
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1992

An intelligent database for PSUBOT, an autonomous An intelligent database for PSUBOT, an autonomous

wheelchair wheelchair

Dieudonne Mayi
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mayi, Dieudonne, "An intelligent database for PSUBOT, an autonomous wheelchair" (1992). Dissertations
and Theses. Paper 4332.
https://doi.org/10.15760/etd.6216

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4332
https://doi.org/10.15760/etd.6216
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Dieudonne Mayi for the Master of Science in

Electrical and Computer Engineering presented February 7, 1992.

Title: An Intelligent Database for PSUBOT, an Autonomous Wheelchair.

APPROVED BY THE MEMBERS OF THE THESIS COMM E:

Maria Balogh

Jeal);-$'choltz
,/

In the design of autonomous mobile robots, databases have been used mainly to store

information on the environment in which the device is to operate. For most of the models

and ready systems, the database when used, is not a stand alone component in the system,

rather it is only intended to keep static information on the disposition and properties of

objects on the map.

2

In this thesis is implemented an intelligent database. This database is called intelligent

because it is knowledge-based. It combines static facts to build more information. An

intelligent database such as this one will be a plus for an intended autonomous machine

such as the PSUBOT wheelchair being developed in the Department of Electrical

Engineering. The database will make intelligent decisions as an intelligent function of the

the central control module of the system (i.e, find a global optimum path, recognize details

in the building, support sensory integration). The database will also serve as the core of

pattern recognition and localization of the wheelchair inside the building.

The thesis starts with the definition of a model of the environment in which the

wheelchair is confined to operate, then a relational database is designed to keep this

information. The second part of the thesis concentrates on finding a global shortest path

using knowledge-based method combined with the Djikstra's shortest path method. The

third part of the development consists of the implementation of image matching. Image

matching is used to simulate the localization of the wheelchair within the building assuming

that the most recent location visited is known. The evaluation of the database is based on

the accuracy of the path planning results and the percentage of success of the best match of

two images. The percentage of success of localization is measured as the accuracy of the

database to recognize a location among a set of candidate locations. The global evaluation

of the database rests upon the speed of the processing of information (path planning, image

matching and localization) compatible with the operation of the wheelchair at reasonable

speed.

The database has been implemented on a PC-386SX with 640K base memory and a

clock resolution of 20MHz. It is composed of a relational database, a knowledge base, a

set of management routines and programs to perform tasks such as global path planning

and image matching for localization. The relational database has been implemented using

the BORLAND PARADOX3 database management system. The knowledge base part of

3

the database has been implemented in a combination of BORLAND Turbo Prolog (for

intelligent tasks) and BORLAND Turbo C++ (for tasks requiring faster computation

power). Global path planning has been implemented with a knowledge-based approach

rather than a conventional graph method in order to match the hierarchical description of a

building and to add more intelligence power. Localization is the key problem for which we

use image matching. The wheelchair needs to possess the capability to recognize where it is

in the building. Therefore, in order to perform this task, the matching of the current image

of the scene with template images of candidate locations is performed. The image matching

has been implemented to match two images described each as a set of straight lines. The

matching method is correspondence matching between the two sets of features with the

criteria being the best acceptable match. Image matching is used for localization of the

wheelchair inside the building based on matching of the currently perceived image with

template images of locations previously stored in memory.

~

AN INTELLIGENT DATABASE FOR PSUBOT,

AN AUTONOMOUS WHEELCHAIR

by

DIEUDONNE MA YI

A thesis submitted in in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
1Il

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1992

TO TIIE OFFICE OF GRADUATE S1UDIES:

The members of the Committee approve the thesis of Dieudonne Mayi

presented February 7, 1992.

Michael A. Driscoll

Maria Balogh

Je~Scholtz
I/

APPROVED:

Sch

C. William Savery, Vice Provost for Grad Studies and Research

ACKNOWLEDGEMENTS

I would like to express my gratitude to my adviser Dr. Marek A. Perkowski who

encouraged me, counseled me, and patiently guided me throughout this work.

I also would like to thank Dr. Michael Driscoll, Dr. Maria Balogh and Dr. Jean Scholtz

for their suggestions, critiques and comments to make this thesis a better work.

I express my gratitude to the PSUBOT team, especially Kevin Stanton and Cecilia

Espinoza for their ideas and critiques.

I thank all those who have helped me with the writing of this thesis.

I would like to thank the US Agency for International Development and the

Government of Cameroon for sponsoring my studies during this training program.

I would like especially to thank my wife Bibiane Mayi, my friends Abdi Hassan,

Monique Grone and Dan Shea who have counseled and supported me spiritually during

difficult moments in the completion of this work.

Finally, I will never express my gratitude enough to God for helping me with His grace

to complete this work.

Portland, Oregon

Dieudonne Mayi

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS m

LIST OF TABLES w

LIST OF FIGURES ... viii

CHAPTER

I INTRODUCTION ... 1

1.1 The PSUBOT Wheelchair 3

1.2 Problem Statement ... 7

1.3 Basic Assumptions ... 8

I.4 Development Methodology 9

I.5 Goals .. 11

1.6 Evaluation 12

II AUTONOMOUS MOBILE ROBOTS: THE NAVIGATION

AND LOCALIZATION PROBLEMS 14

II.1 Models of Autonomous Wheelchairs and Mobile Robots 14

II.2 Navigation of Autonomous Mobile Robots: Definition

of the Problem 26

II.3 Localization of Autonomous Mobile Robots 28

III MODEL OF THE WORLD 30

III.1 Definition of the Problem 30

III.2 Environment Modelling for Autonomous Mobile Robots .. 32

v

111.3 A priori Knowledge: Description of the World Around

the Robot 34

Ill.4 Models of Selected Patterns in the Indoor Scene 45

N DATABASES, OBJECT BASES, AND KNOWLEDGE BASES...... 47

IV.1 Introduction ... 47

IV.2 Database Management Systems 50

IV.3 Data Models for Database Systems 57

IV.4 Relational Databases ... 60

IV.5 Knowledge Bases .. 62

IV.7 Representation of Data in Mobile Robots 74

V PATH PLANNING FOR MOBILE ROBOTS 76

V.1 General Considerations .. 76

V.2 Different Approaches to Path Planning 78

V.3 Optimum Path Problem .. 81

V.4 Global Path Planning for PSUBOT 84

V.5 Implementation of Global Path Planning....................... 91

VI PSUBOT DATABASE ORGANIZATION 100

VI.1 General Characteristics and Assets of the

Database Approach 100

VI.2 Overview of the Database System 102

VI.3 The Static Relational Database 104

VI.4 The Dynamic Knowledge Base 112

VI.5 The Management Routines 114

VI.6 The Interface Routines .. 123

VI. 7 Interconnection with the Other Modules of the

PSUBOT System 123

vi

VII MATCHING TWO IMAGES 125

VII.1 Definition of the Problem 125

VII.2 Different Approaches to the Matching Problem 133

VII. 3 Image Matching for the PSUBOT Wheelchair:

Proposed Approach 138

VIl.4 A Structural Approach to Image Matching:

Proposed Methodology 155

VIII LOCALIZATION OF THE WHEELCHAIR 160

VIIl.1 Problem Statement ... 160

VIII.2 Localization Strategy for PSUBOT 161

IX TESTING AND EVALUATION OF THE DATABASE SYSTEM 167

IX.1 Justification of the Choice of Languages 167

IX.2 Evaluation of the Database 168

X CONCLUSIONS AND FUTURE WORK 178

X.1 Conclusions 178

X.2 Future Work .. 180

REFERENCES

APPENDICES

181

A

B

c

EXAMPLES OF APPLICATION ... 185

PSEUDOCODES OF PROGRAMS .. 192

SOURCE CODES OF PROGRAMS .. 205

TABLE

I

II

LIST OF TABLES

Experimental Results with Habib's Model

Evolution of Database Systems

III Path on Corridor: Computation Time as Function of the Number

PAGE

20

49

of Observation Points .. 93

IV Path Planning Results - Example 1 94

V Path on Floor: Computation Time as Function of the Number

of Observation Points of the Graph 97

VI Path Planning Results - Example 3 99

VII Map_table 105

VIII Buildings_table ... 106

IX Bridges_table 106

X Floors_table 107

XI Rooms_table... 107

XII Corridors_ table 108

XIII Corridor_ends_table ... 109

XIV Objects_table ... 109

XV Image Matching Results - Image P201 150

XVI Image Matching Results - Image P203 151

XVII Results - Simulation of Localization 154

XVIII Estimation of the Speed of the Wheelchair 172

LIST OF FIGURES

FIGURE PAGE

1. General Organization of the PSUBOT System 4

2. Hierarchical Description of the Static Map 35

3. Corridor End-points 37

4. Standard Shapes for a Corridor ... 41

5. Normalization of the Shapes of Corridors 41

6. An Example of a Hall in a Building ... 42

7. A Simple Example of a Floor Plan 43

8. Simplified Model of the Interior of a Room 44

9. Communication between the DBMS and the Application Program 56

10. General Structure of a Database System 56

11. Diagram of the Hierarchy of Normalization 62

12. Hierarchical Approach to Global Path Planning 85

13. Example of a Problem Showing the Hierarchical

Approach to Global Path Planning.. 86

14. Query Simplification .. 88

15. A Problem from Madarasz's Model .. 93

16. Evaluation of the Speed of the Path Planning Algorithm 93

17. Computation Time vs Number of Observation Points on the Corridor 96

18. Computation Time vs the Problem Size 97

19. Structure of the PSUBOT Database System 103

lX

20. Communication between the Database and the other Modules

of the PSUBOT System... 124

21. Adding Uncertainty to Image Matching and Feature Extraction............... 130

22. An Output Image from Low-to-medium Image Processing [3]

(level 1 to 4)... 131

23. An Output Image from Low-to-medium Image Processing [3]

(level 5 to 8)... 132

24. Correspondence Matching of Two Images .. 141

25. Criteria for Matching of Two Lines .. 143

26 Experiment 1: Changing the Angle of the Camera 144

27. Line Extraction Process for Image P201 (level 1 to 3) 145

28. Line Extraction Process for Image P201 (level 4 to 7) 146

29. Template Images of Location P201 (+3 degrees to + 10 degrees) 147

30. Template Images of Location P201 (+ 15, +20, -3, -6 degrees) 148

31. Template Images of Location P201 (-8 degrees to -20 degrees) 149

32. Computation Time versus Total Number of Lines, Image P201................ 150

33. Image P203 and Disposition of Locations in the Room 152

34. Computation Time versus Total Number of Lines, Image P203 152

35. Locations P202 and P204 ... 153

36. Image Matching Approach using Higher Level Features 157

37. Models of Higher Level Features: Corners, Rectangles, Parallelogram 158

38. Models of Higher Level Features, Corridor 158

39. Extraction of a Simple Corner ... 159

40. Floor Plan of the First Floor of the Building PCAT 186

41. Floor Plan of the Basement of the Building PCA T . 187

42. Floor Plan of the First Floor of the Building B 1 187

x

43. Problem Formulation as an Edged Graph

(basement of PCAT and first floor of Bl) ... 188

44. Problem Formulation as an Edged graph

(first floor of PCAT).. 188

CHAPTER I

INTRODUCTION

This thesis involves the integration of an intelligent database to the PSUBOT

autonomous wheelchair system [1, 2, 3]. The PSUBOT wheelchair is an autonomous

electric wheelchair capable of understanding voice commands from the user and being able

to navigate by itself in an indoor environment while carrying a paraplegic or blind person.

An autonomous system such as the PSUBOT should be able not only to use information

that is provided to it (for example sensor readings and world description), but as an

autonomous device it should be able to build more knowledge from the data in order to

accomplish its task. In this sense the major contribution of the intelligent database to the

PSUBOT system is to be the core of intelligence for the wheelchair, scene recognition and

intelligent localization of the robot.

In the literature, many models of autonomous mobile robots and wheelchairs have been

proposed. Each model tries to overcome a particular problem, for example, drop-off

detection, navigation and collision avoidance, uncertainty consideration, model of the

world etc .. We will refer to some of these models which in our judgement are close to the

PSUBOT, either because of some aspect of their formulation or because the intended user

is a handicapped person.

The model proposed by Madarasz [4] is an autonomous electric wheelchair, equipped

with an on-board computer, a TV camera and range sensors. This model can compute its

global path and navigate inside the building at very low speed. The data representing the

model of the world are stored in simple file structures. The model does not explicitly use

knowledge-based method to build more information from the static map.

2

The model proposed by Rao et Kuc [5] is a prototype without any intelligence

mechanism at all. It has the particularity of detecting drop-offs on sharp edges. The model

of the world is a confined work space with obstacles. No specific database structure is

used.

Habib and Yuta [6] use a model with a well defined world model stored in a relational

database. However, the information is static and used as such. There is not a knowledge

support mechanism per se.

As it will be expanded in Chapter II, none of those systems use a database as a unified

module of the system and the task of intelligence handling is not done at the level of the

database. This is a major difference of the PSUBOT approach to have a stand-alone

database. Such a realization seems to have the following main advantages:

1) the database is the center of all the intelligence handling and keeps all the data about

the PSUBOT. Therefore, the status of the wheelchair operations can be well known

in all the modules of the system.

2) a realization around an intelligent database is more flexible in a sense that more

information can be built from available information. For example, the neighborhood

of a room on a corridor can be retrieved as the set of rooms located on that corridor.

The available information is the corridor and the set of objects located along it

(rooms, obstacles and other observation points). The new information built is the

neighborhood of a given room of that corridor. Therefore, the intelligent database

allows the integration of more intelligent algorithm because of its knowledge-based

nature. Also, sensor integration can be done because the perception of the

environment will be the result of the combined model retrieved from all the sensors

(vision and sonar).

3) An intelligent database using knowledge capability (a language such as Prolog being

3

an example) can be used by the user to ask on-line queries and to obtain answers

from the database. The voice-queries from the user will be interpreted into knowledge

queries (declarative queries) and an answer can be given back to the user in the same

way. The database will store a query base for the system. It can be pointed out that

queries written in a declarative language such as Prolog have several advantages

while interfacing the application program to a standard relational database [7].

4) Finally, an intelligent database of this kind allows for Artificial Intelligence approach

of pattern matching on abstract level and intelligent localization of the wheelchair. The

structured method of pattern recognition [8] allows storage of less information but

ability to build more complex information from the basic knowledge. An example of

application can be found in Recognition By Components technique [9, 10]. Instead of

storing the whole model as one entity of information, its basic parts can be stored and

the whole model can be addressed using rules which refer to relations between the

basic facts. Pattern matching at the abstract level can be used in image matching in

order to provide at the same time information on recognizable details in the scene.

Intelligent localization necessitates the definition of models of items to recognize at

certain locations inside the building. These items serve as landmarks for the

localization of the wheelchair.

1.1 THE PSUBOT WHEELCHAIR

PSUBOT is a conventional electric wheelchair that is being automatized by adding

sensory (visual and sonar) perception, and intelligent knowledge mechanisms to make

decisions and route guidance capabilities. The goal is to make it completely autonomous

and self contained. The PSUBOT is intended to navigate inside a building, carrying a

handicapped person who may be a paraplegic in the worse case, or a blind person or any

motor-impaired user. The system (see Figure 1) includes three main modules: the

4

Navigation module (Navigator and Pilot [2]), the sensory module (Vision [3], sonar) and

the Intelligent database. Currently voice and motor control have been implemented on the

wheelchair [1], vision and sonar systems have been implemented and tested but not yet

integrated to the wheelchair.

INPUT

!USER lreque~iu,~NTI10 I TV CAMERAS ~ I
control

-----....,*global path

NAVIGATOR
* perceived seen~ INTEL
* answer to uenes LIGENT

I I DATABAS

F f r - PJLCIT : • request for
L control I global path

* request for scene
analysis

OUTPUT
request

SENSORY MODULE

I sensor
LI --~, ---;;:SO~N;;A~R;--i r~dings
. . --- (images)

VISION

Fi~ure 1. General organization of the PSUBOT system.

The PSUBOT model differs from other autonomous robots and wheelchairs in

literature by many respects. First of all, rather than being a general purpose mobile robot,

PSUBOT is intended to meet the needs of the paraplegic or the blind. The device is

designed with the thought that its user is a severely handicapped. That is why (for example)

it is voice activated. Secondly, the PSUBOT is intended, more than many robots of this

kind, to be completely self-contained and implemented (vision etc) on PC. Systems that are

self contained on PC [6] do not use vision because, regular vision processing is

computational intensive and time consuming on PC. A challenge has been to implement

5

such a vision system on PC with some additional hardware. Thirdly, the structure of the

PSUBOT system includes an intelligent database as a stand alone module of the system and

dedicated to knowledge processing. In current implementations, databases are used just to

store data and are not modules per se of the system. Another source of difference is that the

PSUBOT system contrary to many other systems (11, 12], relies much more on vision for

localization and navigation of the wheelchair. Other systems rely more on sonar maps and

range perception. Vision processing for the PSUBOT implements a new method of line

feature extraction using hierarchical Hough Transform. Many systems mix lower level

image processing, and medium level image processing in the sense that they extract their

lines directly from pixels. Some [13] explain the advantage of doing so as to include

uncertainty from the pixel level to the subsequent higher levels. From the point of view of

vision, the PSUBOT is particular because it implements low-to-medium image processing

fully. This approach deals with higher level image features such as straight lines, which can

be used to describe most of the details encountered inside a building. From the higher level

line features, more complex higher level features such as door frames, can be extracted.

These patterns will be used for scene recognition and structured image matching.

The approach of building systems around a database is not new. However, specifically

in this topic, the use of a database as a stand alone module has some essential advantages.

The database is responsible for localization of the wheelchair and sensory management.

The approach to build the wheelchair system around an intelligent database has some

advantages and some pitfalls. The advantages include:

•Interfacing; There will be no need to build dedicated interfaces between the modules of

the system. All shared data can be stored in the database. Therefore interfacing is between

the database and each module of the system as opposed to many interfaces between all

modules. This asset becomes especially important when the modules of the system are

implemented in different programming languages.

6

• Global control of the wheelchair; All the data on the wheelchair will be available at any

time in the database. Therefore, part or all of the data produced by a module will be at any

time available to other modules of the system with some delay due to processing and

protection mechanisms.

• Intelligence handling; The active database will support the artificial intelligence

mechanisms for the robot. The intelligent database will be the core of scene recognition and

image matching, as well as localization of the wheelchair. The database is able not only to

store facts, but also to derive new facts. Since the database communicates with all the other

parts of the system and keeps all their information, the database will act as a shared

memory for all the modules of the system. This structure positions the database as the

centralized command of the system.

• Modifying the structure of a critical part of the system such as the Navigator or adding a

new module will affect the other modules to a lesser extent; thereby the structure of the

whole system will not be considerably affected.

The inconveniences of a centralized database include: the need for data protection

because the data will be seen by all the parts of the system, the prevention of the bottleneck

situation that may result if the database mechanisms fail or be not fast enough, and the

synchronization to avoid false readings by other modules of the data created by one

module. It seems, however, that most of these problems can be solved using the distributed

Object Oriented approach [14, 15, 16]. The database will be the parent process for the

sensory module. Actually the database concentrates on managing the map data, providing

global path, acquiring sensor data (vision), and most of all, it will be responsible for the

localization of the wheelchair. The general organization of the wheelchair is shown in

Figure 1.

7

1.2 PROBLEM STATEMENT

It appears that for almost all approaches from the references, there are two real issues:

the navigation in a real or partial modelled environment, and the robot localization. Sensor

imperfection, speed of processing, best modelling of the real world, real time localization

of the robot are some of the actual key issues in the navigation of autonomous mobile

robots. As stated earlier, sensor imperfection affects navigation because it gives an

inaccurate interpretation of the environment of the robot. Description of the real world is

also an issue. Therefore, providing a model that gives a description of the world more

complete and yet simple is the ideal. The speed of processing needs to be acceptable so that

the robot will navigate at a reasonable speed and successfully avoid obstacles on its way.

Real time localization is important to keep a reasonable speed for the wheelchair and to

provide safer navigation. Some approaches try to solve the problem by using powerful

mathematical and relational models for scene analysis [13], others [17] include fuzziness

and uncertainty in the representation of the world model, yet another [18, 19] use special

architectures such as MIMD computers to speed up the processing.

Finding an ideal model to describe a real environment, such as the inside of a building,

is not easy. Also, dealing with an approximate model doesn't give much information to the

robot. An approach which combines deductive knowledge capability with perception of

various sensors seems ideal. Deductive knowledge capability will exploit the static

information provided by the map data to build more infonnation. Deductive knowledge can

also be applied to sensor readings, especially vision data, to extract more information on

the scene. The major problem to solve is to provide the robot with knowledge (static and

dynamic information) of its surroundings, sufficient for its safe operation at reasonable

speed. It is then important to process knowledge fast enough to give the needed

information to the wheelchair Navigator module.

8

Our approach tries to use knowledge-based deduction and artificial intelligence to build

more information and to speed up the processing of information. Our approach, similar to

Fennema's [18], matches the current image with the template images of specific locations

of the building in order to locate the robot. However, our approach differs from the one

from [18] in that our method does not try to project the template into the image. We base

the matching on a correspondence between the features of the two images. The two images

match successfully if a best and satisfactory correspondence can be found between the two

images. This is different from the approach of projecting template details into the current

image. Similar method using correspondence matching is used by Crowley [20] and Hebert

[11]. We think that projecting the template into the current image is more adequate for the

double purpose of image matching and object recognition. The reason is that when a model

has been successfully projected into the current image, then there is information that the

specific detail represented by that model was present on the scene. Fennema et. al. have

implemented their system on Suns3 mainframe architecture. Our implementation is intended

to be done on a PC.

The contribution sought in this work is to integrate an intelligent database to the

PSUBOT wheelchair system. The database will act as a small expert system. As such, the

intelligent database will add knowledge capability to the system and flexibility to global

path planning, based on static description of the world. The database will also serve as the

core of pattern matching and object recognition for the whole system. The capability of

intelligently localizing the wheelchair in the building will be a key improvement for future

work on this topic.

1.3 BASIC ASSUMPTIONS

As the result of previous work done, planning and coordination with other member of

the PSUBOT project, six basic assumptions have been made at the onset of this thesis.

9

(1) The environment in which the robot navigates is the indoor of a public building, private

home or an apartment. The building is assumed to be a multiple-story building and has

facilities such as automatic doors, elevators, ramps etc ..

(2) The operation of the PSUBOT wheelchair should not bring major modification to the

current interior of the building. Therefore, landmarks and other localization tools that

may require modification of the environment are to be avoided.

(3) The PSUBOT is designed to meet the needs of three categories of users: the blind, the

blind who cannot walk and the blind who cannot walk or use his/her hands. Therefore,

the PSUBOT is voice-activated to take voice commands and has a knowledge-based

capability to find its own path and guide itself on its route.

(4) The PSUBOT architecture is composed of three main parts: Navigator, Vision/sonar

and the Intelligent database. Each module has its own processor and they talk to each

other either by file sharing or by object messages.

(5) The low to medium image processing has been implemented. The output image after the

hierarchical line extraction [3] is a description of the scene, made of straight lines.

(6) The speed of processing of the entire system should be reasonable enough to allow

the wheelchair to navigate at a reasonable speed.

(7) An initial position (location) of the robot is assumed known.

I.4 DEVEWPMENT METIIODOLOGY

The general approach implemented in this thesis for localization based on correspon

dence matching of the current image with the template image. Template images of

"landmark" locations are taken during the learning stage of the PSUBOT. At run time, the

robot starts at a known location. The user issues a voice command to the Navigator to go to

a given location on the floor or in the building. The Navigator asks for a global path to the

database. After the global path has been computed, the Pilot starts the navigation on the

10

hallway. An image is taken periodically, then processed to extract line features [3]. The

output image is composed of line features only. Knowledge is applied to determine the best

guess on the most probable location of the robot. Then the image is matched with the

template images in the neighborhood, to issue a best decision on the location of the robot.

The methodology used in this implementation can be described in five steps.

Step 1: I will define a static model of the world and test the routines to enter, update,

query and read the static map of the world. The static model of the world is a map,

described as a network of buildings and as the interior of a building. Part of a known

campus (PSU) is entered and tested. The user friendliness, the ease of use of the programs,

and the consistency of data are evaluated.

Step 2: Implement global path planning. At this step, the work includes implementing a

global path finder. The static map is processed (interfacing) to build a knowledge base for

the wheelchair. This part of the knowledge base is uniquely concerned with the description

of the world. The path finder uses the static map described as an edged simple graph to

compute an optimum path between two points. The global path planning program will be

tested extensively for correctness and speed.

Step 3: Match two images successfully. Two images of a given location, taken with

slightly changed angle of the camera will be matched. The experience will be reproduced on

different images to draw a heuristic and to have some statistics on the accuracy of the

matching algorithms.

Step 4: Localization of the wheelchair. An algorithm will be proposed and simulation

will be conducted. The image (template) of a given location in the building will be taken,

processed and stored in memory. A series of images will be taken in the neighborhood of

that location, including an image taken at that location exactly. The images will be

processed and stored in memory. To simulate the localization of the robot, the images will

be submitted one by one in a ordered sequence, following their geographical location on the

11

corridor. The template will be projected in each of the images, and a match will be done to

determine if the robot is at any known location. This strategy can be completed only after

the design and integration of other PSUBOT modules (which has not been yet done).

Step 5: Test of the database integrated with the other modules of the system. First, a

simulation of the communication between the database and Vision/sonar will be conducted.

Thereafter, a simulation of the communication between the database and the Navigator will

be conducted. To end, a simulation of the integrated system including the database and all

the modules will be done.

Because of the scope of this project, only steps (1) thru (3) will be completed, i.e,

implemented and tested. The other steps need the integration of other modules of the

system, in order to be tested effectively.

1.5 GOALS

The main goal of integrating an intelligent database to the PSUBOT can be broken into

four sub-goals.

(1) Define a model of the world for the wheelchair that will provide sufficient information

on its surrounding. This sub-goal involves implementing an adequate database structure

to keep the world model.

(2) Successfully find a global optimum path for the wheelchair between two given

points on the map.

(3) Find an algorithm for the best match of two images and implement it.

(4) Find an algorithm to localize the wheelchair using knowledge-based approach and

techniques.

The main hypothesis is that template matching works better when applied on abstracted

"feature" images and not pixel images. In fact, pixels are the smallest entities that describe a

digital image. The other features (edges, lines etc.) are built from these basic features with

12

appropriate processing. The matching of images at the level of pixels would be a highly

inaccurate one because pixels are atoms and don't include uncertainty and fuzziness. On the

contrary, higher level features such as straight lines, are made up of many pixels which are

not necessarily aligned strictly. There is a margin of error allowed. Template matching in

cases such as image matching should include a margin of error because of sensor

imperfection and because of the fact that the sensor image and the template images are not

taken exactly with the same camera angle.

The thesis is divided in four parts. The first three chapters focus on different

approaches to the design of autonomous wheelchairs and mobile robots, world modelling

and navigation. The next two chapters focus on databases, knowledge bases and path

algorithms for mobile robots. Chapter VI describes the PSUBOT database. Chapter VII

concentrates on the image matching. Chapter VIII focuses on localization of the

autonomous mobile robot. The last two chapters focus on the evaluation of the intelligent

database system and future directions for the research on this area.

In this thesis we have accomplished the following goals: (1) definition of a model of the

world for the wheelchair and implementation of a relational database to keep the

information on the map of the world, (2) implementation of a knowledge-based algorithm

to compute the shortest global path for the wheelchair (3) implementation of a matching

algorithm based on correspondence matching of two images described as sets of straight

lines and simulation of localization of the wheelchair based on recognition of a location

among a set of candidate locations.

1.6 EVALUATION

The evaluation of the database will be conducted sub-module by sub-module. For the

global path planner, the evaluation will be based on the speed of path retrieval. Numerous

tests applications will be run for different data and problem sizes to guess an approximate

13

speed of the algorithm. The evaluation of the matching has two criteria: speed of processing

and degree of accuracy. Regarding the degree of accuracy, the image matcher should be

able to include fuzziness in order to take into account the difference in orientation of the

camera when the pictures are taken. It means that matcher should be able to match pictures

of the same location taken with a very slight difference in camera angle and come up with

the result that they all represent the same location. Applications will be run to estimate the

percentage of success of the method. The time will also be recorded.

The evaluation of the localization method will be conducted on the base of the

percentage of success of the guess for a given target location.

The global evaluation of the database will be made on the base of the speed of

processing of knowledge from the database, compared to the speed of vision processing.

An estimation of the speed of the wheelchair will be made from the average speed of the

database knowledge processing and vision image processing. The projected speed will be

compared to speeds of other wheelchairs and mobile robots from the literature. The overall

speed of processing as implemented on PC will be scaled, compared to the speed of

processing in robots using mainframe computers, in order to know if any improvement on

the speed can be justified. Also, a judgement of the speed of knowledge processing by the

database will help to determine if an immediate obstacle can successfully be detected and

avoided on time.

The requirements for the computer hardware for future PSUBOT based on this research

experience will be formulated.

CHAPTER II

AUTONOMOUS MOBILE ROBOTS: THE NAVIGATION
AND LOCALIZATION PROBLEMS

II.1 MODELS OF AUTONOMOUS WHEELCHAIRS
AND MOBILE ROBOTS

As mentioned earlier, models of autonomous wheelchairs and robots differ mainly with

respect to 1) the structure of the system, 2) the modelling of the world, and 3) the method

of navigation. There are many prototypes or models that have been proposed in the

literature. We will not cover all the existing models, but we have chosen the most often

referenced ones. For each model, we will identify the specific problem solved, the method

used, the hardware versus software, the implementation and the results, the major

difficulties and limitations, and finally, the trade-offs. The models presented are either

wheelchairs or other autonomous mobile robots. The problem to solve is that of providing

the device with the capability of self-navigation and decision-making. This remains the

common objective in the design of autonomous wheelchairs and other mobile robots. One

source of differences in the design approaches is the focus placed on the user of the device.

For the case of a wheelchair, thr. user of the device is a handicapped person. Therefore, in

the design of PSUBOT, for example, special consideration is put on the fact that the user of

the wheelchair may be a quadriplegic or a blind person.

11.1.1 R.C Madarasz et al. f 41

The specific problem is to design a self-navigating wheelchair that can carry a disabled

person within a building environment from a given location, to a designed room, by giving

only a room number. In other words, the problem is that of an autonomous navigation in a

15

crowded environment. To solve this problem, they first define a model of the world, then

implement the global and local path planning strategies. The robot navigates by keeping

track of landmarks and hallway intersections. The tracking of the landmarks is done using a

TV camera.

The environment is modelled as a crowded interior of a building. The model of the

world is the indoor of an office building, described by a floor plan showing the

geographical disposition of rooms, corridors and their intersections, and elevators, without

any specification of distances between these elements. Knowledge on the location of

obstacles is provided at run-time. The system includes a sensory module with vision and

range finder, and a Navigator module responsible for global and local path planning. The

global path of the robot is determined as the shortest path, i.e, a path that contains less

rooms on its way, or a path that contains obstacles with longer age. The age of an obstacle

is the time period after which the obstacle is assumed to be removed. This path is not

necessarily the shortest path, but they assume it is close. Their system is designed such that

it can detect and identify both static landmarks and dynamic objects. The output of the

planning system is a series of primitive operations, i.e, commands such as to rotate, to

move, presence of an elevator ahead, etc .. These commands are executed sequentially. The

sensing is done with a TV camera for vision and an ultrasonic range finder. They make

three major assumptions. Their first assumption is that with monocular vision, depth

cannot be perceived. The second assumption is that vision is computationally expensive.

The last one is that images are ambiguous to interpret and are often affected by the

illumination. As a result, they use vision only for specific purposes which are: to locate and

recognize known objects, to determine the status of the elevator and to keep the wheelchair

centered on the hallway by tracking the wall-floor intersection line. The Ultrasonic range

finder is used to determine the distance between the wheelchair and its immediate

surroundings. It can be used to generate depth maps by scanning. The main problem with

16

this sensor is false readings due to the reflection of sound waves on surfaces. It is used

primarily to orient the chair with respect to walls of the hallways. The system doesn't

include a data base as a module, but rather uses a simple data structure to store the map of

the modelled world. It seems that the program does not refer to artificial intelligence

methods to assist the wheelchair to find its path or to recognize locations and objects of the

building.

The system was implemented using as hardware an on-board PC 320KB, two floppy,

parallel 1/0, digital to analog converters, a RAM disk to speed up the operations, a digital

camera (128x128) resolution and a wide angle of 35°. The camera is connected to the

processor through a DMA interface capable of taking images recorded at a rate of 11

frames/sec., Polaroid ultrasonic range finder scans 360° with 3° interval. They have built a

special DOS-based operating system on the PC to ease the transfer of files between

modules of the robot system. The functions are presumably written in C language.

The wheelchair was tested in a crowded building. For the current implementation the

system is capable of planning a path through the building, orienting itself in a hallway and

performing visual guidance down a hallway. However, the processing of these tasks is not

fast enough for a practical case of the wheelchair running at a speed of few miles per

second. They have evaluated their system compared to the objectives, i.e, the functions to

achieve rather than the speed of the processing. The main concern was to check that the

system works for one building, before extending it to a map with many buildings.

The particularity of the method is the ability of the robot to travel in a dynamic,

crowded, as well as imprecise, environment. Instead of defining general features to

describe the scene, they rather track fixed details such as landmarks in order to guide the

robot on the hallway. Tracking only landmarks is a severe limitation for the visual

perception of the robot. Therefore, for future extension of the research, they envision a

17

system that uses more general features, rather than fixed details such as landmarks. They

also envision a system with each module having its own processor.

Major problems seem to be false readings from the range finder and collisions that may

occur with obstacles that are out of sight of the wheelchair camera. An obstacle that has

been supposed passed and no more in the view of the camera can be dangerous. This

problem may be solved by adding another camera or range finder on the back of the

wheelchair. Also, the age of obstacles is an assumption that has to be revised. The age of

an obstacle is dependent on the users of the building, therefore may not be well defined.

Using a disposition of obstacles assisted with sensor information may give better results.

Information on the disposition of obstacles will be entered at the learning stage or by the

programmer of the system. Every time the sensors detect a new obstacle or fail to detect the

presence of an existing one, the information should be updated immediately.

11.1.2 S. Rao and R. Kuc C51

The problem is the design of an autonomous mobile robot with the capability of

detecting drop-offs, such as stairs down. The model INCH is a prototype equipped with a

Motorola 68HC11 Microcontroller Evaluation Board to control the whole system, six

Polaroid ultrasound transducers and sonar sensors. The sonar sensors, placed along the

side of the robot and facing the ground, are used to detect drop-offs.

The robot was tested on a rather confined model of the world made of scattered

obstacles on top of a table. The test made of INCH was to avoid the obstacles and to detect

the drop-offs at the ends of the table. The robot navigates by sense, i.e, it uses range

finders to locate obstacles in front. Not much is said about how it avoids the obstacles and

how it finds its path. The system seems not to use any artificial intelligence, database or

vision at all. This prototype is mainly sensor-based and does not seem to make many

intelligent decisions. Two main problems are encountered. The first is that in order to

18

secure safe braking, the sensors need to be placed on extensions distant enough from the

wheelchair. The second problem is that smooth drop-offs or those covered with carpet are

not detected by the range finders.

One major particularity of this system is its ability to detect drop-offs, making it very

suitable for a blind person. However, the lack of both a description of the world and a

knowledge support, make this robot more a prototype than a machine capable of carrying

autonomously a handicapped person in a building environment.

11.1.3 M. K Habib and S. Yuta f21J

The problem solved is that of the design and implementation of an intelligent navigation

system for an autonomous robot using hierarchical world map representation. The model

YAMABICO M-12, is an autonomous robot, the 12th of a series that started in 1975. The

system uses an off-board PC composed of five Motorola 68000 processors. A special

multi-processor operating system and a real time language ROBOL/O (real time language)

using C-programming language, are used respectively to ease the file sharing between the

modules and to speed-up the execution of commands.

The system is composed of the following: a global path planner to find a global path,

the Map manager responsible for storing the map in a small database (28K-64K), the
\

Locomotion module responsible for motor control and a sensory module made of

Ultrasonic Range finders. Each module has its own processor and there is the central

processor "master" to monitor the whole system. The system is equipped with voice

synthesizer for control of the wheelchair by the user. However no vision and database are

implemented in this system.

The model of the world is an indoor environment corresponding to the inside of a

building. The map of the world is described using three levels of hierarchy: the bridge,

19

which is a path between two buildings, the corridor between two rooms and the objects

along a hallway or inside a room.

What is particular in their method is that they distinguish two categories of path

planning: on-corridor path planning and in-room path planning. On-corridor path planning

is concerned with the problem of finding an optimum path on a vertex-graph built from the

world model. The vertex-graph is made of intersecting corridors and bridges between

buildings. The in-room path planning uses PRA (Prime Rectangular Areas) to find a path

inside a room. A PRA is a rectangle in the room so that an optimum path between two

points in the PRA is included in the same PRA.

Dead reckoning is used as the navigation method in this model. The Dead Reckoning

method applied here produces as output an "observed track" obtained by adding together

the position vectors received from sensor data. The global path is then the union of all these

piece-wise sections. It seems that the authors are not concerned with the problem of

localization of the robot. But the position of the robot is constantly updated by comparing

it to wall information stored in the database. Distance is recorded until the goal position is

reached. However the recorded distance may not be representative of the real distance

between the two points. This situation may occur if the wheelchair turns around its vertical

axis without advancing towards the goal point. Also it is not clear if the robot perceives that

it has reached the target destination.

The speed of the wheelchair was not estimated necessarily. However the total time for the

computation of the route map and global path planning was estimated. The experimental

results are shown in Table I. There are some problems at issue. First, path planning in a

room is a free space problem. It is necessary to process knowledge instantaneously so that

the robot can produce decisions on-line. Very little has been done to improve the speed of

knowledge processing because it is difficult to represent the actions of the intelligent robot

20

in a single instruction arranged sequentially. Industrial robots, for instance, are controlled

in real time by concurrent multi-processor architectures [22].

TABLE I

EXPERIMENTAL RESULTS Willi HABIB'S MODEL

Start and goal pomt in the Start and goal point in the Start and goal pomt in the
same building. same building. but different same building and on the

corridors. same corridor.

7 sec 5 sec 2sec

Source: [6]

11.1.4 C. Fennema f181

The problem solved is the autonomous navigation of a mobile robot. The robot

experimented with is HARVEY, a platform manufactured by Denning Mobile Robotics

intended to navigate through offices, hallways, and university grounds as it carries out

commands.

The system is composed of modules. Among the modules is a model manager which

stores and manages the hierarchical representation of shapes of the items in the scene. Key

features are defined to represent items in the environment and they serve as models that will

be used for recognition of locations. Another module is the Navigator responsible for plan

sketching. Another module is responsible for intelligent decisions: recognize a milestone

and execute a sub-goal. A milestone is made of a set of features that are expected to be

visible in the scene at a given location of the map. A module is responsible of matching 2-D

line features. The matching is made between the features of the current image and the set of

features of a location on the map.

The model of the world is a partial model described as a graph or network

representation of the world made of partially modeled and unchanging environment using

landmark milestones. The method of navigation used is a goal-oriented navigation, i.e, the

21

details expected in the scene at certain locations are known ahead of time. The system starts

by capturing an image of the scene. Then the milestones are projected into the current image

until there is a correspondence with one of the milestones. The projection is made by

superposing the features of the milestone into the details of the current image until they

match perfectly. If the matching is not good, then the current location is not estimated.

Their navigation method is goal-oriented and map-matched navigation. It is map-matched

because it relies on matching the current image with the template images representing a

location on the map. When the matching has been successful, the robot can then be located.

The system was implemented on VAXll-750 using Common Lisp and C. A TV

camera is used for vision and range finders for the detection of obstacles. The speed of this

robot has not been mentioned specifically. However, the speed of computations of the

matching of milestones was measured. It took 5 minutes to successfully recognize three

sketches. Sketches are just the features such as door frames, electric poles on the street and

corridor way.

There are two problems at issue. First, landmarks alone don't give enough information

on the environment. Such information includes the relative geographic position of objects.

This is an unrealistic situation for an autonomous robot. Landmarks in general give little

information. The description may be improved if assisted with perpetual servoing

(feedback from sensors). Secondly, the real timeliness is still an issue. The navigation is a

computationally demanding task. Trying to project milestone features into an image can be

time consuming in terms of computations. A better and more simple method may be to

extract features from the template (milestone) and from the current image, and then match

the features of the two images.

22

11.1.5 J. L Crowley [201

The topic of interest in this research is the autonomous navigation of a mobile robot.

The specific problem solved is the design of a navigation system based on a dynamically

maintained model of the environment. The model was tested on the robot platform IMP

(intelligent mobile platform). The system uses a rotating ultrasonic range finder and a

touch sensor. The robot plans and executes its paths as a sequence of straight lines. This

method is similar to the methods used by Yakahama [4].

This model integrates the information from the rotating range sensor, the robot's touch

sensor, and the pre-learned global model, as the robot moves through the environment.

The IMP is able to use its network of places to plan a path to a place; to use its sensing,

·modeling and navigation abilities to execute this plan, and to modify the plan dynamically

in reaction to unexpected events. The IMP is to serve as a foundation for mobile

household, business, and factory robots which require intelligent navigation. The system

doesn't use vision explicitly nor a database.

Navigation is based on a dynamically maintained model of the local environment, called

the composite model. The model of the world is either (1) a finite and pre-learned domain

such as a house, an office or a factory, (2) a global re-learned model or (3) a network of

pre-learned places. Navigation is divided into two kinds: local navigation and global

navigation. Global navigation provides a path of landmark points. Local navigation

estimates the robot position with respect to the global model and plans local steps to avoid

unexpected obstacles. Global navigation may operate on pre-learned model. Local

navigation requires a model that reflects the state of the immediate environment, including

changes as the plan is being executed. The local position is estimated and corrected by

matching the local model stored in memory with sensor model.

23

The speed of the wheelchair was not estimated, but it can be expected that the system is

slow because it constructs a local model of the environment The problems at issue seem to

be the speed of the device and the difficulty to explicitly recognize a given room.

11.1.6 L.M Waxman [23]

The problem solved is the design of a visual navigation system for autonomous land

vehicles. The experiment was done on DARPA an Autonomous Land Vehicle (AL V) of the

Martin Marietta Corporation, Aerospace Division, Denver, Co. This vehicle is not a

wheelchair prototype. The system includes vision and navigator as the main components.

The robot is intended to navigate in an indoor or an outdoor environment.

The world is described in terms of models of features expected in the scenes. Such

features are, for example, the road landmarks. The system refers to these features to

interpret the scene perceived with vision sensor. The robot is guided on its way by tracking

landmarks. The navigator is responsible for locating the robot position from known

landmarks sighted. The approach uses image matching and image analysis. Key features

are defined for the scene. The features are extracted and an image knowledge base is built.

