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Abstract

Reservoir Computing (RC) is an emerging Machine Learning (ML) paradigm. RC

systems contain randomly assembled computing devices and can be trained to

solve complex temporal tasks. These systems are computationally cheaper to train

than other ML paradigms such as recurrent neural networks, and they can also

be trained to solve multiple tasks simultaneously [13]. Further, hierarchical RC

systems with fixed topologies, were shown to outperform monolithic RC systems

by up to 40% when solving temporal tasks [3, 24]. Although the performance

of monolithic RC networks was shown to improve with increasing network size,

building large monolithic networks may be challenging, for example because of

signal attenuation .

In this research, larger hierarchical RC systems were built using a network gen-

eration algorithm. The benefits of these systems are presented by evaluating their

accuracy in solving three temporal problems: pattern detection, food foraging, and

memory recall. This work also demonstrates the functionality of random Boolean

networks being used as reservoirs. Networks with up to 5, 000 neurons were used

to train 200 sequences from memory and to identify X or O patterns temporally.

Also, a Genetic Algorithm (GA) was used to train different types of hierarchical

RC networks, to find optimal solutions for food-foraging tasks.

This research shows that about 80% of the possible different hierarchical con-

figurations of RC systems can outperform monolithic RC systems by up to 60%

while solving complex temporal tasks. These results suggest that hierarchical ran-

dom Boolean network RC systems can be used to solve temporal tasks, instead of

building large monolithic RC systems.
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1

Introduction

1.1 Outcomes

The two main outcomes of this research are:

1. hierarchical reservoir computing systems can outperform monolithic reser-

voirs on solving complex temporal tasks; and

2. random Boolean networks can be used as reservoirs in hierarchical RC sys-

tems.

1.2 Motivation

Machine Learning (ML) is the science of teaching computers to perform tasks with-

out explicitly programming them to do so. For example, teaching a computer to

accurately predict the amount of rainfall in the year 2017 using data corresponding

to the amount of rainfall in the last 200 years, can be formulated as a machine

learning task. Reservoir Computing (RC) has emerged as a new ML framework

over the last ten years [27]. RC systems exploit the computational capability of a

network of randomly assembled computing devices to perform tasks.

Maass et al. [21] and Jaeger et al. [13] introduced RC and demonstrated the ad-

vantages of this framework in 2002 and 2004 respectively, and many other research

groups showed that this approach is particularly well-suited for solving temporal

tasks such as speech recognition [30], Non-linear Auto-regressive Moving Average

1



(NARMA) [3], waveform generation [3], and handwriting recognition [31]. How-

ever, most of the research related to RC systems has been limited to randomly

assembled networks that do not have any network topology and modularity.

While Triefenbach et al. [30] demonstrated that the performance of RC systems

increases when the network size is increased from 1, 000 to 20, 000 neurons, Burger

et al. [3] and Rodriguez et al. [24] showed that the performance of RC systems

can also be improved, by up to 40% using networks with a ring topology and a

community structure. RC systems with hierarchically structured networks can be

used as an alternative to large monolithic RC systems to solving complex tasks

because signal attenuation issues may arise when fabricating large monolithic net-

works. However, the works of Burger et al. and Rodriguez et al. used networks

with fewer than 1, 000 neurons in their studies.

My research draws inspiration from these two approaches, but I used networks

with more than 1, 000 neurons to solve complex temporal tasks. In addition, a

more generic algorithm was used to build hierarchical networks with more than

1, 000 neurons, and these reservoirs were built with Random Boolean Networks

(RBNs).

Snyder et al. [28] showed that monolithic Random Boolean Networks (RBNs)

can be used as reservoir computing systems to solve complex temporal tasks. These

networks, made up of randomly interconnected Boolean logic gates, are easier to

fabricate compared to RC networks containing more complex types of neurons,

such as memristors and spiking neurons. Although almost any randomly assembled

computing medium can be used as a reservoir [13,27], I chose to use RBNs because

they are simple to model, simulate, and fabricate.

Artificial Neural Networks (ANNs) are a commonly used framework to solve ML

2



tasks, such as visual recognition [19], speech processing [32], robot control [7], and

prediction [36]. ANNs are able to process information in parallel and eliminate the

need for having separate memory and computing units, as is the case in standard

Von-Neumann architectures. This leads to the elimination of the latency between

processing and memory units.

The inspiration behind ANNs is the massive networks of billions of neurons

in our brains. Neurons in the brain process stimuli from various sensory organs

and produce output signals that control how a person reacts to the stimuli. For

example, when a child is learning to walk, she falls many times, but eventually

learns to walk without falling. The neurons in her brain learn to produce signals

that help her achieve a more stable position every time she falls. Similarly, a

neural network can be trained to control the motors responsible for the motion of

a humanoid robot, so that it is able to learn to walk without falling.

Feed-forward neural networks [2], Recurrent Neural Networks (RNNs) [8], and

Reservoir Computing systems [13,21] are three different architectures of ANNs. A

Feed-forward neural network is an ANN that does not have any feed-back connec-

tions between the neurons. Such networks map a set of inputs to a set of outputs,

a function that is independent of time. Hence, they do not possess any memory to

store the history of their inputs. For example, they can detect whether an input

represents an ”X” or an ”O” pattern, but they cannot detect whether an input

sequence contains a series of two continuous ”X” patterns. The first kind of task

is called a non-temporal task, and the latter is called a temporal task.

Recurrent Neural Networks (RNNs) are a family of ANNs that are able to

solve temporal tasks. These networks contain recurrent connections, i.e., feed-back

connections between some of the neurons. This results in a dynamic behavior in
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Feature
Feed-forward

neural network
Recurrrent

neural network
Reservoir
computing

Memory No Yes Yes
Feedback connections No Yes Yes

Temporal tasks No Yes Yes
Learning complexity Medium High Low

Multitasking No No Yes

Table 1.1: A summary of the features of various ANN families. RC approach
is suitable to build ML systems with low training complexity, and any medium
capable of performing computations can be used as a reservoir in RC systems.

the network, where the outputs of the neurons depend on the history of the inputs.

These networks are able to solve temporal tasks such as speech recognition [8].

Feed-forward neural networks and RNNs are commonly trained by using the

back propagation algorithm [26, 34]. In both of these architectures of ANNs, all

the weights present in the network are trained [11, 33, 34]. This leads to a high

learning complexity. RNNs are trained to perform temporal tasks commonly by

unrolling them in time and using the Back Propagation Through Time (BPTT)

algorithm. This results in a deep layered network, and increases the number of

weights to be trained. The problem of vanishing gradients makes it difficult to

train RNNs [10,23].

The RC approach overcomes these issues by separating computation and train-

ing. In RC systems, the computations are completely delegated to a reservoir, a

common implementation of which is an RNN with randomly assembled neurons. A

separate training layer, called the read-out layer, is used for training. The read-out

layer contains read-out neurons that connect to the outputs of the neurons in the

reservoir. The neurons in the read-out layer are trained to produce a desired out-

put by using linear regression [13,21]. This simplifies the training process because

there are fewer weights to be trained, compared to RNNs. Another advantage
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Figure 1.1: A monolithic reservoir network without any hierarchies and modular
structure. These networks cannot be decomposed into smaller groups of neurons
due to a lack of community structure.

of this approach is that the same reservoir can be used by two different read-out

neurons which can be trained to perform two different ML tasks simultaneously.

Hence, this approach allows one to build ML systems that are able to multi-task. A

summary of the features of feed-forward neural networks, RNNs, and RC systems

are presented in Table 1.1.

An RC system with, a flat hierarchy and no notion of modules or communities,

is called a monolithic RC system. A monolithic RC system is shown in Fig. 1.1.

In this figure, Wout corresponds to the weights of links connecting Xout neurons to

the read-out neuron o. Such systems have been used to solve temporal problems

[14,15,31].

An open issue that is being actively investigated is whether hierarchical and

modular RC systems can be an alternative to large monolithic networks. In these
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Figure 1.2: A schematic of a hierarchical reservoir network with two hierarchical
levels and five modules at the lowest level. The Neurons are distributed into
multiple small communities.

networks, neurons are distributed into small communities, called modules. A net-

work topology parameter, called as modularity can be used to quantify the amount

of modularity present in such networks. The modularity (µ) of a network is defined

as the ratio of the number of connections existing between different modules to

the total number of connections in the network. A simple hierarchical reservoir

network with two levels of hierarchy and five modules at the lowest level of hier-

archy is shown in Fig. 1.2. In this figure, Wout corresponds to the weights of links

connecting Xout neurons to the read-out neuron o.

Burger et al. [3] showed that hierarchical networks can solve more complex tasks

than their monolithic counterparts with the same network sizes. Their work uses a

ring topology and their largest network had about 400 neurons. Their results show

that hierarchical RC systems were at least 20% better than equivalent monolithic
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Figure 1.3: The role of communities and hierarchies on the task performance of
RC systems was investigated in this research.

networks at solving waveform generation tasks. Their hierarchical networks are

also able to find a solution for the NARMA-10 task while the equivalent monolithic

networks are not able to solve the task.

On the other hand, Rodriguez et al. [24] investigated the role of network mod-

ularity, i.e., the ratio of global connections between communities of neurons and

connections within communities. Their work shows that having a modularity of

0.1 to 0.5 enhances the memory capacity of the reservoir. The largest network

they used has 1, 000 sigmoidal neurons organized into a different number of mod-

ules. Burger et al. used memristive neurons, and Rodriguez et al. used sigmoidal

neurons in their respective investigations, but neither of these works have used

Boolean logic gates in their reservoirs.

Hence, in this thesis, the following were investigated:

• hierarchies and modularity of networks with more than 1, 000 neurons;

• the use of RBNs as reservoirs; and
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• the task-solving performance of such systems.

1.3 Significance

We took a different approach to building hierarchical RC systems as opposed to

the simple ring topology and fixed communities topology used by Burger et al. [3]

and Rodriguez et al. [24] respectively. In this research, an algorithm that uses

network formation principles inspired from real-world networks was used to build

large hierarchical RC systems. We wanted to evaluate and compare the variation

of task performance of monolithic reservoirs with that of different hierarchical

reservoir networks. These hierarchical systems were differentiated based on the

number of communities they had, as shown in Fig. 1.3.

This thesis builds on results obtained by Burger et al. [3] and Rodriguez et

al. [24] and expands them to networks with more than 1, 000 neurons. These two

studies have used memristors and sigmoidal neurons respectively in their reservoirs.

Boolean logic gates with randomly determined transfer functions have been used

as neurons in monolithic RC systems [28], but not for hierarchical networks..

The results of this research suggest that the issues related to building large

monolithic networks can be addressed by using hierarchical networks. This research

also demonstrates the use of RBNs as RC systems for solving complex temporal

tasks.

Table 1.2 shows a comparison of the features of my work, and two other related

works.

1.4 Approach

This research was divided into three main tasks:
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Burger
et al. [3]

Rodriguez
et al. [24]

My work

Max network size 400 1, 000 5, 000

Topology Ring Modular
Hierarchical and

modular
Temporal tasks Yes Yes Yes
Control tasks No No Yes
Neuron type Memristive Sigmoidal Boolean gates

Table 1.2: A comparison of the networks used and tasks evaluated in my work
and two other related works. A control task was also evaluated in my research in
addition to other temporal tasks.

1. Large hierarchical RBNs with more than 1, 000 neurons were modeled using

a network growth algorithm [35]. This task is explained in detail in Section

3.3 of Chapter 3.

2. Various experiments were performed to understand the role of the network

parameters as follows:

• The effect of in-module connection probabilities on the average connec-

tivity of the RBNs (Section 3.3 of Chapter 3).

• The effect of hierarchical levels and number of modules on average con-

nectivity (Section 4.1 of Chapter 4).

• The effect of hierarchical levels and number of modules on modularity

(Section 4.2 of Chapter 4).

• The percentage of reservoir neurons to be perturbed with an input sig-

nal, such that there is optimal activity in the reservoir (Section 4.3 of

Chapter 4).

3. The task performance of the proposed hierarchical RBNs was measured using

three temporal tasks:
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• Pattern detection (Section 4.4 of Chapter 4);

• Food foraging (Section 4.5 of Chapter 4); and

• Memory recall (Section 4.6 of Chapter 4).

1.5 My contributions

• A Python simulation framework was built to simulate and evaluate the pro-

posed networks.

• Hierarchical RBNs with up to 10, 000 neurons were built and simulated.

• Hierarchical RBNs with 1 to 6 levels were evaluated for temporal pattern

recognition, food foraging, and memory recall tasks.

• It was found that perturbing up to 20% of the reservoir neurons is sufficient

to result in a near-optimal activity in the RBNs.

• The results obtained in this research suggest that using up to 10% of the

neurons as output neurons is sufficient to accurately train the RC systems.

