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Maps of runoff-depth have been found to be useful tools in a variety of water
resource applications. Producing such maps can be a challenging and expensive task.

One of the standard methods of producing these maps is to use a manual procedure
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based on gaged runoff data, topographic and past runoff-depth maps, and the expert
opinion of hydrologists.

This thesis examined five new automated procedures for producing runoff-depth
contour maps to see if the maps produced by these procedures had similar accuracy
and characteristics when compared to the manual procedure. An uncertainty analysis
was used to determine the accuracy of the automated procedure maps by withholding
gaged runoff data from the creation of the contour maps and then interpolating
estimated runoff back to these sites from the maps produced. Subtracting gaged
runoff from estimated runoff produced interpolation error values. The mean
interpolation error was used to define the accuracy of each map and was then
compared to a similar study by Rochelle, et al, (1989) conducted on a manual
procedure map.

This thesis found that two automated procedures, one based on estimating runoff
with mean regional water-year runoff-to-precipitation ratios and the other on a
regression formula based on long-term climatic data used to predict water-year 1984
runoff, had the lowest mean interpolation errors. These two procedures produce the
most accurate maps on a regional basis of the five tested and compare favorably in
regards to accuracy and lack of bias to the manual procedure. These results indicate
that simple automated procedures can produce runoff-depth contour maps with

regional accuracies roughly equivalent to those produced by the manual procedure.



UNCERTAINTY ANALYSIS OF RUNOFF ESTIMATES
FROM RUNOFF-DEPTH CONTOUR MAPS
PRODUCED BY FIVE AUTOMATED PROCEDURES

FOR THE NORTHEASTERN UNITED STATES

by

GARY D. BISHOP

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
GEOGRAPHY

Portland State University
1991



TO THE OFFICE OF GRADUATE STUDIES:
The members of the Committee approve the thesis of Gary D. Bishop presented

September 24, 1991.

D. Richard Lycan

Larry W. Pride

!oy ! Ioch -
APPROVED:

Thomas M. Poulsen, Chair, Department of Geography

C. William Savery, Vice Provost for e Studies and Research



TO MY FATHER AND MOTHER



ACKNOWLEDGEMENTS

I am grateful to M. Robbins Church of the U.S. Environmental Protection
Agency for his inspiration and guidance throughout this project. Without his
assistance this thesis would not have been possible. I would like to thank Don Stevens
of ManTech Environmental Technology Corporation for his generation of the
withheld data set used in the uncertainty analysis, his explanation of the processes
and theory involved, and his statistical advice. I greatly appreciate the assistance of
David Cassell, also of ManTech, for his ever patient advice on statistical procedures
and his computation of the statistical differences between the interpolated and
estimated runoff at the water-year 1984 precipitation sites as well as his help in
calculating the mean differences between the distance classed long-term and water-
year 1984 runoff-to-precipitation ratios. I would also like to thank Sue Pierson and
Bill Campbell of ManTech for there help in the early stages of development of this
project and Brenda Huntley of ManTech for her rendering of the flow diagrams used
in Figures 9-16.

I am grateful to the Department of Geography, Portland State University, and
the American society for Photogrammetry and Remote Sensing, Columbia River
Region whose generous endowments helped relieve the financial burden of this

research.



iv

To the faculty, staff, and students of the departments of Geography, Geology, and
Urban Studies 1 extend my gratitude for your support and for what you have taught
me. And last but not least, a special thanks to Dr. Dan Johnson and the other
members of my committee, Dr. D. Richard Lycan, Dr. Larry Price, and Dr. Roy Koch
for their many helpful comments and their assistance in helping me see this project

to its completion.



CHAPTER

I

II

TABLE OF CONTENTS

INTRODUCTION. .......
Background. .......

Physical Setting. . . . .

---------------------

Description of Current Methods of Creating

Runoff-Depth Contour Maps. . ..............

Discussion of Findings

10

13

14

15

16

17

17

18

19

25



PAGE

I AUTOMATED PROCEDURES USED IN MAPPING
RUNOFF-DEPTH. . ..........coiiiiiiiine. 31
Introduction. . . ........oiiiiii i 31
Automated Mapping Methodologies Considered. . 37
Selection of Five Procedures to be Examined
by an Uncertainty Analysis. . ................ 53
v UNCERTAINTY ANALYSIS. . ........ .. .ot 61
Introduction. . ......... ... .. i i 61
Methodologies. . . . ... i 62
Results and Discussion. . . .........oovvn... 65
Summary of Findings. . . ... ................ 88
A% SUMMARY AND FUTURE AREAS OF RESEARCH.. 92
Summary. ..........c it 92
Future Areas of Research. ................. 94
REFERENCES. . . ... i i it e e i e nnaas 95
APPENDICES
A WATER-YEAR 1984 USGS GAGING STATIONS IN THE
NORTHEAST UNITED STATES. ................ 102
B LONG-TERM AND WATER-YEAR 1984 NCDC

PRECIPITATION STATIONS IN THE NORTHEAST

UNITED STATES. ... ...



C

PAGE
ESTIMATED AND GAGED RUNOFF FOR THE WITHHELD

USGSGAGESITES. .........oiiiiiiiiiiaeene. 134

vii



LIST OF TABLES

TABLE PAGE
I Interpolation Error Descriptive Statistics for Withheld Sites
from a Long-Term Runoff Map. . ...................... 9
II Comparison of Long-Term to Water-Year 1984 Gaged Values
at Correspohding GagedSites. .. .......ciiiiiiiiin. 13
III Estimated Errors in Precipitation Measurement from Standard
RainGauges. .. .....coi ittt cinnn e 36
IV Estimated R/P at Corresponding (Long-Term and WY84)
Precipitation and Runoff Sites. . . . ...................... 56
V Estimated Runoff at Water-Year 1984 NCDC Precipitation
Stations. . . .o c i e 58
VI Estimated ET at Corresponding (Long-Term and WY84)
Precipitation and Runoff Sites. . .. ......... ... ... ... ... 58
VII Interpolation Error Descriptive Statistics for the 50 Withheld
Runoff Sites. . .......... R R R PR RREE 65
VIII Signed Rank Test for the Difference in Mean Interpolation
Error Being Significantly Different from Zero. ............. 70
IX Regression Analysis of Gaged Runoff-Depth Versus

Interpolated Runoff-Depth. . . ............ ... ... ..., 78



ix

X Correlation Analysis of Gaged Runoff-Depth versus Elevation PAGE
and Watershed Area. . .............oiiiiiiiiiniinenn. 85
XI Correlation Analysis of Absolute (Cm) Interpolation Error
versus Gaged Runoff, Elevation, and Watershed Area. ....... 86
XII Correlation Analysis of Percentage Interpolation Error versus
Gaged Runoff, Elevation, and Watershed Area. ............ 86
XIII F-Test of MLRA Effect on Runoff and Interpolation Error
Values From the Fifty Withheld Sites. . .................. 87
XIV Descriptive Statistics of Interpolation Errors for Zones of
Greater and Lesser Confidence. . . ...................... 90

XV F-Test of Mean Interpolation Error Values for Zones of

Greater and Lesser Confidence. . . .......ccivivieennnnenn. 90



LIST OF FIGURES

FIGURE

10.

Study Area with Major Land Resource Areas. . ............
Water-Year 1984 USGS Gage Site Centroids and NCDC

Precipitation Stations. . . .......... . i it i,

Long-Term (1951-80) Average Annual Runoff-Depth Contour

Water-Year 1984 Runoff-Depth Contour Map. . ...........
Average Monthly Precipitation and Runoff for Selected Sites in
the Northeast. . ........ .o,
Regression Method Map of Mean Annual Runoff-Depth for
WestGermany. .. ... ovviiiiii it iiiiee it iieeennannns
Manual Method Map of the Mean Annual Runoff-Depth in
the Eastern United States. .. . ........... ... ... oL,
Manual Method Map of Mean Annual Runoff-Depth in the
Danube Basin. . .......... ... i
Steps in the Production of a Runoff-Depth Contour Map
Using the GAGE®84 Procedure. . . ...........oovue....
Steps in the Production of a Runoff-Depth Contour Map

Using the LTET Procedure. .. ..............ccoivu...

PAGE

11

21

24

26

39

40



11.

12.

13.

14.

15.

16.

17.

18.

19.

Steps in the Production of a Runoff-Depth Contour Map

Using the LTRP Procedure. . ............. .. oot

Steps in the Production of a Runoff-Depth Contour Map

Using the MNLTET Procedure. .. .........cooiinn...

Steps in the Production of a Runoff-Depth Contour Map

Using the MNLTRP Procedure. . . ........... ... ... ...

Steps in the Production of a Runoff-Depth Contour Map

Using the REG_ET Procedure. . . ............coovnnn..

Steps in the Production of a Runoff-Depth Contour Map

Using the REG_R Procedure. . ...............cciun...

Steps in the Production of a Runoff-Depth Contour Map

Using the MN84RP Procedure. . ........covvvivnen...

Comparison of Eight Procedure Derived Runoff-Depth

Contour Maps in the VT-NH Sub-Area of the Northeast

Uncertainty Analysis Withheld Water-Year 1984 Gaged

Runoff-Depth Sites. . . . ... it
Box-and-Whisker Diagram of Absolute Interpolation Errors (Cm)
for the GAGES84, MN84RP, MNLTET, MNLTRP, and REG_R

Procedures. . ..o vi it e e e e

PAGE

42

45

46

50

51

54

55

63

67



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

xii

PAGE
Absolute Interpolation Errors (Cm) EDFs for the GAGES4,
MNLTET, MNLTRP, REG_R, and MN84RP Procedures. . . . . 68
Cumulative Distribution Function of the Absolute Interpolation
Error (Gaged - Estimated Runoff) (Cm) of a Long-Term
Manual Method Map of the Eastern US.................. 69
GAGES84 Absolute (Cm) Interpolation Errors at the Withheld
A 1 T 71
MNLTET Absolute (Cm) Interpolation Errors at the Withheld
SIteS. o v s 72
MNLTRP Absolute (Cm) Interpolation Errors at the Withheld
IS, 4 v v vttt e e e 73
REG_R Absolute (Cm) Interpolation Errors at the Withheld
N T 74
MNB84RP Absolute (Cm) Interpolation Errors at the Withheld
SIS, ot e e 75
MANS84 Absolute (Cm) Interpolation Errors at the Withheld
N L1 76
Scatter Plot of GAGES84 Interpolated vs. Gaged Runoff at the
50 Withheld Sites. . ....... ... e 79

Scatter Plot of MNLTET Interpolated vs. Gaged Runoff at the

50 Withheld Sites. . . . v v i ittt e e e e e e e 80



30.

31.

32.

33.

Scatter Plot of MNLTRP Interpolated vs. Gaged Runoff at the
S50 Withheld Sites. . .. ..o v i i iii ittt it
Scatter Plot of REG_R Interpolated vs. Gaged Runoff at the
S0 Withheld Sites. .. ...t e
Scatter Plot of MN84RP Interpolated vs. Gaged Runoff at the
50 Withheld Sites. . . . ... oo e

Zones of Lesser and Greater Confidence in Runoff Estimates. .

PAGE

81

82

83

89



LIST OF PLATES

PLATE
1. Long Term Runoff Depth, USGS Manual Map
2. Water-Year 1984 Runoff-Depth, USGS Manual Map
3. Water-Year 1984 Runoff-Depth (GAGES84)
4. Water-Year 1984 Runoff-Depth (LTET)
5. Water-Year 1984 Runoff-Depth (LTRP)
6. Water-Year 1984 Runoff-Depth (MNLTET)
7. Water-Year 1984 Runoff-Depth (MNLTRP)
8. Water-Year 1984 Runoff-Depth (REG_R)
9. Water-Year 1984 Runoff-Depth (REG_ET)

10. Water-Year 1984 Runoff-Depth (MN84RP)



CHAPTER 1

INTRODUCTION

The mapping of the distribution of runoff (i.e. streamflow) is a task that has been
pursued by American geographers and hydrologists since streams were first gaged in
this country (Langbein, et al., 1949). The task is made especially difficult by variations
in vegetation, geology, land use, precipitation, and other factors over space (Sopper
and Lull, 1970, USGS, 1984) which can cause sharp spatial variations in runoff
(Rafter, 1903). Nevertheless, reliable runoff estimates are necessary to water resource
planning and scientific studies (e.g. Solomon, et al., 1968, Church, et al, 1989) and
much effort has been put into creating maps of runoff from which these estimates can
be obtained. To show the pattern of runoff unbiased by the size of the watersheds
involved, runoff is mapped as runoff-depth; that is, the volume of water that flows off
the given area spread proportionately over that area in relation to a location’s
contribution to runoff (volume of runoff / watershed area) (Miller, et al., 1962).

