
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1992

Improved I/O pad positions assignment algorithm Improved I/O pad positions assignment algorithm

for sea-of-gates placement for sea-of-gates placement

Shyang-Kuen Her
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Her, Shyang-Kuen, "Improved I/O pad positions assignment algorithm for sea-of-gates placement" (1992).
Dissertations and Theses. Paper 4316.
https://doi.org/10.15760/etd.6200

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4316
https://doi.org/10.15760/etd.6200
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Shyang-Kuen Her for the Master of Science in

Electrical and Computer Engineering presented February 13,1992.

Title: Improved I/O Pad Positions Assignment Algorithm for Sea-of-Gates Placement

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

ta Chrzano'v'i

Andrew Fraser

A new heuristic method to improve the I/O pad assignment for the sea-of-gates

placement algorithm "PROUD" is proposed. In PROUD, the preplaced I/0 pads are used

as the boundary conditions in solving sparse linear equations to obtain the optimal

module placement. Due to the total wire length determined by the module positions is

the strong function of the preplaced I/0 pad positions, the optimization of the I/O pad

circular order and their assignment to the physical locations on the chip are attempted in

the thesis. The proposed I/0 pad assignment program is used as a predecessor of

PROUD. The results have revealed excellent improvement.

IMPROVED I/0 PAD POSITIONS ASSIGNMENT ALGORITHM FOR

SEA-OF-GA TES PLACEMENT

by

SHY ANG-KUEN HER

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1992

TO THE OFFICE OF GRADUATE STUDIES :

The members of the Committee approve the thesis of Sh yang-Kuen Her

presented February 13, 1992.

Malgorza~a Chrzanowska-'{eske, Chair
\

Andrew Fraser

APPROVED:

Rolf Schaumann, Chair, Department of Electrical Enginei ring

C. William Savery, Vice Provost for Gradua~dies and Research

ACKNOWLEDGEMENT

I am very grateful to my parents for supporting all kinds of help and encouraging

me during my entire studying period. I also would like to thank my adviser, Dr. Malgor­

zata Chrzanowska-Jeske, for instructing my whole thesis work, and Dr. Marek Perkowski

and Dr. Andrew Fraser for their valuable comments and corrections. Meanwhile, I must

thank my lovely girl friend, Aria Wong, for her kind encouragement and care, and my

good friend, Kiswanto Thayib, for his help in the programming task.

I also thank all the faculty in EE department and my schoolmates in PSU for their

kind friendship. I appreciate all the people I know in Portland for their hospitality that

leaves me a wonderful memory in U.S. A.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENT ... iii

LIST OFT ABLES . vi

LIST OF FIGURES .. vii

CHAPTER

I INTRODUCTION .. 1

II SEA-OF-GATES .. 4

What Is Sea-of-Gates? 4

Layout Tools for Sea-of-Gates . 6

III PREVIOUS PLACEMENT ALGORITHMS AND PROUD: AN
EFFICIENT SEA-OF-GATES PLACEMENT ALGORITHM 8

Introduction .. 8

Previous Placement Algorithms . 9

PROUD: Efficient Sea-of-Gates Placement Program 12

IV PAD ASSIGNMENT PROBLEM IN PROUD AND
SOLUTION APPROACH 13

Introduction .. 13

General Pad Problems 13

Pad Assignment Problem in PROUD 14

Solution Approach for Pad Assignment 15

V 1/0 PAD POSITIONS ASSIGNMENT ALGORITHM 18

Introduction . 18

Definition . 18

v

Pad Assignment Algorithm 19

Complexity .. 45

VI TEST RESULTS ... 47

VII CONCLUSION AND FUTURE WORK 53

REFERENCES .. 55

APPENDICES

A ONE INITIAL PAD AND TWO WAYS ASSIGNING
FUNCTION ALGORITHM 57

B 1/0 PAD POSITIONS ASSIGNMENT PROGRAM 60

TABLE

I

II

III

IV

v

VI

VII

VIII

IX

LIST OFT ABLES

Benchmark specifications

Results comparison for PRIMARY 1

Results comparison for PRIMARY2

Example specifications

Results comparison for CIRCUIT_!

Results comparison for CIRCUIT_2

Results comparison for CIRCUIT_3

Results comparison for CIRCUIT_ 4

Results comparison for CIRCUIT _5

PAGE

47

48

48

50

50

51

51

51

52

LIST OF FIGURES

FIGURE PAGE

1. Sea-of-gates design graph. 5

2. Basic cell enlargement . 5

3. Placement results by random 1/0 arrangement. 15

4. Forces from pads. 16

5. Forces among pads and modules . 17

6. Pad assignment algorithm flowchart. 20

7. Cost example. 22

8. The influence of pad on module. 23

9. One initial pad and one way local assignment............. 24

10. Position switching. 25

11. Total wire length vs allocation for PRIMARY 1 25

12. PRIMARYl results from one initial pad and one way local
assigning function. 26

13. PRIMARYl results from one initial pad and one way global
assigning function. 28

14. One initial pad and two ways assignment.......... 29

15. PRIMARYl results from one initial pad and two ways
assigning function. 31

16. PRIMARY2 results from one initial pad and two ways
assigning function. 32

17. Two initial pads and four ways assignment 32

18. Two sub-rings concatenate . 34

19. PRIMARYl results from two initial pads and four ways
assigning function. 34

Vlll

20. Rate of PRIMARY! GP results from one initial pad and one
way local assigning function 35

21. Rate of PRIMARY! GP results from one initial pad and one
way global assigning function 35

22. Rate of PRIMARY! GP results from one initial pad and two
ways assigning function 36

23. Rate of PRIMARY! GP results from two initial pads and four
ways assigning function 36

24. Nearer-pad-pairs 38

25. Sums of NWCs vs different rings for PRIMARY! 39

26. Farthest-pad-pairs 40

27. Negative sums of FWCs vs different rings for PRIMARY! 40

28. Sums of NDCs vs different rings for PRIMARYl. 40

29. Negative sums of FDCs vs different rings for PRIMARY! 41

30. Example for block-pad-pairs 41

31. Sums of BWCs vs different rings for PRIMARY! 42

32. Ring's FACTOR_SUM vs different rings for PRIMARYl. 43

33. Ring's FACTOR_SUM vs different rings for PRIMARY2 43

34. Total wire length of GP vs FACTOR_SUM for PRIMARY I. .. 44

35. Total wire length of GP vs FACTOR_SUM for PRIMARY2 ... 44

36. Results of different 1/0 pad arrangement for PRIMARY 1 49

CHAPTER I

INTRODUCTION

As the design of very large scale integrated (VLSI) circuits becomes more com­

plicated, the conventional design style, like gate arrays and standard cells, with rows of

cells separated by fixed-width routing channels is no longer suitable. The conventional

design style has worked successfully for circuits with low gate density. But when circuits
//

become more complex and the number of gat~ is large, some drawbacks become
_;

significant in the conventional design style. First, the fixed routing channels use a lot of

space. Therefore, the number of gates that can be placed in a chip is limited. Second,

sometimes the tracks in a channel are not enough to complete the connections between

two sided rows of cells, detours and vias are needed. This will cause undesirable conges-

tion in adjacent neighbor channels and additional metal wire capacitance. Third, the as-

pect ratio of the cell is always restricted in some area. For circuits with different shapes

of cells, like the macro cells, 100 percent automated layout becomes difficult. Therefore

a new design style, sea-of-gates, is becoming more and more important, especially in the

design of application specific integrated circuits (ASICs).

In sea-of-gates technology, chips are fabricated by adding customized connection

layers to a wafer of prefabricated transistor arrays. Sea-of-gates chip features an

increased number of gates, up to 250,000 on a chip, and an increased number of wiring

layers. The above together with the lack of predefined fixed channels offer more flexible

placement and routing options but also increase the complexity of the optimization prob­

lems. For high density of gates in a chip, some of the conventional layout alg01ithms

need unberable time to reach an acceptable result if one is possible. Therefore, new, more

efficient automatic layout algorithms are needed to overcome the difficulties that the

2

conventional algorithms met in complex circuits.

A placement algorithm, "PROUD" [1][2], based on the concept of resistive net­

work optimization, was shown to perform very efficiently on large and complex sea-of­

gates chips. This algorithm takes the 1/0 pad positions as input and solves successively

linear equations to obtain an optimized module arrangement. As the 1/0 pad positions

determine the boundary conditions needed for this solution method, their arrangement

directly influences the final placement solution. Usually the sum of net length, defined as

the half-perimeter of the rectangle that encloses all pins in the same net, is commonly

used as a measure for placement. Since the total wire length determined by the module

positions is the strong function of the preplaced 1/0 pad locations, a good assignment of

the I/0 pad circular order and their assignment to the physical locations on the chip

should be attempted.

Usually pad problems are solved independently from the placement of interior

modules. It means that the placement of the interior modules is solved before the place­

ment of pads. Therefore the problem is an optimization of minimizing the net length

between the pad and the modules in the same net. However, when the placement prob­

lem is solved by some force-directed algorithms, the fixed 1/0 pad positions must be

known before the interior modules are placed. That is because in the absence of I/0 pads,

the interior modules collapse to the center of a chip. Thus this kind of pad optimization

problem is much concerned to the whole connections between pads and modules.

In this thesis a pad assignment algorithm with a heuristic searching method is pro­

posed. It determines the 1/0 pad arrangement, which is then used in the sea-of-gates

placement program "PROUD". Using the net list information the algorithm determines

the relative position of each pad on the circular ring and then assigns them to the physical

fixed pad locations on a chip. The preplaced I/O pads are then used as a boundary condi­

tion by PROUD. The pad assignment program is written in C and tested on the SUN

3

SPARC workstation using some benchmark examples from Microelectronic Center of

North Carolina (MCNC). A number of tests have been run and good results have been

approached.

In Chapter II a brief introduction of sea-of-gate is presented and some layout tools

suitable for the sea-of-gates chip are described. Chapter III reviews some commonly used

conventional placement algorithms and an efficient sea-of-gates placement algorithm

"PROUD" is presented. Due to the superior characteristics of PROUD over other con­

ventional placement algorithms, we were motivated to engage in the study of its pad

problem. The pad problem in PROUD is defined in Chapter IV. In Chapter V the whole

I/0 pad positions assignment algorithm is presented. The results are presented in

Chapter VI. Finally, a brief conclusion of this research work and some possible prob­

lems for future study are suggested at the end of the thesis.

CHAPTER II

SEA-OF-GA TES

WHAT IS SEA-OF-GATES?

The sea-of-gates design style is shown in Figure 1. It does not have pre-defined

routing channels like the conventional design style. Gates are placed close together all

over the chip. Therefore, high density on the order of 250,000 gates per chip becomes

possible. For example, recently IBM presented a 300,000 gates ultralarge-scale integrat­

ed (ULSI) CMOS structured sea-of-gates array [3]. The features of this design are

quadruple-level metalization, 0.45µm effective channel lengths, 0.8µm drawn gates,

0.18ns gate delays typically. The size of the chip is only one-ninth of a square inch, yet

it contains 2 million transistors. Since channels are not provided in the sea-of-gates chip,

gates are connected by routing through existing gates as shown in Figure 2, and by ad­

ding more metals or polysilicon interconnection layers. However, if interconnections are

completed by routing through existing gates, then the overall usable gate count is re­

duced. For a typical sea-of-gates chip a fraction around 30 to 70 percent of gates are used

with current technology [4]. Though the utilization of usable gates is low in the sea-of­

gates chip, it is still the best method to obtain higher density order of gates per chip. For

example, a 250,000 gates of sea-of-gates chip with 40 percent utilization can obtain

80,000 gates more than a 20,000 gates of conventional gate array with 95 percent utiliza­

tion [4]. Yet, there is a tradeoff between gate utilization and layout complexity. Higher

gate utilization will cause less space for routing. Therefore, layout becomes difficult. In

addition to above features, cells in sea-of-gates can grow two dimensionally and the

number of routing tracks is adjustable. This is because the concept of the routing channel

5

has been changed from hardware to software domain. The channel size is defined vari-

ably by the layout algorithm according to the shape of cells and available routing space.

Moreover, sea-of-gates design can be easily adopted into different kinds of circuit

designs like gate arrays, standard cells or with macro cells combined circuits.

CJ

D
D
D
D
CJ

DDDDDD

DC:JCJDDCJ

D 1/0 pad D basic cell

Figure 1. Sea-of-gates design graph.

I r----i r - ,
I

I I
I

I I I I L-1 I
I I
I I

I I

I I

~----i-----~----i
I I I I

I I

I : I I I I : I
I I

L----------J I

I f-----i I I : I
I

I r -----i r----+-_J I

logic gate

Figure 2. Basic cell enlargement.

D

D
D
D
D
D

6

LAYOUT TOOLS FOR SEA-OF-GA TES

Since the number of gates in the sea-of-gates design is large, more efficient place­

ment and routing tools are needed to reach an acceptable result in reasonable time.

Several methods have already been proposed and research efforts are still continuing.

SoGOLaR (Sea-of-Gates Optimized Layout and Routing) [5] is a program to gen­

erate functional cells for static CMOS circuits in the sea-of-gates layout style. It is used

on two applications. One application is to regenerate a fixed cell library in corresponding

to the change in fabrication technology. The other application is to generate customized

cells as part of a more flexible approach to automatic layout. In addition to these two

applications, it can be used as a framework for evaluating the quality of the base array

templates used in different sea-of-gates layout systems by measuring the area utilization.

A floorplanner FOLM [6] for sea-of-gates design style with a frame overlapping floor­

plan model was proposed by Toshiba Corporation. This floorplanner is based on a model

which uses frames for placement without any constraint on inter-block channels. A frame

is defined as a region to restrict the placement of a specific cell group. A forced directed

method is used to control the shape and movement of the frames. Meanwhile the frames

are allowed to overlap in order to reduce the possibility of causing area with extreme

aspect ratio. The objective of this ftoorplanner is to minimize the net length among

frames in order to efficiently use the chip area. By using this frame model, FOLM­

planner demonstrated the capabilities of making the cell density uniform and of minizing

the net length. Improvement has been approached comparing to those floorplan models

with inter-channels restriction like the building block model. Another sea-of-gates layout

tool ORCA [7] is a place and route system, which provides standard-cell-like, macro­

cell-like and porous macro-cell layout styles. By using the characteristic of the over-cell

routing more flexible cells are generated and good results are achieved. ORCA had

demonstrated its good ability to solve problems on row-based gate arrays as well as sea-

7

of-gates. VLSI Technology Incorporates proposed a hierarchical floor-planning, place­

ment and routing tool for sea-of-gates design. This tool is designed to handle 250K gates

gate array with RAM and ROM function blocks. It features concurrent processing,

timing-driven layout, special clock distribution and power distribution. Yet, for complex

sea-of-gates gate arrays this tool is still on the testing stage. Moreover a sea-of-gates

placement algorithm "PROUD" [l] was proposed by R. Tsay, E. Kuh and C. Hsu from

University of California, Berkeley. The concept of resistive network optimization was

used to solve the placement optimization problem. By solving successive analogous

linear equations together with hierarchical partitioning and iteration, the global place­

ment optimization is approached. By considering actual pin position, module rotation,

1/0 pad position adjustment and module swap, further improvement of the placement

quality can be obtained. Experiments demonstrate that a good result for total wire length

can be obtained in shorter time than the latest simulated annealing approach. Due to its

superior performance in solving circuits with large number of gates, it is suitable for

sea-of-gates chips. This program can also be applied to different kind of design styles

like gate arrays and standard cells.