• A genetic algorithm module was built to train the read-out layers of the

reservoirs. This module uses the Python DEAP toolbox [6].

• The amount of hierarchy and modularity required for producing optimal

results has been quantified by using multiple tasks.

• The results of this research suggest that hierarchical networks can be an

alternative to large monolithic networks.
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2

Background

This research combines hierarchical reservoir computing and random Boolean net-

works, and provides a model to build and simulate such large hierarchical random

Boolean networks with more than 1, 000 neurons. In order to understand the

motivation behind this research and its significance, it is useful to know about:

• artificial neurons;

• commonly used artificial neural network frameworks and their functionality,

advantages, and drawbacks;

• the reservoir computing approach;

• advantages of the hierarchical approach to reservoir computing; and

• functionality of random Boolean networks.

As discussed in Chapter 1, ANNs are a commonly used framework to per-

form various machine learning tasks such as image recognition, speech recognition,

prediction, and classification. These networks contain interconnected computing

devices, called as artificial neurons, that perform transformations. The networks

are trained to produce desired outputs by modifying the network weights. In order

to understand the function of ANNs, it is important to understand two aspects:

1. how an artificial neuron performs computations; and

2. how information is exchanged inside the network.
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Figure 2.1: Example of a neuron with three inputs and one output. This neuron
linearly combines its three inputs with three weights to produce one output.

In the following section, a working example of an artificial neuron and its

weights is described.

2.1 Artificial Neurons and Weights

A neuron is the most fundamental part of a neural network. A neuron operates

on its inputs and produces a transformed output using a mathematical function.

For example, consider a single neuron with three inputs and one output as shown

in Fig. 2.1. In this figure, the weights, w1, w2 and w3, are scalar numbers. Their

functionality will be explained in the next paragraph. The mathematical function

of this neuron is distributed into two parts, the function g is a function of the

inputs and the weights as shown in Eq. 2.1. The final output o of the neuron is a

function of g as shown in Eq. 2.2. The weight, wK where K = [1, 3], is a constant

that is independent of any input to the neuron. This neuron performs computation

as follows: if i1 = 0, i2 = 1, i3 = 3 and w1 = 0, w2 = 1, w3 = 0.5, and wK = 0,

then g = 0 × 0 + 1 × 1 + 3 × 0.5 = 2.5. The final output of the neuron will be

f(2.5) = 1. If the inputs change to i1 = 0,i2 = −3, i3 = 1, then g = −2.5, and the

final output of the neuron will become 0. Thus, a neuron reacts to changes in the

inputs by changing its output value accordingly.
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g =
k∑

n=1

in × wn + wK (2.1)

f(g) =


1, if g ≥ 0

0, if g < 0

(2.2)

A number of such neurons can be connected together to form an ANN. In

these networks, information is transmitted between the neurons using links. Each

link in the network is associated with a variable parameter, called a weight. The

function of a weight is to amplify or attenuate the information being transmitted.

For example, if we consider the example neuron shown in Fig. 2.1, there are three

links that transmit information from three other neurons to this neuron. Each of

these links is associated with a weight, represented by wi, where i is the link ID.

The strength of the information being transmitted on a link is determined by the

value of the corresponding weight.

A weight modifies the corresponding information as follows: assume i1 = 2

and w1 = 2, now the actual input corresponding to this link is determined as

by i1 × w1 = 2 × 2 = 4, however, if the value of w1 was 0.5, the input to the

neuron will become 2 × 0.5 = 1. This can in turn change the output of the

neuron as follows, if i1 = 0, i2 = 1, i3 = 3 and w1 = 0, w2 = 1, w3 = 0.5, then

g = 0 × 0 + 1 × 1 + 3 × 0.5 = 2.5, and o = 1. However, if the weights change to

w1 = 0, w2 = −2, w3 = −1, then g = −5 and o = 0. This can also be seen from

another perspective. The weights corresponding to a neuron’s input links can be

changed to obtain a desired output from the neuron. This process of adjusting the

weights to obtain a desired output from a neuron is called training. Thus, after
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(a) Linearly separable classification task (b) Non-linearly separable classification task

Figure 2.2: Two types of classification tasks performed by ANNs. The Y-axis the
range of values that two different classes of objects for their respective features
represented by the values on the X-axis. Each straight lines represents the output
of a linear perceptron similar to the one shown in Fig. 2.1, but with a single
input and two weights. In the figure on the right, the features are distributed in
a non-linear manner, and hence, its not possible to correctly classify them using a
straight line.

a computation is performed by the neurons inside a neural network, the network

can be trained by adjusting the network weights to produce desired outputs.

A common application of such networks is to classify the inputs into different

classes based on their characteristics or features. For example, consider a task

where we need to separate two different classes, whose Y-axis represents a range

of values each class can take for the corresponding features on the X-axis. as

shown in Fig. 2.2(a). A single neuron is sufficient to solve the task relating to

such linearly separable classes. A neuron with one input with characteristics as

shown in Fig. 2.1 can be trained such that its output separates these two classes

of objects. Here, the values on the X-axis are given as inputs to the neuron. This
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neuron’s function g now represents a straight line as shown in Eq. 2.3. We need

to find w1 and w2 such that the straight line g separates the two classes of objects.

The three dotted lines in Fig. 2.2(a) represent three different outputs of the neuron

with different weights. Such a neuron is called a linear perceptron. Rosenblatt [25]

derived a perceptron update rule to find the weight combinations such that the

error in classification is minimized. However, a single perceptron cannot learn to

perform a non-linearly separable task as shown in Fig. 2.2(b) [9].

g = w1 × x+ w2 (2.3)

2.2 Multi-layered ANNs

Hecht-Nielsen [9] showed that additional layers of neurons are required to solve

tasks involving non-linearly separable classes. These networks are organized into

input layer, hidden layer(s), and the output layer as shown in Fig. 2.3. The

neurons in the hidden layer do not interact with the inputs directly, hence they

are called hidden neurons. This extends the ability of perceptrons to be able to

perform non-linearly separable tasks.

Based on the direction of flow of information in the network, ANNs can be

classified into two categories: Feed-forward Neural Networks (FNNs) and Recurrent

Neural Networks (RNNs).

2.2.1 Feed-Forward Neural Networks

In FNNs neurons are interconnected such that there is a unidirectional flow of sig-

nals from the input side to the output side [2]. There are no feed-back connections

between the neurons. The output of each neuron is independent of the past inputs.
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Figure 2.3: A neural network with three layers of neurons. The hidden neurons do
not directly interact with the inputs.

A Feed-forward neural network, with three layers of neurons, is shown in Fig.

2.3. Feed-forward networks map a set of inputs to a set of outputs, a function that

is independent of time. For example, they can detect whether, an input represents

an ”X” or an ”O” pattern, but, they cannot detect whether an input sequence

contains a series of two continuous ”X” patterns. The first kind of task is called a

non-temporal task, and the latter is called a temporal task.

Feed-forward networks have been shown to be universal approximators, and are

appropriate for performing tasks where the inputs are independent of time [12].

Common applications of these networks are feature detection in images, object

classification, handwritten digit recognition etc.
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Figure 2.4: Example of Recurrent Neural Network with 5 inputs, and 2 outputs.
In these networks, the outputs of a few neurons are fed back to other neurons in
the network.

2.2.2 Recurrent Neural Networks

RNNs can be used to perform temporal ML tasks which the feed-forward neural

networks cannot solve. Because of recurrent connections, such networks are able

to retain information about the sequence of inputs presented to them over a period

of time. This means that the output of the neurons will be dependent on both the

current and the past set of inputs. Thus, the RNNs have memory. This is achieved

by adding feedback connections to some of the neurons.

Fig. 2.4 shows a three layer recurrent network. The dashed directed arrows

represent recurrent connections in the network. The inputs are a1, a2, a3, a4, and

a5. The outputs are b1 and b2. The recurrent connections provide feedback in these
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networks. For example, the link corresponding to rw1 connects the output of the

hidden neuron h1 to the input neuron i1. This feeds the output of the neuron h1

back to the input of neuron i1.

RNNs are commonly trained by unrolling them in time, and thereby creating a

new layer for each time step of the input sequence. This results in a deep, layered

feed-forward neural network. The most common training method is called Back

Propagation Through Time (BPTT) [34]. In this method, an error is propagated in

reverse, from the outputs towards the inputs. The weights are adjusted according

to their error gradients.

In these networks, all the weights are trained [11, 33, 34]. Although RNNs are

able to solve temporal tasks, they also have drawbacks: the problem of vanishing

gradients makes it difficult to train these networks [10, 23], and the number of

weights that need to be trained increases as the networks are unrolled. Hence,

such networks have a higher learning complexity than FNNs.

2.3 Reservoir Computing

Reservoir Computing (RC) is a new machine learning paradigm. Initial work in

this field was independently published by Jaegar et al. [13] and Maass et al. [21].

The reservoir forms the core of an RC system. A reservoir is an unstructured

dynamical system that is not trained. As opposed to training all the weights in

the case of RNNs, the RC approach relies on training a simple linear read-out layer

only.

A high level representation of an RC system is shown in Fig. 2.5. The double

lined circle represents the reservoir, and each small circle inside the reservoir rep-

resents a neuron. Each solid arrow represents a connection between two neurons.
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Figure 2.5: A high-level representation of an RC system, with two inputs and two
readouts. The readouts o1 and o2 can be simultaneously trained to perform two
different tasks, because they use different sets of links to tap into the reservoir.

i1 and i2 represent the inputs, and o1 and o2 represent the read-out neurons.

The read-out layer contains a set of neurons that perform a linear combination

of a limited number of reservoir neuron outputs. This read-out layer is trained to

produce a desired output commonly by using linear regression [13, 21]. Thus, RC

systems address the two major drawbacks of RNNs:

• they are computationally cheaper to train because of the fewer number of

weights that are trained; and

• there is no problem of vanishing gradients, as all the training happens in a

single read-out layer.

In addition, RC systems can solve multiple tasks simultaneously with the same

reservoir by increasing the number of read-out neurons. For example, the read-outs

o1 and o2 in Fig. 2.5 can be trained to perform two different tasks using outputs

from the same reservoir simultaneously.
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RC systems have been successfully used to solve temporal tasks, such as pre-

dicting chaotic systems [14], speech recognition [31], and Japanese vowel recogni-

tion [15].

2.3.1 Echo State Network model

According to Jaeger, the state of an RNN can be considered as an echo of the

input history. The state of an RNN refers to the set of states of all the neurons

present in the network. If (u(n), u(n − 1), u(n − 2)...) is the set of current and

past inputs, up to the nth time instant, the state of the RNN is a function of these

inputs. This author considers discrete-time, sigmoidal neurons as the constituents

of RNNs. The network architecture considered in his work is shown in Fig. 2.5.

x(n+ 1) = f(W in × u(n+ 1) + W ×X(n) + W back × y(n)), (2.4)

where f = (f1, f2, ..., fN) are the transfer functions of the neurons present in

the reservoir. Here, W in is the set of weights corresponding to the inputs connected

to the reservoir, W is the set of weights corresponding to the connections in the

reservoir, and W back is the set of weights corresponding to the output connections.

The output, y(n) is computed as shown in the following equation:

y(n+ 1) = f out(W out(u(n+ 1), x(n+ 1), y(n))), (2.5)

where f out = (f out1 , f out2 , f out3 , ...., f outL ) are the transfer functions of the output

units.

Under the restriction that there is no feedback from the output to the reservoir,

the output can be given by the following equation:
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y(n+ 1) = G(.., u(n), u(n+ 1)). (2.6)

It is clear that the output of the is dependent on the input history.

The current state of the ith unit in the reservoir is determined by an echo

function as shown below.

xi(n) = ei(.., u(n− 2), u(n− 1), u(n)). (2.7)

where ei is the echo function of the ith unit in the reservoir. Considering a

linear function G for determining the output, the following equation can be used

to determine the output.

y(n) = f out(
N∑
i=1

wouti xi(n)), (2.8)

where wouti is the weight of the ith output connection, and xi(n) is the state of

the corresponding neuron. The above equation can be further written as follows.

(f out)−1y(n) =
N∑
i=1

wouti ei(.., u(n− 2), u(n− 1), u(n)), (2.9)

if f out is considered to be tanh function, which is invertible.

An error is defined as follows.

εtrain(n) = (f out)−1yteach(n) − (f out)−1y(n), (2.10)

where yteach(n) is the nth desired output, to which the reservoir is to be trained.

The goal is to minimize the Mean Square Error (MSE) defined as follows:
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MSEtrain = (nmax − nmin)−1

nmax∑
n=nmin

ε2train(n) (2.11)

This is a simple linear regression task: to minimize MSEtrain, we train the read-

out neurons by updating the set of weights, wout. A few ways of training different

types of read-out neurons were presented by Lukosevicius et al. [20].