Geographers and hydrologists have utilized several methods to produce runoff-
depth contour maps (Langbein, ef al., 1949, Thornthwaite, et al., 1958, Solomon, et
al., 1968, Liebscher, 1972, Foyster, 1975, Krug, et al., 1990) but the predominate
method of mapping runoff is with manual methods (e.g. Krug, er al, 1990).
Automated methods to map runoff-depth have been developed (e.g. Solomon, et al.,

1968, Foyster, 1975), but none are widely used.
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This thesis was based on work to find simple automated procedures that duplicate
the accuracy of maps produced manually. The accuracy of five new automated
procedures for producing water-year runoff-depth contour maps was examined using
an uncertainty analysis. The time period considered was water-year 1984 (WY84) (i.e.
October 1, 1983 to September 30, 1984) with the northeastern United States being
the area of study (Figure 1). This time period and region were used because of the
availability of a manually produced map for comparison. Major Land Resource
Area’s (MLRA’s) (USDA, 1981) (Figure 1) were utilized for regionalization of
certain parameters in some of the automated procedures. MLRA’s were used
because they were created using both physiographic and land use/cover parameters
that can be important to runoff response (Woodruff and Hewlett, 1970, USDA,
1981). The procedures used linear interpolation from point values of runoff to create
contours of runoff-depth. To increase the number of sites with runoff values used for
interpolation in these procedures, WY84 gaged precipitation stations were used for
estimating runoff (Figure 2). All of the procedures except the first listed below used
estimated runoff. The five procedures to produce runoff-depth maps are:

1) GAGES84, which uses simple linear interpolation of WY84 gaged
runoff data only,

2) MNLTET, which uses a water balance formula method utilizing mean
regional evapotranspiration (ET), determined from long-term (i.e. average for

1951-80) precipitation, long-term runoff data, and a long-term runoff-depth
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map, for Major Land Resource Areas (MLRA’s) to estimate WY84 runoff at

precipitation stations,

3) MNLTRP, which uses the ratio of mean regional long-term runoff-

to-precipitation ratios (R/P) for MLRA’s to calculate WY84 runoff at

precipitation stations,

4) REG_R, which uses a regression formula based on long-term data

to estimate runoff-depth at WY84 precipitation stations, and

5) MN84RP, which uses mean regional R/P determined from WY84

gaged precipitation and runoff data to calculate WY84 runoff at the

precipitation stations.
Three of the procedures (MNLTET, MNLTRP, and REG_R) utilize information (L.e.
expert opinion) incorporated in the generation of a long-term (1951-80) runoff depth
contour map produced by the U.S. Geological Survey (USGS) (Krug, er al., 1990).
One of the questions examined in this thesis is whether utilizing this expert opinion
will aide in producing an automated procedure map with an accuracy similar to the
manual procedure map.

The five procedures examined are a subset of eight procedures developed in
research conducted in conjunction with the U.S. Environmental Protection Agency’s
(EPA’s) Direct/Delayed Response Project (DDRP). The automated procedures have
the advantage, since they use computer algorithms, of being reproducible as well as

being less expensive and time consuming than the manual method (Church, 1991).



BACKGROUND

As part of the EPA’s study of the future effects of acidic deposition on surface
water chemistry, the DDRP, there arose a need for watershed-specific, average and
WY84 runoff-depth estimates for ungaged sites. The USGS, in support of this project,
produced an average annual runoff-depth map for the 1951-80 (long-term) period for

-the eastern United States (Krug, et al., 1990), (Figure 3) (Plate 1), and a WY84
runoff depth map for the northeast United States (Graczyk, et al., 1987), (Figure 4)
(Plate 2). These maps were used to manually interpolate runoff estimates for the
DDRP watersheds in the northeast United States (Church, et al., 1989). The methods
used in the creation of these runoff maps were based on the manual techniques
developed by Gannett (1911), Langbein (1949), Knox and Nordenson (1961), Hely,
et al. (1961), Schneider, et al. (1965), Busby (1966), and Gebert, et al. (1987). In this
thesis this methodology will be referred to as the "manual procedure". In producing
the long-term map Krug, ef al. (1990) used long-term average runoff values from
1,232 gaging stations, the expert opinion of USGS hydrologists, topography, and past
runoff maps. The WY84 map by Graczyk, et al. (1987) used 545 gaging stations and
similar methodologies. A more detailed explanation of the methods used by Graczyk,
et al. (1987) and Krug, ef al. (1990) is presented in Chapter II

The DDRP required a regional accuracy of site-specific values (i.e., the region as
a whole would require a mean percentage accuracy of X), as opposed to individual
site accuracy (ie., each site would require a percentage accuracy of X) due to the

regional outlook and scope of the project. The runoff values obtained from the
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Figure 3. Long-Term (1951-80) Average Annual Runoff-Depth Contour
Map. (Krug, et al., 1990.)
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Figure 4. Water-Year 1984 Runoff-Depth Contour Map. (Graczyk, et
al., 1987.)
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maps were used as one of the inputs to a watershed sulfur budget model and for
sulfur retention estimates (Church, et al, 1989). The errors associated with
interpolating runoff values from a manual procedure-derived map for a regional
project have been quantified (Table I) and found to be within acceptable limits
(Rochelle, et al., 1989). This research assumes that the mean error for the WY84
map produced by Graczyk, ef al. (1987) using the manual procedure, is the same as

that of the long-term map produced by Krug, er al. (1990).

TABLE I

INTERPOLATION ERROR DESCRIPTIVE STATISTICS
FOR WITHHELD SITES FROM A LONG-TERM RUNOFF MAP

Standard
Standard Population Error of  Standard
Population Error of Standard Mean the Mean  Deviation
Mean the Mean Deviation _(Percent) (Percent)  (Percent)
Method
Manual(1) 4.14" 0.92 8.91° 5.68 1.60 15.53
Manual(2) 1.54 0.88 8.53 0.90 1.47 14.21
GIS(1) 4.52 0.94 9.04 6.70 1.75 16.85
*em

(1) measured at basin outlet
(2) measured at basin centroid

Source: Rochelle, et al (1989)

Hypothesis

This thesis hypothesis was that an automated procedure can produce a runoff
map for the northeastern United States as accurate as that produced by the manual
procedure. The method used in determining accuracy was an "uncertainty analysis".

An uncertainty analysis is the withholding of data sites from a runoff map’s creation
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for later use in a comparison of the actual withheld data to values obtained by
interpolation to these sites from the map generated. The differences between these
values, the interpolation error, was then used to quantify the map and the automated
procedures accuracy by a comparison of the mean interpolation errors of the

automated procedures to the mean interpolation error of the manual procedure.

PHYSICAL SETTING

The northeastern United States, here defined as the area covered by the WY84
runoff-depth map (Graczyk, ef al, 1987) (see Fig. 3), is a temperate region with
moderate spatial variations in temperature and precipitation. Most of this variability
is due to differences in elevation and distance from the coast. The region is cool and
humid consisting of plains, plateaus, and mountains with elevations ranging from sea
level along the Atlantic coast to 1,916 meters (6,288 ft) at Mt. Washington. The
average annual temperature across the region ranges from 3 to 11 degrees Celsius.
Most of the land in the region is forested, especially on the steeper slopes (USDA,
1981).

Average annual precipitation in the Northeast ranges from 70 to over 230 cm
with the general trend being an increase in precipitation with elevation, although
distance-from-coast and local rainshadow effects can be significant (Dingman, 1981).
The amount of precipitation that falls as snow (based on a forty-year period of
record) can range from 75 to over 380 cm annually (Miller, et al., 1962). In general,

precipitation is evenly distributed throughout the year (USDA, 1981) (Figure 5).
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Thornthwaite, ef al., (1958) estimate that ET varies from 42 to 71 cm over the
Northeast. Hidore (1966) gives a more generalized range of 51 to 89 cm for the east
coast.

With regards to surface runoff, the highest flows occur in March or April due to
a combination of snowmelt and rainfall with the lowest flows occurring in August or
September (Miller, et al, 1962) (Figure 5). Gebert, et al. (1987) characterized
temporal variability of streams in the United States with a coefficient of variation
calculated by dividing the standard deviation by the average flow at individual gage
sites. Variations of annual values from the long-term mean runoff at gaged sites in
the Northeast region were characterized as low or medium (i.e. the lower three
quartiles of the coefficient of variation). A few scattered high variation sites are also

present and can be found mainly in the southeast portion of the Northeast region.

Water-Year 1984

WYB84 was a wetter than average year for the Northeast. A statistical summary
comparing the long-term and WY84 periods is presented in Table II. At the 242
WY84 precipitation stations used in this research that have long-term data available,
precipitation averaged 126% of the long-term average for WY84. There is a
correlation of 0.88 between the two data sets, showing a linear relationship between
the two data sets and little variation from the trend line. Of the 227 runoff gaging
sites that have corresponding long-term data runoff on average was 141% of the

normal for WY84 with a correlation of 0.75. These percentage-above-normal values
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are in general agreement with the National Water Summary for 1984 (USGS, 1985).

The statistical distributions of the WY84 and long-term average regional precipitation

data sets are not normal.

TABLE I

COMPARISON OF LONG-TERM TO WATER-YEAR 1984
GAGED VALUES’ AT CORRESPONDING GAGED SITES

Standard
Mean Deviation Median Minimum Maximum

Precipitation (n=242)

Long-Term 108.58 16.16 109.16 71.96 228.40

wWY84 137.88 27.26 138.10 76.78 334.24
Runoff-Depth (n=227)

Long-Term 62.04 12.03 61.72 30.48 106.68

WY84 86.97 18.60 87.55 33.76 146.86
‘Data in centimeters of depth

DATA

The data used in this thesis are: 1) USGS long-term and water-year 1984 runoff-
depth contour maps, 2) USGS long-term and WY84 stream-flow gaging information,
3) USGS gaging station watershed centroids, and 4) National Climatic Data Center
(NCDC) long-term and WY84 climatological data. For the automated procedures 441
WY84 USGS centroid sites (Appendix A) were used with 228 centroids being
obtained by matching USGS long-term centroid sites with water-year 1984 sites by the
site identification number. The other 213 sites were obtained by manually mapping

the gaging site basins on 1:500,000 and 1:250,000 USGS topographic maps and
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determining the centroids using a methodology similar to that used by the USGS.

Watershed size ranged from 2 to 17,280 Km? and estimated centroid elevation from
12 to 898 meters. For precipitation, 358 long-term and 405 water-year 1984 NCDC
precipitation sites were used in the analysis (Appendix B) whose elevations ranged

from 0 to 1908 meters.

METHODOLOGIES

A literature review was conducted to determine the accuracies obtained, and the
methodologies used to obtain these accuracies, from similar runoff-depth contour
mapping work. All of the various methods base their accuracy measurements on
comparisons of predicted runoff to actual runoff (i.e. predicted runoff - actual runoff
= estimation error or accuracy). A wide range in accuracies was noted for the various
methodologies. Values of estimated runoff are considered acceptable if they are
within 15% of measured amounts (Shelton, 1985). Based on this review a regional
accuracy similar to that obtained from the manual procedure (i.e. a mean error of
0.9% with a standard deviation of 14.2% (Rochelle, et al., 1989)) will be considered
acceptable for the automated procedures tested in this thesis.

Eight various automated procedures were developed and tested to find an
acceptable method of producing a runoff-depth contour map for WY84. A statistical
and visual comparison to the manual map for WY84 was conducted. Five of the

procedures were chosen for further study with an uncertainty analysis.
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For the uncertainty analysis a contour map was produced for each of the five

procedures with a randomly chosen subset of the runoff-depth gaged sites withheld
from each process. The withheld sites were chosen with a spatial clustering
procedure. This procedure selected a spatially unbiased random sample of 50 of the
WY84 runoff sites to be withheld from each of the automated methods (Stevens,
1991). Values were interpolated to the withheld sites from the contour maps
produced. The interpolated values minus the actual values were then calculated with
the mean difference, i.e. mean interpolation error, defining the accuracy of the maps

produced (e.g. Rochelle, er al., 1989).

