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CHAPfER I 

IN1RODUCTION 

CAD (Computer-Aided Design) has been broadly used in various areas. For a 

circuit designer, the usefulness of CAD is well established (e.g. [l]). Observing 

waveforms and frequency responses of voltages and currents without loading the circuit 

as a probe would in an actual circuit, predicting the performances of an IC (Integrated 

Circuit) at high frequencies without the parasitics a breadboard introduces, and doing 

noise, sensitivity, worstcase and statistical analyses are some of the examples where CAD 

can be utilized. 

The SPICE (Simulation Program with Integrated Circuit Emphasis) program has 

been used as an important computer-aid for the design of integrated circuits. The SPICE 

program provides a structure for a circuit simulation so that the behavior of a circuit, such 

as nonlinear DC (Direct Current), nonlinear transient, or linear small-signal AC 

(Alternating Current) analysis, can be performed. The basic, essential part of the SPICE 

program is its library of active-device models. Different models present different 

functions that can change the behavior of circuits. These models include the diode, 

bipolar junction transistor, MOSFET (Metal-Oxide-Semiconductor Field-Effect 

Transistor), and JFET (Junction Field-Effect Transistor). This paper focuses on the 

bipolar junction transistor model. 

The fundamental theory of the bipolar junction transistor models is based on the E­

M (Ebers-Moll) model. The E-M model is a nonlinear and first-order DC model. By 

introducing the second-order effects, Gummel and Poon [2] developed the Gummel-Poon 

model. These second-order effects are: 

1. The variation of current gain at low-current level; 

2. The variation of current gain at high-current level; 
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3. Basewidth modulation (Early effect); 

4. The variation of transit time with collector current. 

Since the non-ideal conditions have been considered and three effects (effect 2, 3, 

and 4) are treated together, the Gummel-Poon model is the most accurate and complete 

among the existing models. The Gummel-Poon model has been implemented in the 

SPICE program in order to present the terminal characteristics of the bipolar junction 

transistors. 

The Gummel-Poon model discussed in this paper is named GP2 model as 

implemented in the TEKSPICE program, developed by Boyle at Tektronix [3]. The GP2 

model is described by a number of equations based on the physics of the transistor device 

and some special functions. Basically, this intricate program is built by some fundamental 

elements, such as physical constants, operating conditions, and model parameters [I]. 

Temperature is one of the operating conditions deciding the environment in which the 

analysis is to be performed. To predict transistor performances at a different temperature, 

the temperature effects for model parameters are included in the program. These specific 

temperature-related model parameters are represented by equations. Throughout these 

equations, the temperature behavior of a transistor can be performed. 

The focus of this paper is on discussing the temperature effects of the specific 

parameters and the Early effect in the section of the charge-control model. All effects are 

described by equations. The purposes of this paper are to correct some shortcomings that 

were found in the present model and to obtain a more general, physical-meaning model 

based on related research. In order to obtain a better model, all equations based on the 

original definitions will be rederived. The rederived equations include some complex 

formulas. The simplified expressions instead of these complex formulas will be employed 

so that simpler rederived equations can be applied to the GP2 model. The process of the 

formation of the rederived equations and the application of the rederived equations will be 

presented in Chapter II. The rederived model is characterized by some added parameters, 

which will be discussed in Chapter III. Chapter III also contains a discussion of the 

drawbacks in the present model and a comparison of differences between the two models. 





CHAPTER II 

FORMUIATION AND APPLICATION 

In this chapter, the equations of specific temperature-related parameters and 

expressions in the section of the charge-control model will be rederived according to their 

definitions. There are eleven specific temperature-related parameters and expressions for 

Early effect in the charge-control model to be derived in each of the following sections. In 

each section the definition of a specific parameter is, first of all, represented by a physicaV 

empirical expression as a function of temperature. Secondly, the derivative with respect to 

temperature of this parameter will be calculated. Finally, the derivative expression will be 

integrated with respect to temperature with the actual temperature and the nominal 

temperature as limits, so that parameter expression can be written as a function of the 

nominal temperature. The actual temperature can be in the 250 K to 500 K range. The 

temperature dependent parameters under study are the junction saturation current, ideal 

forward and reverse current gains, built-in junction potentials in emitter-base, base­

collector, and collector-substrate junctions, zero-bias junction capacitances in emitter-base, 

base-collector, and collector-substrate junctions, and leakage saturation currents in emitter­

base and base-collector junctions. All these parameters are derived under the conditions of 

one dimension and zero applied bias. Next, expressions for the Early effect will be 

modified. The last, the application of the equations for the temperature dependent 

parameters and the Early effect in the GP2 model will be discussed. 