The benefit of large number of gates and the flexibility of design options make

sea-of-gates applicable to current ASIC's. Sea-of-gates has demonstrated its superior per­

formance in a lot of applications. By using sea-of-gates technology a system implementa­

tion with 177k raw gates and flexibility of accommodating RAM and ROM in a single

die was achieved by NEC Corporation [8]. Hitachi Semiconductor have announced his

250k available gates achievement [3]. NCR Microelectronics announced a CMOS gate

array family with 0.7µm effective channel length and up to lOOk usable gates in a

double-level metal (OLM) process [3]. The exploration of higher gates utilization is con­

tinuing.

CHAPTER III

PREVIOUS PLACEMENT ALGORITHMS AND
PROUD: AN EFFICIENT SEA-OF-GA TES PLACEMENT ALGORITHM

INTRODUCTION

The placement problem for VLSI design is to place modules on a specified

geometrical plane based on the given module interconnection specification, netlist. The

final purpose of placement is to provide a facility for 100 percent routing. Usually the

quality of placement is hard to measure until the routing is completed. For the conveni-

ence of comparison, the area of the resulting chip, the roughly estimated wire length, and

the execution time are often used to compare the performance of various placement alga-

rithms. Especially when circuits are complicated and the number of modules is large, the

execution time becomes a much concerned factor. A lot of methods to solve the place-

ment optimization problems like: minimum cut, branch and bound [9], force directed [1],

simulated annealing, simulated evolution and more have been proposed. As the chips

have become increasingly complex, larger in dimension and larger in module number,

more efficient algorithms are being proposed continuously. Most of these methods per­

form well only for some specific placement problems. Due to the complexity and larger

number of cells in the sea-of-gates design style, a good algorithm suitable for this kind of

circuit design should possess the ability of reaching an acceptable solution in a bearable

time. In this chapter several often used conventional placement algorithms are reviewed,

and a new, efficient placement algorithm "PROUD" suitable for the sea-of-gates design is

introduced.

9

PREVIOUS PLACEMENT ALGORITHMS

Numerous placement algorithms have been proposed. Most of them are used in

some specific placement problems. No general placement algorithms exist which can

solve all the placement problems. Some of these algorithms possess significant charac­

teristics in solving placement problems with conventional design styles. But when cir­

cuits becomes complex and the number of gates on a chip becomes large, these methods

present some drawbacks in the consideration of efficiency.

Min-Cut

The min-cut algorithm is a widely used heuristic algorithm for circuit placement.

It starts with an initial bisection and exchanges pairs of modules across the cut of the

bisection if the objective performance is improved. The objective is to minimize the

module connections across the cut. This procedure allowed tightly interconnected cells to

be placed together. The cutting and minimizing processes continue vertically and hor­

izontally until each block contains a small specified amount of cells. This top-down

hierarchical algorithm avoids the wiring congestion which is found usually in the center

of the layout. However, a final result is possible to be stuck at a local optimum. A basic

min-cut algorithm based on pairwise exchange was proposed by Kerninghan and Lin

[10]. Fiduccia and Mattheyse [11] have made a modification to this Kerninghan-Lin

min-cut heuristic. Also, a multiway partitioning method was proposed [12]. Practically,

this greedy, recursive bipartitioning heuristic has demonstrated its ability to generate

satisfactory solutions for many applications. But, due to the unavoidable large computa­

tion, the efficacy of this method becomes a problem for large circuits.

Simulated Annealing

Simulated annealing algorithm came from the concept of crystal growing

processes. From experiments, a perfect crystal can be reached by applying the process of

10

annealing. By using this concept into combinatorial optimization problems for the deter­

mination of global minimum, good results can be obtained with a good annealing

schedule. This method features exploring high cost move in order to avoid being trapped

at local optimum. TimberWolf [13], an integrated set of placement and routing program,

is based on this simulated annealing idea. Its basic algorithm can be presented as follows.

Given a combinatorial optimization problem specified by a finite set of configurations

and a cost function. A generation function is applied to generate a new configuration, and

a random acceptance function is used to decide acceptance or rejection of new

configuration. A parameter T, in analogy with temperature in annealing process, controls

acceptance rule. A stopping criterion is reached when the cost remains the same after

several annealing process. Good result with chip area saving and wire length reduction

can be obtained, and the trap of local optimum can be avoided [14]. But the computation

complexity is high for simulated annealing algorithm. It means tremendous CPU time is

required. When the number of cells becomes large an unberable time will be needed to

reach an acceptable result. Another difficult problem is how to build a good and efficient

annealing schedule.

Simulated Evolution

Like simulated annealing this method is based on an analogy to the natural selec­

tion process in biological environments. According to natural evolution theory the supe­

rior characteristics of creatures will be kept and the ill-suited will be eliminated from one

generation to next generation. The other way by a small rate of mutation, an unpredict­

able process that changes the characteristics, nature can prevent the developments of

species from getting stuck at local optimum. The purpose of the evolution is to create

stable structures which are finally perfectly adapted to the given constraints. By applying

the idea of natural evolution to combinatorial optimization problems, some approaches

have been announced by R. M. Kling and P. Banerjee [15][16][17]. The simulated evolu-

11

tion algorithm starts from an initial placement as a seed. After precomputation, according

to wire length cost function, the already well placed cells are kept at the original loca­

tions and try to improve the other cells. Next step is the mutation process. Two modules

are selected and exchanged randomly without regard to the placement value. Then

evaluation is operated to the current placement based on specific cost function. By com­

paring each cell's placement value with a random number in the range from 0 to 100%,

the decision is made to which cell will retain its current position in the next generation

and which one should change to new position. The process will stop when no cells need

to change its current position. This algorithm performs well only on small size circuits.

When cell count becomes large the placement quality tends to get worse.

GORDIAN

Due to the complexity of circuit and large size of cell count some of the place­

ment tools are preceded by dividing and iterations in order to reduce the problem size.

This kind of algorithms have been claimed to solve optimization problems locally.

Recently, a new placement optimization program GORDIAN [18] was proposed to solve

the placement problem globally. By using the connectivity information of the circuit this

program formulates the placement problem into a sequence of quadratic programming

problems. Instead of dividing the whole problem into independent subproblems it adds

more constraints to restrict the movement of cells on the chip space by partitions. This

program is proceeded by an iteration of global optimization and partitioning steps. By

using global optimization in the first stage all cells can be placed in the whole region of

the chip. Then the partitioning step is provided to cut the whole space into subregions

and cells into sub-cells. During next global optimization step each group of modules can

only be placed in the specific sub-region. The processes will continue until each region

contains only a specified number of cells. Experiments show its ability of solving cir­

cuits with large number of gates.

12

PROUD: EFFICIENT SEA-OF-GA TES PLACEMENT PROGRAM

"PROUD" is an automatic circuit placement program written in C programming

language[l]. It is designed for high complexity row-structured sea-of-gates, gate array

and standard cell designs. It comprises of constructive phase and iterative improvement

phase. Successive Over-Relaxation method and hierarchical partitions are used in con­

structive phase. In iterative improvement phase, local perturbations, I/O pad position

adjustment, module swap or insertion are performed to achieve detail placement. The

objective function of squared wire length is analogous to the power dissipation. The pre­

defined I/O pad positions are analogous to the fixed voltage sources, and the interior

movable modules are analogous to the node voltages. By using the concept of resistive

network optimization, successively sparse linear equations are solved. The efficient

sparse matrix technique is applied to solve these linear equations. Followed by a series of

partitions and iterations, the interior module arrangement is optimized to result in shorter

total wire length. In each partition some of the modules are allowed to represent fixed I/0

pad positions. The total wire length has been improved and the execution time of

PROUD is an order of magnitude faster than simulated annealing. This algorithm per­

forms well in solving circuits with large number of gates. In this program the I/O pad

positions are used as initial conditions. Experiments show that the final result of interior

module arrangement is influenced by the boundary conditions, and a good arrangement

of the I/0 pad arrangement will result in an optimized placement of interior modules.

CHAPTER IV

PAD ASSIGNMENT PROBLEM IN PROUD AND SOLUTION APPROACH

INTRODUCTION

The pad problem is to find a set of ordered 1/0 pads in a ring facilitate on the out­

side edge of the chip, and to complete interconnections with interior modules specified

by the net list. The objective is to minimize the total wire length and the chip area. The

I/0 pad problems are considered to be NP-complete combinatorial problems from the

view of computational complexity. Usually, the 1/0 pad problem can be solved in three

ways. One is to solve it after the interior modules have been already placed. Another way

is to solve it with the interior modules together. Also it can be solved before the interior

modules are placed. No matter which method is used, no one can guarantee an optimal

solution for the real life large scale problems. Hence, algorithms based on the heuristic

method are employed to reach good answers.

GENERAL PAD PROBLEMS

Several methods have been proposed to solve the pad assignment problem. For

some placement algorithms, the pad assignment is determined independently after the

optimization of module arrangement is already solved. This kind of pad assignment algo­

rithm starts with an initial pad arrangement and exchanges the pad-pairs which will result

in shorter total wire length. The exchange process will stop when there is no more im­

provement. Due to the fact that the interior modules are all fixed, the contribution of wire

length reduction all comes from the change of pads' locations. More possible reduction

of wire length contributed from the movement of modules in large core space is prohibit-

14

ed. The improvement is assumed limited. Furthermore, the quality of final total wire

length is heavily influenced by the initial pad arrangement. D. C. Wang has proposed

another pad assignment method [19] based on a bipartite graph. This graph contained two

sets of nodes. One represents the pads and the other the physical pads' positions on the

chip. The edge represents a cost to assign a pad to a specific physical location. The ob­

jective is to have the assignment of a pad to a position increase the wire length of that net

as small as possible.

Recently, an I/O pad assignment method based on the analysis of circuit structure

was proposed by M. Pedram, k. Chaudhary and E. S. Kuh [20]. This method uses a

directed acyclic graph, which is represented as a Boolean network or a directed net list,

to determine the relative pad positions. This pad assignment is obtained before the inte­

rior modules are placed, and the module arrangement will be determined after the pad

positions are specified. Therefore, the circuit placement is not solved independently for

pads and modules respectively, thus the whole interconnections among pads and modules

need to be considered.

PAD ASSIGNMENT PROBLEM IN PROUD

The sea-of-gates placement algorithm "PROUD" is based on the concept of resis­

tive network optimization. The transformed objective function xr BX, the sum of the

squared wire length, is analogous to the power dissipation of an-node linear resistive net­

work, where the X represents the coordinate matrix of modules and B is a modified con­

nectivity matrix. By using the two Kirchhoff Laws the resistive network equations are

written as:

B uX 1 + B 12X 2 = 0

B 21X 1 + B 22X 2 = i 2

The I/0 pad positions are analogous to fixed voltage sources x 2 used as the boundary

15

conditions. The movable modules, to be determined, are analogous to the node voltages

X 1- The matrices 811, 812, 821 and 822 are the modified connectivity submatrices deter-

mined from netlist information. By solving the sparse linear equations with successive

over-relaxation method, the optimal module placement is determined. Because the

modules are specified as point modules, partition and iteration methods are used to solve

the overlapping problem when the point modules are replaced by real modules. We have

made a number of tests using the "PROUD" program to determine the influence of dif­

ferent pad arrangements on the total wire length. Figure 3 shows the variable global

placement results versus different pad arrangements for the standard cell example PRI-

MARYL

Total

1.3e+06

l.2e+06

wire 1.1 e+06
length

le+06

900000

0 20 40 60 80
Rings with different pad order

Figure 3. Placement results by random l/O arrangement.

The horizontal axis represents different arrangements of pads. A resulting devia-

tion of 16.3% above and below the average result was observed for the standard cell

benchmark example "PRIMARY!" from the MCNC.

SOLUTION APPROACH FOR PAD ASSIGNMENT

At the beginning we run the PROUD program with different pad arrangements

used as inputs. The results of the total wire length change variably. We noticed that in

every test some interior modules will be placed closely to the pads that have connections

16

with them. We assume that there are pulling forces among pads and modules. If a module

connects to more than one pad, every pad will try to pull this module closer to itself. We

assume that the strength from each pad to this module is the same, a position for this

module in the gravity center of these pads will cause these forces from pads into a bal-

ance status as shown in Figure 4. The module in Figure 4 is pulled to the center of the

chip by four pads.

ODDDDO
' "

D ' " D ' " ' " ' "
D ' " D ' " ' " ' " ' " D ' " D ' "

b D D " ' " ' " ' " ' D / ' D / ' " ' / ' " ' D / ' D / '
" '

DDDDDD
Figure4. Forces from pads.

The balance status is influenced not only by the forces from pads but also by the

forces existing among the modules themselves. The boundary condition represented by

fixed 1/0 pad positions could be interpreted as the source forces, and the connections

among modules could be interpreted as transmitted forces as shown in Figure 5. In addi-

tion to the source force trying to pull the connected modules closer to the pad, the

transmitted forces try to pull the connected modules closer to themselves. Therefore, the

final location of a module depends on which direction the total pulling forces are stronger

and whether the slots to place modules are available or not. It is assumed that if the most

related pads can be placed closely then the modules most related to these pads can be

forced into available slots close to these pads, which would result in shorter total wire

17

length. The words "most related" means the strongest connectivity strength among pads

and modules. According to this force idea a heuristic searching algorithm for pad assign-

ment is proposed in Chapter V.

Q c:::=J [=:J c=J c=J
' Source Fore o _:a- o

,,." D, D-:. ------o ',
' ' I

D
,0

' 0 , , 'O ---t - - - - - - - - - -b
- -, ·1· mitted Force ' , '~Trans ~'

0,, 6-lo \o _
o;j--0

_ ,':{]

D \

\
\

C=:J c=J c=J c=J D
Figure 5. Forces among pads and modules.

