6-6-2018

New Approaches for Memristive Logic Computations

Muayad Jaafar Aljafar
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Electrical and Computer Engineering Commons

Recommended Citation

10.15760/etd.6256

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
New Approaches for Memristive Logic Computations

by

Muayad Jaafar Aljafar

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dissertation Committee:
Marek A. Perkowski, Chair
John M. Acken
Xiaoyu Song
Steven Bleiler

Portland State University
2018
Abstract

Over the past five decades, exponential advances in device integration in microelectronics for memory and computation applications have been observed. These advances are closely related to miniaturization in integrated circuit technologies. However, this miniaturization is reaching the physical limit (i.e., the end of Moore’s Law). This miniaturization is also causing a dramatic problem of heat dissipation in integrated circuits. Additionally, approaching the physical limit of semiconductor devices in fabrication process increases the delay of moving data between computing and memory units hence decreasing the performance. The market requirements for faster computers with lower power consumption can be addressed by new emerging technologies such as memristors.

Memristors are non-volatile and nanoscale devices and can be used for building memory arrays with very high density (extending Moore’s law). Memristors can also be used to perform stateful logic operations where the same devices are used for logic and memory, enabling in-memory logic. In other words, memristor-based stateful logic enables a new computing paradigm of combining calculation and memory units (versus von Neumann architecture of separating calculation and memory units). This reduces the delays between processor and memory by eliminating redundant reloading of reusable values. In addition, memristors consume low power hence can decrease the large amounts of power dissipation in silicon chips hitting their size limit.

The primary focus of this research is to develop the circuit implementations for logic computations based on memristors. These implementations significantly improve the performance and decrease the power of digital circuits. This dissertation demonstrates in-
memory computing using novel memristive logic gates, which we call volistors (voltage-resistor gates). Volistors capitalize on rectifying memristors, i.e., a type of memristors with diode-like behavior, and use voltage at input and resistance at output. In addition, *programmable diode gates*, i.e., another type of logic gates implemented with rectifying memristors are proposed. In programmable diode gates, memristors are used only as switches (unlike volistor gates which utilize both memory and switching characteristics of the memristors). The programmable diode gates can be used with CMOS gates to increase the logic density. As an example, a circuit implementation for calculating logic functions in generalized ESOP (Exclusive-OR-Sum-of-Products) form and multilevel XOR network are described. As opposed to the stateful logic gates, a combination of both proposed logic styles decreases the power and improves the performance of digital circuits realizing two-level logic functions Sum-of-Products or Product-of-Sums.

This dissertation also proposes a general 3-dimentional circuit architecture for in-memory computing. This circuit consists of a number of stacked crossbar arrays which all can simultaneously be used for logic computing. These arrays communicate through CMOS peripheral circuits.
Dedication
Seek knowledge from the cradle to the grave, Prophet Muhammad.

To Noor, with love
To Mustafa and Murtaza
To my parents
Acknowledgements

I would like to thank my advisor, Dr. Marek Perkowski. He has been supportive since the days I began to learn about the basics of this research. My dissertation committee guided me through all these years. Thank you to John Acken, Xiaoyu Song and Steven Bleiler. Specially, I thank Dr. John Acken for patient guidance, encouragement and advice.

I thank my family. Their support has been unconditional all these years; they have given up many things for my success; they have cherished with me every great moment and supported me whenever I needed it.

Last and certainly not least, I thank the higher committee for education development in Iraq (HCED-Iraq) for their generous support.
Table of Contents

Abstract i
Dedication iii
Acknowledgements iv
List of Tables viii
List of Figures ix
List of Abbreviations xvi

Chapter 1 Background 1

1.1 Introduction 1
1.2 Memristor: The Missing Circuit Element 2
1.3 The Missing Memristor is Found 4
 1.3.1 Linear ion drift model 4
 1.3.2 Non-linear ion drift model 6
1.4 Applications 9
1.5 Research Goals and Methods 10
1.6 Research Structure 10

Chapter 2 Memristive Stateful Logic Gates 12

2.1 Introduction 12
2.2 Crossbar Architecture 14
2.3 Rectifying Memristors 16
2.4 Stateful Logic Gates Realized with Typical Memristors 19
2.5 Stateful Logic Gates with Rectifying Memristors 23
2.6 Two-Input Multi-Output INH Gate 27
2.7 EISD: Extended IMP Sequential Diagram 31
2.8 Multi-Dimensional Crossbar Array 35
2.9 Logic Computations in a Crossbar Array 42
2.10 Conclusion 45

Chapter 3 Memristive Volistor Logic Gates 46

3.1 Introduction 46
3.2 Volistor Logic 48
 3.2.1 Crossbar Structure 48
 3.2.2 Volistor NOT gate in a one-dimensional array 51
 3.2.3 Volistor NOR gate in a one-dimensional array 53
 3.2.4 Volistor AND gate in one-dimensional array 55
 3.2.5 Volistor OR and NAND gates one-dimensional array 55
 3.2.6 Mixed-input logic gates in one-dimensional array 56
3.3 Hybrid Approach to Synthesize Boolean Functions in Crossbar Arrays 57
 3.3.1 Hybrid computation in a one-dimensional array 58
List of Tables

Table 2.1. Memristor’s SPICE model parameters [47] 17
Table 2.2. Truth table of the IMPLY operation, \(q^+ := p \rightarrow q = \neg p + q \) 22
Table 2.3. Truth table of the INHIBIT operation \(q^+ : p \leftrightarrow q = (\neg p) \cdot q \) 22
Table 2.4. Logic gates realized by all possible voltage polarities and keeper/no keeper circuit combinations 22
Table 2.5. Logic gates realized by all possible polarity combinations in a crossbar array of rectifying memristors 24
Table 2.6. Tradeoffs for logic implementations in a crossbar array of typical and rectifying memristors 26
Table 3.1. Implementation of multi-output volistor NOT gate 53
Table 3.2. Implementation of multi-input single-output volistor NOR gate 54
Table 3.3. Multiple logic structures and their De-Morgan’s equivalences 64
Table 3.4. Power consumption in each crossbar element 73
Table 3.5. Power consumption, switching delay, and power ration in a 1 \(\times \) 8 crossbar array 73
Table 3.6. Calculating \(\frac{P_{SL}}{P_{VL}} \) in a 1 \(\times \) 8 crossbar array for \(S_1 = 0 \) and \(S_0 \) varied from 1 to 7 77
Table 3.7. Calculating \(\frac{P_{SL}}{P_{VL}} \) in a 1 \(\times \) 8 crossbar array for \(S_1 = 0 \) and varied \(S_0 \) and \(T \) 78
Table 3.8. Calculating \(\frac{P_{SL}}{P_{VL}} \) in a 1 \(\times \) 8 crossbar array when \(S_1 = 0 \) 79
Table 3.9. Delay and power comparisons in a 1 \(\times \) 64 crossbar array for varied \(S_1 \) and \(S_0 \geq 33 \) 83
Table 3.10. Delay and power comparisons in a 1 \(\times \) 64 crossbar array for constant \(S_1 \) and varied \(T \) 83
Table 3.11. Delay and power comparisons in a 1 \(\times \) 64 crossbar array for varied \(S_1 \) and \(S_0 > 33 \) 84
Table 3.12. Delay and power comparisons in a 1 \(\times \) 64 crossbar array for varied \(T \) 84
Table 5.1. Number of products and literals of benchmark functions [65] 96
Table 5.2. Comparison of circuit implementation using diode gates with that of other logics styles 117
Table 6.1. XNOR configuration 127
Table 6.2. Memristor Parameters 127
Table 6.3. Average power consumption of a two-input XNOR gate during setting, write, and read operations (values are in micro joules) 129
Table 6.4. Multiple realizations of 2-input primitive memristive XOR/XNOR gates 129
Table 6.5. Multi-input XNOR circuit configuration 131
Table 6.6. Different logic circuits of n-input XOR/XNOR memristive gates 131
Table 7.1 Voltage levels required during the operations 138
Table 7.2 Volistor operations and their input locations 139
Table 7.3 Delay of multiple mPLA circuits 164
List of Figures

Figure 1.1. Four fundamental passive circuit elements [Redrawn from 2].

Figure 1.2. i-v characteristic of the memristor for a rectangular pulse input. (Left) Input voltage applied across the memristor. (Right) hysteresis behavior of the memristor.

Figure 1.3. (a) Structure of the HP example of memristor. (b) Circuit equivalent. [Redrawn from 2]

Figure 1.4. The schematic of memristive device realized using tunnel barrier where w and Rs represent the state variable and the electroformed channel resistor [Redrawn from 12].

Figure 2.1. Idealized hysteretic behavior of the memristor in the i-v plane. V_{CLOSE} and V_{OPEN} are threshold voltages, and V_{SET} and V_{CLEAR} are programming voltages.

Figure 2.2. Schematic diagram of a 1×2 crossbar array. The instant application of voltage pulses V_{COND} and V_{PROG} to switches P and Q, respectively, may toggle the logic state of Q depending on the initial state of P and Q.

Figure 2.3. Characteristics of a rectifying memristor. (Left) The i-v characteristic of the memristor. (Right) The s-v characteristic of a memristor. The diagrams are depicted using the LTspice simulator and the memristor model in [47].

Figure 2.4. Schematic of a keeper circuit [Redrawn from 48]. V_W denotes the voltage on W.

Figure 2.5. Schematic of a 1×9 crossbar array of rectifying memristors for computing function F.

Figure 2.6. Schematic of memristive computing circuit including control and datapath units.

Figure 2.7. (Left) Schematic of a computational array connected to driver circuitries. (Right) Schematic of each driver circuitry.

Figure 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation.

Figure 2.9. ISD of function NAND (p, q) where the output is stored as a new state of memristor R.

Figure 2.10. Symbolic diagram of a two-input INH gate in EISD notation.

Figure 2.11. EISD of NOR gate. Different EISD notations for $r = \text{NOR } (p, q)$ depending on source and target memristors locations.

Figure 2.12. EISD of multi-output function $\{ \text{OR } \{ p, q \} \leftrightarrow r \}, \text{OR } \{ p, q \} \leftrightarrow s \}$.

Figure 2.13. EISD of XOR $(p, q) = [(p \leftrightarrow q) + (q \leftrightarrow p)] \leftrightarrow 1]$ $\leftrightarrow 1$.

Figure 2.14. EISD notation of XOR (p, q, r). (a) The XOR gate is implemented with 15 operations and five memristors. (b) The XOR gate is implemented with 16 operations and four memristors. The EISD shows the trade-off between the number of memristors and the operations.
Figure 2.15. A 3×3 crossbar array of non-rectifying memristors.

Figure 2.16. Half-select problem may cause sneak current paths. The green dash-line represents the desired current path whereas the red dash-lined represents an undesired sneak current path.

Figure 2.17. (a) The sneak path disturbs the READ and WRITE operations. (b) The circuit equivalent of the crossbar array with sneak path phenomenon.

Figure 2.18. Biasing schemes for READ and WRITE operation. These schemes limit the sneak path currents.

Figure 2.19. The effect of nonzero resistance of wires on the READ and WRITE operations.

Figure 2.20. Schematic of the complete memristor crossbar array. The driver circuitries are illustrated in Fig. 2.7.

Figure 2.21. Symbolic matrix. The entities show the values of the crossbar memristors.

Figure 2.22. Symbolic matrices illustrate the steps of computing XOR (p, q, r) with INH gates. The number of operations (clock cycles) to implement the XOR gate is 11.

Figure 3.1. Crossbar arrays. (a) 1×2 crossbar array. (b) 2×1 crossbar array. The inset shows the symbolic diagram of a memristor. The flow of current into the device, as shown above, increases the resistance.

Figure 3.2. Symbolic illustration of a driver circuit connected to each wire.

Figure 3.3. Symbolic notations for volistor logic gates. (a) Volistor NOT. (b) two-input volistor NOR gate. (c) two-input volistor AND gate. (d) mixed-input NOR gate. Inside the gates, symbols V and R denote whether a signal is a voltage-based or resistance-based, respectively.

Figure 3.4. Volistor NOT behavior. (a) 1×8 crossbar array implementing a four-output NOT and showing arbitrary nature of the locations of source memristors S and target memristors T. The contribution of each memristor is determined by the voltage driver, to which it is connected. Wire W is connected to Z. (b) The operation of a one-output NOT in a 1×2 array. V_W stabilizes at ≈ 600 mV indicating $v_s = '1'$ manifesting on W. In addition, t_1 toggles to ‘0’. (c) The operation of a 63-output NOT in a 1×64 array. V_W stabilizes and t toggles as in b. (d) The operation of a one-output NOT in a 1×2 array. V_W stabilizes at ≈ 0V indicating $v_s = '0'$ manifesting on W. As a result, t remains ‘1’. (e) V_W stabilizes as in d.

Figure 3.5. A 3×1 crossbar array used to implement a two-input volistor NOR.

Figure 3.6. Mixed input NOR. The implementation of a three-input one-output NOR gate. The resistive input is stored in S_1 and the voltage inputs are applied to S_2 and S_3. The output is stored in memristor T.

Figure 3.7. Example of logic computation based on hybrid approach in a crossbar array. (a) 1×4 crossbar array used to implement SOP function f.

(b) Circuit configuration to implement each step. The total number of consecutive operations (pulses) to realize f is 5.

Figure 3.8. Crossbar array. (a) Crossbar array is divided into three sections; gates in section 1 are implemented with volistors but in section 2 and 3 are realized with stateful NOR. (b) The stateful approach realizes two logic levels. (c) However, the hybrid approach realizes three logic levels with the same implementation cost of the stateful approach. L_i is the number of logic level.

Figure 3.9. Symbolic matrices illustrate the steps of computing $f = ab + cd + A$ based on the hybrid approach. (a) Initialization step. (b) Computing \overline{ab} with volistor AND. (c) Computing \overline{cd} with volistor AND. (d) Computing $\overline{ab + cd}$ with stateful NOR. (e) Computing f with mixed-input NOR.

Figure 3.10. Implementation of POS function f in a crossbar network. The function is realized in a two-step process. (a) Realizing the first logic level of function f in separate crossbars. This step produces four NOR gates. (b) Realizing the second logic level of function f in a 16×1 crossbar array. This step produces the output of the POS function. The interconnections and voltages applied to the wires show the network configuration in each step.

Figure 3.11. Implementation of Boolean functions in different logic structures based on the hybrid approach. (a) Example of a SOP function. (b) Example of a POS function. (c) Example of a three level sum of products of sums. (d) Example of an XOR of two products. (e) Example of a NAND-AND-XOR logic function. (f) Example of an AND-XOR-OR logic function. ‘P’ stands for pulse (operation), e.g., $1p$ indicates one pulse for implementing a logic level. VL and SL stand for volistor and stateful logic operations. In all circuits, only the first logic level is implemented with volistor gates.

Figure 3.12. Realization of NAND-AND-XOR function f. The function is realized in a six-step process in four crossbar arrays. (a) The first logic level is realized with volistors; (b) the second logic level is realized with mixed-input gates; (c)-(e) the other logic levels are realized with stateful logic. Wires are set to $0V$, v^+, or v^- or connected to GND through load resistor RG or to Z. In each step, the operation is depicted by symbolic gates, and the results are shown as outputs of the gates.

Figure 4.1. Memristive programmable diode OR gate. (a) A schematic of a two-input diode OR gate implemented with rectifying memristors. (b) The behavior of a two-input diode NOR gate. (c) The relation between the size of a diode NOR gate and its RC delay during the precharge interval. (d) A schematic of a 100-input diode NOR gate. (e) The behavior of 100-input diode NOR gate. (f) A schematic of
a two-input diode NOR with pull-down transistor. (g) The behavior of two-input diode NOR with pull-down transistor.

Figure 4.2. Memristive programmable diode AND gate. (a) A schematic of a two-input diode AND gate implemented with rectifying memristors. (b) The behavior of a two-input diode NAND gate. (c) Relation between the size and RC delay of a diode NAND gate during the charge interval. (d) A schematic of a 100-input diode NAND gate. (e) The behavior of 100-input diode NAND gate. (f) A schematic diagram of a two-input diode NAND gate with pull-up resistor. (g) The behavior of two-input diode NAND with pull-up resistor.

Figure 5.1. (a) Schematic of \{NAND, AND, NOR, OR\}-XOR logic structure. (b) Logical equivalence of \{NAND, AND, NOR, OR\}-XOR structure as realized in mPLD-XOR. (c) mPLD-XOR realizes functions in NOT-OR-XOR-NOT logic structure.

Figure 5.2. Function G1 is implemented as its logical equivalence, G2.

Figure 5.3. Schematic of the mPLD-XOR.

Figure 5.4. Schematic of an mPLD-XOR for realizing an n-input single-output function with l lines diode OR where l=2n to allow for inputs complemented. In_i are the primary inputs where i ∈ \{1, ⋯, n\}, and C_j are the control signals stored in ReRAM where j ∈ \{1, ⋯, l\}. The output of the circuit is Q or \(\overline{Q}\) depending on the function being implemented.

Figure 5.5. Schematic of ReRAM of the mPLD-XOR shown in Figure 5.3 with the reference resistor R_g.

Figure 5.6. Simulation results of the single-output mPLD-XOR shown in Figure 5.4 with the ReRAM configuration shown in Figure 5.5.

Figure 5.7. Programming the ReRAM. (a) Initializing the ReRAM to HRS (or logic ‘0’). (b) Programming the right-most column of the ReRAM.

Figure 5.8. Generic fabric of the mPLD-XOR programmed for realizing a 3-bit adder. The grey rectangles correspond to memristive arrays, the white rectangles correspond to hybrid CMOS-memristive circuits, and the rest of the blocks correspond to CMOS circuits.

Figure 5.9. Schematic diagram of sub-ReRAMs. Sub-ReRAM (a) stores the control data for driving CMOS sub-circuits of the mPLD-XOR. Sub-ReRAMs (b)-(d) store control data for realizing S_0 and S_1, S_2, and C_o, respectively. The number of clock cycles for calculating an output is shown in parenthesis, e.g., (#8). The size of sub-ReRAMs is 35 × 8.

Figure 5.10. (a)-(j) The computational steps for realizing a 3-bit adder with stateful gates. The total number of IMP and FALSE operations is 29. In each step, the numbers of operations are shown.

Figure 5.11. Schematic of mPLD-XOR for realizing a 3-bit multiplier. In this implementation, the number of computational steps is 12, and instructions occupy 47 × 12 of the ReRAM size.
Figure 5.12. Schematic diagram of a 3-bit multiplier in a six-level-XOR-network structure with any combination of sums, products, XORs, and literals at the input of any XOR gate. This circuit is implemented with the mPLD-XOR with feedback circuit. The internal signals are stored in the memory cells to decrease the size of the ReRAM.

Figure 5.13. 6 × 16 crossbar array used to implement a 3-bit multiplier with stateful logic gates. The matrix elements denote initial states of crossbar memristors.

Figure 5.14. Area and delay comparisons of an N-bit Adder realized with multiple approaches.

Figure 6.1. The i–v characteristic of a rectifying memristor and its symbolic diagram. The flow of current into the device, as shown above, decreases the resistance.

Figure 6.2. Implementation of memristive gates. (a) Implementation of two-input volistor NOR gate. (b) Implementation of a 2-input programmable diode AND gate.

Figure 6.3. Volistor XNOR gate. (a) Schematic of 2-input volistor XNOR gate. (b) Behavior of volistor XNOR gate.

Figure 6.4. Read operation. Non-destructive voltage V_{READ} is applied to the volistor XNOR gate to read the output. The inset shows the symbolic diagram of the XNOR gate.

Figure 6.5. XNOR Circuit Simulation. The initial states are $(s1, s2) = (0, 0)$. (a) The circuit behavior when inputs are $(V_{in1}, V_{in2}) = (1, 0)$. (b) The circuit behavior when inputs are $(V_{in1}, V_{in2}) = (1, 0)$. The outputs, V_{AND} and V_{OUT}, are relevant only during the read operation.

Figure 6.6. Schematic diagram of a multi-input volistor XNOR gate.

Figure 7.1. General circuit structure for logic computations based on volistor and stateful gates.

Figure 7.2. Schematic of an n-input volistor NOR gate realized in a $1 \times (n+1)$ memristive array.

Figure 7.3. Implementation of a three-input volistor NOR gate with a fan-out of three. The source memristors are in LRS. Horizontal wires are connected to high impedance Z.

Figure 7.4. (a) Schematic of two-input-volistor NOR gate. Inputs are v_a and r_b, and the output is r_T. (b) Schematic of an n-input-volistor NOR gate where all of the inputs are logic ‘0’.

Figure 7.5. Implementation example of multiple volistor NOR gates in a crossbar array. The circuit implements $T_m = \text{NOR} (a, b, c)$ on w_m and $T_{m+1} = \text{NOR} (\neg a, \neg b, \neg c)$ on w_{m+1}. Source memristors on w_{m+2} are in HRS to disconnect the input voltages.

Figure 7.6. Deselecting a volistor gate in a crossbar array. (a) Traditional approach for deselecting a volistor gate by $v^+/2$ scheme might disturb the circuit operation. (b) Our approach for deselecting a volistor gate is to use pass transistors and v^+ scheme to ensure the correct operation of the circuit.
Figure 7.7. Example of four sub-crossbar arrays (A, B, C, and D) connected by a column and row of pass transistors.

Figure 7.8. Implementation of volistor AND gate with input resistances stored in a computational array. (a) Realization of $T_m=\text{AND} (a, b, c)$ where inputs are located on row w_{m-1} (b) Realization of $T_n=\text{AND} (a, b, c)$ where inputs are located on column w_{n-1}.

Figure 7.9. Volistor COPY Operation. (a) COPY value a on v_{m-1} to memristor T_m on v_m (b) COPY value a on w_{n-1} to memristor T_n on w_n.

Figure 7.10. Schematic of input-volistor INH gate. Inputs are v_a and r_b, and the output is $\neg a \cdot b$, which updates resistance state r_b of memristor T.

Figure 7.11. V_T-n relations of multiple volistor NOR gates realized in two $m \times n$ crossbar arrays. The shaded area shows the range of V_T for implementing i-input volistor NOR gates where $i \leq n - 1$.

Figure 7.12. (a) State transition delay in LRS memristor connected to V_{CLEAR}. (b) Simulation results of three 50-input volistor NOR gates executed in a 3x101 crossbar array where 0 $\times v_{\text{inh}}$, 1 $\times v_{\text{inh}}$, and 50 $\times v_{\text{inh}}$ show the number of high inputs applied to each volistor NOR gate. Also, v_1, v_2, and v_3 denote the voltages on horizontal wires w_1, w_2 and w_3 of volistor NOR gates. And T_1, T_2, and T_3 are the memristances (resistance states) of target memristors denoting the outputs.

Figure 7.13. V_T–n relations of multiple input-volistor NOR gates realized in two $m \times n$ crossbar arrays. The shaded area shows the range of V_T for implementing i-input-volistor NOR gates where $i \leq 2n-2$.

Figure 7.14. V_T-m relations of multiple volistor AND gates realized in two $m \times n$ crossbar arrays. The shaded area shows the range of V_T for realizing i-input volistor AND gates where $i \leq 2m - 1$.

Figure 7.15. Schematic of the mPLA for realizing a multi-output POS function.

Figure 7.16. Area estimation of memory array. The graphs show the maximum size of memory arrays in each mPLA circuit.

Figure 8.1. Bock diagram of a memristive circuit for logic computations (upper view). Logical operations are implemented in the computational array. The memory arrays store the instructions. Memory arrays and computational array communicate through CMOS drivers shown as small rectangles.

Figure 8.2. Block diagram of a 3D memristive array (top side view).

Figure 8.3. (Left) Schematic of a single CMOS driver in Fig. 8.2. (Right) Driver’s circuitry.

Figure 8.4. Schematic of four stacked computational arrays and their CMOS drivers (bird view). Outputs of the stacked computational arrays are beneath the memory arrays. The memory arrays are not shown in this figure.
Figure 8.5. (a) Schematic of driver’s interconnections with computational arrays shown in Fig. 8.2 (bird view) (b) Four stacked CMOS drivers (Bird view). (c) Schematic of four stacked CMOS drivers which shows how four wires of four stacked computational arrays communicate through the drivers (side view).

Figure 8.6. CMOS driver for logic computing with hybrid volistor and stateful logic operations.
List of Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC</td>
<td>Application-Specific Integrated Circuit</td>
</tr>
<tr>
<td>3D Array</td>
<td>3-Dimensionnal crossbar Array</td>
</tr>
<tr>
<td>CMOL</td>
<td>CMOS-Molecular scale device</td>
</tr>
<tr>
<td>ESOP</td>
<td>Exclusive-or-Sum-of-Products</td>
</tr>
<tr>
<td>GND</td>
<td>Ground node</td>
</tr>
<tr>
<td>LRS</td>
<td>Low resistance state of a memristor</td>
</tr>
<tr>
<td>HRS</td>
<td>High resistance state of a memristor</td>
</tr>
<tr>
<td>Memristor</td>
<td>Memory-resistor</td>
</tr>
<tr>
<td>POS</td>
<td>Product-of-Sums</td>
</tr>
<tr>
<td>PPRM</td>
<td>Positive Polarity Reed-Miller</td>
</tr>
<tr>
<td>V_{COND} or V_{READ}</td>
<td>Applied to source memristors during the READ operation in stateful logic</td>
</tr>
<tr>
<td>V_{CLOSE}</td>
<td>Positive threshold voltage for programming a memristor to LRS</td>
</tr>
<tr>
<td>V_{OPEN}</td>
<td>Negative threshold voltage for programming a memristor to HRS</td>
</tr>
<tr>
<td>V_{SET}</td>
<td>Positive programming voltage for abrupt resistance switching (form HRS to LRS)</td>
</tr>
<tr>
<td>V_{CLEAR}</td>
<td>Negative programming voltage for abrupt resistance switching (form LRS to HRS)</td>
</tr>
<tr>
<td>V_{PROG}</td>
<td>Applied to target memristors while executing stateful gates</td>
</tr>
<tr>
<td>V_W</td>
<td>Voltage on wire W</td>
</tr>
<tr>
<td>V_S</td>
<td>Input voltage applied to a source memristor while executing volistors</td>
</tr>
<tr>
<td>V_T</td>
<td>Applied to a target memristor while executing volistors</td>
</tr>
<tr>
<td>VL</td>
<td>Volistor logic</td>
</tr>
<tr>
<td>SL</td>
<td>Stateful logic</td>
</tr>
<tr>
<td>P_{S0}</td>
<td>Average power consumption in a source memristor connected to logic ‘0’ (in VL) or set to HRS (in SL)</td>
</tr>
<tr>
<td>P_{S1}</td>
<td>Average power consumption in a source memristor connected to logic ‘1’ (in VL) or set to LRS (in SL)</td>
</tr>
<tr>
<td>P_S</td>
<td>Average power consumption in a source memristors during SL or VL</td>
</tr>
<tr>
<td>P_T</td>
<td>Average power consumption in a target memristor</td>
</tr>
<tr>
<td>R_G</td>
<td>Load resistor</td>
</tr>
<tr>
<td>P_{RG}</td>
<td>Average power consumption in load resistor R_G</td>
</tr>
<tr>
<td>P_{WL}^{S0}</td>
<td>P_S (average power consumption in source memristors set to ‘0’) during VL</td>
</tr>
<tr>
<td>P_{WL}^{S1}</td>
<td>P_S (average power consumption in source memristors set to ‘1’) during VL</td>
</tr>
<tr>
<td>P_{SL}</td>
<td>P_S (average power consumption in source memristors in HRS) during SL</td>
</tr>
<tr>
<td>$P_{SL}^{S_1}$</td>
<td>P_{S_1} (average power consumption in source memristors in LRS) during SL</td>
</tr>
<tr>
<td>P_{SL}^{S}</td>
<td>P_{S} (average power consumption in source memristors) during SL</td>
</tr>
<tr>
<td>SOP</td>
<td>Sum-of-Products</td>
</tr>
<tr>
<td>S_0</td>
<td>Number of source memristors in logic ‘0’</td>
</tr>
<tr>
<td>S_1</td>
<td>Number of source memristors in logic ‘1’</td>
</tr>
<tr>
<td>TANT</td>
<td>Three-level AND NOT Network with True inputs</td>
</tr>
<tr>
<td>T_d</td>
<td>Switching delay in a memristor</td>
</tr>
<tr>
<td>Volistor</td>
<td>Voltage-resistor</td>
</tr>
<tr>
<td>Z</td>
<td>High impedance</td>
</tr>
</tbody>
</table>
Chapter 1

Background

1.1 INTRODUCTION

The exponential advances in microelectronics over the past five decades are unlikely to continue for the next decade due to physical limitations. The density of transistors in each square centimeter has already exceeded 100 Million. The heat dissipation and memory access delay are the main problems in these ultra-dense microcomputers. The computing research community have been challenged to find variables other than charge or voltage, devices, and architectures that enable the integration to go far beyond the limits of conventional microelectronics technology [1]. In 2008, researchers in Hewlett Packard Labs [2] connected the theory of memristor [3] to the thin film devices (TiO$_2$). Memristors and memristive devices [4] are two terminal nanoscale devices whose characteristics are explained by the relation between magnetic-flux (φ) and charge (q). Memristors and memristive devices are non-volatile devices that can be used for in-memory computing. Therefore, memristors can perform advanced computing paradigms of combining calculation and memory units. Unlike traditional computing paradigms, which separate calculation from memory, in new computing paradigms there is no problem of memory access delay and power crisis as one that exists in digital integrated circuits. However, using this new paradigm of logic computation requires executing long sequences of logic operations, which in turn increases the power consumption and complicates the control of the circuit. In this dissertation, this problem is addressed. Multiple solutions are proposed to decrease the number of in-memory logical operations. The proposed techniques also
decrease the power dissipation when compared to other memristive in-memory computing approaches.

In addition to digital computing, memristors enable analog computing, e.g., in neuromorphic applications. However, this dissertation only focuses on digital memristive computing, i.e., memristors are used as binary switches with memory ability.

In this chapter, the theory of memristors, the practical memristors, models and applications of memristors are briefly described. The goals of this research are also defined.

1.2 MEMRISTOR: THE MISSING CIRCUIT ELEMENT

The circuit elements R, C, L, and M can be functions of v, i, q, and φ in their defining equations. For example, a charge-controlled memristor is defined as a single-valued function $M(q)$ [2]. In 1971, Leon Chua reasoned that there should be another fundamental

Fig. 1.1. Four fundamental passive circuit elements [Redrawn from 2].
passive circuit element in addition to the resistor, capacitor, and inductor. He called this new element “memristor”, short for memory-resistor [3]. His reasoning was based on symmetry arguments where he noted that the number of equations connecting pairs of circuit variables (electrical current i, voltage v, charge q, and magnetic-flux φ) are six. Two equations (out of six) are $dq = i$ and $d\varphi = v$ (Faraday’s law of induction). Other (four) equations connect pairs of circuit variables via circuit elements. However, before Chua’s invention, there were only three known circuit element R, L, and C. Chua reasoned the existence of another circuit element (memristor), which links flux and charge as $d\varphi = M dq$ where M is the memristance of memristor (Fig. 1.1). Note that M is a function of charge, yielding a nonlinear element. If M were a constant, it would be identical to R. The basic definition of a current-controlled memristor is shown in (1.1) and (1.2) where w is the state variable, which is the charge, and R is a state-dependent resistance.

$$v = R(w)i$$ \hspace{1cm} (1.1)

$$\frac{dw}{dt} = i$$ \hspace{1cm} (1.2)

The memristor concept was generalized in 1976 by Chua and Kang to include a much broader class of non-linear dynamic systems called memristive system [4]. A memristive device is a two-terminal passive device whose resistance is a function of state variable w and the voltage v (or current i) and not on the charge or the flux, directly. The current-controlled time-invariant memristive devices are described by (1.3) and (1.4).

$$v = R(w, i)i$$ \hspace{1cm} (1.3)

$$\frac{dw}{dt} = f(w, i)$$ \hspace{1cm} (1.4)
Note that Equation (1.4) is a general case of (1.2) where \(f(w,i) = i \). The \(i-v \) characteristic of a memristor or a memristive device looks like a pinched hysteresis loop (bow tie) crossing the origin. Fig. 1.2 shows the hysteresis behavior of a memristor for a rectangular pulse input.

1.3 The Missing Memristor is Found

After three decades of Chua’s invention, in 2008, HP (Hewlett Packard) researchers demonstrated a simple analytical example of a memristor. In this example, the memristor’s resistance (also called memristance) arises under external voltage bias where solid-state electronic and ionic transport are coupled. This model is known as linear ion drift model.

1.3.1 Linear ion drift model

The HP example of memristor is shown in Fig. 1.3a. The device consists of a thin semiconductor film of thickness D sandwiched between two metal contacts, particularly Pt-TiO\(_2\)-Pt. The semiconductor has two regions: one with high concentration of dopants (i.e., oxygen vacancies of TiO\(_2\), denoted TiO\(_{2-x}\)) and another with zero dopant (which is

![Diagram](image-url)

Fig. 1.2. \(i-v \) characteristic of the memristor for a rectangular pulse input. (Left) Input voltage applied across the memristor. (Right) hysteresis behavior of the memristor.
only oxide region TiO₂). An external voltage bias across the device can drift the charged-dopants yielding a variable resistance. In other words, the device is analogous to two variable resistors connected in series as shown in Fig. 1.3b where \(w(t) \) represents the state variable and \(0 \leq w(t) \leq D \). The resistance is \(R_{ON} \) when \(w(t) = D \), and the resistance is \(R_{OFF} \) when \(w(t) = 0 \). Equation (1.5) and (1.6) explain the HP model of memristor where \(\mu_V \) is the average ion (vacancies) mobility. Note that Equation (1.5) and (1.6) are derived for the simplest cases of ohmic electronic conduction and linear ion drift in a uniform field with average ion mobility \(\mu_V \).

\[
v(t) = \left(R_{ON} \frac{w(t)}{D} + R_{OFF} \left(1 - \frac{w(t)}{D} \right) \right) i(t)
\]

(1.5)

\[
\frac{dw}{dt} = \mu_V \frac{R_{ON}}{D} i(t)
\]

(1.6)

To keep \(w(t) \) within the interval \([0, D]\), it is required to multiply \(\frac{dw}{dt} \) by window function as used in [5-7].

