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CHAPTER 1
INTRODUCTION

CAD (Computer-Aided Design) has been broadly used in various areas. For a
circuit designer, the usefulness of CAD is well established (e.g. [1]). Observing
waveforms and frequency responses of voltages and currents without loading the circuit
as a probe would in an actual circuit, predicting the performances of an IC (Integrated
Circuit) at high frequencies without the parasitics a breadboard introduces, and doing
noise, sensitivity, worstcase and statistical analyses are some of the examples where CAD
can be utilized.

The SPICE (Simulation Program with Integrated Circuit Emphasis) program has
been used as an important computer-aid for the design of integrated circuits. The SPICE
program provides a structure for a circuit simulation so that the behavior of a circuit, such
as nonlinear DC (Direct Current), nonlinear transient, or linear small-signal AC
(Alternating Current) analysis, can be performed. The basic, essential part of the SPICE
program is its library of active-device models. Different models present different
functions that can change the behavior of circuits. These models include the diode,
bipolar junction transistor, MOSFET (Metal-Oxide-Semiconductor Field-Effect
Transistor), and JFET (Junction Field-Effect Transistor). This paper focuses on the
bipolar junction transistor model.

The fundamental theory of the bipolar junction transistor models is based on the E-
M (Ebers-Moll) model. The E-M model is a nonlinear and first-order DC model. By
introducing the second-order effects, Gummel and Poon [2] developed the Gummel-Poon
model. These second-order effects are:

1. The variation of current gain at low-current level,

2. The variation of current gain at high-current level;



3. Basewidth modulation (Early effect);

4. The variation of transit time with collector current.

Since the non-ideal conditions have been considered and three effects (effect 2, 3,
and 4) are treated together, the Gummel-Poon model is the most accurate and complete
among the existing models. The Gummel-Poon model has been implemented in the
SPICE program in order to present the terminal characteristics of the bipolar junction
transistors.

The Gummel-Poon model discussed in this paper is named GP2 model as
implemented in the TEKSPICE program, developed by Boyle at Tektronix [3]. The GP2
model is described by a number of equations based on the physics of the transistor device
and some special functions. Basically, this intricate program is built by some fundamental
elements, such as physical constants, operating conditions, and model parameters [1].
Temperature is one of the operating conditions deciding the environment in which the
analysis is to be performed. To predict transistor performances at a different temperature,
the temperature effects for model parameters are included in the program. These specific
temperature-related model parameters are represented by equations. Throughout these
equations, the temperature behavior of a transistor can be performed.

The focus of this paper is on discussing the temperature effects of the specific
parameters and the Early effect in the section of the charge-control model. All effects are
described by equations. The purposes of this paper are to correct some shortcomings that
were found in the present model and to obtain a more general, physical-meaning model
based on related research. In order to obtain a better model, all equations based on the
original definitions will be rederived. The rederived equations include some complex
formulas. The simplified expressions instead of these complex formulas will be employed
so that simpler rederived equations can be applied to the GP2 model. The process of the
formation of the rederived equations and the application of the rederived equations will be
presented in Chapter II. The rederived model is characterized by some added parameters,
which will be discussed in Chapter III. Chapter III also contains a discussion of the

drawbacks in the present model and a comparison of differences between the two models.



Lastly, conclusion will be made in Chapter IV.



CHAPTER II
FORMULATION AND APPLICATION

In this chapter, the equations of specific temperature-related parameters and
expressions in the section of the charge-control model will be rederived according to their
definitions. There are eleven specific temperature-related parameters and expressions for
Early effect in the charge-control model to be derived in each of the following sections. In
each section the definition of a specific parameter is, first of all, represented by a physical/
empirical expression as a function of temperature. Secondly, the derivative with respect to
temperature of this parameter will be calculated. Finally, the derivative expression will be
integrated with respect to temperature with the actual temperature and the nominal
temperature as limits, so that parameter expression can be written as a function of the
nominal temperature. The actual temperature can be in the 250 K to 500 K range. The
temperature dependent parameters under study are the junction saturation current, ideal
forward and reverse current gains, built-in junction potentials in emitter-base, base-
collector, and collector-substrate junctions, zero-bias junction capacitances in emitter-base,
base-collector, and collector-substrate junctions, and leakage saturation currents in emitter-
base and base-collector junctions. All these parameters are derived under the conditions of
one dimension and zero applied bias. Next, expressions for the Early effect will be
modified. The last, the application of the equations for the temperature dependent

parameters and the Early effect in the GP2 model will be discussed.

