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This treatise is a recapitulation of the theoretical 

and experimental study of hysteresis in atmospheric 

kinetics. The original problem arose from a theoretical 

study of a series of reactions for clean air. Upon 

evaluation a bistable equil i br ium was predicted. The 

steady-state analysis had del i neated a metastable region for 
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the set of reactions. This bounded region is the hysteresis 

that this research project evaluated. 

The theoretical aspect of the research was initiated 

with a series of reactions believed to closely approximate 

the set of reactions that occur in clean air. The rate 

constants for the reactions were obtained, and the ensuing 

mechanism was numerically integrated on a computer. The 

model was then adjusted so as to generate the hysteresis 

effect in this study. This model was then moved to the 

laboratory to determine the plausibility of experimentally 

generating this hysteresis effect. 

The experimental setup consisted of a photochemical 

reactor with controlled flows of the reactant gasses. 

Control of the chamber was accomplished with a micro­

computer, the computer initiated the gas flows, monitored 

them, and adjusted them accordingly. The experimental 

setup was allowed to run long enough to cover the region of 

the hysteresis, as specified by the model. The experimental 

part of this research demonstrated evidence of a metastable 

region as predicted by the model. 
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CHAPTER I 

INTRODUCTION 

This treatise is a recapitulation of the theoretical 

and experimental study of hysteresis in atmospheric 

kinetics. The original problem arose from a theoretical 

study of a series of reactions for clean air. Upon 

evaluation a bistable equilibrium was predicted. The 

steady-state analysis had delineated a metastable region for 

the set of reactions. This bounded region is the hysteresis 

that this research project evaluated. 

The theoretical aspect of the research was initiated 

with a series of reactions believed to closely approximate 

the set of reactions that occur in clean air. The rate 

constants for the reactions were obtained, and the ensuing 

mechanism was numerically integrated on a computer. The 

model was then adjusted so as to generate the hysteresis 

effect in this study. This model was then moved to the 

laboratory to determine the plausibility of experimentally 

generating this hysteresis effect. 

The experimental setup consisted of a photochemical 

reactor with controlled flows of the reactant gasses. 

Control of the chamber was accomplished with a micro-
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computer, the computer initiated the gas flows, monitored 

them, and adjusted them accordingly. The experimental 

setup was allowed to run long enough to cover the region of 

the hysteresis, as specified by the model. The experimental 

part of this research demonstrated evidence of a metastable 

region as predicted by the model. 



CHAPTER II 

DISCUSSION OF HYSTERESIS IN ATMOSPHERIC CHEMISTRY, 

PLAUSIBILITY OF HYSTERESIS IN THE ATMOSPHERE 

A paper published in Nature (White & Dietz 1984) proposed 

that the atmosphere could support multiple equilibrium states. 

This model was the premise for my research done on hysteresis 

effects in the atmosphere. The paper in Nature did not 

address the kinetic consequences of hysteresis, but only the 

equilibrium states predicted from their model. The model they 

utilized and the one used for this research are very similar. 

Both models represent the chemistry of relatively clean air, 

without the influence of the large concentrations of 

nonmethane hydrocarbons found in polluted air. The addition 

of hydrocarbon chemistry is not expected to qualitatively 

affect the overall results, although it would change the 

points of equilibrium (London & Park 1973)(Bufalini et al. 

1976)(Altshuller & McPherson 1967). The model results from 

White & Dietz (1984) are shown in Figure 1 and Table 1 shows 

the mechanism utilized in their study. The figure shows a 

calculated steady-state NOx(=NO+N02 ) concentration (as crudely 

simulated for the free troposphere), as a function of the NOx 

source strength. These calculations represent a so-called 
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zero-dimensional model, in which instantaneous mixing is 

assumed and therefore transport of trace gases is ignored. 

The figure shows a calculated equilibrium contour for NOx as 

a function of emissions, and as emissions increase, this path 

reaches a point where it begins to turn back upon its elf. 

Although White and Dietz did not address the kinetic 

trajectories along this path, my study finds that at the 

inflection point the concentration would jump to the upper 

branch and continue to go up. If emissions were then reduced 

(for the reverse path) hysteresis behavior is seen. The 

concentration would follow the upper path (decreasing); then 

at the left-most inflection point it would fall to the lower 

branch and continue falling. 

The implications of this model could have a dramatic 

impact on the atmosphere. They imply that if the source rate 

for NO were to continue increasing, it would reach a point at 

which a small increase in the source would produce an 

incredible increase in the NO concentration. This model also 

implies that to drop back to some previous initial 

concentration of NO, the source rate would have to decrease 

much lower than the source rate just before the jump. This 

process can be seen in Figure 1. The source rate increases 

(Path 1), and a large increase in NO occurs, then to return to 

the same initial concentration the source must follow Path 2. 

This behavior is illustrated for the NO concentration, but 
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ozone and all other chemical species will show similar 

discontinuous behavior at the inflection points. Due to the 

availability of an ozone analyzer for the experimental portion 

of this thesis, this research has focused on predictions and 

measurement of the ozone concentration. 

The environmental concerns with N02 and ozone (Clyne 

1976), are that they are both physiologically harmful to 

humans. so local increases in concentration are to be 

avoided; but globally NO and ozone are necessary to provide 

the natural balance of cleaning in the atmosphere (Darnall, et 

al. 1976)(Bufalini, et al. 1976). A balance between the 

buildup and the destruction must be achieved (Pitts, Lloyd, & 

Sprung 1975)(Penkett 199l){London & Park 1973). 

My research delves into the theoretical and experimental 

aspects of this effect. The theoretical aspect of this model 

has borne out that this effect could happen and the parameters 

for the inflection points have been studied. In order to 

begin to understand the phenomenon of atmospheric hysteresis, 

simplistic chemical models have been mathematically studied to 

determine the points at which discontinuous concentration 

behavior occurs. 
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TABLE I 

CLEAN AIR MECHANISM 

NO + 03 ----> N02 
N02 + hv ----> NO + 03 
N02 + 03 ----> N03 
N03 + NO ----> 2N02 
N03 + hv ----> N02 + 03 
N03 + hv ----> NO 
03 + hv ----> 2HO 
co + HO ----> H02 
CH4 + HO ----> CH30f> 
C2H4 + HO ----> 2CH2 + H02 
CH20 + HO ----> co + HO 
CH20 + hv ----> co + 2Hf>2 
H02 + NO ----> N02 + HO 
CH30 2+ NO ----> CHf>O + H02 + N02 
HO + N02 ----> HN 3 
HN03 + hv ----> HO + N02 
HO + 03 ----> H02 
H02 + 03 ----> HO 
2H02 ----> 

:&02 
H202 + HO ----> 

Hf>02 + hv ----> 2Hf> 
H 2 + HO ----> 

This mechanism provided evidence that the 
atmosphere could support multiple steady 
states. From this mechanism, and the others, a 
more complete model of clean air chemistry was 
built. 
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Figure 1. NOx concentration versus the NO emission 
rate. This figure is adapted from NATURE, (White & 
Dietz 1984).This shows the steady state NOx 
concentration in the free troposphere, as a 
function of the NOx source rate. The features of 
this figure show that at certain source rates 
there are multiple NOx concentrations 
possible.(Gray & Scott 1990). 
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CHAPTER III 

THEORETICAL STUDY OF HYSTERESIS 

CHEMICAL MECHANISMS 

Initiation of the study of the hysteresis effect came 

by compiling a reasonable set of reactions that would 

approximate the chemistry of the troposphere, as has been 

experimentally and theoretically verified (Crutzen 1973). 