D

CHAPTER V

I/O PAD POSITIONS ASSIGNMENT ALGORITHM

INTRODUCTION

In this chapter a pad positions assignment algorithm with a heuristic searching

method to determine the I/O pad arrangement is proposed. This algorithm determines the

relative position of each pad on the ring and then assigns this ring of pads to the physical

locations on a chip. The preplaced I/O pads are then used as a boundary condition for the

sea-of-gates placement program "PROUD". The pad assignment program comprises of

five stages: input data, cost factors, assigning function, selection function and output. In

the cost factors stage, two cost factors are defined to determine the connectivity strength

between pads. In the assigning function stage, four different pad assigning methods have

been studied. One of them was chosen to be used in our pad assignment program. The

output of the program is a design file with specified pad positions, which is then used as

the input to PROUD. The pad assignment program has been tested using two benchmark

examples: PRIMARYl and PRIMARY2. Excellent improvement has been approached.

DEFINITION

The physical chip has two parts: the interior area for placing movable modules

and the outside area for fixed I/0 pads. The cell is used as a general name for the pad

and the module. The modules represent the cells in the interior area of a chip, netlist is

represented as an undirected graph G = (V, E), in which the vertices V = { c 1, ,en }

represent cells and the edges E = { e i, , e,,, } represent the connections between

cells. Several definitions are stated.

19

Definition I: Path P xy is an undirected path between pad x and pad y.

Definition 2: Cell's weight Wx is defined as the number of cells that are connect­

ed to cell x. Wx =degree of Cx

Definition 3: Weight cost WC(x,y) is the sum of all the cells' weights along the

path between pad x and pad y. WC (x ,y) = c,~X)' W;

Definition 4: Depth cost DC (x ,y) is the number of cells along a path between pad

x andpady. DC(x,y)= c;~xyc;

Definition 5: The shortest path between two pads is the path with the smallest

weight cost.

Definition 6: An initial pad is the first assigned pad.

Definition 7: A pad-ring RING (x) is defined as a ring of pads with pad x as the

initial pad.

Definition 8: A pad already assigned to its position and waiting for the other pad

to be assigned beside it is called the host pad.

Definition 9: A pad chosen to be possibly placed beside the host pad is called the

candidate pad.

Definition 10: A neighbor pad is a pad which has been determined to be placed

beside the host pad.

PAD ASSIGNMENT ALGORITHM

A heuristic searching method to improve the I/0 pad assignment for the place­

ment algorithm based on the resistive network optimization model is introduced. The in­

put data are: the original design file used by PROUD and the physical pad-location-file.

The original design file contains the description of 1/0 pads and modules. The output of

this algorithm is the same design file but with the physical pad locations specified for

each pad.

20

The pad assignment algorithm comprises of 5 stages: input data, cost factors cal-

culation, assigning function, selection function and output. The algorithm flowchart is

shown in Figure 6. The blocks at the right side of Figure 6 represent the contents for

each stage. These assigning functions squared by dashed line in Figure 6 are used to

compare with the other assigning function which is squared by solid line. They are not

used in the 1/0 pad assignment program.

Input Data
Original design file for PROUD

Pad physical locations file

+

Cost Factors :-
Weight Cost

Depth Cost

+ i One Initial Pad and Two Ways Assigrunent I
Assigning ~

Function

!
Nearer-pad-pair's Weight Cost Factor

Selection Nearer-pad-pair's Depth Cost Factor
Function Farthest-pad-pair's Weight Cost Factor

+
Farthest-pad-pair's Depth Cost Factor

Block-pad-pair's Weight Cost Factor

Output

Figure 6. Pad assignment algorithm flowchart.

The cell adjacent list is built by reading the input file. Once the cell adjacent list

is known the cost factors are calculated. Then the pad assigning process is executed to

build pad-rings with different initial pads. After the pad assigning process, a selection

21

function is used to choose good pad-rings from a group of rings with different initial pad,

which are formed by assigning function. Five factors are used to determine the selection

function. At last the design file with specified pad positions is printed out. This pad

assignment program is used as a predecessor for PROUD, and was tested on the standard

cell benchmark examples the same examples as in [1]: PRIMARY! and PRIMARY2.

Input Data

The netlist information can be obtained from the pad and module descriptions in

the design file. The netlist is then transformed into the cell adjacent list. Later this cell

adjacent list is used to search for highly related pads. The other input file contains the

coordinate values of the physical pad locations on a chip. The format of this file is pre­

defined by assigning the coordinate values of the available top middle pad position or

bottom middle pad position of a chip to the first order of the pad-location-file if the first

partition in PROUD is specified as a vertical cut. The first coordinate values are used as

physical location of the initial pad. Following either the clockwise or counterclockwise

direction on a chip, the other coordinate values are assigned in successive order. If the

first partition in PROUD is specified as a horizontal cut, then the coordinate values of the

available right middle or left middle position are used as physical location of the initial

pad.

Cost Factors

For each pad-pair, there are a lot of different paths to connect them. But only the

shortest path between each pad-pair can best express the connectivity relationship

between them. Therefore, in the following text, the weight cost WC() and the depth cost

DC() will represent only the costs along the shortest paths between two pads. The

smaller values of these two factors indicate stronger connectivity strength between pads.

22

x c E F y

Figure 7. Cost example.

For example, in Figure 7 X -C-D-E-F -Y is the shortest path from pad X to

pad Y. The number in the vertex is the weight of each cell. The cost factors are calcu­

lated as follows:

WC (X ,Y) = Wx +We+ WD +WE+ Wp + Wy =3 + 4 + 6 + 5 + 4 + 3 = 25

DC (X ,Y) =The number of cells along the shortest path = 6

Dijkstra's algorithm [21] is used to find the shortest path between any two pads.

The reason we use only the shortest path values as the cost factors is because that the

forces applied by fixed pads on modules are significant when the weight cost is small.

The influence of the forces applied by fixed pads on the modules is weak when there are

many other forces competing for the same modules. In other words, the modules along

the shortest path between two pads are easier to be pulled close to the pads, compared to

the modules in other paths. Therefore, the connectivity strength is represented by the

weight cost along the shortest path between two pads. Pad-pair's connectivity strength

along different paths is explained graphically in Figure 8. In the figure there are two

paths from pad A to pad B . The number in the vertex is the weight of a cell. In path I,

three forces are pulling module m 1. There are two forces applied to module m2 and four

applied to module m3. If pad A and pad B are placed together, they have to compete

with other five forces in order to pull m 1, m 2, and m 3 closer to themselves. In path II if

pad A and pad B are placed together, they have to compete with other 9 forces in order

to pull m 4, m 5, 111 6, m 7 and m 8 closer to themselves. Therefore it is easier for pad A

and pad B to pull 1111, 1112 and 1113 closer to themselves. The influence of the forces from

23

pad A and pad B on the modules in path II is not as significant as the influence on the

modules in path I.

ml PATH I m2

PATH II

Figure 8. The influence of pad on module.

Assigning Function

The objective of the assigning function is to form a ring of pads with the most

related pads located as close to each other as possible and the most unrelated pads

located as far from each other as possible. The most related pads are the pad-pair with the

smallest weight cost and the smallest depth cost along the shortest path between the two

pads. After the ring of pads is formed, its components are assigned to the physical loca­

tions on a chip. Four different assigning functions have been studied. Each one forms

1/0 pad arrangements of different quality. One of these methods, which can obtain better

1/0 pad arrangements than the others is used in our I/0 pad positions assignment pro­

gram. Two MCNC layout benchmarks PRIMARYl and PRIMARY2 were used for test­

ing. The results will be presented in Chapter VI.

One Initial Pad and One Way Local Assignment. This assigning function uses

the simplest method to construct a ring of pads. This method starts with an initial pad A

as shown in Figure 9.

l

r - - -,
I I
I I

L - - ...I

r - - -,
I

I I

L - - ...I

r - - -,
I I
I I

L - - ...I

r---,
I I
I I

L - - ...I

r----,
I
I

L----'

(host pad)

~
cut line

I

neighbor pad

r---, r---,, r---, r---,
I I I I I I I I I
I I I I I I I I I

L---' L---'1 L---' L---'

r - - -,
I I
I I

L - - ...I

r - - -, I assigning
I I

1 1 direction
L - - ...I

r - - -,
I
I I

L - - ...I

r--,
I I
I I

L - - ...I

Figure 9. One initial pad and one way local assignment.

24

The initial pad A is called a host pad. Next, a neighbor pad will be chosen to be

placed beside this host pad. It will be pad B with the smallest weight cost WC (A ,B) and

the smallest depth cost DC (A ,B) in respect to pad A. Now, pad B becomes the host pad.

This assigning process continue until all pads have been assigned. The forming of the

ring is much influenced by the choice of the initial pad. Different initial pads will result

in different circular orders. In Figure 9, the allocation of this pad-ring on the chip is only

one of the ways. By rotating the ring, there are as many ways as the number of pads to

assign the ring to a physical chip. For example in Figure 10, pad 1 can be moved from

position A to position B and all the other pads will be rotated by one position at the same

time. Therefore, there are 22 allocations for the ring on the chip for this example in Fig-

ure 10. Figure 11 shows the total wire length versus different allocations of RING (x) on

a chip for PRIMARY!. PRIMARY! has 81 I/0 pads, therefore, 81 different allocations

of RING (x) on a chip were found.

w [2J [!] [?i]@] ~ ~ w [~] [!] [?i] ~

GJ
GJ
~
0

I

AiB 1G2]GJ A:B ~
I

~CJ : @]
I

@) w : @]
cut line I : cut line

~ ~ : @]

CDI c:o l@J[TII c:o IGJ
I I

0 ITQJ IT!J:@J@J G ITQJ Cill @J: @J ~ ~
Figure 10. Position switching.

l.le+06

Total
le+06

wire
length 900000

800000

0 20 40 60 80
Different allocations for RING(x)

Figure 11. Total wire length vs allocation for PRIMARY I.

25

In Figure 11 the dashed lines represent the results of global placement (GP) and

detail placement (DP) from [l]. We use them as references to compare with our results.

For different allocations of a RING (x) on a chip, the results are different. The partition-

ing algorithm in PROUD could be partially responsible for this diversity.

As previously mentioned, different initial pads will result in different rings of

pads. Additionally, rotating the physical assignment of pads in every ring different total

wire lengths can be obtained. For PRIMARY!, the number of I/O pads is 81. Therefore,

by using the pad assigning function, 6561 results of total wire length can be obtained. To

26

simplify the problem, first we test rings with different initial pads for PRIMARYl using

a method described below to assign pads to the physical locations on a chip. The initial

pad is assigned to the top middle or bottom middle position of the physical chip if the

first partition in PROUD is specified as a vertical cut as shown in Figure 10. The other

pads are located sequentially after the initial pad in either clockwise or counterclockwise

direction. On the other hand, if the first cut in PROUD is specified as a horizontal one,

the initial pad is assigned to the right middle or left middle position of the physical chip.

The results of total wire length versus rings with different initial pads are presented in

Figure 12.

1.le+06

Total le+06
wire
length 900000

800000

0 20 40 60
Initial pad number

Figure 12. PRIMARY! results from one initial pad and
one way local assigning function.

80

Figure 12 shows that most of the rings show better results of total wire length

than the results from [1], the dashed lines. It demonstrates that a good arrangement of

pads can be obtained by using this specific allocation method. Second, we rotate the ring

on the chip for each ring with different initial pads and test them on PRIMARY! respec-

tively. The experiment shows that the improvement of the total wire length by rotating

the ring is limited to a small amount around 0.17%. Therefore, the rotation of a ring on

the chip is not considered in the assigning function. Two properties have been observed

for this assigning function. The chosen neighbor pad is a pad with the smallest weight

27

cost and depth cost in respect to the host pad. The relationships between this chosen

neighbor pad and the other unassigned pads are not considered. Therefore, the search for

the neighbor pad is restricted to local relations. Moreover, another important assignment

factor to keep unrelated pads away from each other is not considered either. The global

consideration for searching the neighbor pad will be discussed in the next assigning func­

tion.

One Initial Pad and One Way Global Assignment. This method starts with an

initial pad as the host pad. Next, a pad with the smallest cost in respect to the host pad is

chosen as the candidate pad. This candidate pad is not assigned to be the neighbor of the

host pad directly. The costs between the candidate pad and the other unassigned pads are

compared with the cost between the candidate pad and the host pad. If there exists more

than one unassigned pads with smaller costs in respect to the candidate pad than the the

cost between the candidate pad and the host pad, then this candidate pad is reserved and

not assigned as a neighbor pad. The connectivity strengths between the candidate pad

and at least two other unassigned pads are stronger than the strength between the candi­

date pad and the host pad. The reserved pad will not be chosen as a candidate pad for this

host pad again. If the candidate pad is reserved, the host pad will continue to look for

another candidate pad with the smallest cost to it and the relations of the candidate pad

with the other unassigned pads are checked. This process will continue until a candidate

pad is found to meet the connectivity constraint. If no pads satisfy the constraint, then

the first reserved pad is assigned beside the host pad. After the neighbor pad has been

assigned, the reserved pads are released and can be chosen as a candidate pad for the next

host pad. The purpose of this additional constraint is to place pad-pairs with stronger

connectivity closer together in the view of global relations. This one initial pad and one

way global assigning function is tested on PRIMARY! using the same allocation for

assigning pads to the physical chip as previous assigning function. The results of the

total wire length versus rings with different initial pads are shown in Figure 13.

1.le+06

Total le+06
wire
length 900000

800000

0 20 40 60
Initial pad number

Figure 13. PRIMARY! results from one initial pad and
one way global assigning function.

28

80

In Figure 13 some rings show better results than [l], but a number of rings

demonstrate worse results than [1]. From the results in Figure 13, it could be observed

that although the much related pads are assigned closer to each other, the result of the

total wire length did not been improved. Therefore, in addition to assigning much related

pads close to each other, some other factors should be considered during the assigning

process. Another possible factor that could be included, is to keep the unrelated pads

away from each other.

One Initial Pad and Two Ways Assignment. As previous assigning functions, the

one initial pad and two ways assigning function starts with choosing an initial pad ran-

domly. Two functions are used to choose the strongly related pad-pairs. Function

NEXT_ CANDIDATE (x) chooses a candidate pad which is placed next to the host pad x.