The system was implemented using an image processing adapted to run on a VICOM

image processor. The VICOM uses a pipelined architecture. The whole system of the

autonomous robot was implemented as a set of concurrent communicating processes on a

VAX 11ns5 using Berkeley UNIX 4.3. The robot's test speed was estimated at 3km/h

while navigating and computing road models from 20 consecutive frames.

What is particular in this formulation is the distinction of two modes of image

processing: a bootstrap mode and feedforward mode. In the bootstrap mode, all the image

is analyzed. For the feedforward mode, only certain details of the image are closely

examined. Another particularity in this system is the navigation method. There are three

modes of navigation: long-range, intermediate-range and short-range. In the long-range

24

navigation mode, the environment is decomposed into regions sharing common properties

such as uniform visibility of landmarks and navigability of the terrain. Intermediate-range

navigation is invoked to select a corridor of free space through which the vehicle is next to

travel. Short-range navigation is responsible for selecting the actual path to be traversed

through the established corridor of free space.

Two main problems remain at issue. First, the system has very limited road-following

capabilities and could be easily confused with patchy shadows, water on the road, etc ..

Additionally, the system cannot yet recognize intersections of corridors or execute turns at

intersections (of course). Secondly, there may be problems of accuracy because the system

relies more on vision which is known to be intrinsically corrupted by noise [24].

11.1.7 R.C Arkin [25, 26, 271

The problem to solve is to design an autonomous robot architecture which takes into

account uncertainty and fuzziness in the representation of the world. The robot model is

AuRA (The Autonomous Robot Architecture). The systems is made up of four modules :

the navigator, the pilot and the sensory module (vision and range finders).

The model of the world is a partially modelled world. A meadow map of the world is

built and stored in LTM (long-term memory). The model of the world built from sensor

perception is stored in STM (short term memory). The meadow map is a hybrid vertex

graph of free-space model. In this formulation, the free space is modelled as a collection of

convex polygons. The LTM memory can be understood as permanent information stored in

memory, such as the meadow map. STM holds temporary and continuously updated

information, such as the current sensory image of the environment.

The navigation method is a sensor-based navigation with the meadow map. The

optimum path is computed using the A*(A*-1 and A*-3) algorithm, followed by a path

25

improvement process. The implementation of the software for the control and guidance of

the robot was made on a mainframe computer.

What is particular in this formulation is the meadow map representation of the world.

The meadow map as a layered representation allows showing of free spaces that the robot

can use for its path. Another particularity is the use of a feature editor to extract the features

seen on the scene.

The computational penalty with the A* algorithm may be significant if the search space

is large--specifically for systems with low speed such as regular PCs.

11.1.8 Conclusion of the Review

For almost all the models referenced in the previous paragraphs, two main problems

seem to be at issue: modelling of the world and the realtimeliness of the whole processing

of information. Most of the methods used seem not to put much emphasis on assisting the

system with some intelligence expertise. By intelligence expertise, we mean deductive

methods to build more information from the static information stored in the system, such

as a static map. These intelligence mechanisms, although they may not have the full

characteristics of known artificial intelligence methods, can be taken as artificial sources of

intelligence to assist path planning and scene analysis. For example, simple feature§ can

defined as models to represent some details in the scene. Complex models can be described

from the simple models using hierarchical or inheritance properties and deductive

reasoning. Also, most of the approaches referenced use partially modelled world described

as a vertex graph. Intelligence-based methods could improve the knowledge of the world

by finding rules and by deducting from the static data. For example, more information can

be built from a rule base combined with a set of facts, than from a bare relational database

where information is stored into tables. Queries could be used, but the scope of queries is

limited. Making the whole processing of the system fast enough is still a major issue,

26

especially if there is a consideration that the autonomous robot should navigate at a

reasonable speed. One way of solving this problem is to use parallel processing techniques

or parallel architectures, for example, pipelining and the hypercube architecture.

II.2 NAVIGATION OF AUTONOMOUS MOBILE ROBOTS: DEFINffiON OF TIIE
PROBLEM

Autonomous navigation of a mobile robot in an environment requires [from the

vehicle's control] the knowledge of the disposition of objects in space. This information is

provided to the robot by the sensors and the "a priori" knowledge of the world. Therefore

there are currently two main approaches to autonomous robot navigation: built-map-based

navigation and a-priori-map-matched navigation 1. In the built-map-based approach [5] a

map is built from the sensor perception and this map is then used for robot's navigation.

This method is similar to human perception. A human perceives surroundings with senses

and moves (navigates) based on what (s)he perceives. Of course, humans always refer to

some kind of knowledge about the world, but we do not need absolute geometrical

dispositions of objects. This method gives more accurate results and is more flexible, but

requires smart sensors and very fast algorithms because the robot navigates while creating

its own map of the world around. The other method, the a-priori-map-matched method

(6,4] uses sensor perception, but matches the sensor perceived scene with some templates

of milestones previously stored in the system during the learning process. Obviously this

method is less flexible because the map of the system is static and the sensors don't

necessarily have the same parameters (position and focus) during the learning stage as they

have during the run-time. Navigation of the autonomous mobile robot serves only the

specific goal defined by the user.

1 The terms built-map-based navigation and a-priori-map-based navigation are due to
this author.

27

Navigation of the autonomous robot has some factors it depends on heavily. First, it is

subject to the type of environment the robot is supposed to navigate in. For example, the

problem of the navigation of a wheelchair in a crowded environment such as a sidewalk of

a busy street at a rush-hour is far different and more demanding in precautions and strategy

than the navigation of the same wheelchair in an open area with no obstacles at all. The first

deals with moving and unpredictable obstacles in the environment, the second assumes no

moving and no not-known items in the perceived environment. Secondly, the knowledge

of the environment is a key factor. Knowledge of the environment is taken here in a wide

sense. The robot needs to have some information about the environment it is navigating in,

so that it can make decisions based on sensor perception fused from sensors, and the

knowledge of the environment. For example, an autonomous wheelchair may need to

know the characteristics of a given door in order to deal with it as an obstacle. Information

about a door on corridor so as whether it opens in, opens out or slides, may be useful for

the Pilot of the wheelchair in order to adopt a given strategy to guide the wheelchair

through the door. The wheelchair may have to know the shape of an obstacle in order to

choose a proper strategy to avoid it or manipulate it (door, elevator). Therefore the

navigation problem will be more or less facilitated depending on whether the environment

is known or unknown.

Finally, the type of the robot's activity influences the method of its navigation. An

autonomous robot used for military purposes may be designed to act blindly on anything

else except certain types of targets. Therefore, the vehicle may run randomly over any

obstacle on its way. A wheelchair is supposed to carry the handicapped in an inhabited

environment. Therefore, care must be taken not to hurt its user or persons walking by. All

these considerations play an important role in the navigation problem. Another issue for

autonomous mobile robots is the localization problem.

28

II.3 LOCALIZATION OF AUTONOMOUS MOBILE ROBOTS

Autonomous mobile robots are designed to assist the user in the accomplishment of a

given task. However, it is important for the user of the device to control the robot and to

provide it with some mechanism that will locate its position so that it doesn't get lost,

thereby jeopardizing the operation. The wheelchair for the disabled and all mobile robots of

this category need some support mechanism to help locate itself in the environment

(building in the case of the PSUBOT). When the user orders the robot to go to a given

room on the floor, the autonomous robot needs to have in its system a mechanism that will

tell it whether or not the desired location has been reached successfully. Also, when the

robot is lost, it should be able to re-localize itself by answering the question "where am I?".

This is the problem of localization of the autonomous robot.

Localization methods vary with the researcher and the navigation method used. Some

approaches use landmarks to locate the robot [6,4], some other use specific features in

milestone image templates [18]. Landmarks are special signs or features on the scene on

which the robots relies to follow its track on the hallway. A landmark is different from a

milestone in the sense that a milestone is a set of defined models of features that are

expected at a given location in the building. A landmark is a sign that is put at a place as an

indicator. The robot will use these points for its localization. The robot is in the 30 world

and needs a human-like perception. Locating the robot is difficult so approximations are

used. Also, scene analysis and perception of the environment need to be robust so that a

misinterpretation of the sensor's readings or poor performance of the sensory module don't

lead to the lost control of the wheelchair. The problem of the autonomous robot's

localization is made more complex when the environment is a real one, as opposed to

limited and well-defined model environments. The wheelchair may lose its path. This needs

to be taken care of by the error recovery mechanisms.

29

C. Fennema[18], for example, uses milestone templates. An image is taken, then

features of the most probable milestones are projected into the current image. If the

matching is satisfactory, then it is concluded that the robot is at the corresponding

milestone.

Hebert [11] describes each image as a set of features. To match the two images, an

estimation of the displacement between them is carried out. This displacement can be

understood for example as the average displacement between the features of the two

images. Then prediction regions are built. A prediction region is defined as a set of

features that are at a Cartesian distance lower than a given threshold value, and at an

angular distance lower than a certain other threshold value. After the prediction regions

have been built, the search for matches between the two images is carried out. The result of

the search is a set of possible matching between the two sets of features. The matching that

realizes the minimum value of the error function is taken as the best. This method seems to

be computational intensive.

Section VIIl.1 of the thesis will examine different approaches to the localization

problem for wheelchairs and autonomous land vehicles.

CHAPTER III

MODEL OF 1HE WORLD

III.1 DEFINffiON OF THE PROBLEM

As mentioned in Chapter II, there are two main methcxls in autonomous land vehicle

navigation: built-map-based navigation and a-priori-map-matched navigation. Both of the

two methcxls need a model of the world in which the autonomous machine will travel.

While the first methcxl may need knowledge of the world more in terms of "abstract mcxlel"

only (example: a door way is rectangle), the second method needs explicit models of

objects in the world, their relative disposition, shapes and locations. An image of the

locations of interest is previously stored in memory and later on is matched to the current

image of the scene. If the current image satisfactorily matches an image of a location, then

the robot knows that it is at that location or at least in its immediate neighborhocxl.

The PSUBOT wheelchair implementation applied in this project uses the a-priori-map

based navigation approach. This methcxl has been preferred to the built-map-based one for

three reasons: 1) building a map from sensor data takes a lot of processing time and

requires fast processors, which is not satisfied with the regular PC architecture used, 2)

the latter method requires accurate sensors which were not available to us, 3) sensor

integration has not been completed in the architecture of the PSUBOT system.

The problem to solve in this chapter is to provide the autonomous wheelchair with a

description as complete as possible of the world around. The PSUBOT wheelchair needs

31

information about its surroundings. This information can be provided to the wheelchair's

database in different forms:

- as a map which gives static information about the nature and

geographical disposition of the elements of the world [4, 6],

- relationships between the elements of the world, so that more knowledge can be

constructed from these relations using for instance the major object-oriented

principles of data abstraction and inheritance [9].

The inside of a building usually has an abundance of information: different objects,

shapes, disposition of objects, colors etc .. The design and organization of the inside of a

building is left to the choice and appreciation of the users of the facility. Therefore, because

of the diversified nature of the information related to the inside of the building, computer

acquisition of this knowledge may be complex. The best description may seem to be a

picture of the scene stored in the computer as an image frame. The image can be colored or

black and white (nowadays, colored image are stored and processed in computers as well).

However the passive image needs to undergo some processing so that the robot or the

computer can use the information behind it. This is a critical issue that is dealt with by new

image processing techniques. One way to simplify the problem for an application such as

the wheelchair seems to be building and storing models of certain objects that can be

encountered in the building. These objects will be selected among others based on the fact

that they are the most likely. Their models will be used for scene analysis and recognition.

For instance, a door frame is a common object that is encountered in a building. Therefore

a model for the door frame may be built and stored. The models can be stored either as

analytical data or as semantic knowledge supported by some basic information. Similar

approach is used by Fennema et al.[18] and Sanderson and Foster [28] in their models.

Generally, the inside of a building (except the objects inside rooms) can be described as

lines (straight lines or curved lines) representing details such as wall-floor intersection,

32

door frames, etc .. Some approaches [20] use lines as features of interest to describe a scene

in the matching process. The sensor image is processed, lines are extracted. The image is

then matched to a template image of a location stored in memory.

ill.2 ENVIRONMENT MODELLING FOR AUTONOMOUS MOBILE ROBOTS

The inclusion of the world model is essential for an autonomous robot which relies on

an a priori knowledge of the disposition of elements of the world to plan its own

navigation. Therefore, for autonomous land robots it is necessary to keep in memory a

model of the world in terms of disposition of the objects and their characteristics.

R. L. Madarasz et al.[4] propose a model of the world as a symbolic structure of the

inside of a building. The symbolic structure shows relative locations of offices, rooms,

corridors and hall intersections. However, the model doesn't explicitly give the distances

separating these elements. The features are static and the knowledge about the location of

obstacles in this approach is very important for the navigation of the wheelchair. A

"duration age" is associated to each obstacle. The duration age is the time interval during

which an obstacle is assumed to be at a given location point.

M.K. Habib and S. Yuta [6] represent the world for their robot Yamabico-M12 as the

inside of a building with three levels of hierarchy: the corridors, the bridges connecting two

buildings and the objects. The elements of the inside of the room (such as walls) have

specific data attached to them to describe certain information, for instance their attributes,

the position of door, etc .. Definitely, their model comprises such entities as the building,

the corridor, the room and the object. The map is described as a connected simple graph of

vertices, each vertex corresponding to an intersection of corridors.

Other researchers in the area, for instance C. Fennema et al.[18] don't use an a priori

map. Rather they explicitly adopt models of important features. These features represent

33

specific objects or specific details in the scene of the environment. These features will be

used for scene recognition or interpretation.

It is however important to point out again that the representation of the world a priori is

somehow not flexible and very limited. Some researchers [11] prefer not to have an a priori

map but to build a map of the world from sensors. This method, although costly in terms

of the reduced speed, 1 seems more sound and gives better results in terms of accuracy of

navigation of the mobile robot. The next sections examine the model of the world proposed

for the PSUBOT wheelchair.

One assumption made in this thesis about the PSUBOT wheelchair is that the

processing of information should be fast enough to allow the device to run at reasonable

speed. Building a map from sensor readings certainly will slow down the speed of the

device. Another consideration is that the PSUBOT robot needs information on the world

surrounding it in addition to information about its path. This information may be needed to

service voice requests from the user or the Navigator Module, such as to provide him/her

with information (name for instance) of a specific room of the floor. The approach of the

PSUBOT is justified also by the nature of the hierarchical description of a building. A

public building (even a private one) can be described in terms of its levels (floors),

hallways (corridors) on each level and locations (rooms) or objects along each corridor.

However, an interesting point in the PSUBOT is that more than other models (for instance

the model presented by Hebert [11]), it will use artificial intelligence approach of

knowledge deduction and inference reasoning to construct more information from the static

map, which is rather complicated to do from a map built from sensor readings. Let us take

1 The robot has to build the map first, then uses that map to navigate. This process
slows down the robot. There will be some situations where the robot will be advancing
without having any new information at all on its route map because it will have not yet been
built from sensors. That is what I would call "blind navigation " cases. This problem will
be much reduced if the map building process is fast enough compared to the speed of the
wheels.

34

for example, a situation where the user wants to know which room is at the right end of a

given corridor. The sensor map may not be of great help to answer this question. Our

approach of an a priori map assisted with knowledge deduction and construction

mechanisms seems appropriate for the wheelchair because information on the static

disposition of elements is provided as well as the capacity to extract relationships between

elements in the static description. This method will allow to answer simple queries from the

user on the building. We would like to make it clear that we consider our system to take

benefit of expert-system-like knowledge deduction and inference when we reference

artificial intelligence. Our system doesn't implement nor use standard artificial intelligence

methods which often require a lot of processing time and memory storage.

111.3 A PRIORI KNOWLEDGE : DESCRIPTION OF THE WORLD
AROUND THE ROBOT

llI.3.1 Overview of the Map Structure

It is an assumption of this research that the wheelchair will be navigating inside a

campus environment made up of buildings. There are five levels of hierarchy in the

description of this formulation of the map. This description was adopted because of the

way a building is commonly perceived (floors, corridors, rooms, elevators, doors, etco)

and the way buildings are interconnected on a campus. The description of a map from the

campus level to the building level can be seen as a hierarchy (see Figure 2).

At the highest level the map is described as a site (map site), i.e, a collection of

neighboring buildings connected to each other by bridges. A bridge is just a path in the

campus that connects two buildings and can be used by the PSUBOT wheelchair. At the

next level, the map corresponds to the indoor and floor by floor description of the building.

The following level is the .flQQr of a building which is described by its major elements: the

rooms and the corridors.

end-point 1: end-point 2 :
(building 1) (building 2)
(exit-point 1) (exit-point 2)

a building

a corridor

objects inside the objects or locations
room along the corridor

Figure 2. Hierarchical description of the static map.

The corridor comes after the floor as one of the most important elements of the

35

hierarchy. In fact, the corridor is the path that the wheelchair will take to go from one place

to another on the floor. As described in the next sub-section, the corridor will be

characterized by its shape, dimensions and information on its end-points. The dimensions

of a corridor are i~s length, its width or its radius. The end-points of a corridor correspond

to its intersection points with other corridors.

At the lowest level of the map hierarchy, are placed the objects on the corridor way.

Objects on the corridor include room entrances, obstacles, doors on the corridor way that

are not room doors, signs, special signs or special points (locations) on the corridor such

as the end-points of the corridor and fountains. Obstacles are defined here as special objects

which, if placed on the corridor way, may endanger or prevent normal operation of the

wheelchair or even block the way to the wheelchair. One example of such an element is

stairs.

36

The formulation and choice of the present structure for the a priori map is influenced by

way the things commonly appear in regular buildings and the traffic of moving obstacles as

a function of the time period during the day.

111.3.2 Map Structure

The map model structure proposed in this thesis can be formulated as follows.

<map>

<building>

<bridge>

<floor>

<corridor>

<corrend>

<room>

<object>

= <map name><list of buildings>

= <building name><map name><number of floors>

<access to public ><access facilities for motor-handicapped people>

= <bridge name><map name><building #1>

<end from building #l><building #2> <end from building #2>

<length><traffic frequency> <obstacle density>

= <floor name><building name><floor above><elevator >

= <corridor name><floor name>building name><type><length>

<traffic frequency><obstacle density>

= <corridor name><floor name>building name>

<end-point # 1 ><angle><orientation>

<end-point #2><angle><orientation>

= <room name><floor name><building name>

<main entrance door><exit door><in room information>

= <object name><floor name><building name><corridor name>

<side of corridor on><distance to end-point #1 of corridor>

<attributes of the object><next object on same side>

An example of a map description is given in the Appendix A.

The information on the status of the building (whether it is public or has access

facilities for the handicapped) is important. The battle for providing more access facilities to

37

the handicapped in public buildings and means of transportation is still an issue for

governmental decision makers in the USA especially [29]. So it is important to know if a

building has ramps, elevators and automatic doors to help the handicapped. Additionally, a

building on the map site may be of restricted access to the general public.

A bridge is an accessible walk way linking two buildings in such a way that the

wheelchair can use it. In fact, to be more precise, it links two entrances of two distinct

buildings. It should be mentioned in the description of floors if a functioning elevator exists

between any two floors. An elevator is necessary if the handicapped persons needs to go

from one floor to another .

The term "corrend" stands for corridor end-points information. At each end-point the

corridor shape makes a certain angle with the x-axis of the reference taken for the floor (see

Figure 3). The orientation of the corridor end-point designates the geographical orientation

of that point (N,S,E,W and combinations). The in-room information is the information on

the disposition of obstacle in the room such as furniture. The model of the inside of a room

will be defined in the next section.

YLX
"' "' "' "' ~___....--- -

_:~·::(_J 01 ~ > '

End-point 1

• '

--...

Figure 3. Corridor end-points.

........... \ ;
,, #

\ ; "'--------,
;

Attached to a corridor or a bridge are three measures: length, traffic frequency, and

~

38

obstacle density. The traffic frequency is a real number that measures the periodicity of

moving objects on the corridor during the hours of the day. In other words, the traffic

frequency indicates a measure of the occupancy of the corridor by moving obstacles. Some

corridors are more solicited than others. For example, a crowded corridor at rush hour

may not be very suitable for the autonomous wheelchair. A path with slightly longer length

but less traffic frequency may be more convenient to take. The traffic frequency could be

specified temporally in the sense that it can be described as a function of the time of the

day. It will therefore take into account the readings from the on-board clock of the PC

attached to the wheelchair.

Another measure attached to a corridor is the obstacle density. The obstacle density is

defined as the number of fixed obstacles that physically exist per unit length of the given

corridor. Obstacles are doors on the corridor, as well as other objects that can block the

wheelchair from traveling on the corridor. These two densities can be considered to add a

correction measure to the length of the corridor at a given speed of the wheelchair. This

consideration needs to be taken into account for the wheelchair's operation. The Navigator

may use the strategy to record the distance from a starting point for the purpose of locating

the end of a corridor. If, while the Navigator is recording the distance, the wheelchair is

stopped in its travel to avoid a sudden obstacle which is in its way, the estimate of the

distance covered will be inaccurate, especially if the wheelchair has used many trials and

errors to avoid the obstacle. The problem may be simplified by stopping the recording of

the distance covered whenever there is a need to avoid an obstacle on the way.

The objects (room doors, exit doors, obstacles and special locations) are located along

the corridor on four sides (left, right, both ends) as indicated in the example of Figure 7.

The data structure chosen gives information on the relative position of an object with its

neighbors and its absolute location with reference to one end of the corridor.

39

In the graph representation of a floor map, we have chosen the ends of corridors as the

vertices and the corridors themselves as arcs of the graph. Room doors and special

observation points could have been chosen as vertices of the graph, but it is obvious that

such a consideration would result in a larger graph (number of nodes and arcs). This would

not help because it increases the memory demand and doesn't change the nature of the

problem. The optimum path (shortest path) is computed in the simplified graph and all the

locations along the path (with the exception of nodes) will be retrieved using deductive

reasoning and the backtracking method.

III.3.3 Models of the Corridor

As mentioned in section III.1 of this chapter, the corridor is the key element in the

description of the inside of a building. In this section the models of the corridor are

described.

A corridor as a hall way is described by its length, its shape, its end-points and the list

of elements that are located along it. The shape of a corridor (see Figure 4) will be either

piecewise linear or piecewise circular. In the model only one direction of convexity is

allowed for a corridor (see Figure 5). The convexity of a corridor is the direction of

curvature of that corridor. It is true that a corridor can have two directions of curvature -- or

more in the worse case. In our formulation, a corridor of non-standard form will be

normalized by being broken into pieces of corridor of standard form. The orientation of a

corridor is taken from its first end-point (reference end-point) to the other end-point. It

means practically that a corridor C(El,E2) where El is the reference end-point and E2 the

other end-point, has the orientation E 1 ~E2.

Two major advantages of this formulation need to be pointed out. First, for a corridor

with only one convexity, it is possible to track the orientation of the wheelchair much more

easily by just comparing the actual angle of the front wheels with the angles of the two end-

40

points of the corridor. The angles of the two end-points of the piece of corridor define an

interval in which the angles of the wheelchair wheels need to be while in normal following

of the track. Also, the orientation attached to each end-point of the corridor along with the

single convexity of the corridor are a source of knowledge on the orientation of the

direction the wheelchair is heading. This can help in path planning. However,

normalization of corridors may create a lot of pieces of corridors, thereby increasing the

amount of atomic data to process.

Secondly, identifying corridors from intersection points may help to reduce ambiguity.

A serious question may be in which category to put a hall. A hall (see Figure 6) may be

taken as a room with many doors or as an "empty" intersection point of corridors.

Equation (1). In constructing an equation for the corrected length of a corridor, the

assumptions that we make are the following:

(a) the wheelchair runs at a constant speed Vo

(b) avoidance of each obstacle slows down the wheelchair by a time to I

(c) because of moving obstacles (traffic frequency) the total equivalent delay is to2

It will take

Obst dens x L x to1,

time to avoid all the obstacles along the corridor of length L.

The corrected length will be

L(l Obst_dens xt01)

L' = Vo

Similarly it will take

L" = aL
Vo

extra length because of moving objects. Where a. designates a real coefficient.proportional

to the traffic frequency Thus the corrected length is

41

Obst dens x to1 + al)
L = L(l + Vo Vo .

Obst dens designates the obstacle density. The coefficient is function of the time of the

day. Values of alpha can be stored in a look up table in the database. The time of the day

will be accessed using the clock of the on-board computer.

El E2 El •
E2 •

(a) linear type (b) curved type

Figure 4. Standard shapes for a corridor.

Ell .. I

E21 I
El2 ~ ~11 1. I •I ~12

E22

1 I
E21

E22

(a) cross intersection

E2~1 II.----· J I E2

El
(b) angular intersection

E _____ _

E2 El_____/

1

~ 1 ~E2
(c) corridor with curved shape

Figure 5. Normalization of the shapes of corridors.

Figure 6 shows an example of a hall in a building and how it is formulated in the

42

description of the map. In this formulation, the middle point of the hall (point I) has been

ignored. Instead, the corridors have been taken on the sides of the hall. There is an

inconvenience from this decomposition. Consider the problem to find the shortest path

from point A to point B. It is obvious that the straight line A-I-B is the shortest path.

However, the decomposition will give a path either A-q-C-B or A-ri-B. This problem is

not a major one. The most important problem at this point is to orient the wheelchair to

follow an accurate route.

Figure 6. An example of a hall in a building.

11.3.4 A Simple Example of Floor Plan

Figure 7 shows a simple example of how the partitioning of corridors can be done for a

regular and simple floor plan. It can be noted that the partitioning of corridors is such that,

from each angle at a comer of a room, a perpendicular line is drawn to the opposite wall.

An edged-graph of the floor is then drawn from this partitioning. It is however necessary to

43

point out that decompositions may not be unique. The partitioning of corridors should be

carried out in a way to avoid ambiguity. For example, an intersection point of two corridors

should appear as an end-point of each one of the two corridors.

rl r5 exit

I I I I llQ I I L-1 I I I I I I I - - - - - - -

exit
---------I I I I I I I I I I , ______ _

r6 r7 I r8

i:><J Elevators

- - - - - - Subdivision of

corridors

Walls

r9 rlO

Figure 7. A simple example of a floor plan.

III.3.5 Model of the Inside of a Room

At the request of its user, the PSUBOT wheelchair will have to go to a designated room

on the floor. Obviously, the goal for the user is to have some activity in the room, so that it

is important to guide the wheelchair inside the room as well. The obstacles inside the room

can be described in terms of forbidden areas that will be carefully avoided by the

wheelchair's Navigator Module [2].

In this formulation, the inside of a room will be described only in terms of obstacles to

avoid. In fact what motivates this choice is that more so than the corridor way, the inside of

a room can have very diversified structure at the will and the needs of the room user(s). At

this point it was not judged necessary to face the difficult problem of describing in detail the

44

inside of a room. Therefore the description was restricted only to the obstacles to be

avoided in the room.

The room information comprises the main entrance door, the main exit door and

obstacles in the room. The entrance door and the main exit door will appear on the list of

objects on the corridor. By convention entrance door and exit door will be the same object

if the room has only one door. An obstacle is represented as a rectangle in the Cartesian

coordinates having the main entrance door as the origin of a coordinate system. Its x and y

axes are parallel to the two dimensions of the smallest rectangle covering the room. The

rectangle covering the room is considered because some rooms may have circular or L

shape. The coordinates of the center of the obstacle rectangle will be entered as well as its

dimensions (length and width, see Figure 8). An example of application is given in

Appendix A.

Another approach would have been to use sonar to build a map of the inside of the

room, but this method is obviously more costly in terms of information processing.

However it may be necessary to add a sonar map to the simplified description of the room

because the obstacles inside the room can frequently be displaced by the room user and

there will be a necessity each time to update the information for each room of the building.

Y!

p

01 ~"'~e
Main entrance door x

... ...

a : length
b : width
C : center of the forbidden rectangle
0 : center of the main door entrance

p, e : polar coordinates of the center
of the forbidden rectangle

Figure 8. Simplified model of the interior of a room.

45

III.4 MODELS OF SELECTED PA TfERNS IN THE INDOOR SCENE

The indoor scene of a building is so diversified that it is a presumption to claim to

describe accurately and in detail the information involved. The primary goal in this

approach is to recognize some locations of the building for the global localization of the

wheelchair. Therefore, object recognition right now is a secondary interest in this work.

The main problem to solve is to match an image of the scene with a template image of some

location in the building and make a decision based on that match. It would be more

interesting to describe the scene with some selected patterns that will be used as basic

features in scene description.

The patterns include door frames, boxes, ceiling angles, corners, corridor ways, walls,

windows, obstacles on corridor way, room entrances, and intersection of corridors. Each

one of these patterns will have its own feature representing it and each model will be

described (refer to Chapter VII). Let us point out, however, that in the hierarchical semantic

approach, complex patterns can be described using the basic ones. For the current

implementation and research, more emphasis is put on matching images for the purpose of

localizing the wheelchair. At this stage, therefore, scene analysis and recognition are not a

major subject of interest. Therefore, in this thesis, lines will be used as the only features to

describe a scene. There is obviously a loss of information, especially on curved shapes

because the feature extractor currently implemented [3] outputs only straight lines.

However, it is possible to implement the general Hough Transform method to extract non

linear line features, provided an analytical model of the nonlinear shape can be

approximated.

The static map as it has been described, needs to be stored in memory, using the

storage available on the wheelchair on-board computer. The information can be saved in

simple files. However, the hierarchical structure of the map makes it more convenient to

use a relational structure such as a relational database to store the information. It would also

46

be easier for efficient data management (update, retrieval, queries) to use a relational

database structure to store the information on the map.

The purpose of this chapter was to define a model of the world for the wheelchair. This

information is stored in the computer under the form of a relational database discussed in

Chapter VI. The model proposed seems reasonable because it describes the floor plan of

the building and gives information on the relative disposition of items on the floor plan

(rooms, corridors, obstacles, etc ..). The model proposed allows also to describe a set of

neighboring buildings. However, we foresee a major inconvenience which is the

abundance of data to enter into the computer for a multiple story building or a

neighborhood of more than two buildings. The next chapter will discuss relational and

intelligent databases.

CHAPTER IV

DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

IV.1 INTRODUCTION

The primary definition of a database system is that of a computerized record-keeping

system. The purpose of such a system is to maintain information and to make it available to

the user on demand. Compared to a simple file system, a database system has two key

advantages: reduction of redundancy of data and inconsistency. A database is operated by a

Database Management System which is a layer of software that allows the user to access

and manage the physical data residing in the storage support. A database management

system (DBMS) [30] is an important type of programming system, used in computerized

data management. Over the past years, as databases have been improved, so have the

DBMSs. There are, however, new kinds of DBMS's [30] arising, dictated by new types of

applications. Two particular classes arising are the "object-oriented" systems and

"knowledge-based" systems. OODBMS's [30] support complex objects which mean that

they have the ability to define data types with nesting structure and they support

encapsulation. i.e, the ability to define procedures that apply only to objects of certain

types. Those objects can be accessed only through such functions. An example is the

operations PUSH and POP on stacks in C language. OODBMS's also support object

identity, i.e, the ability of the system to distinguish two objects that look the same. This

means that two objects, e.g, ("cor 9", "floor l ") represented by the same record structure,

can be distinguished by such a system which is not the case for similar records in an

\

48

ordinary relational database. A knowledge-based management system (KBMS) [20, 31]

has the capabilities of both the DBMS and the knowledge system.

The evolution of database systems started in the 1960's (see Table II). The early DBMS

were based on network models and hierarchical data models. In the 1970's the relational

systems were introduced first by Codd. Relational systems are declarative and value

oriented. Value-oriented or record-oriented support information under the form of record

therefore they do not support object identity. The relational models had the disadvantage

that they didn't allow for easy integration of DML and host languages.

In the 1980's the object-oriented DBMSs that support both object identity and abstract

data types appeared. However they were not declarative. A declarative language is a

language in which one can express, in a form of declaration, what one wants, without

explaining exactly how the desired result should be computed. A procedural language is

just the opposite.

In the 1990's, KBMSs are progressively rising. KBMSs have the built-in

declarativeness and integration of DML/host language. They are inherently value-oriented

and logic-based. The KBMSs are logic-oriented in the sense that they exploit and build

logical relationships among data. For instance, deduction of new facts from existing facts

in Prolog [32, 7], uses logical rules. TABLE II makes a summary view of the evolution of

databases. Currently there are four main models of databases: hierarchical databases,

relational databases, object-based and knowledge-based[31, 33, 34]. Their areas of

application are wide: financial records, airline reservations, software engineering (35], and

CAD[36]. In the area of robotics, especially that of autonomous mobile robots, databases

and data structures are used to store the parameters of the robot system, the model of the

world around the robot, and some intelligence primitives such as special functions. Modem

database applications are numerous and are dictated by the type of activity. The types of

applications of databases lead to the distinction between the DML and the host language

49

used for the application. Typical applications of the class of database management systems

combining DML/host languages include VLSI design databases, CAD(Computer -Aided

design databases) for solid modelling, databases for graphic data, and software engineering

databases. Databases find increasing fields of application in the area of robotics, especially

in the design of autonomous mobile robots [25, 11, 21, 12]. In this field, intelligent

databases (knowledge-based) are used more and more to provide knowledge capabilities to

the autonomous machines.

TABLE II

EVOLUTION OF DATABASE SYSIBMS

Decade Systems Orientation Declarative? DML/host

1960's Network, Object-oriented No Separate

hierarchical

model

1970's Relational Value-oriented Yes Separate

1980's 00-DBMSs Object-oriented No Integrated

1990's KBMSs Value-oriented Yes Inte~ted

Source: [31]

The orientation of the DBMSs differ with their category as summarized in the table

above. Systems that support object identity are termed as "object-oriented". Systems that

do not support object identity are termed as "value-oriented" or "record-oriented". For

example all systems based on relational model and those based on logic are value-oriented.

50

IV.2 DATABASE MANAGEMENT SYSTEMS

IV.2.1. Function and Characteristics ofDBMSs

Two main facts distinguish the database management systems from file management

systems. First, there is a permanent physical database to store the data that the DBMS

accesses and manages. Secondly, the DBMS has the ability to access large amount of data

more efficiently than a regular file system. A regular file system does not provide help for

access to arbitrary portions of data such as fields. A DBMS is capable to:

- support different data models,

- use high level languages,

- provide transaction management,

- protect security of data.

Suimort of many data models. The DBMS provides at least one abstract model of data.

These models allow the user to grasp a better interpretation of the meaning of data. For

example, a record is a data model or a data abstraction. The goal of supporting many data

models has a major advantage in that it allows the user to define his own data models at the

convenience of the application. It also allows the user to attach a meaningful interpretation

of the data. In multi-user database systems, each user is given a window on the database

and is allowed to choose his own data abstraction. For example, bank teller machines of
I

different bank branches can share the same information on a customer, but each of them

has a specific data record on the same customer. At a lower level, a DBMS allows to

perceive data as a collection of files. A file of records is abstracted to a relation. An example

of a record and a relation are given in Example 1 and Example 2, respectively.

Example I: a record

record

corridor_name: char[lO];

end

floor_name: char[lO];

building_name: char[lO];

type: int;

length: float;

traffic_freq: float;

obstacle_density: float;

Example 2: a relation

corridor(Corridor_name,Floor_name,Building_name,Type,length,Traffic_freq,

Obstacle_density).

51

Support for high level languages. This feature allows the user to access the data more

efficiently. For instance a DBMS should be able to access the file and specific record in a

file, regardless of the length of that file. This is done by using query languages to allow

making the access to file information easier to the user. Queries can be embedded in a DML

such as PAL (Paradox Application language)[37, 38]. SQL (Simplified Query Language) is

a very well known query language in database applications.

Example 3: a SQL query for the corridor table

SELECT [CNAME]

FROM corridor_table

WHERE [FNAME] = "First floor";

This query searches and finds all the names of corridors of floor "First floor".

Example 4: a PAL query for the corridor table

QUERY

corridor I CNAME I FNAME I BNAME I TYPE I LENGTII I TFREQ I OBFREQ I

I Check -cor I Check -flor I Check -build I Check I Check I Check I Check

ENDQUERY

52

OO_IT!

This query will retrieve information on the corridor name "cor" of the floor "flor" in the

building "build." The bar signs which appear in this query are specific of the syntax of this

language.

Transaction management Another important capability of a DBMS is the ability to

simultaneously manage a large number of transactions, which are procedures operating on

the database. For instance, an airline reservation system database can be concurrently used

at different locations.

Security of data. A DBMS must not only protect against loss of data when crashes

occur, but also prevent unauthorized access. The DBMS must be able to give access

privileges to data on files, fields and subsets of data. Access privileges are important to

prevent misuse or override of data. For example, in multi-user databases, many users can

access information at the same time. If common information is not protected, it may be

destroyed by a user's application. Some confidential information need to be protected from

the public.

N.2.2 Basic Terminology for DBMSs

The first characteristic of a DBMS is the level of abstraction used to represent the data.

Data abstraction levels range from the bit level, to byte level, record level, file level, and so

forth. There are three levels of abstraction used in describing a database: physical ,

conceptual, and view level.

The Physical Database Level . At his level the information contained in the database is

represented as a collection of files, storage structures, and indices used to store or access

data more efficiently. The physical database resides on secondary storage devices.

The conceptual level . At this level, the information represents an abstraction of the real

world for the user of the database. This allows the user to attach more meaning to the data

that are behind the numbers or strings. A DBMS provides a data definition language (DDL)

53

to describe conceptual schemes and the implementation of conceptual scheme by physical

scheme. The DDL allows the user to describe conceptual schemes in terms of data models.

For instance in the relational model the data are perceived as tables. Another model is the

network model, where nodes correspond to relations or files, and the arcs correspond to

associations between these relations. The conceptual database is intended to be a unified

entity, including all the data used by the organization. To build a conceptual scheme, some

agreement about a unified structure must be reached. The process of doing so is called the

database integration.

The view level . The view level or sub-scheme is a portion of the conceptual database,

or an abstraction of a part of the conceptual database. Most database management systems

provide a facility for declaring views, called sub-scheme data definition langua~. and a

facility for expressing queries and operations on views, which is called a sub-scheme data

manipulation language.

Other concepts attached to a database management system include scheme, instances and

data independence. Data independence implies that the application program is independent of

the storage structure and access strategies used. The concept of the scheme is used to

designate the current contents of a database. In a well-defined database system, the physical

scheme can be changed without altering the conceptual scheme or requiring re-definition of

sub-scheme. This independence is defined as physical independence and is referred to as

data independence. A view can be regarded as a virtual table derived from a base table. A

view doesn't exist on its own, but appears so to the user. On contrary of a view, a base

table is real in a sense that each of its rows resides in the physical data storage. To illustrate

view, queries are requests that create a view of certain portions of data to the user.

54

IV.2.3 Database Languages. Host Languages. and Database General Architecture

Database languages. A database language consists of two parts: the data definition

language and the data manipulation language. The conceptual scheme is specified in a

language, provided as a part of the DBMS. The language is called the data definition

language (DDL). This language is not procedural, but rather a notation to describe the types

of entities, and the relations among the entities in terms of a particular data model.

Example 5: a PAL (Paradox Application Language) to create a table for a relation

"corridor" used in the representation of map data.

CREA 1E corridor

CNAME: char[lO],

FNAME: char[lO],

BNAME: CHAR[lO],

TYPE: INT,

LENGTH: N,

TFREQ:N,

OBFREQ:N.

DO_IT!

The above statements are a request to create a table named "corridor" having as attributes

CNAME, FNAME, BNAME (fields of 10 alphanumeric characters); TYPE is an attribute of

type integer; LENGTH, TFREQ, OBFREQ are attributes of type real. The statement

DO_IT! is used to validate the request.

The transactions on data(entry, update, retrieval) require a specialized language, called a

data manipulation language (DML) or query language, in which query commands are

expressed.

Example 6: a query in PAL given in Example 4

55

Host languages . Often, the manipulation of the database is done by an application

program, written in advance to perform a certain task. It is usually necessary for this

application program to do more than to manipulate the database. It must do some

computations. Thus the programs that manipulate the database are commonly written in a

host language, which is a conventional programming language such as C, COBOL,

FORTRAN and so forth. It is understood then that there exist interfaces in most DBMS to

convert data formats between the host language and the Application Language. The

application program perceives data in a certain scheme that may vary with the DBMS,

according to the interfacing used. Figure 9 gives a general idea of the data communication

between the application program and the DBMS. The integration of the DML and the host

language is of special interest to the user because it offers a ready interfacing between the

two languages. The user doesn't have the task of designing an interface between the two

languages. It allows the user to benefit from the facilities offered by both the DBMS and the

Host language. In general, the DBMSs offer fast accessibility to files and data, while the

host language offers more power in terms of computations.

Database system architecture (see Figure 10).The database system architecture is made

up of different components and languages. The components include a Physical database, a

File Manager, a Query Language Processor, a DDL compiler, Database Description Tables,

Authorization Tables and Concurrent Access Tables. The database manager translates the

commands given into operations on files, which are handled by the file manager. The next

section recalls some terminology about data models for databases. A reader interested in

more details is invited to consult the references [31] or [33] or any equivalent.

Local Data

Application
program

I
I

Cau~es
I
I

:.:1 ____ /

Database
Procedure calls

Fi~re 9. Communication between the DBMS and the application program.

Authorization
Tables

Application Program

' Query
Language

Database

___ /I Manager I
Concurrent
Access Tables

File
Manager

Physical
Database

Database Scheme

' DDL
Compiler

Database
Description
Tables

Figure 10. General structure of a database system.

56

57

IV.3 DATA MODELS FOR DATABASE SYSTEMS

A data model is a mathematical formalism with two components: an annotation for

describing data and a set of operations used to manipulate data. The models for databases

are: the entity-relationship, the relational model, the hierarchical model, the object model,

and the network model [33].

IV.3.1 Specifications on Data Models

The entity-relationship model has the purpose to allow the description of the

conceptual scheme of an enterprise to be written down without attention to the efficiency or

database design, which are expected in most other models. In this model, the entity

designates a thing that exists and is distinguishable. A group of "similar" entities forms an

entity set. Entity sets have properties, called attributes, which associate with each entity in

the set a value from a domain of values for that attribute. Each record in a table can be

uniquely identified by the value of a given subset of its attributes. This is called a Key. For

example, keys can be used to sort, update or search in tables. Keys in relations can be

primary keys or borrowed keys. A borrowed key or foreign key for a relation, is a key

which participates in another relation. An Example of illustration is given below.