ORGANIZATION OF THESIS

This thesis is divided into five chapters. The first has given a general overview of
the purpose, data, methods, and the region of study. The second chapter gives a brief
history of runoff-depth contour maps and reviews the methodologies currently in use.
The third chapter discusses the eight automated methods originally considered for
producing runoff-depth maps and the selection of the five automated procedures used
in the uncertainty analysis. The fourth presents and discusses the results of the
uncertainty analysis of these five procedures. The fifth chapter summarizes the
results, states the conclusions of the thesis, and suggests some future areas of

research.
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SUMMARY

Mapping runoff-depth is a difficult, expensive and time consuming task. Research
was conducted in conjunction with the DDRP (Direct Delayed Response Project) to
find an automated procedure that will provide runoff-depth contour maps with a
regional accuracy equivalent to that of maps produced by the manual procedure, but
with a lower cost in both time and money. Eight procedures were developed to meet
these requirements and five of them were selected for further examination with an
uncertainty analysis.

This thesis hypothesized that the manual and five automated procedures
examined are equivalent. It tested this hypothesis by comparing the results of an
uncertainty analysis of the long-term manual procedure derived runoff-depth contour
map (Rochelle, et al, 1989) to the results from the uncertainty analysis of the five
maps produced with the automated procedures. The goal of a mean percentage error

approximating 0.9% was set for the automated procedures.



CHAPTER 1II

REVIEW OF THE LITERATURE

INTRODUCTION

Runoff-depth contour maps show the amount of surface water flowing from a
given area expressed as equivalent water depth. Runoff-depth can be visualized as
being the residual of precipitation after the demands of evapotranspiration have been
met (assuming that changes in groundwater storage are zero) (Langbein, 1949). The
time interval that is mapped varies, but is usually annual (water-year) or long-term
average (30 years).

The uses of runoff-depth contour maps include the evaluation of water resources
and for scientific and educational purposes (McKay, 1976). Runoff-depth maps can
also be useful for estimating the discharge at streams which are not gaged. A
research project which could not gage the streams of interest due to the project’s size,
budget, and time constraints found these maps to be useful (Church, ef al., 1989).
Estimating average runoff from these maps can be helpful in determining the
feasibility of projects such as hydroelectric dams before more detailed studies are
done (Solomon, ef al., 1968). Users of these maps must keep in mind, however, that
local conditions can influence greatly the spatial pattern of runoff, and thus what is

shown on a generalized regional map may not reflect specific local conditions (Krug,
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et al., 1990). Runoff can be even more variable over time than precipitation in some
areas; so using an annual-mean runoff-depth map to predict a given year’s runoff can

produce large errors in the estimate (Leopold, ef al, 1964).

HISTORY

In the United States the majority of runoff-depth contour maps are produced by
the U.S. Geological Survey (USGS) using stream gage data. Stream gaging started
in the United States in about 1890 and in 1892 a runoff-depth map, likely the first in
the United States, was produced by F.H. Newell (Langbein, et al., 1949). By 1910
there were 1000 gaging stations in the United States (Thornthwaite, et al., 1958) and
in 1911 Gannett produced a map which supplemented gaging data with estimates of
runoff in ungaged areas. Estimated "water loss", evapotranspiration (ET), was
subtracted from precipitation values in the ungaged areas (Gannett, 1911). In 1934,
when there were 3000 gaging stations (Thornthwaite, et al., 1958), the water planning
committee of the National Resources Board published a map using similar
techniques. A technique using an empirical formula, utilizing temperature and
precipitation data, was developed by Thornthwaite and published in 1945 (Langbein,
et al., 1949). In 1949, when there were 6000 stations (Thornthwaite, et al., 1958),
Langbein produced a map using actual and estimated runoff, along with the expert
opinion of hydrologists (i.e. the manual method). This has been the predominant

method of mapping runoff-depth in the U.S. ever since.
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DESCRIPTION OF CURRENT METHODS OF CREATING
RUNOFF-DEPTH CONTOUR MAPS

One broad group of methods currently in use are the water-balance methods. This
methodology assumes that if all except one element of the water-balance (Formula

1) are known the missing value can be calculated.

Formula 1.

R=P-ET(+)S

R = Runoff, P= Precipitation, ET = Evapotranspiration, S = Storage

This method is more practical for long periods of time, such as a year or more
(e.g. annual mean), where changes in storage can be assumed to be negligible
(Kitteredge, 1938, Storr, 1972, Dunne and Leopold, 1978, Lee, 1980, Domokos and
Sass, 1990). The methodology most often used is to calculate ET by empirical
formulae such as those of Thornthwaite, Penman, or Blaney-Criddle, using data such
as temperature and wind speed, collected at or near a precipitation station (Dunne
and Leopold, 1978) and then subtracting ET from precipitation to get estimated
runoff. Thornthwaite, et al., (1958) stated that their method of estimating runoff, via
the water-balance, is superior to direct gaging because the groundwater that seeps
past gaging sites, which may be in significant amounts, goes unmeasured. Others have

questioned the relative accuracies of the various methods of estimating ET, thus
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casting doubt on which aspect of the water balance (i.e. estimated ET or measured
runoff) brings with it a larger error (Van Wijk and DeVries, 1954, Dunne and
Leopold, 1978, Lee, 1980). The accuracy of the water balance method has not been
quantified from maps based on this method, although estimates for individual basins
have been calculated with the results "approximating” or in "good agreement" with
actual measured values (Thornthwaite, ef al., 1958, Mather, 1981).

Regression techniques are another major method of producing runoff-depth
contour maps. The technique relates through a formula the dependent variable,
runoff or ET, with independent variable(s) such as elevation, precipitation, and
temperature, at locations where all these variables are known or can be reasonably
estimated. By statistical techniques or intuitional/deductive reasoning a researcher
chooses which independent variables best predict the dependent variable at the
known sites. The formula generated is then used at other sites where the independent
variables are known. A detailed description of the techniques, mathematics, and
theory involved can be found in Holder (1985). An example of this technique is the
work of Liebscher (1972) who used mean annual precipitation, temperature and the
ratio of summer-to-winter precipitation to map average runoff-depth in West
Germany (Figure 6). His runoff-depth map was created by hand interpolation from
regression-derived estimated runoff and actual runoff values. The map’s main
purpose is to prepare large area water balances. The strengths of the regression
method are that it is reproducible and that the confidence one can place on the

regression estimate is quantifiable. Weaknesses include the often subjective
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decision as to which independent variables to include in the regression formula. The

accuracy of maps produced by this method have not been quantified.

Another broad group of methods can be called the grid square technique. In this
method the area of study is divided into a uniform grid, suitable for use in a raster
based data system. Various physiographic attributes such as elevation and distance
from the coast are calculated for each grid. From grid squares that contain
meteorological or gaged sites precipitation, runoff, and ET (from empirical formulae)
are calculated or measured and correlated to the physiographic data by regression
formulae. Values are then extrapolated to the other grid cell sites and, after minor
refinements based on withheld data, a map is produced (Solomon, ef al, 1968). A
variant method is to use estimated precipitation and ET in a water balance formula
developed by Penman that employs a soil moisture component to estimate runoff
(Foyster, 1975). The grid square method’s main strength is the ease with which
estimated discharge of a stream can be calculated by using the estimated runoff for
the grid cells in the watershed and the grid size. The weakness of this technique is
the generalizations that will occur due to the use of a uniform grid over an
amorphous drainage pattern. Calculating from Foyster’s (1975) estimated values for
five sites in southeast England from one application of this technique, estimated
discharge varied from -7 to +16% of actual measured discharge with a mean error
of 5.43% and a standard deviation of 9.50%.

The last method to be considered is the creation of runoff-depth contour maps

by manual interpolation. The basic hypothesis of this method is that an expert
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hydrologist, using gaged data and taking into account meteorological and physiological
factors, can produce a reasonably accurate runoff-depth map. This method has been
extensively used by the USGS (Gannett, 1911, Langbein, et al, 1949, Knox and
Nordenson, 1957, Schneider, et al., 1965, Busby, 1966, Gebert, et al., 1987, Graczyk,
et al., 1987, Krug, et al, 1990). Applications include contributing to scientific
knowledge and the estimation of runoff at ungaged streams (Langbein, et al, 1949,
Krug, et al, 1990). An advantage of this method is that hydrologists are not
constrained by a fixed formula or methodology and thus can take into account local
variations or anomalies in the physical environment when creating the contours
(UNESCO/WMO, 1977). Conversely, the human element can be considered the
weakness of this method since errors in judgment or oversight can occur. Errors of
estimates from a long-term map of the eastern U.S. created with this method (Figure
7) were quantified by Rochelle, et al,, (1989). The mean error of estimated as
compared to actual runoff values was 0.9% (Rochelle, et al., 1989). Domokos and
Sass (1990) gave estimated runoff derived from their manually produced runoff map
for 24 large sub-basins in the Danube basin (although it is unclear whether these sites
were withheld from the map’s creation). From their results a mean error of 0.14%
and a standard deviation of 2.69% were calculated with errors varying from -4.14 to

+4.79% of recorded values (Domokos and Sass, 1990).
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Figure 7. Manual Method Map of the Mean Annual Runoff-Depth in
the Eastern United States. (Source: Church, er al., 1989.)
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DISCUSSION OF FINDINGS

Examples of the Use of Runoff-Depth Contour Maps

An example of the use of runoff-depth maps is the work of Solomon, ef al,
(1968) who produced a runoff-depth map of Newfoundland and Labrador to help
assess potential hydropower in the region. The project was conducted by the Atlantic
Development Board, Government of Canada. Although no specifics of alternative
methods considered were discussed in their paper, the authors state the reasons for
choosing an automated procedure, the grid square technique, as being the need for
moderate accuracy over the large 140,000 square mile area as well as the large
amounts of data that needed to be stored, processed and retrieved quickly for the
project (Solomon, et al., 1968).

Domokos and Sass (1990) recently reported on a project using runoff-depth
contour maps for resource appraisal in the Danube basin. Under international
agreement the countries in the basin, using predetermined uniform methodologies,
created runoff-depth contour maps using the manual method (Figure 8). The authors
do not state why this methodology was chosen but they consider the results to be
"acceptable, or even satisfactory”. They feel that their results are applicable to future
resource planning in the Danube Basin (Domokos and Sass, 1990).

The U.S. Environmental Protection Agency (EPA), in cooperation with other
federal agencies, recently completed a study of the potential future effects of sulfur
deposition in the eastern U.S., the Direct/Delayed Response Project (DDRP).

Estimates of runoff were needed for input-output ion budget models, using long-
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Figure 8. Manual Method Map of Mean Annual Runoff-Depth in the
Danube Basin. (Source: Domokos and Sass, 1990.)
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term average values (Krug, et al., 1990), and for sulfur retention estimates for which
"typical-year" data were used (i.e. for the northeast United States, WY84) (Graczyk,
et al., 1987). The DDRP was faced with three choices for obtaining runoff values: 1)
gage the approximately 1800 sites, 2) use an empirical interpolation approach, such
as kriging, or 3) interpolate estimated runoff from runoff-depth contour maps
produced with existing runoff data and the expert opinion of USGS hydrologists.
Budget and time constraints made the first option impractical, while the large
variability in topography and other variables that influence runoff across the region
was felt to limit the accuracy of the second method. Runoff-depth maps produced by
the third option at an appropriate resolution were not available at the time the
project started. The USGS was employed to create the necessary maps by the manual
method (Graczyk, et al., 1987, Church, et al., 1989, Rochelle, et al., 1989, Krug, et al,
1990). Runoff estimates were interpolated from the maps to the center (i.e. centroid)
of each DDRP study watershed. An analysis of the errors associated with the
estimates was conducted using an uncertainty analysis and the errors were found to
be within acceptable limits (Church, et al., 1989, Rochelle, ez al., 1989). The director
of the DDRP has noted that if a more precise automated empirical method had been
available the project would have utilized it and thereby reduced the considerable
expense (e.g. the water-year 1984 map for the northeast United States cost
approximately $25,000) and time spent in having the maps produced manually

(Church, 1991).
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Choosing an Appropriate Method of Mapping Runoff-Depth

With the variety of methods of mapping runoff-depth that are available, the
question facing researchers is which method of producing a map is best for the
situation at hand. There are five interrelated factors that affect the choice of an
appropriate method for a given project: scale, desired accuracy, available data,
available funding, and available time. The scale of the project under consideration is
critical since a large discrepancy between the scale of a project and that at which the
map is created can result in large errors or needless accuracy in the estimate of
runoff. For example, if one is going to build a small agricultural storage dam on a ten
square kilometer watershed one does not use a map of average runoff-depth for the
United States. Conversely, if one was examining the general runoff patterns in the
Columbia River basin, one would not need to estimate runoff for every square
kilometer to get a good idea of the spatial pattern of runoff. Scale becomes less
critical in areas of gentle relief were the pattern of runoff tends to be more
homogenous. Generalization on smaller scale maps also affect the accuracy of the
estimate obtained (UNESCO/WMO, 1977). This brings up the second factor, desired
accuracy, which again depends upon the project at hand, as well as available data.
Accuracy depends on the spatial density of data as well as variations in topography,
geology, etc. (Krug, et al., 1990). Thirdly, the available data can limit the choice of
methods used. If only runoff data are available, then a manual method can be the
best choice. As climatological and physiographic data become available, the other

methodologies become practical. Fourthly, the available funds can influence the



29

method chosen. If the appropriate geographic and statistical software are available,
an automated procedure (i.e. regression, grid square) is usually the most cost
effective. If funds are limited and trained personnel are available, the manual method
can be an acceptable short-term, cost-effective method. Lastly, the available time for
completion of a project can be critical since manual techniques are often more time
consuming than automated procedures.