The set of reactions initially used are listed in Table II, 

this set was analyzed and determined to be a mechanism 

comprehensive enough to account for the chemistry (Koop & 

Ogren 1976){Logan, et al. 198l){Dietz & White 1984) that 

would take place in the experimental analysis. This 

mechanism was analyzed, see Figure 2, and the hysteresis 

effect was found to be achieved, see Figure 3. 

MULTISTABILITY IN FLOW REACTORS 

In attempting to understand the hysteresis effect 

mathematically, it was decided to regress to very simple 

mechanisms capable of analytical solutions. Ultimately, 

this knowledge could be applied to the more complex problem. 

The simplest model for this system is the continuously fed 

well-stirred reactor, adapted from Gray & Scott (1990), 



using a simple chemical reaction for cubic autocatalysis: 

A + 2B ---> 3B rate=k1ab2 • 

In the atmosphere or the experiment the following series of 

reactions would give an overall net reaction for the 

autocatalysis of ozone: 

03 + NO -----> N02 + 02 

3N02 + 3hv -----> 30(X3P) + 3NO 

30(X3P) + 302 -----> 303 

03 + hv -----> 0( a 1D) + 02 

O(a1D) + H20 -----> 2HO 

2HO + 2CO -----> 2C02 + 2H 

2H + 202 -----> 2H02 

2NO + 2H02 -----> 2N02 + 2HO 

The overall reaction is: 

hv 

9 

20 + 30 + H 0 + 2CO --------> 30 + 2HO + 2CO 3 2 2 3 2 

The idealized reactor is fed by a stream, or separate 

streams, of A and B with initial concentrations of a0 , and 

b0 respectively. The concentrations of the two species in 

the well-mixed reactor are a and b. 

The concentration of A is determined by the three 
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quantities: the rate of inflow of A, the rate of outflow of 

A, and the conversion of A to B. Combining these three 

processes, an expression for the net rate can be expressed 

in terms of A molecules per second in the reactor. 

V da/dt = qa0 - qa - Vk1ab2 

Here qa0 is the volume flow rate in times the initial 

concentration of a, qa is the volume flow rate out times the 

concentration of a in the reactor, and the last term is the 

reaction rate (conversion of A to B). Since the reaction 

stoichiometry can be expressed as: 

a0 + b 0 = a + b, 

then b can be eliminated from the net rate expression to 

give 

da/dt = kflow< a0-a) - k1a( a0+b0-a) 2 

where da/dt is the net change in the concentration of a, the 

first term to the right of the equal sign is the net inflow, 

and the second term is the chemical reaction rate. 

This relationship is obtained by dividing the original 

equation by V, and calling the quantity q/V the flow 

constant kflow<time-1). Note that although the above chemical 



reaction sequence represents an overall stoichiometry 

whereby ozone is created autocatalytically (2 o3 ---> 303 ), 

the complex mechanism does not necessarily have the same 

reaction order as the cubic autocatalysis model reaction. 

At reactor steady state, the net inflow of A will 
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eventually be balanced by outflow and chemical reaction. At 

sufficient reaction time this condition is met and then 

da/dt=O. The last expression now becomes: 

kflow(ao-ass> - k,ass<aa+bo-ass> 2 = 0 

The steady state concentration of a (ass> can now be 

expressed as the roots of the cubic equation, in terms of 

kflow' a0 , b0 , and k1 • Cubic equations can have one or three 

real roots, and since the quantities involved in the 

solutions are physical quantities, only the positive 

solutions are desired. If there is only one positive real 

root, this corresponds to a unique steady state for the 

given flow. If the solution involves three positive real 

roots this will be a region that corresponds to multiple 

steady states, since all correspond to da/dt=O. A method to 

visualize the solutions is to generate a set of lines such 

that one line is defined by the equation Ll=kflow(a0-a) and 

the other line would be L2=k1a(aa+b0-a) 2 • By plotting the 

two functions versus the extent of the reaction, one may 

note that each time the two lines cross this corresponds to 

Ll=L2. When this technique produces three intersections 
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this corresponds to a point where a given flow rate produces 

three steady state concentrations of a. In such a case, the 

upper and lower concentrations represent an equilibrium 

state of the system, but the middle concentration is 

unstable with respect to conversion to one of the other two 

values. Figure 4 (page 32) indicates the various possible 

solutions to these equations. 

MODELLING OF THE MECHANISMS 

Kinetic analysis of the mechanisms was accomplished by 

utilizing an APOLLO DNlOOOO computer and the program PAMOL 

to numerically integrate the series of reactions in the 

mechanism, under the conditions specified in the input file. 

An input file for the program PAMOL, Table III, included an 

extensive format that allowed the investigator to adjust 

parameters of the mechanism to obtain data for varying 

conditions. The first line in the file contains the error 

level tolerance, simulation time to print an element of 

data, and the time to stop the calculation process. The 

main body of the file includes the reactions, products, and 

rate coefficients. The matrix at the bottom of the file 

lists all the species' initial concentrations. The final 

lines of the file list species that are held constant during 

the integration process. By processing the file through the 

program PAMOL, the integration program, the computer 
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generates a file of the concentration of each species, at 

each specified printout time. This analysis was done until 

the input file generated the hysteresis effect associated 

with increasing and decreasing emission rates. This output 

file can then.be graphed to observe the changes in 

concentration versus time. A more useful plot displays 

species concentration vs. the emission rate as shown in 

Figure 3. Here, "forward reaction" indicates increasing CO 

emissions (Sro) and "reverse reaction" indicates decreasing 

emissions. In both cases the emission rate was changed 

sufficiently slowly that each point represents an 

equilibrium state of the system. This was verified by 

decreasing the emissions increase rate until the behavior 

converged to that typified by Figure 3. 

ALGEBRAIC ANALYSIS OF THE MECHANISMS 

The mechanism listed above was designed to represent 

the actual chemistry that would produce a hysteresis effect. 

Analysis of the kinetic mechanism was done by setting the 

differential equation for each species to zero, representing 

an equilibrium state of the system. Algebraic analysis of 

this large system of second order equations proved to be 

rather difficult, but a set of simplified solutions is noted 

in Table IV (page 23). Because of the complexity of this 

equation set, a determination was made to start with a 
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fairly simple mechanism (Beno, et al. 1985), and do a 

similar analysis to determine if more understandable results 

could be obtained. The ten step mechanism noted in Table VI 

was one simple mechanism that would provide a understandable 

solution to the steady state analysis. This mechanism does 

indeed show discontinuous behavior of species 

concentrations, but since there are no removal processes for 

many species other than HO reaction, kinetic analysis cannot 

achieve steady state for some values of emission rates. The 

ten step mechanisms' solutions to the steady state 

approximation are listed at the bottom of Table VII. These 

solutions are listed as equations that have the independent 

variables, the source rates, on one side of the equation, 

and the reaction rates on the other. In this particular 

solution there are combinations of the source rates that 

could produce negative values for the give reaction rate. A 

negative value for the rate would have no real meaning, so a 

set of inequalities, see Table VII, can be formed from the 

solutions. These inequalities are conditions that define 

the limits where the rate of the reaction will be positive 

or zero. The inequalities also define the limits of 

stability for the system in question, and hence the points 

of discontinuous species' concentrations. 

