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ABSTRACT

Modern urban stormwater infrastructure includes vegetated bioretention facilities (BRFs)
that are designed to detain water and pollutants. Phosphorus (P) is a pollutant in
stormwater which can be retained in BRF soils in mineral, plant, and microbial pools. We
explored soil properties and phosphorus forms in the soils of 16 operational BRFs in
Portland, OR. Since soil hydrology can significantly impact P retention, we selected BRFs
along an infiltration rate (IR) gradient. We conducted sequential fractionation and tests
of P pools and measured P release in a subset of soils after drying and flooding samples
for ten days. We hypothesized that mineral or organic soil P forms would be correlated
with IR, and that vulnerability to P release would depend on the interaction of drying and
flooding treatments with P forms and pools. IR did not significantly explain differences in
P forms. Soil TP was elevated across all sites, compared with TP in agriculturally-impacted
wetlands and was substantially composed of soil organic matter (OM)-associated P.
Phosphorus sorbed to mineral Fe and Al oxides- was variable but positively correlated
with water-extractable P. The concentration gradient of water-extractable P was primarily
controlled by overall P pools. Experimentally induced P releases were seen in 5 of 6 soils
exposed to drying conditions, presumably released through microbial mineralization of
OM. Only one site showed significant P release following the flooding treatment. Our
measurements supported the idea that Fe and Al oxides provide P sorption capacity in
these BRF soils. Variable inputs of P to BRFs through stormwater and litterfall may
contribute to variability in P profiles and P release vulnerability across sites. Design

specifications and management decisions relating to bioretention soils (e.g.



establishment of acceptable soil test P levels, focusing on P forms known to influence

vulnerability of P release) may benefit from detailed biogeochemical investigations.
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INTRODUCTION

Impervious land cover and conventional stormwater infrastructure have dramatically
altered hydrologic cycles in many urban landscapes, resulting in higher runoff pollutant
loads and degraded receiving waters (Walsh et al. 2005). Regulatory requirements to
protect water quality and address urban flooding have challenged municipalities
logistically and economically, and stormwater managers have often sought innovations
from ecological engineering and related disciplines. In recent decades, managers and
municipalities have been implementing forms of low-impact development, including best
management practices (BMPs) that aim to improve environmental quality, sustainability,
and value of urban spaces. Municipal BMPs such as green stormwater infrastructure and
bioretention facilities (BRFs) are ecologically engineered drainage solutions, designed for

I "

more naturally self-organizing and energy-efficient operation than traditional “grey”
infrastructure (Mitsch 2012). BRFs typically divert surface runoff into vegetated surface
storage or infiltration basins designed to increase hydraulic residence time through soil
and plant pools. Beneficial pollutant reductions, acknowledged as ecosystem services,
have been identified with such practices. However, when the complex biogeochemistry
of soil systems is considered, these BMPs may require further assessment for their

vulnerability to produce ecosystem “disservices”, such as pollutant export (Pataki et al.

2011).

Urban BRFs have been shown to reduce peak flows in receiving streams (Shuster and Rhea

2013), and they can filter particles and some pollutants from stormwater, including some



metals and polycyclic aromatic hydrocarbons (Davis et al. 2001, 2003, Datry et al. 2003,
Li and Davis 2008, Wium-Andersen et al. 2012). The fates of other pollutants in BRFs, such
as the nutrient phosphorus (P), have greater uncertainty (Palmer et al. 2013, McPhillips
et al. 2018). Since P is often a limiting nutrient to productivity in freshwater systems,
stormwater inputs that increase P availability in urban water bodies can stimulate algal
blooms and degrade urban water quality (Sonoda and Yeakley 2007). Material in urban
runoff often includes dissolved and particulate P in organic and inorganic forms.
Retention of P pollutants, from road deposition, fertilizer applications, or animal wastes
is another desired function of BRFs (Palmer et al. 2013). Stormwater-impacted soils are
particularly vulnerable to P release-retention dynamics, which are largely modulated by
soil moisture conditions and water residence time. For example, studies conducted in
Redmond, WA, have shown that some bioretention structures were net P exporters, even
up to 18 months after installation (Herrera Environmental Consultants, Inc. 2012, 2014).
Interactions of hydrology with soil properties are fundamental to understanding the role
of soils as pollutant sinks or sources. Indicators of the potential for P retention in, and
release from, stormwater BRF soils under different hydrologic conditions could inform the
development of appropriate bioretention media composition and facility monitoring

plans.

The tendency for BRF soils to retain or release P is related in part to the mineral and
organic contents of the soil. Soil minerals can abiotically bind P via surface adsorption,

particularly when clays and soil particle surfaces contain poorly-crystalline forms of iron



(Fe) and aluminum (Al) oxides and hydroxides (Darke and Walbridge 2000). Another
important P reservoir is soil organic matter (OM), which may play an important role when
BRF soil specifications or inputs include organic-rich amendments such as compost. Soil
microorganisms use OM for growth and respiration, resulting in release of inorganic P
(mineralization) upon cell turnover (Gressel et al. 1996, Dieter et al. 2015). While soil P
forms can be described by their associations with soil mineral and organic components,
in practice they tend to be operationally defined by a chemical extractant as “binding
fractions”: e.g., inorganic P extracted with 0.1M sodium hydroxide (Pi-NaOH) is well
correlated with orthophosphate adsorbed to poorly-crystalline (amorphous) aluminum

and iron (hydr)oxides (Jackson et al. 1986, Richardson and Reddy 2013).

Soil pore water interacts with P, causing physiochemical and biotic P transformations that
may lead to P leaching when stormwater percolates through soil pores (Jensen et al. 1999,
Turner and Haygarth 2000). Soils exposed to experimental fluctuating dried-flooded
conditions have been shown to act as sources of soluble reactive phosphorus (SRP), either
as remobilized stormwater P, or as P released from soil organic matter (Young and Ross
2001, Zhang et al. 2003, Hunt et al. 2006, Aldous et al. 2007, Moustafa et al. 2011,
Kinsman-Costello et al. 2014, 2016, Chahal et al. 2016). Orthophosphate-P sorbed to iron
(Fe) (hydr)oxide minerals may be released under reducing conditions, when immobile
Fe3*is reduced to soluble Fe?* (Willett 1989, Shenker et al. 2005). Further, concentrations

of Fe and Al have been shown to be correlated with P adsorption capacity in natural soils



(Cross and Schlesinger 1995b), with Al being a stronger determinant of P sorption

potential because it is not redox-sensitive (Ardon et al. 2010).

To assess the capacity of BRF soils to retain P while avoiding P releases, we identified a
need for biogeochemical characterization of P forms and movements in the soils of
installed, operational facilities. We determined facility and soil characteristics of BRFs,
including water holding capacity, texture, organic matter content, and total P, and
conducted tests of P sorption and P forms by sequential extraction. To our knowledge,
this will be the first study to detail soil P characterizations in operational BRFs having wide

ranges of infiltration conditions and facility ages.

The potential for P to be released and transformed by the factors identified in prior soil P
studies led us to suppose that similar P transformations would be found in BRF soils, and
that these dynamics would be impacted by hydrologic factors that control water
residence time in the facilities. For example, could hydrologic factors that result in
saturated soil, such that anoxic conditions can become established, stimulate release of
P from redox-sensitive mineral sorption sites? Might soils that are moist but not saturated
experience enhanced microbial decomposition of organic matter and subsequent P
release? Stormwater infiltration rate (IR) is related to the hydrologic function of BRF soils
and is a factor used in BRF design and performance reporting. We predicted that the

concentrations of soil P fractions and release vulnerability would both relate to IR.

We addressed the following research objectives (ROs):



RO1) characterize P forms and pool sizes that exist in stormwater bioretention

facility soils, and

RO2) assess the vulnerability of soil P release across differing facilities and under

drying and flooding conditions in a lab experiment.

We hypothesized that

H1) soils with lower IRs (slower draining) would have

a) significantly lower Fe and soil mineral-associated P fractions, and

b) significantly higher organic P than soils with high IRs (faster draining);

H2) total P would be positively correlated with OM content in BRF soils; and

H3) organic P forms would represent the largest pool of stable P.