The five factors are often interrelated with each aspect needing to be weighed
carefully against the others, thus complicating the decision process that a person must
face. If a project’s scale is large (e.g. states to regions) and gaged runoff data, along
with physiographic and climatic data are available, then automated procedures might
be suitable. In smaller areas, the mapper will have to depend more on expert opinion
or interpolative techniques, such as the regression or the grid square method. As the
size of the area under consideration shrinks further one will have to extrapolate
specific runoff and other information from relatively large distances and one could
be forced to rely on manual or simple regression techniques. At all scales it is
important that the data be as homogenous and temporally equivalent as possible

(UNESCO/WMO, 1977).

Current Status and Future Prospects of Runoff-Depth Contour Maps

The current status of runoff-depth mapping in the United States is one in which
newer, more automated procedures have largely gone unused. Although the manual
method is adequate, it is likely that accuracy and efficiency could be improved by

using partially or fully automated procedures (UNESCO/WMO, 1977). Some
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preliminary work has been started to merge the advantages of the manual method
(i.e. expert opinion), with the advantages of automated procedures (i.e. speed and
reproducibility) (Church, 1991); but a full scale research program has not been
started. The use of artificial intelligence (expert systems) is an area of great promise
for creating runoff-depth maps. Development of a system that uses the thought
processes and approaches used in the manual method should be relatively

straightforward (Church, 1991).

Summary

Runoff-depth maps aide the researcher and water manager in taking the first step
in managing a resource, i.e. appraisal. These maps can be useful for estimating runoff
at ungaged sites, in hydroelectric planning, and in providing general knowledge of
runoff patterns. Researchers should keep in mind the relative scale of a project
versus the map to be used, the accuracy needed for the task at hand, as well as the
data used in creating the map. Due to the generalizations inherent in such maps, the
map user needs to be cognizant of possible effects that local conditions might have
on runoff-depth estimates at the site(s) of interest if these maps are to be used
effectively. Research should be encouraged in the development of artificial
intelligence methodologies for producing runoff-depth contour maps. These
methodologies offer the best hope of improving the accuracy and availability of

runoff-depth contour maps (Church, 1991).



CHAPTER III
AUTOMATED PROCEDURES USED IN MAPPING RUNOFF-DEPTH
INTRODUCTION

In conjunction with research for the Environmental Protection Agency’s (EPA)
Direct/Delayed Response Project (DDRP) a study was conducted to find simple
automated procedure(s) for producing annual (water-year) runoff-depth contour
maps. The goal was for the procedure(s) to have a regional accuracy similar to that
of the manual procedure maps produced by the U.S. Geological Survey (USGS) as
quantified by Rochelle, et al. (1989). From several general methodologies eight
specific procedures were examined to find a method that met these criteria.

Part of the underlying strategy of the methods tested is to densify the network of
known runoff-depth value sites by using climatological data from National Climatic
Data Center (NCDC) precipitation stations in the region of study, (i.e. the northeast
United States) to estimate runoff at these stations.

The WY84 map produced by Graczyk, er al. (1987) was chosen as the runoff-
depth map to be produced by the automated procedures to be examined. This mép
was chosen because: 1) it was produced by the same methodology as the long-term
map produced by Krug, er al. (1990) whose accuracy was quantified by Rochelle, et

al. (1989), 2) the WY84 USGS runoff gaging site data were readily available, 3) the
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precipitation data for WY84 were readily available, and 4) WY84 was a wetter than
average year following a normal year in the northeast United States (USGS, 1984,
1985), thus minimizing the effects of ground and surface water storage changes on
the analysis. Eight different procedures were compared with statistical and visual
techniques to the manual method. Based on this comparison procedures for further

testing with an uncertainty analysis were chosen.

Rationale for Automation

Automated procedures have many advantages: lower cost and time as compared
to manual procedures, ease of data handling, and reproducibility. Automated methods
have been found to be an effective means of mapping runoff (e.g. Foyster, 1975).
Automated procedures have disadvantages though: being unable to handle
unforeseen or local influences on the phenomena being mapped, difficulty in
accurately mapping non-homogeneous data or source networks, and handling the
influences of mountainous terrain (McKay and Thomas, 1971, UNESCO/WMO, 1977,
Dingman, et al.,, 1988). In this thesis these disadvantages were felt to be largely
overcome by the use of estimated runoff at precipitation stations densifying the
known runoff sites used for interpolation. This densification, along with the uniformity
of data used and the regional scale of accuracy desired, was felt to make the

automated procedures comparable to the manual methods.



33

Simplifications at the Regional Scale

One of the assumptions of this research is that due to the broad regional scale
being utilized, a relatively unsophisticated methodology will be appropriate. As noted
by Palmer and Havens (1958), "Although ease of application is not a suitable
criterion of adequacy, it is often a primary consideration of use" (p. 123). As part of
the philosophy of simplification the use of simple water-balance, rainfall-to-
precipitation ratio (R/P), and regression techniques were explored. Contours were
generated by linear interpolation also for the sake of simplicity.

At the scale of this study the area of the watershed compared to the study area
is small and thus it was felt appropriate to treat the areal runoff values as points
(Foyster, 1975). The runoff sites are placed in the center of their appropriate
drainage basin, as opposed to the actual gage site, in accordance with standard USGS
runoff-depth mapping policy (Graczyk, et al., 1987, Rochelle, et al., 1989, Krug, et al.,
1990).

At the regional scale the use of a water balance approach was felt to be suitable
(Foyster, 1975). The longer time periods considered (i.e. water-year and long-term
average) preclude the need to consider change in storage although local conditions,
such as geology, may cause these assumptions to be invalid in some areas (Kitteredge,
1938, Storr, 1972, Dunne and Leopold, 1978, Lee, 1980). When accurate
measurements of precipitation (P) and runoff (R) are available the calculation of
evapotranspiration (ET) is straightforward (ET = P - R), although the concept of

"accurate measurement' can be a major problem (Munson, 1966). Even if the
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assumption of zero change in storage is false the possible errors in the measurement
and estimation of runoff and precipitation values could override this usually small

amount.

Another simplifying concept in the use of a regional scale is that averages or
integrals of factors affecting runoff process at a more local scale can be generalized
(Klemes, 1983). Things that might appear anti-intuitive at the large scale, e.g. the
storage component of the water balance being ignored, can be assumed to hold true

at the regional scale over longer time periods (McKay and Thomas, 1971).

Underlying Assumptions with Principal Data Used

For this research long-term runoff-depth values were obtained by interpolation
from the long-term runoff-depth map (Krug, et al., 1990). These values were used
because of the quantifiable nature (Rochelle, et al., 1989) of the interpolated values
at ungaged sites and because they are more accurate than interpolations from gaged
sites alone. It has been found that estimates of runoff-depth obtained from the long-
term runoff-depth map are not regionally or spatially biased or biased due to the
local density of sites used in the map’s creation (Rochelle, et al., 1989). There also
is no bias in estimates due to basin size from the long-term runoff map (Rochelle, et
al. 1988). The gaged and interpolated values of runoff-depth used in this research do
not take into account the errors in stream gaging which have been estimated to range
from 0-5% (Winter, 1981) to 10-15% (Mather, 1981).

An underlying assumption of the long-term precipitation and runoff data used in

this research is that they define a climatic normal and that, through various methods,
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a prediction for a given year’s runoff, outside of the time frame used in determining
long-term average precipitation and runoff, can be made. Work by Drozdov, et al
(1965) and Court (1967) has found that the 30-year period used to define climatic
normals for precipitation is without scientific foundation. Court (1967) found that for
precipitation estimates the longer the year to be predicted is from the base period
(i.e. the period defining climatic normal) the shorter the climatic normal time period
needs to be. It is unknown whether this also applies for runoff. The 30-year base
period was used in this research because of the ease of data acquisition, its widely
held acceptance, and because it was the time period used in the generation of the

long-term runoff map, not due to any inherent superiority to this time length.

Definitions of Elements of the Water-Balance

Precipitation will be defined as the water depth collected and recorded at
standard rain gauges. An attempt was made to locate an expertly drawn long-term
precipitation contour map at the same resolution and scale as the long-term runoff
map, but none were available. This limited the research to using gaged precipitation
data. Estimates of errors in precipitation measurement vary (Table III) and no
attempt was made to correct for these errors, which overall have a negative bias
(Rasmusson, 1968), in this research. The reasons for these errors include operator
error, wind (Neff, 1977, DeAngelis, et al., 1984), snow (Dingman, ez al, 1988), and
occult precipitation (e.g. fog drip, rime) (Dingman, 1981). Dingman (1981) notes that
occult precipitation can be significant in higher forested watersheds. Work by Yoxall

(1980) and others has shown the importance of having an adequately dense
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precipitation station network to show the spatial pattern of precipitation and to
accurately estimate this element of the water balance. No studies describing the
required density of precipitation sites for a study at the regional scale are available
in the literature, although a study by Dingman, ez al. (1988) in West Virginia had an
average error of 7.5% for estimating precipitation in a mountainous terrain were
station density was 900 km?/gage. Precipitation site density for the study region in this

research was 929 km?/gage for the long-term sites and 821 km?%/gage for the WY84

sites.
TABLE III
ESTIMATED ERRORS IN PRECIPITATION MEASUREMENT
FROM STANDARD RAIN GAUGES
% Error  Time Frame Study Source
5-50 Annual Struzer, et al. (1965) Rasmusson (1968)
5-15 4-5 Years  Neff Neff (1977)
0-30 Annual Rodda (1985) Dingman, et al. (1988)

Runoff will be defined as the amount of surface-water measured at a gaging site
by the USGS. Runoff-depth is this measured volume spread over the upstream
watershed area (volume of runoff/area).

Evapotranspiration is defined here as the remainder of precipitation once runoff-
depth is subtracted. This is assumed to be equivalent to the amount of water
evaporated and transpired for a given location. This definition would not be valid if
variations in deep or surface storage were significant; but due to the longer time

periods and large areas involved in this research it is felt that these variations are
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negligible at best. The longer time periods considered will also tend to reduce the

cumulative errors caused by inaccuracies in the measurement of runoff and

precipitation (UNESCO/WMO, 1977).
AUTOMATED MAPPING METHODOLOGIES CONSIDERED

To create a runoff-depth contour map as accurate as that produced by the USGS
manual procedure for WY84 with a simple automated procedure several general
methodologies were considered: 1) a linear interpolation method employing known
gaged runoff data only; 2) a water-balance approach in which ET, determined from
long-term data, is assumed to be constant; 3) a method which assumes that R/P,
determined from long-term data, remains constant over time; 4) a regional mean
approach to 2) and 3); 5) a regression formula approach which uses long-term data
to create a formula to predict runoff or ET in WY84; and 6) a regional mean
approach utilizing R/P based on WY84 data only. From these general methodologies
eight specific procedures were formulated. For all of the procedures to be described
here an ARC/INFO® GIS was utilized on a mainframe platform. Interpolations were
based on Triangular Irregular Networks (TIN’s) representing the given surface by a
series of points of known values interconnected by triangles (ESRI, 1986). All
interpolations and contours were visually checked against actual and estimated values

plotted on the same map.

"Mention of brand names or commercial products does not constitute
endorsement or recommendation for use by the author, Portland State University, or
the U.S. Environmental Protection Agency.
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The first methodology is a map created from the linear interpolation of gaged
WY84 runoff-depth data. This methodology was utilized to test whether any benefit
was derived from the use of the above methodologies to follow when compared to
this simple procedure. The steps involved in this procedure are: 1) Create a TIN for
the gaged WY84 runoff values; and 2) produce a contour map, by linear
interpolation, for WY84 runoff using the TIN created in 1). This method is
diagramed in Figure 9 and will be referred to as the GAGE84 procedure.