Fig. 1.3. (a) Structure of the HP example of memristor. (b) Circuit equivalent. [Redrawn from 2]
1.3.2 Non-linear ion drift model

Although the linear ion drift model shows the basic device behaviors, there is a significant mismatch between the i-v characteristics of this model and that shown in experiments [8-9]. The linear ion drift model does not represent the non-linear dependence between $\frac{dw}{dt}$ and $i(t)$. A number of non-linear ion drift models, which is desired for logic computations, have been proposed. Three examples of non-linear ion drift models are discussed below.

1) Lehtonen et al. model

Lehtonen et al. [10-11] proposed a model based on experimental results shown in [8] where the i-v relation is explained by (1.7).

$$i(t) = w(t)^n \beta \sinh(\alpha v(t)) + \chi[\exp(\gamma v(t)) - 1] \quad (1.7)$$

The α, β, and γ are experimental fitting parameters, and n determines the influence of $w(t)$ on $i(t)$. The state variable, w, is normalized within interval [0, 1]. When the device is in the on-state ($w \approx 1$), $i(t) \approx w(t)^n \beta \sinh(\alpha v(t))$. When the device is in the off-state ($w \approx 0$), $i(t) \approx \chi[\exp(\gamma v(t)) - 1]$. The model assumes: 1) asymmetric switching behavior, and 2) the non-linear dependence between $\frac{dw}{dt}$ and $v(t)$ as explained by (1.8) where a is a constant, m is an odd constant, and $f(w)$ is a windows function.

$$\frac{dw}{dt} = a \cdot f(w) \cdot v(t)^m \quad (1.8)$$
2) Simmons tunnel barrier model

Pickett *et al.* [12] showed a mathematic definition of non-linear memristive devices, known as Simmons tunnel barrier model. This model was derived from experimental results of dynamic testing protocols applied to Pt-TiO$_2$-Pt devices. The model shows that the energy required to switch a metal-oxide-metal device decreases exponentially with increasing current through the device. Fig. 1.4 shows the scheme of memristive device used to derive the tunnel barrier model. The Simmons tunnel barrier width [13] (which is the width of the undoped oxide region) represents the state variable w, and R_S represents the electroformed channel resistor of a few hundred ohms resistance. In this model, the velocity of the oxygen vacancy drift (dw/dt) is explained by (1.9) where $f_{off}, f_{on}, i_{off}, i_{on}, a_{off}, a_{on}, b, \text{ and } w_c$ are fitting parameters. Parameters f_{off} and f_{on} influence the magnitude of dw/dt where f_{on} is an order of magnitude larger than f_{off}. Parameters i_{off} and i_{on} are effectively limiting the threshold currents. When $i < i_{off}$ or $i < i_{on}$, dw/dt is negligible. Parameters a_{off} and a_{on} set upper and lower bounds for w and the model does not require a window function.

$$\frac{dw}{dt} = f_{off} \sinh \left(\frac{i}{i_{off}} \right) \exp \left[- \exp \left(\frac{w - a_{off}}{w_c} - \frac{|i|}{b} \right) - \frac{w}{w_c} \right] \quad (\text{off-switch}) \quad i > 0$$

$$\frac{dw}{dt} = f_{on} \sinh \left(\frac{i}{i_{on}} \right) \exp \left[- \exp \left(- \frac{w - a_{on}}{w_c} + \frac{|i|}{b} \right) - \frac{w}{w_c} \right] \quad (\text{on-switch}) \quad i < 0 \quad (1.9)$$

The experimental results show the on and off switching behaviors are asymmetric, i.e., the on-switching is significantly faster than the off-switching. In addition, the switching energy decreases exponentially with the current through the device.
3) TEAM mod

TEAM [14], short for ThrEshold Adaptive Memristive Model, assumes no change in state variable w when the current is between the thresholds, $i_{on} < i < i_{off}$. In addition, a polynomial dependence rather than exponential dependence is assumed. In this model memristors have adaptive nonlinearity and threshold currents. Therefore, Equation (1.9) is rewritten as shown in (1.10) where k_{off} and k_{on} are fitting parameters, a_{off} and a_{on} are adaptive nonlinear parameters, i_{off} and i_{on} are threshold currents, and w is the state variable, which represents the effective electric tunnel width. Note that k_{off} is a positive constant while k_{on} is a negative constant. The state variable w is within the interval $[w_{on}, w_{off}]$.

$$\frac{dw(t)}{dt} = \begin{cases} k_{off} \left(\frac{i(t)}{i_{off}} - 1 \right)^{a_{off}} \exp[-\exp(-\frac{w - a_{off}}{w_c})], & 0 < i_{off} < i \\ 0, & i_{on} < i < i_{off} \\ k_{on} \left(\frac{i(t)}{i_{on}} - 1 \right)^{a_{on}} \exp[-\exp(-\frac{w - a_{on}}{w_c})], & i < i_{on} < 0 \end{cases}$$ (1.10)

Fig. 1.4. The schematic of memristive device realized using tunnel barrier where w and R_s represent the state variable and the electroformed channel resistor, respectively [Redrawn from 12].
1.4 Applications

The primary use of memristors is for memory application where memristors are considered as emerging non-volatile technologies. The characteristics of memristors such as their small size, non-volatility (memristors remember their resistances when powered off), high endurance (the number of write cycles exceed 10^9 and it can reach up to 10^{15} while the device remains reliable), low switching delay (sub-nanosecond-few tens of nanoseconds), low switching energy (0.1-1pJ), as well as being passive devices make them ideal candidates for memory use. The generic structure for memristive memory is a crossbar array [15]. The crossbar arrays can be stacked creating a three-dimensional memory architecture [16-17]. In addition to memory use of memristors, there are many proposals to use the memristors for computations [18-30], neuromorphic circuits and machine learning applications [31-34].

Memristors may have different roles during logic computation. For example, memristors can serve only as logic gates [22], [24], [27]. In this approach, logic values are voltage signals. In another approach, memristors serve only as configurable switches in FPGA-like circuits to realize routing networks [35-36]. Similar to the previous approach, here, the logic values are voltage signals, as well. Memristors can also be used to perform stateful logic. In this approach, memristors simultaneously serve as gates and latches [18-20], [23], [25], [28]. Computations based on stateful logic are usually performed in crossbar memory arrays. This unconventional approach to logic computations is performed in non von-Neumann computer architectures.
1.5 Research Goals and Methods

In this dissertation, the capabilities and limitations of logic computations based on memristors are studied. Multiple approaches are proposed to decrease the computational delays in non von-Neumann computer architectures. For example, a small hybrid CMOS-memristive circuits is designed for fast implementation of generalized exclusive OR-Sum-of-Products functions. The complexity of memristive circuits performing in-memory computations is also studied. A general circuit architecture is proposed. The proposed circuit architecture simplifies the datapath and reduces the size and computational delay. In addition, a novel 3-dimentional circuit architecture for in-memory computing is proposed.

1.6 Research Structure

This dissertation is organized as follows. Chapter 1 is a review of memristor theory, practical memristors, memristor models, applications, and the contributions in this dissertation. Chapter 2 reviews multiple design choices for logic computations based on memristors. In addition, the generic circuit structures for logic computations with memristors and their capabilities and potential problems are explained. Chapter 3 describes volistors (voltage-resistor logic gates), i.e., new logic gates based on rectifying memristors. Chapter 4 describes programmable diode logic gates, i.e., new logic gates based on rectifying memristors. Chapter 5 shows a generic CMOS-memristive circuit structure for in-memory computing called mPLD-XOR, i.e., memristive Programmable Logic Device connected to XOR circuits. Multiple implementation examples using mPLD-XOR are explained. Chapter 6 shows implementation example of multi-input XOR logic function using a combination of volistor XNOR gates, programmable diode AND gates, and CMOS
buffers. Chapter 7 describes design constraints of volistors in crossbar arrays. In addition, a novel implementation of mPLA (memristive Programmable Logic Array) for realizing two-level OR-AND functions based on programmable diode ORs and volistor ANDs is proposed. Chapter 8 shows an example of a three-dimensional memristive array for in-memory computing. Chapter 9 summarizes the achievements and journal publications and concludes this dissertation.
Chapter 2

Memristive Stateful Logic Gates

In today’s computer architectures, a key problem limiting system speed is the amount of time spent moving data between the processor and memory. A way to address this problem is to have memory within the calculation circuit. The invention of memristors, the fourth passive circuit element, opens the door for changing the computing paradigms of separating calculation from memory. Memristors, as non-volatile devices, enable stateful logic (in-memory computing), hence saving time spent moving data between memory and processor. This chapter describes design choices for stateful logic, which affect the size, power, complexity, and delay of the circuits.

2.1 INTRODUCTION

Leon Chua postulated the existence of memristor as the fourth passive circuit element based on symmetry arguments in 1971[3]. In 2008, memristor was clearly experimentally demonstrated in Hewlett Packard Laboratories [2]. This two-terminal device is a thin semiconductor film sandwiched between two metal contacts. Memristor is non-volatile, i.e. it retains its memristance until a subsequent voltage toggles its resistance state. In other words, memristor is a voltage-controlled device whose resistance (memristance) depends on its voltage history. Memristors are ideal candidate for building memories due to their non-volatility, scalability (down to 5nm) [38-39], high endurance (up to 10^{12} cycles) [40], long-term retention (10 years) [41], and fast READ/WRITE speed (below 200ps) [42].

More importantly, memristors are computational memories and enable stateful logic [20], hence saving time spent shuttling data between memory and processor. In stateful logic, the
resistance states of memristors represent logic values. Fig. 2.1 illustrates the zero-crossing characteristic of a typical memristor in i-v plane. The programming voltage V_{SET} switches the memristor on, i.e., programs the device to LRS (Low Resistance State), and the programming voltage V_{CLEAR} switches the memristor off, i.e., programs the device to HRS (High Resistance State). In this dissertation, the memristor is considered as a bistable linear switch, which exhibits either LRS, indicating logic state ‘1’, or HRS, indicating logic state ‘0’. V_{CLOSE} and V_{OPEN} are positive and negative threshold voltages, respectively. The memristor retains its state when applied voltage v across the memristor is smaller than the threshold voltages ($V_{\text{OPEN}} < v < V_{\text{CLOSE}}$). However, when $v < V_{\text{OPEN}}$ (e.g., $v = V_{\text{CLEAR}}$) or $v > V_{\text{CLOSE}}$ (e.g., $v = V_{\text{SET}}$), the memristor is programmed to HRS or LRS, respectively, after some delay, Δt. The threshold and programming voltages are shown in Fig. 2.1. Note that a
programming voltage is any value within a particular range as shown in Fig. 2.1. Memristors are compatible with CMOS technology [43], and logic computing with hybrid CMOS-memristor circuits can be quite beneficial (see Chapter 5).

This chapter is organized in the following order. Section 2.1 describes a memristor-based circuit architecture. Section 2.2 explores some stateful logic gates realized with typical memristors. The same logic gates are realized with rectifying memristors, i.e., memristors with diode-like behavior, as described in Section 2.3. In Section 2.4, the implementation of multi-input multi-output stateful gates are explained, and in Section 2.5, IMPLY Stateful Diagram (ISD) and its extension for logic synthesize is described. A generic two-dimensional crossbar structure and its potential problems are discussed in Section 2.6 and 2.7. Section 2.8 concludes the chapter.

2.2 CROSSBAR ARCHITECTURE

Memristors are non-volatile computational memories. A single switch can only perform primitive operations TRUE and FALSE. When the switch is open, the application of V_{SET} across the device closes the switch realizing logic operation TRUE. When the switch is closed, the application of V_{CLEAR} across the device opens the switch realizing logic operation FALSE. However, a basic logic operation such as material implication (IMPLY) requires two memristive switches [20]. Fig. 2.2 illustrates a one-dimensional programmable circuit known as crossbar or crossbar array. In this array, two memristive switches P and Q are electrically connected through the wire W, which is grounded through load resistor R_G. Inputs are the resistance states of P and Q, whereas the output is the new state of switch Q.
Stateful logic gates are performed by two operations, namely, READ and WRITE. These operations are realized simultaneously. For example, in stateful IMPLY operation, the READ operation is performed by applying V_{COND} to P, where $0V < V_{\text{COND}} < V_{\text{CLOSE}}$, and the WRITE operation is performed by applying V_{PROG} to Q, where $V_{\text{PROG}} = V_{\text{SET}}$. The READ operation drives the wire W to either $\approx V_{\text{COND}}$ or to $\approx 0V$, depending on the state of P. The WRITE operation may toggle the state of Q, depending on the initial states of both P and Q. The state of P remains unchanged during the operations.

Let LRS (also denoted by R_{CLOSED}) represents logic ‘1’, and HRS (also denoted by R_{OPEN}) represents logic ‘0’. It is the case that $R_{\text{OPEN}} \gg R_{\text{CLOSED}}$. Since the correct operation of the circuit requires V_W (the voltage on W) to be either $\approx 0V$ or $\approx V_{\text{COND}}$, care must be taken to ensure $R_{\text{OPEN}}/R_G >> 1$ and $R_G/R_{\text{CLOSED}} >> 1$. Assuming these inequalities are satisfied, R_G can be set as the geometric means of R_{OPEN} and R_{CLOSED}, i.e., $R_G = \sqrt{R_{\text{OPEN}} \times R_{\text{CLOSED}}}$.

A flow of current through Q could disturb the WRITE operation. If this current raises V_W in a time interval shorter than the switching time of Q, the WRITE operation will be disturbed. Therefore, the RC delay of the circuit should be larger than the switching delay of memristor Q. However, a large RC delay slows down the circuit operation. The use of external CMOS circuitry—a keeper circuit—can help to improve the speed and accuracy of the circuit operation [44]; however the area overhead would present another challenge.

A better way to suppress the current through Q would be to use the rectifying memristive switches [15], [45], [46], elaborated in Section 2.3, with the circuit configuration of $0V < V_{\text{COND}} < V_{\text{CLOSE}}$ and $V_{\text{OPEN}} < V_{\text{PROG}} < 0V$. This circuit architecture suppresses the current through Q during the WRITE operation and enables the converse nonimplication operation.
(CNIMP), also known as inhibition operation (INH or INHIBIT), without additional CMOS circuitry [25]. A two-input INH gate computes \(p \overline{q} \) or \(\overline{p} q \) where \(p \) and \(q \) are the inputs.

2.3 Rectifying Memristors

The rectifying memristors are resistive switches with intrinsic diode-like behavior with a large resistive ratio of 3-6 orders of magnitude, e.g., \(10^3 \leq R_{\text{OPEN}} / R_{\text{CLOSED}} \leq 10^6 \) [15] and [45-46]. The rectifying memristors suppress the current below 0.1 pA, when reverse biased [45]. Memristors with a diode-like behavior can perform reliable logic operations without any need for keeper circuits.

![Schematic diagram of a 1 × 2 crossbar array.](image)

A crossbar array of rectifying memristors can be used to perform stateful INH operations with voltage scheme \(0V < V_{\text{COND}} < V_{\text{CLOSE}} \) and \(V_{\text{OPEN}} < V_{\text{PROG}} < 0V \). This voltage scheme sets \(P \) forward biased and \(Q \) reverse biased and thus suppresses the current through the target memristor, \(Q \). As a result, \(V_W \) remains unchanged ensuring that the WRITE operation
is performed correctly. This voltage configuration is used to perform stateful INH operations without any need for keeper circuits, as elaborated in Section 2.5.

A simplified model for rectifying memristor is described by (2.1) and (2.2) [47]. In Equation (2.1), R represents the resistance of the rectifying memristor; s is the state variable normalized between 0 and 1; v is the applied voltage across the memristor; R_{OPEN} represents the resistance when the memristor is in HRS; R_{CLOSED} represents the resistance when the memristor is in LRS. For convenience, R_{OPEN} is also used for reverse biased memristor. The typical values of R_{OPEN} and R_{CLOSED}, which are shown in Table 2.1, are chosen based on empirical results reported in [15]. The dynamic behavior of the state variable s is described by (2.2) where v_{CLOSE} is a positive threshold voltage; v_{OPEN} is a negative threshold voltage; V_{SET} is a positive programming voltage; and V_{CLEAR} is a negative programming voltage. In addition, α is a positive constant related to the programming rate of a memristor. In this dissertation, α is assumed to be $125 \times 10^7 (V.s)^{-1}$ as used in [47].

\[
R = \begin{cases}
R_{OPEN} \left(\frac{R_{CLOSED}}{R_{OPEN}} \right)^s & v \geq 0 \\
R_{OPEN} & v < 0
\end{cases}
\]

(2.1)

\[
\frac{ds}{dt} = \begin{cases}
\alpha (v - v_{CLOSE}) & v \geq v_{CLOSE} \\
\alpha (v - v_{OPEN}) & v \leq v_{OPEN} \\
0 & \text{elsewhere}
\end{cases}
\]

(2.2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{OPEN}</td>
<td>500MΩ</td>
</tr>
<tr>
<td>R_{CLOSED}</td>
<td>500KΩ</td>
</tr>
<tr>
<td>v_{CLOSE}</td>
<td>1V</td>
</tr>
<tr>
<td>v_{OPEN}</td>
<td>-1V</td>
</tr>
<tr>
<td>V_{SET}</td>
<td>1.2V</td>
</tr>
<tr>
<td>V_{CLEAR}</td>
<td>-1.2V</td>
</tr>
<tr>
<td>α</td>
<td>$125 \times 10^7 (V.s)^{-1}$</td>
</tr>
</tbody>
</table>

Table 2.1

Memristor's spice model parameters [47]
With this value of α, the state transition in a memristor initially in HRS is 4 ns when the applied voltage across the memristor is $v = V_{SET}$. Comparable programming rates have been reported in [40] and [42], as well. Substituting all related values in (2.2) results in

$$\frac{ds}{dt} = \begin{cases} 0.2\alpha & v = 1.2 \\ -0.2\alpha & v = -1.2 \\ 0 & \text{elsewhere} \end{cases}$$

and thus,

$$s^+ = \begin{cases} 0.2\alpha T^+ + s_{init} & v = 1.2 \\ -0.2\alpha T^- + s_{init} & v = -1.2 \\ s_{init} & -1.2 < v < 1.2 \end{cases}$$

where s_{init} and s^+ are the initial and next states of the memristor, and T^+ and T^- are the switching delays (from HRS to LRS and from LRS to HRS, respectively). T^+ and T^- are assumed to be equal though, in general, they might be different. The solution for (2.2) is

$$s^+ = \begin{cases} 1 & v = 1.2 \\ 0 & v = -1.2 \\ s_{init} & -1 \leq v \leq 1 \end{cases}$$
Fig. 2.3 shows the i-v characteristic of a rectifying memristor. It also shows the s-v characteristic of a memristor where s remains unchanged when $v_{OPEN} \leq v \leq v_{CLOSE}$. Table 2.1 shows the parameters of the memristor as used in [47]. The SPICE model used to plot Fig. 2.3 is also explained in [47].

2.4 STATEFUL LOGIC GATES REALIZED WITH TYPICAL MEMRISTORS

Now that the basic circuit design concepts have been discussed, the question becomes what types of stateful logic gates can be realized given specific design choices. In this section, designs with typical memristors are discussed, and in Section 2.5 designs based on rectifying memristors is discussed. All polarity combinations of V_{COND} and V_{PROG} are applied to a 1×2 crossbar array of typical memristors to examine what types of logic operations can be realized by the circuit. The same procedure is applied to a 1×2 crossbar array of rectifying memristors.

1) Stateful AND gate

The stateful AND gate was proposed in [23]. A 1×2 crossbar array alone is not sufficient to implement the gate; a keeper circuit is required. The stateful AND gate requires $V_{PROG} < V_{OPEN} < V_{COND} < 0$V and $V_{OPEN} < V_{PROG} - V_{COND}$. With this voltage combination, the use of a keeper circuit is necessary. Without a keeper circuit, there is no logic operation, however, with a keeper circuit, there is a logic AND operation. Take, for example, the case where P and Q are both logic ‘0’, denoted as $p, q = [0, 0]$ where p is the state of memristor P and q is the state of memristor Q. The READ operation drives word line W to ≈ 0V. After the WRITE operation, the voltage across Q is below V_{OPEN} so Q remains ‘0’, as expected. Similarly, when P is ‘1’ the crossbar array behaves as expected, regardless of the state of Q.

19
However, in the case where \(p, q = [0, 1] \), the crossbar array does not exhibit the desired behavior. The READ operation drives \(W \) to \(\approx 0V \). Since \(R_G \gg R_{CLOSE} \) of \(Q \), the WRITE operation drops \(V_{PROG} \) across \(R_G \) and thus the voltage difference across \(Q \) is approximately \(0V \). This is insufficient to change the state of \(Q \). Therefore the AND function would operate incorrectly. Laiho et al. [44] proposed splitting the simultaneous READ/WRITE operations into consecutive operations. During the READ operation, the voltage drop on \(W \) is sampled by the keeper circuit. During the WRITE operation, the keeper circuit forces the sampled voltage onto \(W \). Consequently, \(V_{PROG} \) drops entirely across \(Q \). That voltage drop is sufficient to toggle the state of \(Q \) to ‘0’, which is the desired behavior of AND gate. The area overhead of the keeper circuit is not the only obstacle that needs to be overcome; AND is not a universal gate. In order to have a functionally complete set of operations, inverter is also required. Inverter can be realized as a special case of the stateful IMP gate, explained below.

2) Stateful IMP gate

The stateful IMP gate was proposed in [19-20] and is defined as \(q^+ := p \rightarrow q = \neg p + q \) where ‘→’ is the IMP (short for IMPLY) gate, and \(q^+ \) is the new value of \(q \), which is the output of the IMP gate. IMP gate can be implemented with a keeper circuit or without a keeper circuit if sufficient capacitance on \(W \) is assumed. With a keeper circuit, the crossbar array runs at full speed with the cost of increased area and power; in contrast, without a keeper circuit, the crossbar array runs slow, but it consumes less area and power. The stateful IMP gate requires \(0V < V_{COND} < V_{CLOSE} < V_{PROG} \), and \(V_{PROG} - V_{COND} < V_{CLOSE} \). Take, for example, the case where \(p, q = [0, 0] \). The READ operation drives \(W \) to \(\approx 0V \). The WRITE operation causes a voltage drop sufficient to toggle the state of \(Q \), which is the expected behavior, as
shown in Table 2.2. The circuit operates similarly for all combinations of \(p, q \). Implication is functionally complete logic operation when coupled with the FALSE operation. Recall that the FALSE operation is implemented by \(V_{\text{PROG}} = V_{\text{CLEAR}} \).

3) Stateful OR gate

Much like IMP, the stateful OR gate can be implemented with or without a keeper circuit, and the same power, speed, and area tradeoff applies. In practice, the use of a keeper circuit in parallel with voltage divider ensures the correct operation of the circuit. The stateful OR gate requires \(V_{\text{OPEN}} < V_{\text{COND}} < 0V < V_{\text{PROG}} < V_{\text{CLOSE}} \), and \(V_{\text{CLOSE}} < V_{\text{PROG}} - V_{\text{COND}} \). With these control voltages, the circuit operates correctly. OR is not a universal gate. In order to have a functionally complete set of operations, inverter is also required.

4) Additional stateful gate

As discussed earlier in this section, different polarity combinations of \(V_{\text{COND}} \) and \(V_{\text{PROG}} \) implement different logic operations. There remains one voltage combination to consider:

\(V_{\text{OPEN}} < V_{\text{PROG}} < 0V < V_{\text{COND}} < V_{\text{CLOSE}} \), and \(V_{\text{COND}} - V_{\text{PROG}} > V_{\text{CLOSE}} \). Assuming sufficient capacitance on \(W \), this polarity combination of control voltages implements the OR gate with the output on \(P \) instead of \(Q \). However, the use of a keeper in parallel with \(R_G \) produces the INH gate. The stateful INH gate was proposed in [25] and is defined as \(q^\leftrightarrow := p \leftrightarrow q = \neg p \neg q \) where ‘\(\leftrightarrow \)’ is the INH gate. The truth table of INH logic is shown in Table 2.3. Take, for example, the case where \(p, q = [1, 1] \). The READ operation drives \(W \) to \(\approx V_{\text{COND}} \). During the READ operation, the voltage on \(W \) is sampled by the keeper circuit. During the WRITE operation, the keeper circuit forces the sampled voltage onto \(W \). Consequently, the voltage across \(Q \) becomes \(V_{\text{PROG}} - V_{\text{COND}} \). This voltage difference is sufficient to toggle the state of \(Q \) to ‘0’, which is the desired behavior of the INH gate. Inhibition is functionally complete.
logic operation when coupled with the TRUE operation. Recall that the TRUE operation is implemented by $V_{\text{PROG}} = V_{\text{SET}}$. Similar to its use in the AND gate, the keeper circuit here splits READ/WRITE into two consecutive operations.

In summary, a 1×2 crossbar array of typical memristors is sufficient to implement several useful logic gates as long as care is taken in the selection of load resistor R_G. Which particular logic gate is implemented depends on the magnitude and polarity of the applied

<table>
<thead>
<tr>
<th>In1</th>
<th>In2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$q^* := p \rightarrow q$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.2
Truth table of the IMPLY operation

$q^* := p \rightarrow q = \neg p + q$

<table>
<thead>
<tr>
<th>In1</th>
<th>In2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$q^* := p \rightarrow q$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.3
Truth table of the INH operation

$q^* := p \leftrightarrow q = (\neg p) \cdot q$

<table>
<thead>
<tr>
<th>In1</th>
<th>In2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$q^* := p \leftrightarrow q$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.4
Logic gates realized by all possible voltage polarities and keeper/no-keeper circuit combinations

<table>
<thead>
<tr>
<th>Polarity</th>
<th>Logic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{COND}</td>
<td>V_{PROG}</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Signs + and – denote positive and negative voltage values of V_{COND} and V_{PROG} defined for each logic function in Section 2.4.
control voltages and on whether or not a keeper circuit is used. The circuit that provides these control voltages is called a driver. Drivers are different than keeper circuits as explained in Section 2.5 and 2.6. Keepers are auxiliary circuits required to perform reliable operations. As already discussed, Table 2.4 summarizes the logic gates realized by all possible voltage polarities and keeper/no-keeper circuit combinations. A 1×2 crossbar array of typical memristors without a keeper circuit enables only IMPLY and OR logic gates. When a keeper circuit is available, the memristors can realize all four operations: AND, OR, IMP, and INH. Availability of more basic gates for synthesis allows for more efficient realization of many Boolean functions, but also calls for invention of new logic synthesis algorithms to synthesize arbitrary functions in new bases.

2.5 STATEFUL LOGIC GATES WITH RECTIFYING MEMRISTORS

This section explains which logic functions can be realized in a crossbar array of rectifying memristors. The application of all polarity combinations of V_{COND} and V_{PROG} results in IMP and INH logic gates, as explained below. Table 2.5 summarizes the logic gates realized by all voltage polarities and keeper/no-keeper circuit combinations.

1) Stateful IMP gate

A stateful IMP gate is realized with the same polarity combinations of V_{COND} and V_{PROG} described in a crossbar array with typical memristors, $0V < V_{\text{COND}} < V_{\text{CLOSE}} < V_{\text{PROG}}$ and $V_{\text{PROG}} - V_{\text{COND}} < V_{\text{CLOSE}}$. An IMP gate can be implemented with a keeper circuit or without a keeper circuit assuming sufficient capacitance on W. The same speed/power/area tradeoff imposed by a keeper circuit in a crossbar array with typical memristors also holds for a crossbar array with rectifying memristors.
2) Stateful INH gate

A stateful INH gate is realized without a keeper circuit with the same polarity combination of \(V_{\text{COND}} \) and \(V_{\text{PROG}} \) described in a crossbar array with typical memristors, \(V_{\text{OPEN}} < V_{\text{PROG}} < 0V < V_{\text{COND}} < V_{\text{CLOSE}} \) and \(V_{\text{COND}} - V_{\text{PROG}} > V_{\text{CLOSE}} \). This polarity combination always sets memristor \(Q \) reverse biased and thus suppresses the flow of current through \(Q \). As a result, the crossbar array can be seen as a voltage divider made of memristor \(P \) and load resistor \(R_G \) that controls the state of memristor \(Q \)—nearly no electrical current flows between the voltage divider and memristor \(Q \), and the new state of \(Q \) (the gate’s output) is a function of its initial state and the output of the voltage divider, \(V_W \). Note that the diode-like behavior of memristors simplifies the circuit operation and eliminates the need for a keeper circuit.

Table 2.5

Logic gates realized by all polarity combinations in a crossbar array of rectifying memristors

<table>
<thead>
<tr>
<th>Polarities</th>
<th>Logic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{COND}})</td>
<td>(V_{\text{PROG}})</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Signs + and – denote positive and negative voltage values of \(V_{\text{COND}} \) and \(V_{\text{PROG}} \) defined for each logic function in Section 2.5.
The stateful INH gate can also be realized with the same polarity combination of V_{COND} and V_{PROG} described in a crossbar array with typical memristor for $q^+ := \text{OR}(p, q)$, i.e. $V_{OPEN} < V_{COND} < 0V < V_{PROG} < V_{CLOSE}$, and $V_{CLOSE} < V_{PROG} - V_{COND}$. This configuration implements the INH gate with the output on P instead of Q. In other words, P is the target memristor whereas Q is the source memristor. No keeper is required for this circuit configuration, as well.

There remains one voltage combination to consider: $V_{PROG} < V_{OPEN} < V_{COND} < 0V$ and $V_{OPEN} < V_{PROG} - V_{COND}$. This circuit configuration produces no logic operation. Note that stateful OR and AND gate cannot be realized with a crossbar array of rectifying memristors without a keeper circuit. Fig. 2.4 illustrates a schematic diagram of a keeper circuit that enables all stateful logic gates [48]. During the READ operation, source memristors are driven with $V_{COND} > 0V$. During the WRITE operation, the keeper circuit forces $0V, V_{COND},$
or \(- V_{COND}\) onto \(W\) depending on the result of READ operation and the type of stateful operation. This keeper circuit can be used in a crossbar array with typical memristors and rectifying memristors.

Table 2.6 summarizes the tradeoffs discussed in Section 2.4 and 2.5 for logic implementations in a crossbar array with typical and rectifying memristors. Among all design choices shown in Table 2.6, logic computations with rectifying memristors and stateful INH gates require no keeper circuits. In addition, INH logic with TRUE operation forms a complete set of logic gates. The use of rectifying memristors will also prevent the disturbance of the WRITE operation, as discussed in Section 2.2. The simplicity and area and power efficiency of the circuit are additional features of this particular design choice.

The use of rectifying memristors also enables multi-input multi-output INH gates without additional CMOS circuitry, as discussed in Section 2.6. Rectifying memristors suppress leakage currents, known as sneak current paths, as explained in Section 2.8. The sneak current is an undesired phenomenon, which occurs in two-dimensional crossbar arrays, and it may disturb the READ and WRITE operations. We rely on rectifying memristors for logic computing for the all benefits mentioned above.
In summary, realization of stateful logic gates in one dimensional crossbar array of typical memristors and rectifying memristors are explained. The conditions for the correctness of the circuit operations are also studied.

2.6 MULTI-INPUT MULTI-OUTPUT INH GATE

A multi-input multi-output INH gate can be realized in a $1 \times n$ crossbar array of rectifying memristors. Fig. 2.5 shows a 1×9 crossbar array for computing function $F = \{\text{OR} \{a,b,c\} \rightarrow \{d\}, \text{OR} \{a,b,c\} \rightarrow \{e\}\}$ where M_1-M_5 are used as source memristors whose logical states represent input variables a, b, c, d, and e; memristors M_6 and M_7 are auxiliary memristors, which store intermediate signals; and M_8 and M_9 are target memristors, which store the outputs, $\{\neg(a+b+c), d, \neg(a+b+c) \cdot e\}$. Function F is realized in three steps as described below.

1) FALSE operation: Reset the memristors to HRS by connecting the vertical wires to $V_{\text{PROG}} < 0V$, and the horizontal wire to $V_{\text{COND}} > 0V$. This step is realized in one clock cycle.

2) Copy operation: Connect the input voltages to the vertical wires of the source memristors and V_{PROG} to the horizontal wire to program (or copy the inputs into) the source memristors. At the same time, connect the vertical wires driving the auxiliary and target memristors to V_{COND} to set them to LRS. This step is realized in one clock cycles, as well.
3) INH operation: calculate \(d \rightarrow M_6 \) and \(e \rightarrow M_7 \), sequentially. Then, calculate

\[
\text{OR}\{a,b,c,-d\} \rightarrow M_8 \quad \text{and} \quad \text{OR}\{a,b,c,-e\} \rightarrow M_9,
\]

the outputs of function \(F \), sequentially. This step is realized in four clock cycles.

The overall number of clock cycles for realizing function \(F \) is six. During each operation, wire \(W \) is set either to \(V_{\text{COND}} \) or \(V_{\text{PROG}} \) or connected to \(R_G \). Also, vertical wires \(B_j \) \((1 \leq j \leq 9)\) are connected either to \(V_{\text{COND}} \) or \(V_{\text{PROG}} \) or terminated to high impedance, \(Z \). A vertical wire connected to a nonparticipating memristor is terminated to \(Z \). In realizing \(d \rightarrow M_6 \), wires \(B_4 \) and \(B_6 \) are simultaneously connected to \(V_{\text{COND}} \) and \(V_{\text{PROG}} \), respectively.

Source memristor \(M_4 \) and load resistor \(R_G \) form a voltage divider whose output (the voltage on wire \(W \)) drives target memristor \(M_6 \). If \(M_4 \) is in LRS, then \(V_W \approx V_{\text{COND}} \). Therefore, the voltage across \(M_6 \) is approximately \(V_{\text{CLEAR}} \), which is sufficient to toggle the state of \(M_6 \). In contrast, if \(M_4 \) is in HRS, then \(V_W \approx 0V \). Therefore, the voltage across \(M_6 \) is approximately \(V_{\text{PROG}} \), which is insufficient to toggle the state of \(M_6 \). Likewise, \(\text{OR}\{a,b,c,-d\} \rightarrow M_8 \) is implemented by simultaneously connecting \(B_1, B_2, B_3, \) and \(B_6 \) to \(V_{\text{COND}} \), \(B_8 \) to \(V_{\text{PROG}} \), and \(W \).
to R_G. Alternatively, $OR\{a, b, c, -d\} \rightarrow M_8$ can be calculated by implementing a sequence of INH gates, i.e., $a \rightarrow M_8$, $b \rightarrow M_8$, and $-d \rightarrow M_8$. A stateful INH gate can be used to produce NOT and NOR gates as $(p \rightarrow 1 \equiv -p)$ and $(OR(p, q) \rightarrow 1 \equiv NOR(a, b))$, which requires programming the target memristors to logic ‘1’. Therefore, an arbitrary logic function can be realized based on logic NOR.