Example 7:

BUILDINGS_TABLE

BNAME* I MNAME I ~RS I PBLC ACCFAC

FLOORS_ TABLE

FNAME* I BNAME* I FABOVE I ELVI'

58

Consider the table BUILDINGS_ T ABLE(refer to Chapter VI). The attribute [BNAME]

is the primary key of that relation. Similarly the primary key of the table FLOOS_ TABLE is

composite ([FNAME],[BNAME]). In this primary key, the key [BNAME] is a foreign key

because it participates in the primary key of another relation which in this case is

represented by the table BUILDINGS_TABLE.

• The network model is the entity-relationship model with all relations restricted to

binary, many-one relations.

•The hierarchical model is a network that is a forest, i.e, a collection of binary trees in

which all links point in the direction from child to parent.

• The object -oriented model supports object identity. complex objects, and ~

hierarchy.

• The relational model supports two kinds of notations for expressing operations on

relations. The algebraic notation, called relational algebra. and the logical notation, called

relational calculus (331. They have limitations. First, in general, they cannot express the

operation that takes binary relation and produces transitive closure of that relation. For

example, a linked list cannot be stored explicitly in a table as a list. The technique that is

often used is to represent it as a collection of nodes. Each node is made of an element and a

pointer to its successor and/or its predecessor.

IV.3.2 Definitions

Definition (I) (Some operations in a relational model.) The relational model has a set

of operands and operators for the relational algebra. The operands are either constant

relations or variables denoting relations of fixed arity. There are five basic operations that

serve to define relational algebra:

*Union: The union of relations Rand S, Ru S, is the set of tuples that are in R or Sor

both.

59

* Set difference: The difference of relations R and S, R-S is the set of tuples in R but not in

S.

* The Cartesian product of R and S is the set of all possible (kl + k2) tuples whose first

kt components form a tuple in Rand whose last k2 components form a tuple in S.

* Projection: The projection retrieves given fields from a table. It basically projects given

value(s) of a field into a table. The result is a table whose graph is included in the main

relation.

* Selection selects from a table records that match a certain criterion.

*Some additional operations such as join, Natural join, quotient, Semijoin f291.

Definitions (2J <relation, tuple, primary key, domain, atomic value, non-key attribute)

- a relation is represented in the conceptual view by a table.

- a tuple corresponds to a row (record) of such a table and an attribute to a

column(field) of a table.

- a primacy key is a unique identifier for the table, i.e, an attribute or combination of

attributes with the property that any two rows of the table cannot contain the same

value for that attribute (column).

- a domain is a pool of values from which one or more attributes take their values.

- an atomic value is a value that is not decomposable so far as the model is

considered. A domain is a set of such values.

- A non-key attribute of a relation R is an attribute that doesn't participate in the

primary key of R.

Definitions (3) (functional dependency of attributes.) Given a relation R, and attributes

X and YofR:

- attribute Y is functionally dependent on attribute X noted R.X ~ R.Y if and only if

each X-value in R has associated with it precisely one Y-value in R. Attributes X and

Y may be composite.

- attribute Y is fully dependent on attribute X if it is functionally dependent on X and

not functionally dependent on any proper subset of X (.i.e. there exists no proper

subset Z of attribute constituting X, such that Y is functionally dependent on Z).

N.4 RELATIONAL DATABASES

60

The relational database is a database in which the data model is relational. The

characteristics of a relational data model have been defined above. Although not the data

model used in the first database management system, the relational model, has grown

slowly in importance since its exposition by E. Codd in 1970, to the point where it is

generally the model of choice for the implementation of new databases. The most important

reason for its popularity is that its supports powerful, yet simple and declarative languages

with which operations on data are expressed. The relational model is value-oriented. A

relation is a subset of the Cartesian product of sets specified by the list of domains. A

domain is a set of values. The members of the relation are called tuples. Each relation is

identified by its table and a given primary key that is used for such data manipulations as

record identification. sorting, updating, etc. There are some interesting structures of

relations that make them easy to use in queries, especially to avoid some problems such as

redundancy of information in the database, loss of information etc. This is achieved by

Normalization of relations.

N .4.1 Normalization of Relations

Given a set of data to be represented in a database, there is a question of how to break

these data into relations and what attributes should be chosen for these relations in order to

optimize and add more efficiency to the query process and other manipulations on data.

This is the problem of logical design of the database. The process of normalization of

relations takes into account the concepts of domains, keys and functional dependency of

attributes in the decomposition.

IV.4.2 Normal Forms

There are five categories of normal forms in relational database theory. The normal

forms are defined as follows:

61

(1) A relation is said to be in first normal form (lNF) if and only if it satisfies the constraint

that it contains atomic values only. Every normalized relation is in lNF

(see Figure 11).

(2) A relation is in second normal form (2NF) if and only if it is in lNF and every non-key

attribute is fully dependent of the primary key.

(3) A relation R is in third normal form (3NF) if and only if the non-key attributes of R

(if any) are mutually independent and fully dependent on the primary key of R.

In other words, a relation is in 3NF if and only if it is in 2NF, and every non-key

attribute is non-transitively dependent on the primary key.

There are also other forms 4NF, 5NF, BCNF (Boyce-Codd normal form) that are

seldom used. The 3NF is satisfactory for usual applications of relational databases.

Normalization of relations is very important for the designer of the logical database. If

primary relations are not broken into well-normalized relations, there may be problems of

redundancy of information and loss of information. Loss of information will occur when

there is a need to reconstruct a parent relation from its children relations.

The hierarchy of normalization of relations is summarized in Figure 11. The

abbreviations used in Figure 11 are explained bellow.

Abbreviations:

lNF: first normal form.

2NF: second normal form

3NF: third normal form

4NF: fourth normal form

BCNF: Boyce-Codd normal form

PJ/NF(5NF): fifth normal form

62

Universe of relations (normalized and unormalized)

lNF relations (normalized relations)

2NF relations

3NF relations
BCNF relations

4NF relations

(PJ/NF (5NF) relations

Figure 11. Diagram of the Hierarchy of Normalization.

IV.5 KNOWLEDGE BASES

IV.5.1 Basic Definitions

A knowledge base management system (KBMS) is a system that provides what a

DBMS provides (support for efficient access, transaction management, etc.). It is also a

system that provides a single, declarative language, to serve the roles played by both the

data manipulation language and the host language in the DBMS. Conversely, a knowledge

system is a system that supports only a declarative language, i.e, is a programming system

with a declarative language. For example PROLOG [32, 39] has been, and still is the best

known knowledge system. A system such as PROLOG handles knowledge through its

basic entities which are rules and facts.

• A facr is an atomic proposition. Basic facts of a knowledge base are always true (see

Example 8).

• A !l!k. is a logical statement. In this sense it can be understood as a complex logical

proposition. In PROLOG, statements are composed of "atomic formulas." "Atomic

63

formulas" consist of predicates. As such, it can take arguments or not. The arguments

called atoms are composed of constants, variables, and function symbols. Predicate

symbols are boolean-valued functions, i.e, they return ~ or false as result. A rule is

served by applying it as a &Qfil.

• A gQfil is the expression of what the user wants (see Example 8).

Although PROLOO is much more declarative than procedural (such as C and Pascal for

example), some kinds of simple computations such as basic operations(+,*J,-) can be

embedded into rules.

•Some conventions in PROLOG: constants begin with a lower-case letter. Variables must

begin with capital letters. Logical statements, called rules, will usually be written as Horn

clauses. These particular clauses are statements of the form,

"if Al and A2 and ... An are true, then Bis true".

The above statement can be written in PROLOO as:

B:-A1&A2&A3 &An

The symbol ":-" stands for IF. The symbol "&" stands for AND and can be also

represented by"," in some versions of PROWG. The symbol ";"represents the logical

OR. In the PROLOG syntax a rule is terminated by a period.

Example 8: a basic fact and a simple rule in PROLOG

PROGRAM

DATABASE

building(symbol,sym bol,integer ,sym bol,sym bol)

floor(symbol,symbol,symbol,symbol)

PREDICATES

Floors_of_same_build(symbol,symbol)

CLAUSES

Floors_of_same_build(F1 ,F2,B):-

floor(Fl ,B,Fabove 1,Elvt 1), floor(F2,B,Fabove2,Elvt2).

floor("basement", "peat", "firstfloor", "y ").

floor("firstfloor", "peat", "firstfloor", "y").

building(" peat", "psu" ,2, "y", "y").

a basic fact

floor("basement", "peat", "first floor", "y").

64

This basic fact is like a record in the knowledge base. It keeps information on a floor

named "basement" of a building "peat". The remainder of the information is that the floor

above this floor is named "first floor" and there is an elevator connecting the two floors

(refer to Chapter 3: map data structure).

a rule

Floors_ of_same _build(F 1.F2,B)

The basic facts in this rule are floor(F J ,BJ ,Fabove} ,Elvt}) and

floor(F2,B2,Fabove2,Elvt2,). This rule means that two floors Fl and F2 are in the same

building named B expressed as Floors_of_same_build(FJ,F2,B), ifthere exist facts

floor(FJ,B,Fabove],Elvt]) andfloor(F2,B,Fabove2,Elvt2). In the above rule, the basic

facts floor(F J ,B,Fabove] ,Elvt]) andfloor(F2 ,B,Fabove2,Elvt2) could have been

expressed asfloor(F J ,B,_,_) andfloor(F2,B,_,_). The "_"are put in the place of variables

in rule when the outcome of the result for this rule is independent of the value assigned to

those variables. This concept is similar to a "projection" in a relational database relation. A

"projection" will select some fields among the set of fields representing the attributes of a

relation, namely those with values matching a certain criterion (see Example 9). In fact the

above rule can be rephrased as" two floors Ft and F2 will be qualified as belonging to the

same building B, if there exist two facts floor(FJ,B,FaboveJ,ElvtJ) and

floor(F2,B,Fabove2,Elvt2) in the knowledge base".

65

a goal

Floors_of_same_building("basement" ,F, "peat").

The goal to satisfy in the query can be rephrased as" find the names of all the other

floors of the building "peat ". The satisfaction of the goal, i.e, the answer to this query will

be False if no other floors are found in the knowledge base. The answer will be:

F = "first floor"

True

Example 9: : a projection in SQL

SELECT [FNAME]

FROM floors_table

WHERE [BNAME] ="peat".

This SQL-like statement will create a view on the table floors table consisting of a

unique attribute [FNAME]. Practically this statement retrieves from the database, the names

of all the floors of the building "peat".

Backtracking is used in PROLOG to find all possible solutions to satisfy a goal. All the

possible solutions are tried unless a cut of backtracking is intended. From a starting point,

the search will be carried on until it fails or a solution is found. Then the search for a new

solution is carried out from the starting point. Backtracking is one of the most powerful

and interesting features of PROLOG, as well as its built-in database structure.

The major difference between SQL-like query languages and a knowledge language

such as PROLOO is that the query languages lack the ability to compute transitive closures.

A transitive closure of a binary relation r is the smallest relations that includes rand is

transitive, i.e, s (X,Y) ands (Y,Z) imply s (X,Z) (see Example 10.a). A transitive closure

is used to apply the transitivity of a relation to three variables. PROLOG computes

transition closure by unification. However, the user must signify the transitive closure to

PROLOG by an appropriate choice of variables in the request(see Example 10.b). We will

66

now examine the rule support in PROLOG and the inference engine approach used in

knowledge systems.

Example JO: a transition closure

Consider the binary relation R defined between floors of the same building by:

R(Fl,F2) <=> 3 a building B such that (Fl is a floor of B) " (F2 is a floor of B).

A trivial transition closure can be defined in this simple binary relation by:

R(X,Y) "R(Y,Z) ~R(X,Z)

Consider the relation R above and using the rule defined in Example 8. PROLOG is

told of the transitive closure "of the same building" in this rule by repeating the same

variable B in the two facts floor().

Floors_of_same_build(Fl ,F2,fil:-floor(F1,B,Fabove1,Elvt 1),

floor(F2,B,Fabove2,Elv12).

IV.5.2 Rule Support in PROLOG

Many applications, e.g., expert systems, maintain a knowledge base, i.e, a large,

almost static set of rules which is used by the inference mechanism defined by the user to

satisfy a given goal. In PROLOG-like systems the proofs are executed as rule-directed

depth first search through a solution space, and are terminated when either no solution is

found, or the data is found to satisfy the main goals and their sub-goals in the search tree.

This process is sequential and often requires backtracking in order to satisfy a sub-goal

having a new candidate solution.

• Classification of PROLOG rules. A fundamental unit for a PRO LOG program is the

literal. In Example 11, X, Y, M, N, Jacob and Joseph are literals within the rule father.

Example 11:

father(Jacob, Joseph), r(X,Y), M>N.

The literal's predicate name corresponds to a procedure in a conventional programming

language. A PROLOG program consists of sequence of of clauses. Clauses are logical

67

statements. A clause is made up of a head which represents the left hand side of the clause

and a body representing the right hand side of the clause (see Example 12). The head

usually is a single literal or is empty. The body consists of zero or more literals. Goals or

procedure calls are the body literals.

The body consists of a sequence of zero or more literals. The body literals are called

goals or procedure calls. A procedure p W1s_ procedure q if a rule for p contains a goal

whose predicate name is q Procedure p references procedure q if either p calls q or p calls

some procedure hand h references q.

A clause with an empty head is a~· A query is a statement of the form: :- pJ, ... ,

Pk· The goals in the body of a clause are linked by the operator ',' which can be interpreted

as a conjunction. A clause with an empty bcxly is called a unit clause or a fact.

A PROLOG rule is a non-unit clause. A PROLOG procedure is a collection of

PROLOG rules all having the same predicate name in their head. Only simple variables are

allowed in the head of a procedure, not functions. A variable appearing only once in a rule

can be written as an anonymous variable denoted by the underline character "_". It means

that the value of that variable really doesn't affect the rule. A literal containing no variables

is called a ground literal. A clause containing no variables is called a ground clause. A base

fact is a ground unit clause (an assertion or a tuple in the relational database sense), A

collection of base facts having the same head predicate is called a base relation. Unit clauses

containing variables can be taken as rules by extension.

Example 12 : rule, procedure, ground clause, basic fact, head, body of a clause

PROGRAM

DOMAINS

PREDICA1ES

q(real,symbol)

CLAUSES

68

q(X,Y):- X<4, write(X),write(" ",Y).

q(X,Y):- write(Y," has less than"), write(X), write("money").

The clause q(X, Y) is a procedure because it has more than one instance. The head of

the first instance of q is q(X,Y):-, the body is " X<4, write(X),write(" ",Y)."

Additionally, q is a procedure.

•Limiting backtracking. Two operators are used to limit backtracking in PROLOG: the

cut operator denoted ! and the braces operator denoted { } . The interpretation of the braces

operator is the following. The left brace { always succeeds when the right bracket '}' is

reached during backtracking, the backtracking continues at the goal immediately to the left

of the left bracket'{'. The braces operator may be nested (see Example 13). In order to tell

PROLOG to explicitly list all the solutions of a goal, a strategy can be done by using the

fail operator. The fail operator forces backtracking.

The cut operator is used to limit backtracking. Consider the following clause:

Find_an_elevator(Elvt,F,B):- object(Elvt,_,F,B,3,_,_,_,_,_,_),!.

This means that as soon as one elevator is found the process is cut. There is no more need

to find other solutions. If this goal is run, there will be no or only one solution

Another tool used to limit backtracking is the braces operator

Example 13:

Consider the rule q:- {x,{y},z},w,{t,u},v.

This rule is equivalent to:

q:- ql,w,q2,v.

ql:- x,q3,z,!

q2:- t,u,!.

q3:- y,!.

69

The fail operator is used to control backtracking usually when there is a need to list

exhaustively all the solutions satisfying a particular condition. Consider the program in

Example 14.

Example 14:

PROGRAM

DOMAINS

name = symbol

age = integer

PREDICATES

father(name,name)

everybody

parents_of(name,name,name)

aged(name,age)

is_sixty(name,age)

Young_father(name)

is_older_than(name,name)

have_same_age(name,name)

CLAUSES

father(leonard,catherine).

father(Malhusalemjason).

mother(eva,catherine).

father(carl,marilyn).

aged(Malhusalem,60).

aged(catherine,6).

everybody:-

father(X, Y), write(X, "is", Y, "'s father\n "),fail.

parents_of(X,Y,Z):- father(Y,X),mother(Z,X).

is_sixty(X,N):- aged(X,N),N = 60,!.

Young_father(X):- father(X,Z), aged(X,N},N < 20.

repeat.

repeat:- repeat.

is_older_than(X,Y):- aged(X,Nl),aged(Y,N2}, Nl> N2.

have_same_age(X,Y):- aged(X,Nl),aged(Y,N2}, Nl = N2.

70

If father(X, Y) is ran as an external goal (i.e, run from the window prompt) Turbo

Prolog will list all the possible solutions in the way:

X = Y=

X = Y=

... . solutions

If father(X, Y) is run as an internal goal, i.e, a clause inside a program, Turbo Pro log

will continue with the next sub-goal once it has been satisfied, and will display only one

solution. However, the predicate "everybody" uses the fail predicate to disturb the usual

mechanism. Fail can never be satisfied, so Turbo prolog is forced to backtrack.

•Clause and basic fact. In the program above (see Example 14), "everybody" is a

clause, "father(leonard,catherine)" is a basic fact. The clause "fail" is a ground literal and

the clause "everybody" is a ground clause.

•A base relation. The following set of base facts about father()(see Example 14)

constitute a base relation.

father(leonard,catherine).

father(carl,jason).

father(carl,marilyn).

A base relation is the equivalent of a table(of tuples) of a relation in a relational database.

71

IV.5.3 Some Definitions

Definition (] > . A rule base is a set of rules. A rule is understood in this context as an

"if-then" statement . Rule bases are for example used in expert systems. A good rule base

in an expert system must be complete, i.e, enable the determination of the output

parameters from the given data in all the cases. A rule base has a number of rules, external

parameters, and internal parameters.

Definition f2>. Goals that are not unified (in PROLOG sense) are called immediate

goals, e.g negation('not'), 'fail', x e c, x e y where x, y are variables and c is a

constant and 0 is a comparison operator.

Example 15:

X<=4 and X = Y. are immediate goals.

Definition f3) . A goal in a body of a rule is semi-elementary in exactly one of the

following cases:

(1) The goal's predicate is the name of a base relation.

(2) It is of the form X= C, where X is a variable and C is a constant.

(3) It is of the form X= Y, where X or Y appear in a semi-elementary goal written prior to

this one.

(4) It is of the form X 0 C, where X appears in a semi elementary goal written prior to

this one and e is a comparison operator.

(5) It is of the form X 0 Y, where both X and Y appear in semi-elementary goals written

prior to this one, and 0 is a comparison operator.

(6) All rules whose head predicate is the same as the goal's predicate are semi-elementary.

Example 16 (refer to Example 141

Consider the rule parents_of(X,Y,Z). The goalfather(Y,Z) in the body of this rule is a

72

semi-elementary goal(case (1)), so are the goals N= 60(case (2)). The goal repeat in the

body of the recursive procedure repeat is also a semi-elementary goal(case (6)). The goals

Ni> N2 (case (5)), N<20 (case(4)) and Nl= N2 (case (3)) are also semi-elementary.

De,finition (41. A rule is semi-elementary when it satisfies all the following

requirements:

(1) every head variable of the rule appears in a semi-elementary goal in the body of the rule.

(2) Each of its goals is either semi elementary or is a negative goal of the form 'not(p(...))'

where p matches a semi-elementary procedure.

(3) Every head variable appearing within a negative goal must appear previously in a semi

elementary goal.

Example 17 <refer to Example 14)

The rule is _sixty(X,N) is a semi-elementary rule according to case (1) of the definition.

De,finition <5). An immediate goal is a loose constraint in one of the following cases:

(1) It is an inequality which involves a variable not appearing in any elementary goal of the

rule written prior to this inequality.

(2) It is the PROLOG axiom 'fail'

(3) It is the predicate {}

(4) It is a negative goal which involves head variables not appearing in any semi-elementary

goal of the rule written prior to the negation.

(5) It is of the form 'not(p(..))' where pis not a semi-elementary procedure.

Example 18

Consider the following rule:

Interchange_Copies((Pl,P2,Day):- student(Pl),student(P2),

class_mates(Pl,P2),Day < 15.

This rule may be interpreted as " the classmates Pl and P2 will interchange copies on day

Day if the day is before the 15th."

73

In this rule, the immediate goal Day<l5 is a loose constraint in the sense of definition

(1). For example, this rule can be used o avoid compiler warnings or run time warnings

that the variable Day is only used once in the clause. In fact, for some versions of Prolog,

if a variable appears only once in a clause, there is either a compiler warning or a run time

warning/error.

Definition (6). A rule is serviceable if after syntactically erasing it all 11
{

11 and 11
}

11

symbols and then discarding from it all cuts and loose constraints, the result is a semi

elementary rule. A procedure is serviceable if all its rules are serviceable.

Example 19 (refer to Example 14)

The rule is _si.xty(X,N) is a serviceable rule.

Inference Engine methodology. Stengel [40] gives a definition of the inference engine

as follows. The inference engine is a program that applies rules from the rule base to the

knowledge in the database to infer new knowledge. A typical knowledge base is made of

basic facts and deducted facts. Some rules can be defined between basic facts to derive new

knowledge. Given the name of a parameter, the inference engine should be able to search

the rule base for a list of rules that have this parameter as a variable. The rules are selected

in such a way that when applied in a sequence, they infer a new knowledge, until the last

rule provides a value for the desired parameter.

For the management of a rule base, a search method can be implemented using either

forward-chaining or backward-chaining. The backward-chaining is used by the rule base

for searching. It examines only those rules that effectively have a chance of giving a result.

The forward-chaining tests all the rules in arbitrary order, until either no more rules exist or

the value of the desired parameter has been found. The backward-chaining process starts

with the desired parameter, and searches backwards to determine if all the rules necessary

to produce the solution are satisfied with the chosen value of the parameter. The inference

74

engine is used in systems that use both knowledge bases. Such systems are, for example,

expert systems.

IV.7 REPRESENTATION OF DATA IN MOBILE ROBOTS

Data representation in robotics has been generally not regarded as an issue until

recently. Usually, conventional data structures are used for small applications. In large

systems such as flexible manufacturing cells or automated plants, there is a need for a

centralized database to keep all the information on the system (tools, machines, fabrication

parameters, and system parameters)[22] and have the ready information that can be

distributed to many posts in the infrastructure. In tools such as CAD systems, there is a

need to have a centralized database to keep the models and the functions, as well as the

interfaces to the whole system. Knowledge base and rule bases can also be included in

such systems. Databases, knowledge bases and rule bases find an area of application in

expert systems. Databases, and especially the distributed databases, are used extensively in

business applications such as financial records and airline reservations.

For autonomous mobile robots systems equipped with vision sensing, vision (image

processing) is the part of the system that usually deals with a large amount of data.

However, there is a need of data structures or a small database to keep knowledge of the

environment (map, behavior, description of the components of the environment etc.). In

the literature, we have noticed that most autonomous mobile robots don't use an explicit

database. In some systems, however, small relational databases are used to keep

information on the model of the world [6, 41] or to store certain functions of the system

[27]. Some systems use knowledge base [40].

R.C. Arkin [26] in his model AuRA, uses a database to store landmark templates and

models, and another database to store motor schemas. R.C. Arkin defines motor schemas

as a set of concurrent processes that operate in conjunction with associated perceptual

75

schemas and contribute independently to the overall concerted action of the autonomous

vehicle. The motor schemas serve as the basic unit of behavior specification for the

navigation of a mobile robot. A schema in this context can be defined as a pattern of action,

or as a pattern of behavior for action.

Madarasz [4] in his model of autonomous wheelchair, uses a three-dimensional indexed

array to represent the three levels of the map hierarchy (floor number is the first dimension,

the second dimension is wall number, and the third one is the room number). Habib and

Yuta [6] use a hierarchical data structure to represent their world model (static map with

three levels of hierarchy). W. C. Collier [41] in his model of In-vehicle Route Guidance

System (RGS) uses a database to store the information on the map. No mention is made of

the type of the map database. However, it may be assumed that this database is a relational

database.

The PSUBOT wheelchair system incorporates an "intelligent" database. This database

has two components: a relational database to store the static world model, and the

knowledge base representing the same information, but saved under the form of basic

facts. The database stores also the images of landmark locations of the building under the

form of files. Those files are indexed in the database. In fact, they are associated to the

names of the landmark locations that they represent. When compared to other approaches,

the PSUBOT database is more like a small expert system because it combines static data

and dynamic knowledge base. However, the PSUBOT database doesn't follow a given

canonical structure proper to an expert system. The structure of the PSUBOT database

system will be proposed in Chapter VI.

CHAPTERV

PATH PLANNING FOR MOBILE ROBOTS

V.1 GENERAL CONSIDERATIONS

Autonomous mobile robots are intended to self navigate in a given environment that is

known or unknown. To be able to navigate autonomously, just like the human-being with

knowledge, the autonomous robot must possess some mechanisms that allow it to find a

route between its present location and a desired destination. Along with finding a global

path, the robot must navigate locally by avoiding obstacles on its way and plan some kind

of strategy to move step-by-step from source to destination. The task of path planning for

the autonomous robot is to find a global path and a local path. By a local path we mean a

segment of the global path free of obstacles. A segment of global path is determined by the

Navigator (the Navigator is the module which controls the navigation of the wheelchair).

For example, it can correspond to a straight line portion of the path where the robot doesn't

have to turn, or a corridor between two hallway intersections.

To cover the whole route, the wheelchair moves segment by segment. In this work, the

tasks of local and global path planning are separated, although both are supervised by the

Navigator. The Navigator, through the Pilot, is directly responsible for local path planning.

Local path planning consists of guiding the wheelchair on the corridor or inside the room

and avoiding obstacles. The database is responsible for global path planning. Global path

planning consists of computing the global path. This path is the shortest and optimum path

from a source point to a destination point. The global path is a list of locations (points)

from source to destination point, in the order they appear physically on the floor map. The

77

Navigator sends a signal to the database to compute a global path. The optimum global path

is computed and sent back to the Navigator, which then carries on with local path planning.

Some issues are yet to be met in the task of planning the path for the mobile robot.

These issues are more concerned with sensor perception. Sensor perception of the world

around is crucial for the robot, in order to move around safely, both for itself and other

users of the environment. The robot has to know where it is, so that it will determine if the

destination has been reached, to know if there is an immediate obstacle to avoid, and so

forth. Sensory perception is indispensable for the autonomous robot to complete its path.

The path planner will have to receive a continuous feedback from the sensors (vision and/or

range sensors) to drive the robot. Some inherent difficulties are obvious. All the difficulties

faced in sensor perception [24, 42] will be accumulated and path planning will be

influenced. In fact, if there is a high degree of sonar inaccuracy, for example, the local path

planner may have great difficulty in preventing the robot from bumping an immediate

obstacle on its way. Similarly, if vision or other sensors used for localization fail, the

planner will never know if the destination has been reached.

However, if we assume that sensors are doing their job well, a major question remains

to estimate how fast sensor data is processed and whether it is fast enough to meet the

expectation that the robot should navigate at a reasonable speed inside the building, such as

if driven by a conscious disabled person with a joy stick.

Sensors are the eye, the ear and the skin of the autonomous robot. Therefore, if the

information (perception of the world) that they provide, is not processed fast enough, the

planner will never drive the robot normally and collisions may happen anytime. Also, the

"useful" localization of the robot, i.e, that not created after the robot has already traversed

the target location, will become impossible. Path planning strategies differ according to the

world model and sensor perception used in the robot systems.

78
V.2 DIFFERENT APPROACHES TO PA TH PLANNING

Generally, the systems which use partially modelled world (an a priori map)[4, 6, 26],

implement two kinds of path planning: global path planning and local path planning. Global

path planning has the task to find a route from a starting point to a destination point in the

map. Local path planning is concerned with guiding the robot on its way by avoiding

obstacles and keeping it on the track. The choice of the optimum path in problems such as

this one may be dictated by certain cost criteria, such as the length of the path, the

obstacles on the path and so forth.

A floor setting in a building can be described as corridors (hallways) connecting

locations of that floor. The corridors intersect at some points. A description of the floor

map such as formulated in this project can be represented by a simple planar graph. The

graph is made simple by the assumption that between two consecutive rooms there exists

only one corridor.

As mentioned in the first paragraph of this chapter, path planning methods differ from

many perspectives. Systems that build a road map while navigating (built-map-based

systems)[l 1, 13, 43], combine all the path planning into local path planning. There is no

need to find a global path. However, the robot maintains a heading and an angular

orientation. The heading is the compass orientation of the robot (angle and cardinal

coordinate). The models of features to expect in the scene at the landmark locations, are

stored in the knowledge base of the robot.

In the first approach to the a priori map-based navigation, the global path planning is

justified to find an "optimum" path. For the second approach, there is almost no need for

global path because this method is not based on a vertex-graph description of the world.

In the approach of R.C. Arkin (26], the Navigator accepts a starting point and a

destination point. It searches for an optimum path using the A* algorithm. The input of the

A* algorithm consists of the start and goal nodes and the space of midpoints (A *-1) or

79

triads (A *-3) of connecting adjacent meadows free of obstacles. In other words, a meadow

map is a connectivity graph of free-space regions, i.e, meadows. The output is a coarse

path consisting of a series of piecewise linear segments connecting the start point, the edges

of bordering meadows and the goal point. The A* algorithm search has been implemented

using a cost function based on terrain factors and traversability. The cost function is the

sum of two components. One component is the measured cost of the path up to the current

point and the other component is the evaluation (prediction) of the cost from the current

point to the goal point. It takes into account a heuristic function. The path found is then

passed to a path improvement module, which takes the terrain type into consideration.

In the model tested on the Stanford Cart and the CMU Rover, Crowley [20] finds a

global path from a source point to a goal point. The path is a collision-free path without

obstacles. A shortest path is computed using the Djikstra's algorithm. Rotations are taken

into account in the computation. The rotations are the movements of the wheelchair round

its vertical axis. In those situations, the wheelchair turns almost at the same place without

covering any distance on its path. However, since the wheels turn, distance is recorded.

Habib and Yuta [6] in their model of Yamabico.M-12 distinguish two case§ of path

planning: the in-room path planning and the corridor and building path planning. The in

room path planning is solved as a free space problem. They use PRA's (prime rectangular)

methods to find a path through the room. A PRA is a rectangular area in the room, such

that the optimum path between any two points in the PRA is included within the same

PRA. So they search for the optimum path in terms of PRA sequence and specify the

optimum path in each PRA. The corridor path planning is a planar graph problem of

finding an optimum path between two nodes of the graph. They use a graph-model of the

world. The building path planning is concerned with finding an optimum path made up of

bridge(s) to go from one building to another in a campus environment. The output of global

80

path planning is a route map with information provided for each bloc included in the path.

Local path planning is used to guide the robot on its route.

The route runner has the task of performing local path planning, i.e, to guide the robot

on its local path. In this sense, the route runner plays the role of a pilot for the device. The

main functions of this module are to control the wheels, to go straight, to turn and to use

sensor perception (vision, sonar) of the environment to make navigational decisions.

Madarasz [4] in his model, uses global path planning to find the shortest path between

two nodes in the map graph. In this model, path planning includes navigation between

points of different floors. The output of global path planning is a sequence of commands to

the motors of the wheelchair such as move, rotate etc. The commands are executed

sequentially.

Closely examined, the problem of localization (scene recognition) seems to have

common ground with the local path planning problem. The robot must sense its

environment and recognize some features in the scene so that it can avoid obstacles, locate

itself on the road, and locate itself globally as well (estimate its current location). These are

important questions that directly touch the localization problem.

The PSUBOT wheelchair model uses global and local path planning. In this model, the

Pilot [3] is responsible for local path planning, whereas the database is responsible for

global path planning. The Navigator asks the database to locate the robot (find the current

location), and issues a goal location. The database finds a global path in the vertex-graph

representing the map (as a collection of corridors). The optimum path is computed with the

cost criteria: length, traffic-frequency and obstacle-density. The optimum path is provided

to the Navigator as a sequence of locations on the path from source to destination. The Pilot

takes the task of guiding the robot on its road. The Pilot is basically responsible for road

following, obstacle avoidance and orientation of the wheels. The Navigator receives sensor

perception of the world through the database. The database combines sonar data and vision

81

data to estimate the location of the robot and to recognize some items on the scene. The

Navigator is also responsible for in-room path planning. The method used for in-room path

planning is similar to Habib's method [6]. The room is described as a list of forbidden

rectangles. Each forbidden rectangle represents an obstacle in the room. Knowing the

position of these rectangles, it is possible to find a path that uses the obstacle-free space.

One major disadvantage of this method is that it is not flexible enough to dynamically

update the information about the position of obstacles in the room. The disposition of

obstacles in a room vary constantly at the will of the room user. So it will require frequent

updating of obstacle information. The a priori knowledge will be simply a guide. The in

room navigation should be strongly assisted with sonar mapping [43]. New forbidden

rectangles may be built and the information in the database can be updated. Basically, as the

sonar scans the room, the database determines the forbidden areas quickly and the

navigator has just to position and guide the robot amidst the obstacles.

V.3 OPTIMUM PATII PROBLEM

Global path planning raises the problem of finding an optimum path between two

points. In the vertex-graph description approach, a floor can be described as a graph whose

edges are corridors and the nodes(vertices) are the intersection points of corridors.

V.3.1 Definitions and Notation

The graph is made of collections of edges and vertices. A vertex is a node of the graph,

whereas an edge is an arc connecting two vertices. The problem deals here with a directed

graph G= (N ,A) where n =/NI is the number of nodes (vertices) and m =/A/ is the number

of arcs (edges); A is the set of undirected arcs. Each arc has a specified length aij and costs

ctij attached to it. A cost may be the length of an arc if distance is concerned or other

measures, for example, the obstacle density. The arc's length may be positive or negative.

A length can represent any given measure. In a flow graph, for instance, a negative length

82
may represent a flow in a direction opposite to the conventional direction of flow. An

assumption is made that the graph is planar and contains no loon£. A loop is defined in this

formulation as an edge which has a single summit (the two summits are the same point). A

loop can also be extended to designate any "double" edge between two adjacent nodes and

such that the lengths of those edges are different

A path is defined as a" simple," "loop-free" directed simple path. The length of the

path is the sum of all the lengths of the arcs included in the path. The problem is to find the

shortest path between two nodes of the graph. The shortest path is understood as a path of

minimum "distance" from the starting point to the goal point. Finding the path between two

nodes is a particular case of the general problem of finding all the shortest paths from a

source node to all the other nodes of the network. For the PSUBOT wheelchair, we have

selected distance as a suitable cost criteria. In fact, in order to go from one location to

another, the wheelchair covers a physical distance. The shortest path between two nodes in

such a graph is traversed arc by arc, i.e, from node to node, by selecting the arcs with

minimum length. Finding the path between two nodes i and j requires the solution of

Bellman's equations.

Bellman's equations. Let be Uj the length of the shortest path from the origin (node 1)

to node j. Let be n the number of nodes and m the number of edges.

(l)uJ = 0 I* length of the shortest path from node 1 to node 1 *I

(2)uj =min { Ui + aij} j = 2, 3, ... n.

(ij) e A

There exists a directed tree from the origin node 1, such that the length of the unique

path from node 1 to node j in the graph is equal to Uj if any such path exists. Such tree is

called the shortest path tree. The problem is to solve the Bellman's equations((!) and (2))

and to construct the shortest path. Many algorithms exist in literature, of which one of the

83

most common is the Djikstra's algorithm [44]. Some shortest path algorithms are

improvements to the Djikstra's algorithm.

V.3.2 The Djikstra's Algorithm

With the notations and assumptions of section V.3.1, the Djikstra's shortest path

algorithm can be formulated as follows:

Step 0. Set u1 = 0

Set Uj = alj if node (1,j) eA

= + oo, otherwise

Set S = {2,3, n} /* set of nodes not yet visited*/

Step 1. Find k e S, where Uk = min j e s { uj} /* take the node of the smallest distance to

source*/

If uk = + oo, stop; /* there are no paths to the nodes remaining in S *I

Set S = S -{ k} /* node k has been visited *I

If S = 0, stop; /*the computation is completed*/

Step 2. Set Uj =min { uj. Uk+ aki}, for all {k,j} e A./* update the distances to source*/

Go to Step 1.

Step 2 calls for O(m) additions and comparisons overall. Step 1 calls for O(n2)

comparisons overall if the values of uj are maintained in a simple array. So the overall time

is 0(n2). (n ~ m). The time could be decreased by maintaining the Uj in a priority queue.

Establishing the queue will cost O(n) time and Step 1 will cost O(n) time. Step 2 will

require O(log(n)) without the use of priority queues and O(mlog(n)) with the use of

priority queues. Therefore, the algorithm can be implemented in O(mlog(n)) or in

O(nl.og(n)) time in a network(graph) with nonnegative arcs.

84
V.4 GLOBAL PA TH PLANNING FOR PSUBOT

The problem to solve in this research is to find the shortest non cyclic path from the

current location of the PSUBOT wheelchair to the location specified by the user. The map

of the world in which the wheelchair is supposed to travel has been formulated in this

project as hierarchical map (see Figure 2 of Chapter Ill). In this description, a floor is

described as a collection of intersecting corridors. Along each corridor there are items

representing room doors, access and exit doors, stairs and special landmark locations. We

have formulated the solution of the global path planning in such a way to benefit from the

hierarchical description of the map. One basic assumption has been made that between two

locations there is only one direct arc, i.e, one corridor connecting them. This assumption

yields a simple graph without bilateral arcs. Talcing into account this consideration and the

usual situation in buildings, we have assumed that the shortest and optimum path between

two points on the same corridor belongs to the same corridor. The global path planning has

been formulated as a hierarchical problem (see Figure 12). Two main cases are

distinguished depending on whether the starting point and the destination points belong to

the same building or to different buildings. Additionally, in the same building, a question is

to know whether the starting and goal points belong to the same floor or to different floors

in the building. Furthermore, it is necessary to know if, on the same floor, the two points

belong to the same corridor or to different corridors. In the same corridor the task is to use

deductive methods and inference to find the ordered list of locations and observation points

between the starting and destination points. When the two points are located on different

corridors of the same floor, an optimum path algorithm will be called to compute the global

path. Following the hierarchical approach, the global path between two points will be the

union of portions of paths (see Figure 13).

85

(Path between buildings B 1 and B2)

S e Fl,D e F2 (Path in builJng B 1)

De C

(Path between floors Fl and F2) I
I (Path on the bridge betweei B 1 and B2)

(Path on door Fl) I
(Path on l F2) (Path in bm1ding B2) De C2

Path on Path between corridors
corridor C Cl and C2

Figure 12. Hierarchical approach to global path planning.

Exarnole 1:

In this example (see Figure 13), the problem to solve is to find an optimum path

between S and D. Point S is located on corridor Cl of floor Fl and Dis located on corridor

C5 of floor F2 in the same building. The path will be computed from S to ELVl (elevator

point of floor Fl) on the same corridor and from ELV2 (elevator point of floor F2) to point

D. One portion of the total path is S-ELVl and the other one is ELV2-D. The first part of

the path is retrieved using the backtracking method to list all the locations between S and

ELVl. This gives a portion of path S-01-ELVl. The second part ELV2-D is computed as

follows. An optimum (the shortest) path is computed between the nodes E21 of corridor

C2 and E24 of corridor C5, giving a path E21-E22-E23-E24. Thereafter expert system

deductive and inference approach is used to exclude from the final path the portions that are

not physically included, giving a portion of path ELV2-A-E22-02-E23-03-D. We used this

method because graph algorithms compute the path between nodes of the graph. The

86
requirement for the PSUBOT is to find an actual route as the list of all the locations and

observation points between the starting and goal locations. In this example EL V 1 and

EL V2 are the access doors of the same elevator, but located on different floors.

Ell -
01

•
• s

Floor Fl

E23 a,; E24

E12 E21 ~ • ELVl

- • • •
ELV2 A

FloorF2

C4 : E22-E24 IE23E241 = 0.8m
C5 : E23-E24 IE23E241 = 0.2m

Fi~ure 13. Example of a problem showing the hierarchical approach
to global path planning.

The major contribution of this work is to combine the approach of using intelligence-

like deductive and inference approach to add flexibility to global path planning. The claim

that supports our statement is that powerful methods such as the A* methods give good

results, but an approach such as ours saves time. If we take a problem where the starting

and goal points are in the same corridor, a solution using the A* algorithm will compute the

path by checking possible solutions in the whole graph. Our method will not go further. It

will identify the category of the solution immediately and exclude other cases. In the

implementation of the global path algorithm, we have broken the problem into eight

categories of queries as follows.

87
V.4.1 Query Simplification

The request for computation of the global path between two points can be fonnulated

as:

path([Ll,Fl,Bl],[L2,F2,B2]).

L: location; F: floor ; B: building

The query grammar is composed of nine patterns of queries :

(Oi) basic primitive: [Ll,Fl,Bl]----[L2,F2,B2]

"Find path from location a L 1 on a floor Fl of a building B 1 to a location L2 on a

floor F2 in a building B2."

(li) (1) [Ll,Fl,xx]---[L2,F2,xx]; (2) [xx,xx,xx]---[L2,F2,xx]

Case(l): "Find path from a location Ll on a floor Fl to a location L2 on a

floor F2 in this building."

Case(2): "Find path from HERE to a location L2 of a floor F2 in this building."

(2i) (1) [Ll,xx,xx]---[L2,xx,xx]; (2) [xx,xx,xx]---[L2,xx,xx]

Case(l): "Find path from a location HERE (Ll) to a location L2 in this building."

Case(2): "Find path from HERE to a location L2 in this building."

(3i) [Ll,xx,xx]---[xx,F2,xx]

"Find a path from HERE (Ll) to floor F2 in this building.

(4i) (1) [Ll,Fl,xx]---[L2,xx,B2]; (2) [xx,xx,xx]---[L2,xx,B2]

Case(l): "Find path from a location Ll on a floor Fl to a location L2

in a building B2."

Case(2): "Find path from HERE to a location L2 in a building B2."

(Si) (1) [Ll,xx,Bl]---[L2,xx,B2]; (2) [Ll,xx,xx]---[L2,xx,B2]

Case(l): "Find path from a location Ll in a building Bl to a location L2 in a

building B2."

Case(2): "Find path from a location Ll in this building to a location L2 in a

building B2."

(6i) (1) [Ll,xx,B 1]---[xx,xx,B2]; (2) [xx,xx,xx]---[xx,xx,B2]

Case(l): "Find path from a location Ll in a building Bl to a building B2."

Case(2): "Find path from HERE to a building B2."

(7i) (1) [xx,xx,xx]---[xx,F2,B2]; (2) [xx,Fl,xx]---[xx,F2,B2]

Case(l): "Find path from HERE to floor F2 of the building B2."

88

Case(2): "Find path from floor Fl of this building to floor F2 of the building B2."