It finds a candidate pad y with the smallest weight cost WC (x ,y) in respect to the host

pad x. The other function SEARCH (x ,y) finds the number of unassigned pads such that

WC (y ,z) < WC (x ,y), in which z is any unassigned pad, y is the candidate pad and x is

the host pad. If the returned value from function SEARCH (x ,y) is 0, it means that there

are no other unassigned pads with smaller costs to the candidate pad y than the cost

between the candidate pad y and the host pad x. Therefore the candidate pad y and the

host pad x have the strongest connectivity to each other, and they can be assigned closer

29

to each other. If the returned value is 1, it means that there is another unassigned pad z

which possesses the smaller cost value to the candidate pad y than the cost between the

candidate pad y and the host pad x. In this situation the host pad and the candidate pad

can still be assigned together. This is because the unassigned pad could be assigned to the

other side of the candidate pad on next assignment, if it is acceptable. When the returned

value from function SEARCH (x ,y) is greater than 1, it means that two or more other

unassigned pads have stronger connectivity with the candidate pad y than the candidate

pad and the host pad. Therefore, the candidate pad y should be assigned close to the

other unassigned pads rather than to the host pad x. In this situation, the candidate pad y

is reserved and not to be chosen as the candidate pad for this host pad x again.

as · · CQJ r - - - .,s1gr.n~n_g_ dir~ction ____ _

f ---, ~---~ J,~_[: r.q
r----,
I I

L I

can te - __ J

pad r - - .,
I I L __ J

r - - .,

L - - J

r - - .,
I I

L - - J

I I.: - - _:.J
L ___ J

host pad 1

~ cutline

r---, r--.,, r---, r---,
I I I I I I I I I
L __ J L __ JI L __ J L--J

ITJ
r--.,~ I I

L - - J

r - - ., candi ate
I I pad
L - - J

r - - .,
I

L - - J

r - - .,
I

L - - J

Figure 14. One initial pad and two ways assignment.

After the initial pad A has been assigned as shown in Figure 14, the second

assigned pad next to the initial pad will be a pad B with the smallest cost in respect to the

initial pad. Pad B is determined by using NEXT_ CANDIDATE (A) and SEARCH (A ,B).

If no pads can satisfy the constraint in function SEARCH (A ,B), then the first reserved

pad is assigned next to the host pad. The other reserved pads are released and can be

chosen as the candidate pads in next stage of assignment. Now pad A and pad B are

30

called host pads. Next, two candidate pads, pad C and pad D, are chosen simultaneously

for two host pads, pad A and pad B, respectively. The NEXT_ CANDIDATE (A) and

NEXT_ CANDIDATE (B) processes are used. Since these two candidate pads are chosen

at the same time, one of two possible cases will occur. These two candidate pads are the

same pad or they are different pads. On the situation of two host pads competing for the

same candidate pad, the candidate pad is assigned next to one of the host pads, which has

smaller cost value to the candidate pad than the other, and the returned value from func­

tion SEARCH O for this pad-pair must be less than 2. Otherwise the candidate pad is

reserved and two other candidate pads will be chosen. If the cost values for the candidate

pad to each host pad are the same, the candidate pad can be assigned to either host pad.

At the other case, whether pad C will be assigned next to the host pad A and whether pad

D will be assigned next to the host pad B depend on the returned values from

SEARCH (A ,C) and SEARCH (B ,D). No matter what condition, once one candidate pad

is assigned to its position, then all the reserved pads are released and can be chosen as a

candidate pad in the next stage of assignment. The whole assigning process will stop

when all pads have been assigned to their positions. The algorithm of the one initial pad

and two ways assigning function is presented in APPENDIX A.

It can be noticed that the forming of the pad-ring is strongly influenced by the

choice of the initial pad like previous functions. Moreover, because the assigning pro­

cess progresses in two directions, the conditions for two host pads competing for the

same candidate pad will occur. In this situation, no matter to which host pad the candi­

date pad is assigned, there is always another host pad which looses the chance to stay

close to the candidate pad.

By analyzing the partitioning algorithm in PROUD, we noticed that the chip is

bipartited into two equal size blocks for the first partition. The modules in the same

blocks possess stronger connectivity among themselves than the connectivity between

31

the modules in different blocks. In the two ways assigning function, two sub-sections of a

ring are formed with the most related pads in the same section. We assume that if the

pads in each section are assigned to each block on a chip respectively, then the strongly

related modules should be forced into the same block. Therefore, the assignment for the

ring to the chip is completed by assigning the initial pad at the top middle or bottom mid-

dle position of the chip when the first cut is specified as a vertical cut in PROUD as

shown in Figure 14. The other pads are located sequentially either clockwise direction or

counterclockwise direction. On the other hand, when the first cut is specified as a hor-

izontal cut, the initial pad is assigned at the right middle or left middle position of the

chip.

Two standard cell benchmark examples PRIMARY 1 and PRIMAR Y2 are tested

using this one initial pad and two ways assigning function as predecessor for PROUD.

Figure 15 and 16 show the results of total wire length versus rings with different initial

pads for PRIMARY! and PRIMARY2 respectively. The dashed flat lines are the results

from [1]. The solid lines are the results of global placement and detail placement by

using the two ways assigning function. Most of the rings demonstrate excellent improve-

ment, compared to the results from [1].

l.le+06

Total le+06
wire
length 900000

800000

0 20 40 60 80
Initial pad number

Figure 15. PRIMARY! results from one initial pad and two
ways assigning function.

5.5e+06 -l GP

Total 5e+06
wire

length 4.5e+06

4e+06_,_--,.-~~~~~~~__.,.~~~~~~~~..-~-

0 50 100
Initial pad number

Figure 16. PRIMARY2 results from one initial pad and two
ways assigning function.

r - .., r - .., r - .., r - .., r - .., candid;!• p~d
I I I I I I I I I I

candidre pa~ - - - .., L-J L - J L - J L - J L - J 111

r - - - ..,
L ___ J

LJJ 1 ~:::: host pad
r~-, t

assigning L - - - J
L J

r ___ .., assigning
directions r~-, initial pad

L[![JJ directions

l ~IT]; host pad r----, !
L ___ J

r----, [!!] r - - - ..,
L---J L ___ J t

cand)dtte lpad

candidate pad
r - .., r - .., r - .., r - .., r - ..,
I I I I I I I I I I
L - J L - J L - J L - J L - J

Figure 17. Two initial pads and four ways assignment.

32

Two Initial Pads and Four Ways Assignment. Since the two ways assigning

method has shown good improvement in the total wire length, will the four ways, six

ways or even more ways assignments pe1form better? A two initial pads and four ways

assigning method is discussed. First, the function assigns two initial pads with the largest

cost in respect to each other as host pads. Let these two host pads be pad A and B as

shown in Figure 17. Next, two pads, pad C and pad D, with the smallest cost to each

host pads respectively are assigned next to each host pad. Now, four host pads exist and

four candidate pads are chosen at the same time. Let the four chosen candidate pads be

33

pad r, pad I, pad n and pad m. The situation for which candidate pad should be

assigned next to which host pad becomes complicated. The possible occurring cases are:

(1) r = I and r * m and r * fl and m * n

(2) m = fl and m * r and m :t: I and r * I
(3) r = I and m = n and r * m

(4) r = I and r = m and r * fl
(5) r = l and r = n and r * m

(6) m = n and m = r and m * l
(7) m = n and m = l and m * r

(8) r * l and r * m and r :t: n and l * m and l * n and m :t: n

(9) r = I and m = n and r = m

(10) the other possibilities

In each condition the assigning process is the same as the two ways assigning process.

The NEXT_ CANDIDATE O function is used to find the available candidate pad for the

host pad locally and the SEARCH() function is used to verify up the global constraint.

Due to the complex relationship between the candidate pads and the host pads, the proba­

bility of several host pads competing for the same candidate pad is high. In this compet­

ing situation, no matter what decision is made, some host pads will always loose the

chance to be placed close to some candidate pads which have small costs in respect to

them.

After all pads have been assigned, these two sub-rings are concatenated end to

end as shown in Figure 18. The concatenated ring is assigned to the physical locations on

the chip by placing either one of the initial pads at the right middle or left middle position

on a chip when the first cut in PROUD is specified as a vertical cut. The other pads are

located sequentially after the initial pad in either clockwise or counterclockwise direc­

tion. On the other hand, when the first cut is specified as a horizontal cut in PROUD,

34

then either one of the initial pads is placed at the top middle or bottom middle position on

a chip.

o O ..._______ 0 o Q inmal pad

0 0
0 0
0 0

initialpad 000 0 00

Figure 18. Two sub-rings concatenate.

Again this function is tested on the benchmark example PRIMARY!. The results

of the total wire length versus rings with different initial pads are presented in Figure 19.

The figure shows that although some rings result in improved total wire length, but most

rings result in worse total wire length than the reference results.

1.le+06

Total le+06
wire
length 900000

800000

0 20 40 60
Initial pad number

Figure 19. PRIMARY! results from two initial pads and
four ways assigning function.

80

35

Four different assigning methods have been tested on PRIMARYl. Although all

these assigning methods can result in good arrangement of pads, but each of them per-

forms different qualities. For the GP result of PRIMARYl, the smallest total wire length

from the one initial pad and one way local assignment is 923560, 953611 for the one ini­

tial pad and one way global assignment, 905225 for the one initial pad and two ways

assignment, and 957398 for the two initial pads and four ways assignment. The distribu-

tion of all the results obtained from above four assigning functions are presented in Fig-

ure 20, 21, 22 and 23 respectively.

Rate

Rate

25

20

15

10

5

0 I I I I I I I I I I I I I I I I I I

25

20

15

10

5

90 93 96 99 102 105 108 111 114 117 120 123
Range of total wire length (in ten thousand)

Figure 20. Rate of PRIMARYl GP results from one
initial pad and one way local assigning function.

0 I I I I I I I I I I I I I I I I I I I
90 93 96 99 102 105 108 111 114 117 120 123

Range of total wire length (in ten thousand)

Figure 21. Rate of PRIMARYl GP results from one
initial pad and one way global assigning function.

Rate

Rate

25

20

15

10

5

0-1--L-1---L-4---'-4--1--+-_._-+-'--+-'---l----l-'---l--'--r---,.-

25

20

15

10

5

90 93 96 99 102 105 108 111 114 117 120 123
Range of total wire length (in ten thousand)

Figure 22. Rate of PRIMARYl GP results from one
initial pad and two ways assigning function.

0-+-~.----+-_._+-'--+-_._-+-'-t-~--t-""'---i~-t-~-r---,.-

90 93 96 99 102 105 108 111 114 117 120 123
Range of total wire length (in ten thousand)

Figure 23. Rate of PRIMARYl GP results from two
initial pads and four ways assigning function.

36

The horizontal axis in the above four figures represents the range of total wire

length and the vertical axis represents the rate of rings which result in the answers in the

range. It is observed that the one initial pad and two ways assigning function can result

in the shortest total wire length and most of the rings locate in the ranges of small value

of the total wire length. Therefore, we use it in our I/0 pad positions assignment pro-

gram.

37

Selection Function

With as many as the number of pads, the two ways assigning function forms the

same number of rings with different initial pads. So the question arrives: which ring is

better? Due to the complicated mutual relationship among pads, the influential factors,

which reflect the quality of aiTanged 1/0 pad positions, are hard to determine exactly. A

selection function with five factors as measures is used to select better rings. These five

factors are: nearer-pad-pair's weight cost, nearer-pad-pair's depth cost, farthest-pad­

pair's weight cost, farthest-pad-pair's depth cost and block-pad-pair's weight cost.

Definition 11: Nearer-pad-pair's weight cost NWC (pi ,pj) is the weight cost

between pad Pi and pad p j, where pad p j represents the pads which are close

neighbors of pad Pi in a ring.

Definition 12: Farthest-pad-pair's weight cost FWC (pi ,pj) is the weight cost

between pad Pi and pad Pj, where pad Pj represents the pad that locates farthest

away from pad Pi in a iing.

Definition 13: Nearer-pad-pair's depth cost NWC (pi ,pj) is the depth cost between

pad Pi and pad Pj, where pad Pj represents the pads which ai·e close neighbors of

pad Pi in a ring.

Definition 14: Fa11hest-pad-pair's depth cost FWC (pi ,pj) is the depth cost

between pad Pi and pad Pj , where pad Pj represents the pad that locates farthest

away from pad Pi in a ring.

Definition 15: Block-pad-pair's weight cost BWC (pi ,pj) is defined as the weight

cost of pads in the sarhe block and the weight cost of pads in the opposite diago­

nal blocks after the pai·tition corresponding to the partitioning algorithm in

PROUD.

------- ----~-~ --~------

38

The first factor is the sum of weight costs between every nearer-pad-pair. The

nearer-pad-pair is defined as two pads located close to each other on a physical chip. But

how far the pads can be away from each other to be considered close pads? It is hard to

determine. From expe1iments, the nearer-pad-pair is defined according to the number of

partitions in PROUD.

The farthest distance for nearer pads = 2 number of cuts

All the pads inside the farthest distance are considered strongly related pads. In Figure

24, pad 2, pad 3, pad 4 and pad 5 are the nearer pads for pad 1 when the number of cuts

in PROUD is 2.

D
D
D

D
D
D
D
D

D

D

DD
I 2 3

fJ.? 9 El?
I I

I- - ..J

1-----...l

4 5
DDDDD

"' "'
I

I

I- - - - - - - - ..J I

I

L - - - - - - - - - - ..J

DODDDDDDDD

Figure 24. Nearer-pad-pairs.

0
0
0

0
0
0
D
0

D
0

Since the objective of the assigning function is to assign the strongly related pads

as close to themselves as possible, the smaller sum of NWC s reflects better arrangement

of pads. The sums of NWC s versus rings with different initial pads for PRIMARY 1 is

presented in Figure 25.

39

14000

sum

13500

130QO_L--.-~~~.---~~~r-~~--r~~~--r-

0 20 40 60 80
Initial pad number

Figure 25. Sums of NWCs vs different rings for PRIMARYl.

Comparing Figure 25 to Figure 15, it is observed that some smaller values of the

cost sum coITespond to better results of the total wire length. In addition to assigning

strongly related pads close to each other, another important objective for assigning func-

tion is to keep weakly related pads away from each other. Farthest-pad-pair's weight cost

FWC (p; ,p1) represents the relation. Due to the rectangle shape of a chip, the farthest

distance for every faithest-pad-pair is different. A rough estimation for the farthest dis-

tance is defined as:

The farthest-pad-pair is two pads located half of the number of pads away from each

other.

Figure 26 shows the faithest-pad-pairs, which are specified by two aITows directed lines.

The sum of all farthest-pad-pairs' weight costs should be large to keep the unrelated

pad-pairs far away from each other. Therefore, the more negative sum of FWC s reflects

better aITangement of pads. Figure 27 shows the negative sums of FWC s versus rings

with different initial pads for PRIMARYl. The definitions used for NWC and FWC ai·e

applied to NDC and FDC respectively by substituting the weight cost to depth cost. The

sums of these two factors versus rings with different initial pads are presented in Figure

28 and Figure 29 for PRIMARYl respectively.