JUNCTION SATURATION CURRENT

For an active npn transistor, if no recombination is considered, the total current is

[4]:



_ VBE \ _ Vac
I Is[exp(vt) exp(Vt)
where

I is the total saturation current and V; = -I%T~ .

242 n2D Xz
Iy = i—gﬁ—— and Qsr = qAEf P(x) dx
0

QOpr is total base charge and represented by bias dependent components.

The total base charge is:
Qpr = Opo+Qk +Q0c +Q0r +0r
where

Opo is the “built-in” total base charge and defined:

Xp
OBo= qAg I Na(x) dx
0

Early effect and high-current effect, the second-order effects, are represented by
Ok, Oc, and OF, Qg respectively. Qf and Q¢ are emitter and collector charge-
storage contributions. Qr and Qg are the charges associated with forward and

reverse injection of base minority carriers at the high applied bias.

_ Osr
% = Qo

and substitution of this into the saturation current, I, gives

~ g o
q2AFn?Dn _ Is where Is = 12AE ni® Dy

I. =
: OQgo @ 9v Ogo

Is is the “built-in” junction saturation current used in the Gummel-Poon model and

influenced only by one of the operating conditions: temperature. Therefore, the definition



of junction saturation current for an npn transistor is obtained.

Definition
Is = q2AZ n?2 D, _ 44 n2 D, _qAgn2 D,
Ogro X NE
f NA(X) dx
0 (2.1.1)
where

Ag is emitter area. ny, is effective intrinsic carrier concentration which havily-

doped effect is included. D, is average diffusion coefficient of minority carriers in

the base and assumed very weak position dependent. N, f is dopant concentrations

in the base. The minority carriers in the base are electrons.

Both n;, and D, are temperature dependent and will be discussed below.

The effective intrinsic carrier concentration, n;, is defined [5,6] as follows,

qu)

= 2rmoK 32 me my 34 rap
nie = 2X( 3 ) x( )y xT X exp\- o

mo mop

=2.509 % 1019 (me m, ) x (55 2 exp ( ﬁ_’i"s_)

2KT (2.1.2)

where
m_ is the effective electron mass. m, is the effective hole mass.
Ej is energy gap including the havily-doped effect.
my, K, and h are physical constants.

mc, my [6], and E, [7] are temperature dependent and shown as follows,
m(T)=1.045+45x10"4T (2.1.3)

my(T)=0523+14x10"3T -1.4x10-6T12 (2.1.4)



Eg(T)= EGB - aT (2.1.5)
where

EGB = EG - AE; (2.1.6)

AE, = 0.009 X

N N 2
loge ( NO)+'\/[loge( Ny )l 03 2.1.7)

EG is energy gap at 0 K. AE, [7] is bandgap narrowing because of havily-

doped effect. N is dopant concentrations. Ng and ¢ are constants. AE, is

assumed temperature independent.

~

The average diffusion coefficient of minority carriers, D, is defined [4]:

5. - KT
n="g Hn (2.1.8)

where

Uy is mobility of minority carriers and temperature dependent.

The expression of majority-carrier mobilities as a function of temperature is used to
demonstrate the temperature behavior of minority-carrier mobilities. This expression of

majority-carrier mobilities for electrons is [8]:

7.4 x 108
_ 88 T 2.33
WAl ) = s T 088N
1.26 x 1017 1,2-346 (2.1.9)
where
= I
Tn 300 (2.1.10)

Up to this section, all formulas which are related to temperature for the junction
saturation current are obtained. Next, the derivative with respect to temperature of the

junction saturation current, equation (2.1.1), will be calculated.



dIs(T) _ qAg [~ InAT) . 9 Du(T) }
5T = N X D,,(T)><a T +n;;(T) x ST
In2T) . 1 aﬁ(T)]
= Is(T) x { 1 ie + — a
n2T) 9T Dur)oT 2.1.11)
Integration

Equation (2.1.11) is integrated with Tnom and actual T as limits, /s(T ) and
Is(Tnom) are at the actual temperature T and nominal temperature Tnom, respectively.