The larger mechanism that better approximates the 

chemistry of clean air also shows similar features to the 
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ten step mechanism. This similarity leads to the conclusion 

that there should be a solution that has features in common 

with the ten step solution. The solution noted for the 

large mechanism, Table v, is considerably more complex. By 

rearrangement of the solution in Table V, the dependant 

variables can be expressed in terms of the independents, the 

source rates. The source rates for this large mechanism 

expressed in terms of the independent variables are: 

S03 = R15+R16-R2+RS+R6+R25 

S00 = 2(R12+R13-R21-R9) 

or (two solutions for SN0 were produced) 

S00 = 2(R12-Rll-RlO+Rl3-R21) 

Seo= Rll+R17+R21-R23+R30+R31+R32+R33+R34-R25 

Since the solutions for s03 , s00 and Seo have negative 

terms (e.g. -R2 in the s03 equation above), this introduces 

another consideration into the interpretation of the 

solution. Allowing a term to be subtracted allows the 

source to become negative if the subtracted quantity becomes 

large enough. With this in mind the actual physical 

interpretation of the combination of the source rates 

becomes clouded. The fourteen step mechanism was the first 

of the smaller models to show this similar feature, that 

model as well as this larger one did express the hysteresis 

effect. 

Table VIII shows the solutions to various mechanisms 
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from a ten step to a fourteen step, the last entry is the 

similar solution for the large clean air mechanism. The 

solutions to all subsequent mechanisms have been arranged to 

generate similar results that produce the same relationships 

between the independent variables. As noted before, only 

the very simplistic mechanisms provide a relationship 

between the dependent, and independent variables that have 

only additive terms for the dependant variables. This leads 

to a series of inequalities that define the regions that 

have any physical meaning. Similar inequalities can be had 

for the solutions that do not have such a straight forward 

interpretation. The fourteen step mechanism would now have 

two inequalities for each combination of independent 

variables, Table IX. 

To get a better understanding of the behavior of the 

solutions to the mechanisms, the one-variable analysis 

illustrated by Figure 3 was expanded to two dimensions with 

two source rates serving as independent variables with the 

third held constant. For this analysis the PAMOL program 

was used to generate isopleth plots of steady-state 

concentrations reached at long integration times. In this 

operational mode, PAMOL uses a similar input format for the 

time-based integration. In this case the pair of source 

rates are held constant at specified values until 

convergence of chemical concentrations to equilibrium 
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occurs. The convergence criteria is now set by the added 

line at the top of the input file, e.g. isop=.001. In this 

case, integration would proceed until all concentrations 

changed less than 0.1% between printouts.· At this point the 

program steps to the next emission or source rate value. A 

sample isopleth diagram is seen in Figure 5. This diagram 

is like a topographic map, each line is a line of constant 

concentration, analogous to the contour lines on a map. At 

the point of inflection there is a piling up of these lines, 

a cliff. The reaction is run in the reverse direction 

(decreasing emissions) by reversing the list of values for 

the sources noted at the bottom of the input file, see Table 

VI. The point at which the inflection occurs is at a 

different position relative to the other direction. This 

displacement of the cliff for the forward and reverse 

directions delineates the hysteresis region in two 

dimensions. Using these diagrams it is possible to relate 

the major features to the solutions. Taking the ten step 

mechanism, Figure 5, the cliff can be seen in the center of 

the plot. The x-axis is the Ozone source rate s~, and the 

y-axis is the Nitric Oxide source rate 800 • The contour 

lines delineate regions of constant ozone concentration. To 

understand the features of this three-dimensional cliff in 

the context of a four dimensional problem (03 concentration 

vs. s~, 800 , and Seo) it useful to normalize both axes. This 
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is done by dividing t~e source rates for nitric oxide, and 

ozone by the constant carbon monoxide source rate used for 

this calculation, Se0=1x10-8 , then take the log of the 

resulting number. Using the normalized values for the axes, 

and the solution for the ten-step reaction, Table VIII, some 

of the features of the cliff can be discerned. The cliff 

intersects the y-axis at log(2), this intersection can be 

explained from the solution to the ten-step mechanism. 

Normalization of the solution produces the following: 

2 Sro/Sro + 2 S~/Sro = Soo/Sro 

This equation then reduces to; 

2 + 2S~/S00 = S00/S00 

Substituting the value for Seo the last equation yields: 

2 + 2S~/1X10~ = Soo/lxlO~ 

Reducing the last equation to x and y coordinates it now 

becomes; 

2 + 2x = y 

From this series of equations it can be seen that when 

x<<l then y=2, or Log(y)=Log(2). If x>>l then y=2x, or 

Log(y)=Log(x)+Log(2). The Log(y)=Log(2) is the intersection 

of the cliff on the y-axis, the inflection point at the 

beginning of the upward slope is at the Seo value. Figure 6 

is an isopleth diagram of the solution plotted using the 
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values for the source rates that produced Figure 5. Figure 

6 used only the solution to the ten-:-step mechanism to 

generate the isopleth lines. The procedure for generating 

this plot was to enter the mechanism into the program that 

produces the isopleth diagrams, then allow it to use the 

mechanism and the source rate values to iteratively produce 

values for the ozone concentration. The features of the two 

Figures are very similar, noting that the theoretical plot 

shows no concentrations in the upper left corner. This 

region is where the concentration would be zero, or 

negative. Using a similar technique for the analysis of the 

fourteen step mechanism, many of the same features are seen. 

The cliff intersects the y-axis at log(2), the inflection 

point marking the cliff's upward climb is at the s03 value 

of 1x10-4 , see Figure 7. This mechanism has a significant 

difference from the ten-step mechanism in that it shows a 

well defined hysteresis region, see Figure a. Using the 

solutions for the ten-step mechanism in Table VII, a cross 

section of the isopleth is generated. The solution is 

entered in TKSolver Plus, an equation solving program, and 

the list of values for the source rates are supplied. The 

program then will calculate the values for the remaining 

.variables, and the plot is seen in figure 9. The 

intersections and convergences define the limits of the 

cliff. The ten-step mechanism did not produce a hysteresis 
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region due to the lack of chemical loss processes when the 