In order achieve good results, we need to ensure that there is enough richness

in the echoes available inside the reservoir. To achieve this, the reservoir needs to

be assembled in a suitable non-homogenous way to provide enough dynamics for

generating a variety of echoes.

2.3.2 Liquid State Machines

Maass et al. [21] also independently published their work as Liquid State Machines

(LSMs). LSMs use spiking neurons, and are thus more akin to the neural networks

inside the human brain.

The authors propose LSMs as a model for real-time computation, i.e., both the

inputs and outputs of an LSM are continuous in time. As mentioned earlier, other

computing models such as RNNs are faced with issues related to slow learning

and vanishing gradients. As with all RC approaches, LSMs delegate the process

of learning to a single read-out stage by leaving the bulk of the LSM untrained.

From the perspective of neuroscience, this is analogous to a projection neuron that

extracts information from a group of neurons and projects it to other neurons in

the network.

In both Jaeger’s and Maass’s works, the influence of network topology, hierar-

chical structure and decomposition of the reservoir into smaller sub-reservoirs was

not studied. On the other hand, Triefenbach et al. [30] showed that the accuracy of
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RC systems in solving a speech recognition task increases when the reservoir size

is increased from 1, 000 to 20, 000 neurons. However, building such large mono-

lithic RC systems in hardware may face problems, e.g., signal attenuation. On

the other hand, Burger et al. and Rodriguez et al. explored how decomposing

a large monolithic reservoir into smaller communities, and introducing a network

topology changes the performance the RC system. The results of these two studies

are discussed in the following subsection.

2.3.3 Hierarchical and Modular RC Systems

Burger et al. [3] constructed hierarchical RC networks using a fixed ring type topol-

ogy, and compared their performance to that of equivalent monolithic networks.

They tackled the issues monolithic reservoirs suffer from: signal inter-dependencies,

and correlated read-outs, by composing reservoirs using multiple smaller reservoirs

connected in a circular fashion. They called these reservoirs Single Cycle Reservoirs

(SCRs). They showed that such reservoirs were able to outperform monolithic RC

systems by up to 20% in solving temporal tasks, such as waveform generation, and

NARMA-10.

In their work, these authors used memristive neurons. These neurons demon-

strate a hysteresis loop in their current vs voltage transfer characteristics, hence

have a resistance that is non-linearly dependent on the amplitude of the input volt-

age. These neurons thus combine memory and computation capability in a single

non-linear device, which makes them particularly suitable for reservoir computing

purposes.

Burger et al. used networks with up to 400 neurons only. On the other hand,

Rodriguez et al. [24] studied the influence of the network modularity parameter
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on the performance of different types of modular RC systems. They defined mod-

ularity as the fraction of network connections that connect neurons in one module

to neurons in another module. They showed that there is an optimal range of

modularity, where the computation inside the communities, and the information

exchange between communities is such that the performance becomes optimal.

They investigate a large two-community network, where a seed community was

perturbed by an input signal and the activity in the other community was observed.

They found that the activity in the second community depended on the number

of connections coming from the seed community. A modularity between 0.1 and

0.2 resulted in optimal activity in the second community. They discovered that

at high values of modularity, i.e., when the connections between the communities

are far greater than the connections between the neurons inside each of them, the

activity and performance can drop.

They also investigated mesh networks having up to ten communities of neurons.

The aim of their memory recall task was to train RC systems on 1024 different

multi-dimensional input sequences and then recall up to 300 sequences from mem-

ory. Networks with high performance required a large set of different attractors

in which the unique sequences can be stored. Also, the duration for which these

sequences can be retained by the reservoirs were increased if the reservoirs are able

to store these input sequences in different cyclic attractors.

By varying the number of sequences to be recalled and the duration after which

each sequence was to be recalled by the reservoir, the authors tested networks

with modularity ranging between 0 and 0.5. They used networks containing up to

1, 000 neurons distributed into 10 communities. They observed that networks with

a modularity of 0.06 and 0.15 were able to perfectly recall up to 200 different input
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sequences. The performance of networks with a of modularity greater than 0.2

was negligible. They termed this as computation at the edge of modularity, as they

discovered an optimal range of modularity for which their networks outperformed

networks with modularity other than this optimal range.

2.4 Boolean Logic Gates and Random Boolean Networks (RBNs)

Various types of computing elements, such as random Boolean logic gates [28],

memristors [3], spiking neurons [21], and sigmoidal neurons [24], have been used

as neurons in RC systems. Boolean logic gates are simpler to model, simulate, and

fabricate compared to other neurons. For example, networks containing Boolean

gates can easily be implemented in hardware by using Field Programmable Gate

Arrays (FPGAs).

An RBN is a network of Boolean logic gates, where the connections between

the gates are randomly determined, the logic functions of all the gates are ran-

domly chosen, and all the gates are initialized to random outputs [17]. A Boolean

logic gate represents a many-to-one mapping function which performs a Boolean

operation on its inputs and produces a binary output instantaneously. The state

of an RBN is represented by the concatenation of the states of all the Boolean

logic gates contained within it, and it is a binary sequence of ones and zeros.

These networks are dynamic systems, and the states of their nodes can change

even without any external perturbation. As these networks are randomly assem-

bled, groups of gates can be connected in such a way that they form a directed

cycle, similar to a recurrent connection. For example, consider the simple syn-

chronous RBN formed by connecting three Boolean logic gates g1, g2 and g3, as

shown in Fig. 2.6. The gates g1 and g2 have external inputs i1 and i2 which
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Figure 2.6: A synchronous random Boolean network with three gates, and two
external inputs. The connections form a directed cycle through the three Boolean
gates, resulting in a dynamic behavior.

can be controlled at any point of time. These two gates perform logical AND

operation on their inputs. The gate g3 is an inverter. The state of this network

is updated once every positive edge of the clock signal. As all the flip-flops are

updated simultaneously, such networks are called synchronous RBNs.

Assume that the outputs of g1, g2, and g3 are randomly initialized to 0, 1, 0

respectively, at time t0. Assume that the external inputs i1, i2 are clamped to 1.

The state of the RBN can be represented as 010. If the outputs of all the three

gates are allowed to update simultaneously, once per time step, then at time t1,

the output of g1 changes to 0, the output of g2 changes to 0, and the output of g3

stays at 0. The state of network at time t1 will be 000 Now, at time t2, the output

of g1 stays at 0, the output of g2 stays at 0, and the output of g3 changes to 1.

The state of this network advances as follows:

010 −− > 000 −− > 001 −− > 101 −− > 111 −− > 001 −− > 010... (2.12)
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Figure 2.7: The state-time diagram of the example RBN over a period of 15 time
steps. The state of the RBN is a periodic sequence which repeats after every six
time steps.

After t6, the new state of this network will be 010 which is same as the state

at time t0. The state of the RBN cycles through these sequences indefinitely, until

either i1 or i2 are changed to a different value. The RBN state over a period of 15

time steps is shown in Fig. 2.7. The black cells indicate state zero, and white cells

indicate state one.

It can be seen from Fig. 2.7 that the state of the RBN returns to its initial

state of 010 after every six time steps. This sequence will repeat indefinitely until

either i1 or i2 change their state, and such a state of an RBN is called an attractor.

As this attractor is a set of periodical sequences, it is also called as cyclic attractor.
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Figure 2.8: The time-state plot of the example RBN over a period of 15 time steps.
The state of the RBN remains at a single sequence indefinitely.

On the other hand, an RBN can also fall into a point attractor depending on the

initial conditions, and the external input values. The state of the RBN no longer

changes with further advancement of time, after falling into a point attractor.

Another example, where this RBN falls into a point attractor is shown in Fig.

2.8. Assuming the same initial conditions, and same input conditions until seventh

time step, and if the input i1 is changed to zero at the seventh time step, the output

of g1 remains at zero indefinitely irrespective of its other input. Hence, this leads

to the behavior observed between time steps 8 and 14, where the state of the RBN

remains at 001 indefinitely.

These networks have been studied extensively over the last few years and an
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introduction can be found in the work published by Kauffmann [16]. Also, ac-

cording to Mihaljev et al., the attractor number and length increase faster than a

power law as Nx where N is the number of nodes in the RBN [22].

On the other hand, the dynamics in an RBN determined by the average con-

nectivity [28]. The average connectivity of an RBN is defined as follows:

Kav =
Sum of incoming connections of each gate

Total number of gates
(2.13)

These Boolean networks can exhibit stable, critical, or chaotic behavior, which

is governed by the network’s average connectivity (Kc). The average connectivity of

a network is defined as the ratio between the total number of incoming connections

to the network size. According to Derrida et al. [5], the value of Kc is determined

by the following equation:

Kc = 1/(2p(1 − p)), (2.14)

where p is the probability of randomly assigning a 0 output to a node for a

given set of inputs.

If the probability of assigning a 0 is equal to the probability of assigning a 1,

i.e., p0 = p1, we can see that p = 0.5. Substituting this in the above equation for

Kc, we get Kc = 2

According to Sole et al. [29], an RBN is stable if Kav < Kc, critical if Kav = Kc,

and chaotic if K > Kc. In the stable regime, the Hamming distance between two

initially close states decreases exponentially as time is advanced. In the chaotic

regime, this Hamming distance increases exponentially. The two initially close

states are those with Hamming distance that is negligible compared to the network
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size (N).

Synder et al. studied RBNs with Kav = 1, 2, 3 and 4 and showed that networks

with Kav = 2 demonstrate a computational capability that is better than networks

with Kav = 1 or Kav = 3 [28]. The networks with Kav < 2 are termed as ordered

networks and the networks with Kav > 2 are termed as chaotic networks. In this

thesis, networks with Kav = 2 have been used.
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3

Hierarchical Reservoir Networks

The initial research in reservoir computing was limited to using randomly assem-

bled computing media as reservoirs [13, 21]. These networks lacked a topological

structure because they were randomly assembled, and the role of network topology

in the performance of reservoirs remained to be investigated. In this research, hier-

archical networks containing Boolean logic gates were used as reservoirs to evaluate

temporal tasks. It was found that the performance of such networks varies with

different sets of network topology parameters, such as the average connectivity

(Kav), the network modularity, and the number of modules. This chapter contains

a description of the methodology used to build and simulate hierarchical random

Boolean networks with up to 10, 000 nodes.

A few common terms used when studying networks are:

• nodes : fundamental units of the network, present at the intersection of links;

• links : connect the nodes in the network, and transmit information between

nodes;

• average connectivity : the ratio of the total number of connections to the total

number of nodes in the network;

• modularity : the ratio of number of connections between modules to the total

number of connections in the network;

• in-degree: it is a property of each node in the network, and is defined as the

number of connections coming into the node; and
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• out-degree: it is also a property of each node in the network, and is defined

as the number of connections exiting a node.

3.1 Growth Model for Hierarchical Reservoirs

Xuan et al. [35] describe an algorithm to build generic hierarchical networks com-

posed into a fixed number of hierarchical levels and modules. Hierarchical networks

can be grown to any size using this model. These networks have M hierarchical

levels, with each level containing a number of small groups of nodes called as mod-

ules. Groups of n modules at the current hierarchical level act as modules for the

next higher hierarchical level. The parameters M,n are fixed for a given network.

The total number of modules in the network is given by nM−1. This algorithm

uses a real-world network formation principle known as Preferential Attachment

(PA) [1] for growing networks over time. This principle states that nodes with

more connections are more likely to form new connections than nodes with fewer

connections.

For example, a hierarchical network is shown in Fig. 3.1. This network has

three hierarchical levels and n = 3. A total of 3(3−1), i.e., nine modules are present

in the lowest level of hierarchy. These are labelled 1 through 9 in the above figure.

The second level has 9
3
, i.e., three modules, such that each module is composed

of three sub-modules from the lowest level. The modules labelled 1, 2, 3 form the

first module, the modules 4, 5, 6 form the second module, and the modules 7, 8, 9

for the third module at this hierarchical level. The third level has one module that

is composed of the three sub-modules from the second hierarchical level.

These networks are initialized with a fixed number of fully connected nodes

in every module, and then grown to a desired size, by adding new nodes to the
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Figure 3.1: A hierarchical network with M = 3 hierarchical levels, n = 3 and
nine modules, grown up to a size of 22 nodes. Some nodes have zero in-degree
because the already existing nodes with more incoming connections are preferred
to connect to the new nodes when the network is grown.

modules, and connecting them to other nodes in the network.

3.1.1 Growth Operations

A network is grown by performing one of the two possible growth operations, in-

module connection, and between-modules connection. A predetermined probability

value, corresponding to the hierarchical level at which the growth operation is being

performed, is used to determine whether a growth operation should be in-module

or between-modules. The probabilities of these two connection types are related

as shown in Eq. 3.1.