The second methodology assumes that ET is constant over time. ET has been
found to be conservative in space and time (Leopold, et al., 1964, Likens, et al., 1977,
Lee, 1980, Saxton, 1981). This simplification (assuming ET is constant over time) was
felt to be reasonable considering the other possible errors in the water-balance
calculation (e.g. measurement errors). The steps involved in this procedure are: 1)
create a TIN for long-term runoff from the long-term manual map; 2) interpolate
long-term runoff to the long-term precipitation stations using the TIN produced in
1); 3) calculate, from the interpolated runoff and measured precipitation, the long-
term ET value for each precipitation station; 4) create a TIN from the long-term ET
values calculated in 3); 5) interpolate long-term ET to the WY84 stations using the
TIN created in 4); 6) calculate estimated runoff using precipitation and ET values at
each precipitation station (estimated R = P - ET); 7) create a TIN using both the
estimated runoff at the precipitation stations and the gaged runoff; 8) generate a
contour map, by linear interpolation, for WY84 runoff using the TIN created in 7).

This methodology will be referred to as the LTET procedure (Figure 10).
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The third methodology assumes that R/P remains constant over time. Although
the literature does not support this hypothesis either for individual watersheds having
a constant R/P or as a predictor for other ungaged streams (Rafter, 1903, Hidore,
1966), it was felt that this approach met the criteria of simplicity, and at the regional
scale it was assumed that the errors introduced would be tolerable. The steps
involved in this procedure are: 1) create a TIN for long-term runoff from the long-
term manual map; 2) interpolate long-term runoff to the long-term precipitation
stations using the TIN produced in 1); 3) calculate, from the interpolated runoff and
measured precipitation, the long-term R/P value for each station; 4) create a TIN
from the long-term R/P values calculated in 3); 5) interpolate long-term R/P to the
WY84 precipitation stations using the TIN created in 4); 6) calculate estimated runoff
using precipitation and R/P values at each precipitation station (estimated R -
P(R/P)); 7) create a TIN using both the estimated runoff at precipitation stations and
the gaged runoff; 8) generate a contour map, by linear interpolation, for WY84
runoff using the TIN created in 7). This methodology will be referred to as the LTRP
procedure (Figure 11).

The fourth methodology uses the MLRA regional mean values of methods two
and three to predict WY84 runoff. Due to the inherent noise in the results from
individual sites, caused by measurement errors or local conditions as compared to the
region as a whole, it was felt that using a regional mean of the ET and R/P values
might give a more generalized and regionally correct result. The use of regional

means as hydrologic predictors is supported by the work of Sopper and Lull
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(1965,1970) who found that experimental watershed runoff was in relatively close

agreement to regional averages and Moss and Dawdy (1973) who found that regional
values are valid for interpolating to ungaged sites. In producing the long-term R/P
and ET values two methods were used. One was interpolating long-term runoff from
the manual USGS map to long-term precipitation stations; the other interpolates
long-term precipitation to the long-term runoff centroids. Between the two methods
for determining R/P there was a statistically significant difference between the means
of the two data sets (Z = 4.90 P < 0.001 (The P statistic gives the smallest level of
significance that would have allowed the rejection of the null hypothesis (Iman and
Conover, 1983))) but hydrologically it is insignificant, 0.54 versus 0.56. For ET there
also is a significant difference between the means of the two data sets (Z = 4.01 P
< 0.001) but the difference in the means, 50.2 versus 47.1 cm, is also not likely to be
hydrologically significant.

For mean ET values the steps involved are: 1) create a TIN for (a) the long-term
runoff values from the manual map, and (b) the long-term precipitation at the
precipitation stations; 2) interpolate long-term precipitation values to the long-term
runoff sites and long-term runoff values to the long-term precipitation stations using
the TIN’s created in 1); 3) calculate, from the interpolated and measured values, an
ET value for each of the precipitation stations and runoff sites; 4) sort the runoff and
precipitation sites by their MLRA and calculate a mean ET for each MLRA,; 5)
assign the mean ET values to WY84 precipitation stations based on the MLRA’s in

which the station occurs; 6) calculate estimated runoff using precipitation values and
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the mean ET values at each station (estimated R = P - ET); 7) create a TIN using
both the estimated runoff at precipitation stations and the gaged runoff; 8) generate
a contour map, by linear interpolation, for WY84 runoff using the TIN created in 7).
This methodology is diagramed in Figure 12 and will be referred to as the MNLTET
procedure. For the mean R/P method the steps involved are: 1) create a TIN for (a)
the long-term runoff values from the manual map, and (b) the long-term precipitation
at the precipitation stations; 2) interpolate long-term precipitation values to the long-
term runoff sites and long-term runoff values to the long-term precipitation stations
using the TIN’s created in 1); 3) calculate, from the interpolated and measured
values, an R/P value for each of the precipitation stations and runoff sites; 4) sort the
runoff and precipitation sites by their MLRA and calculate a mean R/P for each
MLRA; §) assign the mean R/P values to WY84 precipitation stations based on the
MLRA’s in which the station occurs; 6) calculate estimated runoff using precipitation
values and the mean R/P values at each station (estimated R = P(R/P)); 7) create
a TIN using both the estimated runoff at precipitation stations and the gaged runoff;
8) generate a contour map, by linear interpolation, for WY84 runoff using the TIN
created in 7).This methodology is diagramed in Figure 13 and will be referred to as
the MNLTRP procedure.

The fifth methodology uses linear regression formulae to predict runoff or ET at
precipitation stations. These formulae are based on the relationship between various
climatic and physiographic variables and the long-term values of runoff, interpolated

from the long-term manual map, and ET, estimated by the water-balance method at
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the long-term precipitation stations. Regression formulae have been used in the past
to interpolate runoff values within the time and geographic framework in which the
formulae were developed (Lull and Sopper, 1967, Sopper and Lull, 1970, Liebscher,
1972, Dingman, 1981), but no examples of extrapolating a regression formula
temporally with runoff data was found in the literature. Regression equations have
been used to predict storm runoff (Lee and Bray, 1969), temperature (Lee, 1969) and
other climatic variables (Dingman, 1981). Deangelis, et al., (1984) found for a
watershed in the Northeast that a single linear relationship exists between
precipitation and runoff, even when very wet and dry years were examined. This
implies that a relationship defined for a normal period in a region may have validity
in wet or dry years. A single regression formula for the region was deemed to be
appropriate due to the general regional scale approach of the research, a desire to
avoid over-fitting of the regression model produced (Klemes, 1983) and the need for
a broad range of data in which to fit the desired estimates (Lee, 1980). Critiques of
the use of regression formulae in hydrology include Linsley’s (1967) questioning of
the ability of the formulae to adequately represent the phenomena especially in
mountainous terrain (Mckay and Thomas, 1971, UNESCO/WMO, 1977). These
reservations aside, the success of Liebscher (1972) with this methodology and the
findings of Deangelis, et al., (1984) warranted its investigation.

For predicting runoff-depth the independent variables used by Liebscher (1972)
(Le. annual precipitation, mean annual temperature, and the ratio of summer to

winter precipitation) were used because of the availability of the needed data and the



48

variables taking into account the seasonal differences in runoff’s response to
precipitation (Shelton, 1985). The variables met the 0.15 significance level (i.e. a 15%
chance of rejecting a variable that would contribute to the predictive power of the
model (SAS Institute, Inc., 1985)) to be included in the model which has an R? of
0.758. A graph of regression derived and estimated runoff showed no bias or outliers.
Plots of studentized residuals also showed no bias. For ET no suitable regression
formula was found that used the available data so all available variables that might
influence ET were included in a stepwise regression procedure. Five variables
(February and April precipitation, May mean temperature, April maximum
temperature, and the ratio of summer to winter precipitation) met the 0.15
significance level and were determined to make significant improvements to the
model by their F values. The model’s R? is 0.699. A graph of regression derived and
estimated ET showed no bias or outliers. Plots of studentized residuals also showed
no bias. For both of the regression analyses the Mt. Washington precipitation site was
not included in determining the regression formula after an examination of scatter
plots showed the site to be an outlier.

The steps in the ET regression are: 1) create a TIN for the long-term manual
runoff map; 2) interpolate long-term runoff to the long-term precipitation stations
using the TIN created in 1); 3) calculate long-term ET from the interpolated and
measured values; 4) generate a regression formula to predict long-term ET estimated
in 3), using long-term climatic data at precipitation stations in a stepwise regression

procedure; 5) calculate estimated ET, using the regression formula developed in 4)
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and the WY84 climatic data at each precipitation station; 6) calculate estimated
runoff using precipitation values and the estimated ET at each station (estimated R
= P - ET); 7) create a TIN using both the estimated runoff at precipitation stations
and the gaged runoff; 8) generate a contour map, by linear interpolation, for WY84
runoff using the TIN created in 7). This method is diagramed in Figure 14 and will
be referred to as the REG_ET procedure. The steps involved in the runoff regression
method are: 1) create a TIN for the long-term manual runoff map; 2) interpolate
long-term runoff to the long-term precipitation stations using the TIN created in 1);
3) generate a regression formula to predict long-term runoff estimated in 2), using
long-term climatic data at precipitation stations and the relationship developed by
Liebscher (1972) (i.e. runoff is a function of mean annual temperature, mean annual
precipitation, and the ratio of summer to winter precipitation); 4) calculate estimated
runoff, using the regression formula developed in 3) and the WY84 climatic data at
each precipitation station; 5) create a TIN using both the estimated runoff at
precipitation stations and the gaged runoff; 6) generate a contour map, by linear
interpolation, for WY84 runoff using the TIN created in 5). This method is
diagramed in Figure 15 and will be referred to as the REG_R procedure.

The sixth methodology uses the mean MLRA values of WY84 R/P ratios
determined by interpolating WY84 runoff from gaged centroid sites to the
precipitation stations and WY84 precipitation from the stations to the runoff
centroids. No statistical difference was found between the means using the two

methods (0.605 vs. 0.604, Z = .10 P = .92). Lull and Sopper (1966) noted a marked
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decrease in the correlation of runoff to precipitation in the NE when paired sites
(precipitation:runoff) are more than 13 km (8 miles) apart. However scatter-plots of
the R/P values versus distance to the nearest gage of the opposing type showed no
trends and no differences between the two methods (ie. runoff to precipitation
stations, precipitation to runoff sites). For WY84 precipitation values interpolated to
runoff sites a statistically significant difference (Z = 2.26 P = .024) was found
between the mean R/P of sites less than 13 km (0.595) and those greater than 13 km
(.619); but these values are not hydrologically significant. For WY84 runoff
interpolations to precipitation stations no statistical difference (Z = 0.636 P = .52)
was found between the two groups (less-than 13 km .602, greater-than 13 km .608).

The steps involved in this procedure are: 1) create a TIN for (a) the WY84 runoff
values from the gaged runoff (as assigned to the centroid of the basin in which the
basin occurs), and (b) WY84 precipitation at the precipitation stations; 2) interpolate
WY84 precipitation values to WY84 runoff sites and WY84 runoff values to WY84
precipitation stations from the TIN’s created in 1); 3) calculate, from the interpolated
and measured values, R/P for each of the precipitation stations and runoff sites; 4)
sort the runoff and precipitation sites by their MLRA and calculate a mean R/P for
each MLRA; assign the mean R/P values to the WY84 precipitation stations based
on the MLRA in which the station occur; 6) calculate estimated runoff using
precipitation values and the mean R/P values at each station (estimated R =
P(R/P)); 7) produce a TIN using both the estimated runoff at precipitation stations

and the gaged runoff; 8) produce a contour map, by linear interpolation, for WY84
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runoff using the TIN created in 7). This method is diagramed in Figure 16 and will
be referred to as the MN84RP procedure.

SELECTION OF FIVE PROCEDURES TO BE EXAMINED
BY AN UNCERTAINTY ANALYSIS

Visual Comparison

Eight maps were produced by the eight different procedures described above
(Plates 3-10). The maps were first visually compared to the expertly drawn runoff-
depth map produced by Graczyk, ef al. (1987) (MAN84) (Plate 2) to note any general
patterns or agreement/disagreement in the procedure maps as compared to the
MANS84 map. The first general trend noted was the lack of strong variations among
the automated procedures as far as the general pattern of runoff-depth depicted
(Figure 17). This is probably due to the use of the same gaged runoff sites in all the
procedures.