HO concentration is very low. The ten-step mechanism does 

show a cliff when the source rates are decreased, but if the 

initial concentrations of all species are started low, when 

the source rates are increased no cliff is seen. This 

results from the lack of loss processes, the concentrations 

of nitric oxide, and carbon monoxide build to high levels, 

thereby reducing the hydroxyl radicals and ozone to such low 

levels that the system is far from the metastable hysteresis 

region. 
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TABLE II 

CLEAN AIR MECHANISM USED IN THIS RESEARCH 

N02 + hv(400nm) ----> NO + 0 
0 + & + M ----> ~ + M 
03 + ----> + 02 

~ + N02 ----> N02 + 02 
+ NO ----> 2N02 

N03 + H02 ----> N02 + HO 
N03 + hv ----> NO + 02 

----> NO + 0 
03 + hv~>310nm~ ----> gt~f;l + 02 
0 + hv <310nm ----> + ~ t~Dl + M ----> 0 ~p + 
0 a D + H20 ----> 2 0 
H + 03 ----> H02 + 0 
HO + 03 ----> HO + 202 
2H62 ----> ~~ca 

+ 02 

:602 + hv ----> 2 

+ H02 ----> H20 + 0 
:602 + HO ----> ~i + H02 

+ N02 + M ----> + M2 
HN03 + HO ----> NO 3 

+ ~o 
HN03 + hv ----> H03 

+ 2 
NO + NOc3 <---> NO 
~605 + Mo ----> 2~N503 

+ ----> HN02 HN02 + hv ----> HO + NO 
H02 + N02 ----> HN02 + 02 .-
H02 + N02 <---> HN04 
HO + co ----> C02 + H 
HO + H + 02 ----> H02 
LEGEND: 
N02 = Nitrogen Dioxide 
NO = Nitric Oxide 
N03 = Nitrate Radical 
HO = Hydroxyl Radical 

:~ = Hydr9pero~l Radical 
= Nitric Aci 

HN03 = Nitrous Acid 
HNa2 = Peroxynitric Acid 
O~X~P~ = Excited Oxygen Radical in a triplet P State 
0 a D = Excited O~gen Radical in a singlet D State 
M = Non-reactive collision species 



TABLE III 

PAMOL INPUT FILE USED IN MODELLING THE EXPERIMENT 

/*comments*/ 
scommanQ canst err=le-3 tprnt=l tstep=60 stopp=7.5e3 

reactionout smallerr=le-25 dilute=0.01 
$reaction 

1N02 HV = NO 0 HV 4.260E-Ol 0 
20 = 03 4.650E+07 0 
30 N02 = NO 1.370E+04 0 
40 N02 = N03 3.290E+03 0 
5NO 03 = N02 2.680E+Ol 0 
6N02 03 = N03 4.770E-02 0 
?NO N03 = N02 N02 2.750E+04 O 
8NO NO = N02 N02 1.430E-04 O 
9N02 N03 = N205 1.710E+03 0 

10N205 = N02 N03 2.080E+OO 0 
11N205 H20 = HN03 HN03 1.480E-06 0 
12N02 N03 = NO N02 5.980E-Ol 0 
13N03 HV = NO HV 1.081E+OO 0 
14N03 HV = N02 0 HV 9.287E+OO 0 
1503 HV = 0 HV 2.432E-02 0 
1603 HV = OD HV 1.218E-03 0 
170D H20 = HO HO 3.250E+05 0 
180D = 0 4.320E+l0 0 
19NO HO = HONO 9.750E+03 O 
20HONO HV = NO HO HV 8.264E-02 0 
21N02 H20 = HONO N02 HN03 5.910E-09 0 
22N02 HO = HN03 1.680E+04 0 
23HN03 HO = N03 1.890E+02 0 
24CO HO = H02 3.220E+02 O 
2503 HO = H02 1.000E+02 0 
26NO H02 = N02 HO 1.220E+04 0 
27N02 H02 = HN04 2.020E+03 0 
28HN04 = N02 H02 4.930E+OO 0 
29HN04 HO = N02 5.910E+03 O 
3003 H02 = HO 2.960E+OO 0 
31H02 H02 = 4.460E+03 0 
32H02 H02 H20 = 2.540E-Ol 0 
33N03 H02 = HN03 4.460E+03 0 
34N03 H02 H20 = HN03 2.540E-010 
35803 = 03 1 0 
36SNO = NO 1 0 
37SCO = CO SCO 1 0 
38SCO E = SCO SCO 80 O 
39SCO E = O.OOOE-00 0 
40SCO = SCO SCO 0.01 0 

$init 
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0 
HN03 
HN04 
HV 

03 
OD 
sco 
TEMP 

N02 
HO 
H20 

NO 
HONO 
E 

N03 
co 
SNO 

N205 
H02 
S03 

2.144E-08 
l.592E+OO 
5.828E-06 
l.OOOE+OO 
$canst 

8.233E-03 
1.992E-13 
5.628E-02 
2.982E+02 

S03 SNO E 
$end 

H20 

2.322E+OO 4.529E+OO 8.810E-09 1.650E-05 
7.472E-08 4.lOOE-02 1.408E+Ol 6.132E-09 
2.200E+04 7.944E-05 4.200E-02 1.140E-02 
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TABLE IV 

PAMOL INPUT FILE FOR THE CLEAN AIR MECHANISM IN THE REVERSE 
DIRECTION 

/*comments*/ 
$command const err=le-3 tprnt=l tstep=60 stopp=7.5e3 

reactionout smallerr=le-25 dilute=0.01 
$reaction 

1N02 HV = NO 0 HV 4.260E-Ol 0 
20 = 03 4.650E+07 0 
30 N02 = NO 1.370E+04 0 
40 N02 = N03 3.290E+03 O 
5NO 03 = N02 2.680E+Ol O 
6N02 03 = N03 4.770E-02 O 
7NO N03 = N02 N02 2.750E+04 O 
BNO NO = N02 N02 1.430E-04 0 
9N02 N03 = N205 1.710E+03 O 

10N205 = N02 N03 2.0BOE+OO 0 
11N205 H20 = HN03 HN03 1.480E-06 0 
12N02 N03 = NO N02 5.980E-Ol 0 
13N03 HV = NO HV 1.081E+OO 0 
14N03 HV = N02 0 HV 9.287E+OO 0 
1503 HV = 0 HV 2.432E-02 O 
1603 HV = OD HV 1.218E-03 0 
170D H20 = HO HO 3.250E+05 0 
180D = 0 4.320E+10 O 
19NO HO = HONO 9.750E+03 0 
20HONO HV = NO HO HV 8.264E-02 O 
21N02 H20 = HONO N02 HN03 5.910E-09 0 
22N02 HO = HN03 1.680E+04 0 
23HN03 HO = N03 1.890E+02 O 
24CO HO = H02 3.220E+02 O 
2503 HO = H02 1.000E+02 0 
26NO H02 = N02 HO 1.220E+04 O 
27N02 H02 = HN04 2.020E+03 0 
28HN04 = N02 H02 4.930E+OO O 
29HN04 HO = N02 5.910E+03 0 
3003 H02 = HO 2.960E+OO 0 
31H02 H02 = 4.460E+03 0 
32H02 H02 H20 = 2.540E-01 0 
33N03 H02 = HN03 4.460E+03 0 
34N03 H02 H20 = HN03 2.540E-Ol O 
35S03 = 03 1 0 
36SNO = NO 1 0 
37SCO = co sco 1 0 
38SCO E = sco sco 0 0 
39SCO E = 80 0 
40SCO = sco sco 0.01 0 