40

CJ CJ

D I D
\ I

\ D \ I

\ I

D
- - \ I

D - .:.,_
1' - - -

\ - -
D I \

I \

I \

D I
\ D \

I

[==:J C:=J C:=J [==:J

Figure 26. Farthest-pad-pairs.

-6000

sum
-6500

0 20 40 60 80
Initial pad number

Figure 27. Negative sums of FWCs vs different rings for PRIMARY!.

1050

1000
sum

950

900

() 20 40 60 80
Initial pad number

Figure 28. Sums of NDCs vs different rings for PRIMARY!.

41

-350

-400

-450
sum

-500

-550

L;
0 20 40 60 80

Initial pad number

Figure 29. Negative sums of FDCs vs different rings for PRIMARYl.

Fmihennore, due to the partitioning schedule in PROUD and the way we assign

pads to physical locations on the chip, the pads in the same partition block should be

much strongly related. It means that the weight cost between each pad-pair in the same

block needs to be small. The pads in the same partition block I and block II are shown in

Figure 30. On the other hand, the pad-pairs in the different diagonal blocks should be

weakly related. So, the weight cost between each diagonal pad-pair, like the pads in

block I with the pads in block II, needs to be large. When the partition continues and the

blocks become smaller, like block III and IV, the same condition is still applied to each

smaller blocks until the end of the partition.

D
D
D

D 0 OOOO:

DI I
D
D I

--L---------T---------

II

D
D
D
D
D

~--~--~D
10 DODD D

ooo:
D
D1 III
D

I ----,----

I
----r----1----~-----

'
I

____ L ____ l ____ J ____ ~--
1 I

: IV
D
D

I I D

:ooo
Figure 30. Example for block-pad-pairs.

42

The sum of BWC s of pads in the same block contributes positive reflection to the

results of the total wire length. The sum of BWC s of pads in different diagonal blocks

contributes negative reflection. Therefore, the smaller sum of positive BWC s and nega-

tive BWC s reflects better arrangement of pads. Figure 31 shows the sum of block-pad-

pairs' weight costs versus rings with different initial pads for PRIMARY!.

110000

105000

sum 100000

95000

90000

0 20 40 60 80
Initial pad number

Figure 31. Sums of BWCs vs different rings for PRIMARY!.

A combination of these five factors is used to predict the goodness of a ring. The

contribution of nearer-pad-pairs' weight cost NWC (p; ,Pj), nearer-pad-pairs' depth cost

NDC (jJ; ,pj) and the block-pad-pairs' weight cost BWC (p; ,pj) to the results of total wire

length is positive. The other factors are negative. The weighted sum of these five factors

is formulated as below:

FACTOR_SUM(ringx) = I:NWC (p;,pj)ring(x) + ~ L NDC (p;,pj)ring(x) -

~ L FWC (p;,pj) ring(x) - ~ L FDC (p;,pj) ring(x)

A + E L BWC (p;,pj) ring(x)

in which

A= Max [L NWC (p;,JJj)lring(a) -Min [I:NWC (p;,pj)lr;ng(b)

B = Max [L NDC (p; ,/Jj)] ring (c) - Min [L NDC (p; ,JJj) Ling (d)

C =Max [L FWC (p;,JJj)] ring(e) -Min [L FWC (p,-,pj)] ring(f)

D =Max [L,FDC (p;,Pj) J ring(g) -Min l L,FDC (]J;,pj)] ring(h)

E =Max [L:BWC (p;,pj)] ring(g) -Min [L:BWC (p;,pj)] ring(h)

43

Due do the different ranges of each factor's value, the coefficient A, B, C and D are used

to nonnalize these factors. The sum of the above described five factors is used as the

selection function and tested on benchmark examples PRIMARY! and PRIMARY2 for

rings with different initial pads obtained from assigning function. The results of

FACTOR_SUM versus rings with different initial pads for PRIMARY! and PRIMARY2

are shown in Figure 32 and Figure 33 respectively.

21000

20000
FACTOR

SUM - 19000

18000

0 20 40 60 80
Initial pad number

Figure 32. Ring's FACTOR_SUM vs different rings for PRIMARY!.

55000

FACTOR_ 51500
SUM

48000

0 50 100
Initial pad number

Figure 33. Ring's FACTOR_SUM vs different rings for PRIMARY2.

44

Comparing Figure 32 and 33 to Figure 15 and 16 respectively, the smaller values of

FACTOR_SUM correspond to the shorter total wire lengths. For example, the ring with

initial pad 17 has the smallest value of FACTOR_SUM in Figure 32, and the same ring

in Figure 15 corresponds to the second shortest total wire length. The ring with initial

pad 75 in Figure 32 has the largest FACTOR_SUM, and the same ring in Figure 15

corresponds to the much longer total wire length than the others.

1.15e+06

1.le+06
Total 1.05e+06
wire
length le+06

950000

900000

18000 19000 20000 21000
FACTOR_SUM

Figure 34. Total wire length of GP vs FACTOR_SUM for PRIMARY!.

5.4e+06

Total 5.2e+06
wire
length 5e+06

4.8e+06

48000 50000 52000 54000 56000
FACTOR_SUM

Figure 35. Total wire length of GP vs FACTOR_SUM for PRIMARY2.

Figure 34 shows the total wire length versus the FACTOR_SUM of each ring for

PRIMARY!, and Figure 35 is for PRIMARY2. The above situation of the smaller

FACTOR_SUM corresponding to the smaller total wire length is not so significant in

45

Figure 35 because the values of the total wire length for most of the rings are very close

and most of them can be assumed as good answers. However, the rings with much larger

values of FACTOR_SUM, which will result in the longer total wire length, still can be

distinguished from the rings with smaller values of FACTOR_SUM, which will result in

the shorter total wire length. Above two figures have demonstrated that good arrange­

ments of pads can be found from a group of rings, which are formed by assigning func­

tion, by choosing rings with smaller values of FACTOR_SUM in the selection function.

One thing is observed from the comparison of these figures that not every ring with

smaller value of FACTOR_SUM reflects a better result of the total wire length. Some

rings with larger values of FACTOR_SUM can result in shorter total wire lengths than

the rings with smaller values of FACTOR_SUM. This is because there are still other fac­

tors should be considered. The factors that have been used in the selection function are

only a rough estimation. Therefore, in the selection function, several rings with the

smaller values of FACTOR_SUM are selected, and the best arrangement of pads will be

one of these selected rings, which will result in the shortest total wire length.

Output

After the good a1rnngernent of pads has been determined by the selection func­

tion, a design file with the I/O pad positions specified is produced. Then this design file is

used as the boundary condition for PROUD.

COMPLEXITY

The complexity of the I/0 pad positions assignment program can be described in

four parts: input and output, calculation of cost factors, pad assigning function and ring

selection function. The complexity for the input and output is linear to the number of

pads and modules. The runtime for input and output is 7.82% of the total runtime for

PRIMARY 1, and 3.3% for PRIMARY2. In the calculation of cost factors, the shortest

46

paths for every pad to the other pads have to be found. The complexity for searching the

shortest path on the sparse graph is 0 ((E + V) log V) [21], where E is the number of

connections among modules and pads, and V is the number of modules and pads. Since

this search has to be repeated for P pads, the total complexity for the calculation of cost

factors is 0 (P (E + V) log V). The runtime for the calculation of cost factors in PRI­

MARY! is 70.60% of the total runtime, and 88.94% for PRIMARY2. In the assigning

function, every pad is chosen as the initial pad and P different rings are formed. The

complexity for each function: NEXT_ CANDIDATE() and SEARCH Q, is linear to Q,

where Q is the number of unassigned pads. Each pad is assigned to its position by using

above two functions, then the complexity for each pad assignment is 0 (Q 2). Or it could

be expressed as 0 (P 2). Since each ring has P pads, the complexity for each ring is

0 (P 3). Therefore, for the formation of P rings, the total complexity is 0 (P 4). Five

factors are used in the selection function to calculate the FACTOR_SUM for each ring.

The complexity for the factor of NWC and NOC is 0 (P). The complexity for the fac­

tor of FWC and FDC is 0 (P). The complexity for the factor BWC is 0 (P 2). Since P

rings' FACTOR_SUMs are calculated, the total complexity for the selection function is

0 (p3). The runtime for the assigning and selection function is 21.3% of the total run­

time for PRIMARY!, and 7.66% for PRIMARY2. Due to P << V + E for large circuits,

the complexities of input and output, pad assigning function and ring selection function

are much smaller than the complexity of the cost calculation. It is observed that the cal­

culation of cost factors use most of the runtime in the benchmark examples. When the

number of modules becomes large, the above situation becomes more significant, then

the complexity of this assignment program is dominated by the calculation of cost fac­

tors.

CHAPTER VI

TEST RES UL TS

The I/0 pad positions assignment program is written in C programming language.

It is used as the predecessor of PROUD to locate the 1/0 pad positions on the chip. The

source code is presented in APPENDIX B. We tested our pad assignment program on

MCNC layout benchmark examples PRIMARY! and PRIMARY2 on the SUN SPARC

workstation. The chip area for PRIMARY! is 5420µm x 4320µm and the modules are

placed in 17 rows. For PRIMARY2, the chip area is 9240µm x 9080µm and the modules

are placed in 29 rows. The specifications of these two benchmark examples are tabulated

in Table I.

Example

PRIMARY I

PRIMARY2

TABLE I

BENCHMARK SPECIFICATIONS

No. of pads No. of modules No. of nets

81 752 1239

107 2907 3773

No. of pins

3303

12014

From the output of our pad assignment program, we chose the first three rings

with the smallest FACTOR_SUM and then used PROUD to calculate the total wire

length for each example. The shortest total wire length resulted from one of these three

rings was chosen as the best result. The results of total wire length and execution time

from our pad assignment program as predecessor, the results from [1] and the bad results

that we could find are tabulated in Table II for PRIMARY! example and Table III for

PRIM AR Y2 example.

48

TABLE II

RESULTS COMPARISON FOR PRIMARY!

PRIMARY 1 Example

Algorithm
Total Wire Length (µm) Runtime (seconds)

Global Placement Detail Placement GP DP

Original PROUD 1017824 826096 10.44 89.45
With pad predecessor 905596 749311 26.26 115.71
Bad result 1286258 1022676

TABLE III

RESULTS COMPARISON FOR PRIMARY2

PRIMARY2 Example

Algorithm
Total Wire Length (µm) Runtime (seconds)

Global placement Detail placement GP DP

Original PROUD 5319366 4610701 74.23 915.34
With pad predecessor 4746728 4106832 217.9 1060.04
Bad result 6247443 5243377

For PRIMARY! a range of 11.02% total wire length reduction has been reached,

compared to the result from [1] without the I/0 pad assignment predecessor. A 29 .59%

reduction in the total wire length was observed when comparing the best result deter-

mined by our method with the bad result that could be obtained by choosing bad relative

pad locations. For PRIMARY2 the ranges are 10.76% and 24.02% respectively. The

runtime that has been specified in the above tables for the pad predecessor indicates the

time needed to nm our pad assignment program and PROUD program once. Since we

selected three rings and tested them, the total runtime for using our pad predecessor

should be three times of the specified value in the table. However, the runtime for only

our pad assignment program is 14.84 seconds for PRIMARYl, and 142.27 seconds for

PRIMAR Y2. If the parallel computer is available, then we can use the three chosen rings

as the three different boundary conditions and run PROUD simultaneously for these three

49

cases. The runtimes for the benchmark examples will be the values specified in the above

tables. In that case, one thing is observed from Table III that the global placement result

obtained by using our pad assignment program as predecessor for PROUD is close to the

detail placement result obtained by the original PROUD program. But the execution time

to obtain the detail placement result is four times the execution time needed to obtain the

similar global placement result with our pad predecessor. We believe that for circuits

with large number of pads and modules, we do not have to run the most time consuming

process of detail placement, and still a good result can be obtained at the global place-

ment stage using our assignment program as predecessor. Also we test the all possible

I/0 pad a1rnngements from the one initial pad and two way assigning function for PRI-

MARYL With 81 different rings, due to different initial pads, and 41 switching possibil-

ities for every ring, the total number of possible arrangements of pads is 3321. The possi-

ble results together with the best results, dashed lines, found by using our final I/0 pad

positions assignment program are presented in Figure 36. This figure demonstrates that

the 1/0 pad arrangement, found by our I/0 pad positions assignment program, will lead

to very good results.

l.2e+06

l. le+06

Total
le+06

wire
length 900000

800000

700000 J DP
I I I
0 1000 2000 3000

Different possible I/0 pad airnngements

Figure 36. Results of different I/0 pad arrangement for PRIMARY 1.

50

In addition to the above two benchmark examples, we tested our algorithm on

other circuits. Their specifications are presented in Table IV.

TABLE IV

EXAMPLE SPECIFICATIONS

Example No. of pads No. of modules No. of nets No. of pins

CIRCUIT_l 8 16 20 51

CIRCUIT_2 24 125 144 478

CIRCUIT_3 53 1404 1660 5535

CIRCUIT_4 60 2721 3033 11169

CIRCUIT_5 188 3659 3212 15317

The results of total wire length and execution time from our pad assignment pro-

gram as predecessor are compared to the average results and bad results that we could

obtained. They are shown in Table V, VI, VII, VIII and IX for CIRCUIT_l, CIR­

CUIT_2, CIRCUIT _3, CIRCUIT_ 4 and CIRCUIT _5 respectively. The average result is

obtained by random pad assignment without pad predecessor. Like the benchmark exam-

ple, the runtime shown in these tables only indicates one execution of PROUD program

with pad predecessor or without.