Upon closer examination a spikier, less generalized surface became apparent
when comparing the LTET and LTRP maps to the MAN84, MNLTET, and
MNLTRP maps. Both the LTRP and MNLTRP maps appear to underestimate
runoff, especially along the Atlantic coast. This is probably due to the much higher
than average precipitation experienced by this area in WY84 (USGS, 1985). This
suggests that the assumption, (i.e. R/P is constant over time) that the LTRP and
MNLTRP maps are based on is false. This was supported by a comparison of long-
term and WY84 R/P values at precipitation and runoff sites that contain values for

both time periods (n=460). The runoff-to-precipitation ratio was calculated for the
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precipitation stations by interpolation from the given time periods manual method
map while for runoff sites precipitation values were interpolated from precipitation
stations (Table IV). The difference in the means was found to be significant at the
.0001 level by both a T-test and a signed rank test. The differences are also
hydrologically significant. The REG_R an;i REG_ET maps also appear to
underestimate runoff over the region. This may be due to the inadequacies of the
regression models, inappropriateness of temporal extrapolation, or biases in the
climatological or gaged data. Random errors in the measurement of the climatological
data inputs could also explain the noted bias (Weber, et al., 1973). The GAGES84
map follows the general trend of the MAN84 map, but lacks the detail of the MAN84
map, especially in the mountainous areas. The MN84RP map is a fairly close match
to the MAN84 map, both in general pattern and values. For all the procedures there
are some minor variations from the MAN84 map which may be due to the increased

resolution or noise caused by using estimated runoff values.

TABLE 1V

ESTIMATED R/P AT CORRESPONDING (LONG-TERM AND WY§84)
PRECIPITATION AND RUNOFF SITES'

Standard

Mean Deviation
long-term R/P 548 .080
WY84 R/P 614 .091
WY84 R/P - long-term R/P .065 .079

*n=460
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Statistical Comparison

A statistical comparison of the methods was also conducted by comparing
estimated and interpolated values of runoff at the WY84 precipitation sites. These
values are summarized in Table V. The general trend of underestimation by LTRP,
MNLTRP, REG_ET, and REG_R are confirmed by the statistical analysis. A trend
of overestimation by the LTET and MNLTET procedures is also apparent. This
suggests that the simplifying assumption (ie. ET is constant over time) that the LTET
and MNLTET procedures are based on may be inappropriate. This was confirmed
by comparing long-term and WY84 ET at precipitation and runoff sites that
correspond between the two time periods (n=460). ET was calculated by
interpolating runoff from the appropriate runoff-depth maps, long-term and WY84,
to the precipitation sites and then subtracting the runoff value from the precipitation
value. For the runoff sites precipitation values were interpolated from the
precipitation stations and a similar calculation made (Table VI). The difference in
means are significantly different at the .001 level with both the T-test and the signed
rank test. The GAGE84 and MN84RP methods give the closest approximation to the
MANR&4 map using this analysis. A comparison of the means of the estimated runoff
at precipitation stations and interpolated values from MAN®84 was conducted. All of
the procedures means were significantly different at the .001 level except for

GAGES4 (P(T) = .92 P(S) = .65) and MN84RP (P(T) = .35 P(S) = .38).
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TABLE V

ESTIMATED RUNOFF AT WATER-YEAR 1984
NCDC PRECIPITATION STATIONS

Standard
Standard Error of
Method n Mean __ Deviation Minimum Maximum the Mean
Interpolated Values:
MAN&4 394 83.82° 18.06° 30.13° 127.00° 0.91
GAGES4 381 83.59 18.52 30.56 146.70 0.95
Estimated Values:
LTET 396 86.87 21.41 33.14 207.44 1.08
MNLTET 405 87.37 24.24 32.95 293.34 1.20
LTRP 396 73.32 16.45 35.73 148.63 0.83
MNLTRP 405 74.10 15.87 38.32 209.70 0.79
REG_ET 225 74.67 17.84 37.82 181.36 1.19
REG_R 217 76.60 18.54 34.97 225.37 1.26
MNS84RP 397 84.00 20.70 37.50 229.29 1.04
‘Cm
TABLE VI
ESTIMATED ET'
AT CORRESPONDING (LONG-TERM AND WY84)
PRECIPITATION AND RUNOFF SITES™
Standard
Mean Deviation
long-term ET 49.44 10.80
WY84 ET 54.49 18.81
WY84 ET - long-term ET 5.05 14.67
‘Cm
*n=460

The rejection of the R/P and ET being constant assumptions are not conclusive

at this point since unknown biases from the use of the manual maps may be involved.
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These conclusions will be further tested in Chapter IV with the comparison of
estimates made from maps created based on these assumptions to actual gaged

values with an uncertainty analysis.

Choice of Procedures Used in the Uncertainty Analysis

To reduce the amount of work involved in the uncertainty analysis a
representative subset of the eight procedures was chosen. Five procedures were
selected to conduct the uncertainty analysis on using the above visual and statistical
comparisons. The GAGE84 method was chosen to represent the simplest and most
straightforward automated procedure available. MNLTET and MNLTRP were
chosen over LTET and LTRP mainly due to the better visual fit to the MAN84 map.
REG_R was chosen as the regression method to be tested because of the simpler
formula used and its slightly better visual and statistical fit to the MAN84 map as
compared to REG_ET. MN84RP was chosen because of its close visual and statistical

match to MANBS4.

Summary of Findings

A statistical comparison of the means of the estimated runoff-depth at WY84
precipitation stations shows the GAGE84 and MN84RP methods having the closest
approximation to the values interpolated from MANS84. This indicates that the
working hypothesis that using information gained from a long-term expert map would
improve the accuracy of a given water-year’s map is inappropriate since visually and

statistically none of the maps using the long-term data appear to be superior to those
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using only WY84 data. This conclusion will be further tested in Chapter IV with an

uncertainty analysis. Depending on the accuracy desired for the project at hand all
of the procedures above could be considered acceptable. The MN84RP method
visually and statistically appears to give the closest approximation to the manually

produced map for WY84.



CHAPTER IV

UNCERTAINTY ANALYSIS

INTRODUCTION

A subset of the automated procedures described in Chapter III (GAGES4,
MNLTET, MNLTRP, REG_R, and MN84RP) was compared to the manual method
using an uncertainty analysis of runoff estimates. An uncertainty analysis is the
withholding of data sites from a runoff map’s creation for later use in a comparison
of values obtained by interpolation from the generated maps to the actual gaged
data. The results of an uncertainty analysis conducted on a long-term average runoff-
depth map conducted by Rochelle, et al. (1989) will define the accuracy of the
manual procedures. The uncertainty analysis of the automated procedures consisted
of four steps. The first step was the selection of the data sites to be withheld from
the contour map generation. The second was the generation of the contour maps.
The third step was the interpolation of runoff-depth from the maps generated to the
withheld sites. The fourth was the calculation of the interpolation errors by
subtracting interpolated (estimated) runoff from gaged runoff at each site. A
statistical summary and analysis was then conducted on these results as well as an

examination for possible biases in estimated runoff and interpolation errors.
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METHODOLOGIES

The first step in the uncertainty analysis was the choice of the sites to be
withheld. Of the 441 U.S. Geological Survey (USGS) Water-Year 1984 (WY84)
runoff sites in the region of study 50 sites were withheld. This number approximates
the number of sites used by Rochelle, et al. (1989) in the Northeast (NE) portion of
their study of the eastern U.S. (approximately 40). Results using a withheld-site set
of 50 are comparable to the results from the 97 sites used in Rochelle, ef al. (1989)
(Stevens, 1991).

In selecting the 50 withheld sites (Figure 18) it was desirable to have the sample
reflect the spatial properties of the gaged site population; that is being sparse where
stations are sparse and dense were stations are dense. Although in the long run strict
random sampling will have this property, individual samples tend towards being poor
representations of the spatial distribution. Some restrictions were therefore placed
on the selection of the withheld sites. This was done with the use of a spatially
systematic random sample (e.g. Bickford, et al., 1963) (Stevens, 1991, Stevens, et al.,
1991). The sampling procedure used was based on spatial clustering similar to that
used in the National Lake Survey (NLS) (Overton, 1987), except that sites were
selected with an algorithm rather than subjectively as the NLS did. The spatial extent
of the resource (gaged sites) was divided into compact clusters of points such that
approximately an equal number of samples (i.e. withheld sites) were taken from each
cluster. Clusters were formed by an algorithm that selects a point in the population

that is furthest from the spatial center of the population. The points near this cluster
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seed that have not been selected were assigned to this cluster until the desired cluster
size was reached. The process was then repeated with the spatial extent of the
populations reduced by the exclusion of the points already selected (Stevens, 1991).

Due to statistical considerations (i.e. spatial restrictions, problems in variance
estimation) the sample size per cluster is best when it is approximately two. Two sites
therefore were selected from each of 25 clusters comprised of roughly 18 sites each.
Due to 441 not being divisible by 18 some clusters had fewer than 18 sites, but this
moderate variation in cluster size was deemed to be of little consequence as long as
the target size was near two (Stevens, 1991, Stevens, ef al., 1991).

After the site selection the next step was the generation of the contour maps for
each of the procedures (GAGE84, MNLTET, MNLTRP, REG_R, MN84RP) without
using the 50 withheld sites. This included withholding the WY84 runoff data from the
generation of the mean regional R/P values used in the MN84RP procedure. For all
of the procedures the 50 sites were withheld from the generation of the TIN (ie.
Triangulated Irregular Network (ESRI, 1986)) created from estimated and actual
runoff-depth values, used to create the runoff-depth contours. In the third step a TIN
was created from these contours and estimated runoff-depth values were linearly
interpolated to the withheld sites. The fourth step was the calculation of interpolation
error values by subtracting gaged from estimated runoff at each withheld site. These

values are presented in Appendix C.
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RESULTS AND DISCUSSION

Interpolation Errors

Summary statistics (i.e. mean, standard deviation, etc.) were generated from the
interpolation error values calculated in the uncertainty analysis. These were then
compared to the results of Rochelle, et al. (1989) (Table VII). Rochelle, et al. (1989)
’CNTR’ method, a manual method which interpolates to the gaged sites centroid, is
equivalent to the GIS driven linear interpolation used in this thesis. The mean error
for the REG_R and MN84RP procedures, both for absolute and percentage
interpolation errors, yielded the best results and the closest equivalence to the
manual procedure and also showed a marked improvement over the simple

interpolation procedure (GAGES4).

TABLE VII

INTERPOLATION ERROR DESCRIPTIVE STATISTICS
FOR THE 50 WITHHELD RUNOFF SITES

Standard

Standard Population Error of Standard

Population Error of Standard Mean the Mean  Deviation

Method Mean the Mean Deviation _ (Percent) (Percent) (Percent)
Manual " 1.54" 0.88° 8.53" 0.90 1.47 14.21
GAGES84 -1.60 1.60 11.33 -3.23 2.06 14.57
MNLTET -4.45 2.43 17.22 -6.34 2.72 19.22
MNLTRP 4.20 1.74 12.31 332 1.95 13.82
REG R 0.48 1.82 12.87 -0.74 2.08 14.72
MNB84RP -0.37 1.67 11.83 -1.76 1.96 13.83

* Cm.
**Manual(CNTR) method, Source: Rochelle, ef al, (1989)
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A box-and-whisker diagram of the interpolation errors is presented in Figure 19.
The REG_R, MN84RP, and GAGES84 methods show the best grouping of values
near zero. A bias towards overestimation by the MNLTET method and
underestimation by the MNLTRP method is also apparent.

Empirical distribution function (EDF) graphs are commonly used to display the
cumulative relative frequency of a sample (Iman and Conover (1983)). These graphs
display the portion of the sample values, on the vertical axis, that are less than or
equal to the sample value presented on the horizontal axis. EDF’s of interpolation
error values for the five procedures are presented in Figure 20. REG_R, MN84RP,
and GAGERS4 have the steepest slopes centered on an error of zero of the five tested
showing a large number of sites with an error near zero. A bias towards
overestimation using MNLTET is apparent in the graph from its being off-center of
the zero value. All of the procedures show a marked increase in absolute error
towards the tails of their distributions. This pattern may be due to the general
regionalization algorithms used by the procedures. Watersheds that are atypical for
a region will not be handled as well by the algorithms used and thus will have larger
interpolation errors (Church, 1991). The general pattern of the EDF’s is similar to
that found by Rochelle, ef al. (1989) (Figure 21) for the long-term runoff-depth map
of the eastern United States, although the absolute errors are greater for WY84 than
the long-term error’s found by Rochelle, ef al. (1989). This is probably due to the

increase in runoff-depth in WY84 (ie. a mean of 141%) as compared to the long-
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term average, although other factors including possible defects in the procedures may
be contributing to this effect.

Interpolation error values were tested for the significance of their means from
zero (Table VIII). A T-test, which requires that the distribution of the variable to be
tested is normal, is the test usually used for this purpose (Iman and Conover 1983).
A signed rank test, which does not require a normal distribution (Iman and Conover,
1983), was used since none of the distributions of the procedures interpolation errors
were normal. MNLTRP was the only method whose mean interpolation error, both
absolute and percentage, was shown by the signed rank test to be significantly
different from zero. The bias is probably due to this procedure being based on the

apparently false assumption that R/P remains constant over time.