(8i) [xx,xx,xx]---[L,zz,zz]

"Find path from HERE to a location L on this map(building not indicated)."

Note: xx or zz means "not indicated." Each time the starting location of the path is not

indicated, the program will try to find it either by retrieving the name of the building from

the information on that starting point, or by LOCATING the current position.

que~2ry(3i) query(Si)

base query: query(Oi) path(Ll,Fl,Bl,L2,F2,B2)

Figure 14. Query simplification.

Each of the the categories of queries from (li) to (8i) can be simplified (see Figure 14)

into the basic category of query (Oi). Category of query (Oi) computes the path between two

points (Ll,Fl,Bl) and (L2,F2,B2) where the variables are clearly identified (building,

floor, location).

When the starting point and destination point of a portion of the path fall into the

category " path between corridors," an optimum path algorithm using a graph method,

such as the Djikstra's shortest path algorithm, is invoked. Particularly in this project, the

89
shortest path algorithm used is the Djikstra's algorithm. The problem in this case can be

formulated in the following way:

The corridor is an edge(arc) between two vertices (points of the floor graph). To each

corridor are attached supplementary cost functions: traffic frequency and obstacle

density. The effect of these measures will be included in the length cost of the corridor

as a correction factor(see equation (1) of section III.3.2). The problem is then that of a

simple undirected graph with its edges having nonnegative lengths. The problem is to

find a path of minimum value of the cost function. The cost function is the total length

of the path between the source and destination. A correction factor has been added to

the length of the corridor in order to take into account the obstacle density and the traffic

frequency (see equation (1) of section III.3.2).

V.4.2 Pseudocode of the Path Finder Algorithm

The problem of finding the path in the map structure proposed can be solved as a

hierarchical problem. The algorithm can be represented as a tree of cases. The leaves of the

tree represent the two cases: path on corridor and path between corridors (see Figure 12).

The path is found from nodes of the graph. It means that if the goal node is not on the

current floor, a search will be done in the knowledge base to identify the corridors where it

belongs and the problem will be reduced to the regular problem (see Figure 14). There are

fourteen different types of queries in the implementation of the global path planner for the

PSUBOT. Each of those queries can be reduced to the basic query where all the variables

of the query are known (see Figure 14). The starting and destination nodes may not belong

to the same graph. This situation can happen if the starting and goal points are located on

different floors of the same building, or in different buildings. In those cases, a search will

be made to identify the corridors they belong to, and the path will then be found between

the two corridors. The final path will be the union of the paths.

90

The Djikstra's algorithm computes an optimum path from one node to all the other

nodes of the graph. For this reason, in our implementation, the destination point will be

taken as the source point in the formulation of the Djikstra's algorithm. Paths will be then

computed from the destination point to all the other points of the graph.

(a) The MAIN program (declarative)

The pseudocode of the main program of the path finder is shown in APPENDIX B-2.

(b) DflKSTRA's ALGORITHM (procedural)

The pseudocode of the implementation of the Djikstra's algorithm is shown in

APPENDIX B-3.

V.4.3 Other Considerations

This consideration is with the Navigation mcx:le. When the starting point and the

destination point of the portion of path to execute belong to the same corridor, there is a

need to focus the attention of the sensory module (vision and sonar) to allow the wheelchair

to recognize its destination location. This is what was mentioned as a "bootstrap" mode

(23]. In this mode, images are taken at close distances in order to increase the chances to

recognize the target destination. At this level the speed of the robot should be reduced to

allow the processing to take place. When the robot is not travelling on the corridor

containing the target destination, the navigation is in "feed- forward" mode (23]. Images

are taken sparsely with the only purpose of recognizing the end of corridors, until the final

corridor of the route is reached. Then the robot enters in a bootstrap navigation mode.

91
V.5 IMPLEMENTATION OF GLOBAL PA TH PLANNING

The algorithm of the main program for the global path planner has been implemented in

Turbo Prolog to take advantage of the artificial intelligence capability of Prolog and the

declarativeness of the language as well as some features such as backtracking, which

otherwise would require complex programming in a procedural language such as C. On the

other hand, the Djikstra's algorithm has been implemented in Turbo C++ to take advantage

of the fast computation power that is offered in C. Turbo C or Turbo C++ are selected

because we want to integrate the whole database on a PC. Therefore, using Turbo Prolog

and Turbo C, both designed by the same company (Borland), provides a built-in interface

between the two languages. Turbo C (ANSI C) could have been used instead of Turbo

C++. These programs really don't use or need full use of the capabilities of C++ such as

classes etc .. The reason why we have used C++ is in anticipation that in the future the

whole system will be implemented in C++. The central control module of the system (the

Navigator or other) will manage the other modules as objects in the concept of object

oriented programming. In this section we only present the results of the testing. The

evaluation will be discussed in Chapter IX.

The choice of the Djikstra's algorithm over other well performing ones such as the A*

was dictated by :

- Simplicity -- the graph of a floor is not so large, therefore we judge that applying the

A* search algorithm is a waste of resources. The A* algorithm gives better results but

it is computationally intensive,

- the algorithm is fairly simple to implement,

- the goal is to have an algorithm, though not the optimum necessarily, fast enough to

fit the time constraints.

- the Djikstra's algorithm, as different from other similar algorithms, computes the path

92
from source to all the other nodes of the graph. Therefore, if the path between two

points has been computed, there is no need to recompute if a subsequent request

specifies the same destination. Therefore, before starting the global path planning

between two nodes, a test will be performed to find out if a request has been made

previously to find a path to the same goal location as presently. Since the destination

is the same and knowing that the Djikstra's algorithm computes the path from one

point to all the other nodes, there is no need to compute an optimum path for a

subsequent request if the goal point hasn't changed and the starting point is on the

same floor as the goal point. Each time the algorithm is called, the path from each

point to the goal point will be saved in memory until the destination point has been

updated (new request for global path).

V.5.1 Testing and Results

We have tested the cases that cover most of the main categories of problems: path

between points of the same building, path between points of different buildings, path

between points of different floors, path between points of the same corridor. The results in

Table Ill show the time it took to compute such paths.

Test Example 1. The example (see Figure 15) represents a floor plan used by Madarasz

et al. to test their model. Our formulation of knowledge base facts of this example is shown

in appendix A-2. This example was tested to find the path between two points of the floor.

The points were chosen belonging to the same hallway or not. The stack size is 600 bytes.

The database size is 6156 bytes and made up of 104 knowledge base facts. The results are

shown in Table Ill.

Test Example #2. This example (refer to Figure 16) is intended for the evaluation of

the speed of the path planning algorithm. The test results are summarized in Table IV.

C'l -

Ele

N

L\'t

-

I g I~ I~
~

Floor plan

93

3.0 130.25 ·- ... -------- ... -· 190::l2 3 14
-. I

I I

: T~ 16
11 ein------~---

1 t'-- 3.0 ~I 0 25 :o o:.
rs 17

Edged graph

Figure 15. A problem from Madarasz's model [4].

11
R2
•

• 01 02 05 Rl
• • • •E2 • • 03 04

R4
12

R5
• •

• R3

13 14

.. .. 15

•R9

• 16
R8

(a) a corridor with a given
number of points

(b) a floor plan with a given
number of points

Figure 16. Evaluation of the speed of the path planning algorithm.

TABLE III

PATii ON CORRIOOR: COMPUTATION TIME AS FUNCTION
OF THE NUMBER OF OBSERVATION POINTS

2 4 6 8 10 15 20

0.28s 0.22s 0.27s 0.27s 0.27s 0.33s 0.38s

25

0.39s

~Data from example in figure 16.a.

TABLEN

PATH PLANNING RESULTS -EXAMPLE 1

Request Computed path Computation time (sec)
Path(Rml, Rm9) 2 -2.4ft 0.93s
(on same hallway) Rm 1-Rm2-Rm 19-Rm3-

Rm4-Rm17-Rm15-Rm5-
Rm6-Rm14-Rm7-Rm13-
Rm8-Rm12-Rm9

Path(Rm9, Rml) 2 2.4ft 0.88s
(see Note 1) Rm9-Rm12-Rm8-Rm13-

Rm7-Rm14-Rm6-Rm5-
Rm15-Rm17-Rm4-Rm3-
Rm19-Rm2-Rml

Path(Rm 12, Rm2) 2 1.81ft 0.93s
Rm 12-Rm8-Rm 13-Rm7-
Rm14-Rm6-Rm5-Rml 7-
Rm4-Rm3-Rm19-Rm2

Path(Rm2, Rm29) 2 0.6ft 2.64s
(on different hallways) Rm2-Rml-15
(see Note 2) 1 1.0ft

15-13
2 -l.9ft
13-Rm36-Rm35-Rm34-
Rm33-Rm18-Rm32-Rm31-
Rm 16-Rm30-Rm29

Path(Rm6, Rm30) 2 -1.2ft
(see Note 3) Rm6-Rm 14-Rm7-Rm 13-

Rm12-Rm9-Rm10-Il
1 1.0ft
11-12
2 1.2ft
12-Rm22-Rm23-Rm24-
Rm25

Note 1. The path is computed portion by portion. Each portion is listed
in the following way:

Navigation mode in the portion length
List of locations (Location name, Floor, Building)

94

The lengths are given in feet. The numeric values are testing values rather than values of a real
application. A navigation mode of 2 means "bootstrap" mode. The wheelchair is navigating on a corridor
where the starting point or destination point of the path are located at. There is a need to look at the scene
more closely (images are taken more frequently in time).

A navigation mode of 1 means "feedforward" mode. The wheelchair is on a portion of path far away
from the end-points of the desired route. Pictures need not be taken as frequently.

The length is computed negative if the direction of the traversed path is opposite to the orientation on
the given corridor.

TABLEN

PATH PLANNING RESULTS - EXAMPLE 1
(continued)

95

Since room Rm20 and Rm 1 are directly opposite to each other they are assigned the same "coordinate"
value. Consequently Rm20 is not listed. The path planner program uses internal backtracking to list the
locations on the hallway. The locations are listed in the manner predecessor-successor. The next point is the
point having the "coordinate" with the value immediately greater or smaller than the "coordinate" of the
current point To avoid the problem mentioned, two doors facing each other on a hallway should be given
slightly different "coordinates".

The computed paths obtained from the requests Path(Rml, Rm9) and Path(Rm9,Rml) are strictly
reversed compared to each other, which shows the reversibility of the path computation.

~. This request computes the path between two points located on different hallways. The program
first identifies the hallways on which the two points are located (C(ll,15) for Rm2 and C(I3,12) for Rm29),
then finds the end-points closest to the starting and destination points (15 for Rm2 and 12 for Rm29). Then,
the program retrieves the edged graph of the floor as edges and vertices. A vertex represents a corridor end
point An edge represents the corridor. The cost assigned to an edge is the length of the corridor in feet In
this testing we have used the corrected lengths (taking into account the obstacle densities and traffic
frequencies on the hallways).

After graph retrieval, the shortest path is computed between the points 15 and 13 of the edged graph by
applying the Djikstra's shortest path algorithm. The result is a path node-to-node described as a list of
locations and the length of the path:

["15" ,''13 .. ,''12"]
4.0ft

This result is an intermediate one and is not listed in Table III.
The path improvement is called. At this step the portions of the path that are not physically included in

the desired path are removed by applying knowledge method.

~For this request the program terminated before completion due
to stack overflow. Even when we increased the stack size to a maximum of 4K, the problem could not be
solved. The drawback is that the program uses recursion and backtracking to list the locations on the path.
This becomes a limitation when the number of points on the physical path exceeds 16. Also the version of
Turbo Prolog used doesn't support global variables. Therefore we had to pass the same variables each time
between nested sub-routines, increasing the demand on the stack.

A future improvement could come from using a version of Turbo Prolog with global variable
capability as well as the capability of releasing unnecessary variables at run time. Another precaution is to
limit, as much as possible, the number of observation points on each corridor.

The location Elvl was intentionally not listed in the path (11, 12) because this path is navigated in
"feedforward" mode. Only the nodes (intersection of corridors) are the points of interest in this mode.

In Table IV, N is the number of observation points along the corridor and ~t is the path

computation time. The curves on Figure 17 show that when the number of observation

points on the corridor grows very big the computation time will reach a highest value of 2.3

seconds. This result leads us to conclude that, with this algorithm, the maximum time spent

on computing a path between two points located on the same hallway is 2.3 seconds.

96

In the graphs of Figure 17 and Figure 18, N represents the total number of

(observation) points of the floor graph. It can be conluded from the exponential curve

fitting function that, when the number of points in the graph increases towards a big value,

the time needed to compute a path between two points located on different hallways (resp.

on the same hallway) asymptotically moves towards the value of 17 .07 seconds (resp. 1.97

seconds). The results in this case are compatible with those of case 16.a. This estimation

proves that the path planning algorithm implemented is fast enough on PC. Further

discussion and evaluation of the path planning will be conducted in Chapter IX.

dt

0.4

e dt = cp(N) 0.3

exponential fit (1)

(1) i'.1t = 0.23195 * 10"(9.4428*exp(-3N))

0.2---~~--~-...~~--~~--~---~~--

o 1 0 N 20 30

Figure 17. Computation time vs number of observation points
on the corridor.

The results of the simulation are summarized in Table V. The emphasis on this

simulation is to show that the computation time depends on the total number of observation

points of the graph. The assumption which leads to this investigation is that the retrieval of

the path is done through the backtracking process of Turbo Prolog.

TABLEV

PATH ON FLOOR: OOMPUTATION TIME AS FUNCTION
OF THE NUMBER OF OBSERVATION POINTS OF THE GRAPH

Problem size Path on corridor Path between corridors

19 Request: Path(Rl, R4) Request: Path(R4 , R9)
(the whole graph) At: 0.48s At: 2.25s

18 Request: Path(R 1 , R4) Request: Path(R4·, R6)

(graph 11-12-18-17-13-12, At: 0.38s At: 2.20s
17-15-16-18)

14 Request: Path(l8 , RS) Request: Path(R5 , R6)

(graph 12-18-17-13-12, At : 0.38s At : 2.08s
13-14-15-17, 15-16-18)

12 Request: Path(R 1 , R4) Request: Path(R4, RlO)

(Jrraph 11-12-18-17-13-12) At: 0.28s At: 1.97s

10 Request: Path(l8 , R8) Request: Path(l7 , R8)

(graph 17-15-16-18-17) At: 0.32s At: 2.03s

7 Request: Path(Il , R4) Request: Path(l 1 , R5)

(graph 11-12-13) At: 0.27s At: 1.87s

Note. Data from example in figure 16.b.

At

---+- (1)

(2)

(1) path on corridor
exponential fit:

97

At= 0.19786*10A(l.8079*exp(-2N))

(2) path between corridors
exponential fit:

At= l.7076*1()A(6.209*exp(-3N))

~-----~ a- B .g-----

5 1 0 15 20
N

Figure 18. Computation time vs the problem size.

98
Test Example #3.The purpose of this test example is to answer the queries. The results

are summarized in Table VI. The map is that of the complete example of a campus made of

two buildings shown in APENDIX A-1. The size of the knowledge base is 260 facts

occupying 16125 bytes of RAM.

Query (1) computes the path between two points located on the same hallway. Query

(2) and (3) compute the path between points located on different hallways of the same

floor. The result of query (3) is not optimal. The path should have been 128-19A-I12-12-13-

105-103-104-102.

The reason is that the Djikstra's algorithm computes the optimum path from node to

node. In this case the input of the algorithm was [128,103]. There was a choice between

the initial edge 19A-I12 (14.4m) and 19A-19 (2.4m). The edge with minimum length from

the starting point 19A was therefore 19A-19. Therefore the path was directed from 19A to 19

instead of 19A to 112. An improvement should be to check the length of all the edges

connected to each edge issued from the starting point.

Query (4) computes the path between points located on different floors of the same

building. An elevator (Elvt) is found connecting the two floors, otherwise the program

stops the computation because there is not path for the wheelchair other than stairs (which

is not a safe or feasible solution).

Query (5) computes the path between two buildings connected by a "bridge", i.e, a path

that the wheelchair can travel on. The path is computed portion by portion from building

Bl to building PCAT. Query (6) answers the same request. However, due to memory

limitation and the total number of locations on the path, the program ended because of a

stack overflow. However the portion of path computed was:

15-14 (building Bl) 11-11-ExitBll (building Bl) ExitBll-Exitbl (bridge)

Exitb l-Stairs-28 (basement PCA T) 28-27-26 (basement PCA T).

99

TABLE VI

PA TH PLANNING RESULTS - EXAMPLE 3

Query Computed path Computation
'time (sec)

(1) 2 -5.2ft 1.32s
Gpath(" 1700", "firstfloor", "PCA T" 170G-170A-170F-170B-
, "170D", "firstfloor", "PCA T") 170E-170C-170D

(2) 2 -l.2ft 3.62s
Gpath(" 170E", "firstfloor", "PCAT", 170E-170C-170D
"102", "firstfloor", "PCAT") 2 32.4ft

170D-170H-1601-I4-I3
2 6.0ft
13-105-103-104-102

(3) 2 O.Oft 3.54s
Gpath(" 128", "firstfloor", "PCA T"," 128
102", "firstfloor", "PCA T") 1 79.6ft

128-19A-19-17-146-16-15-
1601-14-13
2 6.0ft
13-105-103-104-102

(4) 2 -2.0ft 3.62s
Gpath("28 ","basement", "PCA T"," 1 28-27-26-Elvt (basement)
46", "firstfloor", "PCA T") 2 l.2ft

Elvt-124 (first floor)
1 32.8ft
124-128-19A-19-17-l 46
2 O.Oft
146

(5) 2 -2.8ft (building B 1) 3.2s
Gpath("l5","firstfloor","B 1 ","28", 15-14
"basement", "PCA T") 1 17. 8ft (building B 1)

14-12-11
2 4.2ft (building B 1)
11-11-ExitB 11
1 20.0ft (bridge PCA T-B 1)
ExitB 11-Exitb 1
2 0.0ft (PCAT basement)
Exitbl
1 5.0ft (PCAT basement)
Exitbl-Stairs-28

(6) Path not compeleted because --------
Gpath("15","firstfloor","B l ","146" of stack overflow
, "firstfloor", "PCA T")

CHAPTER VI

PSUBOT DATABASE ORGANIZATION

VI.1 GENERAL CHARACI'ERISTICS AND ASSETS

OF THE DATABASE APPROACH

In section IV .5 of Chapter IV, an investigation has been conducted to find the best

representation of data for mobile robots. In almost all the approaches where a database has

been used to keep data for the functioning of the robot, it has been noticed that the database

was not by itself identified as a main module of the system and was used to store a priori

data rather than for the knowledge support [18, 6, 26]. Most of the time the tasks are

organized only around the Navigator, the Path Planner or the Sensory Module. In the

approach used in this work, the database has been created as a stand alone module of the

system. This method, far from being too original in general, seems quite interesting for

PSUBOT for several reasons. First, we have mentioned in the previous chapters of this

thesis that all the modules of the PSUBOT system can communicate through the database

and hence the need for dedicated interfaces is eliminated. Secondly, all the information on

the wheelchair operation is visible to each module of the system with the provision of data

protection. Thirdly, the database will be a support of such mechanisms as knowledge

management, and can serve also as a database for some functions such as the motor

schemas used by R.C. Arkin [27]. The motor schemas can be understood as some

behavioral primitives such as "move_left","move_right", etc ..

In general, the approach of building complex software systems around a database is not

new. This approach is the current trend in CAD tool design. In the early stages of CAD

101

tools design, the designers would build a new application, then were forced to build a

specific interface dedicated to interface the new application to all the existing applications of

the system. With the development of database capability and database systems, researchers

in this area have almost come to an unanimous conclusion that it is more beneficial to build

a database first, and then build applications around the database. This approach is the same

that is behind the concept of an intelligent database for a wheelchair. If the results of this

work are good enough, the database will be the heart of the PSUBOT wheelchair in the

sense that it will talk to all other modules of the system as objects.

One obvious problem is that for the autonomous robot, the database may be a

bottleneck. Therefore, some bypass strategies should be implemented to overcome

bottleneck situations. For example, the Navigator could ask for data directly from sonar

readings if the processing in the database is timed out, or if there is an emergency situation

such as an immediate obstacle on the wheelchair's way. The idea of object oriented

approach mentioned by [2] in the implementation of the Navigator of the system is very

suitable to eliminate the bottleneck problem and to insure stand-alone operations of some

modules of the system. For instance, the centralized mechanism of the database can send a

message to a module such as the Navigator to function in the stand-alone mode, just by

having direct feedback from some sensors of the system. The database seems to be a

suitable module to insure the function of a master for all the other modules, because in the

current implementation the sensor data fusion and knowledge mechanisms are undertaken

at the level of the database. The database is therefore the only module that communicates

with all the other modules of the system. The next section presents the overview of the

PSUBOT intelligent database system.

102

VI.2 OVERVIEW OF THE DATABASE SYSTEM

The PSUBOT database system has the primary goal of keeping all the necessary

information for the operation of the autonomous wheelchair. Part of the information is the

description of the world around the wheelchair. The second goal of the database is to

provide the wheelchair with some kind of knowledge of how to use the static data and the

sensor information to make intelligent inferences related to the wheelchair's operation.

Therefore, the PSUBOT database system is the combination of a static relational database,

a knowledge-base and management routines. Several researchers in the area of autonomous

navigation of land vehicles have used the knowledge-base approach. They combine static

or a priori information with a knowledge-based mechanism capable of making intelligent

decisions based on the current state of the system (sensory feedback) and the static data

required for the system's operations. R. Stengel and A. Niehaus [40] use the powerful

knowledge base approach for automatic driving on a busy highway.

We would like to make clear that the PSUBOT database is not a DBMS Per Se.

Instead, the relational part of the database has been implemented as an applicatimt This

relational database uses a commercial DBMS, the PARADOX3 and the PAL application

language to make DDL and DML statements necessary to create and manage the data of the

map.

The PSUBOT (see Figure 19) database has three major components:

- the static relational database ,

- the management routines,

- the dynamic knowledge base.

The static relational database keeps the data of the map. The management routines have

various functions ranging from managing the map data, interfacing, monitoring of the

whole database processes and communication with the other modules of the PSUBOT

103

system. The dynamic knowledge base builds information from the basic information

provided by the static data base and the sensory information. There is a driver program that

monitors the whole database. The schematic in Figure 19 shows the major parts of the

database mentioned in this section.

The Map Manager and the Driver programs will be examined in section VI.5 of this

chapter.The Interface routines are referenced in section VI.6 of this chapter. The Global

Path Planner program has been referenced and reviewed in Chapter V. The Image Matcher

will be referenced in Chapter VII.

DEVEWPER
(Data entry)

I

Map
Manager

Map
Relational
Database

I

I INTERFACE I

SENSORY MODULE CAMERAS

1--------~. ---,----tmage knowledge

i.
!fierarch1cal e(database)
unagefrom i

QI \z ~----: ~i~~~~~~~l~. I
a I ~ - - - - - - - - - - - - - - -1

I

Global Path
Planner

: • Image Parser • . .
: : (feature extractor): ' I I Localizer
: ~--••••••••••·--' I

,_ ---_o_g _ -1\Z,.-:_-~---------· o I
1--------- ------:I I v
: Image Knowledg~ • Image features :Location
: base(database) : : rule base : of the
I I I 1 •
, , 1 1 whee chair ·- - -- -- - - - -- --- -~ ~------------ ..

Map Knowledge base

Basic facts

I: input
0: output

Ir •t I (g] .. --.
!..L_-~, Programs

Not implemented
- - - in the present

Figure 19. Structure of the PSUBOT database system.

104

VI.3 THE STATIC RELATIONAL DATABASE

As mentioned in the previous section, the static relational database has the role of

keeping the information about the map of the environment in terms of the relative

disposition of objects in the world. The static database is made up of base relations. These

relations give information on corresponding levels of the map hierarchy: buildings table,

bridges table, floors table, corridors table, corridor ends table, rooms table,

objects table. There is a special table, the map table which keeps as a unique record the

name of the map, and the names of all the seven tables of the map relational database.

Each relation will now be examined individually. The data entities represented by each

table are explained. For each table the primary key will be indicated by an asterisk. All the

relations in this simple database are in the 3rd Normal Form. The 3rd Normal Form has

been defined in Chapter IV. To identify the components of a given map, the table names are

built from the map name in this correspondence:

buildings_table =map name+ "l" bridges_table =map name+ "2"

floors_ table = map name + "3" corridors_table = map name + "4"

corridor_ends_table =map name + "5"

objects_table = map name + "7"

rooms_table = map name + "6"

The"+" operation used in this formulation is the string concatenation operation. This

particular coding is to allow the user to create and save many map applications in the same

folder of the memory storage unit available. However, the table "map_table" will always

have the information on the most recently entered or updated map. At each major operation

on the map manager {enter, update, read, query) this table will be overwritten and saved

with the information of the current map.

105

Vl.3.1 Map Table Relation

The role of the table "map_table" is to carry out the name of the map for upcoming use.

This table will be converted into a DOS file that will store the name of the current map.

When the program creates or updates an existing map, the "map_table" table is created

automatically. After the given operation, the interfacing of the PARADOX formats to the

PROLOG formats is done automatically. This interfacing (INTERPAR.PRO routine) first

opens the newly created "map_table" DOS file and retrieves the name of the map. The name

of the map is used next to create the name of the dynamic PROLOG database to keep the

knowledge base for the map. For example, if the map name is "psu", then the name of the

map knowledge base file will be "psu.dba". This strategy allows storage of several map

applications in the disk storage.

Mname* Btabl Brtabl

TABLEVIl

MAP_TABLE

Fl ta bl Ctabl Cetabl

~ Mname: map name as a string of alphanumeric characters (7 max)
Btabl: buildings table name Brtabl: bridges table name
Fltabl: floors table name Ctabl: corridors table name
Cetabl: corridor ends table name Obtabl: objects table name
Rtabl: rooms table name

VI.3.2 Relation "Building"

Rtabl Obtabl

This relation keeps the information about a building of the map. The corresponding

table is represented in Table VIII.

BNAME* MNAME

TABLE VIII

BUILDINGS_ TABLE

NFLOORS PBLC

~ BNAME: name of the building as a string of alphanumeric characters (10 max).
MNAME: name of the map site as a string of alphanumeric characters (7 max).

ACCFAC

NFLOORS: number of floors of the building (including underground floors) as a small integer number.
PBLC: "y" as yes if the building is a public building such as a Government building, a store or a
school building and "n" as no if the building is not accessible to the public.
ACCFAC: "y" as yes if the building has access facilities accessible for handicapped

such as ramps, automatic doors, elevators; "n" if not.

A building name in a map is unique. Therefore the attribute BNAME has been
chosen to be the primary key.

VI.3.3 Relation "Bridge"

This relation keeps infonnation on bridges of the map.

TABLE IX

BRIDGES_ TABLE

106

BRNAME* MN AME BNAMEl EXITl BNAME2 EXIT2 LENGTII 1FREQ OB DENS

~BRNAME: name of the bridge as a string of alphanumeric characters (10 max).
MNAME: name of the map site as a string of alphanumeric characters (7 max).
BNAMEl: name of the of end #1 building as a string of alphanumeric characters (10 max).
EXIT I: name of the of end #1 of the bridge from BNAME 1 as a string of alphanumeric characters (10 max).
BNAME2: name of the of end #2 building as a string of alphanumeric characters (10 max).
EXIT2: name of the of end #2 of the bridge from BNAME2 as a string of alphanumeric characters (10 max).
LENGTH: length of the bridge in meters as a real number floating point type.
1FREQ: traffic frequency on the bridge as a real number floating point type.
OBDENS: obstacle density on the bridge (number of fixed obstacles per unit length)
as a real number floating point type.
The traffic frequency, obstacle density and map site terminology have been defined
in Chapter III. The data consistency requirement is that BNAMEl and BNAME2 be
distinct.

VI.3.4 Relation "Floor"

This relation keeps information on floors of a building.

FNAME*

TABLEX

fLOORS_TABLE

BNAME* FABOVE ELVf

Note. FNAME: name of the floor as a string of alphanumeric characters (10 max).
BNAME: name of the building as a string of alphanumeric characters (10 max).
FABOVE: name of the floor above as a string of alphanumeric characters (10 max)

will be the same as FNAME if NFLOORS = 1.
ELVT: "y" if elevator connecting FNAME and FABOVE; "n" if not

A floor is unique in a building and a building is unique in a map, but floors usually
are identified as "first floor", "second floor" etc. Therefore, a floor is identified by its
name and the building name. The primary key of this table is a composite made of the
attributes FNAME and BNAME. The data consistency requirement is that the
attributes FNAME and FABOVE on one hand should have the same value and ELVT
should have the value "y" if the number of floors in the building is 1.

VI.3.5 Relation "Room"

This relation keeps information on rooms of a floor in a building.

TABLE XI

ROOMS_TABLE

107

I RNAME* I FNAMETNAME* I ~R I ~R I TYPE I LFNGrn I MITTH I g~s~ I
~RNA.ME: name of the room as a string of alphanumeric characters (10 max).
FNAME: name of the floor as a string of alphanumeric characters (10 max).
BNAME: name of the building as a string of alphanumeric characters (10 max).
ENTDOOR: name of the main entrance door as a string of alphanumeric characters (10 max).
EXITDOOR: name of the main exit door as a string of alphanumeric characters (10 max).
TYPE: shape of the room as a small integer (1 ifrectangular, 2 if L shape).
LENGTH: the larger of the two dimensions of the room or the enveloping rectangle of the room.
WIDTH: the smaller of the two dimensions of the room or the enveloping rectangle of the room.
OBSTDISPO: string of alphanumeric characters preset to "[obstL,_,_,_)]" representing the list of
forbidden rectangles inside the room; this list represents the obstacles in the room.

108

A room name is unique on a floor, a floor is unique in a building and a building is

unique in a map. The primary key has been chosen to be composite

(RNAME,FNAME,BNAME). The data consistency requirement is that the room name

RN AME as well as ENTDOOR and EXITDOOR should figure in the list of objects (points)

along a corridor of the floor. ENTDOOR and EXITDOOR will be the same if the room has

only one access door.The symbol "[obst(_,_,_,_)]" represents an empty list of obstacles in

a room (see section VI.4). A list of obstacles in a room is represented as the following:

[obst(rho 1,thetal ,length 1, width 1),obst(rho2,theta2,length2, width2),].

The symbol obst(rho,theta,length,width) represents an obstacle represented as a

forbidden rectangle(see Chapter III). At the data entry(at the level of the relational database)

a list of obstacle is entered in a table as a list [obst(_,_,_,_)] . The information is entered

later with another routine (ADOBST.PRO).

VI.3.6 Relation "Corridor"

This relation keeps information on corridors of a floor in a building.

TABLE XII

CORRIDORS_TABLE

ICNAME*,FNAME*,BNAME*I TYPE I LENGTH I 1FREQ I OBDENS I

Note. CNAME: name of the corridor as a string of alphanumeric characters (10 max).
FNAME: name of the floor as a string of alphanumeric characters (10 max).
BNAME: name of the building as a string of alphanumeric characters (10 max).
TYPE: shape of the corridor as a small integer 1 if linear, 2 if circular.
LENGTH: length of the corridor in meters as a real number floating point type.
TFREQ: traffic frequency on the corridor in meters as a real number floating point type.
OBDENS: obstacle density on the corridor (number of fixed obstacles per unit length) as a real number
floating point type.
The primary key for this relation is (CNAME, FNAME, BNAME).

109

VI.3.7 Relation "Corrend"

This relation keeps information on the end points of corridors of a floor in a building.

TABLE XIII

CORRIDOR_ENDS_TABLE

rNAME· i FNAME· i BNAME· i ~~
1

TIIBTAI

1

ORIBNTI

1

=
1
TIIBT~

1
OruENTI

1
~ CNAME: name of the corridor as a string of alphanumeric characters (10 max).
FNAME: name of the floor as a string of alphanumeric characters (10 max).
BNAME: name of the building as a string of alphanumeric characters (10 max).
ENDlNAME: name of the reference end of the corridor as a string of alphanumeric characters (IO max).
THETAl: angle of the corridor at that end with reference to the horizontal axis of the floor reference - real
number floating point precision.
ORIENT!: cardinal orientation of the end point (N,S,E,W and composite).
END2NAME: name of the other end of the corridor as a string of alphanumeric characters (10 max).
THET A2: angle of the corridor at that end with reference to the horizontal axis of the floor reference - real
number floating point precision.
ORIENT2: cardinal orientation of the end point (N,S,E,W and composite).

The primary key is (CNAME,FNAME,BNAME). The data consistency
requirement is that ENDlNAME and END2NAME be distinct and they should
belong to the list of objects along the corridor CNAME.

VI.3.8 Relation "Object"

This relation (see Table XIV) keeps information on objects or some specific points

along a corridor. The data consistency requires that an object with no successor should be

assigned itself as successor on the ordered list of objects on the corresponding side of the

corridor. In the database table, this means that the attribute NEXTOB will be assigned the

same value as OBNAME. Items along a corridor can be seen as a list. Therefore, the item at

the end of the list is assigned itself as successor, by convention in our formulation. The

TYPE will help to identify the objects. For instance, an exit door to the outside may be

dangerous for the paraplegic user. Also, there is a need to locate exit-to-the-outside doors

to go from one building of another building of the campus environment.

TABLE XIV

OBJECTS_ TABLE

OB- CNAME* FNAME* BNAME* TYPE SIDE- AT- CHARl,2 ,3, 4 NEXT-
NAME* ON DIST

~ OBNAME: name of the object as a string of alphanumeric characters (10 max).
CNAME: name of the corridor as a string of alphanumeric characters (10 max).
FNAME: name of the floor as a string of alphanumeric characters (10 max).
BNAME: name of the building as a string of alphanumeric characters (10 max).
TYPE: small integer 0 to 8; 1 (room door), 2 (corridor door), 3 (elevator), 4 (stairs), 5 (fountain),
6 (fixed obstacle), 7 (exit to outside door), 8 (ramp), 0 (other).

OB

110

SIDEON: side of corridor on; small integer from 1 to 4 ; 1 (left) 2 (right) 3 (end-point 1 of the corridor)
4 (end-point 2 of the corridor).

ATDIST: distance to the reference end of the corridor; real number floating point precision; ATDIST = 0 if
the point is an end-point of a corridor.
CHARI: 1 (automatic), 2 (manual), 0 (other).
CHAR2: opening mode for a door; 1 (open in), 2 (open out),

3 (open in and out), 4 (slide), O(other).
CHAR3: 1 (dangerous), 2 (non dangerous).
CHAR4: 1 (if observation point) 0 (otherwise).
NEXTOB: next object on right as a string of alphanumeric characters (10 max).

The object attributes CHAR1,CHAR2,CHAR3,CHAR4 reveal important information

on the object. For instance, if a corridor door is manual, there is a need to issue a help

signal from the wheelchair so that a person nearby can help to open the door. Another case

is the stairs down. They are extremely dangerous for the wheelchair user who doesn't have

control of his/her motions. S. Rao and R. Kuc in [6] use a smart ultrasonic sensor for the

INCH prototype to detect drop-offs. In the approach used in this project, the intelligent

system knows the characteristics of the objects and when a dangerous object like stairs

down is recognized and located, the system will send a signal to the Navigator to take some

action. For instance, the message can be to stop and change the path. The type for an

access door on a corridor seems to be contradictory. However, it takes into account in the

knowledge-base that an access door on a corridor as well as stairs are considered as

obstacles.

111

To end this section there is a remark that a redundancy of information about floor name

and building name has been purposely carried out. The reason for this redundancy is that it

allows the user programmer to enter two floors with same names, but belonging to

different buildings. It also allows two corridors of different floors to have the same name.

This problem may have been eased by the primary key feature of the high level relational

database system used, but it would create problems in front for the knowledge base syntax

and operations. Additionally, in a building floors are often referenced as "first floor",

"second floor" or by numbers. With this formulation, it is possible to distinguish the two

records in the floors_table:

(1,pcat,2,y) /*floor 1 of building peat having floor 2 above and an elevator

between*/

(1,lhall,2,y) /*floor 1 of building lhall having floor 2 above and an elevator

between*/

This explains the use of a composite primary key for most of the base relations instead of a

simple primary key.

VI.3.9 Image Data

Some locations of observation exist on the floor. These locations help the robot to

locate itself in the building. At the learning stage, the picture of each of these locations is

taken and processed through the low-to-medium image processing [3] and stored in

memory. The concern in this section is to indicate how these pictures are named in the

database. An observation location can be either an end point of a corridor or a room door

seen from the corridor or other specific locations such as public (sitting) places in the

building. Therefore, the name of each observation location should figure in the list of items

qualified as "objects" in the database or as corridor end.

112

The names of objects are 7 characters (alphanumeric) long at most. The rule used to

find the name of the image file representing a location is the following.

I the name of the location is "xxxxxxx", then the name of the template image file is

"xxxxxxx.IM".

Consider for example, a location named PCA T28 on the map. Then its template image

file, if stored, will be named PCA TIS.IM.

While the wheelchair navigates, an image of the environment is captured by the TV

camera. That image is processed and stored in memory. The recognition module matches

this image with the template images in order to recognize the location of the robot. The

name of the current image will be "CURRENT.IM".

VI.4 THE DYNAMIC KNOWLEDGE BASE

The goal of the dynamic knowledge base is to generate more complex infonnation from

basic knowledge that is provided by static data or basic facts. The definition of the concepts

fact and rule, have been made in Chapter IV. The basic facts for the knowledge base are

directly obtained by the information from the static database tables. The basic facts are

listed in the next paragraph. The basic knowledge-base facts are the following:

building(B name,Mname,N floors,Pblc,Accfac),

bridge(Brname,Mname,Bname l ,Exit 1,Bname2,Exit2,Length,Tfreq,Obdens),

floor(Fname,Bname,Fabove,Elvt),

room(Rname,Fname,Bname,Entdoor,Exitdoor,Type,Length,Width,Obstdispo),

corridor(Cname,Fname,Bname,Type,Length,Tfreq,Obdens),

corrend(Cname,Fname,Bname,End lname,Theta 1,0rientl ,End2name, Theta2,0rient2),

object(Obname,Fname,Bname,Type,Sideon,Atdist,Charl,Char2,Char3,Char4,Nextob).

113

The variables appearing in each basic fact have a meaning (see base relation tables in

section VI.3). Higher-order facts can be deduced from the basic facts. Some rules can also

be established to create relations among basic facts.

Example 1

This rule will establish a relationship between two objects because they are on the same

side of the same corridor.

(1) On_same_side(Ol,02):-

object(O 1, Cname,Fname,Bname,_,Side,_,_,_,_),

object(02,Cname,Fname,Bname,_,Side,_,_,_,_).

This means that objects 01 and 02 share the same information about the corridor they

are on: floor, building and side. The Don't Cares (dashes) mean that the corresponding

information is not necessary for the rule. This rule means that objects 01 and 02 are on the

same side if they belong to the same corridor Cname of a floor Fname in a building Bname

and they are both on the side Side of the corridor, regardless of their type, their

characteristics (Charl, ... Char4) and the object next to them.

Example 2

This rule determines if a floor belongs to a building.

(2) Is_a_floor_ofBuild(Fname,Bname):

floor(Fname,Bname,_,_).

The facts in the dynamic knowledge base can be updated if necessary. For instance the

in-room information is entered after the map has been entered An example of application is

given in the APPENDIX A.

Example 3: application (see APPENDIX A)

From the example in APPENDIX A, the building "PCA T" has two floors named

"basement" and "first floor". The "objects" "PCAT104" and "PCAT105" represent the

doors of the rooms bearing the same name. Those two objects are on the left side of the

corridor "C102" leading to "PCAT 102" (EE office).

The basic facts are:

object("PCAT104", "C102", "first floor", "PCAT",1,1,2m,2,l,2, 1, "PCAT105").

object("PCAT105", "C102", "first floor", "PCAT",1,1,4m,2,l,2, 1, "I6").

floor("basement", "PCAT", "first floor", "y").

floor("first floor", "PCAT", "first floor", "y").

114

Rule (1) of example 1 is satisfied with the couple of values (PCAT104, PCAT105).

The objects PCAT104 and PCAT105 are both on the left side of the same corridor Cl02 of

the first floor. Therefore the fact On_same_side(PCAT104,PCAT105) is true and can be

used as a deduced knowledge about the map. Similarly rule (2) is satisfied with the couple

of values (basement, firstfloor). Both floors are in the same building PCAT. Rule (1) may

be enforced by adding the variable representing the corridor in the rule. It becomes

On_same_side(Ol,02,C), which will be read, "objects 01 and 02 are on the same side of

corridor C." The same thing applies to rule (2) depending on the level of precision that is

intended.

VI.5 THE MANAGEMENT ROUTINES

The PSUBOT database system, like any other database application system, has

management routines. The primary goal for management routines is to manage data(input,

output, retrieve, and update). The management routines of the PSUBOT database are

grouped into three categories (see Figure 19): the MAP MANAGER, the DRIVER routines

(that insure interconnection and communication of the PSUBOT database and the other

modules of the system), the INTERFACE routines, the IMAGE MATCHER and the

LOCALIZER. The map manager routines with the extension .SC are written in

115

PAL(BORLAND PARADOX3 database management application language)[37, 38]. We

had two choices: either to design a database management system from scratch for our

application, or to use an existing DBMS on the market. We have chosen the second

alternative for two main reasons. First, building a relational database management system is

not the main objective in this project. Secondly, it doesn't make much sense to design a

new database management system when there are already good performing ones in the

market. The criteria was to save time, energy and use efficient tools.

VI.5.1 The MAP MANAGER

The map manager comprises a procedure library and seven modules. The function of

each module will be succinctly described.

LIBRARY.SC. This script is used to create the procedure library file MAP.LIB. The

procedure library is composed of routines that are common to different modules of the map

manager. The procedure library is used in PAL to insure best memory management (makes

the procedure swapping less costly in terms of time and allows more procedures to be used

in the same script).

TUTORIAL.SC. This script provides the user of the Map Manager with general help

for the execution of the routines. This script uses a text file TUTORIAL.HLP to display

help information.

MAP.SC. This script is the main menu script of the Map Manager. All the other

modules are called in a recursive loop by this script. At the beginning of the execution of

this script, the procedure library is created and compiled into RAM. When the user quits the

application, the tables are converted into ASCII for for future needs to build the knowledge

base. The algorithm of the map manager's main program MAP.SC can be abbreviated by

the following pseudocode:

ALGORITIIM #2

BEGIN:

WHILE (NOT EXIT; GET MENU CHOICE)

LOOP:

CASE (1) : EXECUTE PROCEDURE TUTORIAL.SC

CASE (2) : EXECUTE PROCEDURE ENTER.SC

CASE (3) : EXECUTE PROCEDURE READ.SC

CASE (4): EXECUTE PROCEDURE QUERY.SC

CASE (5) : EXECUTE PROCEDURE UPDATE.SC

CASE (6) : EXIT

END LOOP

END WHILE

END

116

ENTER.SC. This module is used to enter the data of a new map. It creates new tables

for the new map. The map table is updated. The tables are saved progressively and

automatically converted into ASCII data format when the user quits the map manager

application. When the user programmer quits the map manager application, the table files

are converted from PARADOX3 formats to text formats for further use in the knowledge

base.