Pin-module + Pbetween-modules = 1, (3.1)
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where Pin-module is the probability of a growth operation being an in-module con-

nection. Pbetween-modules is the probability of a growth operation being a between-

modules connection.

An in-module connection results in the addition of a new node to a selected

module and connecting it to one or more target node(s) within the same module.

This type of connection is only allowed at the lowest level of the hierarchy. A

module selection for performing this operation is done using a uniform probability

distribution for all modules present in the network. On the other hand, the set of

target node(s) is selected according to the PA rule.

While new nodes are not added during between-modules connection, a new

link is added between two nodes belonging to two different modules. This type

of connection is allowed at all levels of the hierarchy. These connections are the

channels of information exchange between the modules. The two modules that are

to be connected, are selected using a uniform probability distribution. The target

and source nodes in these modules are then selected according to the PA rule.

Hence, during a growth operation at the hierarchical level h, if the in-module

connection type is selected and h− 1th hierarchical level is not the lowest, we

recursively descend the hierarchical levels until either, a between-modules selection

occurs or in-module selection happens at the lowest level of the hierarchy. Before

proceeding to a complete network growth example, it is useful to know about the

various parameters used in this algorithm.

3.1.2 Network Parameters

The following parameters are used in building these networks:

• M : number of hierarchical levels;
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• n: number of modules that constitute a module of the next higher level;

• qh: probability of in-module connection at the hierarchical level h;

• m0: number of initial nodes in each module of the network;

• m: number of nodes to which a newly added node is connected; and

• N : network size

Before the network is grown, a probability array (Q) of M − 1 elements is

generated such that the first element is greater than 0.5. The elements of this

array represent the values of qh for h = [1,M). The following equation is satisfied

by each element of this array with the exception of the first element:

1 − qh+1 << qh+1(1 − qh). (3.2)

This equation ensures that the probability of in-module connections is always

greater than the probability between-modules connections at each hierarchical level,

so that the hierarchical and modular structure doesn’t vanish even if the network

is grown to a large size. Also, the elements of Q are in an increasing order, i.e.,

the value of qh increases as h increases from 2 to M − 1, assuming that the first

element of Q is q1.

3.2 Example Hierarchical Network

Let us consider a hierarchical network with M = 3 hierarchical levels, and n = 3.

There will be 33−1, i.e., nine modules at the lowest hierarchical levels. Consider

the following probability array, Q = [0.56, 0.86], where the probability of in-module

connections at the highest hierarchical level, q2 = 0.86. These probabilities are in
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Figure 3.2: The initial state of the example hierarchical network. Each module in
the network is populated with two fully connected nodes, to have an even distri-
bution of connections from newly added nodes.

accordance with Eq. 3.2. The value of q1 is always more than 0.5 so that the

probability of adding new nodes is more than the probability of connecting two

existing nodes.

As n = 3, the modules are categorized into groups of three modules each. The

second level hierarchy has three modules, with each module containing three sub-

modules from the lowest hierarchical level. The highest hierarchical level contains

a single module containing the three sub-modules from the second hierarchical

level as shown in Fig. 3.2. The modules are numbered one through nine in this

figure at the lowest level of hierarchy. Modules 1, 2, and 3 constitute the first

module, modules 4, 5, and 6 constitute the second module, and modules 7, 8, and

9 constitute the third module in the second hierarchical level.
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Figure 3.3: A flow chart showing the steps followed while performing during a
network growth step.

Initially, each module is populated with two fully-connected nodes as shown in

Fig. 3.2. This example network has a total of 18 nodes at the beginning. The

modules were populated in this way to get an even distribution of the connections

from newly added nodes, so that a single node doesn’t always have a preference of

adding more connections. The in-degree and out-degree of each node are both one.

There are two possible growth operations as discussed earlier. A new node can

be added and connected to other nodes in a module, or a new connection can be
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made between two already existing nodes in two different modules in the network.

The network is grown by repeatedly performing growth operations until a desired

number of nodes is achieved.

During a growth operation, the value of h is set to M , and the probability qh−1

is used to determine the type of connection to be made. A random floating point

number is generated, and if it is less than or equal to qh−1, in-module connection

type is selected. On the other hand, if this generated number is greater than qh−1,

a between-modules connection type is selected. Such growth operations can be

carried out until a desired network size is reached. The steps followed in a growth

operation are shown in Fig. 3.3.

As can be seen from the flow chart in Fig. 3.3, if an in-module connection type

is selected at the hth hierarchical level, and the h− 1th level is not the lowest, h is

decremented by one, and the process is restarted from identifying the connection

type. This process is repeated until a between-modules connection type is selected

at the hth level or in-module connection type is selected, and (h− 1) = 1.

3.2.1 In-module Connection

For example, when h = 3, if the random number generated is 0.74, an ”in-module”

connection type is selected. But since h−1 = 2 is not the lowest hierarchical level,

h is decreased by one, and the connection type selection process is restarted. If this

time the generated number is 0.6, an in-module connection can be made, because

h − 1 = 1. A module is selected from the 9 available modules using a uniform

probability distribution. A new node is added to this module, and connected to

two other nodes in the same module, as shown in Fig. 3.4.

By connecting the newly added node to two other nodes in the network ensures
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Figure 3.4: An in-module connection made in the first module by adding a new
node and connecting it to two other nodes in the same module.

that the average connectivity of the network will be close to two, if the probability

of making such in-module connections is significantly larger than the probability of

making a between-modules connection. This is important to this research because

we intend to use hierarchical RBNs with an average connectivity, Kav = 2.

3.2.2 Between-modules Connection

On the other hand, beginning at the highest hierarchical level, if the number

generated is 0.89, a ”between-module” connection type is selected. This type of

connection is allowed at all levels of the hierarchy. Hence, two modules are selected

from the three available modules using a uniform probability distribution. A target

node and a source node are also selected from the two modules using Preferential

Attachment [1]. In simple terms, the PA rule says that nodes having a higher
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Figure 3.5: A between-modules connection made between two nodes from the first
and ninth modules at the third hierarchical level.

number of connections have a higher chance of being selected as a source or target

node. A new connection is made between the source and target nodes, as shown

in Fig. 3.5.

Also, because the in-module connection probability is greater than between-

module connection probability for all hierarchical levels (> 0.5), we can grow these

networks for indefinitely long times. The growth process is terminated once a

desired number of nodes is reached.
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(a) This work (straight line represents K−2.5) (b) Xuan et al.’s work (straight line represents
K−2.6) [35]

Figure 3.6: Degree distribution comparison for networks with M = 5, n = 3.

3.3 Parameters and Characteristics

In this research, networks with different average connectivity and modularity were

built, and evaluated by varying network parameters, such as number of hierar-

chical levels, total number of modules in the network, and in-module connection

probabilities.

The in-module connection probabilities play a vital role in determining the av-

erage connectivity and modularity of our networks. For example, in a network with

only 1 hierarchical level with an in-module connection probability of 0.9, the ratio

of between-module connections and in-module connections will approximately be

0.1/1, i.e. 0.1, ignoring the connections made initially before growing the network

using the growth operations.

The average connectivity of this network, which is the ratio of total in-coming

connections to the total number of nodes in the network, will approximately be 2

+ between-modules connections, i.e., 2 + 0.1 = 2.1, assuming that every time an
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in-module connection is made, a node is added to the network and connected to

two other nodes.

If the number of initial nodes is a large part of the nodes present when the

network is grown to a desired size, the average connectivity of the network will

be close to one. The number of hierarchical levels and the number of modules

in the network determine how many nodes are present in the network initially

before growing it. The initial nodes also contribute to the average connectivity

and modularity of the final network obtained after growing it to a desired size.

As mentioned earlier, initially each module is populated with two fully connected

nodes. Thus, the average connectivity of the network before using the growth

algorithm will be one.

The networks built in this research were validated with the networks built

by the authors in [35] by comparing network characteristics of both the network

families, such as the degree distribution. The degree distribution of the hierarchical

networks follows a power law: Kβ, where K is the total degree (sum of in-degree

and out-degree). Fig. 3.6 shows a comparison of the degree distribution of a sample

network and that of a network example used in [35] .

Networks with up to six hierarchical levels and two sub-modules, grown to a

size of 1, 000 nodes, are shown in Fig. 3.7. It was observed that the number of

between-modules connections increased as the number of hierarchical levels was

increased from 2 to 6.
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(a) Initial network with M = 5 and n = 2 (b) Network with M = 2, n = 2

(c) Network with M = 3, n = 2 (d) Network with M = 4, n = 2

(e) Network with M = 5, n = 2 (f) Network with M = 6, n = 2

Figure 3.7: The resulting networks, with different values of M,n, that were grown
to a size of 1, 000 nodes.
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4

Results

In this research, different hierarchical RBN reservoirs were used to evaluate three

temporal problems: pattern recognition, food-foraging, and memory recall. These

tasks were chosen to show that hierarchical RBNs can perform better than mono-

lithic RBNs.

Depending on the task, one or more input neurons were added to the RC

system, and connected to the inputs of a fraction of the neurons inside the hi-

erarchical reservoirs using links with unit weights. The outputs of a fraction of

the reservoir neurons were also connected to one or more read-out neurons, which

were trained to solve a given task. For example, the pattern recognition task and

the food-foraging tasks required only one input node, whereas the memory recall

task required four input nodes. These parameters are summarized in Table 4.1.

The reservoirs were perturbed by the changing of the state of these input nodes

according to the task being evaluated.

4.1 Experiment 1: Variation of Average Connectivity

This experiment was performed to study the variation of the average connectivity

of the RBNs with respect to the hierarchical network parameters, M,n, which

determine the number of hierarchical levels and the number of modules in the

network respectively. The total number of modules in the network is given by nM−1.

This caused a variation in the number of initial nodes, the over-all probabilities

of in-module connections, and the number of growth operations possible before
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Task
Number of
input nodes

Number of
output nodes

Network size

Pattern detection 1 1 1, 000
Food-foraging 5 × 5 grid 1 2 1, 000

Food-foraging 10 × 10 grid 1 2 5, 000
Memory recall 4 4 2, 000

Table 4.1: A summary of the experimental set ups used to evaluate the three types
of tasks. The pattern detection task was the simplest task, with one input and one
output. The food-foraging task was a control task, where an agent was controlled
using 2 binary inputs, which were generated by the output nodes of the hierarchical
networks. The memory recall task required four inputs and four outputs.

reaching the desired network size. This in turn varied the average connectivity of

the network, which has been shown to be important for determining the dynamics

and computational capability of RBNs [28].

4.1.1 Methodology

In this experiment, the average connectivity (Kav) was calculated as the ratio of

the total number of links to the total number of nodes present in the network. To

study the variation of Kav, the minimum in-module connection probability was

set to 0.9 for the networks with M = 2, 3, 4, 5 and n = 2, 3, 4, 5. Networks of

sizes 1, 000, 2, 000 and 5, 000 were built using these network parameters, and their

corresponding average connectivity was measured. Fig. 4.1 shows a flow chart

illustrating the sequence of steps followed to obtain the average connectivity of the

above mentioned hierarchical networks. About 10, 000 network samples of each

of the different hierarchical networks were built up to the sizes listed above, and

the mean of the average connectivity of each set of networks was calculated and

plotted.

In this experiment, the reservoirs were built using the growth model described in
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Figure 4.1: A flow chart describing the procedure followed to evaluate the average
connectivity (Kav) of different hierarchical networks. In this experiment, the value
of max was set to 10, 000.

Chap. 3, and their Kav was measured without perturbing them with any external

input signal. As there was no need for the outputs of the reservoir neurons, a

read-out layer was not added to the RC system.

4.1.2 Results

Fig. 4.2 shows the variation of average connectivity in networks containing 1, 000

neurons. In this plot, it is clear that the average connectivity of networks with

n = 2 levels increases by up to 0.1 when the value of M is increased from 2 to
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Figure 4.2: The variation of average connectivity in networks containing 1, 000
neurons, with respect to the variations in hierarchical structure. Each group of
bars represent networks with a fixed value of n for different M in [2, 5]. The
error bars represent standard deviation of the average connectivity. Networks with
n = 4, M = 5 have a lower Kav of close to 1.5 than other networks with n = 4
because the initial nodes in networks with n = 4,M = 5, i.e., 2 × 45−1 = 512,
constitute more than half of their total nodes.

5. Also, this rate of increase is inversely proportional to M . On the other hand,

the average connectivity begins to decrease when the initial neurons represent a

significant fraction of the total neurons in these networks. For example, in networks

with n = 4, the number of initial neurons is given by 4M−1, where M is the number

of hierarchical levels. Thus, even though the average connectivity slightly increases

from 2.1 to 2.3 as M increases from 2 to 3, it decreases from 2.3 to 1.7 as M is

further increased from 3 to 5.