TABLE VIII

SIGNED RANK TEST FOR THE DIFFERENCE IN
MEAN INTERPOLATION ERROR
BEING SIGNIFICANTLY DIFFERENT FROM ZERO

Absolute Percentage

Interpolation Error Interpolation Error
Method Sgn Rank P(S) Sgn Rank P(S)
GAGES84 70.5 0.50 78.5 0.45
MNLTET 153.5 0.14 177.5 0.09
MNLTRP -294.5 <.01 -246.5 0.02
REG_R -80.5 0.44 -56.5 0.59
MNB84RP -20.5 0.85 18.5 0.86

A visual inspection of mapped absolute interpolation errors (Figures 22-27) was
conducted to examine if a relationship exists between high interpolation error

withheld sites and sites where the manual procedure map generalized the contours.
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For the manual procedure estimated runoff was interpolated to the withheld sites
from the MAN84 map. Differences in the MANG84 interpolated values and the gaged
values are the result of the "expert opinion" used by the USGS in creating this map.
Most of the errors are due to generalizations in areas of complex hydrology. Several
of the high error sites found in the MANS84 error map (Figure 27) correspond to sites
with high errors in the automated procedure maps. Thus several areas where the
automated procedures had high errors are also not handled well by the manual
procedure. One of the sites (1137500 Ammonoosuc River at Bethlehem Junction, NH
near Mt. Washington) is an example of the generalization and complex hydrology
problem. Estimates from the MAN84 map would overestimate by 13.7 cm the
measured runoff-depth at this site while estimates from the automated procedures
would be even higher. This is due to the large influence the Mt. Washington
precipitation station has on the estimated runoff at this site. This demonstrates one
of the weaknesses in the automated procedures in that topographic effects that would
temper the influence of the Mt. Washington precipitation site at the Ammonoosuc
River gage site are not incorporated into the procedure. A general trend of
equivalency or improvement in the results of MNLTET, MNLTRP, REG R, and

MN84RP over GAGES84 was also noted.

Regression Analysis for Bias in Estimated Runoff

A regression analysis was conducted to examine if any bias exists in estimated
runoff as compared to actual runoff at the fifty withheld sites. The interpolated runoff

was treated as the independent or predictor variable of gaged runoff, the dependent
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variable. A lack of bias is shown by an intercept that is not significantly different from
zero and a slope statistically equivalent to one. The results of the analysis are shown
in Table IX. Using a combined hypothesis test that the slope equals one and the
intercept equals zero GAGE84, MN84RP, and to a lesser degree REG_R show
results consistent with unbiased estimates at the five percent level. The MNLTET and
MNLTRP procedures show results consistent with biased estimates with this analysis.
As another check on these conclusions scatter plots of interpolated versus gaged
runoff (Figure 28-32) were produced. They show the underestimation trend in
MNLTRP and overestimation of the MNLTET procedure. No strong bias due to
runoff was noted in the plots. This will be further tested with a residual analysis later

in this chapter.

TABLE IX

REGRESSION ANALYSIS OF GAGED RUNOFF-DEPTH
VERSUS INTERPOLATED RUNOFF-DEPTH"

Standard Error Standard Error
Method Slope __of Slope Intercept  of Intercept p R?
GAGE$4 0.887 .094 8.55""" 8.70""" 307 .65
MNLTET 0.551 .085 37.28 8.15 <.001 47
MNLTRP 0.836 .100 17.99 8.62 019 .59
REG R 0.769 .094 20.80 8.47 057 S8
MNR84RP 0.824 .091 15.20 8.26 165 .63

"Interpolated runoff is the predictor

**p-value for the combined hypothesis test that the slope equals one and the intercept
equals zero.

..‘Cm
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Biases Due to Elevation, Watershed Area, and Runoff

To examine if there are biases in the runoff estimates or the interpolation errors
due to factors such as elevation estimated at the centroid or watershed area a
correlation analysis was conducted. Both a Pearson, which assumes a linear
relationship between the variables, and a Spearman, which assumes a non-linear
relationship, correlation analysis were utilized. Scatterplots were also produced. First,
the characteristics of the gaged runoff used in this thesis were examined with the
correlation analysis. No correlation was found between runoff-depth and watershed
area or elevation from this statistical analysis (Table X). This confirms the findings
of Rochelle, et al. (1988) who found no relationship between watershed area and
runoff-depth for a similar data set from the same area and time period. A visual
examination of the scatter plot of runoff vs watershed area shows the variability of
runoff-depth to be greater for smaller watersheds thus confirming the findings of
Rochelle, et al. (1988) and Garbrecht (1991).

Next, interpolation errors were examined for correlations with elevation,
watershed area, and runoff. Interpolation errors for all procedures were consistently
correlated to gaged runoff except for the Pearson analysis of MNLTET (Table XI
and XII). These correlations may be influenced by the non-independence of the
interpolation error (estimated - gaged runoff and estimated - gaged / gaged runoff)
and the gaged runoff values (Kite, 1989). A likely cause is that due to the regional

means and generalizations being used in the procedures, in general a higher than
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TABLE X

CORRELATION ANALYSIS OF
GAGED RUNOFF-DEPTH VERSUS
ELEVATION AND WATERSHED AREA'

Pearson

Elevation r,”  -0.20
P(r,) <.01

Watershed Area 1, -0.05
P(r,) 026

Spearman

Elevation I, -0.27
P(r,) <.01

Watershed Area 1, -0.20
Pr) <.01

‘n=441

"(rp=corre1ation using a Pearson analysis, r,=correlation using a Spearman analysis,
P=the smallest level of significance that would allow the rejection of the null
hypothesis (Iman and Conover, 1983).)

average runoff-depth area for the region would be underestimated while a lower than
average runoff-depth area for the region will be overestimated (Church, 1991). There
is no apparent bias in interpolation errors due to elevation. There is an apparent bias
due to watershed size in the MNLTET procedure according to the Spearman analysis

but an examination of the scatter plot showed no apparent trend. No other procedure

showed any significant bias due to watershed size.

Regional Effects

To examine if any MLRA regional effects on runoff or interpolation errors exist

an F-test was conducted. The results are summarized in Table XIII. Regional effects



TABLE XI

CORRELATION ANALYSIS OF
ABSOLUTE (Cm) INTERPOLATION ERROR VERSUS
GAGED RUNOFF, ELEVATION, AND WATERSHED AREA

GAGES84 MNLTET MNLTRP REG R MNS84RP
Pearson
Gaged Runoff I -0.45 -0.17 -0.44 -0.35 -0.37
P(r,) <.01 0.25 <.01 0.01 <.01
Elevation I, -0.12 0.02 -0.06 -0.04 -0.12
P(rp) 0.39 090 0.70 0.79 0.40
Watershed T 0.14 -0.20 -0.08 -0.14 -0.09
Area P(rp) 033 0.17 0.59 032 0.52
Spearman
Gaged Runoff r -0.44 -0.30 -0.49 -0.45 -0.44
P(ry) <.01 0.03 <.01 <.01 <.01
Elevation I -0.11 -0.10 -0.11 -0.14 -0.18
P(r) 0.44 0.50 0.44 0.33 0.20
Watershed I -0.07 -0.32 -0.18 -0.25 -0.20
Area P(ry) 0.60 0.02 0.19 0.07 0.17
TABLE XII
CORRELATION ANALYSIS OF
PERCENTAGE INTERPOLATION ERROR VERSUS
GAGED RUNOFF, ELEVATION, AND WATERSHED AREA
GAGES84 MNLTET MNLTRP REG R MNS84RP
Pearson
Gaged Runoff I, -0.47 -033 -0.49 -0.42 -0.46
P(rp) <.01 0.02 <.01 0.01 <.01
Elevation I, -0.13 -0.03 -0.08 -0.07 -0.15
P(rp) 0.37 0.81 0.55 0.65 0.30
Watershed I 0.10 -0.23 -0.12 -0.18 -0.12
Area P(rp) 0.47 0.11 0.39 0.22 0.39
Spearman
Gaged Runoff r, -0.41 -0.33 -0.44 -0.42 -0.47
P(ry <.01 0.02 <.01 <.01 <.01
Elevation I, -0.13 -0.10 -0.11 -0.14 -0.18
P(ry) 0.37 0.50 0.44 0.32 0.21
Watershed r -0.08 -0.30 -0.19 -0.26 -0.20

Area PCr) 059 0.03 0.18 0.07 0.16
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were significant at the one percent level for gaged runoff and at the five percent level
for GAGE84 and MN84RP runoff. The significant regional variations in gaged runoff
support the use of MLRA’s as the regionalization scheme used in MNLTET,
MNLTRP, and MN84RP. There were no significant regional effects on interpolation
error. REG_R shows no regional differences for runoff. This is probably due to the

region-wide nature of the regression formula used.

TABLE XIII

F-TEST OF MLRA EFFECT
ON RUNOFF AND INTERPOLATION ERROR VALUES
FROM THE FIFTY WITHHELD SITES

Interpolation Interpolation

Runoff Error (Cm) Error (%)
Runoff F P(F) F___P(F) F___P(F)
Gaged Values 4.50 <.001 e - eeeee
GAGES84 265 .016 1.25 .293 112 .372
MNLTET 112 372 0.40 .928 1.02  .444
MNLTRP 1.82  .094 144 206 1.65 .135
REG_R 1.63  .140 0.71 .698 0.96 .490
MNB84RP 271 014 0.90 .532 0.99 .466

Topographic and Site Density Effects

An analysis was also conducted to determine if interpolation errors were greater
in mountainous versus non-mountainous terrain or in areas of low runoff site density.
Graczyk, et al. (1987) and Krug, et al. (1990) state that estimates of runoff-depth
from manual procedure maps maybe less accurate in areas of high relief and lower
site density although Rochelle, et al. (1989) concluded that no such correlation exists

due to site density. Generalized mountainous zones were created for this analysis
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based on areas of higher elevation (greater than 400 meters) and/or steeper slopes
(generally greater than 15%). Higher site density zones were based on areas within
13 Km of WY84 runoff sites (Figure 33). The 13 Km distance was based on work by
Sopper and Lull (1966, 1970) who found a marked decrease in correlation between
runoff and precipitation sites (used to estimate runoff in the automated procedures)
in the Northeast greater than this distance. The withheld sites were related to these
zones of lesser (ie. mountainous and/or low site density) and greater confidence.
Since the lower site density zones are based on WY84 runoff sites none of the
withheld sites were in this zone and thus no statistical analysis was possible. Nine of
the withheld sites were in the mountainous (lower confidence in estimates) zone. An
examination of the means and standard deviations of the two groups (Table XIV)
shows higher absolute mean errors and greater standard deviations for the lesser
confidence zones. No statistically significant difference was found between the two
zones using an F-test (Table XV). The use of this map for gaging relative confidence
in the estimates of runoff from these maps, though not proven statistically, may still

be a useful tool for applications requiring site specific estimates.

SUMMARY OF FINDINGS

The REG_R and MNB84RP procedures were found to have mean errors
equivalent to those of the manual procedure as defined by Rochelle, et al. (1989) by
the uncertainty analysis. No regional biases in the interpolation errors were found

which shows equivalence to the results found for the manual procedure by Rochelle,
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Figure 33. Zones of Lesser and Greater Confidence in Runoff
Estimates.



TABLE XIV

DESCRIPTIVE STATISTICS OF INTERPOLATION ERRORS
FOR ZONES OF GREATER" AND LESSER™ CONFIDENCE

Interpolation Error (Cm)

Interpolation Error (%)

90

Standard Standard
Method Mean Deviation Mean Deviation
> Confidence Zone
GAGES$4 1.41 11.12 3.35 14.76
MNLTET 2.86 11.93 5.37 16.34
MNLTRP -4.18 10.43 -2.97 12.91
REG_R -1.08 10.01 0.44 13.00
MNB84RP 0.34 9.88 2.19 12.95
< Confidence Zone
GAGES84 2.47 12.92 2.71 14.55
MNLTET 11.72 32.15 10.81 30.04
MNLTRP -4.28 19.63 -4.92 18.28
REG_R 2.23 22.44 2.14 21.92
MNB84RP 0.52 19.23 -0.20 18.16
"Non-Mountainous (n=41)
**Mountainous (n=9)

TABLE XV

F-TEST OF MEAN INTERPOLATION ERROR VALUES
FOR ZONES OF GREATER' AND LESSER™ CONFIDENCE

Interpolation Error (Cm)

Interpolation Error (%)

Method F P(F) F P(F)
GAGES84 0.06 804 0.01 907
MNLTET 1.99 165 0.59 448
MNLTRP 0.00 983 0.15 .705
REG R 0.48 490 0.10 757
MNS84RP 0.00 967 0.22 644

"Non-Mountainous (n=41)
""Mountainous (n=9)
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et al. (1989). Bias in interpolation errors when compared to gaged runoff was found
for all methods. The non-independence of the variables and/or the regional
generalizations in the procedures used are possible explanations. Since this bias was
not tested for with the manual procedure it cannot be assumed that this is a weakness
found only in the automated procedures. No biases in interpolation errors were found
due to elevation or watershed area, other than a statistically significant bias for
watershed area for the MNLTET procedure which was not supported by a visual
inspection of the related scatter plot. A regression analysis between actual and
estimated runoff showed that GAGE84, MN84RP (at the five percent level) and
REG_R (at the one percent level) showed results consistent with unbiased estimates.
No statistically significant bias was found for interpolation errors in mountainous

terrain.