Fig. 2.6 shows the schematic of memristive circuit proposed in this dissertation for calculating logic functions in a crossbar array. The circuit consists of crossbar memory array and crossbar computational array. The memory array stores the instructions and control signals whereas the computational array executes logic operations and stores the results. These crossbar arrays are connected through datapath. This circuit architecture enables in-memory computing as the computational array calculates logic functions and stores the outputs. The computational array are connected to CMOS drivers. The schematic of each driver is shown in Fig. 2.7. The drivers can connect the wires to $0V$, V_{COND}, V_{PROG}, or the Ground (GND) through R_G. The circuit can realize any logic function with INH and TRUE operations without any keeper circuit. The crossbar memory array is driven by shifter. The output of the shifter in the first, second, and n^{th} clock cycles are $(v_1, v_2 \ldots v_n) = (1, 0 \ldots 0), (0, 1, 0 \ldots 0), \text{and} (0 \ldots 0, 1)$, respectively. Each column of the crossbar memory array stores the control signals required to perform one logical operation. The size of the crossbar memory array depends on the number of horizontal and vertical wires of the computational array, the number of logical operations (which is equal to the number of clock cycles) and the driver’s control signals. Hence, its size can be written as $(3 \times l) * n$ where 3 is the driver’s signals, l is the sum of horizontal and vertical wires, and n is the
number of clock cycles. The size of the memory array dominates the area when large circuits are implemented. The computational delay depends on a synthesis approach for logic computations [49]. The power dissipations in memristive arrays are discussed in Chapter 3, 5, 6, and 7.

In summary, stateful NOR gates is built from INH gates. A multi-input stateful NOR gate is realized either sequentially by cascading stateful INH gates or simultaneously by implementing all stateful INH gates in parallel. A multi-output stateful NOR gate can be realized by simultaneously driving several target memristors to V_{PROG}.

Fig. 2.6. Schematic of memristive computing circuit including control and datapath units.
The IMP Sequential Diagram (ISD) \[49\] is used for analysis and synthesis of stateful logic circuits. In this notation, each horizontal wire represents the state of a memristor over the course of synthesis. Fig. 2.8 shows the symbolic diagram of the IMP gate where \(p\) and \(q\) are inverting and non-inverting inputs of the IMP gate, stored in source and target memristors \(P\) and \(Q\), respectively. The output of IMP gate is the new state of \(Q\), which is \(\neg p + q\).

\[
P \quad p \quad p
Q \quad q \quad + \quad p \text{ IMP} \quad q = \neg p + q
\]

Fig. 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation.

2.7 EISD: EXTENDED IMP SEQUENTIAL DIAGRAM

The IMP Sequential Diagram (ISD) \([49]\) is used for analysis and synthesis of stateful logic circuits. In this notation, each horizontal wire represents the state of a memristor over the course of synthesis. Fig. 2.8 shows the symbolic diagram of the IMP gate where \(p\) and \(q\) are inverting and non-inverting inputs of the IMP gate, stored in source and target memristors \(P\) and \(Q\), respectively. The output of IMP gate is the new state of \(Q\), which is \(\neg p + q\).

\[
P \quad p \quad p
Q \quad q \quad + \quad p \text{ IMP} \quad q = \neg p + q
\]

Fig. 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation.
The gate is implemented in three clock cycles. In the first clock cycle, the FALSE operation programs memristor \(R \) to HRS, i.e., \(r = 0 \); the symbolic diagram of the FALSE operation is shown as a rectangle with label ‘0’.

In the second and third clock cycles, \(p \rightarrow r \) and \(q \rightarrow r \) are implemented. The new values of \(r \) over the course of operations are shown alongside wire \(R \). There is no more operations defined in ISD, as IMP and FALSE form a complete set of logic gates. In this dissertation, the ISD notation is extended (Extended ISD or EISD) to include INH and TRUE operations, as well. Fig. 2.10 shows the symbolic diagram of the INH gate where \(p \) and \(q \) are inverting and non-inverting inputs, stored in source and target memristors \(P \) and \(Q \), respectively. The output of the gate is the new state of \(Q \), which is \(\lnot{pq} \).
Fig. 2.11. EISD of NOR gate. Different EISD notations for \(r = \text{NOR} \{p, q\} \) depending on source and target memristors locations.

Fig. 2.12. EISD of multi-output function \(\{\text{OR} \{p, q\} \rightarrow r, \text{OR} \{p, q\} \rightarrow s\} \).

Fig. 2.13. EISD of \(\text{XOR}(p, q) = \{(p \rightarrow q) + (q \rightarrow p)\} \rightarrow 1 \) \(\rightarrow 1 \).

Fig. 2.11 shows the EISD notation of function \(\text{OR} \{p, q\} \rightarrow r \). This function is performed in two clock cycles. In the first clock cycle, the TRUE operation sets memristor \(R \) to logic ‘1’. The symbolic diagram of the TRUE operation is shown as a rectangle with label ‘1’. In the second clock cycle, the INH operation is performed. The new values of \(r \) over the course of synthesis are shown alongside wire \(R \). Memristors \(P, Q, \) and \(R \) in Fig. 2.11 are rectifying memristors, hence enabling stateful INH gate with multiple fan-out without
a keeper circuit. Fig. 2.11 shows two different EISD notations for \(OR\{p, q\} \rightarrow r \) as different source and target memristors are chosen in each diagram for synthesizing the function. Fig. 2.12 shows the EISD of multi-output function \(\{OR\{p, q\} \rightarrow r, OR\{p, q\} \rightarrow s\} \). Fig. 2.13 shows the EISD of function \(XOR(p, q) = \{\{(p \rightarrow q) + (q \rightarrow p)\} \rightarrow 1\} \rightarrow 1 \). The diagram also shows the timing aspect of the circuit, e.g., at \(T_4 \) (the fourth clock cycle) value \(p \) is copied into the bottom most memristor (wire). In the course of synthesis, it is not possible to READ from and WRITE to a memristor simultaneously. For example, the instant implementation of \(p \rightarrow q \) and \(q \rightarrow p \) requires reading from and writing to memristor \(P \), hence, a copy of value \(p \) is stored in an auxiliary memristor to avoid the issue. The synthesis delay is nine clock cycles. This
delay includes that of initialization and programming step. The overall number of memristors used in this implementation is four. In EISD notation, gates and sub-circuits are shown by blocks to simplify the diagram. For example, Fig. 2.14 shows the EISD notation of a 3-input XOR gate realized as a cascade of 2-input XOR gates. Each XOR gate consists of a number of INH and TRUE operations, as shown in Fig. 2.13. The 3-input XOR \((p, q, r)\) is implemented with five memristors in 15 clock cycles (Fig. 2.14a).

The EISD notation shows the tradeoff between the number of memristors and the number of stateful gates. For example, the 3-input XOR gate can also be realized in 16 clock cycles and four memristors, i.e., by writing input \(r\) into the memristor \(P\) after calculating \(p \text{ XNOR } q\), as shown in Fig. 2.12b. The rectangle with label WR indicates writing input \(r\) into memristor \(P\). Note that the WRITE operation is performed by connecting one terminal of the memristor to input \(r\) and the other terminal to \(V_{\text{PROG}}\).

In summary, ISD is a notation used for analyzing and synthesizing stateful circuits and shows the tradeoff between the number of memristors and the number of clock cycles (logic operations). The proposed EISD generalizes the ISD notation.

2.8 Two-Dimensional Crossbar Array

Two-dimensional self-aligned crossbar arrays are regular structures with very high density. Fig. 2.15 shows a \(3 \times 3\) memristor crossbar array. At each junction, an area between two perpendicular wires, one memristor is located. Each wire of the crossbar array is connected to a CMOS driver, and each memristor is uniquely accessible. A stack of crossbar arrays formed on CMOS layers creates a three-dimensional memristive array. CMOL (CMOS-MOLECULE SCALE DEVICE) [20] is one example of 3D memristive arrays. The
primary use of the 3D arrays (three-dimensional crossbar arrays) is for memory applications. In this dissertation, the focus is mainly on logic calculations in two-dimensional crossbar arrays, or simply crossbar arrays.

Despite the simplicity, regularity, and high density of the crossbar arrays, there are some potential problems such as half-select problem and sneak current paths limiting the size of these arrays and disturbing their operations. For example, suppose that the crossbar array, shown in Fig. 2.15 consists of non-rectifying memristors. Programming the upper right corner memristor to LRS requires driving the right-most vertical wire to V_{SET} and the uppermost horizontal wire to 0V. This configuration half-selects the right-most column memristors, i.e., only one terminal of each half-select memristor is driven by V_{SET} while the other terminal is floated (terminated to Z) [50]. Similarly, the uppermost row memristors connected to 0V are half-selected, as well. The half-select memristors may cause sneak path problem. The sneak path, as shown by a red-dash lines in Fig. 2.16, may inadvertently toggle the state of a memristor or disturb the READ and WRITE operations. For example, memristor M is intended for measuring the response. A current path through memristors other than memristor M is a sneak path current. Fig. 2.16 shows the dominant sneak path current, which follows through half-select memristors in LRS.
Fig. 2.15. A 3×3 crossbar array of non-rectifying memristors.

Fig. 2.16. Half-select problem may cause sneak current paths. The green dash-line represents the desired current path whereas the red dash-lined represents an undesired sneak current path.

Fig. 2.17. (a) The sneak path disturbs the READ and WRITE operations. (b) The circuit equivalent of the crossbar array with sneak current path.
Fig. 2.1a shows how a sneak path disturbs the READ and WRITE operation. Suppose that the upper left corner memristor P is driven by V_{COND} and the upper right corner memristor Q is driven by V_{PROG} implementing $q^+ := p \rightarrow q$. This operation falsely results in $q = 0$ due to the sneak path problem. The green dash-line in Fig. 2.1a illustrates the desired current path through memristor P whereas the red dash-line represents an undesired sneak current path. The sneak path disturbs the READ operation since it adds up a parallel resistance to memristor P, hence increasing the voltage on the uppermost wire. This voltage increase disturbs the WRITE operation, as well, since it decreases the voltage difference across memristor Q and makes it insufficient to toggle the state of Q. Fig. 2.1b shows the circuit equivalence to the crossbar array while implementing $q^+ := p \rightarrow q$. Note that the sneak path crosses through the reverse biased LRS memristors, as shown in Fig. 2.1b.

The sneak current paths can be suppressed by connected the crossbar wires to proper voltage values. For example, Fig. 2.18a shows a voltage scheme for a reliable READ operation. In this scheme, the left-most vertical wire is set to V_{COND} while other vertical wires of the crossbar array are grounded. The current through memristor P is fed to a sense amplifier, which acts as a current-to-voltage converter. The output of the amplifier determines the state of memristor P. This voltage scheme suppresses the sneak paths and enables a reliable READ operation. However, this voltage scheme may cause a power dissipation in other left-most column memristors depending on their resistance states. Fig. 2.18b shows another voltage scheme for a reliable WRITE operation [51]. In this scheme, the vertical and horizontal wires connected to memristor P are set to V_{SET} and $0V$, respectively, while other crossbar wires are connected to $V_{\text{SET}}/2$. This biasing scheme limits
the sneak paths and enables a reliable WRITE operation. However, this scheme may also cause a power dissipation in other left-most column memristors of the crossbar array. There are other techniques that can be used to improve the READ and WRITE operations as studied in [51-53]. The use of rectifying memristors is our design choice to limit the sneak paths in crossbar arrays. Rectifying memristors limits reverse biased currents, which cause the sneak path currents, below 10^{-13} A. Studies show that the diode-like behavior of the rectifying memristors effectively improves the read operation performance of a large scale crossbar memory array without cell-selectors [54].

In addition to the sneak current paths, a nonzero resistance of wires could be another challenge for reliable READ and WRITE operations [55-56]. This resistance degrades the voltage along the wires and causes unequal voltage drops across the memristors. When all memristors on a selected column are at LRS, the farthest memristor from the driver is the
worst-case selected memristor, which sees the largest voltage degradation during the WRITE operation (Fig. 2.19). The fidelity of the READ operation depends on the state of a selected memristor as well as the states of other memristors in the crossbar array. The worst performance of the READ and WRITE operations occurs under following circuit circumstances [55]: 1) when a selected memristor is in LRS, other memristors of a selected column are in HRS, and other crossbar memristors are in LRS, the READ operation has the worst performance, and 2) when a selected memristor is in HRS while other memristors of the crossbar array are in LRS, the READ and WRITE operation have the worst performance. The maximum size of a crossbar array is determined based on the worst READ and WRITE performance of memristors. To maximize the size of a crossbar array, the power consumption should be minimized. This can be done by increasing the resistive values of R_{CLOSED} and R_{OPEN} while keeping the R_{OPEN}/R_{CLOSED} ratio sufficiently large, as suggested in
However, this solution may increase the RC delay during a READ and WRITE operation. In contrast to the previous works [55-56], recently, Youn et al. showed different examples of the worst read scenarios in the crossbar arrays [57].

Fig. 2.20 shows the schematic of the memristor circuit proposed in this dissertation for computing logic functions in a two-dimensional array. A driver circuit connected to each wire of the crossbar array is shown in Fig. 2.7. These drivers enable row and column operations in the computational crossbar array [47] and [74]. The complexity and computational delay (measured as the number of clock cycles) of the circuit are related to logic synthesis approaches used to realize functions. The size of the crossbar memory array depends on the size of the computational array, the number of control signals used for...
driving each wire of the computational crossbar array, and the size of the circuit realized in computational array. See Chapter 3, 5, 6, and 7 for power analysis of memristor circuits.

In summary, the limitations of the cross array and the potential solutions are discussed. In addition, a new general memristor circuit structure for logic computing in two-dimensional array is proposed.

2.9 Logic Computations in a Crossbar Array

This section explains how to calculate logic functions in a crossbar array of rectifying memristors with INH and TRUE gates. An implementation of 3-input XOR gate in the Sum-of-Products (SOP) form, i.e., \(XOR(p, q, r) = \overline{p}\overline{q}r + \overline{p}qr + pq\overline{r} + p\overline{q}\overline{r} \) is explained in the following three steps.

1) Initialization: This step sets the memristors to logic ‘1’. Setting the memristors with random states to logic ‘1’ may increase the power dissipation in the crossbar array. Instead, if the memristors were logic ‘0’, their programming to logic ‘1’ would decrease the power dissipation. Furthermore, programming the memristors to logic ‘0’ requires small amounts of power as memristors are set reversely biased. Therefore, this step is realized with two consecutive FALSE and TRUE operations in two clock cycles. The entries of the symbolic matrix, shown in Fig. 2.21 represent the logic values stored in each memristor of the crossbar. The label on top of the arrow indicates the number of operations required for the initialization.
Mapping: This step shows how to map the XOR gate into the crossbar memristors. Suppose that the bottommost row memristors of the crossbar array store inputs p, q, and r (Fig. 2.22a). The columns of the crossbar array are programmed one by one using multi-output INH gates. For example, the left-most column memristors of the crossbar array are programmed using two consecutive INH gates $p \rightarrow (m_{31}, m_{41})$ and $m_{31} \rightarrow (m_{41}, m_{21})$ where m_{ij} shows the state of a memristor at intersection row i and column j. The results of the inhibition operations are shown in Fig. 2.22b and 2.22c. Similarly, other columns are programmed as shown in Fig. 2.22d. The total number
of clock cycles for programming the columns is twice of the number of inputs, which is six.

3) Calculation: This step explains how to calculate the XOR gate in the SOP form. First, the products (minterms) are implemented with four multi-input INH gates

\[(p + q + \overline{r}) \rightarrow 1, (p + \overline{q} + r) \rightarrow 1, (p + \overline{q} + r) \rightarrow 1, \text{ and } (p + q + r) \rightarrow 1 \]

where each INH gate is applied to one row of the crossbar array. The products are simultaneously calculated and stored in the right-most column memristors as shown in Fig. 2.22e. Next operation is to sum the products by two consecutive INH gates as

\[((p\overline{q}r + pq\overline{r} + pqr + pq\overline{r}) \rightarrow 1) \rightarrow 1 \] . The first INH gate calculates logical NOR of the products, which is equivalent to the logical XNOR of the inputs, and the second INH gate inverts the output of the first INH gate producing XOR \((p, q, r)\). Fig. 2.22f shows the outputs of the INH gates.

The synthesis approach used for the XOR gate is similar to that proposed in [25] except that cited approach [25] uses a combination of INH and IMP gates for synthesis. This combination of logic gates decreases the delay but increases the complexity. There are two types of operations, known as row and column operations, realized in crossbar arrays. Row operations are applied to row memristors and column operations to column memristors. For example, in step 3, the products (minterms) are implemented with row operations and the sum (OR gate) with column operations. The INH gates used in row operations are realized with \(V_{COND} > 0V\) and \(V_{PROG} < 0V\). However, opposite polarity of \(V_{COND}\) and \(V_{PROG}\) is required for implementing the INH gates in column operations.
One disadvantage of stateful logic computations is that stateful operations are sequential, hence a long sequence of operations are required to perform a logic function. With alternative circuit approaches, proposed in Chapter 3 and 4, a 3-input XOR gate can be implemented with only three clock cycles as described in Chapter 5.

In summary, a 3-input XOR gate is implemented in a crossbar array of rectifying memristors with multiple INH gates. The size of the crossbar array is 6×4 and the total number of clock cycles is 11.

2.10 SUMMARY

This chapter explained the basic memristor crossbar structure. The sneak path problem and some solutions were discussed. In addition, EISD notation was explained. Multiple design choices for stateful logic circuits were reviewed. Rectifying memristors are desirable for logic computations due to power and area saving benefits. This chapter also described a new general circuit structure which enables in-memory computing.
Chapter 3

Memristive Volistor Logic Gates

This chapter introduces a novel volistor logic gate [29], which uses voltage as input and resistance as output. Volistors rely on the diode-like behavior of rectifying memristors. This chapter shows how to realize the first logic level, counted from the input, of any Boolean function with volistor gates in a memristor crossbar network. Unlike stateful logic, there is no need to store the inputs as resistance, and computation is performed directly. The fan-in and fan-out of volistor gates are large and different from traditional memristor circuits. Compared to a solely memristive stateful logic, a combination of volistors and stateful inhibition gates can significantly reduce the number of operations required to calculate arbitrary multi-output Boolean functions. The power consumption of volistor logic is computed and compared with the power consumption of stateful logic using simulation results—when implemented in a 1×8 or an 8×1 crossbar array, volistors consume significantly less power.

3.1 INTRODUCTION

The stateful logic computations with memristors is an area of active research. Borghetti et al. [20] proposed realizing the stateful logic via material implication (IMP). In classical memristive stateful circuits, logic signals utilize resistance on input and output. In other words, the previous resistance state of a memristor affects the operations. In contrast, volistors do not use the previous resistance state in calculations. Other stateful logic gates have been proposed as well, e.g., INH, AND, etc. In stateful logic, values are encoded by resistance states of memristors. The stateful logic is usually performed in a generic crossbar
array. One key disadvantage of stateful logic is that a long sequence of operations is required to implement an arbitrary Boolean function.

This chapter introduces a new concept in memristor logic, call volistor logic. Unlike a stateful logic gate, a volistor (voltage-resistor) gate has voltage-based input and resistance-based output. Therefore, volistors (volistor gates) can be used for first (possibly complex) level of logic implementation. It is always assumed that negated inputs are available as voltage signals. Volistors are implemented in generic crossbar arrays of rectifying memristors. Logic synthesis methods with volistors are different from classical logic synthesis. Multi-input multi-output volistor gates, implemented in a 1×8 crossbar array, dissipate less power than corresponding stateful logic gates. The output of a volistor gate is stored as a resistance state of a target memristor. The correct functionality requires initializing the target memristor to LRS. With different coding schemes, either a volistor OR and NAND logic set or a volistor NOR and AND logic set can be realized in the same crossbar array. For instance, if the closed state of a memristor encodes logic ‘0’ and the open state of a memristor encodes logic ‘1’, the set of OR and NAND operations is implemented. The reverse encoding scheme implements the NOR and AND logic set. With volistor logic, crossbar drivers need to supply only three voltage levels v^+, v^- and $0V$. In addition, the drivers must be capable of connecting arbitrary wires in the crossbar to either high impedance (Z) or grounding these wires through load resistors R_G. Clearly, volistor logic cannot implement arbitrary logical structures such as SOP, i.e., the volistor network layer cannot implement every Boolean function. However, a combination of a volistor
NOR and AND with stateful INH, or their dual logic of volistor OR and NAND with stateful IMP, can both be used to realize arbitrary multi-output Boolean functions.

This chapter is organized as follows. In Section 3.2, volistor gates are introduced. In Section 3.3, the synthesis of arbitrary Boolean functions is explained. In Section 3.4, the power consumption of volistor gates is computed and compared with stateful logic. Section 3.5 is a summary and conclusion of the chapter.

3.2 Volistor Logic

In this section, volistor logic is introduced. The key idea behind volistor logic is that inputs are voltages and outputs are resistances. This is a significant change from the way the voltage drivers are used in stateful logic; however, the target memristor is still used as a memory element where the output is stored. The basic volistor logic gates are: inverter, \(n\)-input NOR, and \(n\)-input AND, and their duals inverter, \(n\)-input OR, and \(n\)-input NAND. The following subsections describe the basic architecture required for logic computations and the basic logic gates.

3.2.1 Crossbar Structure

The basic circuit structures for volistor logic computations are the \(1 \times 2\) crossbar array and \(2 \times 1\) crossbar array depicted in Fig. 3.1. Just as in stateful IMP, \(S\) denotes the source memristor and \(T\) the target memristor. The wire \(B_1\) connected to source memristor \(S\) conveys input signal \(V_S\). Let \(v^+ = 0.6\) V and \(v^- = -0.6\) V. The logical coding scheme for \(V_S\) is defined as follows: \(v^+\) encodes logic ‘1’ denoted \(v_s = 1\), and \(0V\) encodes logic ‘0’ denoted
\(v_s = 0 \). The wire \(B_2 \) connected to target memristor \(T \) carries a bias voltage, \(V_T = v^- \).

Memristor \(T \) acts as a switch whose resistance state \(t \) represents the output of the crossbar array. When \(T \) is open, its high-resistivity state encodes logic ‘0’, i.e. \(t = 0 \). When \(T \) is closed, its low-resistivity state encodes logic ‘1’, \(t = 1 \). This interpretation of the resistivity state of \(T \) is used for performing the NOR/AND logic set; another interpretation is discussed in Section 3.2.5. Prior to logic computation, both memristors \(S \) and \(T \) must be closed. To unconditionally close a memristor, it must be forward biased by \(V_{SET} \). The \(1 \times 2 \) crossbar array must satisfy (3.1). In particular, \(V_T \) is selected such that \(V_T - V_S \) equals \(V_{CLEAR} \) when \(V_S = v^+ \).

\[
\begin{cases}
 V_{OPEN} < V_T < 0V \\
 V_T - V_S = V_{CLEAR}
\end{cases}
\]

(3.1)

Each wire must be either driven by one of the voltages \(v^+, 0, \) and \(V_T \), or terminated with high impedance \(Z \) or grounded by load resistor \(R_G \). All these connections are realized with

Fig. 3.1. Crossbar arrays. (a) \(1 \times 2 \) crossbar array. (b) \(2 \times 1 \) crossbar array. The inset shows the symbolic diagram of a memristor. The flow of current into the device, as shown above, increases the resistance.

Increase of resistance

(a) \(B_1 \) \(B_2 \) \(W \) \(V_T \) \(S \) \(T \) \(V_S \) \n
(b) \(W \) \(B_1 \) \(B_2 \) \(S \) \(T \) \(V_T \)
CMOS switches shown symbolically in Fig. 3.2. R_G is defined as geometric mean of R_{CLOSED} and R_{OPEN}, i.e., $\sqrt{(R_{CLOSED} \times R_{OPEN})} = 15M\Omega$. The crossbar array operates by the simultaneous application of V_S and V_T to S and T, respectively. Since $V_S > V_T$, current must flow through the memristors. However, the application of these voltages forward biases S and reverse biases T, thus suppressing the flow of current. This means that $V_W \approx V_S$ where V_W is the voltage on wire W. If $V_s = v^+$, the voltage across T will toggle that memristor, i.e., the new state of target memristor T becomes $t = 0$.

The other basic structure for volistor logic is 2×1 crossbar array depicted in Fig 3.1b. In this crossbar array, the logical coding scheme for V_S is defined as follows: v^- encodes logic ‘1’ denoted $v_s = 1$, and $0V$ encodes logic ‘0’ denoted $v_s = 0$. The 2×1 crossbar array must satisfy (3.2). In particular, V_T is selected such that $V_S - V_T = V_{CLEAR}$ when $V_S = v^-$.

\[
\begin{cases}
0V < V_T < V_{CLOSE} \\
V_S - V_T = V_{CLEAR}
\end{cases}
\]

(3.2)

The crossbar arrays shown in Fig. 3.1 can be scaled to $1 \times n$ and $n \times 1$ arrays, allowing for multi-input multi-output volistor logic gates. The $1 \times n$ and $n \times 1$ crossbar arrays must
satisfy (3.1) and (3.2), respectively. These arrays implement wired-OR function where the voltage on wire W denotes logical OR of inputs.

3.2.2 Volistor NOT gate in a one-dimensional array

An inverter is the simplest gate to realize in volistor logic; the symbolic diagram is shown in Fig. 3.3a. Take, for example, the case where $(v_s, t) = (1, 1)$, i.e., $v_s = 1$ and $t = 1$. Both source and target memristors are initially closed. Volistor NOT can be realized in either a 1×2 or 2×1 crossbar array. When realized in a 1×2 array, V_T must be a negative voltage, V_S must be greater than or equal to 0V, per (3.2), and horizontal wire W must be connected to high impedance Z. Setting W to Z allows V_S to manifest on W. Based on Ohm’s law, current should flow through the array, since $V_S - V_T > 0V$. However, memristor T is reverse biased and thus suppresses the flow of current. In this case, the voltage drop across S is 1.2 mV, i.e., the voltage on W equals 599 mV. The voltage drop across T is -1.198 V, which is sufficient to open memristor T. This is the desired behavior of the inverter.

![Volistor Logic Gates](image_url)

Fig. 3.3. Symbolic notations for volistor logic gates. (a) Volistor NOT. (b) two-input volistor NOR gate. (c) two-input volistor AND gate. (d) mixed-input NOR gate. Inside the gates, symbols V and R denote whether a signal is a voltage-based or resistance-based, respectively.
function, i.e., \((v_s, t) = (1, 0)\). Given the parameters introduced in Section 2.3, the switching delay of volistor NOT is 4.044 ns as shown in Fig. 3.4b.

Volistor NOT may be extended to a multiple fan-out function realized in arrays \(1 \times n\) or \(n \times 1\). The multi-output NOT function stores \(v_s\) in up to \(n-1\) target memristors in any arbitrary location in the array. The role of each memristor is determined by its driver, i.e., source memristors are driven by \(V_S\) and target memristors by \(V_T\). Interestingly, this means that a memristor’s function is independent of its position in the crossbar array. Fig. 3.4a shows a 4-output volistor NOT gate implemented in a \(1 \times 8\) array. Source memristor \(S\) is driven by \(V_S\) and target memristors \(T\) by \(V_T\). Memristors \(X\) are terminated to \(Z\) and do not
take part in the circuit’s operation. The proper operation of a 63-output NOT gate with \(v_s = 1 \) implemented in a \(1 \times 64 \) array and simulated in LTspice is depicted in Fig. 3.4c. \(V_W \) is 528.881 mV, and all 63 target memristors are switched off successfully in 6.223 ns.

Fig. 3.4d shows the desired behavior of volistor NOT implemented in a \(1 \times 2 \) array when \(v_s = 0 \). \(V_W \) is -599.4 \(\mu \)V, and the target switch remains closed. Fig. 3.4e shows the behavior of a 63-output volistor NOT implemented in a \(1 \times 64 \) array when \(v_s = 0 \). This results in \(V_W = -35.559 \) mV, and all target switches remaining closed. Table 3.1 summarizes these configurations and their effects on \(V_W \). A NOT with an arbitrary fan-out can be realized in one pulse. NOT gate is explained for completeness. As negated inputs are available at no additional cost, volistor NOT is not practically useful. In this chapter, all volistor gates appear only at the input layer.

3.2.3 Volistor NOR gate in a one-dimensional array

The second basic gate in volistor logic is NOR. Fig. 3.3b shows the symbolic diagram of a two-input volistor NOR gate. Since \(1 \times n \) arrays have been previously discussed, in this subsection, \(n \times 1 \) arrays are considered. Take, for example, a two-input NOR gate where \((v_{s1}, v_{s2}, t) = (1, 0, 1)\). This requires the application of input data to \(S_1 \) and \(S_2 \) and \(V_T \).
to T. Since the gate is realized in a 3×1 crossbar array, Equation (3.2) requires $V_T > 0$ and $V_S \leq 0$. Based on Ohm’s Law, current should flow through the crossbar array since $V_T - V_S > 0$. However, S_2 and T are both reverse biased and thus suppress the flow of current. The voltage drop across S_1 is 1.8 mV, i.e. $V_W = -598.2$ mV. The voltage drop across T is -1.198V, which is sufficient to open T. Recall that all memristors are initially closed. The gate is realized by implementing a wired-OR, i.e., the voltage on W is the logical OR of v_{s1} and v_{s2}. The output of the gate is the new state of switch T, either open or closed. Table 3.2 shows V_W and T_d for various combinations of inputs of a single-output volistor NOR gate.

Fig. 3.5. A 3×1 crossbar array used to implement a two-input volistor NOR.

Table 3.2

<table>
<thead>
<tr>
<th>Crossbar Array</th>
<th>Number of Inputs at Logic</th>
<th>V_W (mV)</th>
<th>T_d (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×1</td>
<td>0</td>
<td>-599.4</td>
<td>4.048</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-598.2</td>
<td>4.068</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.3</td>
<td>Not applicable</td>
</tr>
<tr>
<td>64×1</td>
<td>63</td>
<td>0.0</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-600</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-597.6</td>
<td>4.08</td>
</tr>
</tbody>
</table>
implemented in a 3×1 and a 64×1 crossbar array. Note that with more logic ‘1’ inputs, the value of V_W approaches V_S and the switching delay T_d gets shorter.

3.2.4 Volistor AND gate in a one-dimensional array

The third basic gate in volistor logic is AND. This gate is realized as NOR with negated literals of the desired product applied to the crossbar array. For example, the desired product $\overline{a} \overline{b} c$ is realized by applying $(v_{s_1}, v_{s_2}, v_{s_3}) = (1, 0, 1)$ to the memristors. As a result, the voltage across T is sufficient to toggle t to ‘0’, i.e., $t = a + \overline{b} + c$. According to the De Morgan’s law $a + \overline{b} + c = \overline{a b c}$, which is the desired result. The AND gate can be scaled to perform multi-input multi-output operations. The details are the same as described for volistor NOR. It is assumed that negated inputs are always available at the same cost as the non-negated inputs.

3.2.5 Volistor OR and NAND gates in a one-dimensional array

In all volistor logic gates discussed above, the logical coding scheme of memristive switch T is defined as follows: an open switch encodes logic ‘0’, and a closed switch encodes logic ‘1’. This scheme allows direct implementation of volistor NOR/AND; however, it blocks direct implementation of volistor OR/NAND, i.e., two consecutive operations must be performed. To realize OR/NAND gates directly, the logical coding scheme of memristive switches T must be reversed, the open switch encodes logic ‘1’ and the closed switch encodes logic ‘0’. This scheme allows a direct realization of volistor OR in the same manner as volistor NOR described in Section 3.2.3. Likewise, volistor NAND is realized by applying negated input logic values to the crossbar array, in the same manner
as the volistor AND described in Section 3.2.4. Circuit designers could select one of the encoding schemes for the entire system or create a hybrid system with several partitions. Each partition is encoded by one of the encoding schemes. Partitions with different schemes are connected through inverters.

3.2.6 Mixed-input logic gates in a one-dimensional array

Inputs on standard volistor gates are voltages; however, as shown in Fig. 3.3d, implementing gates with mixed-inputs is possible using a hybrid of stateful and volistor logic where some inputs are represented by resistances and some by voltages. Fig. 3.6 depicts a three-input NOR gate implemented in a 1×4 crossbar array where $(s, v_{s2}, v_{s3}, t) = (0, 0, 1, 1)$. Recall that the members of the first tuple are resistances and voltages while the members of the second tuple are the logic values that they represent. Specifically, s is the resistive logic value stored in S_1 and is to be interpreted as logic ‘0’. Assume s has been set in a previous operation, and any memristors with voltage inputs have been already set to R_{CLOSED}. As in stateful logic, W is grounded through R_G, and V_{COND} is applied to S_1 where $V_{COND} = v^+$. As in volistor logic, input data are applied to memristors S_2 and S_3, and bias voltage V_T is applied to memristor T. Equation (3.2) requires $V_T = v^-$ and $V_S \geq 0V$. With this

\[V_{COND} \quad V_{S1} \quad V_{S2} \quad V_T \]

\[R_G \quad S_1 \quad S_2 \quad S_3 \quad T \quad W \]

Fig. 3.6. Mixed input NOR. The implementation of a three-input one-output NOR gate. The resistive input is stored in S_1 and the voltage inputs are applied to S_2 and S_3. The output is stored in memristor T.

56
configuration, s manifests as a voltage on W, and the circuit operates in the same manner as volistor NOR. Translation between logical encoding schemes is accomplished in the same manner as described in Section 3.2.5. Volistor AND gate may be realized with one extra step since input resistances would need to be negated.

3.3 HYBRID APPROACH TO SYNTHESIZE BOOLEAN FUNCTIONS IN CROSSBAR ARRAYS

In theory, every single-output Boolean function of n variables can be realized in a one-dimensional crossbar array with n source memristors and two auxiliary memristors [58] where the auxiliary memristors may act as source or target memristors. However, this realization leads to a long sequence of pulses (clock cycles). To avoid this long sequence of pulses, multi-output Boolean functions can be realized in a crossbar network.