JUNCTION SATURATION CURRENT 

For an active npn transistor, if no recombination is considered, the total current is 

[4]: 



In = ls [exp (VJ:) - exp (VJ~>] 

where 

ls is the total saturation current and V, = ~T . 

q 2A 2 2 -
ls= E ni Dn 

QRI' 
and 

(XB 
QRI' = q AE Jo P(x) dx 

QRI' is total base charge and represented by bias dependent components. 

The total base charge is: 

where 

Let 

QBT = QBo + QE + Qc + Qp +QR 

QBO is the "built-in" total base charge and defined: 

(XB 
QBo = q AE Jo NA(X) dx 

Early effect and high-current effect, the second-order effects, are represented by 

QE, Qc, and Qp, QR respectively. QE and Qc are emitter and collector charge-

storage contributions. Qp and QR are the charges associated with forward and 

reverse injection of base minority carriers at the high applied bias. 

QRI' 
qb = QBo 

and substitution of this into the saturation current, ls. gives 

2 2 2 -
ls = q AE ni Dn = Is 

QBo qb qb 
where Is = q 2 Af n? Dn 

QBo 

5 

Is is the "built-in" junction saturation current used in the Gummel-Poon model and 

influenced only by one of the operating conditions: temperature. Therefore, the definition 
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of junction saturation current for an npn transistor is obtained. 

Definition 

where 

where 

q2A 2 2 -
ls = E nie Dn 

QBo 

2-
= q AE nie Dn 

1
XB 

0 

NA(X) dx 

2-
= q AE nie Dn 

Nf 
(2.1.1) 

AE is emitter area. nie is effective intrinsic canier concentration which havily-

doped effect is included. Dn is average diffusion coefficient of minority caniers in 

the base and assumed very weak position dependent N .f is dopant concentrations 

in the base. The minority caniers in the base are electrons. 

Both nie and Dn are temperature dependent and will be discussed below. 

The effective intrinsic canier concentration, nie, is defined [5,6] as follows, 

n· = 2 x ( 2n moK )3/2 x (me mh )3/4 x T 3/2 x exp (- q Eg } 
ie h 2 mo mo 2KT 

T 3/2 { q Eg } = 2.509 x 10 19 x (me mv )314 x ( 300 ) x exp - 2KT 
(2.1.2) 

me is the effective electron mass. mv is the effective hole mass. 

Eg is energy gap including the havily-doped effect. 

mo. K, and h are physical constants. 

me, mv [6], and Eg [7] are temperature dependent and shown as follows, 

me(T) = 1.045 + 4.5 x 10- 4 T (2.1.3) 

mv(T) = 0.523 + 1.4 x 10- 3 T - 1.4 x 10- 6 T 2 
(2.1.4) 



7 

Eg(T) = EGB - aT (2.1.5) 

where 

EGB = EG - Mg (2.1.6) 

Mg = 0.009 x [zoge ( +o) + ~ [loge ( +o) ] 2 
+ 0.5 ] 

(2.1.7) 

EG is energy gap at 0 K. Mg [7] is bandgap narrowing because of havily-

doped effect. N is dopant concentrations. No and a are constants. Mg is 

assumed temperature independent. 

The average diffusion coefficient of minority carriers, Dn, is defined [4]: 

D~ _KTµ 
n - n q (2.1.8) 

where 

µ,,, is mobility of minority carriers and temperature dependent. 