$init 
0 03 N02 NO N03 N205 
HN03 OD HO HONO co H02 
HN04 sco H20 E SNO 803 
HV TEMP 

2.144E-08 8.233E-03 2.322E+OO 4.529E+OO 8.810E-09 1.650E-05 
1.592E+OO 1.992E-13 7.472E-08 4.lOOE-02 1.408E+Ol 6.132E-09 
5.828E-06 5.628E-02 2.200E+04 7.944E-05 4.200E-02 1.140E-02 
1.000E+OO 2.982E+02 
~const 
03 SNO E H20 

$end 



TABLE V 

MATHEMATICA SOLUTION FOR THE CLEAN AIR MECHANISM 

INPUT: 
d0/dt=Rl-R2-R3-R4-R14+R15+R18=0 
dO /dt=R2-R5+R35-R16-R6-R15-R25-R30=0 
dNb2/dt=R5-R1+2R8-R22+2R7-R6-R3+R26-R21+R21-R4+R9+RlO­
R27+R28+R14-R12+R12+R29=0 
dNO/dt=Rl-R5+R36+R20-Rl9-2R8-R7+R3-R26-R12-R13=0 
dN03/dt=R6-R7+R4-R9+RlO+R23-R14-R12-R13-R34-R33=0 
dN205/dt=R9-RlO-Rll=O 
dHNO~/dt=R22+R21-R23+2Rll+R34+R33=0 
d01D/dt=R16-R18-R17=0 
dHO/dt=R20-R19-R22+2R17-R26-R24-R23-R25-R29+R30=0 
dHONO/dt=R21+R19-R20=0 
dCO/dt=R37-R24=0 
dHOzldt=R24-R26-R27+R28+R25-R30-R34-R33-2R32-2R31=0 
dHN04/dt=R27-R28-R29=0 

This input was run through Mathematica (Ver #1.2), and the 
following solution was obtained for the reaction rates: 

SOLUTION: 

R1=(3Rll/2)+R12+R13+(3R17/2)+(R21/2)-(3R23/2)­
(R29/2)+R30+R33+R34-(R35/2)-(R36/2)-(R37/2)+R5+R7+R8 

24 

R3=(-Rll/2)-(R17/2)-(R21/2)+(R23/2)-(R29/2)-R30-R31-R32-R33-
R34+(R35/2)-(R36/2)+(R37/2)+R8 

R9=R12+R13-R21-(R36/2) 

R10=-Rll+R12+R13-R21-(R36/2) 

R14=-Rll-R12-R13+R23-R33-R34+R4+R6-R7 

R15=-Rll-R16-R17+R2-R21+R23-2R30-R31-R32-R33-R34+R35+R37-R5-
R6 

R18=Rl6-R17 

R19=R20-R21 



TABLE V 

MATHEMATICA SOLUTION FOR THE CLEAN AIR MECHANISM 
(continued) 

R22=-2Rll-R21+R23-R33-R34 

R24=R37 

R25=Rll+R17+R21-R23+R30+R31+R32+R33+R34-R37 

R26=Rll+R17+R21-R23-R29-R31-R32 

R27=R28+R29 

The input file was read into Mathematica as a set of 
simultaneous equations that all were equal to zero. The 
input file had the following format: 

Solve[{eqnl==O,eqn2==0, •••• ,eqn13==0}] 

25 

where eqnl was the first equation listed in the input 
section. The file was then retrieved into Mathematica by 
issuing the following commands from the mathematica prompt: 

OpenRead["filename"] 
Read["filename"] 

this would then cause mathematica to execute the command(s) 
listed in the file, and produce any pertinent output, see 
the output section. 
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TABLE VI 

TEN-STEP MECHANISM 

/* comments*/ 
$command const err=le-3 tprnt=3000 tstep=3000 stopp=l.OE+05 
reactionout smallerr=le-25 

isop=.0002 reactionout 
$reaction 

lNO 03 = N02 l.50E+Ol 
2N02 HV = NO 03 HV l.60E-Ol 
303 HV = HO HO HV 9.40E-06 
4CO HO = H02 4.50E+02 
5H02 NO = N02 HO l.20E+04 
6HO N02 = l.80E+04 
7803 = 03 S03 l.OOE-00 
8SCO = co sco l.OOE-00 
9SNO = NO SNO l.OOE-00 

lOHO H02 = H20 02 0 
llNO = 0 
12N02 = 0 
1303 = 0 
14CO = 0 

$INIT 

03 CO NO SCO HV 
1.oooe-05 1.oooe-11 5.000E-03 lE-08 1 

$CONST 
SNO S03 SCO 

$ISOP 
1 1 11 9 
803 
SNO 
1 
1 
le-9 5e-9 le-8 5e-8 le-7 5e-7 
le-6 5e-6 le-5 
le-10 5e-10 le-9 5e-9 le-8 
5e-8 le-7 5e-7 le-6 5e-6 le-5 

$end 

o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 4.40e+04 
o. l.39E-06 
o. 1.39E-05 
o. 1.39E-05 
o. 1.39E-06 
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TABLE VII 

TEN-STEP MECHANISM, CHEMISTRY, AND MATHEMATICA SOLUTIONS 

Rl SNO -----> NO 

R2 So3 -----> 03 

R3 Seo -----> co 

R4 NO + 03 -----> N02 + 02 

hv 
02 

RS N02 + -----> NO + 03 

hv 
H20 

R6 03 + -----> 2HO + 02 
02 

R7 HO + co -----> H02 + C02 

RS H02 + NO -----> N02 + HO 

R9 N02 + HO -----> HN03 

RlO H02 + HO -----> H20 + 02 

This mechanism provides six reactions, with six species; HO, 
NO, NOh co, H02, and ofi. 

T e solution to t e ten step mechanism, by using the 
steady state approximation is: 

R9 = SNO 
R7 = Seo 
R6 = ( 2Seo + 2So3 - SNo) /4 
RS = ( 2Seo - 2So3 + 3SNO) /4 
RlO = ( 2Seo + 2S03 - 3SNO) /4 

This provides a solution to the mechanism for the 
reactions noted above in terms of the independent variables, 
the source rates. 

For the ten step reaction to have a positive value for 
the rates listed above the following inequalities have to 
hold. 