Fig. 4.3 shows the variation of average connectivity for networks grown up to

2, 000 neurons. In these larger networks, the decrease in average connectivity was
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Figure 4.3: The variation of average connectivity in networks containing 2, 000
neurons, with respect to the variations in hierarchical structure. Each group of
bars represent networks with a fixed value of n, and variation of M from 2 to 5.
As the network size is increased from 1, 000 to 2, 000, the impact of initial nodes in
these networks is lesser than the previous set of networks. The average connectivity
falls from 2.2 to 2 in networks with n = 4 when M increases from 4 to 5.

not as dramatic as in networks with 1, 000 nodes, considering networks with n = 4.

However, when n = 5 and M increases from 4 to 5, the average connectivity falls

from 2.1 to 1.6.

Lastly, Fig. 4.4 shows this variation for networks containing 5, 000 neurons.

All these networks had an average connectivity of greater than two. However,

decreases in Kav from 2.3 to 2.0 were observed in networks with n = 5, when M

increased from 4 to 5.
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Figure 4.4: The variation of average connectivity in networks containing 5, 000
neurons, with respect to the variations in hierarchical structure. The negative
impact of increasing initial nodes on the average connectivity was further reduced
as the networks were grown to a size of 5, 000 nodes.

4.1.3 Discussion

The networks built using the growth model described in Chap. 3 have an average

connectivity close to two.

In networks with 1, 000 nodes whose average connectivity is shown in Fig. 4.2,

it was seen that the average connectivity decreases by up to 0.6 for networks with

n = 4, when M is increased from 3 to 5. In the networks built using the growth

algorithm, the networks were initialized by populating each module with two fully

connected nodes before growing them to a desired size. Thus, each network had

2 × nM−1 initial nodes, and therefore their average connectivity was one. Hence,

if these initial nodes increase to be a significant fraction of the final network size,
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then the average connectivity of the networks will be closer to one.

For example, in networks with n = 2 and M = [2, 5], the maximum number of

initial nodes in the networks is 2×25−1 = 32. This number is only 3.2% of the final

network size of 1, 000, and hence, in these networks, the average connectivity is

determined mainly using the in-module connection probabilities. As these proba-

bilities were set to at least 0.9, the resulting networks had an average connectivity

of more than two. On the other hand, in the case of networks with n = 4 and

M = [3, 5], the maximum number of initial nodes is 2 × 45−1 = 512. This is about

50% of the final network size, and hence it was seen that the average connectivity

was about 1.7 in networks with n = 4 and M = 5.

The networks with n = 5,M = 5 were not grown because the number of initial

nodes in these networks, i.e., 2× 55−1 = 1250 exceeded the desired network size of

1, 000. Hence, these networks had an average connectivity of one.

However, in larger networks whose average connectivity values are shown in

Fig. 4.3 and Fig. 4.4, the impact of the initial nodes is lesser on the average

connectivity than in networks with only 1, 000 nodes. The general observation

from these results was that the average connectivity of the network begins to

decrease once the number of initial nodes become more than 10%.

Finally, in the case of networks with 5, 000 nodes, it can be observed that the

value of Kav increases from 2.18 to 2.35 in networks with n = 2, as M increases

from 2 to 5. As the number of hierarchical levels increases, the probability of

between-modules connections also increases, as described in Chap. 3.

However, this also results in more initial nodes, which leads to a decreased aver-

age connectivity, as discussed in the case of networks with 1, 000 nodes. Therefore,

a trade-off was observed, Kav increases for networks with n = 2 as M increases
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from 2 to 5, but it first increases from 2.18 to 2.3 in networks with n = 4 as M is

increased from 2 to 4. However, further increasing M to 5 results in a decrease in

the average connectivity.
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4.2 Experiment 2: Variation of Modularity

The between-modules connections play the role of transmitting information be-

tween the communities of strongly connected neurons in the reservoir. If such

connections are not enough in number, the information between these communi-

ties can not be exchanged optimally. The goal of this experiment was to identify

how the modularity factor, i.e., the ratio of the between-modules connections to

the total number of connections present in the network, varies in the different types

of hierarchical networks used in this research.

4.2.1 Methodology

In this experiment, the networks containing 1, 000, 2, 000 and 5, 000 nodes were

studied, because these networks were used in various experiments, which are de-

scribed in the later sections of this chapter.

The setup used in this experiment was identical to the one used for measuring

the variation in average connectivity of different hierarchical networks as described

in the first experiment.

Instead of accumulating and averaging the average connectivity of 10, 000 net-

work samples for each of the hierarchical networks with n = [2, 5] and M = [2, 5],

their modularity was measured. In this experiment also, the networks were grown

to the desired size, and the ratio of the between-modules connections to the total

number of connections was measured without perturbing the network with any

external input signal.

Fig. 4.5 shows a flow chart containing the sequence of steps following in mea-

suring the average modularity of the 16 hierarchical networks.
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Figure 4.5: A flow chart describing the procedure followed to evaluate the mod-
ularity (Muav) of different hierarchical networks. In this experiment, the value
of max was set to 10, 000. Muav−n represents the modularity of the nth network
sample.

4.2.2 Results

Fig. 4.6 shows the variation of average modularity in networks that were grown

to a size of 1, 000 neurons. In networks of this size, the average modularity of

all networks with only two hierarchical levels is approximately equal to 0.08. The

average modularity increases from 0.08 to 0.148 in networks with n = 2 as M

increases from 2 to 5. Also, in networks with n = 4, the average modularity first

increases from 0.08 to 0.137 as M increases from 2 to 4. However, further increasing
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Figure 4.6: The variation of modularity in networks containing 1, 000 neurons,
with respect to the variations in hierarchical structure. The error bars represent
standard deviation of the average modularity. The networks with n = 2 and M = 2
had least between-modules connections, i.e., a modularity of about 0.08, and the
networks with n = 2 and M = 5 had the most between-modules connections, i.e.,
a modularity of 0.144.

M to 5 results in a decreased modularity of 0.1. The modularity of networks with

n = 5,M = 5 was zero because the number of initial neurons in these networks,

i.e., 2 × 55−1 = 1250 was more than the desired network size of 1, 000, and hence

no network growth operations were performed in these networks.

Fig. 4.7 shows the variation of average connectivity for networks grown up to

2, 000 neurons. In these networks, when n = 4, the decrease in modularity is less

than that in networks with 1, 000 nodes. However, the modularity decreases from

0.14 to 0.09 in networks with n = 5, when M is increased from 4 to 5.

Lastly, Fig. 4.8 shows the variation of modularity in networks grown up to a
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Figure 4.7: The variation of average connectivity in networks containing 2, 000
neurons, with respect to the variations in hierarchical structure. Each group of
bars represent networks with a fixed value of n, and variation of M from 2 to 5.

size of 5, 000 neurons. In these networks, the rate of increase in modularity as M

increases from 2 to 5 was found to be inversely proportional to M . For example,

in the networks with n = 2, the modularity increases by 0.04 when M is increased

from 2 to 3. However, it only increases by 0.02 when M is further increased to 4.

This increase is further reduced to 0.008 when M is increased to 5.

4.2.3 Discussion

In this experiment, it was found that the fraction of between-modules connections

varied when the network hierarchy was varied, as shown in Figs. 4.6 to 4.8. For

the networks with n = 2 in Fig. 4.6, it is clear that the modularity is proportional

to the number of hierarchical levels. As M increases from 2 to 5, the modularity
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Figure 4.8: The variation of modularity in networks containing 5, 000 neurons, with
respect to the variations in hierarchical structure. Each group of bars represent
networks with a fixed value of n, and variation of M from 2 to 5.

increases by up to 0.068. This is because the probability of making between-

modules connections in the networks, as they are grown, increases with increasing

hierarchical levels. Even though the number of initial nodes in these networks

increases from 2 to 32, these are only up to 3% of the final network size. Hence, the

negative effect of these initial nodes, as was seen in the case of average connectivity

is not significant.

However, when the number of initial neurons in the network become a signif-

icant fraction of the final network size, the modularity begins to decrease. For

example, in networks with n = 4, the average modularity drops by up to 0.04

when M is increased from 4 to 5. The number of initial nodes in these networks
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increases from 2 × 44−1 = 128 to 2 × 45−1 = 512. The latter networks have about

50% of the total nodes in the form of initial nodes. The modularity of all these

networks initially is zero, as no connections are made between the modules during

initialization. Hence, as the fraction of initial nodes increases, the modularity of

the network tends to decrease.

However, if the final network size is increased to 5, 000 nodes, as in the case of

Fig. 4.8, it can be seen that even though the modularity increases with increasing

n, it also begins it decrease from 0.148 to 0.138 when the number of hierarchical

levels are increased from three to four and n is increased from three to four. This

is due to the fact that the number of initial neurons follows the equation, 2∗nM−1,

and hence, the increase in M leads to an exponential increase in the number of

initial neurons. Therefore, the modularity tends to decrease in such cases, where

the number of initial neurons in the network starts to increase exponentially.

It was also observed that the range of modularity is dependent on the in-module

connection probabilities, and we can see from the above three plots, all of which

have the same range of modularity of 0.08 to 0.015.
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4.3 Experiment 3: Activity in Hierarchical and Monolithic RBNs

The networks built in this research were closed systems, and did not have input

and output ports. Hence, additional input neurons were added to perturb these

networks. These input neurons were connected to only a fraction of the reservoir

neurons instead of connecting them to all the reservoir neurons, as it may not be

always be feasible to perturb all the reservoir neurons with the input signals. For

example, to adhere to power consumption limits when fabricating these systems,

the amount of wiring required can be reduced by connecting the input signals to

only a fraction of the reservoir neurons.

The goal of this experiment was to determine the percentage of nodes to be

perturbed with an external input signal, in order to achieve optimal activity in the

network. In this experiment, the activity of an RBN was considered as the sum of

the total number of times each node changes its state for a given duration of an

input signal. This is intended to measure the extent to which an input perturbation

propagates inside the RBN, and how different hierarchical RBNs react to an input

perturbation. Using the results of this experiment, it was possible to conclude that

a hierarchical reservoir can be optimally perturbed by connecting the input signal

to only a fraction of the reservoir neurons.

4.3.1 Methodology

In this experiment, different hierarchical RBN reservoirs were perturbed by a single

input signal, connected to a varying percentage of reservoir neurons (0 - 70%). To

represent this input signal, one input neuron was added to the RC system, and it

was connected to a fraction of the neurons present in the RBN reservoirs as shown

in Fig. 4.9. These neurons were selected using a uniform probability distribution.
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Figure 4.9: The set up used for determining the number of reservoir neurons to
be perturbed by an input signal. A weight of 1 indicates the existence of a link
between the input neuron and a reservoir neuron, and a weight of 0 indicates its
absence.

The RBN reservoirs were perturbed by changing the state of this input neuron,

and in order to have maximum possible activity in the input signal, an alternating

sequence of zero and one, i.e., 0101010101..., was used as the state of the input

neuron.

The state of the input neuron was updated once every time step. The state of

each neuron in the network was updated simultaneously, and once every time step.

The concatenation of the state of all the neurons was considered as the reservoir

state. The activity in the reservoir, due to the input perturbation was measured

as the hamming distance between the reservoir state at the end of the previous

time step, and the reservoir state at the end of the current time step. This activity

was accumulated over the duration of the input signal, and then divided by this

duration to obtain the average activity for the given input perturbation sequence.

After each perturbation step, a reservoir reacts to the perturbation by changing

its state.

For each of the examined hierarchical RBNs, networks with 1, 000 different
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network configurations of the same hierarchical structure were created using the

growth algorithm as described in Chap. 3. Each of these networks were simulated

using 100 different random initial states. Similarly, monolithic RBNs, obtained

by setting the number of hierarchical levels to 1, were also evaluated in order to

compare their activity with that of hierarchical RBNs.

All the networks were grown to a size of 5, 000 neurons, before perturbing them

with the input sequences of 01010101.. for 100 time steps. The average activity

of all the network samples was also normalized at the end by dividing it with the

network size and expressed as a percentage of the network size. In this experiment,

networks with M = 2 and M = 3 networks were studied.

4.3.2 Results

In Fig. 4.10, the variation in the average activity with respect to the fraction

of reservoir neurons connected to the input neuron is shown for networks with

two hierarchical levels. In this plot, each set of columns represent the average

activity of networks with n increasing from 2 to 5 for a fixed fraction of reservoir

neurons connected to the input neuron. It can be seen that the average activity

in networks with n = 2 increases from 20% to 43% as the percentage of reservoir

neurons that are perturbed with the input signal increases from 0% to 20%. As

this percentage is further increased from 20% to 70%, the rate of increase in the

average activity is very less, and the maximum activity is only about 45%. Hence,

the average activity increased by only 2% even when the fraction of perturbed

reservoir neurons increased to 70%.