Is(T') T ~
f dls =f [dn,%(T) . an(T)}
Is(Tnom) Is Tnom niz (T ) D n(T )

(2.1.12)
Is(T ) is obtained by solving (2.1.12).
2TV\D
Is(T) = Is(Tnom)x[ ",e(T)lzn(T) ]
nXTnom) Dp(Tnom) (2.1.13)

Substitution of equations (2.1.2) and (2.1.8) into equation (2.1.13) gives
m(T)m(T) P~ [=L]*x [ HalT ) } y

mc(Tnom) my(Tnom) | Tnom Un(Tnom)

E(T
ol 25T
q Ey(Tnom)
K Tnom (2.1.14)

Is(T ) = Is(Tnom) x

Replacement of equations (2.1.3-5) and (2.1.9-10) into (2.1.14) yields
Is(T) = Is(Tnom) x (MT > x (ratio)* x (UT,) X exp (-Ii‘(fi (ratio - 1))
1
(2.1.15)

where

_ m(T) my(T ) —
MT = G mnom) ) Ga(Tnomy ) = MET * MHT (2.1.16)

MET = (ratio) x |1 -

1 - (ratio) "1 }

1 +4.306 x 10 "4 Tnom (2.1.17)



| (- Cario) Y x| 1+2.677 x 103 Tnom +(ratio)'1]}

MHT = (ratio)? x
142677 x10°3 Tnom - 2.677 x 10-6 Tnom 2

(2.1.18)
. __ T
rano = o om (2.1.19)
Un(T)
UT, = %" 7 _
" " Un(Tnom)
’ (ratioy 0786 (THOm>54 + 1415 X 101N 1“
_ (ratio) %5 x| 1 + & T 2346 + 1.415x 1011 N
- 3.071 x 10-6 (Tnom?2-546 + 1.415 x 10-11 N )
L Tnom9©-786
(2.1.20)
EGB = EG - AE, and EG = 1.206 ¢V for silicon. (2.1.21)
v, = K[
o (2.1.22)

The expression of the actual-temperature junction saturation current based on the

nominal-temperature junction saturation current has been derived in equation (2.1.15).

IDEAL CURRENT GAIN

The current gain is the ratio of collector current to base current. In the Gummel-

Poon model the ideal current gain is applied in the ideal base-current component, which is

derived from the E-M model. The forward or reverse current gain, ¢ 'R, 18 defined as

follows [4],

QFR
1-argr

ﬁp,R= and Crpr =Y Or

where

7is the emitter efficiency and o is the transport factor.
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If no recombination in the base is assumed, the transport factor is equal to one.

Thus the current gain is only controlled by emitter efficiency. For an npn transistor, it

equals:
Brr = —TE—’L and  ypg=—1)
1-7vrR Ip
1+-5~
I,

Substitution of ¥z ¢ into B  p gives

_1In
ﬂm—lp

where

1, is the eletron current injected into the base and / , is the hole current which flows

into the emitter or collector.

According to the definitions of I , and I , [9], the current gain is:

V
Is[exp(q BE.BC) 1] .

1

1 qVBE .BC) ] Iy

P 1 [ 17 5E,5C )

4 |exp T 1
and
_ q?Afc nZ D, _ q?Afc nkc Dy
Iy = and [Iz=
Opr Orrcr

where

Ag ¢ is the area for emitter or collector, n 25 is the effective intrinsic concentration

in the base. n ,%,E'C is the effective intrinsic concentration in the emitter or collector,
QOpr is the total base charge and Qg cr is total emitter or collector charge. These

total charges are obtained under the intermediate-voltage level.

D, is the diffusion coefficient for electron and 5,, is the diffusion coefficient for

hole.
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Substitution of I; and I into Br g gives

ﬂ - n;gﬂ Dn QET,CT
2 ~
RiegC Dp QBT

The ideal current gain for forward or reverse is obtained.