R6: 2Seo + 2S03 ~ SN0 
RB: 2S00 + 3SNO ~ 2S03 

RlO: 2S00 + 2S03 ~ 3SNO 
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TABLE VIII 

SOLUTIONS TO ELEMENTARY MECHANISMS AND CLEAN AIR MECHANISM 

TEN STEP MECHANISM: 

R6 = (2Sro + 2S~ - Soo)/4 
RS = (2Sro - 2S~ + 3S00 )/4 

RlO = (2Sro + 2S~ - 3Soo)/4 

ELEVEN STEP MECHANISM: 

R6 = (2Sro + 2S~ - Soo)/4 
RS - Rl_l = ( 2Sco - 2S~3 + 3Sti0)/4 

RlO - (2Sro + 2S~ 3S00 )/4 

TWELVE STEP MECHANISM: 

R6 + R12 = (2Sro + 2S~ - S00 )/4 
RS - Rll = (2Sro - 2S~ + 3Soo)/4 
R6 - RlO = (2Sro + 2S~ - 3S00 )/4 

THIRTEEN STEP MECHANISM: 

4R6 + 4R12 + R13 = 2Sro + 2S~ - S00 

FOURTEEN STEP MECHANISM: 

4R6 + 2R12 + 2R13 + R14 - Rll = 2Sro + 2S~ - S 0 
4R10 + 2R12 + 2R13 - 3Rll - R14 = 2Sro + 2S~ - Jsoo 
4R8 + 3Rll + 2R12 + R14 - 2R13 = 2Sro - 2S~ + 3S00 

LARGE CLEAN AIR MECHANISM: 

2{R5+R6+R13+R15+Rl6+R17+R23+2R30+R31+R32+R33+R34-R2-Rl0-Rl2} 
= 2Sro + 2s~ - s~ 

2{R15+R16+R17-R2-R23+2R30+R31+R32+R33+R34+R5+R6-3R12-2Rll-
3Rl0+3Rl3-2R21} = 2Sc + 2S~ - 3S00 2{R17-R23+R30+R31+R32+R33+R34-2R~5-R15-R16+R2-R5-R6+3R12-

2Rll-3Rl0+3Rl3-2R21} = 2Sro - 2S~ + 3S00 
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TABLE IX 

ELEVEN THROUGH FOURTEEN STEP MECHANISMS 

Reactions common to the Eleven and Thirteen step Mechanisms: 

Rl SNO -----> NO 

R2 So3 -----> 03 

R3 Seo -----> co 

R4 NO + 03 -----> NOz + Oz 

R5 NOz + hv -----> NO + 03 

R6 03 + hv -----> 2HO 

R7 HO + co -----> HOz + coz 

RS HOz + NO -----> NOz + HO 

R9 NOz + HO -----> HN03 

RlO HOz + HO -----> HzO + Oz 

Rll HO + 03 -----> HOz + Oz 

By adding the following reaction to the above listed eleven, 
the Twelve Step Mechanism is formed: 

R12 HOz + 03 -----> HO + 20z 

By adding the following reaction to Rl through R12, the 
Thirteen Step Mechanism is formed: 

R13 HOz + HOz -----> Hz Oz + Oz 

By using Rl through RlO, and replacing reactions Rll through 
R13 with the following, the Fourteen Step Mechanism is 
formed: 

Rll NO -----> LOSS 
R12 co -----> LOSS 
R13 03 -----> LOSS 
R14 N02 -----> LOSS 
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Figure 2. Concentration versus time for reaction 
species. This figure illustrates the inflection 
points in the concentrations of the reactants. 
The inflection point occurs at different places 
for the forward, and reverse reactions. The 
inflection occurs at the point corresponding to 
the first point on the steady-state equilibrium 
curve that has more than one equilibrium 
concentration for the species in question, for the 
given source rate. The equilibrium curve would 
continue through an "s" shaped path, but kinetics 
do not allow this. At the last point where there 
is more than one possible concentration, the 
system will jump from its current path to the 
higher or lower leg of the curve. The figure 
above shows this jump from the path it was 
following to the other leg, that is the reason for 
inflection in the center of the figure. 
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Figure 3. Ozone hysteresis loop. This figure 
shows the result of running the reaction mechanism 
with increasing and decreasing source rates. As 
seen in figure 2 there is an inflection point at 
the last point where multiple steady-state 
concentrations can occur. This shows the reaction 
following the curve in the forward direction, and 
the concentration begins to climb, but the steady­
state solution to the system dictates that it 
follow an "s" shaped path. At the first bend in 
the "s" the concentration, since it is run by the 
kinetics, will jump to the top of the curve, 
effectively bypassing the switch-back. For the 
reverse reaction it follows the upper part of the 
curve, with the concentration dropping, until it 
hits the upper bend in the curve. At this point 
it drops to the bottom of the curve, and continues 
on to lower concentrations. Since the curve is 
"s" shaped the forward and reverse reactions would 
be expected to have their respective drops in 
concentration at different places. 
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Figure 4. Relationship of hysteresis loop and 
inflection points. This figure illustrates the 
regions of multistability for a cubic 
autocatalytic reaction. The center diagram, Fig. 
F shows the relationship of the solution of the 
equations for the cubic continuously stirred 
reactor. The points of intersection and tangency 
represent solutions where Ll=L2. The vertical 
lines on Fig F show how they relate to the flow 
rate, and the extent of the reaction in question. 
The lines represented by Fig B and Fig D delineate 
the boundaries of the hysteresis region. 
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Figure 5. Isopleth for the ten-step mechanism. 
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reverse. Source rates are initially high and progress to 
low values. 
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CHAPTER IV 

EXPERIMENTAL STUDY OF HYSTERESIS 

EXPERIMENTAL SETUP 

The experimental part of the hysteresis research was 

undertaken to determine the feasibility of this phenomena, 

hysteresis. The experimental setup, shown in Figure 10, was 

designed and constructed by myself. The Teflon film bag was 

tested for its ability to transmit Ultra-Violet (UV) 

radiation, see Figure 11. The UV wavelengths that the 

proposed mechanism relied on are 254nm (ozone photolysis to 

produce O(a1D}, and 310-400nm (N02 photolysis to produce NO 

and O(X3P)) (Levy 1972}(Cox 1978)(Barton & Robertson 1975). 

The bag was then sealed onto a platform which held the inlet 

and sampling tubes, and a stirring motor. Ozone was allowed 

to flow into the bag for about one week prior to the 

beginning of any experiments, this was to allow the 

destruction of any remaining contaminants on the tef lon film 

(Grosjean & McMurry 1985). The initial test of the system, 

to determine if further modification was necessary, was as 

noted below (Salem 1976}; 

A. Admit ozone flow, and allow to equilibrate. 
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B. Titrate the ozone concentration to 

approximately 10% of its initial concentration by the 

following reaction: 

further. 

0 + NO ----> NO + 0 3 2 2 

c. Turn on soft UV (wavelength=310nm) and from the 

reaction: 

NO + hv + 0 ----> NO + 0 2 2 3 

the ozone concentration should increase. 

D. Turn on the hard UV (wavelength=254nm) and from 

the reaction: 

co + NO + HO ----> co2 + N02 + 03 

the ozone concentration should increase 

From this series of experiments the reaction container 

was deemed potentially able to run the proposed mechanism, 

and obtain useful results. The above listed test scheme did 

appear to work (Farrow, et. al. 1976). Figure 12 shows the 

ozone concentration at each step of the above listed 

experiment. 

The reaction was initially done using an ozone 

generator that produced about 40ppm of ozone, a 5% NO/N2 

mixture, and 99.5% co. These were admitted into the bag via 

flow meters that were controlled by a TRSSO Mod4 non-gate 

array microcomputer. The flow meters would be set to some 

initial flow by the operator, then the computer would record 
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the data from the ozone monitor, as well as step the flows. 