In our laboratory experiments, we hypothesized that

H4) soils with greater mineral-sorbed P concentrations would release the most P

to water under flooded conditions; and

H5) soils with higher organic P contents would release the most P upon drying

Figure 1 provides a conceptual diagram describing the study approach.



Form of Soil P Extract Description Hypothesized
Release
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Flooding ->
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minerals (Hyp. 4)
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Mineralization
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Figure 1. Conceptual diagram of soil P forms, extractants used to selectively measure
fractions, and hypothesized mechanisms important for a form’s release to water.



METHODS

Experimental Design

We selected facilities along an IR gradient to test our hypotheses relating hydrologic
conditions to soil P dynamics. Each facility was assigned to one of two IR group categories
(low IR = slower draining, high IR = faster draining). To relate P fractions to their
biogeochemical functions, we also grouped and summed concentrations of similar P
forms into three broader categories, which we refer to as “grouped” fractions or pools:

P-labile, P-minerals and P-organic/residual.

Hypotheses and tests are summarized in Table 1. Hypothesis 1a and 1b were considered
supported if the soil P fractions measured had significant differences between IR groups.
Hypothesis 2 would be supported if a significant slope was detected between OM and TP.
Hypothesis 3 would be supported if significantly higher organic P than mineral P
proportions were detected (with pairing of observations by facility). We selected a subset
of soils that spanned our total P gradient to include in the experimental incubation
component of this study. Our experimental design thus included the following factors:
facility sampled, treatment (flooded or dry) and time (duration of treatment). Facility and
treatment were categorical variables, and time was a continuous independent variable
used to compute the rate of change of water-extractable P of each soil-treatment
combination. If soils that were measured as containing greater mineral P fractions
responded to flooding with P release to water, this lent support to our hypothesis of

reductive dissolution (Hypothesis 4). Conversely, if soils with greater organic-derived P



responded to drying with an increase of water-extractable P over time, this supported the

hypothesis of microbial mineralization of organic P (Hypothesis 5).

Table 1. Experimental hypothesis predictions, tests and variables.

Hyp. Prediction Tests used Variables
Research Objective 1: Characterize BRF soil P forms
Lower IR soils would have .
) ] Difference of means (t-test) between )
Hla less P associated with . Pi-NaOH, DPS
) high- and low-IR groups
minerals
H1b Lower IR soils would have  Difference of means (t-test) between Po-NaOH,
greater organic P high- and low-IR groups P-residual
TP would be positively . .
H2 Linear regression for slope (F-test) TP, OM
related to OM
Organic P would represent P-organic
& . P Paired difference of means (t-test) . ganic/
H3 the largest fraction of residual,
between grouped forms of P ]
total P P-minerals

Research Objective 2: Assess vulnerability of P release under flooding and drying

H4

H5

Soils with greater mineral-
sorbed P would release P-
water after flooding

Soils with greater organic
P would release P-water

after drying

Facility Characteristics

Linear regression to identify significant
release over time, and to relate release
magnitude with mineral P pool size.

Linear regression to identify significant
release over time, and to relate release
magnitude with organic P pool size.

P-water,
DPS,
Pi-NaOH

P-water,
P-organic/
residual

Publicly-owned stormwater bioretention facilities in the City of Portland, Oregon, (known

as Green Streets) are installed and maintained by the city’s Bureau of Environmental

Services (BES) or in contracted developments, but the facilities vary in design, size, shape,

age, vegetation, and placement. The 16 facilities in this study (Table 2) were selected to

span the range of hydrologic infiltration rates (1 - 60 in/h), as determined through

8



drawdown studies by BES, while maintaining similar designs and placements on
roadsides. Four facilities did not have drawdown data values from BES (117Ho, 35Ye,
Dal60, FrAl), however. Facility types included street- or sidewalk-level planters,
vegetated curb extensions, planting strip swales, and a rain garden bordering streets and
sidewalk. These BRFs were all unlined (BES term: infiltration facilities), were directly
adjacent to a city street, with notches to allow runoff input from the sidewalk to the
facility, and had either sidewalks or grass planting strips on the non-street side. The
facilities in this study were mostly rectangular with flat or gently sloping bottoms, and
some contained components for slowing flows (e.g. rocky strips or wooden weirs
perpendicular to flow). They ranged in size from 6.3 to 161 m?, were constructed between
2003 and 2012 (Table 2), and were located across residential, industrial, and commercial

land uses in Portland (Figure 2).
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Figure 2. Green Streets stormwater bioretention facilities in Portland, OR. Facilities
shown in green. Study sites are labeled with codes. Location data from
portlandmaps.com.

Sample Collection

We obtained soil samples from the 16 selected BRFs with manual soil probes in June and
July 2016. Antecedent conditions were dry (we did not sample < 2 days following a rain
event) and warm (average temperature ~26°C), as is typical for summers in Portland.
Facilities were often rectangular with gridded planting layouts, so sampling points were
laid out on a similar grid to obtain 12 cores per site. Soil cores were collected using a 1.9
cm diameter soil probe in spaces between plants. Surface (0-10 cm) and sub-surface cores
(10-15 cm) were combined into labeled polyethylene zipper bags to create composite
samples by site and depth category. Composite soil samples were kept in a cooler then

stored at 3°C in the lab for later analysis.
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Soil Characteristics

All tests for soil characteristics were performed in duplicate for both surface and sub-
surface composited samples from each facility. Soils were homogenized inside the plastic
bags then sieved through a 2 mm mesh. Gravimetric soil moisture was determined by
drying at 105°C to a constant weight. Soil organic matter (OM) content was estimated as
loss-on-ignition (LOI) by combusting approximately 2 g of oven-dried soil in a porcelain
crucible at 550°C for four hours. Soil pH was determined in DI water in 1:2 soil to solution
ratio. Soil texture was determined as percent sand and clay by the hydrometer method
for particle size (Elliott et al. 1999), and gravel content was estimated by weighing

particles > 2mm from sieving.

Water holding capacity (WHC) was determined by adapting a method described by Fierer
and Schimel (2002), in which homogeneous soil < 2mm was saturated until it no longer
transmitted water by gravity, then gravimetric water content was measured. Briefly,
approximately 10 g of sieved soil was loosely added into a polyethylene funnel lined with
Whatman #42 filter paper. To ensure all of the soil was thoroughly saturated, DI water
was slowly added until it flowed through the funnel; the soil was allowed to drain and rest
for six hours, then re-saturated. Once gravity flow had ceased for 5 min, a homogeneous
subsample of the saturated soil was weighed and dried as above to determine gravimetric

water content. WHC, texture and pH were measured in surface soils only.

11



Sequential Phosphorus Extraction

Extractions and digestions were performed to characterize soil phosphorus forms. P
binding fractions were determined with sequential extractions (Figure 3) as in Richardson
and Reddy (2013). After approximately 5 g dry mass equivalent of soil was weighed into
50 mL polyethylene centrifuge tubes, 20 mL of extractant was added; tubes were capped
and mixed with a vortex mixer for 5 — 10 s. Tubes were shaken horizontally on an orbital
table shaker at 125 rpm with the following extractants and times: DI water (1 h), 1M KCl
(2 h), 0.1M NaOH (17 h) and 0.5M HCI (24 h). After shaking, the supernatant was isolated
by centrifuging the tubes at 3000 rpm for 10 min. This supernatant was vacuum filtered
through 0.45 um nitrate cellulose filters and stored in glass scintillation vials at 3°C. Soil
residues and filters were retained for the subsequent extraction. The 0.1M NaOH extracts
were divided into inorganic and TP portions: one sub-sample received concentrated HCI
and centrifugation to precipitate and remove humic acids; the other was digested in 6M
HCl to determine TP-NaOH. After the final extraction with 0.5M HCI, the residue was dried
and ashed as above, then digested following the method of Richardson and Reddy (2013)
for TP by ash digestion. The ash was digested in near-boiling 6M HCI for approximately 20
minutes, diluted in DI water and filtered through Whatman #42 paper. Phosphorus
standards and blanks were carried through all extraction steps. Fraction calculations were
based on the solution concentrations and the original dry soil mass, to measure mg P (in
a given fraction) per kg dry soil. Organic P in NaOH extracts (Po-NaOH) was defined as the
difference between TP in digested NaOH extract and the inorganic phosphate in humic-

removed extracts (Pi-NaOH).
12



Extractant |Additional |Pform measured

treatment
Dried soil <
2mm
Dlwater—/— P-water
1 mol/L KCIf—— P-KCl
Remove Pi-NaOM
0.1 mol/L NaOH hormice i-Na
Digest TP-NaOH
L
Po-NaOH by difference
0.5mol/LHCI | P-HCI
ash & digest
L = 5

P-residual

Figure 3. Flow diagram of sequential P fractionation procedure. Method from
Richardson and Reddy (2013).