In this section, we show how to implement arbitrary Boolean functions in a crossbar network utilizing a combination of stateful, volistor and mixed input gates. This generic network structure can be used to implement logic functions in several forms such as SOP, POS (Product-of-Sum), TANT (Three level AND NOT Network with True inputs) [59], and ESOP. TANT architecture requires non-inverted inputs, but here, a generalized TANT with no restriction on the input polarity is considered. Stateful operations are realized solely with NOR and NOT. The stateful NOT gate is implemented by the INH gate with non-inverting input set to constant 1. And, the stateful NOR gate is implemented by cascading INH gates and setting the non-inverted input of the first gate of the cascade to constant 1, e.g., \(a + b = b \rightarrow (a \rightarrow 1) = (1.a) \cdot b \).
3.3.1 Hybrid computation in a one-dimensional array

The simplest structure to perform memristive logic computation is a one-dimensional crossbar array. In this structure, computations can be performed by either solely stateful logic or by a combination of mixed input, stateful, and volistor logic. The first approach is potentially slow since a long sequence of operations needs to be implemented. However, the second approach, which we call hybrid approach, has the potential to reduce the number of required operations. We assume a SOP with \(\lambda \) single literal degenerate products and \(\gamma \) products with more than one literal; thus the SOP is the OR of \(\lambda + \gamma \) inputs. The given SOP function requires a four step process to be computed by the second approach:

1) TRUE: Set the memristors to closed states. In a \(1 \times n \) array, this requires driving all vertical wires by \(\nu^+ > 0V \) and horizontal wire by \(\nu^- < 0V \). For an \(n \times 1 \) array, the bias voltages should be swapped. This step is realized in one pulse.

2) AND: Implement \(\gamma \) volistor AND gates to compute all \(\gamma \) products of literals. This step requires a total of \(\gamma \) pulses.

3) NOR: Perform a stateful NOR operation on \(\lambda + \gamma \) arguments. This includes the \(\lambda \) single literal variables, which are supplied as voltages, and the \(\gamma \) products from the previous step, which are stored as resistances. This step requires one pulse.

4) NOT: Negate the result of the previous step. This step requires one pulse.

Example 3.1. The following example describes the hybrid approach in a crossbar array for Boolean function \(f = ab + \overline{ab} + c \). This function can be realized in a \(1 \times 4 \) array in five consecutive operations, i.e., one for TRUE, two for AND, one for NOR, and one for NOT,
as shown in Fig. 3.7. The first operation sets the memristive switches M_i to closed states. This operation is achieved by driving vertical wires B_i to v^+ and horizontal wire W to v^-. The second operation calculates ab by connecting B_1 and B_2 to voltage signals V_a and V_b encoding literals \bar{a} and \bar{b}. The output is stored in M_4. Similarly, the third operation calculates \overline{ab} by driving B_1 and B_2 to voltage signals V_a and V_b encoding literals a and b. The output is stored in M_3. The fourth operation calculates $\text{NOR}(ab, \overline{ab}, c)$ utilizing mixed-input logic. This operation is realized by connecting W to the GND through R_G, B_3 and B_4 to v^+, V_C to B_1 and B_2 to v^- where voltage signal V_C encodes literal c. The result of the NOR gate is stored in M_2. Currently, the logic value of M_2 is \overline{f}; hence, the last operation is to invert \overline{f} to obtain f. This step is implemented by connecting W to the GND through R_G and driving B_1 to v^- and B_2 to v^+. The value of f is stored in M_1. Since M_3 and M_4 do not take part in the last computation, B_3 and B_4 are terminated to Z. Fig. 3.7b summarizes the circuit configuration during each operation.
As illustrated in Example 3.1, any SOP function can be realized in $\gamma+3$ operations with at least $\gamma+1+\lambda$ memristors in a one-dimensional crossbar array. In Example 3.1, $\lambda = 1$, so we used four memristors. As a matter of proper operation, all target memristors T_i must be initially closed. Further, if any of the inputs are logic ‘1’, inputs must be driving a closed source memristor, S_i. If all such S_i are open, the electrical characteristics of the memristor may prevent proper manifestation of the input voltage on the common wire. Therefore, all memristors should be initially closed. The state resistance of a memristor may only change when driven by V_T. Therefore, a target memristor may be used as a source memristor, i.e., driven by V_S in subsequent operations with no risk of changing its state. This reuse allows for compact logic implementations. However, this reuse potentially results in all source memristors being open, so any subsequent logic ‘1’ inputs have no closed memristor to

![Diagram of memristor array](image_url)
drive. Therefore, the number of memristors in the array should be more than the number of products, i.e., extra memristors should be provided as dedicated targets.

3.3.2 Hybrid computation in a two-dimensional array

The crossbar array can be scaled into a two-dimensional crossbar array of size $m \times n$. With this structure, in a single volistor operation, a product of literals can be created and copied to an arbitrary column memristor or row memristor simultaneously, i.e., each row in an $m \times n$ crossbar can be thought of as a $1 \times n$ crossbar array and each column can be thought of as an $m \times 1$ crossbar array. The multi-output capability of crossbar arrays discussed earlier allows this arbitrary copying in any dimension. Fig. 3.10 depicts target memristors as multi-input volistor gates whose outputs are the states of the corresponding memristors. Using the multi-output property, any combination of NOR/AND gates can be copied to any number of arbitrary locations in a single column. One operation is required.

![Fig. 3.8. Crossbar array.](image)

(a) Crossbar array is divided into three sections; gates in section 1 are implemented with volistors but in section 2 and 3 are realized with stateful NOR. (b) The stateful approach realizes two logic levels. (c) However, the hybrid approach realizes three logic levels with the same implementation cost of the stateful approach. L_i is the number of logic level.
for each gate type. The entire crossbar array can be populated with an arbitrary combination of gates in, worst case, \(2n\) operations where \(n\) is the number of vertical wires. Populating the crossbar in this manner is the first step (after initialization) in an approach that combines the use of volistor, mixed-input and stateful logic in the same crossbar array to produce logic computations.

Example 3.2. As a means of discussing this hybrid approach, take for example, the implementation of function \(f = \overline{ab} + \overline{cd} + A = \overline{B} + A = AB\). This requires the same four-step process described in Section 3.3.1 and is illustrated in Fig. 3.9. The matrices represent the logic values stored in each memristor of the crossbar. Voltages applied to the horizontal and vertical wires are indicated by the values shown to the left of and on top of the matrices. The arrows between matrices indicate the number of operations required to move to the next matrix. Fig. 3.9a shows the crossbar after initialization; the voltages to achieve this state are not shown. Fig. 3.9b shows the result of computing the first product with volistor AND. Fig. 3.9c shows the computation of the other product, which is also realized with volistor AND. Fig. 3.9d shows stateful logic being used to compute \(\overline{B} = \overline{ab} + \overline{cd}\). In this step, \(v^+, v^-, R_G\) are equal to \(V_{COND}, V_{PROG}\), and the load resistor in stateful logic. Fig. 3.9e shows the implementation of a mixed NOR gate on resistance-based signal \(\overline{B}\) and voltage-based signal \(\overline{A}\) producing the desired function \(f\).

With the hybrid approach, the use of stateful IMP can be avoided. This simplifies driver circuit, removes the need for a keeper circuit [10], and simplifies crossbar initialization. The stateful approach also requires a step to store the inputs in the crossbar, however, since
the hybrid approach uses voltages as inputs, no storage step is required. The main advantage is that for the same cost (number of operations and memristors), the hybrid approach produces one additional level of logic versus the stateful approach. The hybrid approach uses the efficiency of volistors to implement the first level of logic, which is usually most complex.

Fig. 3.8a depicts a crossbar array divided into three sections. In stateful logic, the memristors in section 1 store inputs; the memristors in section 2 store the first-level logic outputs, and the memristor in section 3 stores the output of the second-level logic. In the hybrid approach, since inputs are voltages, the memristors in section 1 store the outputs of the first-level logic; the memristors in section 2 store the outputs of the second-level logic, and the memristor in section 3 stores the output of the third-level logic. With the same number of operations and the same number of memristors, the stateful approach produces only two-level logic while the hybrid approach produces three-level logic as shown in Fig. 3.8c. However, since in volistor logic the inputs are voltages, there can be only one set of inputs applied to the crossbar at any given moment, and therefore, only one output can be computed at a time. In stateful logic, inputs are stored as resistances. Therefore, each row or column can be thought of as a distinct set of inputs capable of simultaneously producing distinct outputs, with the restriction that all outputs implement the same type of stateful gate, e.g., all the four NOR gates as shown in block 2 of Fig. 3.8a. In the next subsection, we use the hybrid approach in a crossbar network which provides a means of achieving different outputs in parallel using volistor logic.
3.3.3 Hybrid computation in a crossbar network

In a single crossbar array using volistor logic, there is a limited form of parallelism, i.e., only identical gates with identical inputs can be produced in a single step. To overcome this limitation, a network of many individual crossbars can be used. Each individual crossbar can have as many copies as necessary of a single gate with identical inputs. This structure allows two or more separate crossbars to simultaneously calculate the first logic

<table>
<thead>
<tr>
<th>#</th>
<th>Logical Form</th>
<th>De Morgan’s Equivalent</th>
<th>Example</th>
<th># of Pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AND-OR (SOP)</td>
<td>AND-NOR-NOT</td>
<td>Fig. 3.10a</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OR-AND (POS)</td>
<td>NOR-NOR</td>
<td>Fig. 3.10b</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>NAND-NAND-NAND</td>
<td>AND-NOR-NOR-NOR-NOT</td>
<td>Fig. 3.10c</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>AND-XOR (ESOP)</td>
<td>AND-NOT-NOR-NOR-NOR</td>
<td>Fig. 3.10d</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>NAND-AND-XOR</td>
<td>AND-NOR-NOR-NOR-NOR-NOR</td>
<td>Fig. 3.10e</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>AND-XOR-OR</td>
<td>AND-NOT-NOR-NOR-NOR-NOR-NOT</td>
<td>Fig. 3.10f</td>
<td>7</td>
</tr>
</tbody>
</table>
level of an arbitrary Boolean function. Additional logic levels can be achieved with stateful operations, mixed input gates, or both. The first level volistor operations can be NOR or AND. Table 3.3 shows different forms of Boolean functions that are well suited to this hybrid approach. Next, we present detailed examples for cases 2 and 5.

Example 3.3. POS implementation

Take an EXOR function of three variables

\[f = a \oplus b \oplus c = (a + b + c)(\overline{a} + \overline{b} + \overline{c})(\overline{a} + b + c)(\overline{a} + b + \overline{c}) \] as an example. The De Morgan equivalent expression is

\[(a + b + c) + (a + \overline{b} + c) + (a + \overline{b} + c) + (a + \overline{b} + \overline{c}) = w + x + y + z. \]

The function is implemented in four crossbar arrays communicating through control circuitry capable of making and breaking connection between vertical adjacent crossbars arrays (Fig. 3.10). These interconnections are not further discussed in this chapter. Executing \(f \) is a three-step procedure.

1) Initialize each crossbar array with all memristors set to closed state by driving vertical wires with \(v^+ \) and horizontal wires with \(v^- \).

2) Simultaneously compute volistor NOR of each maxterm in a separate crossbar column (Fig. 3.10a) as described in Section 3.2.3.

3) Perform a stateful NOR on logic values computed in step 2 (Fig. 3.10b).
Fig. 3.10. Implementation of POS function f in a crossbar network. The function is realized in a two-step process. (a) Realizing the first logic level of function f in separate crossbars. This step produces four NOR gates. (b) Realizing the second logic level of function f in a 16 × 1 crossbar array. This step produces the output of the POS function. The interconnections and voltages applied to the wires show the network configuration in each step.
Fig. 3.11. Implementation of Boolean functions in different logic structures based on the hybrid approach. (a) Example of a SOP function. (b) Example of a POS function. (c) Example of a three level sum of products of sums. (d) Example of an XOR of two products. (e) Example of a NAND-AND-XOR logic function. (f) Example of an AND-XOR-OR logic function. 'P' stands for pulse (operation), e.g., 1p indicates one pulse for implementing a logic level. VL and SL stand for volistor and stateful logic operations. In all circuits, only the first logic level is implemented with volistor gates.
Executing f with a solely stateful approach would require two steps plus the overhead of setting up each input. This input overhead is directly proportional to the number of inputs for each gate. Volistor logic has no such input overhead; a multi-input gate and a single-input gate are both produced in the same number of steps. However, the solely stateful approach can be executed in two steps in a single crossbar, while the hybrid approach would require more steps if performed in a single crossbar.

Example 3.4. NAND-AND-XOR implementation

Take the function $f = \overline{e \cdot \overline{a} \cdot \overline{b} \cdot \overline{d}} \oplus \overline{c} \cdot \overline{d} \cdot \overline{a} \cdot \overline{e} \cdot \overline{b}$ as an example. The De Morgan equivalent of function f is

$$f = \overline{e + ab + cd + ae + b + e + ae + cd + cd + ae + b} = \overline{e + x + y + z + b + e + x + y + y + z + b} = \overline{w1 + w2 + w1 + w2} = o1 + o2.$$

Executing f is the six-step procedure depicted in Fig. 3.12. In each step, all outputs are computed simultaneously.

1) Perform the initialization as in Example 3.3.

2) Compute the products x, y and z. y is computed twice to enable a simultaneous computation in step 3 (Fig. 3.12a).

3) Using mixed input gates as described in Section 3.2.6, compute $w1$ and $w2$ where V_e and V_b are input voltage and x, y, and z are input resistances. This step realizes the NOR logic level (Fig. 3.12b).
4) Produce $\overline{w1}$ and $\overline{w2}$ This performs two stateful NOT gates in the third logic level (Fig. 3.12c).

5) Produce $o2$ and $o1$ using the outputs from steps 3 and 4 (Fig. 3.12d). This step realizes the fourth logic level, NOR (Fig. 3.12b).

6) Produce f from $o2$ and $o1$. This produces the fifth logic level, NOR (Fig. 3.12e).

Executing f with the solely stateful approach would require six steps plus the input setup overhead.

Note that NAND-AND-XOR circuits are a new concept in logic synthesis. These circuits are a generalization of the PSE circuits introduced in [60] where only one argument of the AND layer is a NAND and others are literals. In PSE circuits, every output is exclusive-OR of Product-Sum-EXOR).
Fig. 3.2. Realization of NAND-AND-XOR function f. The function is realized in a six-step process in four crossbar arrays. (a) The first logic level is realized with volistors; (b) the second logic level is realized with mixed-input gates; (c)-(e) the other logic levels are realized with stateful logic. Wires are set to $0V$, v^+, or v^- or connected to GND through load resistor R_G or to Z. In each step, the operation is depicted by symbolic gates, and the results are shown as outputs of the gates.

3.4 Volistor Logic Powr Consumption

Power measurements are made in LTspice IV using the same model mentioned in Section 2.3. The average power consumption of each individual element of a $1 \times n$ crossbar array ($n \leq 64$) is estimated over a 10 ns interval beginning with the application of the driver voltages $v^+ = 0.6V$, $v^- = -0.6V$ and $0V$, which are applied for 8 ns. Let the power consumed in a source memristor set to logic ‘1’ be denoted P_{SI}, the power consumed in a source memristor set to logic ‘0’ be denoted P_{SO}, the power consumed in a target memristor be denoted P_T, and the power consumed in load resistor R_G be denoted P_{RG}. Let $P_s = P_{SO} + P_{SI}$.

The superscripts SL and VL are used to indicate power consumptions during stateful and volistor logic, respectively. For example, P_{SO}^{SL} is the power consumed by a source memristor set to logic ‘0’ when SL is performed, and P_s^{VL} is the power consumed in source memristors when volistor logic is performed. Table 3.4 describes the power consumption in each crossbar element where V_W and V'_W are the voltages on the horizontal wire during VL and SL operations, respectively. Note that the resistive effect of wires is neglected compared to $R_{CLOSED} = 500 K\Omega$. For example, the resistance of a relatively large width wire of diameter 120 nm used in a 32×32 crossbar array is at most 30 KΩ when implemented with relatively high resistance p-doped Si [61]. In other words, the resistance of each horizontal or vertical wire of the crossbar is about 1 KΩ, which is negligible compared to R_{CLOSED}. The power consumed by volistor logic in a crossbar array is entirely due to the
leakage through the reverse biased memristors as there is no direct path to ground. However, when volistor logic is performed in a crossbar array, there is an additional power consumption in memristors not taking part in the operations. This is true for stateful logic, as well. Since the power consumption in both cases is similar, and we are only interested in comparing SL and VL, this additional power is not discussed.

In this section, the power consumption in a crossbar array for \(S_1 > 0 \) and \(S_1 = 0 \) is analyzed separately. For ease of reference, let \(S_1 \) and \(S_0 \) denote the numbers of source memristors set to \(v_s = 1 \) and \(v_s = 0 \), respectively; \(T \) denotes the number of target memristors; \(P_{SL} \) and \(P_{VL} \) denote the total power consumption in memristors and in load resistor \(R_G \) during SL and VL operations, respectively; and \(T_d \) denotes the switching delay—the time required to completely switch from the close state to open state.
Table 3.4
Power consumption in each crossbar element

<table>
<thead>
<tr>
<th>Logical Operation</th>
<th>P_{S0} (nW)</th>
<th>P_{SI}</th>
<th>P_T (nW)</th>
<th>P_{RG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>$(V_W)^2$</td>
<td>$(\nu^+ - V_W)^2$</td>
<td>$(\nu^+ + V_W)^2$</td>
<td>0</td>
</tr>
<tr>
<td>VL</td>
<td>$\frac{(v^+ - V_W)^2}{R_{OPEN} \times 10^{-3}}$</td>
<td>$\frac{(v^+ + V_W)^2}{R_{OPEN}}$</td>
<td>ν^2_w</td>
<td>$10\sqrt{10}$</td>
</tr>
</tbody>
</table>

Table 3.5
Power consumption, switching delay, and power ratio in a 1×8 crossbar array

<table>
<thead>
<tr>
<th>(S_1, S_0, T)</th>
<th>Circuit Realization</th>
<th>P_{SI} (nW)</th>
<th>P_{S0} (nW)</th>
<th>P_T (nW)</th>
<th>P_{RG} (nW)</th>
<th>T_d (ns)</th>
<th>P_{avg} (nW)</th>
<th>P_{SL}/P_{VL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2, 2, 1)</td>
<td>SL</td>
<td>0.168</td>
<td>0.168</td>
<td>2.192</td>
<td>17.946</td>
<td>4.239</td>
<td>20.474</td>
<td>6.13</td>
</tr>
<tr>
<td>VL</td>
<td>2.224 e-3</td>
<td>0.555</td>
<td>2.226</td>
<td>0</td>
<td>4.044</td>
<td>3.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 3, 1)</td>
<td>SL</td>
<td>0.168</td>
<td>0.168</td>
<td>2.192</td>
<td>17.947</td>
<td>4.239</td>
<td>20.476</td>
<td>5.254</td>
</tr>
<tr>
<td>VL</td>
<td>3.471 e-3</td>
<td>0.555</td>
<td>2.225</td>
<td>0</td>
<td>4.044</td>
<td>3.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 4, 1)</td>
<td>SL</td>
<td>0.168</td>
<td>0.168</td>
<td>2.192</td>
<td>17.947</td>
<td>4.239</td>
<td>20.476</td>
<td>4.601</td>
</tr>
<tr>
<td>VL</td>
<td>4.993 e-3</td>
<td>0.554</td>
<td>2.224</td>
<td>0</td>
<td>4.054</td>
<td>4.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 4, 2)</td>
<td>SL</td>
<td>0.187</td>
<td>0.187</td>
<td>2.190</td>
<td>17.911</td>
<td>4.227</td>
<td>22.666</td>
<td>3.397</td>
</tr>
<tr>
<td>VL</td>
<td>8.868 e-3</td>
<td>0.553</td>
<td>2.221</td>
<td>0</td>
<td>4.064</td>
<td>6.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 3, 3)</td>
<td>SL</td>
<td>0.207</td>
<td>0.207</td>
<td>2.187</td>
<td>17.876</td>
<td>4.288</td>
<td>24.645</td>
<td>2.955</td>
</tr>
<tr>
<td>VL</td>
<td>11.22 e-3</td>
<td>0.553</td>
<td>2.220</td>
<td>0</td>
<td>4.073</td>
<td>8.341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 2, 4)</td>
<td>SL</td>
<td>0.229</td>
<td>0.229</td>
<td>2.185</td>
<td>17.838</td>
<td>4.288</td>
<td>27.036</td>
<td>2.701</td>
</tr>
<tr>
<td>VL</td>
<td>0.014 0.552</td>
<td>0.219</td>
<td>0</td>
<td>4.083</td>
<td>10.008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S_0 and S_1 denote the numbers of source memristors set to logic ‘0’ and logic ‘1’, respectively; T denotes the number of target memristors. P_{S0} and P_{SI} are the power consumptions in a source memristor set to logic ‘0’ and logic ‘1’, respectively. P_T is the power consumption in a target memristor, and P_{RG} is the power consumption in load resistor R_G. P_{avg} denotes the average power consumption in the crossbar array. T_d denotes the switching delay. P_{SL} and P_{VL} indicate the power consumptions during SL and VL operations, respectively.
3.4.1 Power analysis and switching delay in a 1×8 crossbar array for $S_1 > 0$

Table 3.5 compares the power consumed by each element switching delay T_d and the overall power consumption in memristors and load resistor $R_G \left(\frac{P_{SL}}{P_{VL}} \right)$ for various combinations of S_1, S_0 and T during SL and VL operations. The simulation results shown in Table 3.5 are summarized as follows.

1) In SL and VL, P_T is approximately 2 nW, i.e., changes to high/low composition of inputs slightly affects the power consumed by any individual T. This is expected given the characteristics of the rectifying memristors and considering that $V_W \approx V_S$.

2) The largest contributor to the power consumption in SL is R_G—it consumes approximately eight times more power than the next most power hungry circuit element. In VL, there is no R_G component.

3) The minor contributors to the power consumption in SL is $S_0 \times P_{S0}^{SL}$.

4) The major contributors to the power consumption in VL are determined by S_0 and T.

5) For any combination of S_1, S_0, and T, $\frac{P_{SL}}{P_{VL}} > 2$. The lower bound of $\frac{P_{SL}}{P_{VL}}$ is obtained for $(S_1, S_0, T) = (1, 0, 7)$, which is 2.129.

6) For any combination of S_1, S_0, and T, T_d is approximately equal in both SL and VL.

7) The general power relation between all circuit elements is

$$P_{S0}^{SL} < P_{S1}^{VL} < P_{S1}^{SL} < P_{S0}^{VL} < P_T < P_{RG}.$$
In a 1 × 8 crossbar array, for any combination of \(S_1, S_0, \) and \(T, \) where \(S_1 > 0, \) the power ratio can be approximated based on the properties shown below. The proofs of these properties can be found in the appendix.

Property 1. When \(S_1 > 0, \) the power consumption in a target memristor during VL operation can be approximated as shown by (3.3).

\[
P_T^{VL} \approx 4 \times P_S^{VL}
\]
(3.3)

Property 2. When \(S_1 > 0, \) the power consumption in load resistor \(R_G \) can be approximated as shown by (3.4).

\[
P_{RG} \approx 8 \times P_T^{SL}
\]
(3.4)

Property 3. When \(S_1 > 0, \) the power consumption in source memristors during SL operation is considerably smaller than the overall power consumption in target memristors and load resistor \(R_G \) as shown by (3.5).

\[
\frac{P_S^{SL}}{P_{SL} - P_S^{SL}} \ll 1
\]
(3.5)

Property 4. The power consumption in source memristors driven by logic ‘1’ during VL operation is considerably smaller than the overall power consumption in source memristors driven by logic ‘0’ and target memristors as shown by (3.6).

\[
\frac{S_1 \times P_T^{VL}}{P_{VL} - S_1 \times P_T^{VL}} \ll 1
\]
(3.6)

According to (3.5) and (3.6)

\[
\frac{P_S^{SL}}{P_{VL}^{SL}} \approx \frac{T \times P_T + P_{RG}}{S_0 \times P_S^{VL} + T \times P_T}
\]
And according to (3.3) and (3.4)

\[\frac{T \times P_T + P_{RG}}{S_0 \times P_{S0}^V + T \times P_T} \approx \frac{T \times P_T + 8 \times P_T}{S_0 \times \frac{P_T}{4} + T \times P_T} \]

Therefore, for any combination of \(S_1, S_0, \) and \(T \) where \(S_1 > 0, \)

\[\frac{P_{SL}}{P_{VL}} \approx \frac{T+8}{T+\frac{S_0}{4}} \quad (3.7) \]

Note that the lower bound of (3.7) is larger than 2, therefore \(T + \frac{S_0}{2} < 8. \)

In terms of switching delay, volistor gates perform slightly faster than stateful gates.
The switching delay in both SL and VL operations corresponds to the voltage drop across
the target memristors. This voltage drop is minimum when \((S_1, S_0, T) = (1, 0, 7)\) where \(T_d \)
is 4.136 ns and 4.477 ns for VL and SL, respectively. This voltage drop is maximum for
\((S_1, S_0, T) = (7, 0, 1)\) where \(T_d \) is 4.030 ns and 4.089 ns for VL and SL, respectively. Note
that the increase of \(S_1 \) reduces the delay in both SL and VL operations.

3.4.2 Power analysis in a 1 × 8 crossbar array for \(S_1 = 0 \)

Table 3.6 shows the power consumption in a 1 × 8 crossbar array during VL and SL
operations. The simulation results show \(\frac{P_{SL}}{P_{VL}} > 1 \) for \((S_1, S_0, T) = (0, S_0, 1)\) and varied \(S_0 \)
between 1 and 7. The increase of \(S_0 \) has minor effect on \(P_{VL} \) as shown in Table 3.6.

Property 5. When \(S_1 = 0 \), the power consumption in source memristors driven by
logic ‘0’ during VL operation is considerably smaller than the overall power consumption
in target memristors as shown by (3.8).
For a larger crossbar array, Equation (3.8) is still valid. For example, the upper bound of \(\frac{P_{\text{SL}}^{V_L}}{P_{\text{VL}}} \) in a 1 x 64 crossbar array obtained for \((S_0, T) = (63, 1)\) is 1.229 x 10^{-5} \ll 1. Note that when \(S_1 = 0 \), \(P_{\text{SL}}^{V_L} \neq P_{T}^{V_L} \) and the increase of \(S_0 \) increases \(\frac{P_{\text{SL}}}{P_{\text{VL}}} \) as shown in Table 3.6. In a 1 x n crossbar array, the power consumption in memristors during SL operation is the same for \((S_1, S_0, T) = (0, n-k, k)\) and \((0, k, n-k)\) \((1 \leq k < n)\) as shown in Table 3.7. In other words, the voltage on wire \(W \) is symmetrical for \((S_0, T) = (n-k, k)\) and \((k, n-k)\). For example, for \((S_0, T) = (2, 6), \dot{V}_w = -51.096 \text{ mV} \) whereas for \((S_0, T) = (6, 2), \dot{V}_w = 51.096 \text{ mV} \). For both combinations, \(P_{\text{SL}} = 4.246 \text{ nW} \), as shown in Table 3.7.
Note that P_{SL} increases when S_0 approaches n. Recall that in SL operation source memristors are connected to v^+ whereas in VL operation source memristors are connected to 0V (since $S_1 = 0$). In addition, the power consumption in source memristors during VL operation is very small as shown by (3.8). Therefore, the increase of S_0 only slightly affects P_{VL}. In contrast, the power consumption in source memristors and load resistor R_G during SL operation can significantly increase the $\frac{P_{SL}}{P_{VL}}$ ratio.

When $S_0 = T$, during SL operation $|v^+ - \hat{V}_w| = |v^- - \hat{V}_w|$, and thus, $\hat{V}_w = P_{RG} = 0V$. In this case, $\frac{P_{SL}}{P_{VL}} \approx 2$. For example, in a 1×8 crossbar array for $(S_0, T) = (4, 4)$, $\frac{P_{SL}}{P_{VL}} = 2.113$ and

Table 3.7

Calculating $\frac{P_{SL}}{P_{VL}}$ in a 1×8 cross point array for $S_1 = 0$ and varied S_0 and T

<table>
<thead>
<tr>
<th>((S_1, S_0, T))</th>
<th>Circuit</th>
<th>Realization</th>
<th>(P_{S0}) (nW)</th>
<th>(P_T) (nW)</th>
<th>(P_{RG}) (nW)</th>
<th>(P_{avg}) (nW)</th>
<th>(\frac{P_{SL}}{P_{VL}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 7, 1)</td>
<td>SL</td>
<td>0.011 e-3</td>
<td>0.557</td>
<td>0</td>
<td>0.557</td>
<td>3.972</td>
<td>6.427</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.455</td>
<td>0.671</td>
<td>0.174</td>
<td>4.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 6, 2)</td>
<td>SL</td>
<td>0.062 e-3</td>
<td>0.55</td>
<td>0</td>
<td>1.114</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.505</td>
<td>0.613</td>
<td>0.044</td>
<td>4.408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 5, 3)</td>
<td>SL</td>
<td>0.200 e-3</td>
<td>0.55</td>
<td>0</td>
<td>1.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.558</td>
<td>0.558</td>
<td>0</td>
<td>4.704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 4, 4)</td>
<td>SL</td>
<td>0.556 e-3</td>
<td>0.556</td>
<td>0</td>
<td>2.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.613</td>
<td>0.505</td>
<td>0.044</td>
<td>4.408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 3, 5)</td>
<td>SL</td>
<td>0.002</td>
<td>0.556</td>
<td>0</td>
<td>2.786</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.671</td>
<td>0.455</td>
<td>0.174</td>
<td>4.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 2, 6)</td>
<td>SL</td>
<td>0.005</td>
<td>0.554</td>
<td>0</td>
<td>3.352</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.731</td>
<td>0.407</td>
<td>0.392</td>
<td>3.972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 1, 7)</td>
<td>SL</td>
<td>0.027</td>
<td>0.550</td>
<td>0</td>
<td>3.877</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that $\frac{P_{SL}}{P_{VL}}$ increases when S_0 approaches n.
Table 3.8
Calculating $\frac{P_{SL}}{P_{VL}}$ in a 1×64 crossbar array when $S_1 = 0$

<table>
<thead>
<tr>
<th>(S_1, S_0, T)</th>
<th>Circuit Realization</th>
<th>P_{S0} (nW)</th>
<th>P_T (nW)</th>
<th>P_{RG} (nW)</th>
<th>P_{avg} (nW)</th>
<th>$\frac{P_{SL}}{P_{VL}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1, 8)</td>
<td>SL</td>
<td>0.757</td>
<td>0.388</td>
<td>0.508</td>
<td>4.369</td>
<td>0.987</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.035</td>
<td>0.549</td>
<td>0</td>
<td>4.427</td>
<td></td>
</tr>
<tr>
<td>(0, 2, 12)</td>
<td>SL</td>
<td>0.818</td>
<td>0.347</td>
<td>0.830</td>
<td>6.63</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.020</td>
<td>0.551</td>
<td>0</td>
<td>6.652</td>
<td></td>
</tr>
<tr>
<td>(0, 3, 16)</td>
<td>SL</td>
<td>0.869</td>
<td>0.315</td>
<td>1.147</td>
<td>8.794</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.016</td>
<td>0.552</td>
<td>0</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td>(0, 4, 20)</td>
<td>SL</td>
<td>0.912</td>
<td>0.290</td>
<td>1.447</td>
<td>10.895</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.014</td>
<td>0.552</td>
<td>0</td>
<td>11.096</td>
<td></td>
</tr>
<tr>
<td>(0, 5, 23)</td>
<td>SL</td>
<td>0.933</td>
<td>0.278</td>
<td>1.601</td>
<td>12.66</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.012</td>
<td>0.552</td>
<td>0</td>
<td>12.756</td>
<td></td>
</tr>
<tr>
<td>(0, 6, 26)</td>
<td>SL</td>
<td>0.951</td>
<td>0.268</td>
<td>1.742</td>
<td>14.416</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.010</td>
<td>0.553</td>
<td>0</td>
<td>14.438</td>
<td></td>
</tr>
<tr>
<td>(0, 7, 30)</td>
<td>SL</td>
<td>0.982</td>
<td>0.253</td>
<td>1.987</td>
<td>16.451</td>
<td>0.987</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.010</td>
<td>0.553</td>
<td>0</td>
<td>16.66</td>
<td></td>
</tr>
</tbody>
</table>

Nonparticipant memristors in computations are terminated to high impedance Z.

in a 1×64 crossbar array for $(S_0, T) = (32, 32)$, $\frac{P_{SL}}{P_{VL}} = 2.005$. In a 1×8 crossbar array, for any combination of S_0 and T, $\frac{P_{SL}}{P_{VL}} > 1$. The lower bound of $\frac{P_{SL}}{P_{VL}}$, which is 1.025, is obtained for $(S_0, T) = (1, 7)$. This combination maximizes P_{VL} while minimizes P_{SL} as shown in Table 3.7. However, in a larger crossbar array, $\frac{P_{SL}}{P_{VL}}$ can be smaller than one. For given S_0, Table 3.8 shows the minimum value of T, for which $\frac{P_{SL}}{P_{VL}} < 1$. A further increase of T results in a further decrease of $\frac{P_{SL}}{P_{VL}}$. The power analysis in a 1×64 crossbar array for $S_1 > 0$ is shown in Section 3.4.3.

3.4.3 Power analysis and switching delay in a 1 × 64 crossbar arrays for S_1 > 0

Table 3.9-Table 3.12 show the power consumption and switching delay in SL and VL for various combinations of S_1, S_0, and T, where S_1 > 0. Our simulation results show that the first four observations stated for a 1 × 8 crossbar array in Section 3.4.1 still hold. However, unlike the last two observations, the following is observed.

1) The main contributors to $\frac{P_{SL}}{P_{VL}}$ are S_0, T, and P_{RG}. For example, holding T constant while increasing S_0, as shown in Table 3.9, decreases $\frac{P_{SL}}{P_{VL}}$. In contrast, holding S_0 constant while increasing T, as shown in Table 3.10, bring $\frac{P_{SL}}{P_{VL}}$ close to 1.

