were also sampled 

in every plot. 

After the plots had been established and the surface fuel sampling had been 

conducted the tree sampling could begin. The first step was to flag every tree within 

the plot by walking in a clockwise direction around the plot to ensure that all trees 

were marked in order and accounted for. Multi-color and numbered flags were used to 

identify the different tree classes. Red flags were used for mature trees, yellow for 

saplings, and orange for snags. Trees that could not be visibly classed were measured. 

The first measurements taken were the distance from center and azimuth from true 

North (Figure BIO). Each tree and snag location was measured so that its location 

could be plotted for more detailed spatial analysis of the plot. Once again this level of 

detail is for fire effects purposes and ecological impact. This data was ultimately not 

used in this study. 
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Figure B 10: Example of plotting tree distance from center and azimuth from true North. The 
process required two people to ensure that the tape measure was held level with the slope of 
the plot. The person standing at center also sited the compass for the azimuth measurement. 
Illustration by author. 

Once at the tree or snag several structural and ecological measurements are 

taken. The structural measurement include DBH, height, live crown ratio, crown fuel 

base height, canopy diameter, and crown class. The ecological characteristics 

recorded include species, health, mortality code or decay class for snags. The 

structural measurements are used to calculate a number of fire behavior inputs such as 

canopy bulk density, vertical fuel ladders, and height to the base of the canopy 

(Firemon 2004). 

The first measurement taken is DBH. DBH is measured by standing on the up-

hill side of the tree using a diameter tape pulled tightly around the tree at the reference 

height. This measurement is used in calculating the basal area of the trees. The basal 
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area is represented by the cross-section area of all trees in square meters per hectare. 

This figure is used to determine tree density and stocking in the representative stand. 

Tree species is identified using the FRCC - NRCS Plant Code List: 

Common Name Scientific Name Plants Code 

Grand Fir Abies grandis ABGR 

BigleafMaple Acer macrophylum ACMA3 

Horse Chestnut Aesculus hippocastanum AEHI 

Red Alder A/nus rubra ALRU2 

Hazelnut Cory/us cornuta var. cornuta COCOC2 

Pacific Dogwood Cornus nuttallii CONU4 

English Holly Llex aquifolium ILAQ80 

Douglas-fir Pseudotsuga menziesii PSME 

Western red cedar Thuja plicata THPL 

Western Hemlock Tsuga heterphylla TSHE 

The health of the tree is determined. Health is broken down into 4 classes, 

healthy, unhealthy, sick or dead. Healthy trees exhibit very little biotic (e.g. insect) or 

abiotic (e.g. blowdown) damage. Unhealthy trees have some form of damage that will 

reduce growth, but not kill the tree. Sick trees have extensive damage that will likely 

kill the tree in the next 5-10 years (Firemon 2004). For dead trees and snag a 

mortality code is assigned if the cause of death can be identified. Causes include 

insects, fire, disease, abiotic, and harvest-related mortality. For snags decay class in 

recorded in the place of health. Decay class is recorded by a numerical code based on 

limb, bark, and sapwood retention, and the state of the top of the bole (e.g. pointed or 

broken). 
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The first crown related measurement is live crown ratio. Live crown ration 

class is important in determining the ladder and torching potential of a tree (Figure 

B 11 ). Numeric codes are given each tree based on a percentage of live crown. Live 

crown is the percent of the tree bole that is supporting live foliage. Using the trees in 

Figure 15 as an example; A, B, and C are considered the same ratio class because the 

crowns each have the same extent along the bole. Growth in A, B, and C would 

equate to the same biomass and ladder fuel capacity. Lone branches at the bottom of 

the crown that do not appear to be a part of the crown or have ladder fuel capacity are 

ignored during the classification process. 

A 8 c D 

Figure B 11: live crown ratio classification consists of assessing the percentage of the bole that 
is supporting live foliage. A, B, and C would be classed at 80%, where D would be classed at 
40%. Illustration by author. 

Crown class represents the position in the canopy that an individual tree 

occupies. The crown class assessment process attempts to analyze the amount of light 

that is available to the tree (Firemon 2004). For example, open grown trees are not 

taller than other trees, but still receive light from all directions. Crown class is broken 
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down into 6 classes; open grown, emergent, dominant, co-dominant, intermediate, and 

suppressed (Figure B 12). Emergent trees are taller than any around them and have a 

portion of their crown above the canopy. Dominant trees will receive light from 3 to 4 

directions, where co-dominant crowns will receive light from only 1 or 2 directions. 

Intermediate trees will receive light only on the tops of their crowns, where suppressed 

trees are completely shaded from direct sunlight. 

Suppressed Co-dominant Emergent Intermediate Dominant 

" ;.~h 1"' .. ~: 

1r· ,iA'~ , ·I i 
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Figure B 12: Examples of crown class types. Individual tree are classified based on the position in the 
canopy that they occupy. lllustra tion by author. 

The height and crown base height measurements were taken using an 

electronic clinometer. The measuring process required multiple criteria be met before 

an accurate reading could be recorded. The distance between the tree bole and the 

clinometer had to be measured. From that vantage point the bottom of the bole and 

the top of the crown had to be visible . The angle from which the measurement was 
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taken could not exceed 60-degrees, at which point the clinometer reading became 

unstable. This process became time consuming under the canopy of a relatively dense 

forest of 25-50 meter tall trees. 
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APPENDIXC 

Vegetation Index Technical Information 

The "leaf on" image was flown between June 1st and June 20th, 2002. 