Phosphorus Retention Tests

We measured the capacity of soil aluminum and iron minerals to adsorb phosphate by
determining the degree of phosphorus saturation (DPS), based on Schoumans (2009).
Acid ammonium oxalate solution (0.2M oxalate ion) at pH 3 was added to air-dried soil in
50 mL centrifuge tubes at a soil to extractant ratio of approximately 1 g : 25 mL. Extraction
took place in a darkened room, shaking for 2 h, followed by centrifugation and filtration
as above. The extracts were diluted in 0.01M HCI and analyzed for Al, Fe, and P by ICP-
OES within one week. Matrix-matched, combined standards of Al3*, Fe3* and PO,4*, and

diluent blanks were analyzed alongside samples. DPS was calculated as follows:

13



Equation 1
[P]Ox

DPS =
[Al]Ox + [Fe]Ox

DPS: degree of phosphorus saturation, a proportion
[...]Jox: concentration of dissolved analyte in oxalate extract, as mmol per kg air-dry soil

While a correction factor a has long been included as a coefficient of the denominator for
the available portion of Al and Fe for P sorption, no coefficient was used in this calculation,
because there is growing evidence it is not needed (Vaughan et al. 2007), and because

DPS was primarily used to compare soils within our sample set.

To measure the capacity for soils to remove orthophosphate from agueous solution, we
used the method of Sims (2009) as adapted from Bache and Williams (1971), to determine
a single-point, saturated phosphorus sorption index (PSI, a variable related to sorption
isotherms). To approximately 1g of air-dried soil in a 50 mL centrifuge tube, we added 20
mL of a 75 mg P/L aqueous solution of monobasic potassium phosphate (KH,PO4). The
slurry was shaken and allowed to equilibrate for 18 h, followed by centrifugation and

filtration of the supernatant, as above. Phosphorus sorption index (PSI) was calculated as:

Equation 2a
[P sorbed]

log,, ([P in solution] (mg P)>

PSI =

where:

14



Equation 2b

mg P
kg soil

[P sorbed] (

mg P) 0.02L
L

) = (75 — [P in solution] (

" soil mass (kg)

Simulated Flooding and Drying Incubations

We measured the P release response of a subset of soils (45Cl, 35Ye, ViFl, Th15, 12Mo
and Si35) over 10 days of dry and flooded conditions in mesocosms. Starting with 1.75 g
dry mass equivalent of soil in 50 mL centrifuge tubes, we added 20 ml DI water to flooding
treatments; to drying treatment soils, we added DI water to bring soil moisture to 55% of
the measured WHC. Flooded tubes were capped and kept in an incubation cabinet at
approximately 27°C. Dry treatment tubes were open to gently circulated 22.5°C air, in a
covered plastic box. Incubation end points were selected practically as 0, 2, 5, and 10
days. After incubation, flooded soils were resuspended by vortexing, while dry soils
received 20 mL DI water and vortexing; all treatments were extracted by shaking for 2 h,
followed by centrifugation and filtration as above. Soil residues were retained for TP

digestion and analysis. Solutions were preserved with 2 drops of concentrated HCI.

Extracted and digested solutions (except oxalate extracts) were analyzed for dissolved
orthophosphate via the molybdate-ascorbic acid method. Using a SmartChem 170
discrete analyzer (Unity Scientific, Brookfield, CT, USA), we followed manufacturer
methods based on Standard Methods 4500-P-F. Samples, standards, and blanks were
measured by automated colorimetry at A = 880 nm. Standard curves as linear or quadratic

six-point models were only accepted for R > 0.99.

15



Statistical Analysis

We used R 3.4 (R Core Team 2017), the base stats and pls packages for data analysis. For
parametric analyses, we transformed (log and Box-Cox transformations) variables as
needed to satisfy Shapiro-Wilk tests for normality at 0.05 significance. We compared soil
depth groups for all soil variables that were measured at both depths, using paired t-tests
of the mean of two lab replicate analyses, and applied Bonferroni corrections for multiple
comparisons (13 comparisons, critical p-value = 0.004) when identifying significant
differences. We compared soil P variables between facility groups having high or low
infiltration rates, using two-sample t-tests (16 comparisons, Bonferroni critical p-value =
0.003). We compared organic and mineral P proportions (reported as a percentage of the
sums of all P forms measured in sequential extraction) with a paired t-test and significance
level of a=0.05. Descriptive correlations were identified when linear univariate regression
slopes of transformed soil characteristics were significant at a=0.05. In the laboratory
incubations, we also used linear regression to identify significant slopes in water-

extracted P over the incubation time.

We endeavored to model soil properties as predictors of P release, but complex
relationships with P release may exist in soil, and many of the soil variables measured
were correlated with one another. Further, the sample size to variables ratio was small —
study-wide N=16 soils and 17 soil property variables could be considered— indicating the
need for dimensional reduction. Partial least-squares regression (PLSR) modeling

addresses the limitations of multiple linear regression by constructing models that can
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predict the value of a response variable with a large number of predictor variables, some
of which are highly correlated. PLSR uses this covariance structure and computes
componentized scores and loading matrices. The resulting linear combinations of
variables in each component can be described as latent factors each with contributions
from measured factors (Mevik and Wehrens 2007). A model was selected by choosing the
fewest components to substantially reduce prediction errors during model validation
(Appendix). We used the default kernel algorithm with leave-one-out validation to specify
latent factors that predicted P release (P-labile), using all measured soil property variables

as candidate factors.

Using R package plsSelVar, three variable-importance measures were computed for the
PLSR model: variable importance in projection (VIP), selectivity ratio (SR) and significance
multivariate correlation (sMC); these helped us identify soil factors that were important

in our P release PLS regression model (Tran et al. 2014).
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RESULTS

Facility and Soil Characteristics

Soils from the two depths we sampled (0-10 cm; 10-15 cm) only differed significantly in
OM (Table 2; paired t-test, p = 1.4x10°), using the Bonferroni-corrected error rate of
0.004. For measuring field water content, TP, individual P forms, DPS and PSI, we used
the mean value of all four lab replicates (surface and subsurface combined) to represent

results from each facility in subsequent statistical analyses.

Soils ranged widely in gravimetric water content (Table 2; dry mass basis: range 8.7 to
31%, mean 20%), and water holding capacity (33.6 to 79.7%, mean 57%). Soil texture was
dominated by sandy loam soils (Table 4; 11 of 16 surface soils), with sand content
between 39% and 85% (mean 69%), and clay content between 8.2% and 22% (mean 15%).
Organic matter content ranged from 5.8 to 24% (Table 2), and was positively correlated
with water holding capacity in surface soils (p<0.01, r?=0.68; WHC was not measured in
subsurface soils). WHC and field soil moisture were positively correlated (p<0.02, adj.
r?=0.34), but were not significantly different among differing texture classes, and not
correlated with percent sand or clay. Soil pH ranged from 5.4 to 7.2, correlating positively

with gravel content (p< 0.02, r?=0.32).

Total P ranged two-fold, between 740 and 1700 mg P/kg dry soil, with a mean of 1080
mg/kg across all sites (Table 3). Some variability in TP measurement was detected, and
coefficients of variation (CV) on four replicates ranged between 2.7% and 29%. One site,

Si35, had 19% higher TP than the next highest facility (1640 mg P/kg versus 1380 mg P/kg
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at Ti21). OM did not have a significant regression slope with TP in surface nor subsurface

soils, and thus Hypothesis 2 was unsupported.