2) The switching delay T_d in VL is slightly shorter than in SL when $\frac{P_{SL}}{P_{VL}} > 1$ and is equal to or a bit longer than in SL when $\frac{P_{SL}}{P_{VL}} \leq 1$.

In a 1 × 64 crossbar array, for any combination of S_1, S_0, and T, where S_1 > 0, Equation (3.3), (3.5), and (3.6) hold, and since 7.078 ≤ $\frac{P_{SL}}{P_{VL}}$ ≤ 8.328, Equation (3.4) can approximate the relation between P_{RG} and P_{T}^{SL} during SL operation. As a result, $\frac{P_{SL}}{P_{VL}}$ can still be approximated by (3.7). All derivations are in the same manner as shown in the appendix.

When S_0 > 33, a VL operation consumes more power than SL operation as shown in Table 3.9. In this case, the increase of T brings $\frac{P_{SL}}{P_{VL}}$ close to 1, as predicted by (3.7) and shown in Table 10. Conversely, when S_0 < 33, VL operations consume less power than SL
operations, and the increase of T brings $\frac{P_{SL}}{P_{VL}}$ close to 1, as shown in Table 3.12. Note that

the increase of S_1 slightly affects $\frac{P_{SL}}{P_{VL}}$ as shown in Table 3.11. In terms of delay, volistors

perform faster than stateful gates when $\frac{P_{SL}}{P_{VL}} > 1$, however, when $\frac{P_{SL}}{P_{VL}} \approx 1$, the switching

delay in both operations is almost the same; when $\frac{P_{SL}}{P_{VL}} < 1$, stateful gates perform faster

than volistors. In other words, the switching delay is determined by the voltage drop across

the target memristors. A logic gate operates faster when the voltage drop across the target memristors is larger. The stateful gates are faster as S_0 increases while S_1 decreases (Table 3.9) but slower for constant S_0 with varied T from 1 to 57 (Table 3.12). Table 3.9

shows $\frac{P_{SL}}{P_{VL}} < 1$ when $S_0 > 33$, regardless of value S_1. Table 3.11 reinforces our conclusion

that S_1 has almost no effect on $\frac{P_{SL}}{P_{VL}}$. As S_0 increases while S_1 decreases, it can be seen that

$P_{SL}^{VL} > P_{SL}^{SL}$ and larger T_d in VL than in SL (Table 3.9). Table 3.10 shows how the increase

of T affects $\frac{P_{SL}}{P_{VL}}$ when $S_0 > 33$. The increase of T brings $\frac{P_{SL}}{P_{VL}}$ close to 1. For all combinations, T_d is larger for VL and is associated with the large S_0. Table 3.11 shows how the increase

of S_1 affects $\frac{P_{SL}}{P_{VL}}$ when $S_0 (>33)$ and T are constant at 40 and 1, respectively. The increase

of S_1 has a minor effect on $\frac{P_{SL}}{P_{VL}}$, i.e., $\frac{P_{SL}}{P_{VL}} \approx 0.856$ for all combinations shown in Table 3.11.
Although the increase of S_1 has almost no effect on $\frac{P_{SL}}{P_{VL}}$, it decreases the delay in both SL and VL operations. Table 3.12 shows how the increase of T affects $\frac{P_{SL}}{P_{VL}}$ when S_1 and S_0 are kept constant at 1 and 6, respectively. For all combinations, $\frac{P_{RG}}{S_0 \times P_{VL}^{S_0}} \approx 5.2$. However, the increase of T brings $\frac{P_{SL}}{P_{VL}}$ close to 1, reducing the effect of $\frac{P_{RG}}{S_0 \times P_{VL}^{S_0}}$ significantly as predicted by (3.7). As a result, realizing a multi-input multi-output gate in a small crossbar array, e.g. 1×8, with VL is more power efficient than with SL. This conclusion is consistent with (3.7) and the results shown in Table 3.5. The increase of T increases $P_{SL}^{S_1}$ more than $P_{SL}^{S_1}$ and thus causes longer T_d in SL.

As a summary, in a 1×8 crossbar array, the power consumption in SL is larger than in VL, and also volistors operate slightly faster. In a 1×64 crossbar array, when $S_1 > 0$, the majority of the power consumption in VL corresponds to $S_0 \times P_{VL}^{S_0} + T \times P_T$ and in SL corresponds to $P_{RG} + T \times P_T$ as shown by (3.3) through (3.6). Therefore, $\frac{P_{SL}}{P_{VL}}$ can be estimated by (3.7). In a 1×64 crossbar array, a multi-input volistor gate consumes less power than a multi-input stateful gate, unless the majority of inputs are logic ‘0’. When $S_1 = 0$, a multi-input volistor gate consumes less power than a multi-input stateful gate. Recall that the majority of the power consumption in VL for $S_1 = 0$ is $T \times P_{VL}^T$ as shown by (3.8). However, in SL operation, the power consumption in each circuit element depends on the combination of S_0 and T. In a 1×64 crossbar array, for $S_1 > 0$, a logic gate with
large fan-out consumes the same power regardless of the implementation approach, SL or VL. Chapter 4 introduces another memristive logic gates, which we call programmable diode gates. The programmable diode gates use voltage as input and output and capitalize on rectifying memristors. The mix of volistor and programmable diode gates can further reduce the number of pulses for computing logic function.

Table 3.9
Delay and power comparisons in a 1 × 64 crossbar array for varied S_1 and $S_0 \geq 33$

<table>
<thead>
<tr>
<th>(S_1, S_0, T)</th>
<th>Circuit Realization</th>
<th>P_{S1} (nW)</th>
<th>P_{S0} (nW)</th>
<th>P_T (nW)</th>
<th>P_{RG} (nW)</th>
<th>T_d (ns)</th>
<th>P_{avg} (nW)</th>
<th>$\frac{P_{SL}}{P_{VL}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(30, 33, 1)</td>
<td>SL</td>
<td>0.770e-3</td>
<td>0.770e-6</td>
<td>2.228</td>
<td>18.541</td>
<td>4.041</td>
<td>20.792</td>
<td>1.009</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.757e-3</td>
<td>0.556</td>
<td>2.228</td>
<td>0</td>
<td>4.041</td>
<td>20.599</td>
<td></td>
</tr>
<tr>
<td>(29, 34, 1)</td>
<td>SL</td>
<td>0.824e-3</td>
<td>0.824e-6</td>
<td>2.227</td>
<td>18.539</td>
<td>4.042</td>
<td>20.767</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.857e-3</td>
<td>0.556</td>
<td>2.227</td>
<td>0</td>
<td>4.034</td>
<td>21.156</td>
<td></td>
</tr>
<tr>
<td>(25, 38, 1)</td>
<td>SL</td>
<td>1.107e-3</td>
<td>1.107e-6</td>
<td>2.227</td>
<td>18.533</td>
<td>4.044</td>
<td>20.760</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>1.423e-3</td>
<td>0.558</td>
<td>2.227</td>
<td>0</td>
<td>4.048</td>
<td>23.467</td>
<td></td>
</tr>
<tr>
<td>(13, 44, 1)</td>
<td>SL</td>
<td>0.004</td>
<td>4.069e-6</td>
<td>2.224</td>
<td>18.484</td>
<td>4.060</td>
<td>20.760</td>
<td>0.778</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.007</td>
<td>0.554</td>
<td>2.222</td>
<td>0</td>
<td>4.072</td>
<td>26.689</td>
<td></td>
</tr>
<tr>
<td>(1, 62, 1)</td>
<td>SL</td>
<td>0.579</td>
<td>0.579e-3</td>
<td>2.159</td>
<td>17.406</td>
<td>4.470</td>
<td>20.18</td>
<td>0.583</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>2.021</td>
<td>0.492</td>
<td>2.098</td>
<td>0</td>
<td>4.907</td>
<td>34.623</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.10
Delay and power comparisons in a 1 × 64 crossbar array for constant S_1 and S_0 and varied T

<table>
<thead>
<tr>
<th>(S_1, S_0, T)</th>
<th>Circuit Realization</th>
<th>P_{S1} (nW)</th>
<th>P_{S0} (nW)</th>
<th>P_T (nW)</th>
<th>P_{RG} (nW)</th>
<th>T_d (ns)</th>
<th>P_{avg} (nW)</th>
<th>$\frac{P_{SL}}{P_{VL}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 40, 1)</td>
<td>SL</td>
<td>0.603</td>
<td>0.603e-3</td>
<td>2.157</td>
<td>17.383</td>
<td>4.461</td>
<td>20.167</td>
<td>0.856</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>0.908</td>
<td>0.513</td>
<td>2.141</td>
<td>0</td>
<td>4.575</td>
<td>23.569</td>
<td></td>
</tr>
<tr>
<td>(1, 40, 4)</td>
<td>SL</td>
<td>0.821</td>
<td>0.821e-3</td>
<td>2.145</td>
<td>17.187</td>
<td>4.543</td>
<td>26.621</td>
<td>0.888</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>1.179</td>
<td>0.507</td>
<td>2.129</td>
<td>0</td>
<td>4.665</td>
<td>29.975</td>
<td></td>
</tr>
<tr>
<td>(1, 40, 8)</td>
<td>SL</td>
<td>1.161</td>
<td>1.161e-3</td>
<td>2.130</td>
<td>16.928</td>
<td>4.65</td>
<td>35.175</td>
<td>0.914</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>1.592</td>
<td>0.5</td>
<td>2.113</td>
<td>0</td>
<td>4.780</td>
<td>38.496</td>
<td></td>
</tr>
<tr>
<td>(1, 40, 16)</td>
<td>SL</td>
<td>2.005</td>
<td>2.005e-3</td>
<td>2.098</td>
<td>16.421</td>
<td>4.895</td>
<td>52.074</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>2.592</td>
<td>0.484</td>
<td>2.081</td>
<td>0</td>
<td>5.049</td>
<td>55.248</td>
<td></td>
</tr>
</tbody>
</table>
3.5 **SUMMARY AND CONCLUSION**

Voltistors capitalize on the characteristics of rectifying memristors to allow voltages to be used directly as inputs. Hence, there is no need to store the inputs as resistance in memristors. This eliminates the use of R_G to read out the inputs in the first logic level and thus eliminates the most power-hungry circuit element in stateful logic. There is no static power in our circuits. The switching power consumed by volistor logic in a crossbar array is entirely due to the leakage through the reverse biased rectifying memristor, as there is no direct path to the ground. Using volistors at the first level provides NOR and AND
directly, which provides flexibility sufficient to remove the need for IMP in stateful logic. This removes the need for keeper circuitry. An additional advantage is that the first-level volistor logic can have as many inputs as the number of available memristors in the crossbar array within a single operation. However, inputs set to 0V incur a higher power penalty than the inputs set to v^+ or v^-. The two-dimensional, multi-output property of volistors provides for both a large fan-out (at the cost of increased power consumption) and for a great flexibility in the placement of calculation results. Using multiple crossbars in a network can provide another sort of parallelization, leading to pipelined architectures. Several different first-level volistor operations can be computed in separate crossbars at the same time, greatly speeding up what is typically the most complex level of implementing Boolean functions. Subsequent logic levels can be accomplished in connected crossbars in an approach that uses mixed input gates and stateful INH. A hybrid approach of volistors and stateful INH can be used to compute logic faster, with less power and with simpler external control circuitry than a solely stateful approach.
This chapter introduces a novel implementation for memristive diode AND/OR gates.

4.1 IMPLEMENTATION APPROACH

The programmable memristive diode gates rely on diode-like behavior of rectifying memristors and use voltage as input and output. Fig. 4.1a shows the schematic of a two-input memristive programmable diode OR gate. The proper operation of the diode OR gate requires initializing the memristors to LRS. In addition, input voltage levels \(v \) must satisfy \(0V \leq v \leq V_{\text{CLOSE}} \) where \(V_{\text{CLOSE}} \) is a positive threshold voltage (see Fig. 2.3). This voltage constraint is to ensure that the resistance states of rectifying memristors remain unchanged as described by (2.2). The input voltage levels are defined as 0V and 1V encoding logic ‘0’ and ‘1’, respectively. Assuming that memristors \(M_1 \) and \(M_2 \) in Fig. 4.1a are connected to a high and low input voltages, respectively, the behavior of the diode OR gate can be described by \(\Delta v = (R_{\text{OPEN}} + R_{\text{CLOSED}}) \times i \) where \(\Delta v \) is the input voltage difference, and \(i \) is the current through memristors, which is suppressed below 0.1 pA by the reverse biased memristor \(M_2 \). Therefore, the voltage across forward biased memristor \(M_1 \) is very small, and the output is almost \(V(\text{in}1) \). The behavior of an \(n \)-input programmable diode OR can be shown by (4.1) where \(j \) and \(k \) are the numbers of memristors connected to low and high input voltages, respectively.

\[
\begin{align*}
\Delta v &= (R_{\text{OPEN}} + R_{\text{CLOSED}}) \times i \\
n &= j + k
\end{align*}
\] (4.1)
While all memristors are initialized to LRS, some of them exhibit HRS. For example, target memristors are always reverse biased and exhibit HRS.

The diode OR gate without output load operates in the range of 3-ps. However, to be realistic the behavior of a diode NOR gate, i.e., a diode OR gate connected to a CMOS inverter, is shown in Fig. 4.1b where \(V_{S1} \) and \(V_{S2} \) are the inputs and \(V_{OUT} \) is the output. Connecting the common wire of the diode OR gate (i.e., \(W \)) to a CMOS inverter causes unequal RC delays during the charge and precharge intervals. During the charge interval, memristors are forward biased and the RC delay is in the range of 100-ps. However, during the precharge interval, memristors are reverse biased, and the RC delay is in the range of 125 ns. For large diode NORs, this delay reduces to a few nanoseconds as shown in Fig. 4.1c. Fig. 4.1d shows the schematic of a 100-input diode NOR gate. The behavior of the gate is shown in Fig. 4.1e where half of the inputs are the same as \(V_{S1} \) and the other half as \(V_{S2} \). The precharge delay is in the range of 2 ns. In addition, the use of a pull-down network further decreases the precharge delay. Fig. 4.1f shows the schematic of a two-input diode NOR gate with pull-down transistor connected to wire \(W \). The behavior of the NOR gate is shown in Fig. 4.1g where signal Ctrl controls the pull-down transistor. The precharge delay of the gate is in the range of 125-ps.

The memristors of diode OR gate, which are initialized to LRS, act as binary switches while maintaining their resistance states. A memristor driven by the high input voltage acts as a *closed* switch, while a memristor driven by the low input voltage acts as an *open* switch. Clearly, this role cannot be played by non-rectifying memristors.
Similar to the diode OR gate, a programmable diode AND gate can be implemented with rectifying memristors. Fig. 4.2a shows the schematic of a two-input programmable diode AND gate. Fig. 4.2b illustrates the behavior of the diode NAND gate (i.e., diode AND gate connected to a CMOS inverter). Fig. 4.2c shows the relation between the size (the number of inputs) and RC delay of the diode NAND gate during the charge interval. Fig. 4.2d shows the schematic of a 100-input diode NAND gate. Fig. 4.2e illustrates the behavior of the 100-input diode NAND gate where half of the inputs are the same as V_{S1} and the other half as V_{S2}. Fig. 4.2f shows the schematic of a two-input diode NAND with pull-up resistor connected to wire W. The behavior of the NAND gate is shown in Fig. 4.2g. Note that the RC delay during the charge interval depends on the value of pull-up resistor R_p, e.g., for $R_p = 1.25 \text{ M}\Omega$, this delay is in the range of 400-ps.

The i-ν characteristic of a rectifying memristor can be modeled as a 1D1R (1 Diode in series with 1 Resistive RAM) structure incorporated into a single two-terminal device [45]. A LRS memristor in reverse biased situation acts as an open switch and exhibits high resistance state. Therefore, a rectifying memristor reduces the reverse bias leakage and allows to implement diode gates with many inputs as shown in Fig. 4.1d and Fig. 4.2d. Clearly, the PN junction or Schottky diode in CMOS process does not act as open switches when reverse biased and cannot take the role of the rectifying memristors in large diode gates used in the mPLD-XOR (see Chapter 5).

In Chapter 5, we design an mPLD-XOR (memristive programmable device connected to an XOR plane) using a mix of volistor NOTs and programmable diode gates for realizing
ESOP functions. This combination of logic gates reduces the computation delay significantly as shown in Chapter 5.
Fig. 4.2. Memristive programmable diode AND gate. (a) A schematic of a two-input diode AND gate implemented with rectifying memristors. (b) The behavior of a two-input diode NAND gate. (c) Relation between the size and RC delay of a diode NAND gate during the charge interval. (d) A schematic of a 100-input diode NAND gate. (e) The behavior of 100-input diode NAND gate. (f) A schematic diagram of a two-input diode NAND gate with pull-up resistor. (g) The behavior of two-input diode NAND with pull-up resistor.
Chapter 5

A Time-Efficient CMOS-Memristive Programmable Circuit Realizing Logic
Functions in Generalized AND-XOR Structures

This chapter describes a CMOS-memristive Programmable Logic Device connected to
CMOS XOR gates (mPLD-XOR) for realizing multi-output functions well-suited for two-
level {NAND, AND, NOR, OR}-XOR based design. This structure is a generalized form
of AND-XOR logic where any combination of NAND, AND, NOR, OR, and literals can
replace the AND level. For mPLD-XOR, the computational delay measured as the number
of clock cycles equals the maximum number of inputs to any output XOR gate of a function
assuming that the number of XOR gates is large enough to calculate the outputs of the
function simultaneously. The input levels of functions are implemented with novel
programmable diode gates, which rely on the diode-like behavior of rectifying memristors,
and the output levels of functions are realized with CMOS modulo-two counters. As an
example, the circuit implementation of a 3-bit adder and 3-bit multiplier are presented. The
size and performance of the implemented circuits are estimated and compared with that of
the equivalent circuits realized with stateful logic gates. Adding a feedback circuit to the
mPLD-XOR allows the implementation of a multilevel XOR logic network with any
combination of sums, products, XORs, and literals at the input of any XOR gate. The
mPLD-XOR with a feedback can reduce the size and number of computational steps (clock
cycles) in realizing logic functions, which makes it well suited for use in communication
and parallel computing systems where fast arithmetic operations are demanding.
5.1 INTRODUCTION

In today’s computer architecture, a key problem limiting system speed is the amount of time spent on moving data between the processor and memory. A way to address this problem is to have memory within the calculation circuit. The invention of memristors [2-3] opens the door for changing the computing paradigms of separating calculation from memory. Memristors, as non-volatile devices, enable stateful logic [20], [25], [28], hence, saving time spent in moving the data between memory and processor. They also save power and time in memory refresh. One approach is to use memristor-based stateful logic. The basic operations of IMPLY and FALSE can be implemented in stateful logic. They form a complete logic set and can implement any logic function in any logic system such as AND-OR or SOP, AND-XOR or ESOP, TANT or Three-level-AND-NOT-Network with True inputs [59], AND-OR-XOR Three-Level Networks [64], and so on.

Alternatively, our motivation in this work is to realize arithmetic and communication functions in ESOP form. The ESOP realization of such functions decreases the number of products and literals compared to their realizations in SOP form [65]. The key point in realizing such functions in ESOP form is to implement multi-input XOR gates, which has been a challenge in conventional CMOS technology, i.e., a multi-input XOR gate is slow, consumes large amounts of power, and occupies larger areas compared to other combinational gates. Realizing a multi-input XOR gate with stateful logic would also require a long sequence of stateful operations or a large number of memristors. This disadvantage is due to the fact that XOR gates are only available in two logic levels (such as NAND-OR) when implemented with IMPLY and FALSE operations. Consequently,
realizing an n-input XOR gate requires realizing an exponential number of products, i.e., 2^{n-1}. Implementation examples of multi-input XOR gate based on stateful logic are shown in \cite{25} and \cite{66}. An n-input XOR of literals can be implemented in the same manner described in \cite{25} in a $(2^{n-1} + 1) \times (n + 1)$ crossbar array on the order of $2n$ computational steps. It can also be realized in the NAND-OR synthesis method \cite{66} in a $1 \times 2n$ crossbar array in almost 2^{n-1} computational steps.

In addition to the computational crossbar arrays considered in \cite{25} and \cite{66}, there are crossbar arrays used as Resistive Random Access Memory (ReRAM) \cite{67} to store control data required for driving the computational arrays. While in this chapter we used the ReRAM for control storage, in general it can have other uses. The size of a ReRAM is determined by the number of control bits used for driving the computational array per clock cycle and the number of clock cycles for realizing a function. For example, the size of ReRAM for driving a $(2^{n-1} + 1) \times (n + 1)$ computational array can be estimated ($(2^{n-1} + 1) + (n + 1)) \times \alpha \times m$ where α is the number of control bits for driving each wire of the computational array per clock cycle, and m is the number of computational steps.

This chapter proposes a memristive programmable PLA-like circuit for realizing multi-output functions well-suited for two-level \{NOR, AND, NAND, OR\}-XOR design. This circuit is called mPLD-XOR, which is memristor-based Programmable Logic Device connected to a CMOS modulo-two counters. The computational delay of the mPLD-XOR measured as the number of clock cycles equals the maximum number of inputs to any output XOR gates of a multi-output function, assuming that the number of modulo-two counters is large enough to calculate the XOR gates of the function simultaneously. The
size of each computational array in mPLD-XOR is at most $1 \times 2n$ where n equals the number of primary inputs. The control data required for driving the computational arrays are stored in ReRAM whose size depends on the number of primary inputs n, the number of computational steps m, and the number of outputs of the function, as described in Section 5.5.

The mPLD-XOR approach has some advantages over the stateful approach. In the stateful approach, one would first calculate a function by populating the inputs in a computational array and then implement stateful gates. As a result, to calculate the function for a new set of inputs, the computational array must be cleared (by the FALSE operation), the new set of inputs must be populated, and the stateful gates must be implemented again. In this process, most of the computational steps are assigned for populating the inputs in the computational array [25]. While in mPLD-XOR implementation, this long process does not exist since the circuit uses voltage as input. In addition, the computational arrays are programmed only once for calculating a multi-output function for any new set of inputs, as described in Chapter 4. And the XOR gates are realized in CMOS modulo-two counters as described in Section 5.3.

The mPLD-XOR implements multi-output functions in generalized ESOP forms, i.e., two-level structures where input levels consist of any combination of NAND, AND, NOR, OR, and literals, and output levels are made of only XOR gates. Input levels are implemented using novel programmable diode gates. These programmable gates, which rely on rectifying memristors [45-46], have no practical limit on the number of inputs, as described in Chapter 4. The output levels are realized in CMOS memory, i.e., modulo-two
counters, and permanently stored in resistive memory using volistor NOT gate [29]. The generalized ESOP structures are good candidates for arithmetic and communication applications.

This chapter is organized as follows. In Section 5.2, a generalization to the ESOP structure is introduced. In Section 5.3, the mPLD-XOR for realizing circuits in the generalized ESOP structure is proposed, followed by a brief description of mPLD-XOR read and write configuration in Section 5.4. Section 5.5 shows how to implement a 3-bit adder and 3-bit multiplier in the mPLD-XOR. In addition, the size and performance of the circuits are estimated and compared to their corresponding circuits realized with stateful logic operations. In Section 5.6, power, area, and delay of the programmable diode gates and mPLD-XOR are evaluated and compared to previously proposed memristive logic styles for N-bit addition operation. Section 5.7 concludes the chapter.

5.2 A GENERALIZED ESOP STRUCTURE

Arithmetic functions are well-suited for ESOP-based design. These functions are implemented with a smaller number of products, interconnections, and literals than their counterparts implemented in AND-OR based design [65] and [68-69]. Table 5.1 shows the number of products and literals of benchmark functions implemented in SOP and ESOP based designs using the Quine-McCluskey algorithm for multi-output functions [70] and the EXMIN2 algorithm [68], respectively. The numbers clearly show the advantage of ESOP based design over SOP design for arithmetic functions.
In two-level AND-XOR networks, realizing multi-input XOR gates is essential. A multi-input XOR gate can be implemented as a cascade (or a tree) of two-input XOR gates. However, using a traditional CMOS technology, this approach results in a slow XOR gate [71]. In this study, we use the hybrid CMOS-memristive technology and propose a memristive programmable logic device connected to modulo-two counters (mPLD-XOR) to realize multi-output functions in ESOP based design. The mPLD-XOR can implement the XOR gates with a practically unlimited number of fan-in, which is an advantage over existing technologies (except quantum reversible circuits). The mPLD-XOR also allows the implementation of logic functions in two-level {NAND, AND, NOR, OR}-XOR based

<table>
<thead>
<tr>
<th>Number of Products</th>
<th>Number of Literals</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>5xp1</td>
<td>7</td>
</tr>
<tr>
<td>9sym</td>
<td>9</td>
</tr>
<tr>
<td>addm4</td>
<td>9</td>
</tr>
<tr>
<td>adr3</td>
<td>6</td>
</tr>
<tr>
<td>adr4</td>
<td>8</td>
</tr>
<tr>
<td>clip</td>
<td>9</td>
</tr>
<tr>
<td>cm82a</td>
<td>5</td>
</tr>
<tr>
<td>f51m</td>
<td>8</td>
</tr>
<tr>
<td>inc8</td>
<td>8</td>
</tr>
<tr>
<td>life</td>
<td>9</td>
</tr>
<tr>
<td>log8</td>
<td>8</td>
</tr>
<tr>
<td>mlp4</td>
<td>8</td>
</tr>
<tr>
<td>nrm4</td>
<td>8</td>
</tr>
<tr>
<td>rd53</td>
<td>5</td>
</tr>
<tr>
<td>rd73</td>
<td>7</td>
</tr>
<tr>
<td>rd84</td>
<td>8</td>
</tr>
<tr>
<td>rdm8</td>
<td>8</td>
</tr>
<tr>
<td>rot8</td>
<td>8</td>
</tr>
<tr>
<td>sqr8</td>
<td>8</td>
</tr>
<tr>
<td>squar5</td>
<td>5</td>
</tr>
<tr>
<td>z4</td>
<td>7</td>
</tr>
</tbody>
</table>
design, which is a generalized ESOP logic design. Fig. 5.1a shows the schematic of a two-level \{NAND, AND, NOR, OR\}-XOR structure. The mPLD-XOR implements the input level of functions using OR and NOT gates, i.e., NAND is realized as NOT-OR using De Morgan law, \(\neg(ab) = \neg(a) + \neg(b)\), NOR as OR-NOT, and AND as NOT-OR-NOT, as shown in Fig. 5.1b. Note that \(\neg a\) denotes the negation of variable \(a\). Inverters at the input of XOR gates can be moved to the outputs. If the number of inverters is odd, the outputs must be inverted, i.e., \(\neg a \oplus b = \neg(a \oplus b)\) (output F2 in Fig. 5.1c). If the number of inverters is even, the outputs are non-inverted, i.e., \((\neg a) \oplus (\neg b) = a \oplus b\) (output F1 in Fig. 5.1c).

Fig. 5.2 shows an example of a single-output function (G1) in the generalized ESOP structure and its logical equivalence (G2) as implemented using mPLD-XOR.
5.3 THE mPLD-XOR: CIRCUIT STRUCTURE AND FUNCTIONALITY

The programmable diode logic gates introduced in Chapter 4 are used in a new circuit structure called mPLD-XOR to realize multi-output functions in \{NAND, AND, NOR, OR\}–XOR based-design. Fig. 5.3 shows the schematic of the mPLD-XOR. The device consists of ReRAM connected to CMOS drivers, memristive programmable diode OR gates connected to CMOS-memristive drivers, and CMOS modulo-two counters. The ReRAM is a crossbar array of rectifying memristors, which stores all control data required to drive the circuit. Inputs are applied to the programmable diode OR gates through CMOS-memristive drivers controlled by data stored in ReRAM. The output of each programmable diode OR gate is applied to a modulo-two counter, which acts as a parity circuit (or a T flip-flop). The counter is functionally equivalent to an XOR gate with an arbitrary number of inputs. The output of the counter is applied to a crossbar array through a transmission gate and stored as a state of a memristor, as illustrated in Fig. 5.8 in Section 5.5. The assertion of signal CLR resets the counter and makes it available for calculating another output of a function. Fig. 5.4 includes the symbolic diagram of a modulo-two counter as a D flip-flop where \(D = \neg Q \). The counter is clocked by an \(l \)-input programmable diode OR gate. The circuit implements an \(n \)-input single-output function in \{NAND, AND, NOR, OR\}–XOR design. Inputs \(\text{In}_i \) where \(i \in \{1, \cdots, n\} \) and their complements are applied to a \(1 \times l \) programmable diode OR through CMOS-memristive drivers where \(l = 2n \). The drivers consist of 3-input programmable diode AND gates connected to CMOS buffers. When CLK is high, a combination of inputs determined by high \(\text{C}_j \) where \(j \in \{1, \cdots, l\} \) is
propagated to the diode OR gate; C_j are control signals stored in each column of ReRAM and applied to the AND gates at the positive edge of signal CLK.
The output of the circuit is Q, the current state of the counter (or $\neg Q$ depending on the function being implemented) and is available after m clock cycles where m also denotes the number of XOR terms, i.e., m-input XOR of sums, products, or literals.

Fig. 5.5 shows the schematic of ReRAM with reference resistors R_g. The ReRAM is connected to CMOS drivers made of an m-bit shifter. The output of the shifter, $(Q_1, Q_2, ..., Q_m)$, at the first, second, and m^{th} clock cycle is $(1, 0, ..., 0)$, $(0, 1, 0, ..., 0)$, and $(0, 0, ..., 0, 1)$, respectively, where logic ‘1’ and ‘0’ denote high and low voltage levels and are defined as 0.6V and 0V. The programmable circuit shown in Fig. 5.4 is scalable, and it can be a base of future memristive programmable fabrics to realize large arithmetic circuits and circuits with high XOR component. Examples of multi-output mPLD-XOR circuits are shown in Section 5.5.
The circuit in Fig. 5.4 is designed using a 50nm TSMC process BSIM4 models where the number of inputs is 32, and the size of ReRAM is 64×16. For this example, all of the inputs I_n are assigned a value of ‘0’. $\neg I_n$ represent the outputs of inverters with input I_n.

The ReRAM memristors are programmed as shown in Fig. 5.5. The pale shaded memristors are in HRS, and clear ones are in LRS. Fig. 5.6 shows the simulation results where $V(\text{clk})$ represents the clock cycle, $V(a2)$ represents the output of the second AND gate, $V(k)$ represents the output of the programmable diode OR, and $V(q)$ represents the output of the modulo-two counter (see Fig. 5.4). During the first clock cycle, column 1 of the ReRAM is connected to ‘1’ to read the control data. Since all memristors are in HRS, none of the inputs are applied to the programmable diode OR. At the second clock cycle, column 2 is set to ‘1’ and inputs $\neg I_n$ are applied to the diode OR. During the second, third, and fourth clock cycles, the high voltage of $V(k)$ toggles the counter three times. As a result, the output of the counter remains high. The simulation results in Fig. 5.6 are based on $R_g = 1 \ \text{M}\Omega$, $R_P = 3.5 \ \text{M}\Omega$, $V_P = 0.6 \ \text{V}$, and input voltages defined as 0V and 0.6V where R_P is a pull-up resistor used in diode AND gates and is connected to voltage V_P.

Fig. 5.6. Simulation results of the single-output mPLD-XOR shown in Fig. 5.4 with the ReRAM configuration shown in Fig. 5.5.
5.4 Programming the mPLD-XOR

The general writing to ReRAM is described in several papers [15] and [57]. This description is provided as a refresher or a brief example. As with any programmable logic device, the mPLD-XOR must be programmed to realize a logic function. Programming the ReRAM is an $m + 1$ step process where m equals the number of columns in ReRAM. The first step in this process is to initialize the ReRAM to HRS. Fig. 5.7a shows the voltage scheme for this initialization step. In this scheme, memristors are reverse biased and consume minimum amounts of power. The next steps are to program all columns of ReRAM one after another. Fig. 5.7b shows the voltage scheme for programming the right-most column of ReRAM. In this scheme, only the column being programmed consumes power. The amount of this power depends on the number of memristors being programmed to LRS. Programming the diode gates in mPLD-XOR requires applying V_{SET} across each memristor. In this programming step, memristors are forward biased and consume large amounts of power. However, this programming step is performed only once since the memristors maintain their resistance states during logical operations. The results of our simulations show that the sneak path current during the read operation is small due to the diode-like behavior of the memristors. For example, the sneak path current is between 80-pA and 240-pA depending upon its location in the array, which is small enough that it has no negative impact on memristors in sneak path during the read operation. More analysis about the sneak path current during the read operation can be found in [54]. For very large crossbar arrays, Opamp threshold logic can be used for the read operation [72]. In addition,
using asymmetric voltage scheme further decreases the leakage power during the programming [46].

5.5 IMPLEMENTATION EXAMPLES IN THE mPLD-XOR

In previous sections, the generic fabric of the mPLD-XOR and the programming of the device were explained. As described in Section 5.3, the mPLD-XOR can implement any logic functions. As an example, this section shows how a 3-bit adder and a 3-bit multiplier are mapped into this fabric. The size and performance of these circuits are also estimated. For comparison purposes, the same adder and multiplier are also implemented with stateful gates, and the size and performance of the circuits are estimated. Our calculations show that the size of ReRAM and the number of computational steps for realizing a 3-bit adder in the mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively. For a 3-bit multiplier, these ratios are 564:5720 and 12:65, respectively. In both approaches, the

Fig. 5.7. Programming the ReRAM. (a) Initializing the ReRAM to HRS (or logic ‘0’). (b) Programming the right-most column of the ReRAM.
size of ReRAM (including CMOS drivers) dominates the area when large circuits are implemented. The implementation details can be found in Section 5.5.1 and Section 5.5.2.

\[
\begin{align*}
S_0 &= a_0 \oplus b_0 \\
S_1 &= a_1 \oplus b_1 \oplus a_0 b_0 \\
S_2 &= a_2 \oplus b_2 \oplus a_1 b_1 \oplus a_0 a_1 b_0 \oplus b_1 a_0 b_0 \\
C_o &= a_2 b_2 \oplus a_1 b_1 \oplus a_0 a_1 b_0 \oplus a_2 b_1 a_0 b_0 \oplus b_2 a_0 b_0 \oplus b_1 a_0 b_0 \oplus b_2 b_0 b_0
\end{align*}
\]

(5.1)

5.5.1 A 3-BIT ADDER

Below we illustrate how a 3-bit adder can be realized in a simplified generic mPLD-XOR fabric, where inputs in a complementary form only are applied to the circuit. This simplification decreases the amount of the data stored in ReRAM to half. The size of ReRAM in mPLD-XOR is 64×16. And the number of modulo-two counters is three, which allows the calculation of three single-output functions simultaneously. The schematic of the mPLD-XOR for realizing the adder is shown in Fig. 5.8. Inputs are a_i and b_i where $i \in \{0, 1, 2\}$, and outputs are S_0, S_1, S_2, and C_o as described by (5.1). Instructions for realizing the adder are loaded in the ReRAM. Note that performing any logic function requires loading the corresponding instructions in the ReRAM.