The expression of majority-carrier mobilities as a function of temperature is used to 

demonstrate the temperature behavior of minority-carrier mobilities. This expression of 

majority-carrier mobilities for electrons is [8]: 

where 

7.4 x 108 

µn(T ) = 88 + T 2.33 
Tn°· 51 1 + 0.88 N 

T L 
n = 300 

1.26 x 1011 Tn2.546 (2.1.9) 

(2.1.10) 

Up to this section, all formulas which are related to temperature for the junction 

saturation current are obtained. Next, the derivative with respect to temperature of the 

junction saturation current, equation (2.1.1 ), will be calculated. 
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a ls(T) = q AE [i5 (T) a n/;(T ) .2(T) a Dn(T) l 
i) T B x n x i) T + n,e x i) T 

NA 

= Js(T) x [ 1 a n/;(T) + 1 a Dn(T) ] 
n/;(T ) a T Dn(T) a T (2.1.11) 

Integration 

Equation (2.1.11) is integrated with Tnom and actual T as limits, I s(T ) and 

ls(Tnom) are at the actual temperature T and nominal temperature Tnom, respectively. 

1
/s(T) 1T 2 ~ 

dlL = d nie(T) + dDn(T) 

1.cr-> ls r- [ n,i(T) i5.(T) ] 
(2.1.12) 

I s(T ) is obtained by solving (2.1.12). 

[ 

2 ~ 

ls(T) = Js(Tnom) x 
2 

nie(T) I?_,n(T) ] 
nie(Tnom) Dn(Tnom) (2.1.13) 

Substitution of equations (2.1.2) and (2.1.8) into equation (2.1.13) gives 

ls(T) = ls(Tnom) x [ mc(T) mv(T) ]
312 x [_I_] 4 x [ µn(T) ] x 

mc(Tnom) mv(Tnom) Tnom µn(Tnom) 

[ 

( q Eg(T )) ] 

e i- ~ Efrnom)) 
'Xp K Tnnm (2.1.14) 

Replacement of equations (2.1.3-5) and (2.1.9-10) into (2.1.14) yields 

where 

ls(T) = ls(Tnom) x (MT )312 x (ratio)4 x (UTn) x exp (E~~ (ratio - 1)) 
(2.1.15) 

MT = ( mc(T) ) x ( mv(T ) ) =MET x MHT 
mc(Tnom) mv(Tnom) (2.1.16) 

[ 
1 - (ratio) - 1 

] 
MET= (ratio) x 1 - 1+4.306 x 10-4 Tnom 

(2.1.17) 
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Mlfl' = (ratio )2 x [I -(1 - (ratio)- 1) x [ 1 + 2.677 x 10- 3 Tnom + (ratio)- 1]] 

1 + 2.677 x 10 -3 Tnom - 2.677 x 10 - 6 Tnom 2 

(2.1.18) 

T 
ratio= Tnom 

UTn = µn(T) 
µn(Tnom) 

(2.1.19) 

I [(ratio) o.786 x ( Tnom 2.546 + 1.415 x 10-11 N ) - 1] \ 

= (ratio)-o.51 x 1 + T 
2
·
546 

+ 1.415 x 10-
11 

N 

\ [l + 3.071 x 10-6 (Tnom2.546 + 1.415 x 10-11 N )] I 
Tnom0.186 

EGB = EG - AEg and EG = 1.206 e V for silicon. 

V1 = KT 
q 

(2.1.20) 

(2.1.21) 

(2.1.22) 

The expression of the actual-temperature junction saturation current based on the 

nominal-temperature junction saturation current has been derived in equation (2.1.15). 

IDEAL CURRENT GAIN 

The current gain is the ratio of collector current to base current. In the Gummel­

Poon model the ideal current gain is applied in the ideal base-current component, which is 

derived from the E-M model. The forward or reverse current gain, /3 F.R• is defined as 

follows [4], 

where 

aF.R 
{3p,R= 1 -Np,R and aF,R = rar 

yis the emitter efficiency and ar is the transport factor. 
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If no recombination in the base is assumed, the transport factor is equal to one. 

Thus the current gain is only controlled by emitter efficiency. For an npn transistor, it 

equals: 

YF.R 
f3F.R""' 1- YF.R 

and 1 
YF,R =--Ip 

l+­
In 

Substitution of y F ,R into {3 F ,R gives 

where 

and 

where 

In 
/3F,R = Ip 

In is the eletron current injected into the base and IP is the hole current which flows 

into the emitter or collector. 