CHAPTER V

SUMMARY AND FUTURE AREAS OF RESEARCH

SUMMARY

This thesis hypothesized that a simple automated procedure can produce as
accurate a water-year runoff-depth contour map as that produced by the manual
procedure currently used by the U.S. Geological Survey (USGS). Five (GAGES$4,
MNLTET, MNLTRP, REG_R, and MN84RP) maps for WY84 derived from
automated procedures were tested with an uncertainty analysis to see if actual runoff
values matched those predicted from the contour maps produced by the procedures.
Two of the procedures, REG_R and MN84RP with mean percentage errors of -0.74
and -1.76% respectively, were found to be equivalent to the mean percentage error
noted for the manual method, 0.9% determined by Rochelle, ez al. (1989). No biases
in interpolation error by Major Land Resource Area (MLRA) were found and no
biases were found in predicted runoff due to elevation or watershed size. This lack
of bias was also noted for the manual procedure (Rochelle, et al., 1988,1989). Bias
in the interpolation error due to runoff-depth was found for the automated
procedures with larger interpolation errors occurring at watersheds with greater

runoff-depth. It is not known whether this bias exists in the manual procedure maps.
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The simplifying assumption that R/P remains constant over time was shown to be

inappropriate by the results of this thesis. The success of the MN84RP method
indicates that regionalization of R/P values to predict runoff at precipitation stations
is appropriate if data for the given water-year is used and a mean regional accuracy
is required. The assumption that ET remains constant over time was shown to be
statistically appropriate by the results of the uncertainty analysis although the
accuracy of the results obtained was lower than the other methods examined. The use
of long-term data was shown to be useful by the positive results of the REG_R
procedure, but is not required as evidenced by the results of the MN84RP procedure.

The two methodologies, REG_R and MN84RP, are put forth as acceptable
methods for producing runoff-depth contour maps for projects requiring a mean
regional accuracy of about 1%. Caution should be used if estimates of runoff for
individual sites are needed from one of these maps. As with all estimations from
runoff-depth contour maps, large differences from actual values may occur due to
local conditions. Individual site estimation errors of 15% or greater are not to be
unexpected with maps generated by the automated procedures. Until better
methodologies are perfected these two procedures should provide an adequate,
inexpensive means of producing a water-year specific map for wetter than normal

water-years in the Northeast.
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FUTURE AREAS OF RESEARCH

The procedures tested in this thesis are not intended to be the final solution to
the problem of automating the production of runoff-depth contour maps. Even in
their present form there is a need for further testing of the automated procedures on
water-years with below normal and normal precipitation as well as for other regions.
Further refinement of the REG_R procedure with the use of regression formulas
created for MLRA or MLRA groupings would also be worth investigation.

Research into the use of artificial intelligence for producing runoff-depth maps
is an area that might also yield worthwhile results. The incorporation of the decision
making processes used by the expert hydrologists at the USGS into an automated
procedure could greatly improve the results of automated mapping of runoff-depth.

With further research into automated methods the time-consuming and expensive
manual procedure in use by the USGS can be replaced. The advantages of lower
costs, reproduceability, and standardization of methods, especially in regards to
known accuracy, will make the time and cost involved in researching these new

methods worthwhile.
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APPENDIX B

LONG-TERM AND WATER-YEAR 1984
NCDC PRECIPITATION STATIONS
IN THE NORTHEAST UNITED STATES
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APPENDIX C

ESTIMATED AND GAGED RUNOFF
FOR THE WITHHELD USGS GAGE SITES



135

LS

L] *® & o o e o o

e s o o e o o
L -
| |

OCVNOHVONHOYANDTNOMOLIOSL VY
L] L]
0
-

L]
N
o

|

6°C~
Jouyd
&LNI

G°88
8°99
0°06
6°9L
£°06
0°L6
o°¢1t
v°88
v-t6
LS99
L°06
L°T8
6°08
£°499
£°19
£°29
T°LY
8 €01
2 06
9°C0T
6°L6
8°00T
L°PTT
¢ 80T
L°TTIT
9°18
8°LL
8°9L
S°18
£°98
€°LGT
v 8L
L°SL
J40ONNY
LSd

ddV8NK

9°GT- 0°LL
9°%-  L'6S
6°G2- 0°18
I°L- €°€L
¥*0I- 0°06
6°0 z 6
9°9T- ¥ 21T
Z2°'1- 6°16
G°LZ- T°S6
1°02 L°29
9°g 9°06
G'0- 8°I8
L°0Z 8°96
0°L- 8°SS
L°LT €°9L
z°0- 9°09
z°o 6°T¥
€°0T 8°TTT
vl veL8
6°0T- ¥°86
G°0T- 9°€6
0°2- 6°€6
6°¢€ 0°TTI
L*0T- 9°L0T
€2 €°L0T
8°IT 9°16
1°¢€ €°6L
L°0T- T°LL
0°L S°18
TI°L- L°28
8°16 §°29T
G°ZI- 8°8L
9°2- 6°SL
Jouua JJONNY
INI _ &sd
4 o3d

1°8- S v8
8°0- G°¢€9
¥°8¢- G°8L
0°6- LARYA
2°T1~- <T°68
6°0 €°v6
L*0Z- €£°80T
C°€T- 6°6L
L°9€- 0°98
8°81 ¥ 19
9°9 92°06
L°0- 9°18
1°0- 0°9L
6°9- 6°99
6°G S°¥9
2°0 v°19
0°L L8V
8°¢- 8°86
¢2°9- 8°6L
8°TT- G°L6
¢°8- 6°G6
9°0 G°96
9°2- G'vo1
V°G61- .  6°20T
6°0- T°v01
8 ‘8- 6°0L
T°6- 0°L9
G°CI- ¢t°GL
0°L G°18
T°€T- L°9L
S°1V 2°2S1
¢°61- T1°9L
VoL- 2°TL
Joyd JJ4ONNY
INI LSd
dALINH

vy°o- 2°26
vy°8 9°¢2L
T°6T- 8°LS8
T1°6- ¢ 1L
9°8- L°T6
2°s G*86
L°¥yI- €°v11
S°L 9°00T
1°22- 9°001
G°€ge 1°99
v°s ¥-06
s*C 8°v8
¢°81 19 4
¢°9~ 9°94
9°v¢ 2°¢8
6°L L*89
€°0T 0°2s
0°9 9°L0T
£°S £°T6
0°v 195 2 A 8
6° 1~ (A AV
L°TT 9°L0T
S°6 9°91T
Lt 0°2?1
S°T¢ G°9CT1
Sy~ £°SL
G*6- L*99
8°1T- 0°9¢L
G°9 6°08
¢ e- 9°98
1°06 8°00¢
8°GT- 6°GL
6°L- L°0L
JORIT JJIONNY
LNI LSH

LILTNH

6°TT- L°08
0°0 2°v9
L*6- €°L6
2°81 9°86
8°6- 9°06
6°L ¢°T10T
T°21- 6°911
9°1T~ G 16
G*LZ- T°S6
0-¢gc 9°G99
] G506
L°O0- 9°18
L2t 8°86
0°L- 8°4G9G
0Vl 9°2L
L V- 1°98
9°¢- T1°6¢
T°1T L°C1T
9°FV 9°06
0°TT- ¢€°86
G'0T- 9°¢€6
2°0 G°96
6°¢ 0°TTIT
S°0T- 8°LOT
0°s 0°0TT
1°SsT 8°V6
£°0T G°98
9°0T~- 2°LL
€°L 8°18
A 9°88
0°0¢ L°OET
6V~ v°98
2°% 2°¢e8
JOoddd JJAO0NNA
INT LSd
¥8dOVD

9°26
2 v9.
0°LOT
v°08
v°00T
£°€6
0°621
1°¢6
L-zet
9°2v
0°¢8
£°C8
T°9L
8°29
9°89
8°09
LTV
9°T0T
0°98
£°601
T°v0T
6°G6
T-L0T
£€°8TT
0°60T1
8°6L
2 9L
6°L8
S°vL
8°68
L°OTT
£°T6
9°8L
JA0NNYT
aaovd

0009VET
oooceey
00G9L0T
00SYYTIT
ovYI¥90T
0006S0T
000T6ET
008TSVT
089LYVT
006LEST
0002sST
0T8eYST
00G6G9¢€T
0020SET
00seEVCY
00G6€2ST
oootecy
0ELSOTT
0000TTT
00S6LTT
00G08TT
00€L8TT
00596TT
TST89TT
00TOLTT
0062sTT
00STIVPTT
00088¢CY
00098CY
000€L0T
00GLETT
0000TOT
000TTOT

az



136

v°o 9°v6
L°ST £°Z6
9°L- 9°L6
9°0- L°€6
T°8T1 ¥y°-901
9°0T T°LOT
B8°G- 6°G6
T°S 8°¢9
S°t S 10T
L*8- L°96
8°Ti- 6°C8
S°T L°16
0°9- 8°06
0o T~ 8°69
8°¢C1 G°¢8
9°81 T°96
S°*Ti- L*98
Joyd JJONNY
(NI LSd
dIV8NKW

L]
MNANOOHOMNMMUOVWOAHOINOM

1°16
G°G8
8°L6
8°€6
8°68
S°LOT
8°76
V29
6°10T
9°G6
6°28
8°06
8°98
1°89
9°LL
0°96
Z°T- 0°L6
Joyyud JI0NNY
INI _  Isd
4 o3y

—

-
|

—
1

NOODOWVADADARRI PO~
L]

L ]
o}
=

£°8- 6°498
0°0T G°98
vy L- B8°L6
S*0- 8°€6
0°¢t £°T16
8°0T £°LOT
£°9- v se
1 9 6°T9
0°T 0°66
0°0Z2- ¢£°G8
0°¢I- L*°¢8
£ e~ 6°98
V€T~ Vv°¢8
L®8=- ¢2° 29
T°L 8°9L
9°¢tl T°1T6
9°9T- L°18
Joudyd J40NNA
INI LSd
dALINW

9°9 8°00T
0°oc G°96
VoL~ 8°L6
L*°0- 9°¢€6
S°TE 8°6T1
0°¢t S°801
1°9- 9°66
L8 €°L9
L€ L°T0T
L 2 X 0°201
0°¢T- L-°¢8
¢ € v-ce6
9°9- 2° 06
9° L~ £°¢€9
(AR A" o°vs
8°6¢ € €0T
0°y £€°20T
O JJONNY
{LNI LSd
LALTINK

8°¢ 0°Lé6
vl 9°06
VoL~ 8°L6
9°0- L*€6
¢°1 G°68
6°0T v-LOT
8°9~ 6°Vv6
8°¢ ARA)
1 4 G 201
9°8- L°96
L*TIT- 0°¢€8
(A A 0°88
LI A S°Vv6
0°L- 8°¢9
£°81 1°88
8°6¢ £€°LOT
vy L°2C01
JOdd JJ40NNY
INI LSd

¥8dODV¥O

g ve
S°9L
g-sot
£°V6
£°88
G°96
L°TOT
9°8¢
0°86
v°sot
L V6
c° 06
8°96
6°0L
8°69
S°LL
2°86
JIONNA
agovd

000LSYT
00S€6€ET
00GS6LET
LOT86ET
0TZZ6¢€1
ELLELET
008LY YT
29881sT1
00060TT
000S0TT
0056601
00SCLTT
00G99TT
000€9cYy
00G2ZLET
00GL9¢T
86TC9ET

ar



	Uncertainty analysis of runoff estimates from runoff-depth contour maps produced by five automated procedures for the northeastern United States
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1527286681.pdf.W_ZQZ