Infiltration Rate

Infiltration rates measured by double-ring infiltrometer in July 2016 were not consistent
with the infiltration rates measured by the city during their monitoring campaign (1.2 to
50 in/h). Our measured infiltrometer rates (Table 2; 4 to 120 in/h) were used to describe
IR in subsequent tests, but three sampled facilities were not measured. IRs of the 13
measured facilities exhibited a distribution with positive skew. We identified a single
breakpoint in IR, with IRs below 40 in/h having less varying values, and those above 40
in/h representing a tail of higher and more widely varying values (Figure 4a). The result
was 9 facilities composing low-IR and 4 facilities composing high-IR groups. Experimental
hypotheses 1a and 1b were tested as outlined in Table 1, but significant differences
between the measured soil P forms were not detected by comparing values grouped by
IR categories (Figure 4b-c). We still identified other soil characteristic gradients related to

hydrology and soil P.
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Table 2. Sampled bioretention facility and soil characteristics. Percentages are on dry soil mass basis. Where given, tstandard error

of mean from displayed depth group. Depth groups: surface = 0-10 cm, subsurface = 10-15 cm. ND: no data.

Stocote | ot | | it | Flisol e | sl | orgmicwatr (9|
Depth Group (n;zg:r/ (m?) Rate Pooled Surface + Surface Surface Subsurface | Surface

(Replicates)~> (in/hr) Subsurface (4) (2) (2) (2) (1)

Si35 | 10/2003 | 29.7 4.1 23.3+1.6 54.4 +0.31 10.4+0.11 7.47 +0.16 6.3

12Mo | 6/2005 6.3 99 16.7 +1.4 50.4 +0.15 12 +0.17 9.97 +0.03 6.1

Ti21 | 6/2006 8.5 12 16.1 +0.51 59.9+5.8 12.8+0.096 | 11.2 4£0.15 5.8

Da160 | 11/2006 | 18.9 ND 18.5 +0.19 45.7 +0.12 7.36 +0.056 | 5.93 +0.067 6.2

WiDe | 6/2007 | 85.5 90 28.9+1.1 76.3 £1.9 19.2 +0.46 13.3+0.34 6.3

AlPr| 7/2007 | 42.7 15 22 +0.67 60.7 +0.36 13.7 +0.22 11 +0.18 7.0

117Ho | 11/2007 | 161.7 ND 14 +0.21 42.3+1.2 7.79 £0.11 7.86 +0.28 6.3

KiMa | 6/2008 | 11.1 31 446 11 76.4 +0.031 23.8+0.24 | 21.5+0.019 6.4

Be42 | 10/2008 | 17.8 33 16.5 +0.29 79.7 £3.7 15.5 £0.24 12.6 +0.34 6.7

FrAl'| 3/2009 | 18.1 33 149 +1.3 61.5+5.4 10.5 £0.29 8.21+0.1 5.8

ViFl | 5/2009 | 34.8 120 11.6 £0.55 495134 10 £0.31 9.21 +0.19 5.4

35Ye | 10/2009 | 11.1 ND 16.5 +0.17 61.7 +2.2 15.7 £0.15 13.5£0.25 6.4

45Cl | 7/2010 17 5.6 10.7 +0.58 33.6 £0.55 5.8+0.024 | 5.83 +0.046 5.6

WiSu | 9/2010 | 12.9 37 25.3 3.3 61.7 £1.2 14.5 £0.35 9.87 £0.17 6.0

Co7t | 12/2010 | 28.2 80 8.73 £0.12 43.1+2.6 8.56 +0.067 7.7 £0.09 6.3

Thi5| 9/2012 | 16.7 26 254 +1.4 50.6 +2 13.2£0.26 | 10.9 £0.063 7.2

T¢




Table 3. Means (tstandard error of 4 pooled replicates, 2 from Table 4. Soil texture measurements. NRCS soil texture shown.

each depth group) for soil tests associated with P. Gravel defined as >2 mm diameter. ND: no data.

Site Code (mgTIc:;ilg:oil) (molgr fatio) ’ SI::;F::)i(on Site Code Sand %  Clay % -(r<e ;t:::ﬂaass ;"a"el
Si35 1640 +28 0.199 £0.002 211 3 Si35 39 22 loam 30
12Mo 1120 +120 0.133 +0.006 202 £5.1 12Mo 71 18 sandy loam 25
Ti21 1380 £53 0.143 £0.004 184 +4.8 Ti21 57 17 sandy loam 12
Da160 782 20 0.096 £0.003 300 12 Da160 40 21 loam 18
WiDe | 1350 £130 0.116 £0.003 158 +13 WiDe 66 18 sandy loam 28
AlPr 1290 +100 0.107 +0.001 227 t4 AlPr 76 14 sandy loam 24
117Ho 993 +31 0.133 £0.001 230 +15 117Ho 77 14 sandy loam 13
KiMa 1160 +44 0.128 +0.002 138 +8.8 KiMa 64 22 sandy clay loam 27
Be42 976 31 0.0925 +0 287 12 Be42 75 15 sandy loam 25
FrAl 884 30 0.123 +0.002 239121 FrAl 85 8 loamy sand 14
ViFl 911 25 0.125 +0 151 +4.1 ViFl 75 15 sandy loam ND
35ve 847 11 0.0959 +0.001 245 8.3 35Ye 71 13 sandy loam 21
45cl 825 +438 0.113 £0.001 209 5.9 45cl 80 11 sandy loam 13
WiSu 1210 £50 0.131 £0.002 153 +8.6 WiSu 79 9 loamy sand 8.7
Co7t | 1030 £150 0.109 £0.001 192 5.4 Co7t 82 12 sandy loam 6.9
Thi5s 958 +42 0.109 +0.001 189 +14 This 65 16 sandy loam 28
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Figure 5. Water-extractable P (P-water) as a function of the Degree of P Saturation
(DPS). Points: means of four lab replicates * standard error. Regression line shown; 95%

confidence interval shaded.
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Figure 6. Phosphorus Sorption Index (PSI) as a function of oxalate-extractable aluminum
(mean * standard error). Regression line shown with 95% confidence interval r>=0.27,

p<0.03.
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Characterization of Soil Phosphorus Forms

The amounts of P in sequentially extracted P fractions varied moderately among soils,
with means across sites as follows: less than 1% of soil TP in labile forms (water- and KCl-
extractable P), 32% occurring as NaOH-extractable P (21% inorganic and 11% organic),
27% as HCl-extractable inorganic P, and 34% as residual P (Figure 7). Grouped P forms
were computed and had the following proportions: P-labile comprised 1% (red in Fig. 7),
P-minerals comprised 51% (shades of blue in Fig. 7) and P-organic/residual (shades of
green in Fig. 7; 48%). The mean recovery rate (the sum of the sequentially extracted P
forms as a percentage of the independently analyzed TP) was 96%. Pi-NaOH was the most
variable fraction, with a coefficient of variation of 60% among all the samples. Hypothesis
3 was not supported, as proportions of P in organic forms and in mineral forms were

nearly evenly distributed (paired t-test: p=0.23).

Most soils released relatively small amounts of soluble P when extracted with water and
1M KCI (P-labile range 1.9 — 12 mg P /kg soil). Greater amounts of inorganic P were
extracted with 0.1M NaOH (81 — 690 mg P/kg soil), suggesting P sorption to Al and Fe
minerals, and with 0.5M HCI (100 — 450 mg P/kg soil), suggesting exchange or dissolution
of calcium or magnesium phosphates. Substantial P was present in nonreactive forms
among all soils, and the overall TP gradient was apparently supported by P-residual’s
gradient. Again, soil from the facility Si35 contained distinctly higher P-residual and Pi-

NaOH than others (Figure 7).
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Tests for Phosphorus Sorption Capacity

The Degree of P Saturation (DPS) ranged from 9.0 to 20% across sites, with a mean of 12%
and standard deviation 2.5% (Table 3). DPS was a strong predictor of P-water (Figure 5;
r?=0.65, p<0.01) and Pi-NaOH (r?=0.50, p<0.002). Grouped (P-labile, P-minerals, P-
organic/residual) forms had positive regression slopes with DPS, with explained variance
as high as 72% (P-minerals vs DPS). Results of Phosphorus Sorption Index (PSl) tests
ranged from 134 to 321 (Table 3), with all soils showing some phosphate sorption
potential. P-water decreased significantly as a function of PSI (r?= 0.36, p<0.01). PSI was

also positively correlated with oxalate-extractable Al (Figure 6; r2 =0.27, p<0.03).