According to the definitions of In and Ip [9], the current gain is: 

[ (qVBE ,BC)- 1] 
I Is exp KT 

f3F.R = / = [ (qVBE ,BC)- 1] 
P Id exp KT 

2 2 2 -

ls 
=Id 

2 2 2 -
I 

- q AE,C nieB Dn 
s - QB'[ 

and 
q AEc nieEC Dp Id= • • 

QET,Cf 

AE,C is the area for emitter or collector, n k is the effective intrinsic concentration 

in the base. n ~E.c is the effective intrinsic concentration in the emitter or collector, 

QB'I is the total base charge and QET.cr is total emitter or collector charge. These 

total charges are obtained under the intermediate-voltage level. 

Dn is the diffusion coefficient for electron and Dp is the diffusion coefficient for 

hole. 
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Substitution of ls and Id into f3F.R gives 

2 -
f3F .R = nieB Dn QET,CI' 

2 -nieE,C Dp QB'J' 

The ideal current gain for forward or reverse is obtained. 

Definition 

The forward current gain is defined as follows, 

2 -
a _ nieB Dn QET 
PF - 2 -

nieE Dp QB'J' (2.2.1) 

Using the definition of effective intrinsic concentration and diffusion coefficient, 

equations (2.1.2) and (2.1.8), equation (2.2.1) becomes: 

where 

~(T) x QET x exp (- q EgB(T)) 

/3F(T) = ( q ~(T)} 
µp(T ) x QB'J' x exp - fr 

= ( QEf ) x ( µn(T) ) x e ( q &GE ) 
QBr µp(T ) xp KT (2.2.2) 

QET and QB'I are only dependent on bias. 

Jln and µ,, are mobilities of minority carriers and temperature dependent. The 

expression of majority-carrier mobilities as a function of temperature is used to 

demonstrate the temperature behavior of minority-carrier mobilities. The 

expression of majority-carrier mobilities for electrons in the base is defined in 

equation (2.1.9) and the expression for holes in the emitter is as follows [8]: 

1.36 x 10 8 

µp(T) = 54.3 + T 2.23 
Tno.57 l + 0.88 N 

2.35 x 10 17 Tn2.546 (2.2.3) 
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AEGE is the difference between the bandgap narrowing in emitter and in base. It 

is temperature independent and is equal to: 

AEGE = EGE - EGB = AEgE - AEgB (2.2.4) 

The reverse current is obtained by substituting the notations of collector into 

emitter's. 

f3R = ( Qcr ) x ( µ n(T ) ) ( q AEGC ) 
QB'I µ p(T ) x exp KT (2.2.5) 

where 

µ p(T ) is the hole mobilities in the collector. 

AEGC = EGC - EGB = AEge - AEgB (2.2.6) 

AEGC is the difference between the bandgap narrowing in collector and in base. 

The current gains as a function of temperature have been defined. 

Forward current ~ain 

Taking the derivative with respect to temperature of equation (2.2.2) gives 

'd f3p(T ) = ( QEI' ) x ( µn(T ) ) x exp ( q AEGE ) 
'd T QB'I µp(T ) KT 

x [-1 'd µn(T} 
µn oT 

_ q&GE _ _L a µ,(T) ] 

KT 2 µP oT 

a /3F(T) = f3p(I' > x [ 1 a µ.(T) 
'd T µn(T) 'dT 

_ q&GE _ I a µ,(I') ] 
KT 2 µp(T) o T 

(2.2.7) 

Calculating the definite integral with f3p(Tnom) and f3p(T) as limits gives 
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f,
/Jf{,T) 

d f3F(T) 

{3F(Tnom) /JF(T ) = 1µ,.(T) 1T d µn(T) _ qAEGE dT 
µn(T) KT 2 

µ,.(/'nom) Tnom 

1
µ,,(T) 

- d µp(T) 

µ,,(Tnom) µp(T ) 
(2.2.8) 