READ.SC. The script helps the user programmer to read the data of a previously

entered map. This script also allows the user to print a report on any of the seven relations

of the Map Manager relational database. This routine allows the user to globally read

information on items of the map hierarchy (buildings, bridges, floors, corridors, corridor

ends, rooms, objects), one table at a time.

117

QUERY.SC. This module allows the user to ask simple queries to the relational

database. The queries concern the main levels of the map hierarchy: buildings, floors.

corridors. Queries are, for instance: information on a building, a floor, a corridor, list of

items of a corridor, a floor or a building. The types of queries have been dictated by the

common questions that may be asked about a building: number of floors, list of floors, list

of rooms and corridors of a floor, information on a corridor, printout all information on a

given floor or a given corridor. The user of the Map Manager can check his/her data entry

by running a query. For example, it may be necessary to make sure that all the information

on a given floor has been entered. Therefore, a query can be run to list all the items of the

floor. The program will list all the items (rooms, corridors, objects) that are related to the

floor.

Example4

(i) List all the floors of a building Build_name

The SQL (structure query language) equivalent of this query can be stated as follows

SELECT * (get all the record of the table meeting the criteria)

FROM floors_table;

WHERE BNAME = Build_name;

(ii) Information on items of a floor Floor_name of a building Build_name

- corridors of the floor:

SELECT * (get all the records of the table meeting the criteria)

FROM corridors_table; /* corridor data(length, traffic frequency etc.) */

WHERE BNAME = Build_name

AND FNAME = Floor_name;

SELECT * (get all the records of the table meeting the criteria)

FROM corridor_ends_table; /* information on corridor end-points */

WHERE BNAME = Build_name

AND FNAME = Floor_name;

- rooms of the floor:

SELECT * (get all the record of the table meeting the criteria)

FROM rooms_table; /*data on rooms */

WHERE BNAME = Build_name

AND FNAME = Floor_name;

118

The meaning of variables used in the records mentioned in the queries have been

defined for each table. The reader is invited to refer to the tables representing the relations

involved.

UPDATE.SC. The script UPDATE.SC is used to update (insert, delete) information on

a previously entered map. This module also uses the same type of queries as the module

READ.SC. For instance, if a request is made to remove information concerning a given

floor of a building, information concerning rooms and corridors of that floor should be

deleted. Similarly, deleting information on a corridor requires the deletion of information

on every object located on that corridor.

Examole5

Suppose the query 'Remove from the database all all information on corridor "Cl" of

floor "Fl 1" of the building "PCAT" . An Embedded SQL1 equivalent to solve this query is

the following:

/*delete information on the parameters of the corridor*/

EXEC DELETE

1 SQL is both an interactive query language and a database programming language. As such the tenn
"Embedded SQL" is used to designate a version of SQL that can be used as an application language. This
language is able to execute the DBMS commands inside an application program as the DBMS itself would
do when statements are issued at a terminal.

FROM corridors_table;

WHERE CNAME ="Cl"

AND FNAME = "Al" AND BNAME = "PCAT";

/*delete information on the end-points of the corridor*/

EXEC DELETE

FROM corridor_ends_table;

WHERE CNAME ="Cl"

AND FNAME ="Al" AND BNAME = "PCAT";

/* delete information on all the objects of the conidor *I

EXEC DELETE

FROM objects_table;

WHERE CNAME ="Cl"

AND FNAME = "Al" AND BNAME = "PCAT";

119

ADOBST.PRO. This routine is written in BORLAND Turbo Prolog language. It

allows the user of the Map Manager to enter information about the inside of each room. The

information is concerned mainly with the disposition of obstacles (objects) in the room. It

has been mentioned in Chapter Ill that an obstacle in a room is represented as a forbidden

rectangle. Globally, all the obstacles identified in a room can be described in a list. The

input of this routine is the knowledge base file "xxxxxxx.dba", where "xxxxxxx"

represents the name of the map site.

QUERY.PRO. This routine allows the user to ask simple queries on the knowledge

base. Such queries are, for example, to display the list of corridors, rooms or 'objects' of

a floor. The input of this module is the knowledge base file.

ROOM.PRO. This routine allows to get or update information about a single room in a

building. This routine has been added specifically to update or read information on the

120

disposition of obstacles inside a room at the request of the Navigator. The routine reads the

knowledge database and retrieves the information on the room or updates the information

on the desired room.

Pseudocode of the map manager tasks. The Map Manager "command" file can be

abbreviated as follows.

BEGIN:

EXECUTE PROCEDURE LIBRARY.SC /*create procedure library this file eats up

memory. It can be created each time the map manager is called and deleted after use.*/

EXECUTE PROCEDURE MAP.SC

END

VI.5.2 The DRIVER

The tasks of this routine are management mechanism for the database and the

communication protocols with the other modules of the PSUBOT wheelchair. The tasks of

these routines and their algorithms will be defined in section VI.7 of this chapter. The

purpose of this program is to drive the whole database. It is the main program that will be

calling other routines. This program will be written in TC++. This program receives

requests from the Navigator module of the wheelchair.

The algorithm of the DRIVER is formulated as follows:

PSEUDOCODE

Program DBASEDR(.C)

BEGIN:

. CALL /NIT /* initialize I/O ports */

LOOP:

. POLL port until status has changed

121

. DISABLE port for writing

. IF signal_Compute_global_path is high/* request to compute global path*/

THEN. CALL GPATH /*compute optimum path: program GPATH.PRO */

. set signal_ Global _path _ready

ELSE()

END IF

. IF signal_Locate_me is high/* the request is to compute the current position*/

THEN . CALL LOCATE

WCA TE.PRO*/

/* Identify the current location : program

. set Position Jound /* the result is in the file LOCATION.DAT */

ELSE()

END IF

. IF signal_Room_info _read is high/* provide information on a room.*/

THEN. CALLROOMINFO /*Retrieve information on the given room:

program ROOMINFO.PRO*/

. set Room info ready - -

. IF signal Room info update/* request to update the information on a room. */ - - -

THEN. CALL ROOMUPD /* Retrieve information on the given room:

program ROOMUPD.PRO*/

. set Room info updated - -

. IF signal_What_do_I_see_is is high

THEN . CALL WHAT/SEE/* scene analysis: program WHA TISEE.PRO*/

. set What You see is

ELSE()

END IF

.GOTO LOOP

- - -

122

ENDDBASEDR

Vl.5.3 The Global Path Finder GPATH.PRO

The global path finder program is responsible for computing the shortest path between

two locations in the map. This program uses as main input data files: the knowledge base

file, the path file "PA TH.DAT". The file PA TH.DAT contains the name of the map site and

the starting and destination locations. This information is provided by the Navigator. The

output of the program is the computed path. The global path is in the file "PATH.LOG".

The program GPATH.PRO combines edged graph shortest path techniques with expert

system-like intelligence method (Prolog) to find the global path.

VI.5.4 The IMAGE MATCHER: MATCH.C

The role of the image matcher is to match two images of the scene described by straight

lines. The image matcher is examined in details in Chapter VII. This routine will be used by

the LOCALIZER which is responsible for identifying the current location of the

wheelchair. The current image taken with the camera is processed and matched with

template images. The template images candidate of the matching, are chosen in a

neighborhood in which the wheelchair is most likely to be located. The input of this

program are the files containing the current image from vision (CURRENT.IM) and the

template image of a location.

VI.5.5 The LOCALIZER

The LOCALIZER is the routine responsible for localization of the wheelchair. Its

algorithm and will be the subject of Chapter VID.

123

VI.6 TIIE INTERFACE ROUTINES

The goal of the interface routines is to serve as data interfaces between the databa~ host

system used for the map manager and the high level languages used in the other parts of the

PSUBOT data base system, namely, the knowledge base support part of the database and

the computational intensive part of the database management. The routine to interface

PARADOX3, a relational database management system to Turbo Prolog, is

INTERP AR.PRO. This routine converts the PARADOX3 records in each of the base tables

into Turbo Prolog facts. This interface program is a dedicated one and is used for the

special purpose of serving as a data interface between the Turbo Prolog and PARADOX3

applications. Such interfaces are needed [7] because Turbo Prolog works with facts and the

relational database with records and tables.

Vl.7 INTERCONNECTION WITH THE OTHER MODULES
OF THE PSUBOT SYSTEM

The PSUBOT wheelchair system is made up of three main parts: the Navigator [2],
'

the Intelligent Database, the Sensory Module (VISION [3], SONAR and other

sensors). The database is the link between the Navigator and the sensory module. In this

sense there should be established some communication protocols between the database and

the Navigator on the one hand, and the database and the sensory module on the other. The

sensory module can be qualified as "the eye and the skin" of the intelligent wheelchair.

Therefore, the communication protocols and the information treatment by the database

should be efficient and fast enou~h so that the database will be not a bottleneck of the

system. This is a major problem that we want to avoid in this work because vision is

already very computational intensive and also needs to be faster. Of course, the operations

could be pipelined, but such an architecture is not implemented on the personal computer

used in this project. The Navigator sends a message to the database. The database reads

124

the message and starts servicing the requests of the Navigator. In its turn, the database will

send some message to the sensory module if there is a need for sensory information for the

database to perform the task requested by the Navigator. Basically, the database will ask

the vision sub-module to process a new image of the scene. It will also request a new

reading from the sonar sensor. The database will make a decision based on these two

sensory data packets and will send a feedback message to the Navigator. This explains why

it has been mentioned earlier in this work that the database needs very efficient

communication protocols and fast routines. The algorithms of the communication protocols

are shown in APPENDIX B. The diagram in Figure 20 gives an idea of the

communication protocols between the different parts of the PSUBOT wheelchair system.

NAVIGATOR
SENSORY MODULE

VISION SONAR

•request for
global path

• hierachical
•sonar map

• localization

• of the robot

~~ryon the 1
im:e . request to procer

1mal
I DATABASE r-

• global path
• current location of
•the wheelchair

answer to a query

CAMERAS

• order to take
apic

Figure 20. Communication between the database and the other
modules of the PSUBOT system.

•

CHAPTER VII

MATCHING 1WO IMAGES

VII.1 DEFINIDON OF THE PROBLEM

The primary goal of the research on PSUBOT is to build an autonomous wheelchair

that can navigate inside a building or a campus to help a handicapped person to go from one

location to another. Like a human being, the PSUBOT must have a mechanism to recognize

at least certain details in the building such as specific locations and specific objects such as

door frames etc .. Recognition of these details is necessary for this intelligent wheelchair to

know, for example, that it has reached a destination location or to detect an obstacle. For

human beings, the simplest and common method of recognizing a detail is to match the

image of the perceived scene (vision, touch, etc.) with a mental representation of the detail.

For example, in our human knowledge of a bird, we know that all birds have two wings.

Therefore, if a human sees a living creature with two wings, then the first thought and the

start point of recognition is to say: "it may be a bird." Based on this simple example, we

can explain why there is a need for template matching for the PSUBOT model. The

PSUBOT model as has been mentioned in previous chapters, is a model-directed

autonomous wheelchair [18]. This is to say, that the robot has a model of the world

(geometric disposition of objects, properties and description of those objects). This model

helps the robot to "recognize" given points on the floor. For example, when a request to go

to a given room is issued, the robot must move and constantly "look" at the details on its

path until it finds a detail or group of details that have been entered in the knowledge of this

machine as representing the location where the robot is supposed to go.

126

The PSUBOT wheelchair now has two means of sensing its environment: vision and

sonar. A picture of the environment is taken as an image and the information is processed.

Previously, at a learning stage, pictures of the template and locations of interest have been

taken and stored in the knowledge base of the machine. The image matching in this case is

concerned with matching the current image taken, with the images previously stored at the

learning stage. The purpose is to recognize a location.

There are many ways to match two images. However, two kinds of problems of

interest for our application are image-image matching and image-model matching. For the

first method, the image is globally matched to another image, following certain criteria. In

the second method, some specific features or details in the image are extracted and matched

to a given model. This method is more oriented towards the pattern/object recognition

approach [41, 22], than the general matching approach. To come back to our example of

the bird, let us take a system to recognize birds in an image. For those systems, the image

would search for wings (details) to issue a decision. In robotics such methods are used

[45] for the recognition of industrial parts by machines. These industrial robots will take a

picture of the scene, then focus on specific forms that they will compare to models stored in

their knowledge base. Then a decision will be made, based on knowledge of whether or

not a specific part is present on the table of the robot or machine [10].

For the applications of autonomous mobile robots, both methods have been used:

Imaee-image matchine or Imaee feature-template feature matching. For example, Fennema

et al.[18] tried to find a correspondence between the features of the perceived image and

models of specific features expected at certain locations. The features used by Fennema in

the mobile robot HARVEY are walls, baseboards, moldings, pillars and door ways. They

don't include details such as sockets and posters.

Bergevin and Levine [45] are more for object recognition than autonomous navigation.

In the system PARVO (Primal Access Recognition of Visual Objects), the models are 20

127

line drawings of 30 objects representing various details in the scene. Classes of 3-D

features are defined. For example, those with symmetry, those with parallelism, those

qualified as vertices etc ..

Hebert [ll]'s system has been implemented on the Martin Marietta vehicle ALY. The

system is a map-based navigation system. The image captured from a reflectance ERIM

laser range finder is processed, and features such as road edges are extracted from the input

image. The intent is to build a map from a sequence of consecutive images. To do so, the

relative positions of features observed from different observation points are computed in

order to merge them into a consistent map expressed in a single coordinate system. The

matching of geometric features, such as road boundaries, is done from one image to

another. The best estimate of the current position of the vehicle from dead reckoning (a

recorded route obtained from joining segments of the visited path) is made to compute the

relative positions.

V. Capellini et. al.[9] use an object oriented approach for object recognition and

classification. Their research is targeted towards recognition and tracking of moving objects

such as cars, for traffic monitoring application. In the object-oriented approach, data can be

modelled by identifying both the belonging to a most general type and the structural

relations among the top level type and its sub-parts.

Sanderson and Foster [28] use an attributed image matching technique which

implements minimum representation. In robotics applications the interpretation of complex

data is fundamental. Therefore, the matching of stored model structures to observed data

from sensors is an important approach to the problem. Their minimum representation size

criterion helps to reduce the complexity of a model and to facilitate identification of model's

structure and parameters. The minimum representation is based on a principle of minimum

complexity of a program which explicitly generates observed data. Their method matches

noisy-gray level images to attributed graph. Each input image is represented as a set of

128

features with attributes, and each object model is represented in similar manner for a given

view of the object. The image matching requires the identification of the correspondence

between features and an associated geometric transformation which aligns the image with

the object model. Alignment of the image with the model just means a close correspondence

between the two. In other words the matching could be considered similar to the projection

(in the geometric sense of it) of the model into the image itself.

Crowley [20] uses a local model, which is described as a list of directed segments.

Each line segment has some information (angle, length.state, type). The matching of line

segments of the composite local model and the sensor model is done by establishing a one

to-one correspondence between the lines of the model image and the sensor image. This is

correspondence matching strategy. The sensor model is matched to the local model in two

stages. At the first stage, the best correspondence is found for each line segment in the

sensor model by making a call to a function named CORRESPOND. The list of segment

lines in the composite local model (template) is searched to find the line segment that

corresponds the best to the given line segment in the sensor model. In the second stage the

list is scanned to determine the sensor model line that has the best correspondence to each

sensor model line in the composite local mode. This second correspondence list is used to

update the local composite model. The correspondence function uses a sequence of tests to

find the difference in angle between the two lines, and the difference between other

attributes of the two lines.

The matching of two images for a system such as PSUBOT involves trade-offs

between several concepts. The difficulties and trade-offs that need to be addressed are: the

definition of models for features, the extraction of features, the learning stage, the speed of

processing, consideration of uncertainty and noise in the images, and the scaling.

• Definition of Models for Features: The models of the features have to be clearly defined.

These models should be quantitatively and qualitatively representative of the real object on

129

the scene. By this, we mean that the number of models should be adequate enough to

provide the kind of information expected to be extracted from the reconstruction of the

image after processing. If the number of features is very small, then less information can be

retrieved. For example, an image where only the floor and wall models are expressed

doesn't tell much about the shape of the doors. The quality of the models is important for

computations and extraction. A complex model will require more computation resources

(time , software) to be carried out. Also, a model that is not clearly defined will cause

ambiguity. These considerations are crucial for a case like the PSUBOT system, where the

image features are extracted after the whole low-to medium image processing has been

carried out. It is difficult and complex to reconstruct a scene from bare line features.

However, a good approach may be to identify key features and formulate their description

as simple as possible.

• The Extraction of Features : This step can be taken as a preprocessing stage for the

matching of two images. This step should be fast enough not to be a bottleneck. Also, it

should take the fuzziness into account in order to counter the effect of noise and loss of

information from the early low-to-medium image processing (see Figure 21 and Figure

22). In Figures 21 and 22 it can be noticed that some lines have been broken and some

have been removed. Some information about shape (example: curved lines) is missing. In

this example, the hierarchical line extraction using the Hough Transform [3] produces lines

only at the output, as opposed to more powerful tools such as general Hough Transform

[46] and Extended Kalman filtering method [17] which extract curved lines as well.

• The Leaming Stage: A learning stage may be necessary to take the images of the

templates, process them (extract the features) and finally, store them in memory.

• The Speed of Processing: The extraction of the features and the matching of higher level

features should be fast enough so that this step will not be a bottleneck for the localization

130

process that makes use of matching of images. Also, for the case of PSUBOT, the

algorithms must be optimized so as to make the process fast enough on a PC.

• The Uncertainty and Noise: The image processing is inherently attached with noise. Each

additional image processing from edge extraction to line extraction adds noise to the

interpreted image. The Hierarchical Line Extraction Scheme [3] using the Hough

Transform method in particular, discards some lines that are too short, what may result in

the loss of some information in the image. Therefore, fuzziness and uncertainty [26, 13]

should be considered in the representation and the extraction of the higher level line features

(see Figure 21). This aspect of the problem is one of the expectations for future

improvement that the intelligent database is intended to bring to the PSUBOT system.

• The Scaling: The scaling and orientation of the image may vary from the template to the current

image. In fact, there is no guarantee that the position of the camera and the angle of capture will be

the same. This uncertainty should be taken into account by the use of structural and statistical

matching, rather that exact matching. The figures 22, 23 show the outputs of the different steps of

line extraction using the Hierarchical Hough Transform [3].

---f'o~-- ~

(a) line merging

~

(b) extraction of a corner

Figure 21. Adding uncertainty to image matching and feature extraction.

(a) level 1 (b) level 2

(c) level 3 (d) level 4

Figure 22. An output image from low-to-medium image
processing [3] (level 1 to 4).

131

(a) level 5 (b) level 6

(c) level 7 (d) all

Figure 23. An output image from low-to-medium image
processing [3] (level 5 to 8).

132

133

VII.2 DIFFERENT APPROACHES TO THE MATCHING PROBLEM

In the previous sections, some models have been referenced. This section will

concentrate on examining some difficulties inherent to each of these approaches. Hardware

consideration is important for the computation aspect of the implementation of autonomous

mobile robots such as the PSUBOT. An implementation on a mainframe computer has

some advantages, such as speed and memory capacity, but also some drawbacks for the

system. A system using a mainframe needs wires to connect the mobile robot to the

mainframe computer, therefore, the system cannot navigate freely in the building. A model

such as PSUBOT is intended to be self-contained in that it can navigate freely from one

location to another on the same floor, on a different floor, or in a different building. The

PC is by far slower than a mainframe computer, and the memory capacity and management

is not as enhanced as on a mainframe. We will then examine the hardware used for each

system. The method of matching two images will be investigated and some conclusions

will be drawn.

VII.2.1 Sanderson [281

Their matching algorithm could be considered statistical because they make decision

based on correct matches and failures. However, the matching algorithm that they use is a

graph matching algorithm. They match images as set of features by finding a

correspondence and transformation between features of the image and the model image.

The computer system they used was not mentioned. However, a reference of the use of

Monte Carlo techniques for numerical optimization, suggests that, because of the

computational demands of those methods, they were using a mainframe computer.

Image matching is difficult to achieve with sufficient generality for many reasons, of

which two are obvious. First, the number of models of the features of interest is small,

therefore, many details in the image are discarded. Secondly, image interpretation from

134

higher level line features itself is a complex problem. In the case of PSUBOT, higher level

line features could be extracted from a collection of lines. The lines are extracted from the

original image after low-level image processing and Hierarchical Hough transform [3].

Image matching is also complex from a computational point of view, because the number

of matches to perform grows exponentially with the number of features. Good image

matching must be able to add uncertainty to feature extraction and matching, by including

missing and spurious data, extra features and noisy attributes. Including uncertainty and

robustness has been a major problem in this study, because their implementation does not

include the treatment of missing data or extra data. Sanderson uses a graph method to

match two images described as sets of features. Each feature has a label and a set of

attributes. A correspondence function finds a match between the subset of features of the

image and the subset of features of the template model. A match is defined by an injunctive

correspondence and a transformation.

A solution to the problem seems to add intelligence methods to the matching process.

For instance, features of the same kind can be matched primarily and the matching can be

improved later. The problem of extra features in the matching could be solved by attaching

a predictability weight to some features. This weight is a number assigned to features that

are the most likely to be encountered in the scene. For example, if the robot is moving in

the hallway of a public building, most probable features expected are the wall-floor

intersection lines, humans, door and window frames. At the time of the matching images,

features with a weight less than a certain threshold can be ignored.

Parallel implementation has been suggested in order make the matching faster.

Extensions of this approach include solving matching problems with three dimensions,

problems with multi-sensor data fusion, and problems with moving objects.

135

VIl.2.2 Hebert (11]

Hebert describes images as sets of features. Consider two images I1 and h described as

sets of features Fil and Fj2 . Matching the two images is to find a transformation T and a set

of pairs Ck = (Fikl, Fjk2) such that Fjk2 = T(Fikl) where T(F) denotes the transformed by T

of a feature F. The algorithm is as follows.

First, for each feature Fil a set of candidates that could match this feature is computed given

an initial estimate To of the displacement

E = :Ed(Fikl,T(Fij2))k. (1)

The Fij2 should lie in a prediction region centered at To(Fil). The prediction region is

defined as a set of features located at a Cartesian distance lower than a given threshold 0.

The angular distance of such features should be lower than a threshold value e from

To(Fi2). The features in each prediction region are sorted according to some feature

distance d(Fil,To(Fij2)). The feature distance depends on the type of features. When the

prediction regions have been built, a search for matches between the two images is carried

out. The search proceeds by matching the features Fikl to the features Fij2 that are in their

prediction region, starting at the most important feature. The result is a set of possible

matchings, each of which is a set of pairs S = (Fikl,Fjk2)k between the two sets of features.

The transformation Tis estimated by minimizing an error function of the form (1).The

matching S that realizes the minimum E is reported as the final match between the two

images. The system has been implemented using two separate processors (Sun3). As it

appears, this method is computationally intensive because a transformation has to be

computed which would certainly be a bottleneck for a PC-based system such as PSUBOT.

VIl.2.3 Crowley [201

Crowley uses a correspondence function to match a sensor image described as set of 2-

D lines to a local model described with the same type of features. This function sequentially

compares the attributes of the two images such as the angular orientation and the length.

136

The best correspondence is searched for and determined among the candidate lines. The

matching of the two images is not an exact match, but rather the best match. There was no

mention of the architecture used for this robot system.

A problem that may be at issue is the speed. Each line feature of the sensor image is

matched to all the other line features of the template image to determine a best match.

However, the function used is a sequential function that tests all the parameters

sequentially. Consider a problem with a sensor image composed of m lines and a model

image with n features. To find a best match for each line of the sensor image requires n

correspondence matches. Therefore the whole process will take m*n*t time to complete.

Where tis the time for the correspond function to compute a correspondence between two

lines, a structural matching of lines defined as objects with the same kind of features may

be faster. For example in Prolog, each line could be defined as a fact with attributes. This

approach could eliminate some of the tests and exploit the backtracking mechanism to find

solutions. This method uses lines as the only features participating in the matching.

Therefore, it doesn't include any object recognition. This is the main future improvement

that the PSUBOT database is intended to bring to the PSUBOT system.

VII.2.4 Fennema [181

The matching is done between the landmark models and the sensor image data. A

landmark is an observation point to serve as a guide to the robot for recognizing its path.

The emphasis is placed on determining the best of the imperfect matches. The matching is

posed in terms of optimization over possible matches. The correspondence problem is

combinatorial and generally one landmark line is mapped to many data lines. In order to

measure the quality of a given model-to-data correspondence, the best 2-D position of the

model with respect to the data must be determined. They call that a spatial fitting problem.

Hence a match involves both the model-data correspondence and the associated best-fit

137

position given that correspondence. There exists three components to the 2-D

correspondence. First, the search space is defined. The search space may be viewed as a

graph in which the ncxies correspond to a particular model-to-data correspondence (a state)

and the arcs to state transitions between the correspondences. Secondly, a method for

determining the optimal spatial fit for a given 2-D correspondence is used. The spatial fit

minimizes the quadratic error of the fit. Thirdly, an objective match measure for evaluating

the spatial fit for the given 2-D correspondence is executed.

The system was implemented on a time-shared Vax 11-750. This implementation is

computationally intensive. The process could be made faster by making a semantic

description of the mcxiel of features and using correspondence between the features defined

clearly with attributes. About 30% of the time is spent on computing the best matching

between the image and the template landmarks. The mcxiel matching is a computational

complex operation in the system. Even written in C, it is possible for the program to run

for hours if the search is not focussed. This handicap could be improved by adding

deductive and inference support embedded in the search, rather than applying a purely

graph or heuristic search.

After this review, a common ground can be found with regard to three points. First,

most of these approaches use correspondence matching of features to determine the best

match between the two images. Secondly, most of these systems only match two images,

rather than interpreting what is seen in those images as well. Thirdly, most of these

methcxis don't explicitly take consideration of uncertainty and loss of information present in

the images.

138

VII.3 IMAGE MA TCIDNG FOR THE PSUBOT WHEELCHAIR:
PROPOSED APPROACH

VII.3.1 Input Image Fonnat

Two dimensional image data can be represented in many ways [47]. The most common

data representation for digital images is the Pixel fonn. In this representation, the amplitude

of the digital image is quantized to 256 levels. Each level is denoted by an integer with 255

corresponding to the brightest and 0 to the darkest. Each point in the image space is called a

pixel. Other representations of images use medium or higher level features such as edges

(after edge extraction), or lines and curves, or derived features. Straight Line features can

be extracted after edge detection and medium processing, using, for example, a Hough

Transform method [3]. Some versions of the Hough Transform are able to extract curved

line features as well [48]. From line features, which make the medium level of

representation of an image, higher level features can be extracted. Each high level feature

represents an object to see in the scene. For example, a door frame feature can be built from

two couples of parallel lines. The input fonnat of images for this stage of processing is a

hierarchical description with straight lines [3]. An example of description is given in

Example 1.

Example 1: A hierarchical description of an image with two levels.

This is the output fonnat of the image from the line extraction processing [3].

F Pyramid numlevs size maxlength numH num V numN numT

F L_evel levnumber maxlength numH num V numN numT

F HVN ys xs rhos thetas length ywidth xwidth

F C_onversionfactors rhodel thetadel(for rhos,thetas)

c 0.400000 0.003608

p 2 256 256 13 20 9 42

L 5 256 1 1 1

N 26.5 133.5 233 503 211

v 111.50 80.00 -309 0 144

H 238.00 127.50 -296 512 256

L 4 127 1 1 1

N 1.00 47.50 290 502 95

v 55.50 148.00 51 0 64 256

H 94.00 47.50 63 512 96

The explanation of the terminology is as follows.

F: is an indicator for a comment line

size: size of the image in terms of the bigger dimension

3

5.00

256.00

0.00

3

2.00

0.00

0.00

211.00

0.00

256.00

95.00

0.00

256.00

139

P: is an indicator for the pyramid maxlength: length of the longest line of the pyramid

C: entry which gives the sizes of the numH: number of horizontal lines

quantization interval (rho, theta) num V: number of vertical lines

numlevs: number of levels numN: number of slanting lines (not vertical nor

V NH : respectively vertical,

or slanting and horizontal lines

horizontal

numT: overall total number of lines for the the level

the pyramid

VII.3.2 Correspondence Matching Algorithm

Correspondence matching strategy is used. Each feature of the current image is matched

to all the other features of the target image and a 'best' correspondence is found. However,

with the hierarchical description of the image, the two images are matched level by level

(see Figure 24). Each level is described as a set of line features. To each level is assigned a

weight. The weight relates to the importance of the level in the matching. Referring to

Figure 21 and 22, it can be concluded that information on the image is lost when moving

140

from lower levels to upper levels. In the hierarchical line extraction approach [3], level i+l

is obtained by merging shorter lines from level i and eliminating lines whose length is less

than a given threshold value. Therefore, the higher levels are made of longer lines.

However, the inconvenience is that many shorter lines are eliminated from the picture,

which constitutes a loss of information. We would then conclude that information is more

accurate for lower levels than for higher levels of the hierarchy. That is why we have

assigned lower weights to higher levels. The weight assignment is practically the

following: level i is assigned a weight 0.1*(8-i). Level 7 which is made of the longest lines

and is the highest level to which the weight 0.1 is assigned. Level 1 is assigned the weight

0.7.

The quantities ht represent the partial hit ratios of the matching of lines of level ik of image

II with lines of image 12.

Formulation. Consider two images, 11 and 12. 11 is the image to match to the template

image 12.

11 = {LeveliliE {I,2, ... ,7} Level i = {Fiklk E {I, 2, ... ,n}

O>j = 0.1 *(8 - i) weight assigned to level i

Finding the best match is to find a correspondence function T between II and 12 such that

the cost function

c = (Lk OOk *Ck)/Lk OOk

is maximiz.ed.

Ck is the hit ratio of the best match of level k of image i with levels of 12. The best match is

defined in this context as the match with the highest score.

Using a pseudocode, the algorithm of correspondence matching proposed can be

formulated as follows.

level ik

/I/
level im

-1 L>\ ~~I l

Image I1

leveljs

I :~1 I
leveljq

~I"' I
l~ e~I

Image I2

Figure 24. Correspondence matching of two images.

BEGIN:

* Read image I1

* Read Image I2

* For level i e Set of levels of I1 DO

* - match level i (score)/* find a match for lines of level i */

Endfor

*calculate the cost C = (Lk O>tc *ck)/Lk O>tc where Ck= best_score(k) and

ffik=0.1 *(8 - k)

* if C >= 0.0 then I2 is the most probable image that matches I1

END

141

It is clear that the value of C lies between 0 and 1.0, because the coefficients <Oic are less

than unity. Their sum in any case is less than 2.8.

The matching takes fuzziness and loss of data into consideration. We will explain the

criteria for the matching of two lines in the next paragraph.

142

The description of a line takes into account the following main parameters (see Figure 25):

p, 0, xs,ys, length, xw,yw.

The interpretation of the cases in Figure 25 is the following. Two lines from the two

images are considered to represent the same information, if the following conditions are

met.

(1) The difference in angle is less than a certain threshold value tAe: case (a) of Figure 25.

(2) The distance of their centers is less than a certain threshold value £ci: case (b).

(3) The difference between their lengths is less than a certain threshold tlll: case (c),(d) or
(e).

Choice of the threshold values. The experiment is to find the values of td, tlll and

tAe such that a picture of the same scene taken with an angular displacement of the

camera within 10 degrees (reasonable limit) can be recognized, i.e, matches the initial

image. It is assumed that the camera axis rotates on a horizontal plane only (see Figure 26).

An initial picture of the scene is taken and processed through the image processing.

Thereafter other pictures of the same scene are taken by slightly rotating the camera axis

around the vertical axis.

Initially the values td and tAI have been estimated to 2.0 (td = tlll). The value E.10

has been chosen as the same angle difference threshold value used in the extraction of line

features [3].

In the extraction of line features L'.l0 and L'.lp are the discretization errors introduced by

the p-0 parametrization. In that formulation, L'.lp is taken to be 1.414 and L'.l0 is 0.57t/4L. L

is the sub-image size used in the pyramid. We have chosen to use the sub-image size 4

which experimentally gives better results. We have maximized the error in length

(difference of lengths and difference of distances) to the square of L'.lp, i.e, 2.0. In the

matching of two lines, the value of tAI has been chosen to be the smallest of the lengths of

the two lines.

~
CI

c~
~ CI

C2
(a) angular displacement (b) displacement of the centers of the two lines

TI

~
(c)

TI
I
I
I :--------- CI "' · I

(d)

(c), (d), (e) difference in length of the two lines

TI: a line of the
template image

CI: a line of the
current image

~
I CI ·- _ ___::. __ __

(e)

Figure 25. Criteria for matching of two lines.

Yil.3.3 Experiments

143

The experiments conducted in this section of the thesis involved image matching. Two

categories of experiments were conducted: (1) matching two images and (2) matching a

given image to a set of candidate images in order to recognize a location inside the room.

Experiment #1. This experiment was conducted inside a room 4mx4m large. Some

places in the room were selected as scenes to film. The camera was placed horizontally on a

platform at a distance of lm above the ground and a distance of about 4m from the scene.

The picture of the scene at the given place was taken. Other pictures of the same scene were

taken by moving the camera axis horizontally around the initial position (see Figure 26).

Each of the images was processed and matched to initial image and the similarity measure

was calculated. The average time of the computation was recorded as well. Statistics were

recorded for each image: number of levels (NL), total number of lines (NT), total number

of slanting lines (NN), total number of vertical lines (NV), total number of horizontal lines

144

(NH), the length of the longest line (Maxlen), the average computation time for the

matching with the original image (A vT), the average similarity measure function value

(AvSM).

• lma(W #1: The image of the location P201 of the room was taken. Figure 27 and

Figure 28 show the steps of the image processing to extract the line features in the image

(level 1 to level 7). The other images of location P201 of the room were taken in the

clockwise direction (all images labeled with +) and counterclockwise (images labeled with -

). The next step consisted of matching each of the images with the original image. For each

matching, a similarity measure was calculated. The similarity measure is a mean of

estimation of the resemblance or likeliness of the two scenes represented by the images to

match. The expression of the similarity ratio was given in section VIl.3.2. This quantity is

a function of the partial hit ratios obtained for each level of the image to match to the

template image. Another quantity measured was the computation time of the matching. The

dependency relation between the computation time and the product of the number of lines

of both images to match was estimated. The results are shown in Table XV and Table XVL

z
~

,."1.,"r>- , ;,,,'
,'

,'

x

Figure 26. Experiment 1: changing the angle of the camera.

original image
comerP201

level 2

,.
·,

: ~::

.··
··.

level 1 line features

level 3

Figure 27. Line extraction process for image P201 (level 1 to 3).

145

146

level 4 level 5
u.

level 6 level 7

Figure 28. Line extraction process for image P201 (level 4 to 7).

+ 3degrees + 6 degrees

+ 8 degrees + 10 degrees

Figure 29. Template Images of location P201
(+3 degrees to +10 degrees).

147

+ 15 degrees + 20 degrees

- 3 degrees - 6 degrees

Figure 30. Template Images of location P201
(+15, +20, -3, -6 degrees).

148

- 8 degrees - 10 degrees

- 15 degrees - 20 degrees

Figure 31. Template Images of location P201
(-8 degrees to -20 degrees).

149

Scene

P201

+3 0

+60

+80

+lOo

+15 0

+20o

-3 0

-60

-8 0

-lOo

-15 0

-200

NL

7

7

7

7

7

7

7

7

7

7

7

7

7

~
<]

(sec)

TABLE XV

IMAGE MATCHING RESULTS - IMAGE P201

NT

188

185

107

80

75

75

114

200

200

200

74

195

195

0.2

0.1

NN NV NH Maxlen AvT (s)

112 34 42 256

106 35 44 256

50 27 30 243

39 14 27 255

44 6 25 255

44 6 25 255

56 23 35 256

100 46 54 256

100 46 54 256

100 46 46 256

21 18 35 255

83 70 42 240

83 70 42 240

---a-· ~t = '¥(NT1*NT2)

(1) simple polynomial fit

(1) y = 1. 7564e-2 + 2.4694e-6x

--
0.09

0.06

0.04

0.06

0.06

0.06

0.07

0.08

0.08

0.06

0.18

0.16

~ ,,
lljJ
I I
I I
I I
I I
I

I
I

g

0.0 ..J----r-----r-----r----,-----,---,
10000 20000 30000 40000

NT1*NT2
Figure 32. Computation time versus total number of lines, image P201.

150

AvSM

--

0.49

0.36

0.35

0.06

0.07

0.28

0.51

0.51

0.51

0.06

0.06

0.06

151

• Image #2: Similar experiment as the previous one was conducted with another image

representing a location P203 inside the room. Figure 33 shows the location of P203 within

the room. The data were collected in Table XVI.

TABLE XVI

IMAGE MATCIDNG RESULTS - IMAGE P203

Scene NL NT NN NV NH Maxlen AvT(s) AvSM

P203 7 151 83 29 39 256 -- --
+30 7 171 91 31 49 255 0.06 0.2

+60 7 188 99 31 58 255 0.04 0.33

+80 7 188 99 31 58 255 0.06 0.33

+lOo 7 188 99 31 58 255 0.06 0.33

+15 0 7 188 99 31 58 255 0.06 0.33

+20o 7 188 99 31 58 255 0.06 0.33

-3 0 7 188 99 32 58 255 0.07 0.32

-60 7 205 110 55 40 256 0.2 0.21
-

-8 0 7 205 110 55 40 256 0.15 0.21

-lOo 7 185 101 53 31 256 0.12 0.10

-15 0 7 185 101 53 31 256 0.13 0.10

-200 7 185 101 53 31 256 0.12 0.10

The data in Table XVI globally show that the similarity measure A vSM decreases as the

angle of the capture increases in one direction. The case of positive angles show a constant

similarity measure. We think that this is due to the quality of images from capture to line

extraction. As will be discussed later, the quality of the image taken with the video camera

is very important for the low-to-medium image processing software used; a poor image will

virtually produce few or no lines at all after the image processing.

place P203

P204

disposition of scenes
inside the room

Figure 33. Image P203 and disposition of locations in the room.

0.3

~

--e-· 6't='l'(NTl*NT2)

simple polynomial fit
y = - 0.55690 + 2.2853e-5x

(sec) 0.2 .Ip ,,
,, ,, I

,, ,, I

,,"
0.1

... .a
_,.,,," ~

...... \

a' ...

0.0 I I I I I I I I I I I I I

25000 26000 27000 28000 29000 30000 31000
NT1*NT2

Fi~ure 34. Computation time versus total number of lines, image P203.

• Other images: Images P202 and P204 represent other locations inside the room (see
Figure 33)

152

- Image P204

NL = 7, NT = 6, NN = 2, NV = 2, NH = 2, Maxlen = 256

-Image P202

NL= 7, NT= 251, NN = 124, NV= 68, NH= 59, Maxlen = 240

placeP202 place P204

Figure 35. Locations P202 and P204.

VIl.3 .4 Simulation of localization

153

Simulation of localization is conducted.The goal is to recognize a location among a set

of candidate locations in the neigborhood. Figure 33 shows the disposition of locations in

the room. The pictures were taken such that the clockwise anlge views of P203 are on the

side of P202 and the counterclockwise angle views of P201 are on the side of P202. The

template position of location P201 was taken as a current image. The program was run in

each case to guess the most probable location represented by the current image. The results

are shown in Table XVII.

154

TABLE XVII

RESULTS - SIMULATION OF LOCALIZATION

Camera image AvSM AvT(s) Location recogniz.ed

P201 0.71 1.87 P201

P202 0.71 2.08 P202

P203 0.71 1.92 P203

P204 0.71 1.16 P204

P201(+3) 0.32 1.76 P202

P201(+6) 0.52 1.7 P201

P201(+8) 0.71 1.38 P202

P201(+10) 0.43 1.43 P202

P201(+15) 0.32 1.37 P202

P201(+20) 0.57 1.59 P201

P201(-3) 0.40 1.87 P202

P201(-6) 0.40 1.86 P202

P201(-8) 0.60 1.98 P202

P201(-10) 0.60 - 1.43 P202

P201(-15) 0.63 1.98 P202

P201(-20) 0.63 2.03 P202

P203(+3) 0.40 2.09 P202

P203(+6) 0.71 1.6 P203

P203(+8) 0.71 1.71 P203

P203(+10) 0.71 1.64 P203

P203(+15) 0.71 1.65 P203

P203(+20) 0.71 1.65 P203

P203(-3) 0.71 1.6 P203

P203(-6) 0.32 2.36 P203

P203(-8) 0.32 2.09 P203

P203(-10) 0.0 2.52 could not recognize any

P203(-15) 0.0 2.52 could not recognize any

P203(-20) 0.0 2.47 could not recognize any

TABLE XVII

RES UL TS - SIMULATION OF LOCALIZATION
(continued)

NQli<. P20l(+n) designates the picture of the scene P201 taken with an angular displacement of the
camera of n degrees clockwise. P201(-n) designates the picture of the scene P201 taken with an
angular displacement of the camera of n degrees counterclockwise.

155

The results show that the algorithm is fast. The upper bound of the computation time is

proportional to the product of the number of lines of both images. Views of the same

location were recognized succesfully and some were not. For example, the location P202

was recongized when P201(-3) was taken as the current image. An explanation can be

given that the location P201(-3) is on the side of P202. Therefore details of image P202

were seen on image P201(-3). The major problem is that this method cannot be accurate

enough. It takes the best match as criteria. However, there is still a fear that two images

could match at the best even though they represent totally different scenes. P203(-20) could

not be matched (the similarity measure was 0) because of poor illumination on that image.

There were not enough lines extracted after binarization and thining. This problem is

encountered when the scene is poorly illuminated. The problem of scene illumination will

be discussed in Chapter IX.

VII.4 A STRUCTURAL APPROACH TO IMAGE MATCHING:

PROPOSED ME1HODOLOGY

In this section we propose a methodology for image matching that will include

recognition. The focus of this thesis was primarily to match two images successfully. The

matching concentrated on finding the best correspondence, i.e, the correspondence that

gives the highest value of similarity measure.