TABLE V

RESULTS COMPARISON FOR CIRCUIT_l

CIRCUIT _1 Example

Total Wire Length (µm) runtime (seconds)
Algorithm

GP DP GP DP

With pad predecessor 760 737 0.26 0.29

Average result (PROUD) 823.7 799.1 0.09 0.12

Bad result 900 883

51

TABLE VI

RESULTS COMPARISON FOR CIRCUIT_2

CIRCUIT _2 Example

Total Wire Length (µm) Runtime (seconds)
Algorithm

GP DP GP DP

With pad predecessor 39515 34155 1.33 4.16

Average result (PROUD) 44295.4 36587.5 0.53 3.36

Bad result 49392 38939

TABLE VII

RESULTS COMPARISON FOR CIRCUIT_3

CIRCUIT_3 Example

Total Wire Length (µm) Runtime (seconds)
Algorithm

GP DP GP DP

With pad predecessor 2129526 1945374 42.78 62.97

Average result (PROUD) 2337163.2 2122328.8 18.52 63.02

Bad result 2791816 2511614

TABLE VIII

RESULTS COMPARISON FOR CIRCUIT_4

CIRCUIT_ 4 Example

Total Wire Length (µm) Runtime (seconds)
Algo1ithm

GP DP GP DP

With pad predecessor 5752991 4767442 183.62 949.05

Average result (PROUD) 6108668.9 5051713.1 84.72 765.43

Bad result 6583660 5333168

52

TABLE IX

RESULTS COMPARISON FOR CIRCUIT_5

CIRCUIT_5 Example

Total Wire Length (µm) Runtime (seconds)
Algorithm

GP DP GP DP

With pad predecessor 8622457 7273966 686.2 1891.44

Average result (PROUD) 9392480.3 7718809.3 123.97 1329.17

Bad result 9870649 8026015

For CIRCUIT_l a range of 7.77% total wire length reduction has been reached,

compared to the average result, and a 16.53% reduction, compared to the bad result, is

observed. For CIRCUIT _2, CIRCUIT _3, CIRCUIT_ 4 and CIRCUIT _5 the ranges are

6.65% and 12.28%, 8.34% and 22.54%, 5.62% and 9.37%, 5.76% and 9.37% respective-

ly.

CHAPTER VII

CONCLUSION AND FUTURE WORK

The proposed 1/0 pad positions assignment algorithm is applied to determine the

1/0 pad positions for the sea-of-gates placement program PROUD. A heuristic searching

method is used to find good solutions. Two cost factors have been defined to represent

the connectivity strength between pads. By assigning strongly related pads close to each

other, we have achieved an excellent improvement in the total wire length for a number

of examples. The results obtained by using our pad assignment program have been

11.02% and 10.76% better than the results from [l] on benchmark examples, PRI­

MARY I and PRIMARY2. For circuits with large number of modules and pads, we no­

ticed that most of the rings formed by the assigning function have good arrangement of

pads, and some rings with larger values of the FACTOR_SUM in the selection function

can result in shorter total wire length. The above situation can be observed from the

results of PRIMAR Y2 example. However, the good a1nngement of pads still can be

determined by choosing the ring with smaller value of FACTOR_SUM, although it is

possible that the chosen ring does not have the best arrangement of pads. In PROUD

program, the detail placement process will take most of the execution time for large cir­

cuits. However, when the number of modules and pads is large, the result of total wire

length obtained at the global placement stage in PROUD using our pad assignment as

predecessor is also a good answer. Therefore, we believe that a good result can be ob­

tained at the global placement stage in shorter time for circuits with extremely large

number of modules and pads by using the pad assignment predecessor if the parallel

computer is available. Our pad assignment algorithm used as the predecessor to

PROUD, which solves the sea-of-gates placement problem, has revealed excellent im-

54

provement on the total wire length.

In this algorithm the assignment of the pad to its position is determined by the

cost among pads. The cost factors, weight cost and depth cost, represent the connectivity

strength between pads in our algorithm. In the one initial pad and two ways assigning

function, the chances for two host pads compete for the same candidate pad are high.

This means that these two cost factors are not enough to distinguish the connectivity rela­

tionship clearly between pads. Besides, in the assigning function, the assigning decision

depends on how close the pad-pairs are related. Another possible assigning decision of

keeping weakly related pads away from each other is not included into consideration.

Some other cost factors, which represent the weak relationship between pads, should be

explored. We expect that using the cost factors, which represent the strongly related pads

and the cost factors which represent the weakly related pads, the assigning function can

not only place the most related pads close together but also at the same time keep the

most unrelated pads away from each other.

This pad assignment program does not consider the allocation of the ring's com­

ponents to the physical locations on the chip. A little improvement is assumed to be

reached by finding a good solution to the allocation problem. Moreover, the five factors

used in the selection function are only roughly estimated. Maybe some other factors

which can reflect the quality of a ring could be explored to determine the ring with the

best a1rnngement of pads. Another extension of this pad assignment program is to add

the path-delay constraints into consideration. Especially in the sea-of-gates designs with

large number of gates, the timing constraint becomes more important. Possibly the pre­

defined locations for some specific pads, the restriction for some pads to be placed close

to one another or not evenly distributed pad positions on the chip could be added as the

initial constraints. We hope to extend our work to include these considerations.

REFERENCES

[l] Ren-Song Tsay, Ernest S. Kuh, Chi-Ping Hsu, "PROUD: A Sea-of-Gates Place­
ment Algorithm", IEEE Design & Test of Computers, December 1988, pp. 44-56.

[2] C. K. Cheng and Ernest S. Kuh, "Module Placement Based on Resistive Network
Optimization", IEEE Trans. Computer Aided Design, vol. CAD-3, No. 3, July
1984, pp 218-225.

[3] Ernest Meyer, "Jumbo Arrays Scale 250,000gates", Computer Design Journal,
March 1, 1990, pp. 28-36.

[4] Jon Gabay, "A Burst of Activity in Sea-of-Gates Arrays", Semicustom Design
Guide, No. 26, 1989, pp. 26-33.

[5] G. D. Adams, C. H. Sequin, "Template Style Consideration for Sea-of-gates Lay­
out Generation", 26th ACM/IEEE Design Automation Conference, 1989, pp. 31-
36.

[6] M. Murofushi, M. Yamada, T. Mitsuhashi, "FOLM-planner: A New Floorplanner
with a Frame Overlapping Floorplan Model Suitable for SOG (Sea-of-gates) Type
Gate Arrays", IEEE Custom Integrated Circuit Conference, 1990, pp. 140-143.

[7] M. Igusa, M. Beardslee, A. Sangiovanni-Vincentelli, "ORCA: A Sea-of-gates
Place and Route System", 26th ACM/IEEE Design Automation Conference,
1989, pp. 122-127.

[8] M. Murayama, Y. Matsuda, K. Yoshida, H. Ooka, "A 177k Gate 150 ps CMOS
SOG with 1856 I/0 Buffers", IEEE Custom Integrated Circuits Conference,
1989, pp. 8.1.1-8.1.4.

[9] Hidetoshi Onodera, Yo Taniguchi, Keikichi Tamaru, "Branch-and-Bound Place­
ment for Building Block Layout", 28th ACM/IEEE Design Automation Confer­
ence, 1991, pp. 433-439.

[10] B. W. Kerninghan, S. Lin "An Efficient Heuristic Procedure for Partitioning
Graphs", Bell Systems Technical Journal, 49(2):292-307, 1970.

[11] C. M. Fiduccia, R. M. Mattheyses, "A Linear Time Heuristic for Improving net­
work partitions", ACM/IEEE Proceedings of the 19th Design Automation Confer­
ence, 1982, pp. 175-181.

56

[12] Ching-Wei Yeh, Chung-Kuan Cheng, "A General Purpose Multiple Way Parti­
tioning Algorithm", 28th ACM/IEEE Design Automation Conference, 1991, pp.
421-426.

[13] C.Sechen, Alberto Sangiovanni-Vincentelli, "The TimberWolf Placement and
Routing Package", IEEE Journal of Solid-State Circuits, vol. sc-20, No. 2, April
1985. pp. 510-522.

[14] Abhijit Chatterjee, Richard Hartley, "A New Simultaneous Circuit Partitioning
and Chip Placement Approach Based on Simulated Annealing", 27th ACM/IEEE
Design Automation Conference, 1990, pp. 36-39

[15] Ralph-Michael Kling, Prithviraj Banerjee, "ESP: A New Standard Cell Placement
Package Using Simulated Evolution", in Proc. 24th ACM/IEEE Design Automa­
tion Conference, June 1987, pp. 60-66.

[16] Ralph-Michael Kling, Prithviraj Banerjee, "Optimization By Simulated Evolution
With Applications To Standard Cell Placement", in Proc. 27th ACM/IEEE Design
Automation Conference, 1990, pp. 20-25.

[17] Ralph-Michael Kling, Prithviraj Banerjee, "Empirical and Theoretical Studies of
the Simulated Evolution Method Applied to Standard Cell Placement", IEEE
Transactions on Computer-Aided Design, vol. 10, No. 10, October 1991. pp.
1303-1315.

[18] J. M. Kleinhans, G. Sigl, F. M. Johannes, K. J. Antreich, "GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization", IEEE Transac­
tion on Computer-Aided Design, vol. 10, No. 3, March 1991, pp. 356-365.

[19] D. C. Wang, "Pad Placement and Ring Routing for Custom Chip Design", 27th
ACM/IEEE Design Automation Conference, 1990, pp. 193-199.

[20] Massoud Pedram, Kamal Chaudhary, Ernest S. Kuh, "I/O Pad Assignment Based
on the Circuit Structure", IEEE International Conference on Computer Design:
VLSI in Computer and Processor", 1991, pp. 314-318.

[21] Robert Sedgewick, "Algorithm In C", Addison-Wesley Publishing Company,
1990.

WHJJ"MOO'lV NOI..L)NOd DNINOISSV SA v M. OM..L GNV av d 'lVI..LINI 3NO

V XIGN3ddV

BEGIN
{

assign the initial pad i randomly;

assign the second pad j with the smallest cost [i]I/] and depth [i lU];

iteration until all pads have been assigned(

r =NEXT_CANDIDATE (i); I =NEXT_CANDIDATE (j);

if(r ==I){

if(cost [r][i] < cost[/] U] && SEARCH (r ,i) < 2) assign r next to i;

else if(cost [r][i] >cost [I]U] && SEARCH (l ,j) < 2) assign 1 next to j;

else if(cost [r] [i] == cost [I]U] && SEARCH (r ,i) < 2) {

if(depth [r] [i] < depth[/] U]) assign r next to i;

else if(depth [r][i] >depth [l]U]) assign l next to j;

else assign to each one by tum;
}
else RESERVE (r);

else if(r !=I){

if(SEARCH (r ,i) < 2) assign r to i;
else RESERVE (r);

if(SEARCH (l ,j) < 2) assign l to j;
else RESERVE(/);

if (r or I has been assigned) RELEASE();

}END

NEXT CANDIDATE(x) (
return (pad y with the smallest cost [x][y] to pad x);

SEARCH (x ,y) (

58

search whole available pads{
find pad z with cost [z][x] <cost [x][y]; amount++;

}
return (amount);

RESERVE (x ,y) {
put x and y into list which is not used as next candidate;

RELEASE() {
release all the pads reserved before;

59

WV"MDO"Md .LN3WNDISSV SNOI.LISOd OVd O/I

HXION3ddV

61

/***/

I/0 pad positions assignment program

INPUT: Original design file for PROUD and pad position file.

/***/

#include <stdio.h>
#include <string.h>
#include "global.h"
#include <sys/time.h>
#include <sys/resource.h>

main(argc, argv)
int argc;
char **argv;
{

FILE *fp;
int i;
int j;
int good_ring;
float Begintime;
float temptime;
float Time();

printf("a Pad Assignment Program by Shyang-Kuen Her
printf("a);

Begintime = Time();
temptime =Time();

Readin(argv[l]);

printf("Readin:
temptime = Time();

Weight();

Listpfs();

printf("Listpfs:
temptime = Time();

/* read in data *I

%f seconds.a, Time() - temptime);

/*cell's weight*/

/* cost factors *I

%f seconds.a, Time() - temp time);

In/92a);

good_ring = SelectO;

printf("Selection:
temptime = Time();

/* Selecting a good ring*/

%f seconds.O, Time() - temptime);

Print_out(good_ring, argv[l], argv[2]); /*new input for PROUD*/

printf("Print_out:
printf("a);
printf("Pad Assignment:

Time()
{

struct rusage rusage;
float time;

%f seconds.a, Time() - temptime);

%f seconds.a, Time() - Begintime);

getrusage(RUSAGE_SELF, &rusage);

time =(float) rusage.ru_utime.tv _sec +
(float) rusage.ru_utime.tv _usec/l .ae6;

time += (float) rusage.ru_stime.tv _sec +
(float) rusage.ru_stime. tv _usec/l .ae6;

return(time);

62

63

/***/

Read Input Function

Description: Read in original design file for PROUD and format it
into cell adjcent list format. Net number can not be "O".

Note: The nets are valued from 1 to NrPin, when nets are valued 0 or
character it means floating pins.

/***/

#include<stdio.h>
#include "global.h"

Readin(ExampleFile)
char ExampleFile[30];
{

FILE *fp;
int i·

'
int j;
char buffer[40];
struct node *temp_list;
struct node *net_adj[Nrnets], *temp_adj;
struct node *z;

/*read in the original design file for PROUD*/

fp = fopen(ExampleFile, "r");

fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, namel, &nrCols);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, name2, &nrRows);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, name3, &bcX);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, name4, &be Y);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, name5, &xGrid);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %d0, name6, &yGrid);
fgets(buffer, 40, fp);
sscanf(buffer, "%s %s0, name7, name8);

fgets(buffer, 40, fp);
sscanf(buffer, "o/os o/odO, name9, &nrlos);
fgets(buffer, 40, fp);
sscanf(buffer, "o/os o/odO, namelO, &nrMods);
fgets(buffer, 40, fp);
sscanf(buffer, "o/os o/odO, namell, &nrNets);
fgets(buffer, 40, fp);
sscanf(buffer, "o/os o/odO, name12, &nrPins);

z = (struct node *)malloc(sizeof *z);
z->next = z;

for(i=O; i< Nmets; i++) net_adj[i]=z;

/* read in pad data *I

for(j=O; j< Nrpad; j++){
pad[j] = (struct nodes *)malloc(sizeof(struct nodes));
fgets(buffer, 40, fp);
sscanf(buffer, "o/od o/os o/od o/od o/od o/od o/od o/odO, &pad[j]->id,

padfj]->name,&padfj]->type, &pad[j]->obstacle,
&pad[j]->nrpin,&pad[j]->x,&padfj]->y, &pad[j]->pattern);

for(i=O; i<padfj]->nrpin; i++) {
nets = (struct NETS *) malloc(sizeof *nets);
pad[j]->net[i] =nets;
fgets(buffer, 40, fp);
sscanf(buffer, "o/od o/od o/od %d0,&padfj]->net[i]->pin,

&padfj]->net[i]->order,&pad[j]->net[i]->id,
&pad[j]->net[i]->ntype);

if(pad[j]->net[i]->id > 0) {
temp_adj = net_adj[pad[j]->net[i]->id];
net_adj[pad[j]->net[i]->id]=(struct node *)malloc(sizeof(struct node));
net_adj[pad[j]->net[i]->id]->v = pad[j]->id;
net_adj[pad[j]->net[i]->id]->next = temp_adj;