/3F(T) is obtained by solving equation (2.2.8). 

where 

µn(T ) µp(T ) ) - 1 
f3F(T) = /3F(Tnom) x ( µn(Tnom) ) x ( µp<Tnom' 

( qAEGE 1 ~1~)) 
x exp K ( T - Tnom 

= f3F(Tnom) x (UTn) x (UTp )- 1 x exp { AEGE ( 1 - ratio)} 
Vi (2.2.9) 

UTn is defined in equation (2.1.20). UTp is defined as follows, 

[
(ratio)0.886 ( Tnom 

2
·
546 

+ 7.589x10-
12 

N l 
UTp =(ratio)· o.57 x ( J + T 2.

546 + 7.589x!O -12 N ) • I 

[ 
1 

+ 1.895x 10 · 6 (Tnom 2-546 + 7 .589x10 · 12 N )] 

Tnom 0.886 

(2.2.10) 

The expression of the actual-temperature forward current gain based on the 

nominal-temperature forward current gain has been derived in equation (2.2.9). 

Reverse current ~ain 

The reverse current gain can be obtained by using the same procedures described in 

the section of the forward current gain. The expression for the reverse current gain is: 

/3R(T) = f3R(Tnom) x (UTn ) x (UTp )- 1 x exp (AEJ;C ( 1 - ratio>} 

(2.2.11) 
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where 

UTn and UTp are defined in equations (2.1.20) and (2.2.10). 

L1EGC is defined in (2.2.6). 

BUILT-IN WNCTION POTENTIAL 

When p-type and n-type semiconductors are brought into contact, the electron 

current and hole current will diffuse into opposite sides and, at the same time, the electric 

field is built opposing the flow of the currents. This built-in electric field causes a built-in 

potential barrier between the p-n junction. With the assumptions of the depletion 

approximation and the very small carrier concentration in the space-charge region, the 

built-in potential can be obtained by solving Poisson's equation. This built-in junction 

potential is the total potential change in the space-charge region from the edge of the 

neutral n-type region to the edge of the neutral p-type region. The well-known equation 

for built-in junction potential is defined in equation (2.3.1 ). 

where 

q, ;(T ) = KT x log e (Na Nd ) 
q n;2(T) (2.3.1) 

Na andNd are impurity concentrations of p-type and n-type materials respectively. 

n; is the intrinsic carrier concentration in the space-charge region. The intrinsic 

carrier concentration is temperature dependent and defined in equation (2.1.2), 

which is: 

n; = 2.5 x 1019 x (me )314 x ( mv )3'4 x ( 3~ )3
f2 x exp (- 2~ ) (2.3.2) 

where no bandgap narrowing is included in the expression of energy gap, i.e., 

EG = EGB in equation (2.1.6). 

The built-injunction potential as a function of temperature is obtained. 

Taking the derivative with respect to temperature of equation (2.3.1) gives 
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1 () n/(T) 

d 4> i(T ) _ KT l (Na Nd ) 1 n/(T ) d T 
--- - - x og x - -
()T q e n/(T) T loge(NaNd) 

n/(T) 

= 4> i(T) x r
loge(NaNd )-loge(n/(T))- T iJn/(T) ] 

n/(T) () T 

- ~- · - - , T lou,, ( n?·<T)) I 

Calculating the definite integral with 4> i (T) and 4> i (Tnom) as limits gives 

T 

1
tb;(T) 

d 4>· 

tb;(Tnom) 4>i

1 

= 

Tnom 

[

loge (Na Nd) - loge (n?(T )) _ L d n?(T) l 
n·2 dT 

I tfT 
T loge(NaNd) -T loge(n/(T)) 

= 1T [d [T loge (Na Nd ) - T loge ( n/(T))] ] 
Tnom T loge (Na Nd ) - T loge ( n?(T)) 

(2.3.4) 

By solving the integration, equation (2.3.4) becomes: 

then 

l ( 4> i(T) ) _ l ( T loge (Na Nd ) - T loge ( n?(T)) ) 
oge - oge 

4>i(Tnom) Tnom loge(NaNd )-Tnom loge( ni2(Tnom)) 