Definition
The forward current gain is defined as follows,
Br = nizB 57: Qer
nizz Dp Opr (2.2.1)
Using the definition of effective intrinsic concentration and diffusion coefficient,

equations (2.1.2) and (2.1.8), equation (2.2.1) becomes:

q Egp(T)
Un(T ) X QEr X exp |- —2—=
BF(T)z ( KT )

E (T
) % 0y x exp - 12ED)

() | xexp(qAEGE

= Hp(T) KT (2.2.2)

Qer
Osr )x(

where

QOgr and Qpr are only dependent on bias.

MUy, and L, are mobilities of minority carriers and temperature dependent. The

expression of majority-carrier mobilities as a function of temperature is used to
demonstrate the temperature behavior of minority-carrier mobilities. The
expression of majority-carrier mobilities for electrons in the base is defined in

equation (2.1.9) and the expression for holes in the emitter is as follows [8]:

1.36 x 108
= 543 T2
HolT) 7,057 +1 + 0.88 N

2.35 x 1017 T,2-546 (2.2.3)
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AEGE is the difference between the bandgap narrowing in emitter and in base. It

is temperature independent and is equal to:
AEGE = EGE - EGB = AE;s - AEgp (2.2.4)

The reverse current is obtained by substituting the notations of collector into

emitter’s.
Br = ()X (Bl )y x exp| L2225
Opr p(T) KT (2.2.5)
where
U p(T ) is the hole mobilities in the collector.
AEGC = EGC - EGB = AEy - AEg (2.2.6)

AEGC is the difference between the bandgap narrowing in collector and in base.
The current gains as a function of temperature have been defined.

Forward current gain
Taking the derivative with respect to temperature of equation (2.2.2) gives

OBHT) _  Qpr n(T ) (qAEGE)
P Y T SR d e

| L o Un(T) _qAEGE 1 aﬂp(T)
Hn oT KT?2 W 3T

d Br(T)
oT

| uT)  qAEGE 4 aﬂp(T):'

='6F(T)x[u,,(T) T 72 B0 37

(2.2.7)

Calculating the definite integral with Br{(Tnom) and BT ) as limits gives
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BT 1alT ) T
dBr(T) _ f dpnT) j qAEGE ..
setromy BT Juitnom BT KT
_ j ARV
u(T)
up(Tnom) P (2.2.8)
Br(T ) is obtained by solving equation (2.2.8).
) #a(T) K@) !
Br(T) = Br(Tnom) x ( Lin(Triom) ) x( Up(Tnom)
qAEGE 1 _ _1_
xexp( K (T Tnom)
= Br(Tnom) x (UT,) x (UT, )~ ! x exP(MVgti—( 1 -ratio )) 2.2.9)

where
UT, is defined in equation (2.1.20). UT), is defined as follows,

2.546 -12
[(mﬁo)om Tnom 254 + 7.589x10- 2 N -1]

T 2546 + 7,589x10- 12 N

{1 , 1:895x10-6 (Tnom 2346 + 7.589x10- 12 N )]
0.886

UT, = (ratio) %37 x {1+

Tnom
(2.2.10)

The expression of the actual-temperature forward current gain based on the

nominal-temperature forward current gain has been derived in equation (2.2.9).

Reverse current gain
The reverse current gain can be obtained by using the same procedures described in

the section of the forward current gain. The expression for the reverse current gain is:

Br(T ) = Br(Tnom) x (UT, ) x (UT, )1 x exp MVG—Q—(I—ratio)
t
(2.2.11)
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where

UT, and UT, are defined in equations (2.1.20) and (2.2.10).

AEGC is defined in (2.2.6).

BUILT-IN JUNCTION POTENTIAL

When p-type and n-type semiconductors are brought into contact, the electron
current and hole current will diffuse into opposite sides and, at the same time, the electric
field is built opposing the flow of the currents. This built-in electric field causes a built-in
potential barrier between the p-n junction. With the assumptions of the depletion
approximation and the very small carrier concentration in the space-charge region, the
built-in potential can be obtained by solving Poisson’s equation. This built-in junction
potential is the total potential change in the space-charge region from the edge of the
neutral n-type region to the edge of the neutral p-type region. The well-known equation
for built-in junction potential is defined in equation (2.3.1).