} } }

/**read in module data**/

for(j=O; j< Nrmodule; j++) {
module[j] = (struct nodes *)malloc(sizeof(struct nodes));
fgets(buffer, 40, fp);
sscanf(buffer, "o/od o/os o/od o/od o/od o/od o/od o/odO, &module[j]->id,

64

65

module[j]->name, &module[j]->type, &module[j]->obstacle,
&moduleU]->nrpin,&moduleU]->x,&moduleU]->y,&module[j]->pattern);

for(i=O; i<module[j]->nrpin; i++){
nets= (struct NETS *) malloc(sizeof(struct NETS));
module[j]->net[i]=nets;
fgets(buffer, 40, fp);
sscanf(buffer, "%d %d %d %d0,&module[j]->net[i]->pin,

&module[j]->net[i]->order,&module[j]->net[i]->id,
&module[j]->net[i]->ntype);

if(module[j]->net[i]->id > 0) {
temp_adj = net_adj[module[j]->net[i]->id];
net_adj[module[j]->net[i]->id] = (struct node *)malloc(sizeof

(struct node));
net_adj[module[j]->net[i]->id]->v = module[j]->id+Nrpad;
net_adj[module[j]->net[i]->id]->next = temp_adj;

} } }

!* build adjcent list*/

y = (struct node *)malloc(sizeof(struct node));
y->next = y;

for(i=O; i < Maxv; i++) adj[i]=y;

/*pad adjcent list*/

forG = O; j < Nrpad; j++){
for(i=O; i < pad[j]->nrpin; i++){

if(pad[j]->net[i]->id > 0) {
for(g = net_adj[pad[j]->net[i]->id]; g != z; g = g->next){

if(g->v != pad[j]->id) {
temp_list = adj[pad[j]->id];
adj[pad[j]->id] = (struct node*) malloc(sizeof (struct node));
adj[pad[j]->id]->v = g->v;
adj[pad[j]->id]->next = temp_list;

} } } } }

/* module adjcent list */

forG = O; j < Nrmodule; j++){
for(i=O; i<modulefj]->nrpin; i++){

if(module[j]->net[i]->id > 0) {
for(g = net_adj[module[j]->net[i]->id]; g != z; g = g->next) {

if(g->v != module[j]->id+Nrpad) {
temp_list = adj[module[j]->id+Nrpad];
adj[module[j]->id+Nrpad] = (struct node *)malloc(sizeof

(struct node));
adj[module[j]->id+Nrpad]->v = g->v;
adj[module[j]->id+Nrpad]->next = temp_list;

} } } } }

fclose(fp);

/*calculate cell's weight*/

Weight()
{

int r
'

int count;
int weight;

for(i=O; i<Maxv; i++)
{

}

count=O;
for(t = adj[i]; t != y; t=t->next)

count = count+ 1;
adj_ weight[i] = count;

66

67

!***!

Priority-First search is used to find the shortest path between two pads
and determine the weight cost "cost[][]" and depth cost "level[][]".

!***/

ListpfsO
{

int source, i;

for(source = O; source < Nrpad; source++) {
Initialize();

}

for(i = 0; i < Nrpad + Nrmodule; i++) val[i] = -2;
val[source] = adj_weight[source];
Pf_ visit(source);

Pf_ visit(k)
int

int
int
int
int

k;

m;
count;
depth;
father;

/* source pad*/

Insert(k); /*insert cells into priority queue*/

dad[k][k]=k; count=O;

while (Priq != pfs_end) { /*check up queue is not empty */

m = Getdata();

if(m < Nrpad)
{
cost[k][m] = val[m]; /* weight cost along the shortest path */
depth = O; count++;
father= dad[k][m];
while(father != k){

}

depth++;
father= dad[k][father];

}

level[k][m] =depth; /*depth cost along the shortest path */

if(count >= Nrpad) return;
}

for(t = adj[m]; t != y; t = t->next)
{
if(val[t->v] < 0){

dad[k][t->v] = m;

}
}

val[t->v] = adj_weight[t->v] + val[dad[k](t->v]];
Insert(t->v);

/****** utility functions for Priority first search *****/

Initialize()
{

/* initialize the priority queue */

pfs_end = (struct node *) malloc(sizeof(struct node)) ;
pfs_end->v = Maxv;
val[Maxv] = REFERENCE_MAX;
pfs_end->next = pfs_end;

Priq = pfs_end;

Insert(p)
int p;

/* add the cell into the priority queue*/

struct node *temp;
struct node *former;
struct node *new;

if(Priq == pf s_end) {

68

new= (struct node*) malloc(sizeof(struct node)) ;
new->v = p;
new->next = pfs_end;
Priq =new;

}

else if(val[p] < val[Priq->v]) {
new= (struct node*) malloc(sizeof(struct node)) ;
new->v =p;
new->next = Priq;
Priq =new;

}

else{
temp= Priq;

while(val[p] >= val[Priq->v]) {
former = Priq;
Priq = Priq->next;

}

new= (struct node*) malloc(sizeof(struct node));
new->v =p;
new->next = Priq;
former->next = new;

Priq =temp;
}

int GetdataO
{

int data;
struct node *temp;

temp= Priq;
data= Priq->v;
Priq = Priq->next;
free(temp);
return data;

/*pick the first order of queue into tree*/

69

70

!***!

One initial pad and two ways assigning function

!***/

#include "global.h"
#include <stdio.h>

Assign(start)
int start;
{
FILE *fp;
int i. ,
int I· ,
int r· ,
int count;
int id;
int end;
int w· ,
int sensor= 0;
int sensor_ref = 2;
int lef t_signal = 1;
int l_timer;
int r_timer;
int r_counter = O;
int !_counter = 0;

repeat= O;

/* first initial pad *I

/*counter for already assigned pads*/

for(i = 0; i<Nrpad; i++) value[i] = O;

right[O] = start; /* assigning first initial pad */
value[right[O]] = -1; repeat= 1;

end = O; id = 0;
while(end== 0)
{
if(id >= Nrpad-1) {

left[O] = temp[O];
repeat++;

/*choose for the second host pad*/

for(w = 0; w <id; w++) value[temp[w]] = 0;
value[left[O]] = -1;
break;

}

l = alc_next(right[r_counter]);
sensor = O; count = O;
while(count < Nrpad)
{

}

if(value[count] < 0) count++;
else if(count != 1 && cost[l][count] < cost[right[O]][l]){

sensor++; count++;
}
else if(count != 1 && cost[l][count] == cost[right[O]][l]){

if(level[l][count] < level[left[l_counter]][l]){
sensor++; count++;

}
else count++;

}
else count++;

if(sensor >= sensor_ref){ value[l] = -1; temp[id++] = l; }
else{

}
}

left[O] = l; repeat= 2;
for(w = O; w <id; w++) value[temp[w]] = O;
end = 1; value[left[O]] = -1;

/*two ways assigning process*/

while(repeat < Nrpad)
{
end = 0; id = O; count = 0;
while(end== 0)
{
if(id >= Nrpad-repeat && left_signal == 0) {
right[r_counter+ 1] = r; repeat++; r_counter++;
for(w=l; w<id; w++) value[temp[w]]=O;
value[r] = -1; left_signal = 1;
break;

}
if (id >= Nrpad-repeat && left_signal == 1) {

left[l_counter+ 1] = l;repeat++;l_counter++;
for(w = 1; w <id; w++) value[temp[w]] = 0;
value[l] = -1; left_signal = O;
break;

}

71

r = alc_next(right[r_counter]);
l = alc_next(left[l_counter]);

/* condition 1: two host pads compete for one candidate pad */

if(r == l && cost[right[r_counter]][r] < cost[left[l_counterj][l]){
sensor = O; count = O;
while(count < Nrpad)
{

}

if(count = Nrpad-1) count++;
else if(value[count] < 0) count++;
else if(count!= r && cost[r][count] < cost[right[r_counter]][r]){

sensor++; count++; }
else if(count != r && cost[r][count] == cost[right[r_counter]][r]){

if(level[r][count] < level[right[r_counter]][r]){
sensor++; count++; }

else count++;
}
else count++;

if(sensor >= sensor_ref){ value[r] = -1; temp[id++] = r; }
else{

}
}

condition_!++;
right[r_counter+ 1] = r; repeat++; r_counter++;
for(w = O; w <id; w++) value[temp[w]] = 0;
end= 1; value[r] = -1;

else if(r == 1 && cost[right[r_counter]][r] > cost[left[l_counter]][l])
{
sensor = O; count = 0;
while(count < Nrpad)
{
if(count = Nrpad-1) count++;
else if(value[count] < 0) count++;
else if(count != l && cost[l][count] < cost[left[l_counter]][l]){

sensor++; count++; }
else if(count!= 1 && cost[l][count] == cost[left(l_counter]][l]){

if(level[l][count] < level[left[l_counter]][l]){
sensor++; count++; }

else count++;

else count++;

72

if(sensor >= sensor_ref){ value[l] = -1; temp[id++] = l; }
else{

}
}

condition_l ++;
left[l_counter+ 1] = l; repeat++; l_counter++;
for(w = O; w <id; w++) value[temp[w]] = 0;
end= l; value[l] = -1;

else if(r == 1 && cost[right[r_counter]][r] == cost[left[l_counter]][l])
{
sensor= 0; count = 0;
while(count < Nrpad)
{

}

if(count = Nrpad-1) count++;
else if(value[count] < 0) count++;
else if(count!= r && cost[r][count] < cost[right[r_counter]][r]){

sensor++; count++; }
else if(count!= r && cost[r][count] == cost[right[r_counter]][r]){

if(level[r][count] < level[right[r_counter]][r]){
sensor++; count++; }

else count++;
}
else count++;

if(sensor >= sensor_ref){ value[r] = -1; temp[id++] = r; }
else
{
if(level[right[r_counter]][r] < level[left[l_counter]][l]){

condition_2++;

}

right[r_counter+ 1] = r; repeat++;
for(w = 0; w <id; w++) value[temp[w]] = O;
value[right[r_counter+ 1]] = -1; r_counter++; end= 1;

else if(level[right[r_counter]][r] > level[left[l_counter]][l]){
condition_2++;
left[l_counter+ 1] =I; repeat++;
for(w = 0; w <id; w++) value[temp[w]] = O;
value[left[l_counter+l]] = -1; !_counter++; end= 1;

}
else{

if(left_signal == 1) {

73

}
}

condition_3++;
left[l_counter+ 1] = l; repeat++;
for(w = O; w <id; w++) value[temp[w]] = O; end= I;
value[left[l_counter+ 1]] = -1; left_signal = 0; !_counter++;}

else{
condition_3++;

}
}

right[r_counter+ l] = r; repeat++;
for(w = 0; w <id; w++) value[temp[w]] = 0; end= 1;
value[right[r_counter+ 1]] = -1; left_signal = 1 ;r_counter++;

/*condition 2: no competetion between two host pads*/

else
{
sensor = 0; count = O;
while(count < Nrpad)
{

}

if(count=Nrpad-1) count++; /*exit loop*/
else if(value[count] < 0) count++;
else if(count != r && cost[r][count] < cost[right[r_counter]][r]){

sensor++; count++; }
else if(count != r && cost[r][count] == cost[right[r_counter]][r]){

if(level[r][count] < level[right[r_counter]][r]){
sensor++; count++; }

else count++;
}
else count++;

if(sensor >= sensor_ref){ value[r] = -1; temp[id++] = r; }
else{

}

condition_ 4++;
right[r_counter+ 1] = r; repeat++; r_counter++;
for(w = O; w <id; w++) value[temp[w]] = O;
end= l; value[r] =-1;

sensor = 0; count = O;
while(count < Nrpad)
{

if(count = Nrpad-1) count++;
else if(value[count] < 0) count++;

74

}

}

}

else if(count != 1 && cost[l][count] < cost[left[l_counter]][l]){
sensor++; count++; }

else if(count != 1 && cost[l][count] == cost[left[l_counter]][l]) {
if(level[l][count] < level[left[l_counter]][l]){

sensor++; count++; }
else count++;

}
else count++;

if(sensor >= sensor_ref){ value[l] = -1; temp[id++] = l; }
else{

}
}

condition_ 4++;
left[l_counter+ 1] = l; repeat++; l_counter++;
for(w = 0; w <id; w++) value[temp[w]] = 0;
end= 1; value[l] = -1;

/* check up the end of assignment */

if(repeat == Nrpad-1)
{

}

condition_ 4++;
r = alc_next(right[r_counter]);
right[r_counter+ 1] = r; repeat++; r_counter++;
right[r_counter+l] = -1; left[l_counter+l] = -1;

else if(repeat == Nrpad)
{
right[r_counter+ 1] = -1; left[l_counter+ 1] = -1;

}

/*print out circular-ordered pads into file "pad_ order" */

fp = fopen("pad_order", "w");

i = O;
while(right[i] != -1) i++;
r_timer = i;
for(i = O; i < r_timer; i++) {

pad_order[start][i] = right[i];
fprintf(fp,"%d0, right[i]);

75

i = O;
while(left[i] != -1) i++;
!_timer= i;
for(i = l_timer-1; i >= O; i--) {

pad_order[start][r_timer + l_timer-1-i] = left[i];
fprintf(fp,"%d0, left[i]);

}

fclose(fp);
}

/*choosing candidate pad with the smallest cost to host pad */
alc_next(x)
int x; /**counter**/

int
int
int
int
int

i;
j;
cost_ref = REFERENCE_MAX;
level_ref;
candidate;

for(i = O; i < Nrpad; i++)
{
if(value[i] < 0) continue;

else if(x != i && cost[x][i] < cost_ref){
cost_ref=cost[x] [i];
candidate = i;
level_ref = level[x][i];

}

else if(x != i && cost[x][i] == cost_ref && level[x][i] < level_ref){
cost_ref = cost[x][i];

}
}

candidate = i;
level_ref = level[x][i];

re turn (candidate);
}

76

77

!***/

Selection Function

Description: Select a good ring from a group of rings formed by
assigning function.

!***!