Fig. 5.8. Generic fabric of the mPLD-XOR programmed for realizing a 3-bit adder. The grey rectangles correspond to memristive arrays, the white rectangles correspond to hybrid CMOS-memristive circuits, and the rest of the blocks correspond to CMOS circuits.
Fig. 5.9 shows a part of ReRAM divided into sub-ReRAMs, each of which stores the instructions to calculate a 1-bit output, except the sub-ReRAM shown in Fig. 5.9a, which stores control data for driving the CMOS sub-circuits. The size of sub-ReRAMs is 35 × 8.

Once an output of mPLD-XOR is calculated, it is stored as a state of a memristor using volistor NOT gate [29]. Volistor NOT uses voltage as input and resistance as output. To describe the operation of a volistor NOT gate, consider the circuit shown in Fig. 4.1a. Let us assume that an input voltage is applied to memristor \(M_1 \), and a negative bias defined as \(-0.6\) V is applied to memristor \(M_2 \). When the input is ‘1’ (0.6 V), the voltage across memristor \(M_2 \) is \(-1.2\) V (i.e., \(V_{\text{CLEAR}} \)) which is sufficient to toggle the state of memristor \(M_2 \) to HRS (logic ‘0’). When the input is ‘0’ (0 V), the state of memristor \(M_2 \) remains at LRS (logic ‘1’). Memristor \(M_1 \) is called ‘source memristor’ since it is driven by the input, and memristor \(M_2 \) is called ‘target memristor’ since it stores the output. Regardless of the input value, the state of the source memristor remains at LRS while the state of the target memristor may toggle to HRS depending on the input. Note that the role of each memristor is determined by the voltage applied to the memristor. The proper operation of the volistor NOT requires initializing memristors \(M_1 \) and \(M_2 \) to LRS. The crossbar array at the bottom right of the mPLD-XOR in Fig. 5.8 is used to store the outputs of the counters using volistor NOT. The crossbar memristors connected to the dual-rail outputs of the counters via transmission gates act as source memristors (SM), and the crossbar memristors connected to TM drivers act as target memristors (TM). The TM drivers are built with a CMOS shifter with output voltage levels of 0 V and \(-0.6\) V. The transmission gates connect the outputs of the counters to the source memristors only when the outputs have been calculated. The
transmission gates are controlled by signals \(P_i \) and \(\neg P_i \) where \(i \in \{1, \ldots, 2^j\} \) and \(j \) equals the number of counters, which is 3 (see Fig. 5.8). Recall that each counter has two outputs, \(Q \) and \(\neg Q \), and thus, at the output of each counter two transmission gates are required.

The first column of sub-ReRAM in Fig. 5.9a stores control data for initializing the CMOS sub-circuits of the mPLD-XOR, e.g., by asserting signals CLR\(i \) where \(i \in \{1, 2, 3\} \) to reset all modulo-two counters, or by asserting signals \(P_i \) and \(\neg P_i \) where \(i \in \{1, \ldots, 6\} \) to disconnect the modulo-two counters connected to the crossbar array via transmission gates. Once an output of the adder is calculated, signal Ctrl is asserted to store the output in a target memristor. For example, upon the first assertion of signal Ctrl, the first output (\(S_0 \)) is stored in the left-most target memristor of the crossbar array, as shown in the bottom right of Fig. 5.8. In this operation, the outputs of TM drivers, \((o_1, o_2, o_3, o_4) \), equals \((-0.6V, 0V, 0V, 0V)\). Ultimately all outputs will be stored in target memristors TM. Each column of sub-ReRAMs in Fig. 5.9b to Fig. 5.9d controls the primary inputs applied to each programmable diode OR gate for realizing an XOR term such as NAND, AND, NOR, OR, or literal. (In particular, each row of the sub-ReRAMs controls 1-bit input during computational steps where inputs are shown as a red vertical bus close to the sub-ReRAMs). The process of realizing the 3-bit adder are described below.

1) *Initialization*

CMOS sub-circuits are initialized in the first clock cycle by asserting the control signals stored in the first column of the ReRAM.
2) Calculating S_0

Sum bit S_0 is calculated in the second and third clock cycles by driving the second and third columns of the crossbar array shown in Fig. 5.9b. In the third clock cycle, S_0 is available at the non-inverted output of XOR1. At this moment, $\neg S_0$ is applied to a source memristor via a transmission gate to store S_0 in the left-most target memristor of the crossbar array. In this operation, signals P_2 and Ctrl stored in the third column of the crossbar array shown in Fig. 5.9a are applied to the related transmission gate and TM drivers, respectively. In the fourth clock cycle, signal CLR1 is asserted to clear the output of the XOR1 for the next use.

3) Calculating S_2

Sum bit S_2 is calculated in five clock cycles, as shown in Fig. 5.9c. In clock cycle number six, S_2 is available at the inverted output of XOR2. At this moment, $\neg S_2$ is applied to a source memristor, and S_2 is stored next to S_0. This operation requires asserting signals P_3 and Ctrl, which are stored in column number six of the crossbar array shown in Fig. 5.9a.

4) Calculating S_1

Sum bit S_1 is calculated in three clock cycles, as shown in Fig. 5.9b. In clock cycle number seven, S_1 is available at the inverted output of XOR1. Simultaneously, $\neg S_1$ is applied to a source memristor to store S_1 next to S_2 by asserting signals P_1 and Ctrl, stored in column number seven of the crossbar array shown in Fig. 5.9a.

5) Calculating C_o

Carry bit C_o is calculated in seven clock cycles, as shown in Fig. 5.9d. In clock cycle number eight, C_o is available at the inverted output of XOR3. At this moment, $\neg C_o$ is
applied to a source memristor to store \(C_0 \) next to \(S_1 \) by asserting signals \(P_5 \) and \(\text{Ctrl} \), stored in column number eight of the crossbar array in Fig. 5.9a.

In summary, a 3-bit adder is realized in eight clock cycles in a \(35 \times 8 \) sub-ReRAM.

The mPLD-XOR can be designed by programmable diode AND gates instead of diode OR gates to realize logic functions in PPRM (Positive Polarity Reed-Miller) expressions that is AND-XOR expressions with uncomplemented literals only, as in (5.1). This realization also requires changing the diode AND gates used in CMOS-memristive drivers with diode OR gates. In addition, the control data stored in ReRAM must be substituted with their complements. In the AND-type mPLD-XOR, inputs in positive polarity are applied to the circuit, and there is no need for input CMOS inverters.

Using memristor-based stateful IMPLY gates, a 3-bit adder can be implemented with the NAND-OR logic structure [66] using (5.2). In this implementation, multi-input IMPLY gates are utilized. The process of realizing a 3-bit adder in a \(3 \times 8 \) computational array is shown in Fig. 5.10. More details can be found in [73].

The matrix shown in Fig. 5.10a is analogous to a \(3 \times 8 \) crossbar array where entities of the matrix represent the states of corresponding memristors. Inputs \(a_i \) and \(b_i \) where \(i \in \{0, 1, 2\} \) are populated in the computational array shown in Fig. 5.10a. In step \(a \), the auxiliary memristors are initialized to HRS denoted by logic ‘0’ in one clock cycle. In step \(b \), copies of complementary inputs are stored in the third and fourth columns using stateful

\[
\begin{align*}
\begin{cases}
 c_i = \text{NAND}(\text{OR}(\neg a, \neg b), \text{OR}(\neg a, \neg c_{i-1}), \text{OR}(\neg b, \neg c_{i-1})) \\
 s_{i-1} = \text{NAND}(\text{OR}(a, b, \neg c_{i-1}), \text{OR}(a, \neg b, c_{i-1}), \text{OR}(\neg a, \neg b, \neg c_{i-1}), \text{OR}(\neg a, b, c_{i-1}))
\end{cases}
\end{align*}
\]

(5.2)
Fig. 5.9. Schematic diagram of sub-ReRAMs. Sub-ReRAM (a) stores the control data for driving CMOS sub-circuits of the mPLD-XOR. Sub-ReRAMs (b)-(d) store control data for realizing \(S_0\) and \(S_1\), \(S_2\), and \(C_0\), respectively. The number of clock cycles for calculating an output is shown in parenthesis, e.g., (#8). The size of sub-ReRAMs is 35 x 8.
IMPLY gates. This step is realized in two clock cycles. In step c, carry bit \(c_1 \) is calculated and stored in the right-most memristor of the first row. Also, a copy of \(\neg c_1 \) is stored in the right-most memristor of the second row. In step d, \(c_1 \) and \(\neg c_1 \) are copied to new locations, as shown in Fig. 5.10d. The right-most columns are cleared to be used in step e. In step e, sum bit \(s_0 \) is calculated and stored in the right-most memristor of the first row. The following steps, f through j, are illustrated in Fig. 5.10.

The number of computational steps is 29, and the size of ReRAM is estimated to be \(c \times m \) where \(c \) is the number of control bits driving the 3 \(\times \) 8 crossbar array per computational step, and \(m \) is the number of computational steps, which is 29. The number of control bits driving each wire cannot be smaller than three since each wire needs to be connected to multiple voltage levels, grounded through a reference resistor, or terminated to high impedance. Assuming that each wire is driven by three control bits, the size of ReRAM can be estimated 33 \(\times \) 29.

In the mPLD-XOR, the number of control bits for driving each wire of the computational arrays is one only since each wire must be connected to either ‘0’ or ‘1’ for computing logic. In other words, there is no need to terminate the wires to high impedance or to ground them through reference resistors. Moreover, the memristors maintain their resistance states during logic calculations and don’t need to be initialized repeatedly. Therefore, no additional voltage levels are required for implementing logic in mPLD-XOR. The programmable diode gates have simple drivers, which in turn decrease the size of ReRAM. The size of ReRAM and the number of computational steps for realizing the adder in mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively.
The number of clock cycles (computational steps) for this realization is 40. Adding loading the instructions of the IMP and FALSE operations is 29. In each step, the numbers of operations are shown.

Fig. 5.10. (a)- (j) The computational steps for realizing a 3-bit adder with stateful gates. The total number of IMP and FALSE operations is 29. In each step, the numbers of operations are shown.

5.5.2 A 3-BIT MULTIPLIER

A 3-bit multiplier can be realized with the mPLD-XOR shown in Fig. 5.8. This requires loading the instructions of the multiplier in ReRAM, which occupy 35 × 40 of the ReRAM size. The number of clock cycles (computational steps) for this realization is 40. Adding feedback CMOS D flip-flops to the mPLD-XOR can improve the size and performance of the circuit. For example, the multiplier can be implemented in twelve clock cycles with instructions which occupy 47 × 12 of the ReRAM size. The enhanced mPLD-XOR can
store the output of each counter in a D flip-flop and make it available as a primary input (Fig. 5.11). This feedback also makes a counter available for calculating another output. The feedback D flip-flops are clocked by signal Sig_i where i ∈ {1, 2, 3}. Adding the feedback to the mPLD-XOR allows the implementation of a multilevel XOR logic network with any combination of sums, products, XORs, and literals at the input of any XOR gate. Fig. 5.11 shows the schematic of a 3-bit multiplier as realized with the mPLD-XOR with feedback D flip-flops. In this realization, internal signals IP0, IC0, IC1, and IC2 in Fig. 5.12 are calculated, stored in D flip-flops, and used to implement the next levels of the circuit.

If the multiplier is implemented with stateful IMPLY gates, the number of computational steps will be 65. Fig. 5.13 shows the initial states of the crossbar memristors for realizing the multiplier. Assuming that each wire of the crossbar array is driven by three control bits, the size of ReRAM is estimated to be 66 × 65.
In summary, the size of ReRAM and the number of computational steps for realizing the 3-bit multiplier in mPLD-XOR circuit to the stateful circuit are 564:4290 and 12:65, respectively.
5.6 Evaluation and Comparison of Different Logic Styles

An extensive comparison of different architectures is beyond the scope of this chapter, however, to get some level of comparison, here are some published numbers for other memristive styles of logic gates. The following is the direct comparison between a published threshold logic example [72], MAGIC NOR example [28], and our implementation and as such does not include the driving circuitry to the memristive array (see Table 5.2). The minimum and maximum power dissipations of 2, 10, and 100-input diode NAND/NOR gates were calculated. The same power calculation was also done for multi-input stateful NOR gates realized with rectifying memristors using converse non-implication gates (CNIMP) [25]. The simulation was performed in LTspice using 50nm TSMC process BSIM4 models and the memristor model explained by (2.1) and (2.2). The power dissipation and delay are calculated when a square pulse with 10ns time period and a 50% duty cycle is applied. The initial states of memristors realizing the CNIMP NOR gates are assumed to be ‘0’ (HRS). There are two steps for performing the stateful NOR gate. The first step is programming the memristors, and the second step is performing the logic. Most of the gate power consumption is related to the programming step (mapping the gate into the memristors), which must be performed repeatedly for computing different logic functions. The initial states of the memristors in the diode gates are assumed to be ‘1’ (LRS). In contrast to the stateful gates, memristors in the diode gates maintain their resistance states during logic operations. Table 5.2 includes the power consumption of a 2-input MAGIC NOR gate based on published numbers [74]. This power does not include the programming step where the programming of a memristor to HRS and LRS consumes
26.35 uW and 169 uW, respectively [74]. The power consumption of a 10 and 100-input MAGIC NORs is estimated by scaling the power consumption of a 2-input MAGIC NOR. For example, the power consumption of a 10-input MAGIC NOR is estimated to be 5× the power consumption of a 2-input MAGIC NOR, which is about 29.75 uW-313.85 uW. In terms of area, the numbers of memristors in all logic styles shown in Table 5.2 are similar, however, their CMOS parts are different. For instance, the output of a diode gate is connected to a CMOS inverter and a pull-up resistor (or a pull-down transistor). However, the output of a memristive resistance divider in a threshold gate is connected to an Opamp threshold circuit. In our simulation, it is assumed that Vdd = 1V, VCOND = 0.6V, and VPROG = −0.6 V where VCOND and VPROG are voltage signals used to perform the CNIMP NOR gates. Also inputs applied to the diode gates are defined as 0V and 1V.

Fig. 5.14 shows the area and delay of an N-bit adder realized with multiple approaches. The area and delay of the mPLD-XOR are explained by (5.3) and (5.4), respectively, where M_N is the number of diode OR memristors, and D_N is the number of clock cycles.

\[
M_1=4, \; M_2=10, \; M_3=15, \; M_4=21, \; M_5=27, \; \text{and} \; M_N=M_{N-1}+4 \; \text{for} \; N>5.
\]

(5.3)

\[
D_1=3, \; D_N=D_{N-1}+3 \; \text{if} \; (N-1 \mod 3) \neq 2, \; \text{and} \; D_N=D_{N-1}+2 \; \text{if} \; (N-1 \mod 3) =2.
\]

(5.4)

Equation (5.3) and (5.4) are derived for an mPLD-XOR with three modulo-two counters and feedback D flip-flops. In all approaches, only the numbers of auxiliary (computational) memristors are considered since the number of source and target memristors are equal. The mPLD-XOR is 1.31× faster in average over the length of addition than the FBLC approach
[75], the second fastest approach shown in Fig. 5.14. In addition, the mPLD-XOR is 1.49× more area efficient in average than the IMPLY Parallel approach [76], the second most area efficient approach shown in Fig. 5.14.

Fig. 5.14. Area and delay comparisons of an N-bit Adder realized with multiple approaches.
Note that the number of memristors utilized in the FBLC approach increases dramatically [77] compared to other approaches, and thus it is not included in the graph (Fig. 5.14).

A 16-bit adder is also implemented in the mPLD-XOR with three modulo-two counters and feedback D flip-flops where vectors A=01010101 and B=00110011 are used as inputs. The adder is performed in 42 clock cycles each of 4 ns period and 50% duty cycle. The average power consumption is about 17 uW based on our SPICE simulations where 97% of this power is consumed in CMOS parts of the circuit. The same adder is also implemented in Xilinx Artix-7 FPGA XC7A100T (28nm technology). The Xilinx vivado is used to estimate the data path delay and power consumption. The longest data path delay of the FPGA is estimated 7.798 ns. The total active circuit power is 416 mW. In terms of energy, the mPLD-XOR circuit consumes 2.678 pJ to implement the 16-bit adder while the Xilinx FPGA consumes 3.244 nJ for realizing the adder.

<table>
<thead>
<tr>
<th>Logic Style</th>
<th>Logic Function</th>
<th>Power Dissipation (uW)</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable Diode logic</td>
<td>NOR</td>
<td>0.055-0.158</td>
<td><0.2ns</td>
</tr>
<tr>
<td></td>
<td>NAND</td>
<td>0.426-0.638</td>
<td><0.50ns</td>
</tr>
<tr>
<td>Threshold logic [72]</td>
<td>NOR NP</td>
<td>10.6-9.2</td>
<td>0.60us</td>
</tr>
<tr>
<td></td>
<td>NAND NP</td>
<td>1.381-5.028</td>
<td>2 cycles (20ns)</td>
</tr>
<tr>
<td>MAGIC [74]</td>
<td>NOR NP</td>
<td>5.95-62.77</td>
<td>1 cycle (1.3ns)</td>
</tr>
</tbody>
</table>

NP: Not provided by the related papers
5.7 CONCLUSION

The mPLD-XOR relies on the characteristics of rectifying memristors to allow voltages to be used directly as inputs. The mPLD-XOR is designed to implement multi-output functions well suited for XOR of sums or products structure such as arithmetic and communication functions. The input levels of such functions are realized with novel programmable diode gates and the output levels with CMOS modulo-two counters. The number of computational steps for calculating a multi-output function equals the maximum number of inputs to any output XOR gate when the number of modulo-two counters is large enough to calculate the outputs simultaneously. A 3-bit adder and a 3-bit multiplier are implemented with mPLD-XOR, and the size and performance of each circuit were compared with the implementation of stateful gates. The size of ReRAM and the number of clock cycles for realizing the adder in mPLD-XOR approach to the stateful approach are 280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are 564:4290 and 12:65.

Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11, allows the implementation of a multilevel XOR logic network with any combination of sums, products, XORs, and literals at the input of any XOR gate. The mPLD-XOR with feedback circuit has the potential to decrease the number of computational steps and the size of ReRAM. In realizing the 3-bit multiplier, the size of ReRAM and the number of computational steps in mPLD-XOR with a feedback circuit to the mPLD-XOR without a feedback circuit are 564:1400 and 12:40, respectively. A 16-bit adder is also implemented in the mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the mPLD-XOR is smaller than the Artix-7 FPGA, but the mPLD-XOR performs slower. In addition, the size
and delay comparisons of an N-bit adder realized with multiple approaches show that the mPLD-XOR adder is more area-delay efficient. This chapter presents examples demonstrating the benefits of using mPLD-XOR for realizing logic functions.
Chapter 6

Multi-Input Volistor XNOR Gates

A novel approach utilizing the emerging memristor process technology is introduced for realizing a 2-input *primitive* memristive XNOR gate based on volistor logic. The volistor XNOR gate uses voltage as input and resistance as output and capitalizes on the diode-like behavior of rectifying memristors. The XNOR gate is used as a building block of multi-input XNOR gates. The delay and the size of the \(N \)-input XNOR gate are small compared to other memristive XNOR gates, i.e., the gate is implemented with eight memristors of two crossbar arrays in \(2N-1 \) clock cycles. The average power consumption of an 8-input volistor XNOR gate is calculated and compared with its counterpart realized with CMOS technology. Comparisons and simulation results show the benefit of the proposed XNOR gate in terms of delay, area, and power. More importantly, the XNOR gate combines memory and logic operations and enables in-memory computing.

6.1 INTRODUCTION

The ESOP realization of arithmetic functions has some advantages over the SOP realization of the functions [65], [99]. In general, the ESOP realization of arithmetic functions decreases the number of products and literals. In addition, ESOP circuits have better testability and have a use in cryptography and communication circuits. The key point in realizing such circuits is to implement multi-input XOR/XNOR gates, which has been a challenge in many technologies. For example, in conventional CMOS technology, multi-input XOR are slow, consume large amounts of power, and occupy larger areas compared to other combinational gates. This chapter describes a novel approach for realizing a multi-
input resistive XNOR gate. There are multiple approaches for realizing a two-input primitive memristive XOR/XNOR gate [62], [89], [100]-[101] depending on how inputs and output signals are expressed. For example, in [89], both inputs and output are expressed as resistance whereas in [100], inputs are expressed as voltage and only the output is expressed as resistance. In [62], a mix of voltage and resistance is used to express the inputs, and only resistance is used to express the output. And, in [101] and [102], both inputs and output are expressed as voltage.

This chapter describes a new implementation of an XNOR gate based on volistors [29] and memristive diode gates [37]. The proposed XNOR gate uses voltage as input and resistance as output. Power, area, and delay comparisons are made against XNOR implementations with memristive and CMOS technologies.

The chapter is organized in the following order. Section 6.2 provides a quick review of the characteristics of rectifying memristors, volistors, and memristive diode gates. Section 6.3 describes the implementation of a two-input volistor XNOR gate, and Section 6.4 shows the implementation of a multi-input XNOR gate based on the proposed two-input volistor XNOR gate. The multi-input XNOR circuits are compared with their counterparts realized with CMOS and memristive technologies. Section 6.5 summarizes concludes the chapter.
6.2 REVIEW OF RECTIFYING MEMRISTORS, VOLISTORS, AND PROGRAMMABLE DIODE GATES

This description provides a brief review of the characteristics of the rectifying memristors, volistors, and memristive diode gates as these logic gates are used in realizing the XNOR gate.

6.2.1 Rectifying memristors

Fig. 6.1 shows the i-v characteristic of rectifying memristors [15], [45]-[46]. A rectifying memristor exhibits approximately a linear i-v characteristic when it is forward biased. The slope of this relation is much greater for the R_{CLOSED} than for the R_{OPEN}. However, the current through the memristor can be disregarded when it is reverse biased. V_{CLOSE} and V_{OPEN} are threshold voltages, and V_{SET} and V_{CLEAR} are programming voltages. The inset in Fig. 6.1 shows the symbolic diagram of the memristor and explains the polarities. We assume that R_{CLOSED} denotes logic ‘1’ and R_{OPEN} denotes logic ‘0’.

![Fig. 6.1. The i–v characteristic of a rectifying memristor and its symbolic diagram. The flow of current into the device, as shown above, decreases the resistance.](image-url)
6.2.2 Volistor logic

Volistors capitalize on the diode-like behavior of rectifying memristors and utilize voltage as input and resistance as output. Fig. 6.2a shows a 2-input volistor NOR gate with input voltages \(V_{in1} \) and \(V_{in2} \) and output resistance \(t \) (i.e., the state of memristor \(T \)). Memristor \(T \) is connected to a bias voltage \(V_T (< 0V) \) to store the output. The circuit operates properly under three conditions: 1) utilizing rectifying memristors, 2) initializing the memristors to \(R_{CLOSED} \), and 3) selecting proper input and bias voltages that satisfy (6.1) when input voltage \(V_{in} \) is high (see Fig. 6.1 for \(V_{CLEAR} \) and \(V_{OPEN} \)).

\[
\begin{align*}
V_{OPEN} &< V_T < 0V \\
V_T - V_{in} & = V_{CLEAR}
\end{align*}
\]

(6.1)

While realizing the NOR gate, the voltage on wire \(W_{OR} \) remains unchanged for the reason that memristor \(T \) is reverse biased and allows approximately no current through the device. (Note that memristor \(T \) is connected to negative voltage \(V_T \)). In this implementation, the source memristors (connected to \(V_{in1} \) and \(V_{in2} \)) maintain their resistance states. In contrast to most of the stateful gates, there is no need for grounding \(W_{OR} \) through a reference resistor for implementing the gate.

6.2.3 Memristive diode logic

Memristive diode gates utilize voltage as input and output. Fig. 6.2b shows a 2-input diode AND gate where \(V_{in1} \) and \(V_{in2} \) are the input voltages and \(V_{AND} \) (the voltage on wire \(W_{AND} \)) is the output voltage. This circuit operates properly under three conditions: 1) utilizing rectifying memristors, 2) initializing the memristors to \(R_{CLOSED} \), and 3) selecting proper input voltages that satisfy (6.2) to ensure that memristors maintain their resistance
The circuit in Fig. 6.2b operates with no state transitions in memristors. For example, when inputs are different, the memristor connected to a high input voltage is reverse biased (see the polarities of the memristors) and suppresses the current below 10^{-13} A [45]. In addition, the voltage across the reverse biased memristor is insufficient to toggle the state of the memristor as determined by (6.2). This implementation requires no reference resistor as the gate relies on the diode-like behavior of the memristors. In contrast to the previous work [27], this is a significantly different implementation of structurally similar but conceptually different logic gates.

6.3 Two-Input Volistor XNOR Gate

Fig. 6.3a shows the schematic of the 2-input volistor XNOR gate. Although the circuit
has a similar structure as diode AND gate, it operates with different conditions. First, the inputs have different voltage levels: 0V and $|V_{\text{CLEAR}}|$. Therefore, inputs are meant to be destructive to the states of memristors. Second, the output is defined as a state transition in memristors S_1 and S_2. State transition ‘1’ denotes that no state transition occurs in memristor $S1$ and $S2$, and state transition ‘0’ denotes that a state transition occurs in either S_1 or S_2. As a result, there is no predetermined target (output) memristor. There are three operations to realize the XNOR gate in the following order: setting, write, and read as described below.

6.3.1 Setting operation

Memristors S_1 and S_2 must be initialized to logic ‘1’ (R_{CLOSED}).

6.3.2 Write operation

The write operation computes and stores the output of the XNOR gate. Fig. 6.3b shows the behavior of the XNOR gate. If the inputs are equal, no state transition occurs in S_1 or

![Fig. 6.3. Volistor XNOR gate. (a) Schematic of 2-input volistor XNOR gate. (b) Behavior of volistor XNOR gate.](image-url)
However, if the inputs are different, the state of a memristor connected to the high input voltage toggles to R_{OPEN} (logic ‘0’). The output can be accessed anytime by reading the nonvolatile states of S_1 and S_2 as explained below.

6.3.3 Read operation

The output is read-out as AND (s_1, s_2) where s_1 and s_2 are the state variables of memristors S_1 and S_2. This operation is performed by a memristive diode AND gate. The read operation requires connecting wire W_{XNOR} to V_{READ} ($< V_{CLOSE}$) and wires W_{in1} and W_{in2} to the GND through pull-down resistors, R_G. The voltage on W_{AND} shows the output of XNOR gate (Fig. 6.4). Table 6.1 explains the configuration of XNOR circuit during setting, write, and read operations.

6.3.4 Circuit simulation

The XNOR gate is simulated in LTspice using 50nm TSMC process BSIM models and
The memristor model used in [47]. The parameters of the memristors are shown in Table 6.2. Signals are square pulse width with 5 ns time period and 100% duty cycle. In addition, inputs are defined as 0 V and 1.25 V, and \(V_{\text{READ}} \) is defined as 0.7 V. A load buffer is connected to \(W_{\text{AND}} \) and the simulation was conducted for \(V_{dd} = 0.6 \text{V}, R = 1\text{M}\Omega, \) and \(R_G = 5\text{M}\Omega \) (see Fig. 6.4). Fig. 6.5 shows the behavior of the circuit during setting, write, and read operations, assuming that initial states of \(S_1 \) and \(S_2 \) are logic ‘0’. Fig. 6.5a shows the behavior of the XNOR circuit assuming that \(V_{in1} \) and \(V_{in2} \) are logic ‘1’ and logic ‘0’, respectively. The write operation toggles \(s_1 \). Therefore, \(V_{\text{AND}} \) and \(V_{\text{OUT}} \) during the read operation are ‘0’, demonstrating that a state transition has occurred in either \(S_1 \) or \(S_2 \) during the write operation. Note that the output during setting and write operations is irrelevant. Fig. 6.5b shows the behavior of the XNOR circuit assuming that \(V_{in1} \) and \(V_{in2} \) are logic ‘1’.

Table 6.1

<table>
<thead>
<tr>
<th>Operation</th>
<th>(W_{in1})</th>
<th>(W_{in2})</th>
<th>(W_{\text{XNOR}})</th>
<th>(W_{\text{AND}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>0 V</td>
<td>0 V</td>
<td>(V_{\text{SET}})</td>
<td>0 V</td>
</tr>
<tr>
<td>Write</td>
<td>(V_{in1})</td>
<td>(V_{in2})</td>
<td>Z</td>
<td>(V_{\text{DSEL}})</td>
</tr>
<tr>
<td>Read</td>
<td>(R_G)</td>
<td>(R_G)</td>
<td>(V_{\text{READ}})</td>
<td>Z</td>
</tr>
</tbody>
</table>

Voltage \(V_{\text{DSEL}} \) is used to deselect a column during the write operation where \(V_{\text{DSEL}} = V_{\text{READ}} \). \(R_G \) is a load resistor, and \(Z \) denotes high impedance.

Table 6.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{CLOSED}})</td>
<td>500 K(\Omega)</td>
<td>(V_{\text{CLOSE}})</td>
<td>1 V</td>
</tr>
<tr>
<td>(R_{\text{OPEN}})</td>
<td>500 M(\Omega)</td>
<td>(V_{\text{OPEN}})</td>
<td>-1 V</td>
</tr>
<tr>
<td>(V_{\text{SET}})</td>
<td>1.2 V</td>
<td>Switching delay</td>
<td>4 ns</td>
</tr>
<tr>
<td>(V_{\text{CLEAR}})</td>
<td>-1.2 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Under this combination of inputs, s_1 and s_2 remain unchanged. Therefore, V_{AND} and V_{OUT} during the read operation are ‘1’, demonstrating that no state transition has occurred in S_1 and S_2 during the write operation. Our simulation results show the proper operation of the circuit for other inputs combinations, as well.

The average power consumption of the circuit during setting, write, and read operations is 1.98 uW. This power is consumed in four CMOS drivers, four memristors, and two load resistors R_G connected to W_{in1} and W_{in2} through two transistors. Each CMOS driver consists of two transistors and two control signals. (The size of the transistors, W/L ratio, is 8/1.) Table 6.3 shows the average power consumptions of the circuit for different values of V_{in1}, V_{in2}, s_1, and s_2.

Table 6.4 compares multiple memristive XOR/XNOR circuits proposed in the literature with the volistor XNOR circuit. In all circuits, except for [101] and [102], the output is stored as a nonvolatile state of a memristor. Among the circuits shown in Table 6.4, only...
Table 6.3
Average power consumption of a two-input volistor XNOR gate during the setting, write, and read operations (values are in micro joules)

<table>
<thead>
<tr>
<th>Inputs (V_{in1}, V_{in2})</th>
<th>Initial states of memristor S1 and S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>1.93</td>
</tr>
<tr>
<td>01/10</td>
<td>1.60</td>
</tr>
<tr>
<td>11</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Table 6.4
Multiple realizations of 2-input primitive XOR/XNOR gates based on memristors

<table>
<thead>
<tr>
<th>Realization approach</th>
<th>Input/ output type</th>
<th>Delay*</th>
<th>Memristors/ Transistor</th>
<th>Computing in crossbar</th>
<th>Computing Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>[102]</td>
<td>{V}/{V}</td>
<td>1</td>
<td>3 M + 3 T</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>[91]</td>
<td>{V}/{V}</td>
<td>1</td>
<td>2 M + AVS</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>[62]</td>
<td>{V, R}/{R}</td>
<td>2**</td>
<td>2 M + 3 T</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>[100]</td>
<td>{V}/{R}</td>
<td>1</td>
<td>1 M + 4 T</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>This work</td>
<td>{V}/{R}</td>
<td>2</td>
<td>4 M</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>[89]</td>
<td>{R}/{R}</td>
<td>3**</td>
<td>4 M</td>
<td>Yes</td>
<td>4</td>
</tr>
</tbody>
</table>

\(V\) and \(R\) denote voltage and resistance.

AVS denote Analog Voltage Summator.

* Delay is measured as the number of clock cycles.

**Writing the inputs into the source memristors is not counted.

the heterogeneous memristive XNOR circuit [89] and the proposed volistor XNOR circuit can be realized in programmable memristor crossbar arrays whereas other XOR/XNOR circuits [62], [100]-[102] are application-specific integrated circuits (ASIC). The volistor XNOR gate is slightly faster than heterogeneous memristive XNOR gate for two reasons: first, inputs are voltage signals. Therefore, there is no need for programming the source memristors to represent the inputs. Second, memristors are of the same type. Therefore, unlike [89], there is no additional delay for output buffering. For multi-input XNOR gate, volistor XNOR is faster than heterogeneous memristive XNOR as explained in the next
section. The proposed volistor based circuit makes XNOR a primitive gate similar to the IMPLY and CNIMP gates [25].