N; Ny )

. - KT a
PdT) = T4~ xloge(ni2(T) 231

where

N, and N, are impurity concentrations of p-type and n-type materials respectively.
n; is the intrinsic carrier concentration in the space-charge region. The intrinsic

carrier concentration is temperature dependent and defined in equation (2.1.2),
which is:

— 19 3/4 34, T 32 (_ ‘IEg)
n; 2510 x (m: Y x(my) x(300) X exp KT (2.3.2)

where no bandgap narrowing is included in the expression of energy gap, i.e.,
EG = EGB in equation (2.1.6).

The built-in junction potential as a function of temperature is obtained.

Taking the derivative with respect to temperature of equation (2.3.1) gives
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1 9nAT)
0DT) _ KT y 10, Na Na | nAT)AT
= (e f¥d 1 .
5T X og(n,-z(T) x |7 lg(NNd)
AT)
2
Ioge(NaNd)-Ioge(niz(T))_ T anl (T)
=D (T) x nXT) oT

T loge(NaNa ) - T loge(nXT))
(2.3.3)

Calculating the definite integral with @ ;(T') and @ ; (Thom) as limits gives

T
d n AT
&.r) loge (VaNa) - loge (AT ) - LE2T)
f do; _ 5
@ ; (Tnom) D; T log,(NaNy) -T log, (ni2(T )

Tnom

= ' l:d [T loge(NaNg ) - T loge(niz(T))]
Tnom L T 108e(NaNg ) - T loge(nXT))

(2.3.49)
By solving the integration, equation (2.3.4) becomes:
. - 2
log. ( D (T) ) = log,( T loge(NgNg )-T log.(n;%(T))
& ;(Tnom) Tnom log,(NaNg ) - Tnom log, ( niz(Tnom) )
Q(T) _ 1 T [loge(nXT))-log.(n(Tnom))]
@ (Tnom) Thom  Tnomlog,(NsNy ) - Tnom log,( n;%(Tnom) )
KT x 1o (____n,-Z(T)
g * %l
__T ) “(Tnom)
Tnom @ (Tnom)

then

. T KT M_
DUT) = o X @ (Tnom) - 7 log.( 2(Tnom)) (2.3.5)
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Substitution equations (2.3.2), (2.1.16), and (2.1.5) into (2.3.5) gives

D (T ) =D (Tnom) x (ratio ) - %V, X loge (MT x (ratio)? ) + EG (1 - ratio)
(2.3.6)

where

V= qu, MT is defined in equation (2.1.16-18).

EG is the energy gap at 0 K.

The expression of the actual-temperature built-in junction potential based on the
nominal-temperature built-in junction potential has been derived in equation (2.3.6). This
expression will be applied to three junctions which are emitter-base, base-collector, and

collector-substrate junctions. They are shown below.

Emitter-base junction

vje = VJIE X ratio - vref 2.3.7)
where

vie = @ (T),VIE = @ (Tnom) (2.3.8)

= 3V, x log,(MT 0)2) - EG (1 - rati

Vrd 2 t X Oge( X(ranO) ) G( ral‘lO) (2.3.9)
Base-collector junction

vjc = VJC X ratio - vref (2.3.10)
where

vjic = @ (T), VIC = @ (Tnom) (2.3.11)

vref is defined in equation (2.3.9).

vjs = VIS X ratio - vref (2.3.12)

where
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vis = @;(T), VIS = @;(Tnom) (2.3.13)

vref is defined in equation (2.3.9).

ZERO-BIAS JUNCTION CAPACITANCE

In the previous section, the built-in electric field and potential were presented.
When two types of semiconductor make contact, there is a maximum electric field located
at the interface. This field is caused by the stored space charge on the basis of Gauss’ law.
The amount of the space charge is the same on the both sides of the junction where a
capacitive behavior is shown under small-signal AC conditions. This capacitive behavior
is represented by C (capacitance), the ratio of a differential space charge to differential

voltage. Itis:

dg
“i=a

Capacitance can also be represented by the simple relationship for an arbitrarily

doped junction and it is as follows [4],

where

Ais area. €is the dielectric constant of the semiconductor. x,is the width of the

space-charge region.