Imagery was taken in 4 spectral bands; visible blue (0.41-0.49 µm), visible green 

(0.51-0.59 µm), visible red (0.61-0.69 µm), and near infrared (0.80-0.90 µm). Imagery 

was collected using Geo Vantage's "GeoScanner" system on an unmodified Cessna 

aircraft flown at an altitude of 8,000 feet above ground, achieving a pixel resolution of 

approximately 1 meter. GeoScanner includes 4 discrete monochrome digital cameras 

with optical filters used to collect imagery in the 4 spectral bands. The cameras were 

mounted into a housing which included an Inertial Measurement Unit (IMU) that 

determines the precise acceleration and rotation of each of the cameras. The IMU, 

coupled with a GPS antenna, allowed for the determination of the precise altitude and 

location of the camera at specified imaging times. The imagery was Orthorectified and 

georegistered using USGS 10-meter DEMs of the mission area. Each pixel of each 

camera was spatially corrected, allowing for the creation of a composite mosaic image 

without an initial requirement for ground control points. The published multi-spectral 

dataset had a spatial resolution of 1.1 meters and an average horizontal error of 3.5 

meters. 

The soil line is a hypothetical line in spectral space that describes the variation 

in the spectrum of bare soil in the image. The relation between visible red and NIR 

spectral response pattern from bare soil is generally linear (Rondeaux et al. 1996). 

The soil line used in the WDVI function assumes that the ratio of NIR and red SRP of 

bare soil is constant and independent of soil moisture content. The line can be found by 
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locating two or more patches of bare soil in the image having different signatures and 

finding the best fit line in spectral space. Figure C 1, C2, and C3 illustrate the process 

of determining the soil line slope. 

The simplest way to identify the NIR-Red soil line is to make a scatterplot of 

the red and NIR values for the pixels in the image. Place red on the x-axis and NIR on 

the y-axis, and there should be a fairly linear boundary along the lower right side of 

the scatterplot. The straight line that points out the ratio of the NIR spectral response 

pattern over the red SRP of the image that best match this boundary is the soil line. 

The points that describe the boundary can be selected by a least squares fit or a line 

can be drawn that looks like the best fit (Gilvear and Bryant 2003). 

Figure CI : Linking the multi-spectral image to a feature space scatterplot (tasseled cap transformation) 
of the same image. The scatterplot would be best represented as a three-dimensional image. Areas 
green, yellow, and red indicate an increasing number of pixels with similar spectral response. The red 
areas would represent peaks in a three-dimensional distribution. (Source: data transformation from 
Idrisi and graphic by Author) 
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Figure C2: To establish a soil line in the scatterplot over 50 locations with exposed soil were selected 
within the study area. The white cross-hairs in each image represent a link between the pixel selected in 
the multi-spectral image and the pixel in the scatterplot. After each soil pixel was selected its location 
in the scatterplot was marked. Once all the samples were marked in the scatterplot a line of best fit was 
drawn through the marked pixels across the scatterplot. (Source: data transformation from ldrisi and 
graphic by Author) 
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Figure C3: The soil line represents the line of best fit through sampling of bare soil pixels from the 
multi-spectral image. The slope of the soil line is then calculated and used in WDVI equation. (Source: 
data transformation from ldrisi and graphic by Author) 

In the tasseled cap transformation the soil line was clearly visible (Figure 81 ). 

There was a spatial component to the concentration of SRP values below the soil line. 

The river was the delineating feature in the image. Vegetation and bare soil values on 

the east side of the river were distributed in the value concentrations below the soil 

line. In this regard, the soil line boundary was defined by selecting multiple bare soil 

points on the west side of the image and drawing the line of best fit. 

Many vegetation indices have been tested and used to map forest vegetation 

and fuels . The most commonly used is the normalized difference vegetation index 
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(NDVI). In 2000, Keane and his colleagues published a fuel map of the entire Gila 

National Forest in New Mexico. They applied NDVI to Landsat TM data. Similar 

methods had also been previously used to develop Farsite input layers for the Selway

Bitterroot Wilderness area. NDVI has been widely used to classify vegetation and to 

determine the quantity of photosynthetic biomass by using vegetation density (Pinty 

and Verstraete 1992). 

In many respects, the NDVI is a first-order vegetation index (VI). More than 

40 vegetation indices have been developed that use the principles of the Simple Ratio 

(SR) vegetation index and NDVI; WDVI is one of them. WDVI was selected for this 

study because of its soil reduction qualities. The WDVI can clearly separate the urban 

environment from the vegetation. Urban environments and bare soil share similar 

SRP characteristics. Since the park is in an urbanized environment, it was important 

that the urban areas be minimized during the fuel mapping process. Furthermore, 

Peddle, Brunke, and Hall found that WDVI was one of only a few Vis to show a 

moderate improvement over NDVI in its ability to predict forest biophysical 

parameters. They concluded that this was likely due to the inclusion of background 

reflectance. 
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