6.4 N-INPUT VOLISTOR XNOR GATE

An N-input XNOR gate is widely used in arithmetic, security, testing, and communication circuits. This gate can be implemented by cascading 2-input volistor XNOR gates in two crossbar arrays. Fig. 6.6 shows a block diagram of an N-input XNOR gate that consists of 2-input XNOR gates XNOR1 and XNOR2 connected through CMOS switches. The XNOR gate is configured as a function of signals 1-7, X, Y, and Z. (See Fig. 6.4 to identify the terminals). Table 6.5 explains the operation of the circuit. For example, in the first clock cycle, XNOR1 and XNOR2 are set to logic ‘1’. In the second clock cycle, XNOR1 implements XNOR \((V_{in1}, V_{in2})\). In the third clock cycle, XNOR2 realizes XNOR \((V_{in1}, V_{in2}, V_{in3})\), and in the fourth clock cycle, XNOR1 is set to logic ‘1’ to calculate XNOR \((V_{in1}, V_{in2}, V_{in3}, V_{in4})\) in next clock cycle. This process continues until an N-input XNOR gate is realized. In each clock cycle, a combination of control or input signals is applied to the circuit to perform a particular operation. For example, in the first clock cycle, signals XYZ are set to ‘110’, terminals 1, 2, 4, 5, and 7 are set to 0V, and

![Fig. 6.6. Schematic diagram of a multi-input volistor XNOR gate.](image)
terminals 3 and 6 are set to \(V_{SET} \). In particular, during the write operation, \(V_{DSEL} \) is applied to terminal 4 or terminal 7 to keep the states of AND gate unchanged. The computational delay of the circuit is \(2N-1 \). Table 6.5 also shows the state of XNOR1 and XNOR2 as a function of multiple signals. When XNOR1 (or XNOR2) is in state ‘-’, it waits for XNOR2 (or XNOR1) to complete the setting or write operation. In clock cycle number seven,

Table 6.5

Multi-input XNOR circuit configuration

<table>
<thead>
<tr>
<th>cyc</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>XNOR 1</th>
<th>XNOR 2</th>
<th># Fan-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 V</td>
<td>0 V</td>
<td>(V_{SET})</td>
<td>0 V</td>
<td>(V_{SET})</td>
<td>0 V</td>
<td>‘1’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>Setting</td>
<td>Setting</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(V_{in1})</td>
<td>(V_{in2})</td>
<td>Z</td>
<td>(V_{DSEL})</td>
<td>0 V</td>
<td>Z</td>
<td>0 V</td>
<td>‘1’</td>
<td>‘0’</td>
<td>‘0’</td>
<td>Write</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Z</td>
<td>Z</td>
<td>(V_{READ})</td>
<td>Z</td>
<td>(V_{in3})</td>
<td>(V_{DSEL})</td>
<td>‘0’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>‘0’</td>
<td>Read</td>
<td>Write</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0 V</td>
<td>0 V</td>
<td>(V_{SET})</td>
<td>0 V</td>
<td>0 V</td>
<td>Z</td>
<td>0 V</td>
<td>‘1’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>Setting</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(V_{in4})</td>
<td>(V_{OUT2})</td>
<td>Z</td>
<td>(V_{DSEL})</td>
<td>Z</td>
<td>(V_{READ})</td>
<td>Z</td>
<td>‘0’</td>
<td>‘0’</td>
<td>‘1’</td>
<td>Write</td>
<td>Read</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>(V_{SET})</td>
<td>0 V</td>
<td>‘1’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>Setting</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Z</td>
<td>Z</td>
<td>(V_{READ})</td>
<td>Z</td>
<td>(V_{in5})</td>
<td>(V_{DSEL})</td>
<td>‘0’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>‘0’</td>
<td>Read</td>
<td>Write</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>0 V</td>
<td>0 V</td>
<td>(V_{SET})</td>
<td>0 V</td>
<td>0 V</td>
<td>Z</td>
<td>0 V</td>
<td>‘1’</td>
<td>‘1’</td>
<td>‘0’</td>
<td>Setting</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*cyc denotes the number of clock cycles

The table explains the sequential realization of the multi-input XNOR gate. Columns are control and input signals applied to XNOR1 and XNOR2.

Table 6.6

Multiple logic circuits of \(n \)-input XOR/XNOR memristive gates

<table>
<thead>
<tr>
<th>Approach</th>
<th>Input/output type</th>
<th>Delay**</th>
<th>Memristors/Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>[89] (Optimized area)</td>
<td>{R}/{R}</td>
<td>4(N-5)</td>
<td>(N+2) M</td>
</tr>
<tr>
<td>[89] (Optimized delay)</td>
<td>{R}/{R}</td>
<td>3(N-3)</td>
<td>(2N) M</td>
</tr>
<tr>
<td>[25]</td>
<td>{R}/{R}</td>
<td>(2N+C^*)</td>
<td>((2^{N-1}+1) \times (N+1)) M</td>
</tr>
<tr>
<td>This work</td>
<td>{V}/{R}</td>
<td>2(N-1)</td>
<td>8 M</td>
</tr>
<tr>
<td>Hybrid XOR***</td>
<td>{V}/{R}</td>
<td>(N-1)</td>
<td>((f(N)=f(N-1)+4, f(2)=4, N\geq 2)) T**</td>
</tr>
<tr>
<td>Hybrid XNOR ****</td>
<td>{V}/{V}</td>
<td>1</td>
<td>((3 M+3 T) \times (N-1))</td>
</tr>
</tbody>
</table>

* C is a constant number [25].
** Delay is measured is the number of clock cycles during the computations. In [89], the number of clock cycles required to program the source memristors to represent the inputs is not counted.
*** In [100], the realization of only two-input resistive XOR gate is shown. We predicted the delay and resources required for realizing an \(N \)-input XOR gate by cascading the XOR gates.
**** In [102], the realization of the XNOR gate for only \(N = 2 \) and 3 is shown. We estimate the delay and the size of the circuit for realizing an \(N \)-input XNOR as shown in the table.
XNOR1 and XNOR2 repeat their states during the third clock cycle. Table 6.6 summarizes the size and delay comparisons of multiple N-input memristive XOR/XNOR circuits. The proposed N-input volistor XNOR circuit is small and relatively fast. The average power consumption of an 8-input volistor XNOR gate is 20.97 uW including that of dissipated in CMOS peripheral parts in Fig. 6.4 and 6.6. This average power is calculated for 25 random input vectors. Most of this power is consumed during the setting operation, which is performed with a voltage larger than V_{SET} (i.e., 1.4V). The XNOR gate shows a large noise margin, as well. For the random input vectors, the XNOR perceives any resistive value larger than 85% R_{OPEN} as R_{OPEN} and any resistive value smaller than 115% R_{CLOSED} as R_{CLOSED}. Unfortunately, the proposed XNOR gate does not enable parallel computation in crossbar arrays. An 8-input XNOR gate was also synthesized using Synopsys design compiler with 45nm TSMC library. The average power consumption of the gate is 29.3 uW assuming that inputs are read from registers (D flip-flops) operating at the clock speed of 5ns. The design compiler realizes the 8-input XNOR gate using three 2-input XNOR gates and two 1-bit full adders. The proposed XNOR gate is smaller and consumes less power than its CMOS counterpart.

6.5 SUMMARY AND CONCLUSION

This chapter describes the implementation of a 2-input primitive volistor XNOR gate. In addition, the realization of a multi-input XNOR gate based on the primitive XNOR is explained. The simulation results confirm the proper operation of the XNOR gate. Volistor XNOR gates enable a resistive computation of arithmetic and communication circuits that use multi-input XNOR gates in programmable memristive circuits. The computational
delay of the XNOR circuit is small compared to other programmable memristive XNOR gates. In addition, the power and area comparisons show the benefits of the volistor XNOR gate over the CMOS XNOR gate.
Chapter 7

Volistor Logic Gates in Crossbar Arrays of Rectifying Memristors

This chapter introduces new implementations for volistors and programmable diode gates in crossbar arrays of rectifying memristors. Volistors use voltage as input and resistance as output and rely on the diode-like behavior of rectifying memristors. The design constraints of volistors are explained. These constraints determine the size of the crossbar array and the voltage levels for logic functions implementations. This chapter shows that volistors can be cascaded in crossbar arrays with other memristive gates such as programmable diode gates. An implementation example of AND-NOR PLA based on hybrid programmable diode gates and volistors in a crossbar array is explained. The hybrid PLA circuit reduces both area and computational delay. The hybrid PLA circuit is compared to other memristive PLA (mPLA) circuits realized with stateful gates, complementary resistive switches (CRS) based gates, and Boolean gates. The outcomes show the benefit of the hybrid PLA circuit in terms of both size and delay.

7.1 Introduction

Memristors are the fourth passive basic elements in addition to resistors, capacitors, and conductors [3]. Memristors are two-terminal, non-volatile, and nanoscale devices. These devices with fast switching ability can be integrated with transistors [43] and can be scaled down to less than 10 nm [83] where the size of the transistor is hitting the physical limit. Memristors can be used for memory applications [15], [40], [84] and for digital and analog computations [18], [85]-[86]. Memristive digital gates can be divided into three categories. In the first category, the resistance states of memristors represent logic values [20], [25],
This type of gates are known as stateful. In the second category, a combination of resistance (states of memristors) and voltage signals represents logic values [29], [62], [90]. And in the third category, voltage signals represent the input and output values [24], [27], [32], [33], [37], [72], [91]-[93]. The stateful gates are sequential gates, but their realization in parallel can reduce the delay [47], [77]-[78]. The stateful gates are usually realized in crossbar arrays, however, their realization in structures other than traditional crossbar arrays is possible [94]. In the second category, gates are designed to exploit the voltage-based input (or output) of CMOS gates and resistor-based input (or output) of stateful gates. The realization of logic gates using the Akers array [90], two-input XOR gate [62], and volistor gates [29] are just a few examples of the second type of gates. Some of these gates can be realized in crossbar arrays such as the volistors explained in this chapter. The third category of memristive gates is beneficial to extend Moore’s law when CMOS scaling becomes problematic. A few examples of this type of gates are memristive fuzzy logic gates [24], memristive-ratioed logic gates [27], memristive programmable diode gates [37], Boolean logic gates [91], memristive threshold gates [33] and [72], memristive stochastic gates [92]-[93], memristive reservoir gates [32], etc. These gates are not necessarily realized in standard crossbar arrays.

This chapter explains how rectifying memristors [15], [45]-[46] improve logic operations. We propose a novel approach for implementing volistor gates in crossbar arrays. Volistors depend on rectifying memristors (i.e., memristors with intrinsic diode-like behavior) and use voltage as input and resistance as output. In addition, we derive the design constraints for volistor gates. These constraints determine the size of the crossbar arrays and the voltage values for realizing the gates. There are two different
implementation approaches for volistor gates. In the first approach, volistors use voltage as input and resistance as output. However, in the second approach, volistors use a mix of voltage and resistance as input and resistance as output. The second approach realizes, what we call, \textit{input-volistor} gates (i.e., \textit{input-voltage-resistor} and output-resistor gates). Volistors show some beneficial features. First, volistors enable in-memory computing. Second, the fan-in and fan-out of volistor gates are large. For example, implementing a 64-input (output) volistor gate without an auxiliary circuit [44] is not a challenge (see Section 7.6). Third, the voltage-based inputs of volistor gates (in contrast to the resistance-based inputs of stateful gates) results in a smaller and faster memristive circuits (see Section 7.7.3). And fourth, volistors and other memristive gates can be cascaded in crossbar array to decrease the delay. For example, AND-NOR functions can be realized in two clock cycles by cascading volistors and programmable diode gates [37] in crossbar arrays (see Section 7.7).

The rest of this chapter is organized as follows. In Section 7.2, the structure of memristive circuit for realizing volistor gates is introduced. Section 7.3 provides a quick review of volistor gates realized in one-dimensional array, whereas Section 7.4 describes the implementation of volistor gates and Section 7.5 explain the implementation of input-volistor gates in crossbar arrays. Section 7.6 shows the design constraints of volistors. Section 7.7 shows an implementation example of an AND-NOR function based on programmable diode gates and volistors. The size and delay of the circuit are also compared to equivalent memristive circuits implemented with other memristive gates. Section 7.8 concludes the paper.
7.2 Circuit Structure for Volistor Logic Gates

This section shows a general new circuit structure for logic operations based on volistors, programmable diode gates, stateful gates, etc. Fig. 7.1 illustrates this new circuit structure. The circuit consists mainly of a computational array and memory array forming our proposed approach to in-memory computing enabled by memristor technology. The computational array is a network of sub-crossbar arrays that implements arbitrary logic operations and store logic values. These sub-crossbar arrays communicate through columns and rows of pass transistors. The computational array and the pass transistors are driven by peripheral circuits. These peripheral circuits are controlled by nearby big memristor memory array, which stores the instructions and control signals. The x columns of the memory array are controlled by an x-bit shifter. The output of the shifter

![Fig. 7.1. General circuit structure for logic computations based on volistor and stateful gates.](image)
Table 7.1
Voltage levels required during the operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Required Voltage Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>0V, V_{SET}</td>
</tr>
<tr>
<td>Execution</td>
<td>V_{CLEAR}, v', 0V, v^+,</td>
</tr>
<tr>
<td>Read</td>
<td>v', 0V, v^+</td>
</tr>
</tbody>
</table>

(\mathbf{Q}, \mathbf{Q}_2, \ldots, \mathbf{Q}_x) at the first, second, and \(x^{th}\) clock cycle is (1,0,\ldots,0),(0,1,0,\ldots,0), and (0,\ldots,0,1), respectively, where logic ‘1’ and ‘0’ denote high and low-voltage levels. There is a relatively small crossbar array that stores a number of \(k\)-bit vectors of inputs and their complements. This input array is connected to the upper peripheral circuits, as illustrated in Fig. 7.1. In this chapter, we assume that the inputs applied to the computational array satisfy \(0V \leq v_{\text{inl}} < v_{\text{inh}} < V_{\text{CLOSE}}\) where \(v_{\text{inl}}\) and \(v_{\text{inh}}\) are low and high input voltages, respectively, and are chosen \(0V\) and \(0.6V\).

Let the size of each sub-crossbar array be \(A \times B\). The size of resistive memory is \(((\alpha \cdot A + \beta \cdot B) \times C + S) \times C_n\) where \(\alpha\) is the number of control signals applied to each CMOS driver that is connected to a row of the crossbar arrays, \(\beta\) is the number of control signals applied to each CMOS driver that is connected to a column of the crossbar arrays, \(C\) is the number of sub-crossbar arrays, \(S\) is the number of pass transistors, and \(C_n\) is the computational delay measured as the number of clock cycles. Here, we assume that \(\alpha = 5\) and \(\beta = 6\). As a result, the memory bus width is \(W = (5A + 6B) \times C + S\). In addition, each CMOS driver that controls a horizontal or vertical wire consists of five or six transistors, respectively. Table 7.1 shows the voltage levels used in the circuit in Fig. 7.1 where \(v^+ = v_{\text{inh}}\) and \(v^- = -v_{\text{inh}}\). The circuit in Fig. 7.1 performs NOR, AND, INH (inhibition), and
COPY gates among other types of logic gates. Each of these gates (except for COPY) has multiple implementations depending on inputs locations (Table 7.2). For example, NOR operation can be applied to either the inputs located in the input array (case 1) or the inputs located in both the input array and computational array (case 2). Let input voltages v_{in} and v_{inh} encode logic ‘0’ and logic ‘1’, and input resistances R_{OPEN} and R_{CLOSED} encode logic ‘0’ and logic ‘1’, respectively. Section 7.3 provides a quick review of volistor gates and input-volistor gates realized in one-dimensional arrays and shows the limitations of volistor logic gates.

7.3 Review of Volistor Gates in One-Dimensional Arrays

Volistors capitalize on diode-like behavior of rectifying memristors and use voltage as input and resistance as output [29]. The input voltages of volistor gates eliminate the need for reference resistors, the most power-hungry circuit elements in stateful IMPLY gate [20], AND gate [88], CNIMP (Converse Non-Implication) gate [25], etc. Section 7.3.1 reviews the implementation of volistor NOR gate and its limitations, and Section 7.3.2 reviews the implementation of input-volistor NOR gate (which uses a mix of voltage and resistance as input and resistance as output).
7.3.1 Volistor NOR gate

Volistor NOR gate was introduced in [29]. This implementation approach has the inputs stored in the input array. Fig. 7.2 shows the schematic of an n-input volistor NOR gate realized in a $1 \times (n+1)$ memristive array with the voltages specified in (7.1).

$$
\begin{align}
0V & \leq v_{in1} < v_{inh} < V_{\text{CLOSE}} \\
V_{\text{OPEN}} & < V_T < 0V \\
V_T - v_{inh} & = V_{\text{CLEAR}}
\end{align}
$$

The role of each memristive switch is determined by its driving voltage such as v^+, v^-, etc. Memristive switches S are set to closed state and connected to input voltages v_{in1}-v_{inn}. The target memristive switch (which stores the output) is connected to voltage V_T. Volistor NOR is implemented in two clock cycles. In the first clock cycle, switch T is set closed. And in the second clock cycle, NOR gate is implemented. Though memristive switches are set closed, some of them act as open switches. For example, memristive switch T is always reverse biased and acts as an open switch. During the operation, all switches S remain closed. However, the state of switch T may be changed to open (programmed to HRS). The diode-like behavior of memristors allows the implementation of volistor gates that have multiple fan-out without auxiliary circuits [44]. When at least one of the inputs is high, the voltage on wire w_m is approximately v_{inh}. Therefore, the voltage across switch T is close to
This voltage is large enough to toggle the state of T to open. When inputs are low, switch T remains closed. Equation (7.1a) shows the range of input voltages. The values of V_T and v_{inh} are chosen in such a way that they satisfy (7.1b) and (7.1c). In Fig. 7.2, input voltages are selected by peripheral circuits and applied to the closed memristive switches, S. This implementation approach is best suited for circuits that require large fan-out. Fig. 7.3 illustrates this limitation where the circuit implements a three-input NOR gate with a fan-out of three, but it is unable to realize multiple NOR gates with different arguments. In Section 7.4.1, we show how to implement multiple NOR gates with different arguments in parallel.

7.3.2 Input-volistor NOR gate

Input-volistor NOR gate was introduced in [29]. This implementation approach has the inputs distributed in both input array and computational array (Table 7.2). Fig. 7.4a shows
the schematic of the two-input-volistor NOR gate with input voltage v_a, input resistance r_b, and output resistance r_T, as such r_b and r_T denote the logical states of S_2 and T, respectively. Input v_a is applied to memristor S_1 initialized to LRS, voltage v^+ is applied to memristor S_2, and voltage V_T is applied to memristor T. The circuit operates with the voltages specified in (7.1). An n-input-volistor NOR gate is realized in a $1 \times (n + 1)$ memristive array. The correct operation of volistor NOR may require grounding w_m through reference resistor R_g when $n \geq 8$ (Fig. 7.4b). The need for R_g appears when all of the inputs are logic ‘0’, and most of the inputs are resistances. Fig. 7.4b illustrates an n-input-volistor NOR circuit with n-1 input resistance at logic ‘0’ (HRS) and one input voltage at logic ‘0’ (v_{inl}). For this combination of inputs, the circuit must satisfy (7.1) where

$$w_m = ((n-1) \times v^+ + V_T) / (n+1+N_g)$$

and $N_g = R_{\text{OPEN}} / R_g$. For $v^+ = 0.6V$, $V_T = -0.6V$, and $R_g = \sqrt{R_{\text{OPEN}} \times R_{\text{CLOSED}}}$, Equation (7.2) is simplified to $n < 74$. In fact, the use of reference resistor R_g allows to increase the size of the input-volistor NOR gate from $n < 8$ to $n < 74$.

Fig. 7.4. (a) Schematic of two-input-volistor NOR gate. Inputs are v_a and r_b, and the output is r_T. (b) Schematic of an n-input-volistor NOR gate where all of the inputs are logic ‘0’.
When \(n < 8 \), the circuit can operate without \(R_g \) where \(w_m = \frac{((n-1)\times v^+ + V_T)}{(n+1)}. \)

\[
w_m - V_T < |V_{OPEN}|
\] \hspace{1cm} \text{(7.2)}

7.4 Volistor Gates in Two-Dimensional Arrays

This section explains the implementation of improved volistor NOR, volistor AND, and volistor COPY gates in crossbar arrays and show how to deselect a volistor gate in a crossbar array.

7.4.1 Improved Volistor NOR gate

In a single crossbar array, identical gates with identical inputs are a limited form of parallelism that can be realized using volistor logic (Fig. 7.3). This limitation could be resolved by permanently disabling specific memristors in the crossbar array that leaves those memristors in permanent HRS [18], [75]. This approach would result in an application-specific integrated circuit, different than our general concept of a programmable mPLA. As an alternative, in our approach, the rectifying memristors are \textit{programmed} to HRS taking the role of \textit{memristors in permanent HRS}. Recall that the rectifying memristors have relatively large \(R_{OPEN} \) and \(R_{OPEN}/R_{CLOSED} \) ratio. Consequently, input voltages can be disconnected by programming the source memristors to HRS. This technique allows to implement multiple volistor NOR gates in parallel in a crossbar array.
For example, the crossbar array shown in Fig. 7.5 implements $T_m = \text{NOR}(a, b, c)$ on wire w_m and $T_{m+1} = \text{NOR}(\neg a, \neg b, \neg c)$ on w_{m+1}. Source memristors on w_{m+2} are in HRS to disconnect the input voltages.

For example, the crossbar array shown in Fig. 7.5 implements $T_m = \text{NOR}(a, b, c)$ on wire and $T_{m+1} = \text{NOR}(\neg a, \neg b, \neg c) = \text{AND}(a, b, c)$ on w_{m+1}. The source memristors on w_{m+2} are programmed to HRS to disconnect the inputs. The gates can be executed for any input vector $[v_a, v_b, v_c]$ in two clock cycles as the inputs are voltage signals and the source memristors retain their resistance states. In contrast, the implementations of stateful logic gates require programming the source memristors for any input vector of literals, because the resistance states of source memristors represent the input values. In stateful gates, programming the source memristors takes more clock cycles (e.g. $2n$ where n is the number of inputs [25]) than in volistors where the programming takes only a single cycle.

In stateful logic, we would apply a voltage of $v^+/2$ ($v^-/2$) to those rows which are not used in the current operation of the crossbar array [95]. This would prevent the target memristors in these “deselected” rows from changing states. In contrast, in our circuit shown in Fig. 7.1, to deselect a row of volistor NOR or any other row in a crossbar array, a conventional $v^+/2$ scheme cannot be used. Section 7.4.2 shows how to deselect a volistor gate in a crossbar array.
7.4.2 Deselect of volistor gates in crossbar arrays

To deselect a volistor gate in a crossbar array, a write scheme such as setting unused rows (columns) to $v^+/2$ or $v^+/3$ has problems. Such a write scheme might largely decrease the voltage levels on wires and corrupt the circuit operation. Take, for example, the circuits shown in Fig. 7.6 where inputs v_a, v_b, and v_c equal v_{int}. The circuit shown in Fig. 7.6a is programmed to implement $T_m = \text{NOR}(\neg a, b, c)$ while preventing the implementation of $T_{m+1} = \text{NOR}(\neg a, \neg b, \neg c)$ by connecting w_{m+1} to $v^+/2$. However, the flow of current through memristor M decreases the voltage on w_c and thus the voltage on wire w_m which would corrupt the implementation of $T_m = \text{NOR}(\neg a, b, c)$. In contrast, we use CMOS switches to solve the deselect problem of volistor gates in crossbar arrays. In Fig. 7.6b, the v^+ scheme

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig7.6.png}
\caption{Deselecting a volistor gate in a crossbar array. (a) Traditional approach for deselecting a volistor gate by $v^+/2$ scheme might disturb the circuit operation. (b) Our approach for deselecting a volistor gate is to use pass transistors and v^+ scheme to ensure the correct operation of the circuit.}
\end{figure}
sets the memristors on wire w_{m+1} reverse biased and suppresses the electric current through the memristors. In addition, the pass transistor on w_{m+1} prevents any state transition in memristor T_{m+1}. Fig. 7.7 shows four sub-crossbar arrays connected through pass transistors. Each row or column of two adjacent arrays can implement one volistor gate where the source and target memristors are connected through a pass transistor. When a pass transistor is switched off, the gate is deselected.

Fig. 7.7. Example of four sub-crossbar arrays (A, B, C, and D) connected by a column and row of pass transistors.
7.4.3 Volistor AND gate

The new implementation approach of volistor AND gates has the input values stored in a computational array (Table 7.2). Fig. 7.8a illustrates the implementation of $T_m = \text{AND} (a, b, c)$ using the voltages specified in (7.3). Row w_{m-1} is connected to v^* to read out the input resistances (a, b, and c). The voltages on vertical wires w_{n-2}, w_n, and w_{n+2} correspond to the

![Diagram of volistor AND gate implementation](image)

Fig. 7.8. Implementation of volistor AND gate with input resistances stored in a computational array. (a) Realization of $T_m = \text{AND} (a, b, c)$ where inputs are located on row w_{m-1} (b) Realization of $T_n = \text{AND} (a, b, c)$ where inputs are located on column w_{n-1}.
inputs. The output of the AND gate is the resistance state of memristor T_m connected to horizontal wire w_m. Memristor T_m is driven by voltage V_T. The other memristors on w_m are not part of the AND gate and are connected to v^- in order to minimize the effect of the sneak current paths. Horizontal wires except for w_{m-1} and w_m are connected to the GND. The pass transistors are switched off, except for the one that is connected to T_m. If the inputs were located in a column of the crossbar array, the AND gate would be implemented using the voltages specified in (7.4). Fig. 7.8b illustrates the implementation of $T_n = \text{AND} (a, b, c)$ where inputs a, b, and c are located in column w_{n-1} and the output is stored in memristor T_n. A two-input AND gate was simulated in a 9×9 crossbar array using 50 nm TSMC process and the SPICE model of the rectifying memristor [47]. The simulation results show the correct operation of the AND gate for all input combinations. Note that volistor AND gate can also be implemented using input complements stored in the input array in the same manner of implementing volistor NOR gate shown in Section 7.4.1.

\[
\begin{align*}
V_{\text{OPEN}} &< v^- < 0V \\
V_T &\leq V_{\text{CLEAR}}
\end{align*}
\]
\[
\begin{align*}
0V &< v^+ < V_{\text{CLOSE}} \\
V_T &\geq |V_{\text{CLEAR}}|
\end{align*}
\]
7.4.4 Volistor COPY gate

Fig. 7.9 shows how to copy a logic value in computational array. In Fig. 7.9a, value \(a \) in row \(w_{m-1} \) is transferred to memristor \(T_m \) located in row \(w_{m} \) using the voltages specified in (7.3). In Fig. 7.9b, value \(a \) in column \(w_{n-1} \) is transferred to \(T_n \) located in column \(w_{n} \) using the voltages specified in (7.4). Our simulation results show the proper operation of the circuit realizing the COPY operation in a \(9 \times 9 \) crossbar array.

Fig. 7.9. Volistor COPY Operation. (a) COPY value \(a \) on \(v_{m-1} \) to memristor \(T_m \) on \(v_m \) (b) COPY value \(a \) on \(w_{n-1} \) to memristor \(T_n \) on \(w_{n} \).
In Section 7.5, the input-volistor INH gate and input-volistor AND gate are proposed. These logic gates use a mix of voltage and resistance as input and resistance as output.

7.5 Input-Volistor Gates in Two-Dimensional Arrays

The implementation of input-volistor INH requires having the inputs distributed in both the input array and computational array. However, the implementation of input-volistor AND gate requires having the inputs distributed in two different columns (rows) of adjacent sub-crossbar arrays (Table 7.2).

7.5.1 Input-volistor INH gate

By definition, \(a \text{ INH } b = (\neg a) \cdot b \), which also equals \(\neg ((\neg a) \text{ IMPLY } \neg b) \). The INH gate is implemented with two memristors, as shown in Fig. 7.10, where \(v_a \) is the input voltage and \(r_b \) is the input resistance. Input \(v_a \) is applied to source memristor \(S \) initialized to LRS, and input \(r_b \) is the initial state of memristor \(T \). The output is the new resistance state of memristor \(T \). The INH gate is implemented using the voltages specified in (7.1). Our simulation results confirm the correct operation of the INH gate for all input combinations. INH along with constant ‘1’ form a functionally complete set of logic gates. The input-volistor IHN is implemented similar to input-volistor NOR. The difference is that in input-
volistor NOR, the output is separated than inputs whereas in input-volistor INH, the output is represented on the same memristor as one of the inputs.

7.5.2 Input-volistor AND gate

The input-volistor AND gate is implemented similar to the volistor AND gate (Fig. 7.8). The difference is that in input-volistor AND the output is represented on the same memristor as one of the inputs whereas in volistor AND the output is separated than inputs.

In Section 7.6, the design constraints for implementing volistor gates in crossbar arrays are discussed.

7.6 Design Constraints of Volistor Gates in Crossbar Arrays

Volistors operate in crossbar arrays under some constraints. These constraints determine the size of computational array and the range of voltage levels for implementing the gates. The constraints are obtained under the assumption of having the primary inputs and their complements stored in the input array. In addition, it is assumed that \(v^+ = v_{inh} \), \(v^- = -v_{inh} \), and \(R_g = \sqrt{(R_{OPEN} \times R_{CLOSED})} \) where \(R_g \) is the reference resistor. Moreover, the pass transistors connecting the sub-crossbar arrays are chosen such that \(r_{ds} \ll R_{CLOSED} \ll R_{OPEN} \) where \(r_{ds} \) is the drain-source resistance of a pass transistor. The constraints are explained for each volistor gate as follows.

7.6.1 Design constraints of improved volistor NOR gate

Constraint 1 to Constraint 3 must be satisfied for the improved volistor NOR gates, realized in two \(m \times n \) sub-crossbar arrays.

Constraint 1. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive
switch must remain closed. In other words, Equation (7.2) should be satisfied where
\[v_m = \frac{(n - 0.5) \times v^+ + V_T}{2n} \]. Fig. 7.11 shows the \(V_T-n \) relation for the applied inputs. This \(V_T-n \) relation is denoted by ‘lower_all_0’ and shows the lower bound of \(V_T \).

Constraint 2. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive switch must toggle to open. In other words, Equation (7.5) should be satisfied where \[v_m = \frac{(N + n - 1.5) \times v^+ + V_T}{(N + 2n - 1)} \] and \[N = R_{\text{OPEN}} / R_{\text{CLOSED}} \]. Substituting \(v_m \) in (7.5) results in (7.6), which determines the range of \(V_T \). Fig. 7.11 shows the \(V_T-n \) relations for the applied inputs. These relations are denoted by ‘lower_1’ and ‘upper_1’ and show the boundaries of \(V_T \).

\[
\left| V_{\text{CLEAR}} + V_{\text{OPEN}} \right| / 2 \leq v_m - V_T \leq \left| V_{\text{CLEAR}} \right|
\]
(7.5)

\[
V_T \geq \frac{(N + n - 1.5) \times v^+}{N + 2n - 2} - \left| V_{\text{CLEAR}} \right|
\]
(7.6a)

\[
V_T \leq \frac{(N + n - 1.5) \times v^+ - (N + 2n - 1) \times \left| V_{\text{CLEAR}} + V_{\text{OPEN}} \right| / 2}{N + 2n - 2}
\]
(7.6b)

Constraint 3. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive switch must toggle to open. In other words, Equation (7.5) should be satisfied where \[vm = \frac{(N \times (n - 0.5) \times v^+ + V_T)}{(N \times (n - 0.5) + (n + 0.5))} \]. Fig. 7.11 shows the \(V_T-n \) relations for the applied inputs. These relations are denoted by ‘lower_all_1’ and ‘upper_all_1’ and show the lower and upper bound of \(V_T \).
The shaded area in Fig. 7.11 shows the range of V_T for realizing i-input volistor NOR gates for any combination of inputs where $i \leq n - 1$. Note that the resistive effect of the wires is negligible as the resistance of the wires is very small compared to $R_{CLOSED} = 500 \, \text{K} \Omega$. For example, the resistive value of a relatively large width wire of diameter 120 nm used in a 32×32 crossbar array is at most 30 KΩ when implemented with relatively high resistance p-doped Si [61]. In other words, the resistive value of each wire is about 1 KΩ, which is very small compared to R_{CLOSED}.

Fig. 7.12b shows the simulation results of three 50-input volistor NOR gates realized in a 3×101 crossbar array where inputs are $(0, 0, \ldots, 0)$, $(1, 0 \ldots 0)$, and $(1, 1, \ldots, 1)$. The state transition delay in target memristors depends on the number of v_{inh} applied to each NOR gate. The longest delay occurs when only one of the inputs is high. In this case, the delay is 4.67 ns, which is 11.75% longer than a 4 ns transition delay in LRS memristor connected to V_{CLEAR} (Fig. 7.12a).
When volistor AND is realized with input complements, the constraints of volistor NOR gate are applied to volistor AND. Recall the implementation example of $T_{m+1} = \text{AND} \left(a, b, c \right)$ realized as $T_{m+1} = \text{NOR} \left(\neg a, \neg b, \neg c \right)$ in Section 7.4.1.

7.6.2 Design constraints of input-volistor NOR gate

Constraint 4 to Constraint 6 must be satisfied for the input-volistor NOR gates, realized in two $m \times n$ sub-crossbar arrays.

Constraint 4. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive switch must remain unchanged. In other words, Equation (7.2) should be satisfied where $v_m = \left(\frac{(2n-2)v^+ + V_T}{N_g + 2n} \right)$ and $N_g = \frac{R_{\text{OPEN}}}{R_g}$. Note that v_m is derived under the assumption that all inputs are resistances, except for a single input, which is voltage. Among all combinations of low inputs, this combination maximizes w_m. Substituting w_m in (7.2) results in (7.7). Fig. 7.13 shows the V_T-n relation for the applied inputs. This relation is denoted by ‘lower_all_0’ and shows the lower bound of V_T.

![Fig. 7.12](image-url) (a) State transition delay in LRS memristor connected to V_{CLEAR}. (b) Simulation results of three 50-input volistor NOR gates executed in a 3×101 crossbar array where $0 \times v_{inh}$, $1 \times v_{inh}$, and $50 \times v_{inh}$ show the number of high inputs applied to each volistor NOR gate. Also, v_1, v_2, and v_3 denote the voltages on horizontal wires w_1, w_2 and w_3 of volistor NOR gates. And T_1, T_2, and T_3 are the memristances (resistance states) of target memristors denoting the outputs.
\[V_T > ((n-1) \times (2v^+)-(2n+N_g)jV_{OPEN})/(N_g+2n-1) \] \hspace{1cm} (7.7)

Constraint 5. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive switch must toggle to open. In other words, Equation (7.5) should be satisfied where

\[w_m = \frac{(n-1)v^+ + V_T}{N + N_g + 2n-1} + \frac{v^+}{((2n-1)/N)+(1/N_g)+1} \]. Note that \(w_m \) is derived under the assumption that the high input is resistance while all other inputs are voltages. Among all combinations of inputs (for which only one input is logic ‘1’), this combination of inputs minimizes \(w_m \). Fig. 7.13 shows the \(V_T-n \) relations for the applied inputs. These relations are denoted by ‘lower_1’ and ‘upper_1’ and show the lower and upper bounds of \(V_T \).