By the definition of space-charge region [10], the capacitance can be written,

Cj= —EA_ - gA - glmA __Cp
Kevh klem@i-va)"  kjora-Yayr  q-Yaym
i D;

where

Cj = Cj when the applied bias Vj is zero. Cjp is the zero-bias junction

capacitance or built-in junction capacitance and it is:
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1-m
Cio = £ : A
T ko7
where

& ; is built-in junction potential. K, represents each of the three types of junctions,

they are:
K: =( -(}4? Y, m —;— for the symmetrical abrupt junction.
=( 2 )", m =L for the one-sided abrupt junction.
gN 2
= Z;al Y, % for the linearly graded junction.

m is the junction graded coefficient.
The temperature dependent parameters for the zero-bias junction capacitance are the
dielectric constant [11] and the built-in junction potential. Thus, the equation as a function

of temperature for zero-bias junction capacitance is:

Co(T) = A e1"™(T)
K @i(T) (2.4.1)
where
S(T) = exp (p T ) (2.4.2)

8=1.2711 x 10°? and p = 7.8 x 10" for silicon.

8=1.7153 x 10-? and p = 1.38 x 10-4 for germanium.

NNd)

@ is defined in (2.3.1) and @ (T ) = KL x log .
q #(T) (2.4.3)

Taking the derivative with respect to temperature of equation (2.4.1) gives

ACHT) _Ae™T) (1., 3&T) m  9®LT)

oT k,otT) |&T) aT D(T) T
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l.moal) B(D,(T)]

= Cjo(T ) X
o [E(T)BT D) T

(2.4.4)

Calculating the definite integral with Cjo(Tnom) and Cjo(T ) as limits gives

Cjo(T) eTl) ®LT)
I’ d Cyo _j (1-m)de f mdd;

C; o(Tnom) Cio e(Tnom) & (Tnom) Pi 245
By solving the integration, equation (2.4.5) becomes:
Cio(T) &T) D «T)
l —— )= (1-m)xl -mx I —
o8e Grottnomy) = (1) X 108e (o) = mx loge (2 )
Cod) __ _&ar) m &4T) "
Cjo(Tnom) &Tnom) & (Tnom) (2.4.6)

Replacement of equations (2.4.2) into (2.4.6) gives

-m

Ci(T) = Cjo(Tnom)xexp(px(l -m)x (T -Tnom))x( Q(T) )
cD,-(Tnom)
2.4.7)

where

m is dependent on which doped junction is used.

D(T)
@D (Tnom)

has been derived in equation (2.3.6) in last section.

The expression of the actual-temperature zero-bias junction capacitance based on
the nominal-temperature zero-bias junction capacitance has been derived in equation
(2.4.7). This expression will be applied to three junctions which are emitter-base, base-

collector, and collector-substrate junctions. They are shown as follows.



Emitter-base junction

io _-MIE
cje = CJIE x exp(px (1 -MIE) x (T -Tnom)) x (-26_)
VIE
where
cje = @ (T), CJE = & (Tnom)
vje and VJE are defined in equations (2.3.7-8).
MIJE is the emitter-base junction grading coefficient.
Base-collector junction
; -MJC
cjc = CIC x exp(px (1-MIC)x (T - Tnom)) x(ijfé )
where
cjc = ©(T), CIC = & (Tnom)
vjc and VJC are defined in equations (2.3.10-11).
MJC is the base-collector junction grading coefficient.
llector- junction
o -MJS
cjs = CJS x explpx (1-MIS)x (T - Tnom)) x(Vva; )
where
cjs = ©(T), CJIS = @ (Tnom)

vjs and VJS are defined in equations (2.3.12-13).

MUJS is the collector-substrate junction grading coefficient.