Such a method of correspondence matching doesn't include the problem of recognition

needed by the PSUBOT wheelchair. The PSUBOT needs to know when it has reached the

given destination requested by the handicapped user. Therefore, sensor data (vision, sonar

156

and other) must be analyzed to recognize locations in the building, as well as some details

to guide the robot. For example, the robot should be able to recognize the intersection of

corridors and the entrance to a room seen from the corridor in order to be able to focus its

attention on recognizing the given room. The following is a proposal of such an approach

that can combine both matching of images and recognition of some details in the building.

This approach has not been implemented in this thesis.

The methodology is simple and can be summarized in three steps as follows. At the

first step, the image from low-to-medium image is preprocessed. At this stage,

consideration of uncertainty and missing data is taken into account. Two lines that are in

continuation (having same angle) with each other and which have two of their ends very

close, may represent the same line in the real scene. In step two, higher level image features

are extracted from line features. The output image at this step is described as a database of

facts. Each fact represents a higher level image feature. The third step deals with the

matching of two images (the current image of the environment) and a template image of a

location previously processed and stored in memory. The matching can be summarized as

finding the best match between the set of features of one image with the set of features of

the other image.

Each of the two images reveals meaningful information on the scene because each fact

represents a model of object or detail in the real scene. For example, a rectangular long box

can represent a window frame or a door frame. A model for a corridor is given so that the

knowledge base of the wheelchair (database) can make deductions on the nature of details

perceived by the TV camera.

However, vision is not the only sensor intended for the PSUBOT. Sonar is also an

important one. Combining vision and sonar is a problem of multi-sensor data fusioning

[42]. In the next paragraph a picture of the whole processing is given. Also presented are

some higher level features of interest and the rules needed for their extraction.

VII.4.1 Overall Matching Process Proposed

Figure 36 shows the conceptual process of the matching of images.

r-------------------------------1
STEP2

1J!:urrent image) I ,repmcessjngl =d , ---€7- -s;. eature extraction) I •
I

age as a set of
gherlevel

157

this part of the processing is done at run time tures YES.NO
I

MATCHING

r---~---------------------------1 LOCATION . r I ~ ;ug,l_J ~STEP2 ------=-..:.....J - l~~:::J E>reatureextraction)I •
I
I

·emplate image)

~------------------------~------~ this part of the processing is done at the learning stage

Figure 36. Image matching approach using higher level features.

VII.4.2 Models of Higher Level Features

The models of higher level features derived from straight lines are chosen to be

representative of key information necessary for the navigation and localization of the

wheelchair. The details inside a building are numerous and varied, so only the most

interesting ones are chosen for this proposal. The models described can be defined as

Prolog facts for later use in the image database. In this selection, the corner is the basic

element after the line. The idea we would like to express here is that -a rectangle, for

example, can be built from four corners that can be connected couple by couple. Similarly,

a triangle can be obtained from two connected corners. We will propose a structural

definition of a corner. A corner is identified by the lines (the two sides), the center

(intersection point of the two lines) and the angle difference between the two lines. The

intersection point, if it exists, is the physical intersection of the two straight lines. The rule

to extract a corner can be formulated in Prolog as follows.

(i)

~ ~di~

(a) line(p,0, length,center(xc,yc)) (b) comer(81,~. C(x,y), 80)

rectangular comer if

c 80 = (2k+1)7t/2

~
(c) a "ceiling comer" (81,82,83, C(x,y))

DD//
(d) boxes: reactangle long, wide; square, parallelogram

Figure 37. Models of higher level features:
comers, rectangles, parallelogram.

(ii) on left on right

158

(e) a corridor (f) an entrance (door,corridor intersection)
seen from the corridor

Figure 38. Models of higher level features,
corridor.

comer(81,82,C(x,y),80):- /*case (1) see Figure 38 */

line(81,01), line(82,02), 80 = 02 - 01, 80 ~(kn),

Intersect(8 l ,82,C(x,y)), End_of_line(C(x,y), 81),

End_of_line(C(x,y), Ll2).

Ll2 Ll2

Figure 39. Extraction of a simple comer.

comer(Al,A2,Cl(x,y),A0):- /*case (2) see Figure 39 */

line(Lll,01), line(Ll2,02), L'.l0 = 02 - 01, AS ::t:. (k1t),

not(lntersect(Al,A2,C(x,y))), End_of_line(Cl(xl,yl)),

End_of_line(C2(x2,y2)), d(Cl,C2) ~ e.

159

The predicates Intersect(Al,A2,C(x,y)) mean respectively that ill and A2 intersect at

point C(x,y). The predicate End_of_line(C(x,y), Al) mean that point C(x,y) is a physical

end of line A 1. It is important to recall that we are dealing with finite lines instead of infinite

ones. The other higher level facts can be extracted from the 'comer' and 'line' facts with

similar rules. The image database will then consist of facts of the kind: line, comer , ceiling

comer , square, rectangle, parallelogram, corridor, entrance on corridor.

The approach briefly presented can be used later as an improvement of the database

capabilities. However, we recognize that this proposal takes into account vision data only.

A more complete and reliable approach will combine sonar data (sonar map of the

environment) to build a representation of the scene that can be interpreted.

CHAPTER VIII

WCALIZATION OF THE WHEELCHAIR

vm.1 PROBLEM STATEMENT

As mentioned earlier in this thesis, an autonomous mobile robot as an autonomous

device should be able to navigate by itself in the environment and make decisions based on

the perception of the world around it. An autonomous mobile robot is intended to carry on

specific kind of tasks such as carrying materials from one place to another. For the case of

the PSUBOT wheelchair, the main objective is to carry a handicapped person from one

location to another location in the building-. To accomplish this task successfully, the robot

needs to be able to locate itself within the building, i.e, to know its current location.

Localization of the PSUBOT is important for three reasons. First, the robot needs to follow

a global path (keep track of locations visited). Secondly, the robot needs to recognize

locations in order to know if it has reached the destination. Thirdly, if the robot has lost

track of its route, it should be able to relocate itself by identifying its current location.

Important problems are related to localization. First, localization needs analysis and

recognition of locations, i.e, scene analysis. This is where sensor data are read to interpret

the world seen around. For the PSUBOT, an image of the scene is taken by a TV camera.

The image is processed and matched with template images taken at the learning stage.

Template images are images taken at the observation points. The observation points are

special locations of the building and they serve as landmarks for the wheelchair. The

second problem linked with localization is navigation. If the robot navigates faster than it

should, there will not be enough time for the sensor data to be processed and analyzed to

161

recognize the environment. Thirdly, the accuracy of sensor perception and the matching of

two images is crucial for PSUBOT.

Research about localization of autonomous robots is ongoing, because autonomous

mobile robots need to make decisions by themselves and sense the world around them.

Madarasz et al.[4] locate the wheelchair in the hallway by tracking the wall-floor

intersection. When the robot is disoriented, their strategy is for the vehicle to realign itself

relative to the wall and then proceed until a recognizable landmark is met. However the

robot should be able to know its position in the building at any time. The position can be a

relative position, it is not an x-y position for this kind of robot. In Krotkov's [12]

approach, similar to Sugihara's [48], the robot's position and orientation is determined by

establishing the correspondence between landmark directions and points in the map. The

landmark directions are determined from the image of the scene. The image is matched with

images of locations (points) taken at the learning stage. These locations are on the map of

the floor (environment).

vm.2 LOCALIZATION STRATEGY FOR PSUBOT

The problem of localization of the PSUBOT wheelchair is not the emphasis of the

present work. In this work, we are proposing an algorithm that illustrates the concepts

developed in this thesis and particularly matching, which can be improved later for future

work. In fact, localization should include recognition of the scene. For example, the robot

can track the wall-floor intersection by extracting the wall-floor intersection information

from the current image. The current image will be matched to template images in order to

locate the robot. Localization of the wheelchair necessitates adjustment of the speed to the

knowledge and data processing. Actually, the vision processing is slow, therefore the robot

needs to slow down, even stop, while the image processing and localization are being

done. Another aspect to be taken into consideration is that locations are not contiguous,

162

rather they are along the hallway. The robot may miss them because pictures are not taken

continuously.

In this section we propose an algorithm for localization of the wheelchair. This

algorithm is just for the purpose of simulation. Localization of the wheelchair is done in

three situations. Firstly, the Navigator will request the database to locate the robot in the

building when the robot is lost. Secondly, during the navigation, an image of the current

location is taken. This image is matched with templates of locations on the global path.

When a location has been successfully recognized, it is put in the list of traversed locations.

The process is repeated until the destination location is reached successfully. The current

position of the wheelchair in the map is constantly computed in order to travel the global

route. Thirdly, when the request for computing the global path is made by the Navigator,

the starting point of the path needs to be known. In case it is not given explicitly, the

current position of the wheelchair needs to be computed.

The localization strategy implemented in this work takes vision into account as the

only sensor. We propose two algorithms for localization, one for the navigation mode and

the other for finding the position in the building when the robot is lost, i.e, doesn't know

its current position.

Algorithm to find the current position of the wheelchair

PSEUDOOODE of the program LOCATE.PRO

INPUT:

The most recently visited location (Ls,Fs,Bs) in the DOS file "PATii.HIS." This

location is identified by L (location name) F (floor name) B (building name). This is the

starting heuristic for the search. If the search fails, it is assumed that the position of the

robot is still at this location.

OUTPUT:

163

The computed position of the wheelchair. The resulting location (Lh,Fh,Bh) is written

in the DOS file "LOCATION.DAT."

BEGIN:

*Read the last visited location (Ls,Fs,Bs)

*Send signal to the Navigator to stop the wheelchair.

* Send signal to cameras to take a picture

* Send signal to Vision to process the image

* match image to template image of location (Ls,Fs,Bs)

* IF match successful

THEN return values (Ls,Fs,Bs)

END PROCEDURE POSITION.PRO

*ELSE

*find corridor C such that the location (Ls,Fs,Bs) is on that corridor

*CALL MATCH_ON_CORRIDOR(C)

*read Success from file TEMP.DAT

* IF Success = 1

THEN read(L,F,B); retum(L,F,B)

ELSE

/* a list of corridors sharing at least one end with C* I

* build neighborhood of corridor C

* WHILE X is in the neighborhood of C and match not successful DO

CALL MATCH_ON_CORRIDOR(X)

read Success from file TEMP.DAT

END WHILE

* IF Success = 1

THEN read (L,F,B) from TEMP.DAT

ELSE

write (L,F,B) in file LOCATION.DAT

EXIT /*END PROCEDURE*/

write (Ls,Fs,Bs) in file LOCATION.DAT

EXIT/* END PROCEDURE */

END PROCEDURE

SUBROUTINE MA TCH_ON_CORRIDOR(X)

/* match the current image to templates of locations on corridor X*/

* WHILE list not covered DO and match not successful

read a location (L,F ,B) on corridor X

164

match the current image to the template representing the position (L,F,B)

IF match successful

RETURN

TIIEN write l(Success) and (L,F,B) in file TEMP.DAT

BREAK WHILE LOOP

ELSE()

END IF

ENDWHILE

IF match not successful

TIIEN write O(Failure) in file TEMP.DAT

ELSE()

END IF

Algorithm for navigation mode of the wheelchair (Route runner)

The Route Runner plays the same role as the DRIVER for the database in the full

165

navigation mode. In this mode, the database must continuously keep track of the current

position of the wheelchair inside the building. The wheelchair navigates at a regular speed.

However, time must be allocated for image processing, therefore the robot must reduce the

speed during the processing time. The overall processing will be decided when all the

modules of the system will be integrated.

PSEUDOCODE of the subroutine NA VIG

INPUT: global path in file PA TH.LOG /* no empty lines */

the starting point of the path (Ls,Fs,Bs) in file PATH.DAT

OUTPUT:

the last visited location in PATH.HIS, continuously updated

the list of locations visited

BEGIN:

* IF not exist DOS file PA TH.LOG

THEN EXIT/* path not yet computed */

* read the starting point (Ls,Fs,Bs) from file PA TH.DAT

* write the starting point (Ls,Fs,Bs) in file PA TH.HIS

*send signal to the Navigator to move the wheelchair ahead

/*picture will be periodically taken in time and in space*/

* WHILE destination not reached DO

Identify current corridor X from most recently visited position

/* in fact the program should keep track of the most recently visited

location*/

CALL PATH_ON_CORRIDOR(X)

*ENDWHILE

RETURN

166

The two proposed algorithms need knowledge-based method to build information such

as the neighborhood of a corridor, and fast methods for computation. We suggest that

future implementation use both a procedural (and fast) language (Turbo C++) with a

declarative (knowledge-based) language (I'urbo Prolog).

One problem at issue for the Route Runner is to know how periodic a picture of the

scene should be taken with the camera. If the pictures are taken with too much time ellapsed

between frames, there is a chance that locations will be missed. If pictures are taken

continuously, there is also a great risk that Vision will not process them all because the

image processing algorithms are slow right now; they require an average processing time of

4 minutes. However, with the advent of faster processors and the use of parallel

processing or special image processing/DSP chips, the image processing routines can be

made faster, hence eliminate the bottleneck.

CHAPTER IX

TESTING AND EVALUATION OF Tiffi DAT ABASE SYSTEM

IX.1 JUSTIFICATION OF Tiffi CHOICE OF LANGUAGES

As discussed in previous chapters, the tasks of the intelligent database include keeping

a map of the world, finding a global path for the wheelchair, and matching images for the

purpose of localization of the device. Each of these tasks has certain requirements for the

power and speed of computations and knowledge (data) handling.

As discussed in Chapter III and Chapter VI, the hierarchical nature of the description

adopted for a building has led us to choose a relational database management system in

order to store the information of the map. The choice was either to build a small relational

database system from scratch-or to use an existing DBMS. The second solution has been

chosen and makes more sense. However, the choice of the DBMS was driven by the

requirement that the data formats must be easily interfaced to languages such as Turbo C

and Turbo Prolog formats. We have then chosen PARADOX3, a relational database system

from BORLAND company. PARADOX3 has an application language PAL which we used

to implement the data management routines needed to create, update and retrieve the map

data. This DBMS along with Turbo C, Turbo C++ and Turbo Prolog are designed by the

same company and interfacing of data with these languages is simple.

The task of computing a global path requires knowledge-based method of inference,

backtracking and deduction to retrieve the path. The formulation of the path planning using

a traditional optimum path algorithm such as the Djikstra's shortest path algorithm or the

A*, for example, is not well suitable for the map described. The map, described

168

hierarchically can be retrieved as a simple graph where each building is described floor by

floor. However retrieving such a graph would be a burden for the limited memory capacity.

Therefore applying knowledge-based method is useful.

We have chosen knowledge-based method to retrieve the path portion by portion. For

example, retrieving a path between two points located on the same hallway is a simple

problem of knowledge-based retrieval of information. However, retrieving the path

between points located on different hallways of the same floor needs both knowledge

based retrieval and shortest path method. Therefore, we have mixed knowledge-based

method (declarative) and procedural method in the path planning. Another task requiring

knowledge-based method is localization and pattern matching. We have chosen Turbo

Prolog as a knowledge-based language for these tasks.

As mentioned in Chapter V, we have used Turbo C++ to implement Djikstra's

algorithm and image matching which both require fast and intensive computations. Turbo

Prolog doesn't support intensive numeric computations and certain types of data structures.

The implementation and testing of the global path planning and localization were done on a

PC-386SX with 640K of base memory and a clock resolution of 20MHz.

IX.2 EVALUATION OF TIIE DATABASE

As mentioned in the introduction of this thesis, we will conduct the evaluation of the

database sub-part by sub-part. Thereafter, the overall performance of the database will be

judged. The localization program has not been implemented in this thesis.

IX.2.1 The Relational Database

The relational database has been implemented in PAL (Paradox3 application language).

The management routines are user friendly and have been designed such that the user

doesn't need any knowledge of Paradox3 to run these applications. The tasks implemented

are: enter a new map, update an existing map, read and query a map.

169

The map manager programs are not used on-line, i.e, when the robot is running. As

many other DBMS applications, they run slowly and require quite an amount of memory.

After new data have been entered, the interface routine is called which automatically

converts the records of the relational tables into Turbo Prolog knowledge-based facts.

The routines implemented enforce data consistency. For example, the end-points of a

corridor should figure in the list of observation points of the map. This type of data

consistency is needed for our application.

The data entry could have been made easier just by editing the knowledge base file.

However, it its important to keep the format of knowledge base facts needed for

subsequent applications such as global planning and localization.

We have implemented another routine to query the knowledge base after it has been

created. This routine is named QUERY.PRO and is written in Turbo Prolog.

IX.2.2 Global Path Planning

The task of the global path planner is to find an optimum path for the wheelchair. At the

request of the Navigator, the optimum path is computed between two locations. We have

implemented the optimum path planning in a way to match the formulation of the map as

close as possible and to reduce the demand on memory. Therefore, the path is computed

portion by portion. For example, if a request is to compute the path between two points

located on different floors, the path is computed on the first floor from the starting point to

an elevator (if its exists) and the remainder of the path is computed from the elevator point

on the second floor to the destination point. The graph of the floor is retrieved only when

the portion of the path requires computation of the path between two points located on

different hallways, in which case the Djikstra's algorithm is called after the edged graph has

been retrieved.

The knowledge database is loaded in memory during the length of the computations to

make the processing of facts faster. The knowledge base could have been kept on file.

170

However, it is very slow. When compiled, the global path planner GPATH.EXE and the

program DJIK.EXE (implementation of the Djikstra's algorithm) occupy respectively 41K

and 40K of RAM. We have run GEOBASE.INC, a geographic program of the USA. This

program contains information on all the cities, roads, rivers, lakes and mountains of the

USA, assembled in a knowledge base of facts. The database file of this program occupies

7 lK of RAM. When both programs are loaded in memory (GPA TH.EXE and DilK.EXE)

and assuming a maximum stack size of 4K there remains theoretically 484K of free RAM.

It is possible then to load a quite big knowledge base file in RAM.

Up to sixteen types of queries have been implemented (refer to Chapter V), each

answering one kind of request for global path planning. All these types of queries have

been extensively tested on various examples shown in Chapter V and give good results.

The program can successfully retrieve the path between two points located on the same

corridor, different corridors, different floors and different buildings. However problems

arose when the portion of the path to retrieve contained more than 16 observation points to

list. There was a stack overflow error. Even when we increased the stack size to 4K, we

could not solve the problem. The reason is that program uses recursion and backtracking.

Also, the version of Turbo Prolog used doesn't support global variables. We had to pass

the same variables each time between nested modules which unnecessarily occupies the

stack. A solution would be to reduce the number of observation points on each corridor. A

more robust solution is to use a version of Turbo Prolog that implements global variables.

The results of Test Example 2 of Chapter V show that it takes an average of 0.48s to

compute a path between two points located on the same hallway and 2.25s for points

located on different hallways. Similar results on a floor plan of an existing building

(PCAT) show that it takes an average of l.5s (including loading of the database) to

compute the path between two points located on the same hallway and 3.5s between two

points located on different hallways of the same floor.

171

The exponential fits show in Test Example 2 of Chapter V that when the size of the

database (total number of observation points or facts) tends towards infinite, it takes a

maximum of l.97s to 2.3s to compute a path between two points located on the same

corridor, and a maximum of 17s to compute the path between two points located on

different hallways.

For a medium size problem such as the one shown in Example 3 of Chapter V, the

speed of the algorithm is approximately l.5s for points located on the same hallway and

3.5s for points located on different hallways.

The main evaluation criteria is to see if the path is correctly retrieved and if the

computations are fast enough to be carried out on line, i.e, when the wheelchair is running.

The database receives request of global path planning from the Navigator module and

should give the results back fast enough. Our evaluation of the speed is based on the

assumption that the path should be computed within a distance of lm when the wheelchair

is running at a reasonable speed inside the building. From there we will estimate the speed

of the wheelchair compatible with the speed of knowledge retrieval by the database. For

each computation time, we will estimate the speed of the wheelchair, so that the path can be

computed within a distance of lm when the wheelchair is running.

The speed of the wheelchair was estimated. The results are shown in Table XVIII. The

speed of computation so obtained helps support the argument that the path can be computed

when the wheelchair is running. The wheelchair may not need to stop in order to compute

the path. The speeds estimated are reasonable for normal operation of a wheelchair inside a

crowded building. Therefore, our judgement is that an intelligent database is not a

bottleneck to the whole system, since it has been proven that the speed of computations is

acceptable. The main problem to deal with at this point is to make the image processing fast

enough so that the database can provide information to the Navigator without a big delay in

time.

172

TABLE XVIII

ESTIMATION OF THE SPEED OF THE WHEELCHAIR

At (seconds) L= lm =V*At V (speed of the wheelchair)

l.97s --- 1.13mile/hr

2.3s --- 0. 96mile/hr

3.5s --- 0.63mile/hr

17s --- 0.13mile/hr

Madarasz et al.[4] claim path planning computation time of 1to2s. However, in their

model, distance between observation points is not recorded. Their criteria is that an

optimum path is in the direction which contains the fewer intervening rooms from source

to destination. We can then infer that their path planning doesn't make as many

computations as we do. We have run their test example with our program. It took 0.88s to

0.93s to compute the path between two rooms located on the same corridor and 2"64s

between two rooms located on different corridors. The times include loading of l:he

database in RAM. We think that our results show an improvement compared to their model

because in addition, our model includes distance and shortest path (graph) algorithm iJIT !.he

path retrieval

Habib and Yuta [6] in their model have implemented global path planning to retrieve a

shortest path on corridor as a sequence of portions of corridors from source to destination

point. They retrieve an edged floor graph and compute a shortest path between nodes of

this graph. Nodes represent corridor intersections. The final route includes only corridor

intersections.Their model of the world is very similar to the model that we have proposed

for PSUBOT. However, their model doesn't include the floor as a level of the map

hierarchy which leads us to suspect that their model is limited to one story buildings.

However, our path retrieval lists all the observation points on the physical route. For their

test example, it took 5sec to generate a global path when the starting and goal points are

173

located on different buildings, 3.5sec when located in the same building but different

corridors and 1.5sec when the two points are located on the same corridor. A typical test

run on our Example 3 in Chapter V gives the following results. For points located on the

same hallway it took an average of 1.5sec, 3.5sec when points are located on different

hallways of the same floor, 3.62sec when they are located on different floors, and 3.2 to

5sec when that are are located on different buildings. These times as shown in Example 2

can change when the problem size increases. The empirical formula can be estimated from

the equations in Figure 18 of Chapter V, to give the approximate time. We judge that our

results are as good as theirs. We consider our approach as an improvement because in our

path retrieval, we list all the observation points on the path. We would have claimed much

faster computation times if we limited the path only to the nodes of the graph. Also, our

model is more complete because it includes many-story buildings.

IX.2.3 Image Matching

The image matching method implemented in this thesis is correspondence matching.

The matching methodology was explained in Chapter VII. Each line in the current image is

matched to a line in the template image and a success score is recorded. The overall

similarity measure of the two images was computed as a function of hit ratios obtained for

each level of the image. The matching is the best match, i.e, the one with the higher strictly

positive value of the similarity measure.

The upper bound of the duration time of the matching of two images is proportional to

n*m, where n and m represent the total number of lines in the first and the second image

respectively. A curve fit shows in Figures 28 and 30 shows that the average of the

computation time increases with the value of the product of the number of lines in both

images. Our experiment involved images with seven levels of hierarchy. Over the

experiment it took an average of less than 0.3 seconds to match two images. This results

prove that the algorithm is fast enough. At this speed, up to three images could be matched

174

within one second, i.e, practically an attempt to recognize three locations can be carried out

while the robot is running.

We simulated localization by trying to recognize a location in a neighborhood of places.

The target location was listed in the neighborhood made of a list candidate locations. The

current image (simulating the actually perceived image of the scene) was taken to be the

image of the target location taken with an angular displacement. The results were

satisfying. The target location was recognized in most cases. In one case a location just

next to the scene of interest was recognized. It took an average of 2.5 seconds to recognize

a location among a "neighborhood" of four candidate locations. Making an assumption of

proportionality of the computation time with the size of images and assuming images of

approximately same size, it will take an average of 6 seconds to recognize a location among

ten candidates, which is the case of a corridor with ten observation points (real case of a

corridor with eight rooms along it for example). Assuming a constant speed of the

wheelchair and if the information is to be processed within a distance of lm when the

wheelchair is running, it will require a speed of approximately 0.4 mile/hr. This estimation

shows that the database can process the knowledge fast enough for on-line requests, i.e,

when the wheelchair is running.

The matching of images is not a bottleneck as was feared. Compared to the image

processing which takes an average of 4 minutes to process the image, matching

(localization) takes less than 10 seconds making it nearly 40 times as fast. This

improvement places the database in a position to process the information fast enough to

give a feedback to the Navigator module of the wheelchair.

We faced many problems with image matching. Firstly, the vision processing system is

not fully automatic, rather it needs the intervention of the programmer to take the picture

and to launch the processing. It needs to be fully integrated such that from the application

program, an order to take a new picture can be issued and the processing of the image

175

carried out to produce the output image for the matching. For example, the capture of the

image is manual. The "snap" option of the "acquire" routine of SIMPP2 needs user

intervention to take the picture and save the quadrant of the picture judged good enough.

Also it required sometimes more than two retries to capture an image into the frame

grabber. The process could be made autonomous by presetting the "snap" option and the

quadrant of the image to save. However, the question is to know 1) if the quadrant chosen

was the best portion to represent the scene, 2) if the picture has been really taken (because

we had sometimes to try twice to snap a picture), 3) if the image of the template location

was taken with the same parameters. These questions need to be answered at run time in

order to have an autonomous vision system.

The second serious problem that we faced was illumination of the scene. We have

noticed that when illumination of the scene is not adequate, pictures are either dark or too

bright. In the first case, after binarization-threshold determination and thining almost all the

edges are wiped out and the line extraction produces only few spots (short lines), almost

meaningless for matching. In the second case, the line extraction produces too many lines

causing the program to crash due to memory allocation failure. We solved the problem by

using a special UV light projector. However, such a light has bad effect on human eyes

especially for frequent or prolonged exposure to it.

A question to be addressed with is the meaning of the matching of images described as

sets of lines. We have noticed that two lines may match in both images although they

belong to totally different details in the physical scene. Since a successful match is defined

in terms of the best value of the similarity measure between the current image and the

candidate template image, the meaning of the match could be questioned in some cases.

Two images could match at the best although they represent totally unrelated scenes. A

solution to this problem seems to adopt the methodology of structural matching of images,

i.e, to extract higher level features made up of lines as discussed in Chapter VII. However,

176

this process may be a bottleneck because it takes time to extract those features. The

ambiguity is not removed however even with the higher level features. For example, a

rectangular long box extracted on the scene can represent either the back cover of a book

seen from a short distance, an open door seen from afar, or other rectangular object How

to know exactly what it is? We think that the structural matching would be useful for

confined scenes such as the desk of an industrial machine. In this situation, specific

template objects are recognized. The components of the scene are very limited in number

and clearly distinguishable. So it is easier to guess from the feature extracted on the scene

which specific object is seen.

After this discussion, we think that, vision should not be used on this wheelchair for

recognition of many details in the environment. Vision should be limited to recognize

specific and useful details such as the edges of the corridor materialized by the wall-floor

intersection lines or specific landmarks. The feature extractor could concentrate on tracking

these details to keep the rob?t running parallel to the two walls. Objects lying on the

hallway could be identified by convolution of the extracted detail with the model detail of

the particular location. In this research, other authors [4, 6] have used vision for the

purpose of tracking specific landmarks only. Specific landmarks attached to rooms, for

example, will bring a little change to the environment. However, we think that this is not an

issue, because putting a special sign doesn't change much the interior of the building. It is

also a matter of public policy to allow special signs for the disabled in public buildings.

This remark is not even a question for a private house. The only problem will be the

nuisance caused to other users of the building if an UV projector is used for illumination of

the scene.

The method of matching also uses a lot of template images representing the observation

points. The limited memory on PC makes it virtually impossible to store the images of all

the observation points (such as rooms) in memory. However, if for example semantic

177

description is used to store information on a landmark of a given place, the problem will be

reduced to extract such a feature in the perceived scene in order to come up to the decision

that the robot is at that given location.

CHAPTERX

CONCLUSIONS AND FUTURE WORK

X.1 CONCLUSIONS

An intelligent database has been implemented in this thesis to be integrated to the

PSUBOT wheelchair system. The intelligent database is so called because it uses

knowledge-based method to perform its tasks. An autonomous device such as desired for

the PSUBOT, needs a central thinking unit which can make intelligent reasoning based on

learned facts and perceived information. In this thesis, the main tasks assigned to the

database were map management, global path planning and intelligent localization of the

wheelchair inside the building. All the routines were fully implemented at the exception of
-

the localization routine. However, the image matching used by this routine has been

implemented and tested. All the routines have been implemented such that they can

communicate with other modules of the system through file sharing and interrupts. The

main constraint of this development was that the computations and knowledge retrieval be

fast enough so that they could be earned on when the wheelchair is running at a reasonable

speed.

The thesis started with the definition of a world model. The model proposed was a

hierarchical description of a group of neighboring buildings. The main levels of the

hierarchy of the description of a building were the floor, the corridor, the room and the

object (observation point) on the corridor. This model maintained information on the

geometric disposition of items on the floor and other specific information on those items.

The map was subsequently used in finding a global route for the wheelchair. A relational

179

database and a set of management routines were implemented to keep the map data

The next step of the development was the implementation of global path planning. The

task was to compute a global optimum route for the wheelchair between two points of the

map. A major contribution of this work has been to combine knowledge-based method to a

regular graph method to add more flexibility and knowledge power to the process, and to

seek a speedup of the computations on PC. The methodology well suited the formulation of

the problem and gave good results. The program was able to retrieve the path fast enough.

An estimation of the speed of the wheelchair compatible with the speed of global path

planning allowed us to conclude that, at a speed of 0.13 to 1.13 mile/hr, the path could be

computed within a distance of lm when the wheelchair is running.

Image matching for localization was conducted with the method of correspondence

matching of images described as sets of straight lines. The results were satisfactory. It took

an average of 0.3 second to match two images with seven levels of hierarchy, and 2.5

seconds to recognize a location among four candidate locations. However, we have noticed

that matching of lines is ambiguous. Matching lines only can be meaningless when applied

to real scenes because two images representing unrelated scenes could match if me

matching relies only on the best similarity measure between the two images. Along with

this problem, template matching of images as implemented in this project will yield a lot of

memory to store the images.

The results obtained have proven that knowledge-based method can improve the speed

of global path planning and can help to integrate more knowledge capability to the

PSUBOT system through the database. For example, intelligent localization of the

wheelchair can be implemented. Simple queries judged useful for the user of the device

could be asked to the database. Such questions, could be, for example, "list of the room on

this hallway". The voice control will translate the questions into queries addressed to the

database and the result will be translated into sounds or special signals back to the user.

180

We judge that the small system implemented is satisfactory for this stage of

development and has met our expectations for the speed of processing of information.

X.2 FUTURE WORK

The present work was the beginning of integration of an intelligent database to the

PSUBOT system. Many questions have been raised, for example, image matching for

localization. Future work in this topic will include three main directions. Firstly, the

localization routine should be implemented and tested. The localization algorithm, which

we suggest to be knowledge-based, should make use of the structural matching of images.

A model of landmark will be chosen for each location as well as for the corridor. The

recognition of a location will be conducted by recognizing its template landmark in the

perceived image. The second horizon of extension of the intelligent database is to integrate

the management of voice or signal queries from the user of the device. The last horizon we

foresee is the solution of the stack limitation problem (encountered on PC) through special

software techniques in order to handle more recursion and backtracking.

REFERENCES

[1] A. M. Legate, EE406 Project Report submitted to Dr. Marek A. Perkowski,
Department of Electrical Engineering, Portland State University, Spring 1989.

[2] K. Stanton, "PSUBOT: System Overview and Path Planning," Proc.of
Northcon 91, pp. 285-290, Oct. 1-3, 1991.

[3] C. Espinoza, "A Low-to-medium Image Processing System for a Mobile Robot,"
Master's thesis, May 1991, Portland State University.

[4] R. L. Madarasz, L. C Heiny, R. F. Cromp and N. M Mazur, "The Design of an
Autonomous Vehicle for the Disabled," IEEE J. Robotics Automat., vol. RA-2,
no. 3, pp. 117-126, Sept. 1986.

[5] S. Rao and R. Kuc," INCH: an Intelligent Wheelchair Prototype," IEEE 15th
Annual Bioengineering Conference, pp.35-36, Aug. 1989.

[6] M. K. Habib and S. Yuta, "Development and Implementation of Navigation
System for an Autonomous Mobile Robot Working in a Building Environment with
its Real Time Application," University of Tsukuba. Inst. of Information Science
and Electronics. Intelligent Robot Lab., Tennoudai, Tsukuba, Ibaraki 305, Japan,
1989.

[7] G. Marque-Pucheu, J. Marting-Gallausiaux and G. Jomier," Interfacing Prolog
and Relational Database Management Systems," New Applications of Databases,
G. Gardarin and E. Gelenbe, Academic Press, 1984.

[8] K.S. Fu, "Syntactic Methods in Pattern Recognition," Mathematics in Science
and Engineering, Vol. 112, Academic Press, 1974.

[9] V. Capellini, A. Del Bimbo and A. Mecocci, "An Object Oriented Approach for
Object Recognition and Classification," ICASSP, vol.3, pp 1723-1726, 1989.

[10] W. Eric and L. Grimson, "On Recognition of Parametrized Objects," MIT Artificial
Intelligence Laboratory, 545 Technology Square, Cambridge, Mass. 02139.

[11] M. Hebert, "Building and Navigating Maps of Road Scenes Using an Active
Sensor," ROBOT, vol. 2, pp 1136-1142, 1989.

[12] E. Krotkov, "Mobile Robot Localization Using a Single Image," ROBOT, vol. 2,
pp 984-989, 1989.

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

182

N. Ayache and 0. D. Faugeras, "Building, Registering, and Fusing Noisy Visual
Maps," The International J. Robotics Research, vol. 7, no. 6, pp. 45-65,
Dec. 1988.

G. A. Boy, "Man-Machine Distributed Intelligence," IFAC Proceedings Series,
No. 4, pp. 279-285, 1989.

A. Kasinski and A. Hanczak , "Robot Control System with Distributed Intelligent
Functions," IFAC Proceedings Series, No. 4, pp. 337 - 341, 1989.

G. N. Saridis, "Intelligent Machines: Distributed vs Hierarchical Intelligence,"
IFAC Proceedings Series, No. 4, pp. 29 - 34, 1989.

N. Ayache and 0. D. Faugeras, "Maintaining Representations of the Environment
of a Mobile Robot," IEEE T. Robotics Automat., vol. 5, no. 6, pp. 804-819,
Dec. 1989.

C. Fennema, A. Hanson, E. Riseman, J. R. Beveridge and K. Kumar, "Model
Directed Mobile Robot Navigation," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, no. 6, Nov./Dec. 1990.

J.M Jansen and F.W Sijstennans, "Template Matching with an MIMD Computer,"
Proc. ICASSP, vol.3, pp 1727-1730, 1989.

J. L. Crowley, "Navigation for an Intelligent Mobile Robot," IEEE J. Robotics
Automat., vol. RA-1, no. 1, pp. 31-41, Mar. 1985.

0. Shmueli, S. Tsur and H. Zfira, "Rule Support In Prolog," Expert Database
Systems, Proceedingsfrom the First International Workshop, pp. 247-269, Edited
by Larry Kerschberg, 1986.

L. E. De Heer, "Plant Scale Process Monitoring and Control Systems:
Eighteen Years and Counting," Computer Aided Process Operations,
Edited by G. V. Reklaitis and H. D. Spriggs, Published by CACHE- ELSEVIER,
1987.

L. M. Waxman, J. J. LeMoigne, L. S. Davis, B. Srinivasan, T. R-Kushner,
E. Liang and T. Siddalingaiah, "A Visual Navigation System for Autonomous Land
Vehicles," IEEE J. Robotics Automat., vol. RA-3, no. 2, pp. 124-141, Apr. 1987.

T. 0. Binford, "Key Issues in Robot Vision," Artificial Intelligence Laboratory.
Stanford University, Stanford, California 94305, USA., 1989.

R. C. Arkin and R.R. Murphy, "Autonomous Navigation in a Manufacturing
Environment," IEEE T. Robotics Automat., vol. 6, no. 4, pp. 445-454,
Aug. 1990.

R. C. Arkin, "Navigational Path Planning for a Vision-based Mobile Robot,"
Robotica, vol. 7, pp 49-63, 1989.

R. C. Arkin, "Motor Schema-Based Mobile Robot Navigation," IEEE International
Conference on Robotics and Automation, pp. 264-271, 1987.

[28] A. Sanderson and N. J. Foster," Attributed Image Matching Using a Minimum
Representation Size Criterion," ROBOT, vol. 1, pp 360-365, 1989.

[29] R. K. Brail, J. W. Hughes and C. A. Arthur, "Transportation Services for the
Disabled and the Elderly," Published by Center for Urban Policy Research,
New Brunswick, New Jersey, 1976.

183

[30] M. Missikoff and G. Wiederhold, "Towards A Unified Approach For Expert And
Database Systems," Expert Database Systems, Proceedings from the First
International Workshop, pp. 383-399, Editor Larry Kerschberg, 1986.

[31] J. D. Ullman, "Principles Of Database And Knowledge-Base Systems," vol. I,
Computer Science Press Inc., 1988.

[32] I. Bratko, "Prolog Programming for Artificial Intelligence," International Computer
Science series, Addison-Wesley Publishing Company, 1987.

[33] C.J Date, "An Introduction To Database Systems," Vol. I, Fourth Edition,
Addison-Wesley Publishing Company, Reprinted June 1987 from Copyright 1986.

[34] K. Parsaye, M. Chignell , S. Khoshafian and H. Wong, "Intelligent Databases:
Object-oriented, Deductive, Hypermedia Technologies," Published by
John Wiley & Sons Inc., 1989.

(35] R. H. Katz, ''Transaction Management in the Design Environment," New
Applications of Databases, G. Gardarin and E. Gelenbe, Academic Press, 19840

[36] M. Gray, "Databases for Computer-Aided Design," New Applications of
Databases, G. Gardarin and E. Gelenbe, Academic Press, 1984.

[37] BORLAND International Inc. "PARADOX: Immediate Database Power," Guide to
The Paradox Personal Programmer, Ed. BORLAND, 1988.

[38] BORLAND International Inc. "PARADOX: Immediate Database Power," PAL
User's Guide, Ed. BORLAND 1988.

[39] BORLAND International Inc. "Turbo Prolog The Natural Language-of Artificial
Intelligence," Ed. BORLAND 1986

[40] R. Stengel and A. Niehaus, "Intelligent Guidance Headway and Lane Control,"
ACC, vol. 2, pp. 1059-1064, 1989.

[41] W. Clay Collier, "In-vehicle Route Guidance Systems Using Map Matched Dead
Reckoning," IEEE PLANS: 90 Position Location and Navigation Symposium
1990, vol.4, pp. 359-363, 1990.

[42] J. M. Richardson and K. A. Marsh, " Fusion of Multisensor Data," The
International J. Robotics Research, vol. 7, no. 6, pp. 79-96, Dec. 1988.

[43] A. Elfes, "Sonar-based Real World Mapping and Navigation," IEEE J. Robotics
Automat., vol. RA-3, no. 3, pp. 249-265, June 1987.

184

(44] E. L. Lawler, "Shortest Path and Network Flow Algorithms," "Discrete
Optimization I". Annals o.fDiscrete Mathematics. vol.4, P.L Hammer,
E.L.Johnson and B.H. Korte, North-Holland Publishing Company - Amsterdam,
New York, Oxford, 1979.

[45] R. Bergevin and M. D. Levine, "Extraction of Line Drawing Features for Object
Recognition," Proc. 10th IEEE Intern. Conf On Recognition, vol. I, pp. 496-501,
1990.

[46] 0. R. Duda and P. E. Hart, "Use of the Hough Transformation to Detect
Lines and curves in Pictures", Communications of the ACM, Vol. 15, No.1,
pp. 11-15, January, 1972.

[47] J. S. Lim, "Two Dimensional Signal and hnage Processing," Prentice Hall
Signal Processing Series, Prentice Hall, Englewood Cliffs, New Jersey, Ed. 1989.

[48] K. Sugihara, "Location of a Robot Using Sparse Visual Vnformation,"
IEEE 15th Annual Bioengineering Conference, pp.613-622, Mar. 1989.

NOll V:::>I'lddV dO S3.'ldWVXH

VXIaN3:ddV

186

A-1 AN EXAMPLE OF A MAP WITH TWO BUILDINGS

ll•A I

113

111

I :;
1

~
1

iX h T

LIO!

•

-• -0

811

~ "it @J ~ ~
F=====fco•"'

1
$~

fOUNT~IN

Q13

I~ ,,,
1602 ... ,.,

uo

, ..
PCA T: first floor

7
• r-

t
; I 138.D
0

HI

144A

Figure 40. Floor plan of the first floor of the building PCAT

140

/

r
.

..
~/"

..

:!
J.! I

'tr~!
c -6 j

I'll ".;)

.1.

I
~

l - I
, , ""

··-·

• • • .. •

iJ -- .. -~· 6"'~ f·~ • • .. •

.. • ..

Exitb2
.. .. :vi (1

Fi Ii !:'" I "° W

I= Oi: ~\'OZ
L_ t::=::;-'-

, ~ 72 f 902 I :ioz

PCAT: basement

Figure 41. Floor plan of the basement of the building PCAT.

Exitb 1 "Bridge" Br 1

PCAT (Basement)

--r;9
";:(
~

~

'B-----t ·;;;:
l:.Ll

f 4

First floor
Figure 42. Floor plan of the first floor of the building B 1.

187

.........
\
\

I
,
I

188

17 16
Exitb 1 ExitB 11 \l 11 • • 12

. . -----------.. --------·- ----------------· ExtJ,bl• • :

·M : 12• 18 :
27 c.ll•: • 19· 15•:

I I
26

24A • • : 13• 14
·--·--------------•28 •

, ,

,' ~ . . --------·-----------------·
,,,'' ~ Elvt ExitB12 13 14

WA

• I

simplified graph of the
basement of building
PCAT

simplified graph of the first
floor of building B 1

Figure 43. Problem formulation as an edged graph
(basement of PCA T and first floor of B 1) .

I
I 113!, ______________ !J~!'!___ 1203

I ----·
I

126e-------- -- --ellO
I I
I I

124 ·------- - -- - .. 128
• I

Elvt I
I I I

12 I - - - - - - - - - - .. -•19A
: - 112 : 136
: 19 ·- - - - - - - - - - '
I I
I I

10:r•••••••••··--·~13 : I

: 17 It - - - ----- - ::.t
184 : I 13~C

I
I

.. - - - - - - - - - - - - - - •14
I

I 15 16 I

170H e- - - - - - - - - - - - .e ---------• --------• ------------•- ---- ------•
: 1601 : : 146 140
I I I
I I I

I 154A ·- - -- - - - -· : 152
I • 170D

Simplified graph of the first floor of the
bulding PCAT

Figure 44. Problem formulation as an edged graph (first floor of PCA T).