This was designed to run unattended for many days to allow 

sufficient time to allow the bag to equilibrate between each 

step of the gas flows. Eight-hour steps were found to be 

appropriate. Results obtained with the above listed setup, 

and subsequent modelling of the system, provided enough 

information to determine that this was not an optimum place 

to run the reaction, which would have needed about two 

atmospheres of co in the reaction vessel to produce the 

hysteresis effect. So back to the drawing board. 

The next significant attempt to run the reaction was 

done by using the setup noted in Figure 10. This initially 

did not look like it was going to produce any useful insight 

into the reaction. Problems arose when the inside of the 

reaction chamber began to fill with a rust-brown colored 

dust. A very basic analysis of the dust was done, and a 

determination was made that it was probably Fe(C0) 5 that had 

been photolyzed to Fe2 (C0) 9 • The contamination ruined three 

reaction chambers, and resulted in many attempts to try to 

trap the carbonyl in the CO stream. The CO tank was finally 

replaced, and the problem went away. The reaction was then 

run with an ozone source of 0.881 ppm, a 5% NO/N2 mixture, 

and 99.5% co. This combination again did not work due to 

the overwhelming effect on the ozone of the NO and co 

(Levine 1985). So the final setup had all the same except 
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now a 1% CO/N2 was used for the CO source. To determine the 

initial flows of the reactant gasses the isopleth diagrams 

for the expanded mechanism were used. The isopleth diagrams 

were generated using the parameters in the experimental 

setup. The factors supplied to the computer input file were 

the dilution rate for the reaction vessel and a range of 

source rates that could be supplied using the materials on 

hand. Using a constant NO source of 3xlo-2ppm min-1 , and 

stepping the CO source from o to 3ppm min-1 , the boundaries 

of the hysteresis region would be delineated. (Since water 

is a key reactant, and since both ozone and NO have the 

potential to react in an aqueous bubbler, the CO flow was 

passed through a water bubbler, resulting in a water 

concentration proportional to the CO concentration. 

However, subsequent experiments where NO was varied at 

constant water and other inflow conditions also reproduced 

the hysteresis.) Figures 16 and 17 show the larger 

mechanism's isopleth diagrams for the forward and reverse 

runs. The isopleth in the forward direction starts with low 

initial concentrations for the reactants, and increases the 

sources. The isopleth in the reverse direction starts with 

high initial reactant concentrations, and decreases the 

sources. The results from this combination are noted in 

Figures 13, 14, 15 (13 shows the increase in ozone, and its 

subsequent drop to low concentration, 14 rearranges these 
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data into a loop, 15 shows the last two runs). Figure 13 

shows the ozone concentration versus time, this is the 

result of allowing the ozone to equilibrate, then admitting 

a NO and CO flow and then letting the computer take over the 

stepping of the CO every eight hours by increasing the flow 

by 20cc/min/8hours. This stepping was done till maximum 

flow is reached, the computer then decreases the flow in a 

similar manner till zero flow is achieved. This process of 

increasing/decreasing can be repeated endlessly, in Figure 

15 the result of allowing the system to operate for about a 

week shows the twin peaks of the hysteresis region. 

EQUIPMENT 

The equipment utilized in this experiment is shown in 

Figure 10. The central controller for the whole system is a 

TRSSO-Model 4 microcomputer. Analog to Digital and Digital 

to Analog converters in the computer's I/O Bus controlled 

the experimental variables and read the ozone concentration. 

The control program, see appendix A, would take the desired 

initial input voltage, provided by the operator, and relay 

this to the TYLAN flow meters. The actual flows through the 

flow meters were monitored by the computer, and adjusted as 

needed to maintain the desired flow. The computer also did 

incremental stepping of the flows to simulate changing 

emission rates. The monitoring of the reactions progress 
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was accomplished by taking the analog output from the DASIBI 

Ozone monitor, running it through the A/D converter, then 

recording the value in an output file that would later be 

plotted to observe the changes in the ozone concentration, 

see Figure 12. The source of ultraviolet light for the 

reaction was provided by banks of uv black-lights (F40-BLB), 

and the hard UV was generated from three germicidal 

fluorescent lights, Sylvania model G30T8 30W lights. 
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the Ozone concentration drops to low values at very 
low co Flow rates. 

47 

l 
~ -
j 
~ 
.9 
~ 

8 



:I 110 

1.8; t-100 

I II I f-90 .-1.6 

~ BO 
c. 1.4 ...., 
c: 70 
:8 1.2 

~ l 
60 

50 J o.e CO FlQW Up 
40 

~ 0.6 
30 

~ 0.4 co Pl(XJ Down 
O;i;Qlle Up 20 

0.2 10 

0 0 
0 5 10 15 20 :15 30 35 

Time (hoora) 
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hysteresis. This figure shows the Ozone 
concentration, and the co Flow as a function of the 
path the experiment actually took. The ozone 
concentration and CO Flow were remapped to show the 
hysteresis loop formed. The data was reversed in 
time at the mid-point in the experiment, i.e. at 
the time value for the middle of the data time was 
decreased from that point forward till the last 
point was at zero time. This resulted in the 
figure shown above. 
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Figure 17. Isopleth for the clean air mechanism reverse. 
Source rates are initially high progressing to low 
values. 



CHAPTER V 

CONCLUSIONS 

THEORETICAL 

This study of clean air hysteresis did provide many new 

insights into the possible behavior of atmospheric chemical 

processes. This method of analyzing the behavior of 

mechanisms should be considered in any application studying 

the fate of atmospheric species. The relative ease in which 

these mechanisms can be analyzed with computers (both 

theoretically and experimentally) makes this a method to 

compliment other experimental aspects of gas phase 

atmospheric chemistry. We are aware of only two previous 

discussions relating to the modelling of atmospheric 

mechanisms in the context of the hysteresis effect (Dietz & 

White 1984)(Kasting & Ackerman 1985). The modelling of the 

mechanism utilized in the experimental section provided a 

very accurate representation of the chemistry that took 

place. The parameters predicted by the model were proven to 

represent the system to a high degree of accuracy. Pitfalls 

inherent in any theoretical study may be expressed as "what 

do the solutions actually represent?" This was a problem, 
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as the mechanisms grew more complex the physical meaning of 

the solutions became more obscure. Further developments in 

the analysis techniques should make these solutions a little 

less ambiguous. 