LEAKAGE SATURATION CURRENT
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(2.4.8)

(2.4.9)

(2.4.10)

(24.11)

(2.4.12)

(2.4.13)

In the Gummel-Poon model the base current is defined in terms of a superposition
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of ideal and nonideal-diode components [4]. In the active region of operation, the base
current is dominated by the ideal-component current. Since the nonideal-component
current is comparable to the ideal-component current at low bias [12], the base current is
dominated by the nonideal-component current. The nonideal current results from a
combination of space-charge-region recombination, surface recombination, surface-
channel recombination [13]. With careful processing, the recombination currents in the
surface and surface-channel can be made very small [1] and the nonideal component can
be simply represented by the recombination current in the space-charge region. This

nonideal current is defined as follows [13],

1%
I nonideal = 10[6117 (———n"/‘) - 1]
t

where
Iy is the leakage saturation current.
n is the low current leakage emission coefficient.
V4 is applied voltage.

The leakage saturation current is the current at zero bias and determined by the

emission coefficient. It is defined as follows [14],

qniWSCR]z/"
Ip = |17 YVscR
0 [ 279

where

n; is intrinsic carrier concentration without the effect of havily-doped.

Wiscr is the width of the space-charge region.

T ¢ is lifetime where 7¢ = T, = T is applied in the low-level injection, and 7 , and
T p are the lifetimes of the electron- and hole- excess carriers in the space-charge

region.
Intrinsic carrier concentration, the width of the space-charge region, and lifetime are

temperature dependent. Thus, the leakage saturation current is defined as follows,
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q ni(T YWscr(T )]/

IoT) = 20o(T) (2.5.1)

where

ni{T ) is defined in equation (2.3.2) and is shown:

mT) = 2.5 1019 x (me(T) M x (my(T) ¥4 x (K= )2

qE,(T)
xexp |- St ) (2.5.2)
Wscr(T) = x4T) = K e™T)D{(T) (2.5.3)

where x4, K., € and @ ; are defined in the previous sections.

Lifetime is not only temperature dependent and also dopant concentration
dependent. It can be represented by Shockley-Read-Hall lifetime and is shown as follows
(15],

Ny (2.5.4)

where

N is dopant concentration and N is a constant.

Taking the derivative with respect to temperature of equation (2.5.1) gives

AT) _ 2 an(T)Wsca(T) x[ 1 dmT)
n

oT £ SRH(T ) nT) 31
N 1 OWscrT) 1 d7o)
Wser(T) T ToT) T

2 o 1 9n(T) 1 0 Wscr(T )
n °(T)[n,-(T) ar  Wsr@) a7

1 dto(T)
o) 3T (2.5.5)
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Calculating the definite integral with Io(T" ) and Io(Tnom) as limits gives

Jo(T') niT) Wscr(T)
I ndly(T) _ j dniT) I dWser(T)
I o(Tnom) 21o(T) ni(Tnom) n‘( ) Wscr(Tnom) Wscr(T')

] I D o)
T0(T)
wTnom) (2.5.6)

Io(T ) is obtained by solving equation (2.5.6).

n 1o(T) ni(T ) Wscr(T) To(T)
2 198 T nomy = 18 CTrnomy) * 08¢ o pTnom)) 8¢ G oTnom)’
[ IT) "2 _  ndT) o Wscr@) o To(T) -1
Io(Tnom) ni(Tnom)  Wscp(Tnom) To(Tnom) (2.5.7)

Substitution of equations (2.5.2) and (2.5.3) into (2.5.7) gives the first two terms
of the right-hand side of (2.5.7) and they are as follows,

nT) _ (MT Y34 x (TT ) X exp(EG (ratio - 1))

niTnom) (2.5.8)
Wsca(T ) =[ ar)  _®AT) r
Wscr(Tnom) &(Tnom) & (Tnom) (2.5.9)
Equation (2.5.9) can be rewritten by referring equation (2.4.6)
WscrT) _ _&T) N Cjo(Tnom)
Wscr(Tnom)  &Tnom) Cio(T)
Cjo(Tnom)
=L~ X xp(px(T -Tnom))
Cio(T) (2.5.10)
Replacement of equations (2.5.8) and (2.5.10) into (2.5.7) gives
Io(T) _ 3220 . 3n EG 0 -1 Cjo(Tnom) 2/n
I—O(Tnom) MT X ratio '™ X exp (n v, (ratio )) X __Cjo T)
-2/
xexp(px% x (T -Tnom)) (—Tl(i) "

To(Tnom) (2.5.11)