A-2 KNOWLEDGE BASE FACTS

(of the problem in Example 1 of Chapter V, page 93)

building("house" ,"village", 1, "y", "y")
floor("fl l ","house", "fl l ", "y")
corridor("c l ", "fll ", "house",l,

0.75,0.3,0.04)
corridor("c2", "fll ","house", l,

1.0,0.3,0.04)
corridor("c3","fll ","house",l,

0.25,0.3,0.04)
corridor("c4","fll ","house",l,

3.0,0.3,0.04)
corridor("c5", "fl l ","house", 1,

0.25,0.3,0.04)
corridor("c6", "fl l ","house", l,

1.0,0.3,0.04)
corridor("c7","fll ","house",l,

0.25,0.3,0.04)
corridor("c8","fl1 ","house", l,

0.75,0.3,0.04)
corridor("c9","fll ","house",l,

3.0,0.3,0.04)
corrend("cl ","fll ","house","i8",

0.0, "ne", "il ",0.0, "se")
corrend(" c2", "fl l ","house", "i l ",

0.0, "ne", "i2 ",0.0, "se "}
corrend("c3 ","fl l ","house" ,"i2",

0.0, "se", "i9" ,0.0, "ne ")
corrend("c4","fll ", "house","i3",

0.0, "ne", "i2" ,0.0, "se")
corrend("c5 ","fl l ","house", "i3 ",

0.0, "ne", "i4" ,0.0, "se")
corrend("c6","fll ","house","i3",

0.0, "ne","i5",0.0, "se")
corrend("c7","fll ","house","i5",

0.0, "ne", "i6",0.0, "se")

object("Rm2","c9","fll ","house" ,1,1,
0.6, l,2,3,4,"Rm3 ")

object("Rm3", "c9","fll ","house",l,l,
0. 9, 1,2,3,4, "Rm4 ")

object("Rm4", "c9", "fll ","house", l, 1,
1.2, 1,2,3,4, "Rm5 ")

object("Rm5 ", "c9","fl1 ","house", l, 1,
l .58,l,2,3,4,"Rm6")

object("Rm6", "c9", "fl 1 ","house", l, 1,
1.8, l,2,3,4,"Rm7")

object("Rm7" ,"c9", "fll ","house", l, 1,
2.1, 1,2,3,4, "Rm8 ")

object("Rm8", "c9", "fll ","house", 1, 1,
2.4, 1,2,3,4, "Rm9")

object("Rm9","c9","fll ","house",l,l,
2.7 ,1,2,3,4,"RmlO")

object("Rml0","c9","fll ","house",l, 1,
2.98, 1,2,3,4, "Rm 10")

object("Rml l ","c9","fll ", "house",1,2,
2.98,1,2,3,4, "Rml2")

object("Rm 12","c9","fll ","house" ,1,2,
2.41, 1,2,3,4, "Rml3")

object("Rm 13 ", "c9", "fl l ","house", 1,2,
2.11, 1,2,3,4, "Rm 14")

object("Rm 14" ,"c9" ,"fll ","house" ,1,2,
l.81,l,2,3,4,"Rml5")

object("Rm 15" ,"c9","fll ","house" ,1,2,
1.51, 1,2,3,4, "Rm 17")

object("Rm 17", "c9", "fl 1 ","house", 1,2,
1.25, 1,2,3,4, "Rm 19")

object(" Rm 19", "c9", "fl l ","house", 1,2,
0.65, 1,2,3,4, "Rm20")

object("Rm20","c9" ,"fl l ","house", 1,2,
0.3, l,2,3,4,"Rm20")

189

object("Rm28","c4" ,"fll ","house",1,2,
2.2, 1,2,3,4, "Rm29")

object("Rm29","c4","fll ","house",l,2,
1.9, l ,2,3,4,"Rm30")

object("Rm30", "c4", "fl l ","house", 1,2,
1. 6, 1,2,3,4, "Rm31 ")

object("Rm31 ","c4","fll ","house",l,2,
1.4, 1,2,3,4, "Rm32 ")

object("Rm32","c4", "fll ","house", 1,2,
1.3,1,2,3,4, "Rm33 ")

object("Rm33 ", "c4", "fll ","house", 1,2,
1.0, 1,2,3,4, "Rm34 ")

object("Rm34", "c4", "fll ","house", 1,2,
0. 7, 1,2,3,4, "Rm35 ")

object("Rm35","c4","fll ","house",l,2,
0.4, 1,2,3,4, "Rm36")

object("Rm36", "c4", "fll ","house", 1,2,
0.1, 1,2,3,4,"i3")

object("Rm37","c5","fll ","house",l,2,
0.2, 1,2,3,4, "i3")

room ("Rm 1 ","fl l ","house", "Rm l ",
"Rm 1",1,0.45,0.25,[])

room("Rm2","fll ","house","Rml ",
"Rml ",l,0.45,0.25,
[obst(2.5, 1.57 , 1.2, 1.5),
ob st(1.5, 2.096, 1.2, 1.5])

room("Rm3","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm4","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

room("Rm7","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm8","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm9" ,"fll ","house","Rml ",
"Rm l ", 1,0.45,0.25,[])

room("RmlO","fll ","house","Rml ",
"Rml ",1,0.45,0.2, 0.5, [])

room("Rm19","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm20","fll ","house","Rml ",
"Rml ",l,0.45,0.25,[])

room("Rm21 ","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm22 ", "fll ","house", "Rm l ",
"Rml ", 1,0.45,0.25,[])

room ("Rm23", "fl 1 ","house", "Rm 1 ",
"Rml ",l,0.45,0.25,[])

room ("Rm24", "fl l ","house", "Rm 1 ",
"Rm l ", 1,0.45,0.25,[])

room("Rm25","fll ","house","Rml ",
"Rml ",l,0.45,0.25,[])

room ("Rm26", "fl 1 ","house", "Rm l ",
"Rm 1",1,0.45 ,0.25 ,[])

room("Rm27", "fl l ","house", "Rml ",
"Rml ", 1,0.45,0.25,[])

room("Rm28","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

room ("Rm29","fl1 ","house", "Rm 1 ",
"Rm 1",1,0.45 ,0.25 ,[])

room("Rm30","fll ","house","Rml ",
"Rm 1",1,0.45 ,0.25 ,[])

room("Rm31 ","fll ","house","Rml ",
"Rml ",l,0.45,0.25,[])

room("Rm32","fll ","house","Rml ",
"Rm 1",1,0.45,0.25 ,[])

room("Rm33","fll ","house","Rml ",
"Rml ",l,0.45,0.25,[])

room("Rm34","fll ","house","Rml ",
"Rml ", 1,0.45,0.25,[])

room ("Rm5", "fl l ","house", "Rm l ",
"Rm l ",1,0.45,0.25,[])

room("Rm6","fll ","house","Rml ",
"Rm 1",1,0.45 ,0.25 ,[])

room("Rm14","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

190

corrend("c8","fll ","house","i5",
0.0,"ne" ,"i7" ,0.0, "se")

corrend("c9","fll ","house", "i5",
0.0,"ne" ,"il ",0.0, "se")

object("il ","cl ","fll ","house"O,
2,0.0,1,2,3,1,"il")

object("i2","c2", "fll ","house",
0,2,0.0, 1,2,3, 1, "i2 ")

object("i3 ", "c4", "fl l ","house",
o,2,o.o,1,2,3,1,"i3")

object("i4", "c5" ,"fl 1 ","house",
0,2,0.0, 1,2,3, l, "i4")

object("i5", "c6", "fl l ","house",
o,2,o.o,1,2,3,1,"i5")

object("i6","c7" ,"fll ","house",
0,2,0.0, 1,2,3, 1, "i6")

object("i7","c8","fll ","house",
0,2,0.0, 1,2,3, 1, "i7")

room("Rm12","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

room("Rm13","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

room("Rm 16","fll ","house","Rml ",
"Rml ",1,0.45,0.25,[])

room("Rm17","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

room("Rm18","fll ","house","Rml ",
"Rm 1",1,0.45,0.25,[])

object("Rm 1 ", "c9", "fll ","house",1,1,
0.3, 1,2,3,4, "Rm2 ")

object("Rm 16" ,"c4" ,"fl l ","house",1,2,
1.5, 1,2,3,4, "Rm 18 ")

object("Rm 18" ,"c4" ,"fll ","house" ,1,2,
1.2, 1,2,3,4, "i4 ")

object("Elvl ","c2","fll ","house",3,2,
0.6, 1,2,3,4, "i2")

object("Elv2","c8","fll ","house",3,2,
0.5, 1,2,3,4, "i6")

object("Rm2 l ", "c3", "fl 1","house",1,2,
0.2,l,2,3,4,"Rm21 ")

object("Rm22", "c4", "fl l ","house", 1,2,
2.98, 1,2,3,4, "Rm23")

object("Rm23" ,"c4" ,"fll ","house",1,2,
2.9,l,2,3,4,"Rm24")

object("Rm24" ,"c4" ,"fll ","house" ,1,2,
2.8, 1,2,3,4,"Rm25")

object("Rm25", "c4", "fll ","house" ,1,2,
2.7,l,2,3,4,"Rm26")

object("Rm26", "c4", "fll ", "house",1,2,
2.5, 1,2,3,4, "Rm27")

room ("Rm 15","fl1 ","house", "Rm 1 ",
"Rm 1",1,0.45 ,0.25 ,[])

room("Rm35","fll ","house","Rml ",
"Rml ", 1,0.45,0.25,[])

room("Rm36","fll ","house","Rml ",
"Rml ",l,0.45,0.25,
[obst(3.0,l .047, 1.8,1.9)])

room("Rm37","fll ","house","Rml ",
"Rml ", 1,0.45,0.25,[])

object("i9", "c3", "fl 1 ","house" ,0,2,
0.0,1,2,3, 1, "i9")

191

SW~DO~dtlOS30CXXXIfl3Sd

HXION3ddV

B-1 THE GLOBAL PA TH PLANNER

MAIN PROGRAM (declarative)

INPUT:

- "path.dat" is the data file from the Navigator.The contents of this file are organized as

follows.

First record line: name of the map site

Second record line LOC(Ll ,Fl ,B 1)-starting point of the path

Third line LOC(L2,F2,B2) - ending point of the path

193

Note: L is the name of the location; F is the floor name; B is the building name and LOC is

the name of the domain entity that represents a location in the knowledge base.

- "*.dba" is the map knowledge base file. The"*" stands for the name of the map site.This

file contains all the information on the map described as a collection of facts (see Chapter

VI of the thesis document).

OUTPUT:

- "graph.fl" and "vertices.fl" are both files than contain respectively the information on the

edges and the vertices of the edged-graph of the floor. The graph is retrieved when there is

a need to compute the path between two points which belong to different corridors (the

Djistra's algorithm is used to compute the optimum path).

- "path.log" is a file containing the computed path. This file is sent back to the Navigator.

run:-
* open file "section.dat"
* read information:

(1) name of the map site Map
(2)names of the starting and destination points of the path to compute - Ll and L2.

* exist DOS file for the map database: Mbase = Map + ".dba"
* consult map database Mbase.
*CALL Gpath(S,D). /*compute the path between Ll and L2 */

ROUTINE Gpath: compute the global path

INPUT:
- starting point (Ll,Fl,B 1) and ending point (L2,F2,B2)

OUTPUT:
- computed path

/* case (li) */
Gpath(Ll,Fl,"xx",L2,F2,"xx"):- /* sub-case (1) */

*EXISTS facts object(Ll,Fl,B) and object(L2,F2,B),
* CALL path(Ll,Fl,B,L2,F2,B).

Gpath("xx","xx","xx",L2,F2,"xx"):- /*sub-case (2) */

194

* CALL Locate_me(Ll,Fl,B,l) /*compute the current location of the robot*/
*EXISTS a fact object(L2,F2,B)
*CALL path(Ll,Fl,B,L2,F2,B).

/*case (2i) */
Gpath(Ll,"xx","xx",L2,"xx","xx"):- /*sub-case (1) */

*EXISTS facts object(Ll,Fl,B) and object(L2,F2,B)
*CALL path(Ll,Fl,B,L2,F2,B).

Gpath("xx","xx","xx",L2,"xx","xx"):- /*sub-case (2) */
*CALL Locate_me(Ll,Fl,B,l)
* EXISTS fact object(L2,F2,B
* CALL path(Ll,Fl,B,L2,F2,B).

/*case (3i) */
Gpath(Ll,"xx","xx","xx",F2,"xx"):-

* EXISTS fact object(Ll,Fl,B) and
/* find a point at an elevator *I

*EXISTS fact object(Elvt,F2,B) which is an elevator
* CALL path(Ll,Fl,B,Elvt,F2,B).

/*case (4i) */
Gpath(Ll,Fl,"xx",L2,"xx",B2):- /*sub-case (1) */

*EXISTS facts object(Ll,Fl,Bl) and object(L2,F2,B2)
*CALL path(Ll,Fl,B,L2,F2,B).

Gpath("xx","xx","xx",L2,"xx",B2):- /*sub-case (2) */
*CALL Locate_me(Ll,Fl,Bl,1),
*EXISTS fact object(L2,F2,B2),
*CALL path(Ll,Fl,Bl,L2,F2,B2).

I* case (5i) */
Gpath(Ll,"xx",Bl,L2,"xx",B2):- /*sub-case (1) */

*EXISTS facts object(Ll,Fl,B 1) and object(L2,F2,B2)
* CALL path(Ll,Fl,B 1,L2,F2,B2).

Gpath(Ll,"xx","xx",L2,"xx",B2):- /*sub-case (2) */
*EXISTS facts object(Ll,Fl,Bl) and object(L2,F2,B2)
*CALL path(Ll,Fl,Bl,L2,F2,B2).

/*case (6i) */
Gpath(Ll,"xx",Bl,"xx","xx",B2):- /*sub-case (1) */

*EXISTS facts object(Ll,Fl,Bl)
*EXISTS a fact on bridge bridge(Bl,B2,Br),
*find the end points of the bridge (Xl and Yl)
* EXISTS fact object(L2,F2,B2)
*CALL path(Ll,Fl,Bl,L2,F2,B2).

Gpath("xx","xx","xx","xx","xx",B2):- /* sub-case (2) */
*CALL Locate_me(Ll,Fl,Bl,l),
* A_bridge(B l,B2,Br),!,

*EXISTS a fact on bridge bridge(Bl,B2,Br)
*find the end points of the bridge (Xl and Yl)
*EXISTS fact object(Yl,F2,B2)
* CALL path(Ll,Fl,Bl,Yl,F2,B2).

I* case (7i) */
Gpath("xx","xx","xx","xx",F2,B2):- /*sub-case (1) */

*CALL Locate_me(Ll,Fl,Bl,l),
* EXISTS fact object(Ll,Fl,B 1)
* EXISTS fact object(Elvt,F2,B2) which is an elevator
* CALL path(Ll,Fl,B,Elvt,F2,B2).

Gpath("xx",Fl,"xx","xx",F2,B2):- /*sub-case (2) */
*EXISTS object(Elvtl,Fl,Bl)J*find a point at an elevator on floor Fl*/
* EXISTS object(Elvt2,F2,B2)J*find a point at an elevator on floor F2*/
*CALL path(Elvtl,Fl,Bl,Elvt2,F2,B2).

/* case (8i) */
Gpath("xx","xx","xx",L,"zz","zz"):- /*sub-case (1) */

*CALL Locate_me(Ll,Fl,Bl,l),
* EXISTS fact object(Ll,Fl,B 1)
EXISTS fact object(L,F2,B2}/ find any object named L */
* CALL path(Ll,Fl,Bl,L,F2,B2).

/*case (Oi) */
Gpath(Ll,Fl,Bl,L2,F2,B2):--

* CALL path(Ll,Fl,Bl,L2,F2,B2).

I* ---PRIMITIVE PATH(S,Fl,Bl,D,F2,B2)
S and D designate the source and destination points respectively ---

* -- *
Level (1) : Top level of the algorithm - check if the points belong to the same building.

195

* --- */

path(S,Fl,Bl,D,F2,B2):- /*Sand Dare in different buildings*/
* EXISTS facts object(S,Fl,B 1) and object(D,F2,B2) such that B 1 <> B2
*CALL path_between_buildings(S,Bl,D,B2)

path(S,Fl,Bl,D,F2,B2):- /*Sand Dare in the same building*/
*EXISTS facts object(S,Fl,B 1) and object(D,F2,B2)
*CALL path_in_building(S,D,Bl) /*Bl= B2 */

path(S,Fl ,Bl ,D,F2,B2):-
* other case write message(Error or Data missing) /* error or data missing */

I* -- *
Level (2) : Path between points located in different buildings
* --- *I

path_between_buildings(X,B 1, Y ,B2):-
* EXISTS a bridge bridge(B l,B2,Br)

*find the end points of bridge Br (Xl and Yl)
/*compute path between the points X and Xl in building Bl */

*CALL path_in_building(X,Xl,Bl)
*CALL path_on_bridge(Xl,Yl,Bl,B2)

/*compute path between the points X and Xl in building Bl*/
*CALL path_in_building(Yl, Y,B2)

path_between_buildings(X,Bl,Y,B2):-/* no bridge between Bl and B2 */
*write message "A: There is not a path connecting the buildings"
*EXIT

path_on_bridge(S,D,Bl,B2):-/* S andD are the end-points of the same bridge*/
* check that S and D are the end points of a bridge between B 1 and B2
* retrieve the path between S and D

I* -- *
Level (2) : Path between two points located in the same building
* --- *I

/* case (i): S and D are in same building but on different floors */
path_in_building(S,D,B):-

196

* EXISTS a fact object(S,Fl,B) /*identify the floor on which Sia located*/
*EXISTS a fact object(D,,F2,B) /*identify the floor on which Sia located*/
*Fl<> F2
* CALL path_between_floors(S,Fl,D,F2,B).

/* case(ii): Sand Dare on same floor*/
path_in_building(S,D,B):-

* EXISTS a fact object(S,Fl,B) /*identify the floor on which Sia located*/
*EXISTS a fact object(D,,F2,B) /*identify the floor on which Sia located*/
*Fl= F2
* CALL path_on_floor(S,D,F,B).

I* --- *
Level (3): Path between two points located on different floors
* --- *I

path_between_floors(X,F 1, Y ,F2,B):-
/* not possible if no elevator connecting them */
* not a working elevator between Fl and F2
*write message: "A: No mean to go from the present floor Fl to floor F2.

path_between_floors(X,Fl,Y,F2,B):-
* X belongs to corridor Cl of floor Fl
* Y belongs to corridor C2 of floor F2
EXISTS a fact object(ElvFl,CEl,Fl,B), / ElvFl is elevator on floor Fl */
EXISTS a fact object(ElvF2,CE2,F2,B), / ElvF22 is elevator on floor F2 */
*CALL path_on_floor(X,ElvFl,Fl,B) /*compute the section of path on Fl*/
CALL path_on_floor(ElvF2,Y,F2,B)./ compute the section of path on F22
*I

I* --- *
Level (3) : Path between two points located on the same floor
* --- *I

I* case (ii): Sand Dare located on the same hallway*/
path_on_floor(S,D,F,B):- /* are end-points of the same corridor */

* S andf D are both the end points of a corridor C of floor F in building B.
* CALL path_on_corridor(S,D,C,F,B)

path_on_floor(S,D,F,B):-
* S belongs to corridor Cl of floor F
* D belongs to corridor C2 of floor F
*Cl =C2,
* CALL path_on_corridor(S,D,Cl,F,B)

/*case (i): Sand Dare located on different hallways*/
path_on_floor(S,D,F,B):-

* S belongs to corridor C 1 of floor F
* D belongs to corridor C2 of floor F
*Cl <>C2,
*CALL path_between_corridors(S,Cl,D,C2,F,B).

/* --- *
Level (4): computing the path
* --- *I

/* case (i): compute path on same corridor by simply listing all the
locations between S and D *I

path_on_corridor(X,Y,C,F,B):-
/* X and Y are the-located on the same hallway*/
* RETRIEVE all the locations that are between S and D

/* case (ii): compute path between two corridors by applying the Djisktra's
algorithm to find the shortest path between the end-points of the
two corridors then applying intelligence to eliminate the locations on the
starting and ending corridors which are not on the physical path.*/

path_between_corridors(S,Cl,D,C2,F,B):-

197

/* Path between corridors Cl C2 using the Djikstra's algorithm*/
*EXISTS facts corrend(Cl,F,B,El l, El2) /*find the end points of corridor Cl
*I
*EXISTS facts corrend(C2,F,B,E21, E22) /*find the end points of corridor
C22 */
*CALL GRAPH(F,B) /*build the edged-graph of the floor F */
* CALL DJIK(E l l ,E22)J* apply the djikstra's algorithm to find the shortest
path*/
*CALL Refine_path /*refine the path*/

198

- Implementation of the DDKSIRA's shortest path al~orithm

/**
* PROGRAM DJIK.C
* CALLED by the main program GPA TI:I
* Function to achieve: Find an optimum path between a given point of the
* vertex-graph using the Djikstra's shortest path algorithm.

***/

INPUT: DATA FILES
"graph.fl", /*data file for graph */
"vertices.fl", /* data file for vertices*/
"section.dat", /* data file source containing the name of source and destination
points*/

OUTPUT: DATA FILES
"section.log", /*data file containing the path between source and destination; this
file is

sent back to the main program GPATII */

DATA STUCTURES

/* an edge of the graph *I
STRUCTURE {

char vertexl[lO];
char vertex2[10];
float length;
float obfreq;
float tfreq;

} an_edge;

/* a vertex */
STRUCTURE {

/* endl of an edge */
/* end2 of an edge *I
/* length of edge */
/*obstacle frequency*/
1* travel frequency*/

char vertex_name[lO] ;
int number; /* has been added to identify vertex at step 1 *I
float dist_source; /*distance to start point*/
short visited; /* 1 if has been visited 0 if not */
int pathto[20]; /*pat from here to source node*/

} a_vertex;

an_edge edge[lOO];
a_ vertex vertex[200];
int number_of_edges = 0 ;
int number_of_vertices = 0;
int IS, IT; /*the label of the source and target nodes respectively*/
char source[lO], target[lO]; /*source node and target node names*/
int IKL ; /* the latest ending point with dist_source < infinite
*I

MAIN_PROGRAM

BEGIN:

*CALL Init() /*read data from file into data structures*/
* CALL step()(); /* step 0 of the method *I
* CALL step 1 (); /* step 1 of the method *I

END MAIN_PROORAM

/* INIT: read data from files into structures and variables*/

PROCEDURE Init()

BEGIN:
* READ read source node and target node from file "section.dat"

*READ edges of the file "graph.fl" into the edges structure
- count the number of edges

* READ vertices of the file "vertices.fl" into the vertices structure
- count the number of vertices
- initialize the path and distance to source for each vertex

END PROCEDURE

I* *************************** STEP 0 ********************************
step 0 of the algorithm:

here the distances of all the other nodes. The source node in this algorithm
is the destination point of the global path from the main program GPA TII
from the source node are calculated. If an edge links a node with the source
node its distance is finite otherwise it is a big number*/

PROCEDURE stepO()

BEGIN:
* find the labels of the source and target nodes (resp. Is and It)
* mark the source node as visited

(visited means here that the path from source to that node has been searched)
* now fill in the distances of other edges to the source node according to the
algorithm

- distance will be infinite if the node is not directly connected to the source by an
edge.

199

- distance will be equal to the measure of the edge connecting the node and source
point if they are connected by an edge.

* For each vertex of the graph set the source node as the start of the path from source to
that node

END PROCEDURE

/* ***************************** STEP 1 ************************** *I
PROCEDURE stepl() /*find the optimum path node by node*/

BEGIN

* set distance_min = le+6 (this is the value to represent infinite)
*find ikmin the vertex with minimum distance to source point: min_ value

* if (min_ value == le+6) then
II no path to remaining nodes of the graph
II END OF COMPUTATIONS

200

- print_optimum_path(); II print the computed optimum path in the "section.log" file
- END DJIKSTRA

*else
- for all the vertices connected to imin, copy the path from source to imin

into their path
* if all the vertices have been visited then

II END OF COMPUTATIONS
- print_optimum_path(); II print the computed optimum path in the "section.log" file
- END DJIKSTRA

else compute Step 1

END PROCEDURE

I* ***************************** STEP 2 ************************** *I
STEP 2 AND STEP 1 HA VE BEEN MERGED

PROCEDURE check_set() I* check if all the nodes of the graph have been visited *I

BEGIN:
* SCAN the list of vertices
* IF any one is not visited

1HENretumO
ELSE return 1

END PROCEDURE

I* Results of the DJIKSTRA' s Algorithm: write the optimum path distance and
route in the communication file *I

PROCEDURE print_paths()

FILE "section.log " , I* this is the communication file with the navigator *I

BEGIN:
* write the source and target nodes in the "section.log" file.
* write the length of the path from source point to target point into "path.log" file
*write the path from source node to destination (target) node as an ordered list of

node names. The order is node and its following in the path.
* close "section.log"

END PROCEDURE

B- 2 ALGORTIHM FOR 1HE DRIVER PROGRAM

The purpose of this program is to drive the whole database. It is the main

program that will be calling other routines. This program will be written in

assembler(i3806) or TC++. This program receives requests from the Navigator

module of the wheelchair.

Program DBASEDR(.C)

BEGIN:

. CALL /NIT /* initialize 1/0 ports */
LOOP:

. POLL port until status has changed

. DISABLE port for writing

201

. IF signal Compute _global _path is high/* request to compute global path */
1HEN. CALL GPATH /*compute optimum path: program GPATil.PRO */

. set signal_ Global _path _ready
ELSEO
END IF

. IF signal_ Locate_ me is high/* the request is to compute the current position */
THEN . CALL LOCATE /* Identify the current location : program

WCA IB.PRO*/
. set Position Jound /* the result is in the file LOCATION.DAT*/

ELSEO
END IF

. IF signal_ Room _info _read is high/* provide information on a room. */
1HEN . CALL ROOMINFO /* Retrieve information on the given room:

program ROOMINFO.PRO*/
. set Room _info _ready

. IF signal_ Room _info_ update /* request to update the information on a room, *I
1HEN . CALL RO(JMUPD /* Retrieve information on the given room:

program ROOMUPD.PRO*/
. set Room info updated - -

. IF signal_ What_ do _I _see _is is high
1HEN . CALL WHAT/SEE/* scene analysis: program WHA TISEE.PRO*/

. set What You see is
ELSEO
END IF

.GOTO LOOP
ENDDBASEDR

- - -

B- 3 - ALGORITIIM FOR 1HE MATCHING PROGRAM

Program MATCH.C

Computes the best correspondence matching between two images described as sets of
straight lines.

INPUT: file CANDIDA T.DAT contains the list of candidate locations
for the matching. This file is created in the program LOCA 1E used to find the
current position of the wheelchair inside the building

OUTPUT: file LOCATION.DAT contains the name of the location sucessfully
recognized
lrst line: status ---> 1 if a location has been recognized(>= 65%)

2otherwise
2nd line: name of the location (if matching successful)

BEGIN:

202

* Read the data of the sensor image (current image of the scene) into the data structures
* WHILE (not end of file CANDID AT.DAT) DO

read the name of a candidate location from file
read its image data file (template image) into the data structures
CALL MA TCH_IMAGES() /* match the current image and the template

image*/
IF value_of_matching >= threshold_ value

THEN swap (threshold_ value, value_of_matching)
ELSE()

END WHILE
IF (value_of_matching >= 65%) /* a best match is acceptable if the hit ratio is greater

of equal to a threshold of 65% */
THEN print the name of the location and the status "success" in the file

LOCATION.DAT
ELSE

print status "failure" in the file LOCATION .DAT
ENDMATCH.C

I* -- *I
Routine MATCH_IMAGES() f* match two images */

INPUT: the image data for both images
OUTPUT: global_hit_ratio

BEGIN:
* read N , number of levels in image CI (curtrent image)
*read M, number of levels in image TI (template image)
* I = 0; /* counter for the number of levels in image CI *I
* WHILE (I < N) DO

best_hit(I) = O; /*initialize the best hit ratio pointer*/
J = O; /*counter for the number of levels in image TI*/

* WHILE (J < N) DO
score = match_levels(I,J) /* the score is the correspondence matching hit

ratio:each line in level I is macthed to all the lines in level J
to determine a corresponding line if successful
score= 100 *matches/ (misses+ matches)*/

IF (score< best_hit(I)) THEN swap (score, best_hit(I))
ELSE()

END WHILE
END WHILE

* global_hit_ratio = [:r.1 (best_hit(I) * ro(I))] I :r.1 co(I)

ro(I) = 0.1 * (8 - I) is the weight assigned to level I
*return (global_hit_ratio)

RETURN

B- 4 - ALGORITHM FOR TIIE LOCALIZATION PROGRAM

The purpose of this program is to find the current location of the wheelchair

using information provided by vision image and sonar data as well as using

artificial intelligence methods . This program will be written in Turbo Pro log. This

program is called by the driver program of the database.

The input of the program is data about: the most recently visited location, the

time out parameter, the bypass parameter. The time out indicates the time after

which the program will be relinquished if the task is not completed. The bypass

parameter is used to bypass the location mechanism. If bypass is set to 1, the

program assumes that the current location is the same as the most recently visited

location. Otherwise if it is 0, there will be a need to locate the robot.

INPUT:

LASTLOC(Place,Floor,Building)

Program LOCA TE(.PRO)

BEGIN:

CULOC(L,F ,B)

. IF Bypass != 1 /*initialize 1/0 ports*/
THEN . CALL /NIT

Time_out Bypass

203

. start timer (initialized for the value of Time out)

. send signal STOP= 1 to the Navigator /*-the navigator has
to stop the wheelchair a bit to allow· processing of
information* I
. send signal CAMERA= 1 to the the camera(s) to snap
. read LASTLOC to identify the most probable current
corridor, floor

and building .
. CALL VISION (Time out2) & SONAR

(set signal Vision =1-& sonar =l),
LOOP:

WHILE Time_out not expired DO
IF EndVision != 1 & Time_out2 expired

TIIEN QUITLOOP
Mesage (Fail)
EXIT

IF EndVision != 1 & Time_out2 not expired/* ideal

204

case*/
THEN CALL EXTRACT !* Feature extractor*/

CALL MATCHING !* match the image
with locations in the neighborhood*/

Mesage (Success)
EXIT

Check Time_out
END LOOP

ELSE CURLOC := LASTLOC
END IF

ENDLOCAIB

l SWWOO~d tlO SHOO;:) a;:JIDlOS

:::>XIONHdclV

C-1 TIIE DRIVER ROUTINE

I**
*PROGRAM DBASEDR.C

*/

*VERSION: TURBO C++
*FUNCTION: This program is the driver program for the data.base
* It receives requests from the Navigator and sends
* messages to the Vision sub-module.

port 0 is the input port

bit 0: signal Compute _global _path; the request is to
compute the global path for the wheelchair.
bit 1: signal Locate _me; the request is to compute the current position
of the wheelchair.
bit 2: signal Room _info _read; provide information on a room.
bit 3: signal Room _info_ update; update information on a room.
bit 4: signal What_ do _I _see; describe the scene

port 1 is the output port
bit 0: signal Global _path _ready;
bit 1: signal Position Jound; the result is in the file LOCATION .DAT
bit 2: signal Room _info _ready
bit 3: signal Room _info_ updated
bit 4: signal What You see is; response to What do I see. - - - - --

#include <stdio.h>
#include <dos.h>

main()
{
int in_port = O; II serial port 0
int out_port = O; II serial port 1
unsigned message = OxOOOO;

while() { II loop for ever
outportb(l,OxOOOO) ; II reset output port to OxO
message = inport(); II read port 0 value i.e message from Na vi gator module
if ((message & OxOOOl) == OxOOOl){ II bit 0 set

}

system("GPA TH"); II call Gpath - compute global path
outportb(l,OxOOOl); II send signal path ready

if ((message & Ox0010) == Ox0010){ II bit 1 set
system("WCA IB"); II call WCA TE - compute position
outportb(l,Ox0010); II send signal position computed

}
if ((message & OxOOl 1) == OxOOl 1){ II bit 2 set

system("ROOMINFO"); II call ROOMINFO - find information on a room
outportb(l,OxOOl 1); II send signal Room_info_ready

if ((message & OxOlOO) == Ox0100){ II bit 3 set

206

207

system("ROOMUPD"); //call ROOMUPD - update information on a room
outportb(l,Ox0100); II send signal Room_info_ready

} if ((message & Ox0101) = Ox0101){ II bit 4 set
system("SCENE"); II call SCENE - scene recognition
outportb(l,Ox0101); II signal What_you_see_is

}
}

}

/* NOTE: toggling on and off may not work in a loop. The other processor may see
the signal off because it was busy at the time the signal was high; a solution
is to reset the output port to 0000 at the beginning of each cycle.

***/

C-2 THE MAP MANAGER MAIN PROGRAM

. **
' ; * FILE : MAP.SC *
; * VERSION : 3.0 *
; * DESIGNED BY : Dieudonne Mayi *
; * Function : Master's student in EE *
; * Date : June l, 1991 *
; * Project : Design of a database for the PSUBOT *
; * Supervisor : M. Perkowski *
; * Institution : POR1LAND STATE UNIVERSITY *
; * Function to achieve : MANAGE MAP DATA *
; * Language : PAL(BORLANDPARADOX 3.0) *
. ***********************"'**
' ;-------are in the procedure library map.lib------------------------
; Convert(table_in, table_out) , Quitmap(), Setprivedir(), Confirm()

AUTOLIB = "map" ; map library to be autoloaded

;------This is the main program to enter the map.------------------
PROC MapManager()
CANVAS OFF
CLEARALL CLEAR
PAINTCANV AS ATTRIBUTE 30 0,0,24,79
CANVAS ON
@1,30 ??"WELCOME TO THE PSUBOT\''MAP MANAGER\" II

@2,30 ??"***********************************"
@3,10
SETMARGIN 10
TEXT

* MENU *

* Tutorial * Useful information about the program *

* Enter map * Enter new map *

208

* Query map * Ask a simple query on a map *

* Read map * Retrieve information on a map *

* Update map * Add/delete infonnation on a map *

* Privatedir *Set default directory (to do first!) *

* ToDOS * Go to DOS Shell to issue command *

* Quit * Exit the map manager *

ENDTEXTConfinnO
WIIlLETRUE

CLEARALL CLEAR
SHOWMENU
"Privatedir" : "Set working directory, DO IT FIRST!",
"Tutorial" : "Useful infonnation about the program",
"Enter map" : "Enter new map data",
"Query map" : "Ask a simple query on a map",
"Read map" : "Read/report data on an existing map",
"Update map" : "Update an existing map",
"ToOOS" : "Go to DOS Shell to issue DOS command",
"Quit" : "or Press Esc to quit the map manager "

; the conversion of data to prolog will
; be done automatically
TO Choice_menu
SWITCH

CASE Choice_menu = "Enter map" :
@10,20 ?? "Please wait ... "
PLAY "enter"

CASE Choice_menu = "Update map":
@10,20 ?? "Please wait ... "
PLAY "update"

CASE Choice_menu = "Read map" :
@ 10,20 ?? "Please wait ... "
PLAY"read"

CASE Choice_menu = "Query map" :
@10,20 ?? "Please wait ... "
PLAY "query"

CASE Choice_menu ="Tutorial"
@10,20 ?? "Please wait ... "
PLAY "tutorial"

CASE Choice_menu = "Privatedir":
SetprivedirO

CASE Choice_menu = "ToDOS"
@10,20 ?? "Please wait ... "
DOSBIG

CASE Choice_menu = "Quit"
Quitmap()
QUl1LOOP

CASE Choice_menu = "Esc"

Quitmap()
QUITLOOP

OTHERWISE: LOOP
ENDS WITCH

END WHILE
ENDPROC
@10,20?? "Please wait ... "
;--------------------------- main script------------------------------
PLAY '1ibrary"
Map Manager()
CLEARALL CLEAR
@10,20 ?? "Leaving the PSUBOT\"MAP MANAGER\" ... "
SLEEP4000
BEEP BEEP
QUIT

C-3 TIIE GLOBAL PATH PLANNER PROORAMS

- DATABASE <KNOWLEDGE BASE) DOMAINS DECALRA TION AND UTil..ITY
CLAUSES

/***
* PROORAM UTIL.PRO *
* VERSION : BORLAND TURBOPROLOG 1.1 *
*Date : Sept 9, 1991 *
* Function : database domain declarations and utilities *
* routines *
***/

DOMAINS

LISTOFREAL = REAL* I* A list of real numbers */
LISTOFSYMBOL = SYMBOL* I* A list of symbols */
LISTOFINTEGER =INTEGER*/* A list of integers */

= obst(REAL,REAL,REAL,REAL) /*An obstacle in a room */
= obst* /*A list of obstacles*/

209

ob st
LISTOFOBST
LOC
LISTOFLOC

= LOC(SYMBOL,SYMBOL,SYMBOL) /*A location in the building*/

FILE

DATABASE

= LOC* /*A list oflocations */

= thefile; thelog; thepath;the_edges; the_ vertices; thedat; the_djik

/* The database predicates for the items of the map: bridge, building,floor, corridor, room,
corrend, object. These predicates will maintain the information on the map.*/

/* bridge(BRNAME,MNAME,BNAME1,EXIT1,BNAME2,EXIT2,LENGTH,TFREQ,
OBFREQ) */

bridge(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,REAL,

REAL,REAL)
/* building(BNAME,MNAME,NFLOORS,PBLC,ACFAC) */

building(SYMBOL,SYMBOL,INTEGER,SYMBOL,SYMBOL)

/* floor(FNAME,BNAME,FABOVE,ELVT) */
floor(SYMBOL,SYMBOL,SYMBOL,SYMBOL)

I* corridor(CNAME,FNAME,BNAME,TYPE,LENGTH,1FREQ,OBFREQ) */
corridor(SYMBOL,SYMBOL,SYMBOL,INTEGER,REAL,REAL,REAL)

210

/* corrend(CNAME,FNAME,BNAME,ENDlNAME,THET Al,ORIENT1,END2NAME,
THET A2,0RIENT2) */

corrend(SYMBOL,SYMBOL,SYMBOL,SYMBOL,REAL,SYMBOL,SYMBOL,
REAL,SYMBOL)

/* object(OBNAME,CNAME,FNAME,BNAME,TYPE,SIDEON,A 1DIST,CHAR1,
CHAR2, CHAR3,CHAR4,NEXTOB)*/

object(SYMBOL,SYMBOL,SYMBOL,SYMBOL,INTEGER,INTEGER,REAL,
INTEGER,INTEGER,INTEGER,INTEGER,SYMBOL)

/* room(RNAME,FNAME,BNAME,ENIDOOR,EXITDOOR,TYPE,LENGTH,WIDTH,
OBSIDISPO) */

room(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,INTEGER,REAL,
REAL,LISTOFOBST)

PREDICATES

moredata(FILE)
writeoblist(LISTOFOBST)
write_list(LISTOFSYMBOL)
member(SYMBOL,LISTOFSYMBOL)
append(LISTOFSYMBOL,LISTOFSYMBOL,LISTOFSYMBOL)

CLAUSES

/* read in-room information : [obst(xl,x2,x3,x4),obst(yl,y2,y3,y4),] if/
writeoblist([]):- write("obst(-1,-1,-1,-1)]). "). /* obst(-1,-1,-1,-1) is a dummy obstacle just

for the sake of the program */
writeoblist([obst(Xl,X2,X3,X4)1T]):-

write("obst(" ,X 1,' ,' ,X2,' ,' ,X3,' ,' ,X4,')',' ,'), writeoblist(T).

moredata(_).
moredata(File) :-not(eof(File)),moredata(File).

I* DEALING WITH LISTS OF SYMBOLS
Similar logic for other types of lists */

write_list([]). /* writes a list of symbols separated by spaces*/
write_list([HIT]):- write(H,'' "),write_list(T).

/* membership to a list of symbols */

member(X,[XI_]).
member(X,UT]):- member(X,T).

/* append one list to another list *I
append([] ,List,List).
append([XIL 1] ,List2,[XIL3]):- append(Ll ,List2,L3).

- MAIN PROGRAM

/**
*PROGRAM GPA TH.PRO *
* VERSION : BORLAND TURBOPROLOG 1.1 *
* DESIGNER : Dieudonne Mayi *
*Date : Oct. 28, 1991 *
* Project : Design of a database for a PSUBOT *
* Function : Compute global path for the PSUBOT *
* wheelchair *
**

----------------- PERFORMANc:ES ---------------------------------------
This program anwers requests of the kind: path([Ll,Fl,Bl],[L2,F2,B2]).
L: location; F: floor; B: building
The query grammar is composed of nine patterns of queries :

(Oi) basic primitive: [Ll,Fl,B 1]----[L2,F2,B2]
"Find path from location a Ll on a floor Fl of a building B 1 to a location L2
on a floor F2 in a building B2."

(li) (1) [Ll,Fl,xx]---[L2,F2,xx]; (2) [xx,xx,xx]---[L2,F2,xx]
Case(l): "Find path from a location Ll on a floor Fl to a location L2

on a floor F2 in this building."
Case(2): "Find path from HERE to a location L2 of a floor F2 in thfa bmHding."

(2i) (1) [Ll,xx,xx]---[L2,xx,xx]; (2) [xx,xx,xx]---[L2,xx,xx]
Case(l): "Find path from a location HERE(Ll,xx,xx) to a location L2

in this building."
Case(2): "Find path from HERE to a location L2 in this building."

(3i) [Ll,xx,xx]---[xx,F2,xx]
"Find a path from HERE(Ll,xx,xx) to floor F2 in this building.

(4i) (1) [Ll,Fl,xx]---[L2,xx,B2]; (2) [xx,xx,xx]---[L2,xx,B2]
Case(l): "Find path from a location Ll on a floor Fl to a location L2

in a building B2."
Case(2): "Find path from HERE to a location L2 in a building B2."

(5i) (1) [Ll,xx,B l]---[L2,xx,B2]; (2) [Ll,xx,xx]---[L2,xx,B2]
Case(l): "Find path from a location Ll in a building Bl to a

location L2 in a building B2."
Case(2): "Find path from a location Ll in this building to a location

L2 in a building B2."
(6i) (1) [Ll,xx,Bl]---[xx,xx,B2]; (2) [xx,xx,xx]---[xx,xx,B2]

Case(l): "Find path from a location Ll in a building Bl to a building B2."
Case(2): "Find path from HERE to a building B2."

(7i) (1) [xx,xx,xx]---[xx,F2,B2]; (2) [xx,Fl,xx]---[xx,F2,B2]
Case(1): "Find path from HERE to floor F2 of the building B2."