We further examined how soil and P variables might change as a function of facility age,
based on installation dates. Notably, TP varied significantly as a function of facility age
(Figure 8; r?=0.22, p<0.04), with soils in older facilities soils containing more TP. We also
noted that P-organic/residual also increased as a function of age (Figure 8, r?=0.5,

p<0.002). Percent sand content was negatively related to facility age (r? = 0.31, p<0.02).
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Figure 8 TP and grouped P (as mineral or organic/residual) concentrations in soils as a
function of BRFs’ ages. Points: mean * standard error of four measurements of each
facility soil. In legend, r? values are given and asterisk indicates a significant slope of the
regression line at a=0.05.

Relationships P release with soil properties

Using PLS regression, we specified the model in Appendix. Three components (PC1, PC2
and PC3 hereafter) were identified as latent variables important for describing P release
(Mevik and Wehrens 2007). The regression model was trained to explain 93% of the
variance of P-labile. TP, DPS, and PSI were consistently identified as important variables
for explaining P release (Figure 9; Appendix). Soil moisture (Water), P-residual and Pi-
NaOH exhibited moderate importance in the model. While most P release was related to
overall P pool sizes or sorption capacity, a PC2-PC3 biplot (explaining 19% and 11% of
predictor variance, respectively) gives evidence that soil moisture conditions (Water) and

mineral-bound P (Pi-NaOH and DPS) may be important in predicting P release, but the
27



latent factor in PC2-PC3 space contains a negatively correlated relationship between

these two factors (Figure 9B).

45Cl
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Figure 9. Bi-plots of PLSR model component scores of sites and variables in projected
spaces: A. PC1, PC2 and B) PC2, PC3. Scores are from our computed PLS regression
model on P-labile, a measure of P release vulnerability. Important variables in the
model are noted as red lines and text (complete model specification in Appendix). Note
that the PC2 axis is rotated (vertical in A. horizontal in B.), and not to a common scale

between panes.
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Figure 10. Water-extractable phosphate changes in six bioretention soils after 0, 2, 5
and 10 days of drying (top row) and flooding (bottom row), with TP and DPS values
shown. Points show mean concentration changes from initial reference as percent +
standard error of three replicates. Regression lines are shown with shaded 95%
confidence intervals; slopes noted as change in P concentration in mg P/kg soil/day.

Soil Flooding and Drying Experiments

Experimentally dried and flooded soils from six BRFs ranging in TP from 825 to 1635 mg
P/kg TP released water-extractable P in some of the incubations (Figure 10). Water-
extractable inorganic P remained a small fraction of TP in these soils (< 1% of (P-water +
P-residual of incubated sample)). Eight of the 12 treatment-soil combinations had
significant slopes at a=0.05 significance in linear regression models, with explained
variances ranging from 41 to 99% and slopes ranging from -0.07 to 0.38 mg P/kg soil/day
(Figure 10). Of the sites with significant responses to treatments, soils from only one BRF

(Si35) subjected to flooding showed an increase in P-water (40%), while two other sites
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showed small decreases (Th15: 28% decrease and 12Mo: 29% decrease) in P-water. Five
of the six sites showed increased concentrations of P-water following the drying
treatment, with increases in initial concentrations ranging from 26 to 87%. Soils from
facility Si35 also released the most P under both drying and flooding treatments (Figure

10).

While we did detect responses to flooding and drying with significant positive slopes of P
release in these manipulations, the hypotheses (H4 and H5) that predicted relationships
of the size of this response with specific soil P pool sizes were not supported. In finding
that one of the six soils (Si35) had elevated Pi-NaOH and DPS, and also released P to water
upon flooding, we found limited support for Hypothesis 4. We did not have sufficient
sample size to determine whether release magnitude related to mineral P pool sizes,
however, since only three soils had significant slopes in water-extractable P during

flooding.

Regarding Hypothesis 5, we did not detect a relationship between organic P pool sizes
and the magnitude of the P release slope when soils were dried (F-test for slope in
regression of five points: Po-NaOH p=0.08; P-residual p=0.18). These findings indicate that
there is potential for P release in both flooding and drying scenarios, but there is little
support for the hypotheses that mineral or organic P pool sizes are an important predictor

of the magnitude of P release.
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DISCUSSION

Urban bioretention facilities are an emerging technology, thus soil studies with detailed
focus on soil P chemistry are not widespread. This study provides characterization of P
profiles of the soils in 16 BRFs, a step in discerning accumulations or flows among soil P
forms. We found moderate variability in soil P forms, but Hypotheses 1a and 1b, relating
the sizes of these pools to soil IR, were unsupported. While TP varied throughout the sites
we sampled, this did not relate significantly to OM, contrary to our prediction with
Hypothesis 2. Hypothesis 3 was also unsupported, with mineral and organic P pools
contributing equally to overall P profiles. Finally, Hypotheses 4 and 5, relating flooding
and drying treatments and P release amounts with mineral or organic P pool sizes had
only anecdotal support. Those findings still provide evidence that slow release of P will
occur under drying conditions, while flooding conditions may only stimulate release of P

in limited cases.

Total phosphorus

We found that soil TP levels were generally high (mean TP: 1080 mg/kg) and variable
among BREF sites (SD: 237 mg/kg; CV: 22%). Bioretention media in a facility in Redmond,
WA, was reported to contain TP of 660 mg P/kg soil. (Herrera Environmental Consultants,
Inc. 2014). Bratieres et al. (2008) experimentally compared bioretention media
performance, starting with lower TP (133 to 167 mg P/kg) with some media containing
10% compost. Mullane et al. (2015) conducted leaching experiments with pure composts

designed for bioretention, reporting TP up to 2900 mg/kg. In comparison to wetlands,
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sediments in Midwest wetland ditches have been shown to have similarly high TP (904-
1502 mg/kg; Kinsman-Costello et al. 2014), while a related study that surveyed a diversity
of wetland sediments reported a TP range between 28 and 1910 mg/kg, a gradient that
was correlated with OM (Kinsman-Costello et al. 2016). Wetland soils in Florida studied
by Dunne et al. (2006) and Dunne et al. (2010) had lower TP (mean 354 mg/kg) than these
BRF soils, with only wetland soils within a dairy (1642 mg/kg) or marsh soils in cow-calf
pastures (825 mg/kg) containing a similarly high TP level as the BRF soils in our study.
Pastured and cultivated Histosols in the Florida Everglades were found to contain
background TP of 959 and 1227 mg/kg (Castillo and Wright 2008). A review of soil TP and
fractions by Cross and Schlesinger (1995a) reported the highest TP value in natural soils

in an Inceptisol that still contained lower TP (849 mg/kg) than soils in the present study.

Sources of P in BRF soil

Soil P in BRFs is derived from P in installed compost, sand (BuildingSoil.org 2016), and
external urban inputs (Soldat and Petrovic 2008, Janke et al. 2017). To support vegetation
growth, prolong media health, and enhance storm water detention, soil management
manuals suggest and regulations require the addition of OM-containing amendments;
this represents an import of TP, though requirements of more mature compost can avoid
some P losses from installed materials. As shown in Mullane (2015), composted OM
contains a spectrum of P-rich materials, and microbial mineralization controls availability.
BRF blends provide substrate for microbial communities to develop, and compost P

sources can permit plant growth (BuildingSoil.org 2016). The hydrologic detention
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performance of such amended soils is a further driver of compost inclusion in media
specifications. Portland’s mandate for BRF soils in part specifies that “compost must
comprise 30-40% by volume” of installed soils (Section 01040.14(d); City of Portland
2010). This apparent aim for soils that support sustained plant growth and water holding
properties is well-guided (Hinman 2009). Our study addresses the possible risk of leaching

soluble P pollutants after establishment periods have passed.