4> i(T) 

4> i(Tnom) 
=_I_ 

Tnom 

=_I_ 
Tnom 

T [loge ( n?(T)) - loge ( n?(Tnom))] 

Tnom loge ( NaNd )- Tnom loge ( n?(Tnom)) 

n?(T) ) ~T x loge ( n?(Tnom) 

4> i(Tnom) 

4> i(T) = T x 4> i(Tnom) - KT x loge ( n/(T) ) 
Tnom q n?(Tnom) (2.3.5) 
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Substitution equations (2.3.2), (2.1.16), and (2.1.5) into (2.3.5) gives 

<P i(T) = <P i(Tnom) x (ratio) - ~ V1 x loge (MT x (ratio)2 ) + EG (1 - ratio) 

(2.3.6) 

where 

V1 = ~T , MT is defined in equation (2.1.16-18). 

EG is the energy gap at 0 K. 

The expression of the actual-temperature built-in junction potential based on the 

nominal-temperature built-in junction potential has been derived in equation (2.3.6). This 

expression will be applied to three junctions which are emitter-base, base-collector, and 

collector-substrate junctions. They are shown below. 

Emitter-base junction 

vje = VIE x ratio - vref (2.3.7) 

where 

vje = <1> i(T ), VIE = <1> i(Tnom) (2.3.8) 

vref = i V1 x loge (MT x (ratio)2 ) - EG (1 - ratio) 
(2.3.9) 

Base-collector junction 

vjc = VIC x ratio - vref (2.3.10) 

where 

vjc = <1> i(T ), VIC = <1> i(Tnom) (2.3.11) 

vrejis defined in equation (2.3.9). 

Collector-substrate junction 

vjs = V JS x ratio - vref (2.3.12) 

where 
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vjs = 4>; (T ), VJS = 4>; (Tnom) (2.3.13) 

vrefis defined in equation (2.3.9). 

ZERO-BIAS JUNCTION CAPACITANCE 

In the previous section, the built-in electric field and potential were presented. 

When two types of semiconductor make contact, there is a maximum electric field located 

at the interface. This field is caused by the stored space charge on the basis of Gauss' law. 

The amount of the space charge is the same on the both sides of the junction where a 

capacitive behavior is shown under small-signal AC conditions. This capacitive behavior 

is represented by C (capacitance), the ratio of a differential space charge to differential 

voltage. It is: 

C . - dQ 
J - dV 

Capacitance can also be represented by the simple relationship for an arbitrarily 

doped junction and it is as follows [ 4], 

C· = Ae 
J Xd 

where 

A is area e is the dielectric constant of the semiconductor. Xd is the width of the 

space-charge region. 

By the definition of space-charge region [10], the capacitance can be written, 

C· - eA - eA _ el-m A _ Cj0 
J - K ym - , m - V m - V m 

c Kc em ( 4> i - VA ) Kc' 4> 7 (1 - _A_ ) ( 1 - _A_ ) 

4>; 4>; 

where 

Cj = CjO when the applied bias VA is zero. CjO is the zero-bias junction 

capacitance or built-in junction capacitance and it is: 



Cjo = el-m A 
K ' m 

c <1> i 

where 
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<1>; is built-in junction potential. Kd represents each of the three types of junctions, 

they are: 

Kc'= (qt )m, m = i forthe symmetrical abruptjunction. 

= (qt )m, m = ! for the one-sided abrupt junction. 

= ( ~ t , m = ~ for the linearly graded junction. 

m is the junction graded coefficient. 

The temperature dependent parameters for the zero-bias junction capacitance are the 

dielectric constant [11] and the built-injunction potential. Thus, the equation as a function 

of temperature for zero-bias junction capacitance is: 

where 

Cj0(T) = A e1
-m(T) 

Kc' <I>'['(T) 

e(T ) = 4~ exp (p T ) 

8 = 1.2711 x 10- 9 and p = 7. 8 x 10- 5 for silicon. 

8 = 1. 7153 x 1 o- 9 and p = 1.38 x 10- 4 for germanium. 