211

Case(2): "Find path from floor Fl of this buidling to floor F2 of
the building B2."

(8i) [xx,xx,xx]---[L,zz,zz]
"Find path from HERE to a location L on this map(building not indicated)."

Note: xx or zz means "not indicated". Each time the building of the starting location

212

of the path is not indicated, the program will try to find it either by retrieving the name
of the building from the information on that starting point or by LOCATING the current
position.
--- *I

NOWARNINGS
CODE=2500
INCLUDE "UTIL.PRO" /* Utilities and database declarations */

PREDICA1ES

Gpath(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)

Locate_me(SYMBOL,SYMBOL,SYMBOL)

path_on_bridge(SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path_between_buildings(SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path_in_building(SYMBOL,SYMBOL,SYMBOL)
path_on_floor(SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path_between_floors(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path_on_corridor(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)
path_between_corridors(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)

between(REAL,REAL,SYMBOL,SYMBOL,SYMBOL)
The_next(REAL,SYMBOL,REAL,SYMBOL,SYMBOL,SYMBOL)
exist_a_path_between(SYMBOL,SYMBOL,SYMBOL)
Elevator(SYMBOL,LISTOFSYMBOL) has_elevator(SYMBOL,SYMBOL)
route_from_djik(LISTOFSYMBOL)
belongs_to_cor(SYMBOL,SYMBOL,SYMBOL,SYMBOL,REAL)
Ends_of_a_corridor(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,REAL)
Ends_of_a_bridge(SYMBOL,SYMBOL,SYMBOL)
A_bridge(SYMBOL,SYMBOL,SYMBOL)

Refine_path(LISTOFSYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,
SYMBOL)

The_other_end(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)
The_nearest_end_from(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)

GRAPH(SYMBOL,SYMBOL)
write_ vertex(LISTOFSYMBOL)
write_listl(LISTOFSYMBOL,SYMBOL,SYMBOL)
substract(REAL,REAL,REAL)
Continuejob(SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL,SYMBOL)
run

GOAL run.

CLAUSES

run:- openread(thedat,"path.dat"),readdevice(thedat),readln(Map_name),
readtenn(loc,loc(L 1,F l ,B 1)), readtenn(loc,loc(L2,F2,B2)), closeFile(thedat),
concat(Map_name," .dba" ,MapDatabase), existfile(MapDatabase),
Continue.Job(MapDatabase,Ll,Fl,Bl,L2,F2,B2),!.

/*The structure of "path.dat" the communication file from Navigator
First record line: name of the map site
Second record line: loc(Ll,Fl,B 1) loc(L2,F2,B2) - starting and ending points
of the global path to compute.*/

run:- beep,closeFile(thelog),openwrite(thelog, "path.log"),writedevice(thelog),
write(3),nl,write("A: ERROR map database not found!"), nl,closeFile(thelog).

Continue_job(Mbase,L 1,Fl ,Bl ,L2,F2,B2):
consult(Mbase). /* load database in RAM *I

Continue.Job(Mbase,Ll ,Fl ,B 1,L2,F2,B2):-
openwrite(thelog, "path.log"), writedevice(thelog),
Gpath(Ll,Fl,Bl,L2,F2,B2)./*continue: compute path*/

I* ---------------- MAIN ROUTINE : Gpath ---------------------------
This routine answers the nine types of queries mentioned in the perfonnances of

213

the program. This routine takes the parameters on the starting and destination points
of the desired path and calls the primitive "path" which carries on the computation of
the path.

case (li) */
Gpath(Ll,Fl,"xx",L2,F2,"xx"):- /*sub-case (1) */

object(L 1,_,F 1,B ,_,_,_,_,_,_,_,_) ,object(L2,_,F2, B,_,_,_,_,_,_,_,_),
path(Ll,Fl,B,L2,F2,B).

Gpath("xx","xx","xx",L2,F2,"xx"):- /*sub-case (2) */
Locate_me(L 1,F 1,B),object(L2,_,F2,B,_,_,_,_,_,_,_,_),
path (L 1,F l ,B ,L2,F2,B).

/*case (2i) */
Gpath(Ll,"xx","xx",L2,"xx","xx"):- /*sub-case (1) */

object(L 1,_,F l ,B,_,_,_,_,_,_,_,_),object(L2,_,F2,B,_,_,_,_,_,_,_,_),
path(Ll,Fl,B,L2,F2,B).

Gpath("xx","xx","xx",L2,"xx","xx"):- /*sub-case (2) */
Locate_me(L l ,Fl ,B),object(L2,_,F2,B,_,_,_,_,_,_,_,_),
path(Ll,Fl,B,L2,F2,B).

/* case (3i) */
Gpath(Ll,"xx","xx","xx",F2,"xx"):-

object(L 1,_,Fl ,B ,_,_,_,_,_,_,_,_),
object(Elvt,_,F2,B,3,_,_,_,_,_,_,_)J* find a point at an elevator*/
path (L 1,F l ,B ,El vt,F2,B).

!*case (4i) */
Gpath(Ll,Fl,"xx",L2,"xx",B2):- /*sub-case (1) */

object(L l ,_,F 1,B l ,_,_,_,_,_,_,_,_),object(L2,_,F2,B2,_,_,_,_,_,_,_,_),
path(Ll,Fl,B l,L2,F2,B2).

Gpath("xx","xx","xx",L2,"xx",B2):- /*sub-case (2) */
Locate_me(L l ,Fl ,B 1),object(L2,_,F2,B2,_,_,_,_,_,_,_,_),
path(Ll,Fl,B 1,L2,F2,B2).

/*case (Si)*/
Gpath(Ll,"xx",Bl,L2,"xx",B2):- /*sub-case (1) */

object(L I ,_,Fl ,Bl,_,_,_,_,_,_,_,_) ,object(L2,_,F2,B2,_,_,_,_,_,_,_,_),
path(L l ,Fl ,B 1,L2,F2,B2).

Gpath(Ll,"xx","xx",L2,"xx",B2):- /*sub-case (2) */
object(L 1,_,Fl ,Bl ,_,_,_,_,_,_,_,_),object(L2,_,F2,B2,_,_,_,_,_,_,_,_),
path(L 1,Fl ,Bl ,L2,F2,B2).

I* case (6i) */
Gpath(Ll,"xx",Bl,"xx","xx",B2):- /*sub-case (1) */

object(Ll,_,Fl,B l,_,_,_,_,_,_,_,_),
A_bridge(B 1,B2,Br),! ,Ends_of_a_bridge(X 1, Yl ,Br),
object(Y 1,_,F2,B2,_,_,_,_,_,_,_,_),path(L l ,Fl ,B 1, Y l ,F2,B2).

Gpath("xx","xx","xx","xx","xx",B2):- /*sub-case (2) */
Locate_me(Ll,Fl,B 1), A_bridge(B 1,B2,Br),!,
Ends_of_a_bridge(Xl,Yl,Br),
object(Y 1,_,F2,B2,_,_,_,_,_,_,_,_),path(L l ,Fl ,B 1, Y 1,F2,B2).

!*case (7i) */
Gpath("xx","xx","xx","xx",F2,B2):- /*sub-case (1) */

Locate_me(L l ,Fl ,B 1),object(L l ,_,Fl ,Bl,_,_,_,_,_,_,_,_),
object(Elvt,_,F2,B2,3,_,_,_,_,_,_,_)J* find a point at an elevator*/
path(Ll,Fl,B,Elvt,F2,B2).

Gpath("xx",Fl,"xx","xx",F2,B2):- /*sub-case (2) */
object(Elvtl,_,Fl,Bl,3,_,_,_,_,_,_,_), /*find a point at an elevator*/
object(Elvt2,_,F2,B2,3,_,_,_,_,_,_,_), /*find a point at an elevator*/
path(Elvtl,Fl,B 1,Elvt2,F2,B2).

/* case (8i) *I
Gpath("xx","xx","xx",L,"zz","zz"):- /*sub-case (1) */

Locate _me(L l ,F 1,B 1),object(L l ,_,F 1,B l ,_,_,_,_,_,_,_,_),
object(L,_,F2,B2,_,_,_,_,_,_,_,_),!,/* find any object named L */
path(Ll,Fl,Bl,L,F2,B2).

/*case (Oi) */
Gpath(Ll,Fl,B 1,L2,F2,B2):- path(Ll,Fl,B 1,L2,F2,B2).

/*---PRIMITIVE path(Ll,Fl,Bl,L2,F2,B2)
This is the base query to compute the path between two locations of the map.
The locations have been clearly identified(parameters) by the caleer routine Gpath().
The base query path() computes the path using the hierarchical approach. Two main
cases are distinguished: "path_in_building()" and "path_between_buildings()".
The first one "path_in_building()" is called when the two locations are inside the
same building and "path_between_buildings()" if not. Ll,Fl,B 1 -->starting location

214

parameters L2,F2,B2 --> destination location parameters

* --- *
Level (1) : Top level of the algorithm - check if the points belong
to the same building.
* --- */

path(S,Fl,Bl,D,F2,B2):- /*Sand Dare in different buildings*/
bound(B 1),bound(B2),
B 1 <> B2,path_between_buildings(S,B 1,D,B2),nl,closeFile(thelog).

path(S,Fl,Bl,D,F2,B2):- /*Sand Dare in the same building*/
object(S,_,F l ,B 1,_,_,_,_,_,_,_,_),
object(D,_,F2,B2,_,_,_,_,_,_,_,_),
path_in_building(S,D,Bl),nl,closeFile(thelog). /*Bl= B2 */

path(S,Fl ,B 1,D,F2,B2):
bound(B l),
beep,beep,nl, write(3),nl, write(" A: Error or Data missing ! "),
closeFile(thelog).

I* --- *
Level (2) : Path between points located in different buildings

* -- *I

path_between_buildings(X,B 1, Y ,B2):-
Ends_of_a_bridge(X 1,B 1, Y l ,B2,Br,_),nl,
nl,path_in_building(X,Xl,B 1),nl,path_on_bridge(Xl, Yl ,B l,B2),nl,

path_in_building(Yl, Y,B2).

path_between_buildings(X,B l ,Y ,B2):-
beep,beep,write(3),nl,
write(" A: There is not a path connecting the buildings <<"),

write(Bl,">> and <<",B2,">>").

path_on_bridge(S,D,Bl,B2):-/* Sand Dare the end-points of the same bridge*/
Ends_of_a_bridge(S,B l,D,B2,BR,L),object(S,_,Fl,B l,_,_,_,_,_,_,_,_),
object(D,_,F2,B2,_,_,_,_,_,_,_,_),nl,write(1," ",L),nl,
write(S," ",Fl," ",B l),nl,
write(D," ",F2," ",B2),nl,
wn"te("**" ti II "**" II II "**") nl ' , ' , ' .
/*end of the protion of path */

/* --- *
Level (2) : Path between two points located in the same building

* --- *I

/*case (i): Sand Dare in same building but on different floors */
path_in_building(S ,D ,B):-

object(S, Cl ,Fl ,B ,_,_ ,_,_,_,_,_,_) ,object(D, C2,F2,B ,_,_,_,_,_,_,_,_),
Fl <>F2, path_between_floors(S,Fl,D,F2,B).

/* case(ii): S and D are on same floor */

215

path_in_building(S,D,B):-
object(S, Cl ,F ,B ,_,_,_,_,_,_,_,_) ,object(D, C2,F, B,_,_,_,_,_,_,_,_),
path_on_floor(S,D,F,B).

I* --- *
Level (3) : Path between two points located on different floors

* --- *I
path_between_floors(X,F l, Y ,F2,B):-

/* not possible if no elevator connecting them *I
not(exist_a_path_between(Fl,F2,B)),beep, beep,nl, write(3),nl,
write(" A: No mean to go from the present floor <<",Fl,">> to floor<<"),
write(F2, ">> ").

path_between_floors(X,Fl, Y ,F2,B):-
belongs_to_cor(X,Cl ,Fl ,B,_),belongs_to_cor(Y, C2,F2,B,_),

/* ElvFl is elevator on floor Fl */
object(ElvFl,CEl,Fl,B,3,_,_,_,_,_,_,_),

/* ElvF2 is elevator on floor F2 */
object(El v F2, CE2,F2,B, 3,_,_,_,_,_,_,_),

path_on_floor(X,ElvFl,Fl,B),nl, path_on_floor(ElvF2,Y,F2,B).

I* --- *
Level (3) : Path between two points located on the same floor

* --- *I
/* case (ii) : S and D are located on the same hallway */
path_on_floor(S,D,F,B):- /*are end-points of the same corridor*/

Ends_of_a_corridor(S ,D, C,F ,B),path_on_corridor(S ,D,C,F ,B), ! .

path_on_floor(S,D,F,B):-
belongs_to_cor(S,Cl ,F,B,_),belongs_to_cor(D,C2,F ,B,_),Cl = C2,

path_on_corridor(S ,D, Cl ,F ,B), ! .

/*case (i) : Sand Dare located on different hallways*/

path_on_floor(S,D,F,B):-
belongs_to_cor(S,C l ,F ,B,_),belongs_to_cor(D ,C2,F ,B ,_),

Cl <> C2, path_between_corridors(S,Cl,D,C2,F,B).

/* --- *
Level (4): computing the path
* --- *I

/* case (i): compute path on same corridor by simply listing all the
locations between Sand D */

path_on_corridor(X,Y,C,F,B):-
corrend(C,F ,B ,X,_,_, Y ,_,_),corridor(C,F ,B ,_,L,_,_),
nl write(2 " " L) nl write(X " " F " " B) nl ' ',,, ',, ,,,

The_next(O.O,X,L,C,F,B),write("**"," ","**"," ","**"),nl.

path_on_corridor(X,Y,C,F,B):-
corrend(C,F ,B, Y ,_,_,X,_,_),corridor(C,F ,B,_,L,_,_),

216

nl,write(2," ",L),nl,write(X," ",F," ",B),nl,nl,
The_next(L,X,0.0,C,F,B),write("**"," ","**"," ","**"),nl.

/* X and Y are not both end-points of the same corridor *I
path_on_corridor(X, Y ,C,F,B):-

belongs_to_cor(X,C,F ,B,Dist 1),belongs_to _cor(Y, C,F ,B,Dist2),
substract(Dist 1,Dist2,L),nl, write(2," ",L),nl, write(X," ",F," ",B),nl,
The_next(Distl,X,Dist2,C,F,B),write("**"," ","**"," ","**"),nl.

/* case (ii): compute path between two corridors by applying the Djisktra's

217

algorithm to find the path between the end-points of the two corridors.
knowledge-based inference is applied to eliminate the locations on the starting
and ending corridors which are not on the physical path. The Djikstra's algorithm
is implemented in BORLAND TURBO C++ *I

path_between_corridors(S,Cl ,D,C2,F,B):-
/* Path between corridors Cl C2 using the Djikstra's algorithm*/
The_nearest_end_from(S,E l, Cl ,F,B),
The_nearest_end_from(D,E2,C2,F ,B),
open write(the_djik," section.dat"),
writedevice(the_djik), write(El," ",E2),nl,closeFile(the_djik),
/*retrieve graph then apply DJIK */
GRAPH(F,B), writedevice(thelog),
system("DJIK"), path_on_corridor(S,El,Cl,F,B),
route_from_djik(Roughpath,L),The_other_end(Ex,E2,C2,F,B),
Refine_path(Roughpath,L,Ex,E2,D,C2,F ,B).

/* ******************** UTILITIES *************************** *I

I* find the end of the corridor nearest to the point X *I
The_nearest_end_from(X,El,C,F,B):-

belongs_to_cor(X,C,F,B,AtDist), corrend(C,F,B,El,_,_,E2,_,_),
corridor(C,F,B,_,L,_,_),AtDist < L/2,!.

The_nearest_end_from(X,E2,C,F,B):-
belongs_to_cor(X,C,F ,B,AtDist), corrend{C,F ,B,E l ,_,_,E2,_,_),
corridor(C,F ,B ,_,L,_,_).

I* find the other end Ex of a corridor C2 knowing one of them E2 */
The_other_end(Ex,E2,C2,F,B):-

corrend(C2,F ,B,Ex,_,_,E2,_,_), ! .
The_other_end(Ex,E2, C2,F ,B):-

corrend(C2,F ,B,E2,_,_,Ex,_,_).

Refine_path(Roughpath,L,Ex,E2,D ,C2,F ,B):
member(Ex,Roughpath),append(Path l ,[E2] ,Roughpath),
write{l," ",L),nl,write_listl(Pathl,F,B),Path_on_corridor(Ex,D,C2,F,B).

Refine_path(Roughpath,L,Ex,E2,D,C2,F ,B):-
write(l," ",L),nl,write_listl(Roughpath,F,B),Path_on_corridor(E2,D,C2,F,B).

I* - READ the path computed with the DJIKSTRA'S algorithm in TC++ -- *I
route_from_djik(Route,L):-

openread(thepath, "section.log"),
readdevice(thepath),readtenn(LISTOFSYMBOL,Route),
readreal(L),closeFile(thepath).

route_from_djik([]):-
closeFile(thepath),openread(thepath," section.log"),readdevice(thepath),
readln(RA W),closeFile(thepath),frontstr(S,RA W,RA Wl,RA W2),!,
RAWl = "ERROR",nl,write(3),nl,
write("A:ERROR, could not compute the path\n"), closeFile(thelog),exit.

/* ---------- Belonging of one point to a corridor ----------
(i) the point is an end-point to that corridor
(ii) the point is an object on that corridor
The distance to the first end-point is AtDist */

belongs_to_cor(X,C,F,B,AtDist):- /*case (i) */
object(X,C,F ,B ,_,_,AtDist,_,_,_,_,_),AtDist <>0.

belongs_to_cor(X,C,F,B,0):- /* case (ii) first end-point */
corrend(C,F,B,X,_,_,_,_,_).

belongs_to_cor(X,C,F,B,L):- /* case (ii) second end-point*/
corrend(C,F ,B ,_,_,_,X,_,_),corridor(C,F ,B ,_,L,_,_).

/* Test existence of a path between two floors Exists path between floors Fl and
F2 of building B possible path between two floors if they both have an elevator
*I
exist_a_path_between(F 1,F2,B):-

floor(Fl ,B,_,_) ,floor(Fl ,B,_,_),Elevator(B,L), member(Fl,L),
member(F2,L).

Elevator(B,List_of_floors):- /*-finds the list of floors having an elevator facility */
findall(Fl,has_elevator(Fl,B),List_of_floors).

/* Note: this may appear not complete but it is because usually in a building two
elevators connect the sme floors. Wings of different levels in a physical building
are considered as separate buildings*/

has_elevator(Fl,B):- /* there is a working elevator on the floor Fl of building B */
floor(Fl,B,_, "y").

has_elevator(Fl,B):-
floor(Fl,B,_, "Y").

I*-------------- FINDING END-POINTS OF a corridor or a bridge----- *I
Ends_of_a_corridor(El,E2,C,F,B):- /*endpoints of a corridor*/

corrend(C,F ,B,E2,_,_,E l ,_,_), ! .
Ends_of_a_corridor(El,E2,C,F,B):

corrend(C,F,B,El,_,_,E2,_,_),!.

Ends_of_a_bridge(X,B 1, Y ,B2,Bmame,Length):-
/* endpoints of a bridge between two buildings */

bridge(Bmame,Mname,B 1,X,B2, Y ,Length,_,_).

Ends_of_a_bridge(X,Bl,Y,B2,Bmame,Length):
bridge(Bmame,Mname,B2, Y ,B 1,X,Length,_,_).

218

A_bridge(Bl,B2,Bmame):- /*identifying a bridge*/
bridge(Brname,Mname,B l,_,B2,_,_,_,_).

A_bridge(B 1,B2,Brname):
bridge(Brname,Mname,B2,_,B l ,_,_,_,_).

/* ----- RETRIEVE the list of locations within distance interval [Dx,Dy] *I
The_next(Dx,Here,Dy,C,F,B):- /*ascending order of coordinate*/

Dx < Dy,belongs_to_cor(Here,C,F,B,Dh),Dh <Dy,
belongs_to_cor(Z,C,F,B,Dz), Dh < Dz,not(between(Dz,Dh,C,F,B)),
write(Z," ",F," ",B),nl, The_next(Dz,Z,Dy,C,F,B).

The_next(Dx,Here,Dy, C,F ,B) :-
Dx < Dy,belongs_to_cor(Here,C,F,B,Dh),Dh <Dy,
belongs_to_cor(Z,C,F,B,Dz), Dh = Dz,write(Here," ",F," ",B),nl,
write(Z," ",F," ",B),nl, The_next(Dz,Z,Dy,C,F,B).

The_next(Dx,Here,Dy,C,F,B):- /*descending order of coordinate*/

219

Dx > Dy,belongs_to_cor(Here,C,F,B,Dh),Dh >Dy,
belongs_to_cor(Z,C,F,B,Dz),Dh > Dz,not(between(Dh,Dz,C,F,B)), write(Z,"
",F," ",B),nl, The_next(Dz,Z,Dy,C,F,B).

The_next(Dx,Here,Dy,C,F,B):-
Dx > Dy,belongs_to_cor(Here,C,F,B,Dh),Dh >Dy,
belongs_to_cor(Z,C,F,B,Dz),Dh =Dz, write(Here," ",F," ",B),nl,
write(Z," ",F," ",B),nl, The_next(Dz,Z,Dy,C,F,B).

The_next(Dx,Here,Dy,C,F,B):- write("")./* else*/

/*Finds if there is any object in the distance interval [Dl,D2] */
between(Dl,D2,C,F,B):-

object(Ob,C,F,B,_,_,D,_,_,_,_,_),Dl < D, D < D2,!.
between(Dl,D2,C,F,B):-

object(Ob,C,F,B,_,_,D,_,_,_,_,_),D2 < D, D < Dl.

/*this predicate is used to locate the wheelchair. It calls an extrenal
program WCA TE. This program finds the current position of the robot in the
building. The program reads the name of the last location visited from the file
"PAIB.HIS" then uses it as a heauristic in the search. If the current location has
not been found, then it is assumed that the robot has not moved at all from the last
position. The current position found for the robot is in the file LOCATION.DAT.
The location is given as loc(L,F,B) example: loc("il ","fll ","pcat")

*I
Locate_me(L,F,B):-

system("LOCA TE"),openread(thedat,"location.dat"),readdevice(thedat),
readterm (loc,loc(L,F ,B)),closeFile(thedat).

/*routine to retrieve the graph for a floor*/
GRAPH(F,B):-

openwrite(the_edges,"edges.fl"), openwrite(thefile,"temp.fl"),
writedevice(the file), write('['), corridor(C,F,B,_,L, Tf,Obf),
corrend(C,F ,B ,E 1,_,_,E2,_,_), writedevice(the _edges),
write(El," ",E2," ",L," ",Tf," ",Obf),nl,

. d . (h f" l) . ("" E 1 "" I I "" E2 "" I ') f · 1 wnte ev1ce t e i e , wnte , , , , , , , , , , a1 .
GRAPH(F,B):- writedevice(the_edges),

write("**"," ","**"," ",0.0," ",0.0," ",0.0), closeFile(the_edges),
writedevice(thefile), write(''","**","",']'), closeFile(thefile),
openread(thefile, "temp.fl "),readdevice(thefile),
readtenn(LISTOFSYMBOL,Liste),
open write(the_ vertices, "vertices.fl"),
writedevice(the_vertices),write_vertex(Liste).

write_vertex(O):- /*write the vertex graph in the files "vertices.fl" and "edges.fl"*/
write("** "),closefile(the_ vertices),closeFile(the file),deletefile("temp.fl ").

write_ vertex([XIT]):-
not(member(X,T)).X <> "**",write(X," "),write_vertex(T).

write_ vertex([XIT]):-
write_ vertex(T).

/*write the computed path(from Djikstra's algorithm into PATii.LOO file*/
write_listl ([],F,B).
write_listl ([_J,F,B).
write_listl([HllT],F,B):-

belongs_to_cor(H 1, C,F ,B ,_) ,belongs_to_cor(H2, C,F ,B,_),
member(H2,T),path_on_corridor(Hl,H2,C,F,B),nl,write_listl(T,F,B).

- Implementation of the DJIKSTRA' s shortest path algorithm

220

/***
* PROGRAM DJIK.C *
*VERSION: TURBO C++ - *
* Function to achieve: Find an optimum path between a given *
* point of the floor to another point of the floor. The path algorithm *
* implemented is the Djikstra's shortest path algorithm *
***/

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>

II an edge of the graph
typedef struct {

char vertexl[IO]; II endl of edge
char vertex2[10]; II end2 of edge
float length; // length of edge
float obfreq; II obstacle frequency
float tfreq; II travel frequency

} an_edge;
II a vertex of the graph typedef
struct {

char vertex_name[IO];
short int number; II has been added to identify vertex at step 1
float dist_source;// distance to start point

short visited ; II 1 if has been visited 0 if not
short int pathto[20]; II path from here to source node

} a_vertex;

an_edge edge[lOO];
a_vertex vertex[200];
short int number_of_edges = 0 ;
short int number_of_ vertices = 0 ;
short int is, it; II the label of the source and target nodes respectively
char source[lO], target[IO]; II source node and target node names

FILE *pathfile, *pathdat;
// "section.dat" and "section.log" are the the communication files
II with the program GPA rn
II structure of "section.log" file:
11 lrst line: computed path as a list of locations exple ["il ","i2"]
// 2nd line: total length of the path

void main()
{

}

void Init(), stepO(), step 1 (); void
print_optimum_path();

pathfile = fopen("section.log","w");llfile: holds path back to the Navigator
pathdat = fopen("section.dat","r");ll file: source target of path

fscanf(pathdat, "%s%s ",source, target);
fclose(pathdat);
lnit(); II read data from file into structure
stepO(); II step 0 of the method
step 1 (); II step 1 of the method

II INIT: read data from files into structures and variables
void Init()
{ short int i = 0 ;

float xl = 0.0, x2 = 0.0, x3 = 0.0;
char x[lO], y[lO];

FTI...E *the_edges, *the_ vertices;
II (the_edges, "edges.fl"): data file for edges of the graph of the floor
II (the_ vertices,"vertices.fl"): data file for vertices of the graph ofthe floor

II check that the graph files exist; exit if one at least is missing
if((the_edges = fopen("edges.fl","r")) ==NULL II

(the_ vertices = fopen("vertices.fl","r")) ==NULL){
fprintf(pathfile,"ERROR, data file missing");
fclose(pathfile);f close(the _edges);fclose(the_ vertices);exit(O);

the_edges = fopen("edges.fl","r");
the_ vertices= fopen("vertices.fl","r");

221

II read edges of the graph from the data file
while (feof(the_edges) == 0) {

}

fscanf(the_edges,"%s %s %f %f %f',x,y,&xl,&x2,&x3);
edge[i].length = xl;
edge[i].obfreq = x2;
edge[i].tfreq = x3;
strcpy(edge[i]. vertex 1,x);
strcpy(edge[i].vertex2,y);
if (strncmp(x,"**",2) == 0){ break; }
else { ++i; }

number_of_edges = i ;

II read vertices of the graph
i = O;

}

while (feof(the_vertices) == 0) {

}

fscanf(the_ vertices, "%s", vertex[i].vertex_name);
vertex[i].number = i;
vertex[i].dist_source = le+6;
vertex[i].visited = O;
vertex[i].pathto[O] = -1;
vertex[i].pathto[l] = -1;

if (strncmp(vertex[i].vertex_name,"**",2) == 0){ break; }
else { ++i; }

number_of_ vertices = i ;
fclose(the_edges); fclose(the_ vertices);

222

II ***************************** STEP 0 *********************************
II step 0 of the algorithm : here the distances of all the other nodes
II from the source node are calculated. If an edge links a node with
II the source node its distance is finite otherwise it is a big number.

void stepO()
{ short inti= O,j,found = O;

II find source and target nodes indexes
for (i = O; i < number_ of_ vertices ; ++ i) {

if (strcmp(vertex[i].vertex_name, source)== 0) {
is= vertex[i].number; II the label of the source node

}
if (strcmp(vertex[i].vertex_name, target)== 0) {

it= vertex[i].number; II the label of the target node

II the source point is considered to have been visited now
vertex[is].visited = 1;
vertex[is].dist_source = O; II now fill in the distances of other edges to the source node

for (j = O; j < number_ of_ vertices; ++j) {
II for each vertex insert the source node as the start of

}
}

I /he path to that vertex.
vertex[j].pathto[O] = 2; II the beginning of the path list
vertex[j].pathto[l] =is; II beginning of the path
vertexfj].pathto[2] = -1; II end of the path is -1

if (vertex[is].number == vertexU].number) {;}
else {

}

i =0;
found =0;
while (i < number_of_edges && found!= l){

}

if(((strcmp(vertex[is].vertex_name,edge[i].vertexl) = 0) &&
(strcmp(vertexU].vertex_name,edge[i].vertex2)== 0)) II
((strcmp(vertex[is].vertex_name,edge[i].vertex2)= 0) &&
(strcmp(vertexfj]. vertex_name,edge[i]. vertex 1)= 0))) {

II source vertex and vertex j belong to edge i
vertexfj].dist_source = edge[i].length;
found= 1;

++i;

II***************************** STEP 1 ************************
void stepl()
{ short int imin, i, k, ptpt, j, test = O;

float minvalue = le+6 , Old_distance ; void
print_optimum_path(); short int check_set();

II find the vertex with minimum distance
for(i = 0; i < number_of_vertices; ++i) {

if (vertex[i]. visited == 1) {; }
else {

}

if (vertex[i].dist_source <= minvalue){
imin = i;
minvalue = vertex[i].dist_source;

if (minvalue == le+6){
II no path to remaining nodes of the graph
II END OF COMPUTATIONS

}
else {

print_optimum_path(); II print the computed optimum path in the
//"section.log" file

exit(O);

vertex[imin].visited = 1;
ptpt = vertex[imin].pathto[O]; II path tail pointer

223

vertex[imin].pathto[ptpt] = imin;
vertex[imin].pathto[ptpt + 1] = -1;
vertex[imin].pathto[O] = ptpt + 1 ;

II for all the vertices connected to imin, copy the path from source to imin
II into their path

for (j = O; j < number_ of_ vertices; ++ j) {
if (vertexU]. visited == 1) {; }
else {

i = O;test = O;

while (i < number_of_edges && test != 1) {
if (((strcmp(vertex[imin].vertex_name,edge[i].vertexl) == 0) &&

(strcmp(vertexfj].vertex_name,edge[i].vertex2) = 0)) II
((strcmp(vertex[imin].vertex_name,edge[i].vertex2) = 0) &&
(strcmp(vertexfj].vertex_name,edge[i].vertexl) = 0))) {

test = 1; II vertex j and vertex ik: belong to edge i
//(i) update distance to source

Old_distance = vertexfj].dist_source;
vertex[j].dist_source = min(Old_distance,minvalue + edge[i].length);

224

II if the following test is not made the retrieved path will be incorrect
II althought the distance to the source point will be correct

}
}

}

}
++i;
}

if (Old_distance != vertexU].dist_source){
//(ii) copy path of ik: into their path
for (k = O; k < 20; ++k){

vertexfj].pathto[k] = vertex[imin].pathto[k];

if (check_set() == 1){
II all the nodes have been visited
II END OF COMPUTATIONS

}

print_optimum_path(); II print the computed optimum path in the "section.log" file
exit(l);

else { stepl(); }
}

II check if all the vertices have been covered
II if yes this function will return 1 else it will return 0

short int check_set()
{ short int test= 1, i;

for (i = 0; i< number_of_ vertices ; ++i) {
if (vertex[i].visited == O){

return O;

else {test= test* 1; }
}
return(test);

}

II Results of the DJIKSTRA' s Algorithm: write the optimum path
II distance and route in the communication file "section.log"

void print_optimum_path()
{

short int i ,k;

II write the length of the path from source point to target point
II write path from source node to destination(target) node

225

fprintf(pathfile, "%c%c%s%c",'[', "",vertex[vertex[it].pathto[l]].vertex_name,'"');
for (k = 2; vertex[it].pathto[k] != -1; ++k) {

}

fprintf(pathfile, "%c%c%s%c ",' ,' ,' "', vertex[vertex[it]. pathto[k]] . vertex_name,' "');
}

fprintf(pathfile, "%c" ,']');
II write the length of the path from source point to target point
fprintf(pathfile, "\n%.4f\n",vertex[it].dist_source);
fclose(pathfile);

C-4 THE MATCHING PROGRAM

I**
* match.c

*
* Matching of two images. One of the two images represent the current
*image captured by sensors(cameras). The other one is a template image
* taken and stored at the learning statge.
* Each image is described as a set of lines. The image is described as
* a hierarchy with many levels, up to seven(maximum).
* Line segments are extracted using the Hierarchical Hough Transform *
* CALLED BY: LOCATE (program used to locate the robot by matching the
* current image to a sequence of images in the neighborhood

*
*INPUT: current image file "CURRENT.IM", and a file containing the names of
* the locations candidate of the matching "CANDIDAT.DAT'
* OUTPUT: a location in file "LOCATION.DAT'
***I

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define epsi_theta 0.26 I* 15 degrees*/

/* data structure for global information on an image described

as a hierarchy*/

typedef struct {
float Crho; /* rho conversion factor for the hierarchy */
float Ctheta; /* theta conversion factor for the hierarchy */
int numlevs; /* number of levels */
int Maxlen; /* length of the longest line in the hierarchy */
int Size; /* size of the image *I
int numT; /* total number of lines in the hierarchy */
int numH; /* total number of horizontal lines in the hierarchy */
int numV; /*total number of vertical lines in the hierarchy*/
int numN; /* total number of slanting lines in the hierarchy*/

}a_pyramid;

/* data structure for global information on level of the image
hierarchy */
typedef struct {

}a_level;

int levnum; /* level number */
int Maxlen; /* length of the longest line of the level *I
int numT; /* total number of lines of the level */
int numH; /* total number of horizontal lines in the level *I
int num V; /* total number of vertical lines in the level *I
int numN; /* total number of slanting lines in the level */
float score; /* score of the matching(sensor image) *I

/*data structure for a line of the image*/
typedef struct {

}a_line;

char Type[2]; /* type of the line(N, V ,H) *I
int levnum; /* level number the line belongs to*/
float ys ; /* y-coordinate of the center of the line *I
float xs ; /* x-coordinate of the center of the line *I
float rhos; /* rho : length of the normal vector of the line */
float thetas; /*theta : angle of the line with the x-axis */
float length; /* length of the line *I
float yw; /* length of the smallest rectangle containing the line */
float xw; /*width of the smallest rectangle containing the line*/

/* "current"(resp. "template"): current image hierarchy(resp. template image

226

hierarchy). "curlevs[7]"(resp. "templevs[7]"): table to keep the information on the levels
of the current(resp. template) image hierarchy.

*I

"curlines[200]"(resp. "templines[200]"): tables to keep information on the lines of the
images.

a_pyramid current, template;
a_level curlevs[7],templevs[7];
a_line curlines[200] ,templines[200];

void main()
{

FILE *locations, *place;

char location[IO], the_most_probable[lO];
void READ_CURRENT_IMAGE(),READ_TEMPLATE_IMAGE();
float MATCH_IMAGES(),threshold = 0.0, its_score,match_val;

/* input file contains the list of candidate locations
for the matching. This file is created in the program WCA TE used to
find the current position of the robot inside the building*/

locations= fopen("candidat.dat","r");

/* output file contains the name of the location recognized

*I

lrst line: status ---> 1 if a location has been recognized(>= 65%)
2 if not 2nd line: location if matching successful

place = fopen("location.dat", "w");

READ_CURRENT_IMAGE(); /*read sensor image in memory*/
while (!feof(locations)){
fscanf(locations, "%s" ,location);
if (strcmp(location, "**") == 0) {break;}
else {

227

READ_ TEMPLA TE_IMAGE(location);/* read template image in memory*/
match_ val= MA TCH_IMAGES();

}

if (match_ val >= threshold) {
threshold = match_ val;
strcpy(the_most_probable,location);
its_score = match_ val;

}
fclose(locations);
if (its_score >= 0.0){ /* the most probable */

fprintf(place,"%hd\n",l); /*indicator for success*/
fprintf (place,"% s ",the_most_probable);

}
else {

}
fclose(place);
}

fprintf(place,"%hd\n",2); /*failure to find a matching location*/

/*read the sensor image from files*/

void READ_CURRENT_IMAGE()
{ FILE *curim;

float rhos,thetas,ys,xs,yw ,xw ,length,crho,ctheta; int numlevs,
levnum,numH,num V ,numN ,numT; int
i,j,level,Size,Maxlen,maxlen;
char Type[2],dum00,dum01[2],dum02[2];
char dum 1 [126] ,dum2[126] ,dum3[126] ,dum4[126];

curim = fopen("current.im","r");

/* read sensor image from file *I
f gets(dum 1, 126,curim);f gets(dum2, 126,curim);
fgets(dum3,126,curim);fgets(dum4,126,curim);
dumOO = fgetc(curim);
fscanf(curim, "%f %f' ,¤t.Crho,¤t. Ctheta);

fscanf(curim, "%s%d%d%d%d%d%d%d" ,dumOl ,¤t.numlevs,¤t.Size,
¤t.Maxlen,¤t.numH,¤t.numV,¤t.numN,¤t.numT);

228

for (i = O; i< currentnumlevs; ++i){
fscanf(curim,"%2s%d%d%d%d%d%d",dum02,&curlevs[i].levnum,&curlevs[i].Maxlen,
&curlevs[i].numH,&curlevs[i].numV,&curlevs[i].numN,&curlevs[i].numT);

}

level= curlevs[i].levnum; /*level number*/
for(j = O; j< curlevs[i].numT; ++j){

}

curlines[j].levnum =level; fscanf(curim,"%2s%f%f%f%f%f%f%f',curlines[j].Type,
&curlines[j]. ys, &curlines[j].xs,&curlines[j].rhos,&curlines [j]. thetas,
&curlines[j] .length,&curlines[j]. yw ,&curlines[j] .xw);

curlines[j].rhos = curlines[j].rhos * current.Crho;
curlines[j].thetas = curlines[j].thetas * current.Ctheta;

fclose(curim);
}

/* Read template image from file */

void READ_ TEMPLA TE_IMAGE(char observ)

{ FILE *templim;

float rhos,thetas,ys,xs,yw,xw,length,crho,ctheta; int numlevs,
levnum,numH,num V ,numN ,numT; int ij,level,Size,Maxlen,maxlen;
char Type[2] ,dumOO,dumO 1 [2],dum02[2], template_file[l 3];
char duml[126],dum2[126],dum3[126],dum4[126];

/*copy template image file into temporary file*/

strcpy(template_file,observ);
strncat(template_file, ".im ",3);

templim = fopen(template_file,"r");

fgets(duml,126,templim);fgets(dum2,126,templim); fgets(dum3,126,templim);
fgets(dum4,126,templim);
dumOO = fgetc(templim);
fscanf(templim,"%f%f',&template.Crho,&template.Ctheta);
fscanf(templim,"%2s%d%d%d%d%d%d%d",dum01,&template.numlevs,&template.Size,

229

&template.Maxlen,&template.numH,&template.num V ,&template.numN ,&template.numT);
for (i = O; i< template.numlevs; ++i) {

fscanf(templim,"%2s%d%d%d%d%d%d",dum02,&templevs[i].levnum,
&templevs[i].Maxlen, &templevs[i].numH,&templevs[i].numV,&templevs[i].numN,
&templevs[i].numT);

}

level= templevs[i].levnum; /*level number*/
for(j = O; j< templevs[i].numT; ++j){

templines[j].levnum =level; fscanf(templim,"%2s%f%f%f%f%f%f%f',
templines[j].Type,&templines[j].ys, &templines[j].xs,&templines[j].rhos,
&templines[j]. thetas, &templines[j] .length,&templines[j]. yw ,&templines[j] .xw);

templines[j].rhos = templinesUJ.rhos * template.Crho;
templines[j].thetas = templines[j].thetas * template.Ctheta;

}

fclose(templim);
}

/******************* module to match two images ***********************
Each level of the current image is matched to a level in the template image.
A decision is made after each level has gone through the matching process.
Two levels will match if there can be found a satisfactory correspondence
between the lines of that level and the lines of the candidate level. Each level
has attached to it a weight The weight represents the importance of the level in
the matching process. The weights will be taken into account to estimate the overall
cost function of the matching.

***/
float MA TCH_IMAGES()
{

int i,j;
float cost_function = 0.0,cl, sum_of_weights = 0.0;
float match_levels(), partial_hit_ratio = 0.0, weight = 0.0;

for (i = O; i< currentnumlevs; ++i) {

}

curlevs[i].score = match_levels(i); /*match lines oflevel i*/
weight = 0.8 - (float) 0.1 *curlevs[i].levnum;
sum_of_weights +=weight;
cost_function += curlevs[i].score * weight;

c 1 = cost_ function;
if (sum_ of_ weights == 0) {return (0.0;}

cost_function = c 1 I sum_ of_ weights ;
return(cost_function);

}
}

/* ---------------- match two levels------------------*/
float match_levels(l)
int l;
{
short int match_lines();

int misses = 0, matches = O;
int ij,bool=O;
float hit_ratio;

for (i = O; i < curlevs[l].numT; ++ i){

}

if (curlines[i].levnum != 1) {;}
else {

bool = O;
for (j = O; j < templines.numT; ++ j){

if (match_lines(ij) = 1) {
bool = 1; break;

}
if (bool = 1) { matches += 1;}
else {misses += 1;}

if (curlevs[l].numT == 0) {return (1.0);}
else {

}
}

hit_ratio =(float) matches/curlevs[l].numT;
return(hit_ratio);

!* -----match two lines-----------*/
short int match_lines(ij)
int ij;
{
float delta_theta = 0.0,test, dl,delta_dist_centers = 0.0;
float delta_dist_ends_l = 0.0, delta_dist_ends_2 = 0.0;

epsi_centers =min (curlines[i].length,templinesU].length);
epsi_ends = epsi_centers;
delta_theta = curlines[i].thetas - templinesfj].thetas;
if (fabs(delta_theta) > epsi_theta) { return(O);}
else{

}
}

delta_dist_centers = pow(fabs(curlines[i].xs - templinesfj].xs),(double)2.0) +
pow(fabs(curlines[i].ys - templinesfj].ys),(double)2.0);
delta_dist_centers =(float) pow((double)delta_dist_centers,(double)0.5);

delta_dist_ends =(float) fabs((float)templines[i].length - curlines[j].length);
if (delta_dist_centers <= epsi_centers) {

if (delta_dist_ends <= epsi_ends){
return(l);

}
else { return(O);}

}
else { return(O);}

230

231

1 Only source codes of few programs have been listed in this appendix. All the source
codes of the database programs are listed in the User's Manual.

	An intelligent database for PSUBOT, an autonomous wheelchair
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1528327642.pdf.XgifH