In contributing areas to BRFs, land covers we observed were largely pavement, turfgrass
and garden soils. Apparent sources of P included eroded soil particles, lawn trimmings
and fertilizers, pet waste, road dirt (a source of leaf litter P) and deposition on roofs and
pavement. Hobbie et al. (2017) and Waschbusch et al. (1999) found that largely
anthropogenic inputs of turfgrass lawn fertilizers and pet wastes could contribute to
runoff losses of TP and soluble reactive P, while Janke et al. (2017) observed loading of
stormwater TP from urban watersheds with greater tree density. P pools and flows are
influenced after BRF installation via soil-forming factors both natural (soil organisms) and
novel (human disturbance of catchments or BRFs themselves) (Howard 2017). The wide
ranges of TP in our study and others are evidence that using selective extractions of soil

P forms can provide practical insight into P pools and flows of interest.

Sequential P forms
Some agricultural soils in the Florida Everglades had comparable quantities and
distribution of P forms, including labile P forms near 1% of TP (1.3 to 10.7 mg/kg in soils

with TP of 959 to 1227 mg/kg; Castillo and Wright 2008). Those wetland soils experienced
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shifts in humic/fulvic, Fe, Al and Ca-associated P forms when P fertilizers were applied to
soils under two agricultural uses (cultivated and pastured), showing that pathways among
soil P pools might be related to both inputs of P and soil conditions (such as soil pH and
Ca or Fe content). P profiles were more uniform in our study than in some Midwestern
wetland soils (Kinsman-Costello et al. 2014, 2016), in which TP, humic acid P (comparable
to our Po-NaOH) and residual P fractions varied more dramatically. We found appreciable
quantities of HCl-extractable mineral pools of P (P-HCIl: 161 — 387 mg/kg), apparently
accumulating or storing P. Apatite minerals in the initial installation mixture may
contribute to P-HCl, and Ca or Mg (found in road de-icing compounds) from BRF

stormwater inputs may enable precipitation of inorganic phosphates.

Al and Fe-sorbed inorganic P (Pi-NaOH: 91.6 — 648 mg/kg) varied considerably. This
mineral fraction is watched closely in agricultural soils as it represents an
adsorption/desorption-driven P pool that grows with amendment P inputs (Kashem et al.
2004). Furthermore, redox conditions may interact with poorly crystalline metal oxides
and hydroxides that bind this form. We detected organic P fractions of the NaOH extract
(associated with humic compounds), and this represented byproducts of microbial
decomposition of P-residual forms. NaOH-extractable organic P has been noted as a pool
which will accumulate or release P with differing long-term soil management scenarios
(Frossard et al. 2000). The range of water-extractable P (<0.5% of TP, 1.3 to 10 mg/kg)
was similar in value to some unamended agricultural soils (Davis et al. 2005), agricultural

ditch sediments (Shore et al. 2016) or wetland soils (Dunne et al. 2010); other unamended
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agricultural silty clay loams from Manitoba showed substantially higher P-water levels
(39-42 mg/kg; Kashem et al. 2004). This and P-KCI (we found minor P-KCl: 0.6 to 2 mg/kg)
are the most loosely held P forms and thus can represent release-vulnerable soil P, but

no BRF soils in our study contained alarming levels of these fractions.

Soil P relationships with infiltration rate

We hypothesized that infiltration rates (IR) in BRFs — which ranged by more than two
orders of magnitude among our sampling sites —would impact P accumulation or release.
While soil hydrologic characteristics may have been a driver of differentiation of soil P
forms, we did not observe significant correlations of different P binding forms with IRs,
nor did we find statistically significant differences in P concentrations in facilities with
different IR categories (Figure 4). Infiltration rate data is useful in engineering and
technical soil study, but can be limited in soil biogeochemistry studies such as this. For
instance, soil processes (root growth, erosion or sediment accumulation, etc.) and lateral
or preferential flow paths might bypass the expected particle-water chemistry in soil pore
spaces, which is responsible for many P exchanges. Directly measuring soil water
movement beyond the uppermost surface, such as saturated hydraulic conductivity (Ksat),
may provide more reliable predictions of P forms that are impacted by periodically

saturated conditions.

Identifying P release vulnerability
The challenges of utilizing operationally defined P forms, tests of P availability and the

differing extraction methods in assessing or managing soil P are well-documented (Potter
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et al. 1991, Sharpley et al. 1996, Lajtha et al. 1999, Sawyer and Mallarino 1999). Some
BRF investigators use Mehlich-3 P, considered to have agri-environmental utility (Sims et
al. 2002). In a study of BRF soils, McPhillips et al. (2018) found BRF soils in which Mehlich-
3 P (302 to 433 mg P/kg) far exceeded the optimal levels for plant growth, considering
compost P sources important in P leaching. Hunt et al. (2006) observed three facilities
with differing P-index (a measure derived from Mehlich-3 P) soils, noting that high P-index
soils had P release, while flow reductions prevented net P export from those BRFs. In 16
BRF soils, we found important gradients among soil P forms, other soil variables, and their
relationships to P release. While Mehlich-3 P analysis can help elucidate soil fertility and
some limited environmentally relevant questions, our study instead targeted the
potential for P release as related to soil water conditions that impact oxygen availability.
Using concentrations of inorganic phosphorus extracted by water (P-water), 1M KCI (P-
KCl), NaOH (Pi-NaOH), and oxalate (DPS), we could approximate release vulnerability of
labile and mineral-sorbed P forms. A positive relationship of P-water with DPS (Figure 5)
and Pi-NaOH supports the idea that these mineral-associated P forms play crucial roles in
release and retention of P. With PLS regression, we also demonstrated that, while the
concentrations of P release were dominantly controlled by overall P pool amounts,
sorption to minerals and moisture conditions have opposite effects on some latent factors
that can predict P release (Figure 9). This would be expected if, on occasion, soil solution
conditions (e.g. reduced oxygen from extended inundation) hinder the formation of

sorption complexes of P associated with iron oxides.
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The P-residual pool comprised a substantial portion of the P profile, supporting that
occluded minerals, recalcitrant compost, or decomposed litter incorporation provided
slowly cycling P. The lack of a strong OM-TP correlation in both surface and subsurface
layers points to soil OM sources that may vary in P content among different facilities, as
amendment, removal through management actions, decomposition and/or leaching of
organic P may have occurred at differing rates. Surface layers were enriched in OM and
organic P, so inputs of litter or other sources (pet waste?) are implicated for P

enrichments in the upper 10 cm.

Discussion of study site Si35 soil P

Among the most striking finding was that soils in one facility (Si35) were substantially
higher than all other soils in TP, P-water, Pi-NaOH, and DPS (0.199), suggesting that this
facility in particular may rely on the oxides of Al and Fe to retain P. Vulnerability of this
soil (Si35) to release P was supported by the drying and flooding treatments that showed
significant changes in water-extractable P over ten-day incubations (Figure 10). Si35 was
the slowest infiltrating facility (4.1 in/hr) with relatively high clay (22%) and silt (39%)
contents. Upon visual inspection, the Si35 filtered extracts were among the deepest in
yellow-brown humic color. The greater age (12.7 y) and mid-range OM content (Si35 =
8.9%, mean of all samples = 11%) also suggested a more weathered soil. While the precise
origin of the silt and clay accumulation is unknown, it contained amorphous mineral
binding sites such as the oxides of iron (Fe-Ox was highest in Si35) and aluminum (third-

highest Al-Ox in Si35). The large concentration of Pi-NaOH, alongside the overall positive
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correlation of Pi-NaOH with DPS throughout this inquiry, suggests that the accumulation

of P in Si35 can be attributed largely to Fe and Al (hydr)oxides’ sorption capacity.