Similar trends can be observed for networks with other values of n. Also,

the average activity in a network increases as the number of modules increases.
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Figure 4.10: A plot showing the variation of average activity in networks with
M = 2 hierarchical levels, and n = [2, 5]; the activities given in each column
are the average of 100,000 networks with the same network parameters but differ-
ent configurations and random initial states. The error bars represent standard
deviation.

For example, when only 10% of the reservoir neurons are perturbed, the average

activity increases from 28% to 33% when n is increased from 2 to 5.

The variation of activity with the percentage of neurons connected to the input

signal, for networks with different values of n from 2 to 5 with M = 3 hierarchical

levels is shown in Fig. 4.11. An average activity of at least 50% was observed

when 20% of the reservoir neurons were perturbed with the input signal. Also, the

average activity did not improve by more than 5% when the number of perturbed

reservoir neurons was increased from 20% to 70%.
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Figure 4.11: This plot shows the variation of average activity in the networks with
M = 3 hierarchical levels. It can be seen that the average activity does not increase
by more than 5%, once the percentage of neurons perturbed increases beyond 20%.

4.3.3 Discussion

In Fig. 4.10, it can be seen that the activity increases as n increases from 2 to

5. It was shown earlier in Fig. 4.4 that the average connectivity of the networks

also increases from 2.18 to 2.35 as n increases from 2 to 5 in networks with two

hierarchical levels. These RBN networks approach the chaotic regime as their

average connectivity increases, and hence, we can see an increased activity.

From the above results, we can observe that the average activity is proportional

to n when the percentage of neurons connected to the input signal is increased from

0 to 20%. However, the average activity does not increase by more than 5% beyond

this point, and hence perturbing 20% neurons with the input signal was enough

to result in optimal activity in these hierarchical networks.
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Figure 4.12: The RC system set up used to evaluate the temporal pattern detection
task. A single input signal was used to perturb each of the hierarchical networks,
and the networks were trained using a single read-out neuron. The output was a
simple ’Yes’ or ’No’.

4.4 Experiment 4: Temporal Pattern Recognition Task

The aim of this experiment was to train these networks to identify whether an

input data sequence represented an X pattern or not when the input is presented

sequentially to the network. To accomplish this task, a reservoir must be capable

of remembering the entire sequence and then make a decision whether the input

sequences represents a particular pattern or not.

4.4.1 Methodology

As was the case with the first experiment, for each of the examined hierarchical

RBNs (1 to 5 hierarchical levels, and 2 to 256 modules), a total of 100, 000 network

samples were evaluated, along with monolithic RBNs. The in-module connection

probabilities of the hierarchical levels in all these networks were at least 0.9 in

order to realize networks with average connectivity close to two.
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(a) A 3×3 grid of 9 pixels represent-
ing an X pattern

(b) A 3 × 3 grid of 9 pixels repre-
senting an O pattern

Figure 4.13: Two example patterns used for the temporal pattern recognition task,
the black pixels indicate the shape of the pattern.

The experimental setup used for this task is shown in Fig. 4.12. In this setup,

an input neuron, i, was used to perturb 20% of the reservoir neurons. An output

read-out neuron, o, was used to train these networks by connecting the outputs

of 10% of the reservoir neurons (Xout) to it, using links with an equal number of

weights, Wout.

As Boolean logic gates were used as neurons in these reservoirs, and because

such neurons operate on binary inputs, the input patterns were encoded as se-

quences of 1s and 0s. Two example input images representing an X and an O

were encoded as the two 3 × 3 grids as shown in Fig. 4.13. These patterns were

encoded as 2 sequences of 9 bits each. In these patterns, black pixels were con-

sidered as 1s, and white pixels were represented by 0s. These were translated into

3 × 3 matrices accordingly, as shown in figure 4.14.

These 3×3 matrices are converted to a sequence of nine bits to perturb the RBN

reservoirs sequentially. For example, the sequence representing an X was encoded

as 101010101 and the sequence representing an O was encoded as 111101111. There
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(a) A 3 × 3 matrix of 9 elements
representing an X pattern

(b) A 3 × 3 matrix of 9 elements
representing an O pattern

Figure 4.14: The two matrices for X and O patterns.

were a total of 512 unique sequences that could be encoded using these 3 × 3

matrices. The networks were trained using these sequences, and later evaluated

using a fraction of these 512 sequences.

These input sequences were fed to the reservoirs at the rate of one bit per

time step, through the input neuron i as shown in Fig. 4.12. In order to allow

a change in the input signal to propagate through the reservoir, it was clamped

to a constant value for 50 step simulation window. The final state of each neuron

connected to the read-out was considered to be a one if there were a majority of

ones in the sequence of outputs of the neuron during the simulation window, and

zero otherwise.

About 10% of the reservoir neurons were connected to a single read-out neuron

for training the system to solve this task. The read-out neuron was a simple

linear combiner with a threshold output, as described in the Artificial Neurons

and Weights section of Chap. 2. The output of this neuron would be one if the

input is greater than zero, and zero otherwise. An output of one was considered

to indicate that the input sequence represents an X pattern.
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Linear gradient descent, with a learning rate of 0.001, was used to train the

read-out neuron. Initially, the training was begun by setting the classification error

to zero. In each epoch of training, 99 patterns were randomly picked from the set

of 512 possible patterns, and added to the training set containing the sequence

corresponding to the X pattern. The reservoir was perturbed with each of the

sequences present in the training set sequentially. After simulating the reservoir

for 9 time steps, to complete one pattern, if the output of read-out neuron did

not match the expected output for that pattern, this error was incremented by

one. The network was reset to its initial state, before perturbing it with the next

sequence. This error was accumulated for all the 100 training sequences, and

divided by 100 and saved after every epoch. The weights were updated after every

epoch, such that the average error moves closer to the minimum value of zero.

The training was aborted if either the average error was minimized to 0, or if the

average error did not decrease by at least 1% over a period of 10, 000 training

epoch. The maximum number of training epochs for training each network was

set to 100, 000.

The trained network was then evaluated using the test set, containing 99 se-

quences that were randomly selected from the possible 512 sequences, along with

a sequence corresponding to the X pattern. The accuracy of this network was

obtained by subtracting the average error for the 100 sequences from one, which

indicates the percentage of input patterns that were correctly detected by the

network.
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Figure 4.15: The average performance of different hierarchical networks, with
100, 000 networks samples each,is plotted against the network parameters M and
n. The accuracy measure indicates the fraction of input test patterns that were
correctly detected by these networks. The error bars show the standard deviation.
The networks with n = 5,M = 5 were not evaluated because the number of initial
nodes in these networks (2 ∗ 55−1 = 1, 250) exceeds the maximum network size for
this experiment (1, 000).

4.4.2 Results

The results of this experiment are shown in Fig. 4.15. In this bar plot, the Y-

axis represents the normalized accuracy, and the X-axis represents combination of

network parameters (n, M), which denote networks having M hierarchical levels and

n sub-modules. The error bars represent the standard deviation of the accuracy

from the average. This shows that there were some networks that performed better

than the average and also some that performed worse than the average.

4.4.3 Discussion

The following observations were made from Fig. 4.15:

67



• All the hierarchical networks performed up to 36% better than the mono-

lithic networks. These results show that our monolithic RBNs had a limited

capability when it comes to temporal pattern detection.

• The performance increases by more than 30%, from 0.6 to 0.94, as the number

of hierarchical levels in these networks are increased from one to five, as seen

in the case of networks with n = 3. This is due to the fact that the number

of between-modules connections are more in networks with more hierarchical

levels than those with fewer hierarchical levels, as shown in Experiment 2.

These connections relay information between modules, there by perturbing

nodes that are not directly perturbed by the input signal.

• On the other hand, in Fig. 4.15, in the columns corresponding to (n,M =

4, 4) and (n,M = 4, 5), the accuracy decreases from 96% to 78% even when

the number of hierarchical levels are increased. The first network has 43 = 64

modules and two neurons are added to each module during the initialization

phase of network growth. Hence, 128 neurons are present initially in the

network which is approximately 10% of the total neurons (1, 000) that are

present in the network at the end of the network growth process. On the other

hand, the second network has 256 modules, and hence 512 neurons present

initially in the network. This is approximately 50% of the final network size.

Therefore, even though the probability of between-modules connections is

higher in the latter network, the number of in-module connections is much

higher than the number of between-modules connections, and hence there is

not enough information exchange between the modules in this case, which

leads to reduced performance [24].
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• The best performing networks had 4 hierarchical levels and 64 modules and

achieved an accuracy of close to 96%. This was closely followed by hierar-

chical networks having 5 hierarchical levels and 91 modules, which achieved

an accuracy of close to 93%.

• Finally, even though having more number of hierarchical levels seems bene-

ficial for this experiment, as can be seen in the case of networks with n = 2

and n = 3 in Fig. 4.15, it is not desirable for networks where the initial

number of nodes is more than 50% of the total network size, which is the

case in networks with n = 4.

69



(a) A grid with one turn in
the continuous food

(b) A grid with two turns in
the continuous food trail.

(c) A grid with one turn and
two gaps in the food trail.

Figure 4.16: Three 5×5 trails with different complexities that were used in the first
part of this experiment. The food pellets are indicated by an X. The trail in (c) has
multiple possible paths an agent can take to successfully reach all the food pellets.
The optimal path which was used as a reference to measure the performance of
the networks, is highlighted in orange in this figure.

4.5 Experiment 5: Food-foraging Tasks

Another application of machine learning is in building systems that can be trained

to control the motion of an autonomous robot. For example, a robot can be trained

to avoid obstacles on its path and reach its intended destination. One such class of

tasks is food-foraging. In this task, an agent is deployed in a two-dimensional grid

containing a trail of food pellets, and trained to find an optimal path to consume

all food pellets.
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4.5.1 Methodology

A total of 100, 000 reservoir network samples were evaluated for each of the different

hierarchical networks obtained by varying the number of hierarchical levels, M from

1 to 4, and the number of modules, determined by nM−1, where n varies from 2 to

6. Food trails with different complexities were used to evaluate all these networks.

This experiment was divided into two parts: initially small 5 × 5 grids, and

later a larger 10 × 10 grid were used to train and evaluate different hierarchical

networks. In each of these grids, a set of three different types of food trails were

used. The number of turns and the gaps in the food trails were used to determine

the complexity of these trails. Three trails that were used in the first part of this

experiment are shown in Fig. 4.16. Fig. 4.16(a) shows a simple 5 × 5 grid that

has a path containing seven food pellets with one turn in the path. Figs. 4.16(b)

and 4.16(c) show more complex trails with more turns, and added gaps in the food

trail respectively.

The aim of the experiment is to investigate whether hierarchical networks per-

form better than monolithic networks, in directing the agent to consume all the

food pellets in the most efficient way possible.

In this experiment, the agent was controlled using the outputs from different

types of hierarchical reservoir networks, each of which had one input neuron, and

two output neurons as shown in Fig. 4.17. These reservoirs were perturbed with

an input signal from a sensor present on the agent, and the function of this sensor

was to generate a binary input signal based on the presence of a food pellet in the

cell immediately in front of the agent. The value of the input neuron was updated

every time after the agent moves to a new cell in the grid.

Two binary read-out neurons, o1 and o2, were used to stimulate the agent and
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Figure 4.17: The experimental setup used to train and evaluate the RC networks
to control an agent, such that it moves in an optimal path to complete the food
trail contained in a grid. The state of the neuron i was one if a food pellet was
present in the cell immediately in front of the agent, and zero otherwise.

make it move in one particular direction. About 5% of the outputs of the reservoir

neurons were connected to both these read-out neurons with two sets of weights,

Wout1 and Wout2. These two neurons performed a sequence of two operations:

first, they linearly combined a fraction of the outputs of the reservoir neurons with

an equal number of trainable weights using Eq. 2.1, and then they performed a

threshold operation on these linear combinations to generate binary outputs. A

threshold of zero was used for both read-out neurons. If the value of the linear

combination was greater than zero, the read-out neuron would generate an output

of one, and zero otherwise.

The binary outputs of the two read-out neurons were encoded as shown in Table

4.2, such that each of the four possible combinations corresponds to a particular

direction in which the agent moves. This table also shows that the agent moves

to a new cell after every single time step. The agent can not move diagonally.
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o1 o2 direction
0 0 Forward
0 1 Left
1 0 Right
1 1 Forward

Table 4.2: 2-bit encoding of the directions in which the agent can move, o1 and o2
are the two read-outs from the RBN.

The agent used in this experiment had a simple control system that can move

either forward, left, or right of its current position. However, it can warp around

the grid if it reaches the edge of the grid. The performance of the hierarchical

RBN was evaluated based on the number of food pellets it was able to consume

and the number of moves taken to find the optimal path. The number of moves

an agent could make in each run was limited to restrict the freedom given to the

agent in finding an optimal path. For example, the agent was allowed to make a

maximum of seven moves in the case of the grid shown in Fig. 4.16(a), because it

is a relatively simple trail with a single optimal solution.