<1> i is defined in (2.3.1) and <1> i(T) = KT x loge (Na Nd ) 
q n/(T) 

Taking the derivative with respect to temperature of equation (2.4.1) gives 

a Cjo(T) = A e1-m(T) x [1 _ m a e(T) _ m a <1> i(T) ] 

a T Kc' <1> '[' (T ) e(T ) a T <1> ;(T ) a T 

(2.4.1) 

(2.4.2) 

(2.4.3) 
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= C j0(T ) x [1..:.m_ a e(T ) _ m a 4> i(T ) ] 
e(T ) a T 4> i(T ) a T (2.4.4) 

Calculating the definite integral with C,;o(Tnom) and C,;o(T) as limits gives 

d Cjo _ (1 - m ) dt: m d<I> i 1
Cjo(I') 1£(,T) 1<1J,~T) 

Cjo{Tnom) Cjo - £(Tnom) e - tlJ;(Tnom) 4> i 
(2.4.5) 

By solving the integration, equation (2.4.5) becomes: 

loge ( CC ;(T) ) ) = (1 - m ) X loge ( e(fT) ) ) - m X loge ( 4> i(T) ) 
jO nom nom 4> i(Tnom) 

-m 
Cj0(T) = ( e(T) )l-m x ( <l>i(T) ) 

Cjo(Tnom) e(Tnom) 4> i(Tnom) (2.4.6) 

Replacement of equations (2.4.2) into (2.4.6) gives 

where 

L_ 4> (T) -m 
C,;o(T) = C,;o(Tnom) x exp \P x (1 - m) x (T - Tnom)) x ( i ) 

4> i(Tnom) 

m is dependent on which doped junction is used. 

4> i(T) 

4> i(Tnom) 
has been derived in equation (2.3.6) in last section. 

(2.4.7) 

The expression of the actual-temperature zero-bias junction capacitance based on 

the nominal-temperature zero-bias junction capacitance has been derived in equation 

(2.4.7). This expression will be applied to three junctions which are emitter-base, base­

collector, and collector-substrate junctions. They are shown as follows. 



Emitter-base junction 

L ) vje -MJE 
cje = CJE x exp \P x (1 -MJE) x (T -Tnom) x ( VJE ) 

where 

cje = <1> i(T ), CJE = <1> i(Tnom) 

vje and VJE are defined in equations (2.3.7-8). 

MJE is the emitter-base junction grading coefficient. 

Base-collector junction 

where 

(p ) vjc -MIC 
cjc = CJC x exp x (1 - MJC) x (T - Tnom) x ( VIC ) 

cjc = <1> i(T ), CJC = <1> i(Tnom) 

vjc and VJC are defined in equations (2.3.10-11). 

MJC is the base-collector junction grading coefficient. 

Collector-substrate junction 

(p ) vjs -MJS 
cjs = CJS x exp x (1 - MJS ) x (T - Tnom ) x ( V JS ) 

where 

cjs = <1> i(T ), CJS = <1> i(Tnom) 

vjs and VJS are defined in equations (2.3.12-13). 

MJS is the collector-substrate junction grading coefficient. 

LEAKAGE SATURATION CURRENT 
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(2.4.8) 

(2.4.9) 

(2.4.10) 

(2.4.11) 

(2.4.12) 

(2.4.13) 

In the Gummel-Poon model the base current is defined in terms of a superposition 
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of ideal and nonideal-diode components [4]. In the active region of operation, the base 

current is dominated by the ideal-component current. Since the nonideal-component 

current is comparable to the ideal-component current at low bias [12], the base current is 

dominated by the nonideal-component current. The nonideal current results from a 

combination of space-charge-region recombination, surface recombination, surface­

channel recombination [13]. With careful processing, the recombination currents in the 

surf ace and surf ace-channel can be made very small [1] and the nonideal component can 

be simply represented by the recombination current in the space-charge region. This 

nonideal current is defined as follows [13], 

I nonideal = lo [exp (:~J -1] 

where 

Io is the leakage saturation current. 

n is the low current leakage emission coefficient. 

VA is applied voltage. 