Soil P release

Our results also suggest that P release to BRF soil water can be stimulated by soil
hydrologic conditions in certain cases. We found a relationship between OM and WHC,
supporting that compost-rich soils remain moist for several days after gravity drainage of
flooding stormwater. Increases of P release upon drying suggested microbial
mineralization, or production and activation of phosphatase enzymes, might release P
from organic compounds found in compost or weathered soil. Soil in Si35 was vulnerable
to release in both dry and flooded conditions, while other soils responded only to drying,
though with very small increases relative to the organic P pool available. A high TP and P-
minerals soil, Si35 provided the most pronounced increases, and other dried soils
increased (Figure 10) in water-extractable P concentrations. However, since all soils
studied contained substantial organic P fractions, Hypothesis 5 (predicting that
mineralization of organic P is important in dry, oxic conditions) was only partially
addressed, as the available soils lacked a suitable gradient of organic P over which to
compare the sizes of P release. While this slow but measurable P release (0.07 to 0.25 mg
P/kg soil/day) occurring under oxic conditions is an informative finding, frequency of
drying-rewetting events could also impact biogeochemical controls on P release.

Incubation durations that represent longer dry periods seen in Pacific Northwest
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summers, followed by periodic soil rewetting, could improve such efforts to characterize

BRF soil P mineralization on seasonal scales.

Soil P sorption

P sorption proceeds even in soils receiving P inputs, and P release to water might be
mitigated by resorption to adjacent surfaces, representing an alternate reservoir for P
retention. PSI test values were higher than in other studies (Borling et al. 2001, Dunne et
al. 2006), showing that prolonged contact between percolating soil water and adsorptive
surfaces on soil particles could potentially alleviate P leaching. Another process that can
remove P from solution includes precipitation, but PSI was developed with soil-solution P
ratios that target sorption as the primary solute P removal mechanism. We found that
BRF soils P sorption capacity is attributed to amorphous Fe and Al hydr(oxide) minerals
(Figure 5), but we would caution against reliance on this soil property as an ecosystem
service. Degree of P Saturation (DPS) remains a useful metric for adaptive management,
as it indicates P release vulnerability most reliably, illuminating whether P adsorbed to
minerals is the likely source; release mechanisms are less obvious. Soil management
efforts might use decreases in P sorption capacity (measured with PSI and/or DPS) to
trigger facility or catchment investigation. Bioretention soils have potential to perform a
net retention of stormwater P over longer terms, using ecological engineering designs and
adaptive soil management, and both mineral and plant P uptake processes must be

enabled effectively.
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Soil monitoring or management considerations

Whether BRF designs consider the nutrients in soil processes of microbial and plant driven
P sorption or desorption is unclear, though water quality is generally assumed to be
protected by such LID installations. While compost inclusion during installation and
maintenance ensures the primary ecosystem service of dispersing and containing flows
in ecologically natural ways, site-specific soil amendment analyses for P could be justified.
More complex analyses of microbial P release from compost in BRF soils could involve
assays for acid phosphatase enzymes, similar to work currently underway investigating
microbial nitrogen dynamics in BRF soils (E. Rivers, personal communication). Scaling up
our P assessment for P release vulnerability requires wider spatiotemporal consideration
of how BRFs perform nutrient retention. Soil structure, pedon-scale solute transport,
rhizosphere interaction and organic matter development among BRF soils might
simultaneously be addressed with chemical extraction inquiries. For instance, erosion
may leave some soils vulnerable to suspended solids flushing or macropore formation,
which can aggravate both particle P runoff and anoxic P release (Jensen et al. 1999, Soldat
and Petrovic 2008). Facilities used in this study were installed at least 3.5 years prior to
sampling, which was well after the establishment phase for plants, frequently given as
the two to three years following planting (Cahill 2013). Soil leachate export of P from fresh
compost is certainly problematic in practice (Herrera Environmental Consultants, Inc.
2012), but has been shown to decrease in concentration after repeated storms (Mullane
et al. 2015, Chahal et al. 2016). This effect appears to have decreased in importance in

our more established BRF soils, such that more labile P forms would have already been
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lost by the time of our sampling, with remaining soil P found in more stable forms. Plant
uptake also provides a spatially and temporally variable P removal mechanism that we

did not investigate.

Soil management involves identifying when intervention is needed depending on the
desired outcome —in this case, P retention while supporting vegetative growth. Relative
to natural wetland soils and vegetation, bioretention facilities in urban landscapes are
more isolated, can have distinctly different baseline soil conditions, and are managed
intensively. P uptake represents flow into stable forms when woody plants are present,
and this is enabled with low-impact designs include tree and shrub growth outcomes. To
manage leaf litter accumulation and siltation, debris is removed by hand irregularly. This
would suggest that soil P concentrations — or at least organic P to carbon ratio — in litter
layers could decrease (assuming internal P cycling is otherwise steady-state), whereas we
found that TP and organic or strongly occluded P increased with facility age, and we noted
a significant difference in surface soils containing enriched P and OM levels. We learned
that design standards for soils in Portland BRF facilities changed in 2008, which our
dataset spans in age. We suppose that the finding of total P and residual P increasing as
a function of age can be attributed as much to changes in installed soil proportions of
compost, perhaps to fine-tune media infiltration demands as the BRF technology has
been optimized (City of Portland BES, Sustainable Stormwater Management Program

2010). Compost types may have potentially shifted to material with larger C : accessible-

41



P ratios, and thus more-recently installed soils could have begun operation with lower P-

residual.

Conclusions

Using urban bioretention soils with varying infiltration rates, we investigated soil P forms
and found that BRF soils have large P pools, but that water-extractable P is not likely to
be mobilized at alarming levels. We observed that infiltration rates, via infiltrometer
measurements, are not strongly linked to soil properties, likely due to variable soil
structure traits (macropore development, lateral flow at depth) within each facility. While
mechanisms for P accumulation or release are clearly variable between soils in different
facilities, just one of the six soils in our lab experiment was particularly vulnerable to P
release, and did correspond to slower measured infiltration and elevated soil fine
particles. The large pool of Fe and Al-associated P (Pi-NaOH, DPS) was the most probable
source for water-soluble reactive P release in that site. The hypothesized redox-driven
mechanism of P release could be related to soil hydrologic and oxygen conditions, as
shown in PLS regression results, and the increase in water-extractable P concentrations
upon flooding. Additionally, we found BRF soils hold water volumes well due to
composted material, which can support microbial populations that likely respond with P
release from OM decomposition. This was supported by evidence of P release from most

soils, all containing large pools of organic P, when incubated in dry conditions for ten days.

Municipal stormwater management guidance, such as the Stormwater Management

Manuals (SWMMs) for Western Washington and Portland, has been implemented on
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wide scales, and has been modified using practical knowledge for the past decade. The
present study seeks to add to the body of knowledge and support decisions as related to
soil P biogeochemistry in bioretention. The capacity for BRF soils to retain — or their
vulnerability to release — P can be revealed with established tests that extract present P
(sequential extractions and DPS) or measure saturated P sorption potential (PSI). Future
investigations of bioretention soil or media in both operating facilities or in test columns
can be improved by considering P dynamics enhanced by sequential extractions or soil
tests of sorption capacity. Further, we identified that some BRF soils are vulnerable to
small P releases, though most soils we sampled were relatively stable sinks for P, and tests
of soil P were useful for identifying one site with potential vulnerability to P release. More
thorough investigations of facility-wide soil hydrology and structure have the potential to
reveal hotspots of soil P release, such as possible impacts of preferential flow paths or

pockets of hypoxia during and after storm water infiltration.