EXPERIMENTAL 

The experimental study placed a physical significance 

to the theoretical models. The data gathered with the 

experimental setup described in chapter four indicate that 

the hysteresis effect is a real phenomenon. The 

experimental study also indicates that this could be a more 

prevalent effect than has been imagined. The hysteresis 

effect should be considered a part of any study done with 

atmospheric chemistry. I am aware of no experimental study 

of the hysteresis effect as it might apply to atmospheric 

chemistry. A more complete study of this effect, to include 

hydrocarbons, should provide better insight into the number 

of systems and conditions that will demonstrate this effect. 
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APPENDIX 

COMPUTER PROGRAMS 

100 ON ERROR GOTO 9700 
200 CLS:Z=13:IC=O:AC=l:COUNTER=O:SKIP=5:PTOT=O:DEC=O:El=O: 
INCREMENTER=O:EXTRA=O 
300 TIMEPREV=VAL(LEFT$(TIME$,2)) 
400 IN$="Incrementing":DE$="Decrementing" 
500 DIM P(52):PO=O:PI=6:PTOT=O 
600 INPUT "Enter Desired Voltage for NO controller ";VNO 
700 INPUT "Enter Desired Voltage for CO controller ";VCO 
800 INPUT "Enter Desired Voltage for 03 controller ";V03 
900 PRINT:PRINT 
910 INPUT "Enter a o to increment CO or a 1 to decrement CO 
";DEC 
1000 IF SKIP<=l THEN GOTO 3100 ELSE GOTO 1100 
1100 PRINT:INPUT "Do you want to increment CO ";SK$ 
1200 IF SK$="N" OR SK$="n" THEN SKIP=O:GOTO 1500 
1300 IF SK$="Y" OR SK$="y" THEN SKIP=l:GOTO 1500 
1400 PRINT "Try again Dude!!!! (Y/N) onlyll!":GOTO 1100 
1500 INPUT "Do you want to open an Output File? (Y/N) ";OF$ 
1600 IF OF$="Y" OR OF$="y" THEN OPEN "0",1,"research/dat:l" 
1700 IF OF$="Y" OR OF$="y" THEN WRITE #1,"Time", 
" 03 Cone (ppm)","CO Voltage" 
1750 CLOSE 1 
1800 INPUT "Do you want the printer to record Ozone 

Moniter Voltage (Y/N}: ";A$ 
1900 IF A$="Y" THEN PRTOFF=l:GOTO 2400 
2000 IF A$="y" THEN PRTOFF=l:GOTO 2400 
2100 IF A$="N" THEN PRTOFF=O:GOTO 2400 
2200 IF A$="n" THEN PRTOFF=O:GOTO 2400 
2300 PRINT "Invalid responsell!":GOTO 1800 
2400 CLS:OVNO=VN0*50:0VCO=VC0*50:0V03=V03*50 
2500 CNO=O:C03=1:CC0=2 
2600 OUT CNO,OVNO:OUT C03,0V03:0UT CCO,OVCO 
2700 PRINT "Voltage sent to NO controller is: ";VNO 
2800 PRINT "Voltage sent to the CO controller is: ";VCO 
2900 PRINT "Voltage sent to the 03 controller is: ";V03 
3000 IF El=l THEN STOP 
3100 IF SKIP=O THEN GOTO 3400 
3200 EXTRA=INCREMENTER/40 
3300 IF EXTRA=l THEN GOTO 8800 



3400 
3500 
3600 
3700 
3800 
3900 
4000 

4100 
4200 
4300 
4400 

4500 
4600 
4700 
4800 

4900 
5000 
5100 
5200 
5300 

5400 
5500 

5600 

5700 
5800 

5900 
6000 
6100 
6300 
7100 
7200 
7300 
7400 
7500 
7600 
7700 
7800 
7850 
7900 
7950 
7955 
8000 
8100 

OUT 6,0:D=INP(PI):H=INP(PI):L=INP(PI) 
OF=(H*256+L)*5/4095 
PRINT @(3,1),"" 
OUT PI,l:D=INP(PI) 
H=INP(PI+l) 
L=INP(PI) 
PRINT "Flow for the NO Controller is: " 
;(((L+(H*256))*5/4095-0F)/5)*10; " cc per minute" 
OUT PI,3:D=INP(PI) 
H=INP(PI+l) 
L=INP(PI) 
PRINT "Flow for the CO Controller is: " 
;(((L+(H*256))*5/4095-0F)/5)*100;" cc per minute" 
OUT PI,5:D=INP(PI) 
H=INP(PI+l) 
L=INP(PI) 
PRINT "Flow for the 03 Controller is: " 
;(((L+(H*256))*5/4095-0F)/5)*100;" cc per minute" 
PRINT:PRINT:PRINT 
OUT PI,7:D=INP(PI) 
H=INP(PI+l) 
L=INP(PI) 
PRINT "Ozone moniter is reading " 
;(L+(H*256))*5/4095-0F;" Volts":PRINT 
FOR WATCH=l TO 1500:NEXT WATCH 
IF PRTOFF=O THEN PRINT "Printer not recording" 
ELSE PRINT "Printer On" 
PRINT:PRINT "Counter=";COUNTER;" 
;TIME$:COUNTER=COUNTER+l 
IF DEC=O THEN ID$=IN$ ELSE ID$=DE$ 

Time is " 

PRINT:IF SKIP=O THEN PRINT "CO not incrementing" 
ELSE PRINT "CO ";ID$;" every 6 hours by lOcc/min" 
IF COUNTER>200 THEN GOTO 6100 ELSE GOTO 6000 
GOTO 3100 
REM signal loop 
POUT=(L+(H*256))*5/4095-0F 
IF POUT<O THEN GOTO 3100 
THOUR$=LEFT$(TIME$,2) 
THOUR=VAL(THOUR$) 
TMINUTE$=MID$(TIME$,4,2) 
TMINUTE=(VAL(TMINUTE$))/60 
TSECOND$=RIGHT$(TIME$,2) 
TSECOND=(VAL(TSECOND$))/3600 
TIME=THOUR+TMINUTE+TSECOND 
OPEN "E", 1,"RESEARCH/DAT:l" 
WRITE #1,TIME,POUT,VCO 
CLOSE 1 
INCREMENTER=INCREMENTER+l 
IF PRTOFF=O THEN GOTO 8700 ELSE GOTO 8100 
LPRINT "Ozone moniter is reading: ";POUT; 
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" Volts at Time=";TIME$ 
8200 POUT=O:PTOT=O 
8300 LPRINT "CO VOLTAGE IS : ";VCO;" AT TIME=";TIME$ 
8400 LPRINT "NO VOLTAGE IS: ";VNO;" AT TIME=";TIME$ 
8500 FOR XYZ=l TO lOOO:NEXT XYZ 
8600 COUNTER=O 
8700 COUNTER=O:GOTO 3100 
8800 REM CO Flow Regulator 
8900 IF VC0>=5 THEN GOTO 9500 
9000 IF DEC=l AND VCO>=l.25 THEN VCO=VC0-1 ELSE GOTO 9680 
9050 IF DEC=O AND VC0<=3.5 THEN VCO=VCO+l ELSE GOTO 9690 
9100 IF VCO<=O THEN GOTO 9650 
9200 IF VC0>5 THEN VC0=5 
9205 INCREMENTER=O 
9400 GOTO 2400 
9500 DEC=l 
9600 GOTO 9000 
9650 DEC=O 
9675 GOTO 9000 
9680 IF DEC=l THEN VCO=VC0-.5 ELSE GOTO 9050 
9685 GOTO 9100 
9690 IF DEC=O THEN VCO=VC0+.5 
9695 GOTO 9100 
9700 OVCO=O 
9800 OVNO=O 
9900 OV03=0 
10000 PRINT "Error Occurred at ";TIME$ 
10100 El=l 
10200 GOTO 2500 
10300 REM Experiment End 
10400 CLOSE 1 
10500 OUT O,O 
10600 OUT 1,0 
10700 OUT 2,0 
10800 CLS:PRINT "Experiment ended at ";TIME$ 
10900 STOP 
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