#include <stdio.h>
#include <string.h>
#include "global.h"
#include <math.h>

Select()
{

int i,j;
int target[Nrpad+ 1];
int ncost_max, nlevel_max, far_ncost_max, far_nlevel_max, mincost_max;
int ncost_min, nlevel_min, far_ncost_min, far_nlevel_min, mincost_min;
float parameter_sum[Nrpad], min_cost[Nrpad];
float ncost[Nrpad], nlevel[Nrpad],far_ncost[Nrpad], far_nlevel[Nrpad];
float total_ncost,total_nlevel, total_fcost, total_flevel;
float ncost_refl, nlevel_refl, far_ncost_refl, far_nlevel_refl;
float ncost_ref2, nlevel_ref2, far_ncost_ref2, far_nlevel_ref2;
float mincost_refl, mincost_ref2, total_min;
float ncost_dif, nlevel_dif, far_nlevel_dif, far_ncost_dif, min_dif;
struct node *order, *new, *temp, *former, *order_end;

/*each factor's value for a ring*/

for(i=O; i<Nrpad; i++)
{

}

Assign(i);
ncost[i] = (float) Neighbor_cost(i);
nlevel[i] = (float) Neighbor_level(i);
far_ncost[i] = (float) Far_neighbor_cost(i);
far_nlevel[i] = (float) Far_neighbor_level(i);
min_cost[i] = (float) Mincut_cost(i);

/* initialization */

ncost_refl = REFERENCE_MIN;
far_ncost_refl = REFERENCE_MIN;
nlevel_refl = REFERENCE_MIN;
far_nlevel_refl = REFERENCE_MIN;
mincost_refl = REFERENCE_MIN;
ncost_ref2 = REFERENCE_MAX;
far_ncost_ref2 = REFERENCE_MAX;
nlevel_ref2 = REFERENCE_MAX;
far_nlevel_ref2 = REFERENCE_MAX;
mincost_ref2 = REFERENCE_MAX;

total_ncost = 0.0;
total_nlevel = 0.0;
total_min = 0.0;
total_fcost = 0.0;
total_ftevel = 0.0;

/*Find the maxium and mininum values for each factors*/

for(i = 0; i < Nrpad; i++)
{
/* nearer-pad pair weight cost*/
total_ncost = total_ncost + ncost[i];
if(ncost[i] > ncost_refl){

}

ncost_refl = ncost[i];
ncost_max = i;

if(ncost[i] < ncost_ref2) {
ncost_ref2 = ncost[i];
ncost_min = i;

}

/* farrest-pad pair weight cost*/
total_fcost = total_fcost + far_ncost[i];
if(far_ncost[i] > far_ncost_refl) {

}

far_ncost_refl = far_ncost[i];
far_ncost_max = i;

if(far_ncost[i] < far_ncost_ref2) {
far_ncost_ref2 = far_ncost[i];
far_ncost_min = i;

}

/* nearer-pad pair depth cost*/
total_nlevel = total_nlevel + nlevel[i];

78

if(nlevel[i] > nlevel_refl){
nlevel_refl = nlevel[i];
nlevel_max = i;

}

if(nlevel[i] < nlevel_ref2) {
nlevel_ref2 = nlevel[i];
nlevel_min = i;

}

I* farrest-pad pair depth cost*/
total_ftevel = total_ftevel + far_nlevel[i];
if(far_nlevel[i] > far_nlevel_refl){

}

far_nlevel_refl = far_nlevel[i];
far_nlevel_max = i;

if(far_nlevel[i] < far_nlevel_ref2){
far_nlevel_ref2 = far_nlevel[i];
far_nlevel_min = i;

}

/* block-pad pair weight cost */
total_min = total_min + min_cost[i];
if(min_cost[i] > mincost_refl){

mincost_refl = min_cost[i];
mincost_max = i;

if(min_cost[i] < mincost_ref2) {
mincost_ref2 = min_cost[i];
mincost_min = i;

}
}

/* value range between maximum value and minimum value*/

ncost_dif = (ncost[ncost_max] - ncost[ncost_min]);
far_ncost_dif = (far_ncost[far_ncost_max] - far_ncost[far_ncost_min]);
nlevel_dif = (nlevel[nlevel_max] - nlevel[nlevel_min l);
far_nlevel_dif = (far_nlevel[far_nlevel_max] - far_nlevel[far_nlevel_min]);
min_dif = (min_cost[mincost_max] - min_cost[mincost_min]);

/*choose the rings with smaller values of FACTOR_SUM */

order_end = (struct node*) malloc(sizeof(struct node)) ;
order_end->v = Nrpad;

79

parameter_sum[Nrpad] = REFERENCE_MAX;
order = order_end;

target[O] = Nrpad;
for(i=O; i<Nrpad; i++)
{
I* FACTOR_SUM */
parameter_sum[i] = ncost[i] +

(ncost_dif/far_ncost_dit) * far_ncost[i] +
(ncost_dif/min_dit) * min_cost[i] +
(ncost_dif/nlevel_dit) * nlevel[i] -
(ncost_dif/far_nlevel_dit) * far_nlevel[i] ;

/* sorting */

if(order== order_end){

}

new= (struct node*) malloc(sizeof(struct node));
new->v = i;
new->next = order_end;
order= new;

else if(parameter_sum[i] < parameter_sum[order->v]){
new= (struct node*) malloc(sizeof(struct node));
new->v = i;
new->next =order;
order= new;

}

else{

}

temp = order;
while(parameter_sum[i] >= parameter_sum[order->v]) {

former = order;
order= order->next;

}
new= (struct node*) malloc(sizeof(struct node));
new->v = i;
new->next =order;
former->next = new;
order = temp;

/*printf("*** The first 5 smaller value of FACTOR_SUM * ");

80

i = 0;
for(temp =order; temp!= order_end; temp= temp->next){

i++;
if(i > 5) break;
else printf("%d %f0, temp->v, parameter_sum[temp->v]);*/

}

return order->v; /* the smallest value of FAC'TOR_SUM */

/*
** Selection Factors:
**
** Neighbor_cost() nearer-pad pair weight cost
** Neighbor_levelO nearer-pad pair depth cost
** Far_neighbor_costO farrest-pad pair weight cost
** Far_neighbor_level() farrest-pad pair depth cost
** Mincut_costO block-pad pair weight cost

*I

Neighbor_ cost(start)
int start; /* initial pad */
{

int l' '
int j;
int n_cost;
int RANGE; /*farthest distance for nearer-pad pair*/

n_cost=O;
RANGE = Power(2, Nrcut);

for(i = 1; i <=RANGE; i++) {
forG = 0; j < Nrpad-i; j++)

n_cost = n_cost + cost[pad_order[start]fj]][pad_order[start]Li+i]];

for(i = 1; i <=RANGE; i++){
forG = O; j < i; j++)

n_cost = n_cost +
cost[pad_order[start][Nrpad-j-1]][pad_orderlstart][i-j-1 J];

81

return n_cost;

Neighbor_level(start)
int start;
{

int l" ,
int j;
int n_level;
int RANGE;

n_level = O;
RANGE = Power(2, Nrcut);

for(i = 1; i <=RANGE; i++) {
for(j = 0; j < Nrpad-i; j++)

n_level = n_level + level[pad_order[start]fj]][pad_order[start][i+j]];

for(i = 1; i <=RANGE; i++){
for(j = O; j < i; j++)

n_level = n_level +
level[pad_order[start] [Nrpad-j-1]] [pad_order[start] [i-j-1]];

return n_level;

Far_neighbor_cost(start)
int start;
{

int
int
int
int

i;

J;
f_cost;
RANGE=O;

f_cost = 0;

for(i = Nrpad/2; i <= Nrpad/2+RANGE; i++) {

82

for(j = 0; j < Nrpad-i; j++)
f_cost = f_cost + cost[pad_order[startl[j]][pad_order[start][j+i]];

for(i = Nrpad/2; i <= Nrpad/2+RANGE; i++){
for(j = 0; j < i; j++)

f_cost = f_cost +
cost[pad_order[start] [Nrpad-j-1]][pad_order[start] [i-j-1]];

return f_cost;

Far _neighbor _level (start)
int start;
{

int
int
int
int

1;
j;

f_level;
RANGE=O;

f_level = O;
for(i = Nrpad/2; i <= Nrpad/2+RANGE; i++) {

for(j=O; j<Nrpad-i; j++)
f_level = f_level + level[pad_order[start]Li]][pad_order[start]li+i]];

for(i = Nrpad/2; i <= Nrpad/2+RANGE; i++){
for(j = 0; j < i; j++)

f_level = f_level +
level[pad_order[start][Nrpad-j-1]] [pad_ order[start] [i-j-1]];

return f_level;

Mincut_cost(start)
int start;

83

int
int
int
int
int

i;

J;
k

'
cutcost = O;
Nrsec;

int cut; /*number of partitions in PROUD*/
int p;

/*for the block-pad pair in diagnol blocks*/
for(p = 1; p <= Nrcut; p++)
{

}

Nrsec = Power(2,Nrcut)*4-4;
for(i = 0 + Nrpad/Nrsec*p; i < Nrpad/4 - Nrpad/Nrsec*p; i++){

for(j = Nrpad/2 + Nrpad/Nrsec*p; j <

}

Nrpad/2 + Nrpad/4 - Nrpad/Nrsec*p; j++) {
cutcost = cutcost - cost[pad_order[start][i]][pad_order[start][j]];

}

/*for the block-pad pair in diagnol blocks */
for(p = 1; p <= Nrcut; p++)
{

}

Nrsec = Power(2,Nrcut)*4-4;
for(i = Nrpad/4 + Nrpad/Nrsec*p; i < Nrpad/2 - Nrpad/Nrsec*p; i++) {

for(j = Nrpad/2 + Nrpad/4 + Nrpad/Nrsec*p; j <

}

Nrpad - Nrpad/Nrsec*p; j++){
cutcost = cutcost - cost[pad_order[start][i]][pad_order[start][j]];

}

/*for the block-pad pair in the same blocks*/
for(cut= Nrcut; cut> 0; cut--)
{
Nrsec = Power(2,cut)*4-4;
for(k = O; k < Nrsec; k++) {

}

for(i = k*Nrpad/Nrsec; i < (k+ l)*Nrpad/Nrsec; i++){
for(j = k*Nrpad/Nrsec; j < (k+ 1)*Nrpad/Nrsec; j++){

if(i != j)

}
}

cutcost = cutcost + cost[pad_order[start][i]][pad_order[start]fj]];

84

return cutcost;

Power(base,y)
int
int

int
int

base;
y;

r
'

p;

p = 1;
for(i = 1; i <= y; ++i) p = p *base;
return p;

85

86

!**/

Output Function

Description: print out a fonnated design file with pad locations
specified used as the input file for PROUD

!**/

#include<stdio.h>
#include "global.h"

Print_out(start, ExampleFile, PadPosition)
int start;
char ExampleFile[30];
char PadPosition[30];
{

FILE *fp;
FILE *position;
int i;
int J;
int site_x;
int site_y;
int initial = O;
char buffer[40];

!* input data file */
/*physical pad locaion on chip */

struct location *pad_position[Nrpad];

fp = fopen(ExampleFile, "w");

position = fopen(PadPosition, "r");

for(i = O; i < Nrpad; i++){
pad_position[pad_order[start][i]] =

(struct location *)malloc(sizeof(struct location));
f gets(buffer, 40, position);
sscanf(buffer, "%d %d", &pad_position[pad_order[start][i]]->x,

&pad_position[pad_order[start] [i]]->y);

/*print out the new design file */

fprintf(fp, "%s %d0, namel, nrCols);

fprintf(fp, "%s %d0, name2, nrRows);
fprintf(fp, "%s %d0, name3, bcX);
fprintf(fp, "%s %d0, name4, be Y);
fprintf(fp, "%s %d0, name5, xGrid);
fprintf(fp, "%s %d0, name6, yGrid);
fprintf(fp, "%s %s0, name7, name8);
fprintf(fp, "%s %d0, name9, nrlos);
fprintf(fp, "%s %d0, namelO, nrMods);
fprintf(fp, "%s %d0, namel 1, nrNets);
fprintf(fp, "%s %d0, name12, nrPins);

for(i=O; i<nrlos; i++){
site_x = pad_position[i]->x;
site_y = pad_position[i]->y;
fprintf(fp,"%d %s %d %d %d %d %d %d0, pad[i]->id,

pad[i]->name,pad[i]->type, pad[i]->obstacle,
pad[i]->nrpin,site_x,site_y, pad[i]->pattem);

for(j=O; j<pad[i]->nrpin; j++){

}
}

fprintf(fp,"%d %d %d %d0,initial++,pad[i]->net[j]->order,
pad[i]->net[j]->id,pad[i]->net[j]->ntype);

for(i=O; i<nrMods; i++){
fprintf(fp, "%d %s %d %d %d %d %d %d0, module[i]->id,

module[i]->name, module[i]->type, module[i]->obstacle,
module[i]->nrpin,module[i]->x,module[i]->y,
module[i]->pattern);

for(j=O; j<module[i]->nrpin; j++){

}
}

fprintf(fp, "%d %d %d %d0,module[i]->net[j]->pin,
module[i]->net[j]->order,module[i]->net[j]->id,
module[i]->net[j]->ntype);

fclose(fp);
fclose(position);

87

88

/**/

Global variable definitions

/**/

#define Maxv 833 /*total cell number*/
#define Nrpad 81 /*pad number*/
#define Nrmodule 752 /* interior module number*/
#define Nrnets 1239 /*net number*/
#define Nrpins 3303 /*pin number*/
#define Nrcut 2 /*number of cuts*/
#define REFERENCE_MAX 3.0e+35
#define REFERENCE_MIN -3.0e+35

struct node {
int v;
struct node *next;

} ;

struct new_node{
int vl;
int v2;
struct new _node *next;

} ;

struct NETS {
int pin;
int order;
int id;
int ntype;

}*nets;

struct nodes{
int id;
char name[8];
int type;
int obstacle;
int nrpin;
int x,y; /**pad position **/
int pattern;
struct NETS *net[50];

} ;

struct adj {

char name[8];
struct adj *next;

};

struct location {
int x;
int y;

} ;

struct nodes *pad[Nrpad], *module[Nrrnodule];

/* for function Listpfs */
int adj_weight[Maxv];
int cost[Nrpad][Nrpad];
int connect[Maxv][Maxv];
int level[Nrpad][Nrpad];
int dad[Nrpad] [Maxv];
int val[Maxv];
struct node *Priq;
struct node *pfs_end;

/*for Assigning Function */
int repeat,a[Nrrnodule];
int value[Nrpad];
int pad_order[Nrpad] [Nrpad];
int temp[Nrpad];
int right[Nrpad];
int left[Nrpad];

/*for function Readin and Print_out */
int nrCols, nrRows, bcX, bcY, xGrid;
int yGrid, nrlos, nrMods, nrNets, nrPins;

89

char name 1 [20], name2[20], name3[20], name4[20], name5[20], name6[20];
char name7[20], name8[20], name9[20], namel0[20], namel 1[20], name12[20];
struct node *y;
struct node *g;
struct node *t;
struct node *s;
struct node *adj[Maxv];

	Improved I/O pad positions assignment algorithm for sea-of-gates placement
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1527716968.pdf.GhLR2