A solution was said to be found if an agent consumed all the food pellets using

the minimum number of moves required. In each run, the agent was placed in the

first cell of the grid, and was allowed to traverse the grid according to the outputs

generated by the hierarchical network. If the agent reached a cell containing a food

pellet, the agent’s score was increased by one and the food pellet was removed from

the grid. If the agent’s sensor checks the same cell again in the future, it would not

find a food pellet there. The agent was reset to its initial position upon consuming

all the food pellets or upon making the maximum number of moves allowed.

At the end of each run, the fitness of the path, i.e., solution was evaluated

using Eq. 4.1. For example, consider the trail shown in Fig. 4.16(b), and the

sample solution of an agent, at the end of a single run on this trail, as shown in
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(a) The path followed by an agent using a
sample hierarchical network, at the end of a
run on the trail shown in Fig. 4.16(b). This
agent consumed all the eight food pellets
using 10 moves.

(b) Trace of the agent’s inputs, and its sen-
sor outputs at the end of each move.

Figure 4.18: A sample run of the agent.

Fig. 4.18(a). In Fig. 4.18(b), the inputs to the agent and its sensor outputs at the

end of each move are listed. The agent starts off at move 0 and goes on to make 10

moves before consuming all the eight food pellets. The best possible fitness can be

achieved when all the 8 food pellets were consumed using only 8 moves. Although

the agent was able to consume all the food pellets, it made 10 moves, and hence

the fitness value for this run was determined to be 8/10 = 0.8.

fitness =
number of food pellets consumed

number of moves used
(4.1)

A genetic algorithm was used to train the read-out neurons instead of linear

gradient descent, because the latter method could not work. This was because

there were multiple optimal solutions possible for some of these trails, and there

was no unique expected/target output with which the network could be trained. It
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Figure 4.19: The various steps performed, when training the read-out neurons
using a genetic algorithm. The algorithm was configured such that training was
terminated if the fitness of the best individual in a generation was better than a
desired fitness value.

was also interesting to test if an agent is able to find an optimal path autonomously,

rather than teaching the agent to follow a particular path desired by the user.

A flow chart with the steps involved in a genetic algorithm is shown in Fig.

4.19. Here, the fbest refers to the highest fitness achieved in the population of the

current generation that was evaluated. The fdesired can be set to the optimal fitness

(if known) or another value set by the user. The algorithm was also programmed

such that the training would be terminated if fbest did not improve by a minimum

amount in the past 1, 000 generations. The training was performed for a maximum
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number of 10, 000 generations.

The genetic algorithm was implemented using the Python DEAP toolbox [6].

The eaMuPlusLambda evolution algorithm was used as the basis to evolve an op-

timal solution in these experiments. In this algorithm, an initial population with

K individual sets of weights is generated randomly. The size of the individual is

equal to the total number of weights to be trained for a given problem. In this

case, we have two neurons with Wout1 and Wout2 number of weights, and hence

each individual consisted of Wout1 +Wout2 number of randomly generated floating

point numbers in the interval [−5, 5]. The fitness of each of these individuals were

evaluated, and used to evolve a new population to evaluate in the next generation.

The population for the next generation is obtained by performing the two basic

genetic operations: cross-over and mutation to produce µ off-springs. The popu-

lation is evolved such that the next generation contains five of the best performing

individuals of the current generation, and this is a feature of elitism. This ensures

that the best individuals are not completely lost due to mutation and cross-over,

during the evolution process. The mutation and crossover probabilities were set to

0.02 and 0.6 respectively, according to the analysis done by De Jong et al. [4]. The

new population for the next generation contains K−5 individuals picked from the

set of (K,µ) individuals along with the five best individuals from the current gener-

ation. This then becomes the population of K individuals of the next generation.

A population size of 30 individuals was used in each generation. This ensured that

the population was large enough to contain a diverse set of solutions. The algo-

rithm was configured to find the best performing sets of weights that maximized

the fitness value.

The training would be stopped if either of the following conditions were met:
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Parameter Value
Population size (K) 30

Probability of crossover (pcross) 0.6
Probability of mutation (pmut) 0.02

Max generations 10, 000
Minimum fitness value (MFV) 1

max moves allowed

Weight range [−5, 5]

Table 4.3: This table summarizes the various parameters used in the genetic al-
gorithm for training the various hierarchical networks in this experiment. The
crossover and mutation probabilities were inspired from the work done by De Jong
et al. [4]. The maximum generations, Minimum fitness value and the weight range
were set to allow ample exploration of the solution space.

• the fitness of the best performing individual in the current generation had

reached fdesired;

• the evolution has been carried out for 10, 000 generations allowed; and

• fitness of the best individual in the past 1, 000 generations did not improve

by a minimum amount, MFV .

The minimum fitness value for the last terminal condition was set using the

equation, MFV = 1
Maximum moves allowed

. All the parameters used in this algorithm

are summarized in Table 4.3.

This training process was repeated for all the sets of 100, 000 network samples

of each hierarchical configuration and their average fitness values were obtained.

For the 5 × 5 trails shown in Fig. 4.16, networks with 1, 000 neurons were used.

For the larger 10×10 trail shown in Fig. 4.23, larger networks with 5, 000 neurons

were used.
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Figure 4.20: The fitness plots for different hierarchical networks evaluated for the
simple 5 × 5 trail task having one turn as shown in Fig. 4.16(a). The error bars
indicate the standard deviation of the fitness from the average. Most networks
with n = 4 and M = 4, 5 were able to solve this trail and consume all the seven
food pellets by using only seven moves.

4.5.2 Results

The average fitness of networks with 1, 000 neurons when solving the simple 5 × 5

trail task shown in Fig. 4.16(a) is shown in Fig. 4.20. The maximum moves

allowed for an agent in this experiment was set to 8, in order to allow the agent

some freedom to explore the grid. A fitness of close to 1 indicates that the trail was

completely solved by consuming all the seven food pellets using seven moves. In

this plot, it can be seen that monolithic networks are only able to achieve a fitness

of 0.625, which corresponds to consuming five food pellets in eight moves. Also,

networks with more number of hierarchical levels show improved performance. For

example, in networks with n = 2, the average fitness increases from 0.6 to 0.875

78



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6

Av
er
ag
e	
fit
ne
ss

n

M	=	1 
M	=	2 
M	=	3 
M	=	4 

Figure 4.21: The fitness plots for different hierarchical networks evaluated for a
complex 5 × 5 trail task having two turns. The networks with n = 6,M = 4
demonstrated a lower performance of 0.7 as they have 432 initial nodes, which is
almost 40% of the final network size. Also, the monolithic networks all have one
hierarchical level and one module in them, irrespective of the value of n, and hence
they all demonstrate average fitness that is similar to each other.

as M increases from 2 to 5.

These networks were then evaluated using a more complex trail task shown

in Fig. 4.16(b). In this task, the number of food pellets are increased to eight,

and the number of turns is increased to two. The maximum moves allowed for an

agent in this experiment was set to 10. The average fitness of different hierarchical

networks is shown in Fig. 4.21. All the hierarchical networks are able to perform

better than the monolithic networks. The best performing networks are those with

n = 5, M = 3, and most of these networks are able to completely solve this trail.

They are able to consume all the eight food pellets using eight moves.

79



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6

Av
er
ag
e	
fit
ne
ss

n

M	=	1 
M	=	2 
M	=	3 
M	=	4 

Figure 4.22: The fitness plots for different hierarchical networks evaluated for the
complex 5 × 5 trail task having one turn, and two gaps in the food trail. The
maximum fitness achievable in this experiment, as indicated by the path shown in
Fig. 4.16(c), was six pellets being consumed in eight moves. This evaluates to 0.75
from Eq. 4.1. Hence, we see that the best hierarchical networks are those with
n = 4 and M = 4, and are able to find the optimal solution for this trail.

Finally, these networks with 1, 000 neurons were evaluated for an even more

complex trail, shown in Fig. 4.16(c). In this experiment, the maximum moves was

set to ten. Since this trail can be completed in eight moves, and the maximum

number of pellets is six, the maximum fitness will be 6/8 = 0.749. The average of

best fitness achieved by each type of hierarchical network was plotted as shown in

Fig. 4.22.

In the second part of this experiment, the network size was increased to 5, 000

and the grid size was increased to 10×10, as shown in Fig. 4.23. The total number

of food pellets in this trail was increased to 15, and there were three gaps in the
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Figure 4.23: The 10 × 10 grid used to evaluate networks containing 5, 000 neu-
rons. This path had both turns and gaps in the food trail, and hence, was more
complex than the earlier trails. The network size was scaled to 5, 000 neurons to
accommodate this increase in complexity.

trail. The maximum number of moves allowed in this task was set to 20. Similar

to the last trail, the maximum fitness is < 1, and equal to 15/18 = 0.84. The

average fitness of the evaluated hierarchical reservoirs is shown in Fig. 4.24.

4.5.3 Discussion

From this experiment, it can be seen that hierarchical RBNs can be used to solve

control tasks, where control signals for an autonomous agent are to be generated

sequentially to achieve a desired goal. The following observations can be made

from these results:

• From Fig. 4.20, it can be seen that all the hierarchical networks perform

better than the monolithic networks. With an average fitness of 0.6, almost

all of the monolithic networks were able to collect a maximum of six pellets
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Figure 4.24: The average fitness of different hierarchical networks, evaluated for the
more complex 10×10 trail task having two turns, and three gaps in the food trail.
The maximum fitness achievable was 0.84, and only the networks with the highest
number of modules were able to find an optimal solution to this task. At low
number of modules, for example, in the networks with M = 2 hierarchical levels,
the connections between the modules are very few and hence, the communication
between the modules is not optimal, leading to a performance very close to that
of monolithic networks.

out of the eight, in eight moves. These networks have a single hierarchical

level and a single module, irrespective of the value of n as M = 1. Hence, it

can be seen that all the monolithic networks perform similarly.

• While the performance of the hierarchical networks increases when M,n are

increased, it also begins to decrease once the initial nodes become almost

half of the total nodes in the final network. For example, in Fig. 4.20, the

performance for the networks with n = 6, the performance decreased by more
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than 38% when M is increased from 3 to 4. This is because the number of

initial nodes in the network increases from 72 to 432, which is almost 43% of

the total nodes in the final network. This decreases the number of between-

modules connections in the network, thereby reducing the channels available

for information exchange between the modules.

• From Fig. 4.21, it can be seen that the performance of the monolithic net-

works is also about 60% as the complexity of the trail is increased by increas-

ing the number of turns to two. Almost all of these monolithic networks are

able to solve 60% of the trail, i.e., they are able to complete the first turn

in the trail successfully, and consume up to six food pellets in ten moves.

On the other hand, the hierarchical networks demonstrate a similar trend

observed in the case of the simpler 5 × 5 trail with one turn. However, the

networks with fewer modules, such as those with M = 2, and n = 2,3 and 4

were not able to improve their performance because the number of modules

are only increasing linearly with n.

• In Fig. 4.22, the average fitness is plotted for different hierarchical networks,

which were evaluated using a trail that was even more complex than the one

with two turns in it. The monolithic networks are only able to solve about

40% of the task, i.e, they are able to cross the first gap in the food trail

and also consume up to four food pellets in the trail before exhausting their

maximum moves. The networks with n = 4 and M = 4 are able to achieve

the best fitness for this task, closely followed by networks with n = 5 and

M = 3. The error bars get smaller as the fitness approaches the max value of

0.75, because almost all of these networks are able to find the optimal solution

for this trail problem. So far, we have seen the results from networks with
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1, 000 neurons. In these networks, the amount of hierarchy that is beneficial

is limited because of the small number of maximum network size. In the

following point, we examine the results observed for different hierarchical

networks, when the network size is increased to 5, 000.

• Fig. 4.24 shows results obtained in the final part of this experiment, for

the 10 × 10 trail show that the performance of hierarchical networks can be

improved by increasing the amount of hierarchy in them. This can be done

either by increasing the network parameter n, or by increasing the number

of hierarchical levels M . However, this will only scale well if the network is

large enough so that the number of additional initial nodes that are added as

a result of increasing the number of modules does not become a significant

fraction of the final network size. The best performing networks having n = 6

and M = 4 were able to completely solve the trail by consuming all the 15

food pellets using 18 moves.

Overall, we can see that the performance of the networks depends on the bal-

ance between the number of in-module connections, and between-module connec-

tions. These two vary when the network parameters M and n are varied. Thus,

the conclusion of this experiment is that hierarchical RBNs can be used to solve

such control tasks. It was observed that the best performing hierarchical networks

outperformed the monolithic networks by more than 40%. The number of initial

nodes in these networks was less than 15% of the network size.
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4.6 Experiment 6: Memory Recall Task

Rodriguez et al. investigated the influence of the modularity parameter on the

memory performance of networks that are decomposed into a number of modules.