The leakage saturation current is the current at zero bias and determined by the 

emission coefficient. It is defined as follows [14], 

where 

[
q n; WscR] 2/n Io= 

2-ro 

n; is intrinsic carrier concentration without the effect of havily-doped. 

WscR is the width of the space-charge region. 

't'o is lifetime where 't'o = 't' n = 't' pis applied in the low-level injection, and 't' n and 

't' p are the lifetimes of the electron- and hole- excess carriers in the space-charge 

region. 

Intrinsic carrier concentration, the width of the space-charge region, and lifetime are 

temperature dependent. Thus, the leakage saturation current is defined as follows, 



where 

lo(T) = [q ni(T )WscR(T )] 2/n 
2i-o(T) 

n,{T) is defined in equation (2.3.2) and is shown: 

ni(T) = 2.5 x 1019 x ( mc(T) )3/4 x ( mv(T) )3/4 x (_I_ )3
1
2 

300 

' m WscR(T) = Xd(T) = Kcem(T)<l>i (T) 

where Xd, K~, e, and <l> i are defined in the previous sections. 
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(2.5.1) 

(2.5.2) 

(2.5.3) 

Lifetime is not only temperature dependent and also dopant concentration 

dependent. It can be represented by Shockley-Read-Hall lifetime and is shown as follows 

[15], 

where 

i-SRH(N, T) = '! o(T) 
1 + N 

No 

N is dopant concentration and No is a constant. 

Taking the derivative with respect to temperature of equation (2.5.1) gives 

a lo(T) = i x q n;(T )WscR(T) x [-1- a ni(T) 

ar n i-SRH(T) ni(T) a T 

(2.5.4) 

+ 
1 a WscR(T) 1 a i-o(T) l -

WscR(T) a T i- o(T) ar 

[ 
a ni(T) 

= ; x I o(T ) ni(~ ) a T 
1 a WscR(T) 

+-~------
WscR(T) a T 

_l _ a i- o(T ) ] 
i-o(T) a T (2.5.5) 
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Calculating the definite integral with lo(T) and lo(Tnom) as limits gives 

n di o(T ) dni(T ) dW SCR(T ) 1
/o(T) ln.-(T) f,WsCR(T) 

lo(Tnom) 2 Io(T) = ni(Tnom) ni(T) + WscR(Tnom) WscR(T) 

i
'rfl_T) 

- d-ro(T) 

-ro(Tnom) 'C o(T ) 
(2.5.6) 

Io(T) is obtained by solving equation (2.5.6). 

n.. I o(T ) ni(T ) w SCR(T ) 'C o(T ) 
2 loge~ (T »=loge ( (T »+loge (W (T )) - loge ( (T » o nom ni nom scR nom 'Co nom 

[ 
Io(T) ]n/2 ni(T) WscR(T) ( -ro(T) )- l - x x 

lo(Tnom) - ni(Tnom) WscR(Tnom) -ro(Tnom) (2.5.7) 

Substitution of equations (2.5.2) and (2.5.3) into (2.5.7) gives the first two terms 

of the right-hand side of (2.5.7) and they are as follows, 

ni(T) = (MT )3/4 x <- T )3/2 x exp (EG (ratio - 1)) 
ni(Tnom) 'Tnom 2V1 

WscR(T) _ [ e(T) x '1>;(T) r 
WscR(Tnom) - e(Tnom) '1> i(Tnom) 

Equation (2.5.9) can be rewritten by referring equation (2.4.6) 

WscR(T) 
WscR(Tnom) 

- e(T) 
- e(Tnom) 

Cjo(Tnom) x --=-----
C j0 ( T) 

_ Cj0(Tnom) x exp (p x (T - Tnom)) 
- Cjo(T) 

Replacement of equations (2.5.8) and (2.5.10) into (2.5.7) gives 

(2.5.8) 

(2.5.9) 

(2.5.10) 

lo(T) = MT 312n x ratio 31n x exp (.EfL (ratio - l)} x [-C=-jo_(T_n_o_m_)]
2
'n 

Io(Tnom) n V1 C j0(T) 

xexp~x~ x(T -Tnom)} x( -ro(T) )-2/n 
-ro(Tnom' (2.5.11) 