Future work will benefit from quantifying how prolonged periods (weeks to months) of
dry or slightly moist soils, followed by “first flush” storm events can mobilize mineralized
soil P. Finally, investigation of drying and rewetting of BRF soils could indicate if known
concerns over pollutant release, such as those attributed to wetland soils (Aldous et al.
2005), might also be applicable to BRF soils that might develop wetland soil characteristics
(e.g. organic P, clay and humic matter accumulations; mineral and sulfur processes).
Ecological engineering research questions could focus more on soil P as well: How

optimally will a BRF’s soil ecosystem “self-organize” its nutrient forms naturally? How
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broadly can P or other nutrient retention ecosystem services be enabled over longer

terms, reducing soil management interventions?
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TS

APPENDIX: PLS REGRESSION

First, | prepared data by using transformed data, allowing normal distributions of to guide this model. Using R package pls, |
specified the partial least-squares regression (PLSR) model, and this process also standardizes (scales) all data to mean=0 and
SD=1. The printed output here includes the model validation summary and variable loadings. Initially, | targeted a model
containing a larger number of components (8) than is likely to be needed, which allowed a somewhat overfit model to be
computed by the algorithm.

mod.PLSR.Plab<-plsr(P_labile.mean~.,8,data=dta_noIR,scale=TRUE,validation="L00")
summary(mod.PLSR.Plab)

## Data: X dimension: 16 15

## Y dimension: 16 1

## Fit method: kernelpls

## Number of components considered: 8

##

## VALIDATION: RMSEP

## Cross-validated using 16 leave-one-out segments.

#it (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
## CV 2.798 1.946 1.632 1.478 1.663 1.702 1.865
## adjCcv 2.798 1.922 1.608 1.452 1.629 1.663 1.816
#it 7 comps 8 comps

## CV 1.765 1.534

## adjCcv 1.715 1.492

#it

## TRAINING: % variance explained

#it 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps



4]

##
#it
#it
##
#it

X 28.21

P_labile.mean 76.34

7 comps
X 90.56
P_labile.mean 98.19

loadings(mod.PLSR.P1lab)

##
#it
H#H#
H#H#
##
H#H#
H#H#
##
#it
H#H#
H#H#
##
#it
H#H#
##
#it
H#H#
H#H#
##
#it

Loadings:

OM._ltx.mean
Water._ BCPtx.mean
Pi.NaOH_ltx.mean
Po.NaOH_untx.mean
PHC1_untx.mean
Presid NonNorm_untx.mean
TP_BCPtx.mean
DPS_BCPtx.mean

PST untx.mean
Al.Ox_BCPtx.mean
Fe.Ox_untx.mean
WHC_untx.mean
pH_untx.mean
pctsand_BCPtx.mean
pctclay _untx.mean

OM. 1ltx.mean

47.1
87.8
8 comps
93.59
98.56

Comp 1
0.285
0.365
0.135

.117
.373
.454
.341
-0.281

0.269
0.241

-0.257
0.294
Comp 8
0.311

57.91
92.78

Comp 2

.318
. 247
.493
.173

.291

.408
.249
.156
.311
.290
.427
.200
.211

74.63
94.09

Comp 3

.356
.321
.289
.243
.443

.252

.290
.324
.416
.423
.373
.218

Comp 4

.355
.145
.364

.578
.180
.104

.290
.509

.340
.240
.440
.364

81.
95.
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## Water. BCPtx.mean 0.154
## Pi.NaOH_ltx.mean

## Po.NaOH_untx.mean -0.154

## PHCl_untx.mean -0.154

## Presid _NonNorm_untx.mean 0.166

## TP_BCPtx.mean -0.412

## DPS_BCPtx.mean 0.103

## PSI untx.mean

## Al.Ox_BCPtx.mean -0.152

## Fe.Ox_untx.mean -0.550

## WHC_untx.mean 0.210

## pH_untx.mean -0.435

## pctsand_BCPtx.mean

## pctclay_untx.mean 0.344

#it

#it Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8
## SS loadings 1.090 1.223 1.367 1.508 1.524 1.825 1.332 1.068

The percent variance explained by each of the eight original component is given here.
explvar(mod.PLSR.Plab)

#it Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7
## 28.206136 18.893372 10.811869 16.716896 6.502174 4.827408 4.603965
#H# Comp 8
## 3.023938
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For choosing the number of PLSR components that substantially reduce errors in prediction, | chose the first three components.
The validation plot illustrates how this achieves a reduction in error of prediction with RMSEP vs # of components.

validationplot(mod.PLSR.Plab)

P_labile.mean

RMSEP

1.8

14

number of components

Figure A.1. Validation plot of PLSR model
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| used VIP, SR and sMC from plsSelVar to assess the PLSR model’s variable importance and gather those into a data frame. Rank of
1 =largest importance. Printed data is by descending VIP value, listing important variables first.

VIP.PLSR.Plab<-VIP(mod.PLSR.Plab,opt.comp=3)
SR.PLSR.Plab<-SR(mod.PLSR.Plab,opt.comp=3,X=select(dta_noIR,-P_labile.mean)%>%mutate_all(scale
SMC.PLSR.Plab<-sMC(mod.PLSR.Plab,opt.comp=3,X=select(dta_noIR,-P_labile.mean

PLSR.VarSel

#it var VIP sMC SR VIP_rank
#it <chr> <dbl> <dbl> <dbl> <dbl>
## 1 DPS_BCPtx.mean 1.5698327 1.151591e+01 1.4029687239 1
## 2 TP_BCPtx.mean 1.5533261 4.610081e+00 2.4407501249 2
#t 3 PSI_untx.mean 1.3269241 1.009959e+01 0.7251765900 3
#t 4 Water. BCPtx.mean 1.2628959 6.318385e+00 0.5665815641 4
## 5 Pi.NaOH_1ltx.mean 1.1306942 5.988213e+00 0.2285536244 5
## 6 Presid_NonNorm_untx.mean 1.0734318 1.558789e-01 0.3232473159 6
#t 7 pctclay untx.mean 0.8746963 4.557035e-01 0.1469262235 7
## 8 OM._ltx.mean ©.8678914 9.859148e-01 0.2257966365 8
## 9 Fe.Ox_untx.mean 0.7597943 2.461057e-01 0.0570319862 9
##t 10 pctsand BCPtx.mean ©.7487999 2.525784e-01 0.0719278989 10
## 11 WHC _untx.mean 0.6992656 2.389133e-01 0.1699111808 11
## 12 PHC1 untx.mean 0.6169996 2.371232e+00 0.1236600105 12
## 13 Al.Ox_BCPtx.mean 0.6092778 2.504044e+00 0.0001476808 13
## 14 pH_untx.mean 0.5450766 3.289539e-01 0.0016360360 14
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## 15 Po.NaOH_untx.mean ©0.3770120 5.500898e-05 0.0230321568 15
## # ... with 2 more variables: sMC_rank <dbl>, SR _rank <dbl>

| extracted loadings and scores from model for plotting. Only variables that have VIP >1 are included in the plot.

## var Comp 1 Comp 2 Comp 3 VIP
#it 1 Water._ BCPtx.mean ©.3651200 -0.24738271 0.32104588 1.262896
#it 2 Pi.NaOH 1ltx.mean ©.1345155 ©.49305577 -0.28852927 1.130694
## 3 Presid_NonNorm_untx.mean ©.3733608 -0.29085977 -0.06949057 1.073432
#it 4 TP_BCPtx.mean ©.4538497 0.04243461 0.03284853 1.553326
## 5 DPS_BCPtx.mean ©.3408330 ©.40837822 -0.25174945 1.569833
#it 6 PSI_untx.mean -0.2814841 -0.24898108 -0.04760287 1.326924
# sMC SR VIP_rank sMC_rank SR_rank p_var
## 1 6.3183853 0.5665816 4 3 4 Water
## 2 5.9882131 0.2285536 5 4 6 Pi-NaOH
## 3 0.1558789 0.3232473 6 14 5 P-residual
## 4 4.6100808 2.4407501 2 5 1 TP
## 5 11.5159061 1.4029687 1 1 2 DPS
## 6 10.0995936 0.7251766 3 2 3 PSI

## # A tibble: 16 x 4

## Site PlabC1l PlabC2 PlabC3
## <chr> <dbl> <dbl> <dbl>
## 1 Si35 3.921343790 0.7943319 -1.0788014
## 2 12Mo ©.677373782 -0.7041037 -1.8918047
## 3 Ti2l 1.708651752 -0.1265955 -1.8217731
## 4 Daled -2.060498967 -0.8622078 -0.8808040
##t 5 WiDe 2.268178008 -0.5960488 0.8632628
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Using ggplot2, | constructed a bi-plot that combines features of pls packages scoreplot
(observations projected to the model’s reduced dimensional space) and corrplot (loadings of
variables projected to the same coordinate space, and shown with line segments to help
determine correlations). Figure 9 in the main text was the resulting plot.
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