Constraint 6. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive switch must toggle to open. In other words, Equation (7.5) should be satisfied where

\[v_m = \frac{v^+}{((1/N_g)+(2/N))(1/(2n-2))+(1/N_g)+1} + \frac{V_T}{N_g+N(2n-2)^+2} \]. Note that \(v_m \) is derived under the assumption that all inputs are resistances, except for a single input, which is voltage. Among all combinations of high voltage-resistance inputs, this combination maximizes \(v_m \). Fig. 7.13 shows the \(V_T-n \) relations for the applied inputs. These relations are denoted by ‘lower_all_1’ and ‘upper_all_1’ and show the boundaries of \(V_T \). The shaded area in Fig. 7.13 shows the range of \(V_T \) for realizing an \(i \)-input-volistor NOR gate for any combination of inputs where \(i \leq 2n - 2 \). The input-volistor NOR gate is realized in a smaller computational array than the array used for volistor NOR gate. The small number of inputs...
is an outcome of Constraint 4. Therefore, realizing both types of volistor NOR gate requires small sub-crossbar arrays.

7.6.3 Design constraints of input-volistor AND gate

Constraint 7 to Constraint 9 must be satisfied for the volistor AND (and input-volistor) gates, realized in two \(m \times n \) sub-crossbar arrays.

Constraint 7. If all of the AND’s inputs are logic ‘1’, the close state of target memristive switch must remain closed. Therefore, Constraint (7.8) should be satisfied where \(v_n \) is the voltage on wire \(w_n \) (see Fig. 7.8) and equals \((N \times (2m-1) \times v^+ + V_T)/(N \times (2m-1) + 1) \). Fig. 7.14 shows the \(V_T-m \) relation for the applied inputs. This relation is denoted by ‘upper_all_1’ and it shows the upper bound of \(V_T \).

\[
|v_n - V_T| < |v_{OPEN}|
\]
(7.8)

Constraint 8. If one of the AND’s inputs is logic ‘0’ while all other inputs are logic ‘1’ the closed state of target memristive switch must toggle to open. In other words, Equation (7.9) should be satisfied where \(v_n = ((2m-2) \times v^+ + V_T)/(N + 2m - 1) \). Fig. 7.14 illustrates...
the V_T-m relations for the applied inputs. These relations are denoted by ‘upper_1L’ and ‘lower_1L’ and show the upper and lower bounds of V_T, respectively.

$$|V_{CLEAR} + V_{OPEN}|/2 \leq |v_n - V_T| \leq |V_{CLEAR}| \quad (7.9)$$

Constraint 9. If all of the AND’s inputs are logic ‘0’, Equation (7.9) should be satisfied where $v_n = V_T/(N \times (2m-1)+1)$. Fig. 7.14 shows the V_T-m relations for the applied inputs. These relations are denoted by ‘upper_all_0’ and ‘lower_all_0’ and show the boundaries of V_T. Fig. 7.14 shows the range of V_T for realizing an i-input volistor AND gate for any combination of inputs where $i \leq 2m-1$.

In summary, all volistor gates can be realized in small sub-crossbar arrays. The size of a sub-crossbar array depends on characteristics of the rectifying memristors summarized in Table 6.2.

7.7 Implementation Example and Comparisons

Volistors can be cascaded with programmable diode gates in the computational array. We propose a programmable memristive PLA-like circuit (mPLA) for realizing two-level multi-output functions well-suited for OR-AND based design. The computational delay of

![Fig. 7.14. V_T-m relations of multiple volistor AND gates realized in two $m \times n$ crossbar arrays. The shaded area shows the range of V_T for realizing i-input volistor AND gates where $i \leq 2m-1$.](image)
the mPLA is two clock cycles. In the first clock cycle, the target memristors are initialized to LRS, and in the second clock cycle, functions are implemented. The mPLA uses voltage as input and resistance as output and maintains the states of the source memristors during the operations. Therefore, calculating a function for a new combination of inputs would still require two clock cycles. The input levels of functions are implemented with programmable diode OR gates, and the output levels are realized with volistor AND gates.

In Section 7.7.1, a quick review of memristive programmable diode gates is provided. In addition, we show how to improve the programmable diode gates for parallel computing in crossbar arrays. In Section 7.7.2, the programmable mPLA circuit for realizing an arbitrary POS function based on hybrid diode gates and volistors is introduced. And in Section 7.7.3, the implementations of POS functions with multiple memristive gates (proposed in the literature) are compared to our implementation approach.

7.7.1 Memristive programmable diode gates

The memristive programmable diode gates capitalize on rectifying memristors and use voltage as input and output. The diode gates are realized in a one-dimensional memristive array. The proper operation of the gates requires programming the memristors to LRS. Let us focus on the programmable diode OR gate. An n-input diode OR gate is implemented in a $1 \times n$ memristive array (see Fig. 7.2) using the voltages specified in (7.1). Inputs are $v_{in1}-v_{inn}$ and the output is v_m, the voltage on wire w_m. And, memristors maintain their states during the operations. Inputs are selected by peripheral circuits and applied to the memristive array. The implementation of diode gates can be improved similar to the
volistor gates by programming the memristors to HRS or LRS to disconnect or select an input voltage, respectively.

7.7.2 Realization of a multi-output AND-OR function in the mPLA

Fig. 7.15 shows the schematic of mPLA for realizing an arbitrary multi-output POS function. The mPLA consists of two sub-crossbar arrays, A and B, connected through pass transistors. Sums are realized with diode ORs (e.g., OR 1, OR 2, OR 3) and the products are implemented with volistor ANDs (e.g., AND $n-1$, AND n). Inputs are v_{in1}-v_{inn}, and outputs are the new states of the target memristors (e.g., T_{n-1} and T_n). To deselect an output, the corresponding AND gate is connected to 0V (e.g., AND $n-2$), and the relevant pass transistor is switched off. Memristors in crossbar array A maintain their resistance states.
As a result, calculating the function for another combination of inputs would only require programming the target memristors to LRS and realizing the function.

A single-output OR-AND function can be realized in a single crossbar array. In this realization, the size of the crossbar array can be as large as 512×512, and the only circuit constraint to satisfy is to have the inputs and their complements stored in the input memory. In realizing a single-output OR-AND function, all memristors of volistor AND are initialized to LRS. To disconnect an input of AND gate, the corresponding horizontal wired-OR is connected to v^+. In Section 7.7.3, we compare the realization of an arbitrary OR-AND function (or AND-NOR function, when negated inputs are used for realizing the functions) based on the hybrid approach, and other memristive approaches.

7.7.3 Comparisons of the mPLA implementations

An extensive comparison of different mPLA implementations is beyond the scope of this dissertation. However, to get some level of comparison, the implementations of proposed mPLA and other hypothetical mPLAs are evaluated. This evaluation takes into account the delay and the size of the memory array. The memory array and its CMOS peripheral circuit dominate the circuit area. Thereby, the size of memory array is used for estimating the size of the memristive circuit. An n-input single-output AND-NOR function is implemented in multiple mPLA circuits for comparison.

1) mPLA circuit based on stateful IMPY-CNIMP gates

An n-input AND-NOR function can be implemented using IMPLY and CNIMP (INH) operations [25] in an $(m+1) \times (n+1)$ crossbar array. The size of memory array, which stores the instructions and control signals, equals $W \times C_n$. The delay is estimated to be
\[C_n = 2n + 5 \] based on the published data. In addition, the size of memory bus width equals \[W = 4 \times (m + n + 2) \] as each wire is driven by four control signals [47]. Therefore, the size of memory array is \[4 \times (m + n + 2) \times (2n + 5). \]

2) *mPLA circuit based on stateful NOR-NOT gates*

An \(n \)-input AND-NOR function can be realized based on stateful NOR and NOT gates [28] in an \((m+1)\times(n+1)\) crossbar array. We estimate the delay to be \(n + 4 \) clock cycles. Mapping the function into the crossbar array is performed similar to the approach explained in [96], i.e., one clock cycle for initializing the memristors to HRS, \(n + 1 \) cycles for programming \(n + 1 \) columns of the crossbar array, and two clock cycles for realizing a function—one cycle for realizing \(m \) stateful AND gates (NORs with negated inputs) and the other cycle for realizing a single NOR gate. We estimate the width of memory bus to be \[W = 3 \times (m + 1) + 5 \times (n + 1), \] as each horizontal wire is controlled by three signals to be connected to \(0V, V_{HS} \) and \(V_0 \), and each vertical wire is controlled by five signals to be connected to \(V_{CLEAR}, 0V, V_{VS}, V_0 \) and \(V_{SET} \) where \(V_{HS}, V_{VS} \) and \(V_0 \) are used to deselect a row, to deselect a column, and to realize a gate, respectively. Therefore, the size of the memory array \((W \times C_n)\) is \((5n + 3m + 8) \times (n \times 4)\).

3) *mPLA circuit based on CRS-CMOS gates*

An \(n \)-input AND-NOR function can be implemented using CRS-CMOS gates [97] in two crossbar arrays of \(m \times n \) (for realizing the AND gates) and \(1 \times m \) (for realizing a NOR gate). The delay is estimated to be \(n + 3 \) that is two cycles for initializing the CRS cells of each crossbar to HRS/LRS state, \(n \) cycles for mapping the function into AND crossbar, and one cycle for implementing the function. We estimate the width of memory bus to be
$W = 2 \times m + 3 \times (n+1) + (m+1)$ as each horizontal wire of the AND crossbar is controlled by two signals to be connected to $0V$ and V_{HS} (a non-destructive positive voltage) and each vertical wire is controlled by three signals to be connected to $V_{th,n}$, V_k, and $V_{th,p}$ (i.e., a destructive negative voltage, a non-destructive positive voltage which is equal to V_{HS}, and a destructive positive voltage, respectively). In addition, each wire of the NOR crossbar is controlled by one signal to be connected to either $0V$ or $V_{th,n}$ (during the initialization step). Note that V_{HS} is applied to deselect a row in the AND crossbar and V_R is applied to implement AND gates. Therefore, the size of the memory array $(W \times C_n)$ is $(3m+3n+4) \times (n+3)$.

4) mPLA circuit based on Boolean gates

An n-input NAND-AND function (or equivalently AND-NOR function) can be implemented with the Boolean AND, NAND, and COPY gates in an $(m+1) \times (2n+1)$ crossbar array [75]. The delay is five clock cycles. That is one cycle for the initialization of the memristors to HRS, one cycle for copying the inputs and their complements to the crossbar, one cycle for mapping the function into the crossbar, and two cycles for realizing the function [75]. We estimate the width of the memory bus to be $W = 4 \times (m + 2n + 2)$ as each horizontal wire is controlled by four signals to be connected to $0V$, V_{HS}, V_{SET}, and reference resistor R_g, and each vertical wire is controlled by four signals to be connected to V_{CLEAR}, V_{wh}, V_{SET}, and R_g where $V_{wh} = V_{HS}$. V_{wh} is used for implementing the gates, whereas V_{HS} is used for deselecting a row. Therefore, the size of memory array $(W \times C_n)$ is $20 \times (m + 2n + 2)$.

162
5) mPLA circuit based on hybrid gates

In the hybrid circuit, an n-input AND-NOR function can be implemented with hybrid diode OR and volistor AND gates in an $(m + 1) \times (2n + 1)$ crossbar array. The outputs of diode ORs represent logical NAND of input complements, (i.e., OR ($\neg a$, $\neg b$) = NAND (a, b)). Therefore, the mPLA can realize NAND-AND functions (or equivalently AND-NOR functions). The delay of the mPLA is two clock cycles. In addition, the width of memory bus is $W = 5 \times (m+1) + 6 \times (2n+1)$. Therefore, the size of the memory array is $24n + 10m + 22$.

6) Other circuits

There is another type of mPLA circuits, which use voltage as input and output, e.g., [98]. This type of mPLA was not used for in-memory computing, thereby, it is not compared to other mPLAs mentioned above.

Fig. 7.16 compares the percentage increase in the memory array for each approach. The memory percentage increase is defined as $F(x) = \frac{A(x) - A(hyb)}{A(hyb)} \times 100$ where $A(x)$ is the size of memory array and $x \in \{1, 2, 3, 4\}$ corresponds to the stateful IMPLY-CNIMP based mPLA, stateful NOR-NOT based mPLA, CRS-CMOS based mPLA, and Boolean based mPLA, respectively. In addition, $A(hyb)$ is the size of memory array in our hybrid based mPLA. The minimum increase in the memory array occurs in the Boolean based mPLA for $n = 8$ and it is 95%. The Boolean based mPLA has the second smallest memory array size after the hybrid based mPLA. In all mPLA circuits, m is assumed 2^{n-1}, i.e., the maximum number of minterms of function.
There are major differences between the implementation approaches shown in Fig. 7.16. For example, each mPLA has a different delay that affect the size of a memory array (Table 7.3). In the Boolean based mPLA, the design is ASIC, i.e., some of the memristors are in permanent HRS for realizing a specific function [75]. However, while authors discussed that the number of voltage levels for logic operations is only three, they did not discuss the size of a computational array. The hybrid circuit requires five voltage levels for initialization and function implementation \((V_{\text{CLEAR}}, v^-, 0V, v^+, V_{\text{SET}}) \), which results in a wider memory bus width. Despite its wider memory bus width, the size of the memory array in the hybrid mPLA is smaller than in other mPLAs (Fig. 7.16). The multiple voltage levels used in the hybrid mPLA allow to cascade multiple types of memristive gates such as stateful INH (NOR/NOT) gates [25], [98] and programmable memristive diode gates.

![Figure 7.16](image_url)
Fig. 7.16. Area estimation of memory array. The graphs show the maximum size of memory arrays in each mPLA circuit.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLY-CNIMP based mPLA</td>
<td>2n+5</td>
</tr>
<tr>
<td>NOR-NOT based mPLA</td>
<td>n+4</td>
</tr>
<tr>
<td>CRS-CMOS based mPLA</td>
<td>n+4</td>
</tr>
<tr>
<td>Boolean based mPLA</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid based mPLA</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 7.3
Delay of multiple mPLA circuits
with volistors. In fact, it is necessary to cascade volistors and other memristive gates to implement multilevel logic functions. Note that the size of the computational array in each mPLA is a function of \(n \) (the number of literals).

7.8 Conclusion

Logic operations with rectifying memristors reduce the negative effect of sneak current paths in crossbar arrays and enable volistor gates. Volistors make in-memory computing possible. We showed how to realize multiple volistor gates in parallel in crossbar arrays. In addition, the constraints for realizing volistor gates were explained. These constraints determine the size of the computational array and the voltage levels required for implementing the gates. An implementation example of programmable mPLA based on hybrid volistor and memristive diode gates was explained. The size and delay of the hybrid mPLA were compared to those of different mPLAs. In the hybrid mPLA, the delay is only two clock cycles and the size of the memory array is smaller than those of other mPLA circuits. The mPLA example shows the benefit of our new memristive circuit approaches.
Chapter 8

Memristive Circuit Architectures

Memristors are passive elements, and hence, memristive circuits require CMOS supplementary circuits for gain and signal restorations. Different circuit architectures for interfacing memristors and CMOS driving circuitries were proposed, e.g. CMOL [20] and [39] and demultiplexer [83-85] architectures. This chapter shows examples of two and three-dimensional CMOS-memristive circuit architectures describing the interface circuits between the CMOS and memristive parts. In three dimensional circuit example, a stack of two-dimensional crossbar arrays is utilized for parallel computing where the crossbars communicate via peripheral CMOS circuits.

8.1 CIRCUIT ARCHITECTURE FOR MEMRISTORS

Fig. 8.1 shows a block diagram of a 2D (two-dimensional) crossbar circuit for logic computations based on volistors and stateful gates. The computations take place in computational array connected to CMOS drivers shown as small rectangles. The memory arrays in Fig. 8.1 store the instructions and control signals. The same CMOS drivers shown in Fig. 2.7 can be used in Fig. 8.1. Each wire of the computational array is controlled by three or four signals stored in a memory array. The crossbar arrays are fabricated on top of the CMOS layer and can be scaled into 3D (three-dimensional) array as illustrated in Fig. 8.2. The 3D arrays have more complicated drivers than 2D arrays. The drivers in 3D arrays shown in Fig. 8.2 must be capable of moving data vertically between the computational arrays. The number of control signals of each driver depends on the number of computational arrays s in the stack. For example, the number of control signals for
driving each wire of the 3D array could be $s + 4$. Fig. 8.3 shows the schematic of the CMOS driver when $s = 5$. The driver is capable of setting each wire to $0V$, V_{COND}, V_{PROG}, or connecting the wire to the GND through load resistor R_g or terminating the wire to high impedance. In addition, it is capable of connecting two parallel wires of any two computational arrays. In Fig. 8.3, terminal 13 is the output terminal of the driver. Each of terminal 5 - terminal 8 is connected to a wire of a different computational array. Other terminals, 1 - 4 and 9 - 12, are driven by control signals stored in a memory array. Fig. 8.4 illustrates a stack of four computational arrays and their drivers. The arrays communicate through the CMOS drivers. Fig. 8.5 shows which and how wires of multiple computational arrays are connected.

Fig 8.1. Bock diagram of a memristive circuit for logic computations (upper view). Logical operations are implemented in the computational array. The memory arrays store the instructions. Memory arrays and computational array communicate through CMOS drivers shown as small rectangles.
Fig. 8.2. Block diagram of a 3D memristive array (top side view).

Fig. 8.3. (a) Schematic of a single CMOS driver in Fig. 8.2. (b) Driver’s circuitry.
Fig. 8.4. Schematic of four stacked computational arrays and their CMOS drivers (bird view). Outputs of the stacked computational arrays are beneath the memory arrays. The memory arrays are not shown in this figure.

Fig. 8.5a shows terminals 5-8 and 13 of four stacked CMOS drivers (bird view) and how the black output wires of the drivers communicate through the terminals. The black parallel wires are belong to four stacked computational arrays. Fig. 8.5b shows terminals 5-8 and 13 of four stacked CMOS drivers (side view) when only the connections of the most bottom driver are illustrated. Fig. 8.5c shows all the connections of Fig. 8.5b. The three-dimensional circuit shown in Fig. 8.4 enables parallel computing where all computational arrays can process simultaneously. Note that the driver shown in Fig. 8.2 can be modified to allow performing hybrid volistor and stateful logic gates as shown in Fig. 8.6. The complexity of the driver is increased by one additional control signal (14),...
which allows for selecting between volistor and stateful logic operations. The total number of transistors used in this driver is $s + 19$.

Fig. 8.5. (a) Schematic of driver’s interconnections with computational arrays shown in Fig. 8.2 (bird view) (b) Four stacked CMOS drivers (Bird view). (c) Schematic of four stacked CMOS drivers which shows how four wires of four stacked computational arrays communicate through the drivers (side view).
Fig. 8.6. CMOS driver for logic computing with hybrid volistor and stateful logic operations.
Chapter 9

Summary, Conclusion, Achievements and Future Work

9.1 SUMMARY AND CONCLUSION

The research reported in this dissertation focused on one particular problem: How to improve logic computations based on memristor technology in non von-Neumann architectures. To proceed with this goal, multiple design choices for logic computations were studied. We found that the use of rectifying memristors (over non-rectifying memristors) is desirable for logic computations due to the power and area saving benefits, as described in Section 2.5. Using the rectifying memristors with a particular bias scheme produce converse non-implication gates which forms a functionally complete set of logic gates with TRUE operation. The ISD notation for logic analysis and synthesis with IMPLY gates is extended to EISD to enable logic synthesis with IMPLY and INH gates. Capitalizing on the characteristics of rectifying memristors, a particular realization of logic gates called volistors were introduced. Volistors allow voltages to be used directly as inputs. This eliminates the need for a reference resistor to read out the inputs in the first logic level and thus eliminates the most power-hungry circuit element in most of the stateful gates. Using multiple crossbars in a network provides parallelization, leading to pipelined architectures. Several different first-level volistor operations can be computed in separate crossbars at the same time, speeding up what is typically the most complex level of implementing Boolean functions. Subsequent logic levels can be accomplished in connected crossbars in an approach that uses mixed input gates and stateful NOR. This
A hybrid approach with volistors and stateful INH NOR can be used to compute logic faster, with less power than a solely stateful approach.

A programmable diode logic gate is another logic computing style proposed in this dissertation. The programmable diode gates also rely on rectifying memristors to allow voltages to be used directly as inputs. A memristive PLA-like circuit called mPLD-XOR was proposed using the programmable diode gates. The mPLD-XOR is designed to implement multi-output functions well suited for XOR of sums or products structure such as arithmetic and communication functions. The input levels of such functions are realized with programmable diode gates and the output levels with CMOS modulo-two counters. The number of computational steps for calculating a multi-output function equals the maximum number of inputs to any output XOR gate when the number of modulo-two counters is large enough to calculate the outputs simultaneously. A 3-bit adder and 3-bit multiplier were implemented using the mPLD-XOR, and the size and performance of each circuit were compared with the implementation of stateful gates. The size of ReRAM and the number of clock cycles for realizing the adder in mPLD-XOR approach to the stateful approach are 280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are 564:4290 and 12:65. Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11, allows the implementation of a multilevel XOR logic network with any combination of sums, products, XORs, and literals at the input of any XOR gate. The mPLD-XOR with feedback circuit has the potential to decrease the number of computational steps and the size of ReRAM. In realizing the 3-bit multiplier, the size of ReRAM and the number of computational steps in mPLD-XOR with a feedback circuit to the mPLD-XOR without a
feedback circuit are 564:1400 and 12:40, respectively. A 16-bit adder is also implemented in the mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the mPLD-XOR is smaller than the Artix-7 FPGA but performs slower. In addition, the size and delay comparisons of an \(N \)-bit adder realized with multiple approaches show that the mPLD-XOR adder is more area-delay efficient.

A new approach for realizing a two-input XNOR logic gate was proposed. The realization of a multi-input XNOR gate using the 2-input volistor XNOR gate was also described. Volistor XNOR gates enable a resistive computation of arithmetic and communication circuits that use multi-input XNOR gates. The computational delay of the \(N \)-input XNOR gate is \(2N-1 \). Comparisons were made for power, area, and delay evaluation demonstrating the benefits of the volistor XNOR gate.

New implementation approach for multiple volistor gates in crossbar arrays was proposed. In addition, the constraints for realizing volistor gates were described. These constraints determine the size of the computational array and the voltage levels required for implementing the gates. An implementation example of programmable mPLA based on hybrid volistor and memristive diode gates was explained. In the hybrid mPLA, the delay is only two clock cycles and the size of the memory array is smaller than those of other mPLA circuits.

Example of a three-dimensional memristive circuit was shown. The interface between CMOS and memristive circuits were designed. The circuit allows for parallel computing.

In conclusion, the problem of communication and memory access in von Neumann architectures potentially can be solved using memristive technology. Memristors can be
used simultaneously as storage and processing elements enabling in-memory computing architectures. In this dissertation, multiple approaches for logic computations were proposed to increase computational efficiency. Examples were presented demonstrating the benefits of the proposed approaches.

In future work, the three-dimensional circuit structure proposed in Chapter 8 will be investigated for logic computations. The computation efficiency and energy dissipation will be evaluated, and the possibility of replicating the circuit and connecting multiple such circuits will be studied.

9.2 Achievements and Publications

This dissertation shows novel logic styles (techniques for logic computations) based on memristors. These techniques can be effectively used in FPGA-like circuits to decrease the computational delays (compared with fully stateful logic approaches). These new techniques are capable of decreasing the power dissipation by eliminating the frequently need for the programming step in stateful logic approaches. The programming step is usually the most power-hungry step in stateful logic approaches. The proposed techniques in this dissertation can be used together to implement two-level logic functions (SOP and POS) in just one clock cycle. The new approaches enable in-memory computing in non von-Neumann architectures. A complete example of hybrid CMOS-memristive circuit including control and datapath are shown. The circuit (mPLD-XOR) is capable of realizing generalized ESOP functions. The mPLD-XOR is designed with a very simple control and datapath compared to other proposed hybrid CMOS-memristive circuit structures [78]. The main contributions in this dissertation are published in journal papers as mentioned below.

APPENDIX Power Properties

Property 1. When \(S_1 > 0 \), the power consumption in a target memristor during VL operation can be approximated as shown in (3.3).

\[
P_T^{VL} \approx 4 \times P_S^{VL}
\]
(3.3)

Proof: The power consumption in a target memristor during VL operation is

\[
P_T^{VL} = \frac{(v_W^+ v^-)^2}{R_{OPEN}} = \frac{(v_W^+ v^+)^2}{R_{OPEN}},
\]

and the power consumption in a source memristor set to logic ‘0’ during VL operation is

\[
P_S^{VL} = \frac{v_W^2}{R_{OPEN}}.
\]

Substituting \(P_T^{VL} \) and \(P_S^{VL} \) in (3.3) results in

\[
\frac{P_T^{VL}}{P_S^{VL}} = \frac{(v_W^+ v^-)^2}{v_W^2} = \frac{(v_W^+ v^+)^2}{v_W^2}.
\]

Let \(v^+ = V_W + \varepsilon \), then

\[
\frac{P_T^{VL}}{P_S^{VL}} = \left(\frac{2V_W + \varepsilon}{V_W} \right)^2 = \left[2 + \frac{\varepsilon}{V_W} \right]^2.
\]

The minimum and maximum values of \(\frac{P_T^{VL}}{P_S^{VL}} \) are calculated for \((S_i, S_0, T) = (6, 1, 1) \) and \((1, 1, 6) \), respectively. The crossbar array is simulated for these combinations obtaining \(4.002 \leq \frac{P_T^{VL}}{P_S^{VL}} \leq 4.052 \). Therefore, for any combination of \(S_i, S_0, \) and \(T \) where \(S_1 > 0 \), \(P_T^{VL} \approx 4 \times P_S^{VL} \).

Property 2. When \(S_1 > 0 \), the power consumption in load resistor \(R_G \) can be approximated as shown in (3.4).

\[
P_{RG} \approx 8 \times P_T^{SL}
\]
(3.4)

Proof: The power consumption in load resistor \(R_G \) is

\[
P_{RG} = \frac{v_W^2}{R_G},
\]

and the power consumption in a target memristor during SL operation is

\[
P_T^{SL} = \frac{(\tilde{v}_W^+ v^-)^2}{R_{OPEN}} = \frac{(\tilde{v}_W^+ v^+)^2}{R_{OPEN}}.
\]

Substituting \(P_{RG} \) and \(P_T^{SL} \) in (3.4) results in

\[
\frac{P_{RG}}{P_T^{SL}} = \frac{v_W^2}{R_G} \times \frac{R_{OPEN}}{(v_W^+ v^-)^2} = \frac{R_{OPEN}}{R_G} \times \frac{1}{\left(\frac{v_W^+ v^+}{v_W^2} \right)^2}.
\]

Let \(v^+ = \tilde{V}_W + \tilde{\varepsilon} \). As a result,

\[
\frac{P_{RG}}{P_T^{SL}} = \frac{R_{OPEN}}{R_G} \times \frac{1}{\left(\frac{2v_W^+ \varepsilon}{2v_W} \right)^2} = \frac{R_{OPEN}}{R_G} \times \frac{1}{\left[2 + \frac{\varepsilon}{V_W} \right]^2}.
\]

The minimum and maximum values of \(\frac{P_{RG}}{P_T^{SL}} \) are calculated for \((S_i, S_0, T) = (7, 0, 1) \) and \((1, 0, 7) \), respectively. The crossbar array is simulated for these combinations obtaining \(7.542 \leq \frac{P_{RG}}{P_T^{SL}} \leq 7.866 \). Therefore, for any combination of \(S_i, S_0, \) and \(T \) where \(S_1 > 0 \), \(P_{RG} \approx 8 \times P_T^{SL} \).

\(P_T^{VL} \) and \(P_T^{SL} \) in (3.3) and (3.4) can be substituted by \(P_T \) as the power consumption in a target memristor during SL and VL operations is approximately equal to 2 nW.
Property 3. When $S_1 > 0$, the power consumption in source memristors during SL operation is significantly smaller than the total power consumption in target memristors and load resistor R_G as shown in (3.5).

$$\frac{P_{SL1}}{P_{SL-SL}} \ll 1 \quad (3.5)$$

Proof: The simulation results show that the power consumption in source memristors during SL operation (P_{SL1}) is negligible when compared to the power consumption in target memristors and load resistor R_G. The power consumption in source memristors set to logic ‘1’ is 1000 times larger than the power consumption in source memristors set to logic ‘0’ since

$$\frac{P_{SL1}}{P_{SL-SL}} = \frac{(v^+ - V_W)^2}{R_{CLOSED}} \times \frac{R_{OPEN}}{(v^+ - V_W)^2} = 10^3$$

Substituting $P_{SL1} = 10^3 \times P_{SL0}$ to $\frac{P_{SL1}}{P_{SL-SL}}$ results in

$$\frac{(S_1 \times P_{SL1})}{P_{SL-SL}} = \frac{(S_1 \times 10^3 + S_0 \times P_{SL0})}{P_{SL-SL}}$$

Substituting $P_{SL} - P_{SL1}$ with $T \times P_T + P_{RG}$ or its equivalent $(T + 8) \times P_T$ in $\frac{(S_1 \times 10^3 + S_0 \times P_{SL1})}{P_{SL-SL}}$ results in

$$\frac{(S_1 \times 10^3 + S_0 \times P_{SL1})}{(T + 8) \times P_T} \approx \frac{P_T}{P_{SL0}}$$

It is required to compute the minimum value of $\frac{P_T}{P_{SL0}}$ to verify $\frac{(S_1 \times 10^3 + S_0)}{(T + 8) \times P_T} \approx \frac{P_T}{P_{SL0}} \ll 1$. The $\frac{P_T}{P_{SL0}}$ ratio is equal to

$$\frac{(v_W - v^+)^2}{R_{OPEN}} \times \frac{R_{OPEN}}{(v^+ - V_W)^2} \quad \text{or} \quad \frac{P_T}{P_{SL0}} = \left(\frac{2v_W}{\varepsilon} + 1\right)^2$$

substituting $v^+ = V_W + \varepsilon$. The minimum value of $\frac{P_T}{P_{SL0}}$ is obtained for $(S_1, S_0, T) = (1, 1, 6)$. For this combination, $\frac{P_T}{P_{SL0}} = 21.949$ and thus $\frac{(S_1 \times 10^3 + S_0)}{(T + 8) \times P_T} \approx \frac{P_T}{P_{SL0}} = 0.036$, which is considerably smaller than 1 and proves (3.5).

The immediate consequence of (3.5) is used for deriving (3.7).

Property 4. The power consumption in source memristors connected to logic ‘1’ during VL operation is considerably smaller than the total power consumption in source memristors connected to logic ‘0’ and target memristors as shown in (3.6).

$$\frac{S_1 \times P_{VL1}}{P_{VL-SL}} \ll 1 \quad (3.6)$$

Proof: The simulation results show that the power consumption in source memristors set to logic ‘1’ during VL operation is negligible when compared to the power consumption in all memristors. In other words,

$$\frac{S_1 \times P_{VL1}}{P_{VL-SL}} = \frac{S_1 \times P_{VL1}}{S_0 \times P_{SL0} + T \times P_T} \ll 1$$

With the substitution of (3.3),
\[
\frac{S_1 \times P_{S1}^{VL}}{S_0 \times P_{S0}^{VL} + T \times P_T} \approx \frac{S_1 \times P_{S1}^{VL}}{S_0 \times \frac{P_T}{4} + T \times P_T} = \frac{S_1}{\frac{P_T}{4} + T} \ll 1
\]

The minimum value of \(\frac{P_T}{P_{S1}} \) is required to verify \(\frac{S_1 \times P_{S1}^{VL}}{P_{VL} \times S_1 \times P_{S1}^{VL}} \ll 1 \) and obtained for the \((S_1, S_0, T) = (1, 0, 7)\)

\[
P_T = \frac{(2V_W + \varepsilon)^2}{R_{\text{CLOSED}}} \times \frac{R_{\text{OPEN}}}{(V^+ - V_W)^2} = 10^{-3} \times (2V_W + 1)^2
\]

where \(\varepsilon = v^+ - V_W \). The minimum value of \(\frac{V_W}{\varepsilon} \) is 70.929, based on our simulation results, and thus \(\frac{P_T}{P_{S1}} = 20.409 \). Therefore, \(\frac{S_1 \times P_{S1}^{VL}}{P_{VL} \times S_1 \times P_{S1}^{VL}} \approx 0.007 \), which is significantly smaller than 1 and proves (3.6). The immediate consequence of (3.6) is used for deriving (3.7).

Property 5. When \(S_1 = 0 \), the power consumption in source memristors connected to logic ‘0’ during VL operation is considerably smaller than the power consumption in target memristors as shown in (3.8).

\[
\frac{S_0 \times P_{S0}^{VL}}{T \times P_T^{VL}} \ll 1 \quad \text{(3.8)}
\]

Proof: Our simulation results show that the power consumption in memristors during VL operation approximately equals to the power consumption in target memristors when \(S_1 = 0 \). Moreover, the ratio equals

\[
\frac{S_0}{T} \times \frac{V_W^2}{R_{\text{CLOSED}}} \times \frac{R_{\text{OPEN}}}{(V_W + v^+)^2} = 10^{-3} \left(\frac{S_0}{T} \right) \times \frac{1}{(1 + \frac{V_W}{v^+})^2}
\]

The upper bound of \(\frac{P_{S0}^{VL}}{P_T^{VL}} \) is obtained for \((S_0, T) = (7, 1)\) where \(V_W = -75.417 \, \mu \text{V} \). As a result, \(\frac{P_{S0}^{VL}}{P_T^{VL}} = 1.106 \times 10^{-4} \), which is considerably smaller than 1 and proves (3.8). Note that for a larger crossbar array, such as \(1 \times 64 \), Equation (3.8) still holds where the upper bound of \(\frac{P_{S0}^{VL}}{P_T^{VL}} \), obtained for \((S_0, T) = (63, 1)\), equals \(1.229 \times 10^{-5} << 1 \).