They showed that networks having a modularity between 0.1 and 0.22 demonstrate

optimal capability to store and recall information. They performed a task to

evaluate how many different patterns of data can a neural network, with a given

modularity, store in its memory, and perfectly recall them once given a cue.

4.6.1 Methodology

In this experiment, we tried to reproduce a part of the experiment performed by

Rodriguez et al. to test the performance of the hierarchical networks that were

tested in experiments 1-3.

The goal of this task was to teach the reservoir a set of sequences and evaluate

how many of them it can recall correctly after a time ”delta T”. This requires the

reservoir to have memory to store the input history for a period of time.

Figure 4.25 shows the setup used for performing this experiment. About 20% of

the reservoir neurons were fed with each of the four input signal dimensions. Four

different read-outs were used to reproduce the 4 dimensions of the input signal,

which lasted for 5 time steps. About 10% of the outputs of the reservoir neurons

were connected to each of the four read-out neurons. The read-out neurons were

the same as those used in experiment 3.

At the end of a sequence, the states of the input neurons were left unchanged,

and the reservoir was perturbed for another ”delta T” time steps. Thereafter, the

states of the reservoir neurons connected to the read-out neurons were obtained

and saved for the training phase. The reservoir was then reset to its initial state
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Figure 4.25: A high level diagram showing the perturbation of the reservoir with
a 4x5 input bit sequence. The input is a four dimensional bit signal lasting for
five time steps. The network is perturbed with four bits of the input sequence
at every time step. Four parallel inputs and four parallel read-outs were used in
this system to reproduce the 4x5 input bit sequence. The read-outs were collected
after running the reservoir for 5 + ”delta T” time steps where ”delta T” was kept
constant for an experiment. This determines the duration for which the reservoir
has to store a given input pattern before it is expected to reproduce it.

and perturbed with a new sequence.

Linear gradient descent with a learning rate of 0.001 was used to train the

read-out neurons. A training set of 1, 000 randomly generated sequences were

used to train the read-out neurons. During each round of training, the sequences

in the training set were input to the reservoir sequentially. The error was set

to 0. After the reservoir was perturbed with a sequence and recalled it, if the

recalled sequence did not match the input sequence, the error was increased by 1.

After this, the reservoir was reset to its initial state and the next sequence was

input to the reservoir. This process was repeated until all the 1, 000 sequences

were completed. The error was accumulated and averaged across all the 1, 000

sequences. The weights of the read-out neurons were then updated using linear

gradient descent, such that the error decreases to the minimum value through
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multiple rounds of training. The training was aborted if either the average error

was minimized to 0, or if the average error did not decrease by at least 1% over

a period of 10, 000 training rounds. the maximum number of training epochs for

training each network was set to 100, 000.

Linear gradient descent was suitable for training the RC systems in this task,

because the expected outputs were readily available for each of the input sequences.

Hence, genetic algorithms were not required to train these RC systems.

After training the reservoir, a test set consisting of 200 sequences was built

using the original set of 1, 000 input sequences. The reservoir was then evaluated

using these 200 sequences, and perturbed with each of these sequences in the same

way as done during the training. The fraction of the test sequences that were

perfectly recalled was used as the measure of performance of these networks. A

score of 1.0 meant all the 200 input sequences were perfectly recalled.

In this experiment, the delay, delta T, is set to 80 time steps, and all the

networks that were used for the experiment had 2000 nodes. Different combinations

of the number of hierarchical levels (1 to 6) and the number of modules present in

the reservoir were used (1 to 625) to see how hierarchy influenced the performance.

It is useful to note that some of these combinations lead to networks having really

poor connections between the modules. This happens because the growth model

we have used to build these RBN reservoirs stipulates that the probability of

adding a node to a module must always be greater than the probability of adding

a connection between two modules for each hierarchical level [35]. For example, a

network with 625 modules would have 1250 fully connected neurons initially with

2 neurons in each module. As the network is grown to a size of 2000, it can only

add another 750 neurons that contribute towards the hierarchy.
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Figure 4.26: The computation rises almost linearly, because of the limited number
of cores available at any point of time, thereby limiting the maximum number of
networks that can be evaluated in parallel.

4.6.2 Results

This experiment had a long computation time, because even though the networks

could be evaluated in parallel, the main bottleneck was the training of the network

with the 1, 000 patterns using linear gradient descent. An initial experiment was

performed with one type of hierarchical network for different number of network

samples. The aim was to find a practical number of network samples to evaluate,

based on the run time required. The training was stopped if the performance of a

network did not improve by at least 1% over a period of 1, 000 epochs.

The variation of computation time with respect to the network samples is shown

in Fig. 4.26. As we can see, the computation time grows almost exponentially.

Therefore, to limit the computational time, we opted to evaluate only 60, 000
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Figure 4.27: Average accuracy of the networks tested with 200 input sequences.
There seems to be a threshold value for the between-module connections, as the
accuracy increases sharply for n = 4 and M is increased from 2 to 3. The best
performing networks achieved an accuracy of about 86%.

network samples for each combination of the network parameters.

The average accuracy of 60, 000 network samples of each type of hierarchical

network are shown in Fig. 4.27. The Y-axis represents the fraction of 200 input

sequences that were correctly recalled, after training the network with the 1, 000

test sequences.

4.6.3 Discussion

From Fig. 4.27, we can see the performance increases sharply from 0.3 to 0.85

when the number of hierarchical levels are increased from 1 to 5. However, there

is a significant standard deviation in these values because of the fewer number of
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network samples being evaluated. Even though the performance seems to increase

with increasing number of hierarchical levels, the performance decreases by 10%

when the initial number of nodes becomes 512 (almost 25% of the total number of

nodes in the final network), as can be seen in the case of n = 4, when M increases

from 4 to 5.
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5

Conclusion

In this research, we proposed, built and evaluated different types of hierarchical

RBN reservoir networks. In Chap. 3, we have used a growth algorithm to build

hierarchical RBN reservoir networks in a generic way. It was found that these

networks can easily be scaled to any desired size. In Chap. 4, these hierarchical

networks were evaluated using three temporal tasks. Initially, the variation of net-

work topology parameters, such as average connectivity (Kav), network modularity

(Muav), with respect to different hierarchical configurations were investigated.

In the first experiment, we measured the average connectivity of hierarchical

networks with M = 2 to 5 hierarchical levels and n = 2 to 5. In Networks

containing 1, 000 neurons, it was found that the average connectivity of 75% of the

networks was between 2 and 2.4. Also, the average connectivity began to decrease

once the number of initial nodes in the network became more than 12% of the final

network size. The lowest average connectivity of 1 was demonstrated by networks

with n = 5 and M = 5. This was because the number of initial neurons was

2 × 55−1 = 1250, which exceeded the final network size as a result of which no

growth operations were performed in such networks.

In networks with 2, 000 nodes, the lowest average connectivity of 1.5 was demon-

strated by networks having n = 5 and M = 5. The highest average connectivity of

2.3 was demonstrated by most networks having n = 2, 3, 4 and M = 3, 4. On the

other hand, the negative impact of initial number of nodes on teh average connec-

tivity was lesser in networks grown to a size of 5, 000 nodes. The lowest average
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connectivity of 2 was achieved by networks with n = 5 and M = 5. All the other

networks had an average connectivity between 2.18 and 2.35.

In the second experiment, the network modularity of the same hierarchical net-

works that were used in the first experiment, was measured. All the networks with

2 hierarchical levels demonstrated an average modularity of 0.08. The modularity

was proportional to the number of hierarchical levels, because the probability of

making between-modules connections increased when the number of hierarchical

levels was increased. The highest modularity of 0.15 was achieved by networks with

n = 2, 3 and M = 5. Networks with M = 2 demonstrated the lowest modularity.

In the third experiment, the average activity in different hierarchical reservoirs

was measured by perturbing them with an alternating sequence of 01010101.. over

a period of 100 time steps. Networks with n = [2, 5] and M = [2, 3] were evaluated

for different percentages (0 to 70%) of reservoir neurons connected to the input

sequence. From the results of this experiment, it was concluded that perturbing

about 20% of the reservoir neurons with an input signal results in near-optimal

activity in the network. A non-zero activity of about 20% was observed even when

none of the reservoir neurons were perturbed with an input signal. These were due

to the transients arising in dynamic systems, such as RBNs. The highest activity

of 56% was observed in networks with n = 5 and M = 3.

After evaluating the variation of the above parameters, three different temporal

tasks were used to evaluate different hierarchical RBN reservoirs. In the temporal

pattern recognition task, the best hierarchical reservoir networks outperformed

monolithic networks by up to 34%. The best performing networks achieved an

accuracy of 0.96 with n = 4 and M = 4. In these networks, the performance

decreased by about 20% when the initial number of nodes increased from 128
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(12.8% of the final network size) to 512 (51.2% of the final network size. The

latter type of networks had lower Kav and Muav compared to the first type of

networks, as shown in the first and second experiments respectively.

In the simple 5 × 5 food-foraging trail task containing one turn in the food

path, hierarchical networks outperformed monolithic networks by at least 15%.

About one-third of the 16 different networks evaluated found an optimal solution

to this problem. Networks with M = 4 and n = 3, 4, 5, and networks M = 3 and

n = 4, 5, 6 were able to achieve the maximum fitness of close to 1.

In the a slightly more complex 5×5 trail containing two turns in the food path,

hierarchical networks outperformed their monolithic counterparts by at least 10%.

The networks with n = 4,M = 4, n = 5,M = 3 and n = 6, M = 3 were able to

find an optimal solution for this problem and achieved a fitness of close to 1 by

consuming all the eight food pellets using eight moves only.

In the most difficult 10 × 10 trail containing two turns and three gaps, only

networks with a high level of hierarchy were able to find an optimal solution. The

monolithic networks achieved a fitness of 30%. The best performing hierarchical

networks with n = 6 and M = 4 achieved a fitness of 0.834.

Finally, hierarchical networks outperformed monolithic networks by up to 54%

in the memory recall task. These networks demonstrated an optimal region of

hierarchy where the best performance was achieved. Networks with n = 3,M = 5

achieved an average accuracy of 86%, and the next highest performance of 82%

was achieved by networks with n = 4 and M = 5.
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5.1 Significance and Impact

From the results of our experiments, it was observed that composing a reservoir

network with a number of smaller communities of neurons, connected to each

other using between-modules connections, improved their performance compared

to equivalent monolithic networks. Three temporal problems were evaluated using

networks of different sizes and hierarchies, as described in Experiments 4, 5 and 6

of Chap. 4.

We have shown that the performance of hierarchical networks increases as the

amount of hierarchy in these networks is increased. We also observed that the best

performing hierarchical networks outperformed equivalent monolithic networks by

also 60%. Burger et al. showed that hierarchical RC networks with a ring topology

were able to outperform monolithic networks by up to 20% in waveform generation

tasks.

We have also shown through our experiments that an optimal range of hierarchy

exists, where the performance of hierarchical networks is optimal. In most of the

experiments, the best performing networks were those with n = 3, 4 and M = 3, 4.

In networks with other values of n,M , the initial number of nodes affected the

network modularity negatively depending on the network size. Rodriguez et al.

showed that networks with a modularity between 0.1 and 0.2 outperformed other

networks by up to 60% when tasked to recall 200 sequences from memory after a

gap of 80 time steps. In a similar experiment performed in this research, the best

performing hierarchical network outperformed monolithic networks by up to 54%.

Finally, by showing that RBNs can be used as hierarchical reservoirs to solve

complex temporal tasks, we can say that Boolean logic gates can be used as an

alternative to other neurons, such as memristors and memcapacitors, and these
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gates are simpler to fabricate. These networks can also be readily mapped to a

mobile platform, such as a field programmable gate array, to test them in real

hardware.

5.2 Future work

This study was restricted networks having an average connectivity of close to two.

In the future, this research could be expanded by evaluating networks with other

values of average connectivity. The average connectivity of an RBN determines

its dynamics, but most of literature investigating this uses RBNs without any

hierarchical structure. It would be interesting to observe the dynamics of such

networks, when a hierarchical structure is introduced into them.

In the networks that were evaluated, the out-degree of each neuron was not

limited. However, this might be a concern when trying to fabricate such networks.

The fan-out of any digital logic gate can successfully transmit information to a

limited number of other gates, because of the limited amount of current that is

generated in the source gate for any signal transition. Hence, before proceeding

to fabricating these networks, they need to be studied in scenarios where the out-

degree of the neurons is limited to a constant value, similar to the way the in-degree

was restricted to 10.

The motivation for the food-foraging tasks used in this research was the more

complex 32× 32 toroidal grid called the Santa Fe trail [18]. In the future, it would

be interesting to see the variation in performance of these hierarchical networks

when tasked to solve this much more complex trail.
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