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Abstract

We have constructed a new finite-difference time-domain (FDTD) method in this

project. Our new algorithm focuses on the most important and more challenging

transverse electric (TE) case. In this case, the electric field is discontinuous across

the interface between different dielectric media. We use an electric permittivity ε that

stays as a constant in each medium, and magnetic permittivity that is constant in the

whole domain. To handle the interface between different media, we introduce new

effective permittivities that incorporates electromagnetic fields boundary conditions.

That is, across the interface between two different media, the tangential component

Eτ (x, y) of the electric field and the normal component Dn(x, y) of the electric dis-

placement are continuous. Meanwhile, the magnetic field H(x, y) stays as continuous

in the whole domain. Our new algorithm is built based upon the integral version of

the Maxwell’s equations as well as the above continuity conditions. The theoretical

analysis shows that the new algorithm can reach second-order convergence O(∆x2)

with mesh size ∆x. The subsequent numerical results demonstrate this algorithm is

very stable and its convergence order can reach very close to second order, considering

accumulation of some unexpected numerical approximation and truncation errors. In

fact, our algorithm has clearly demonstrated significant improvement over all related

FDTD methods using effective permittivities reported in the literature. Therefore,

our new algorithm turns out to be the most effective and stable FDTD method to

solve Maxwell’s equations involving multiple media.
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Chapter 1

Finite-Difference Time-Domain Basics

In this chapter, we will go over the basic aspects of the finite-difference time-domain

(FDTD) algorithm, one of the most popular numerical methods in computational

electrodynamics. Just like most methods in computational electrodynamics, FDTD

is built from Maxwell’s equations directly, as proposed by Yee in 1966 in his land

mark paper [23]. Since then, many improvements have been made towards the FDTD

algorithm, such as introduction of Perfectly Match Layers (PML), which introduces

an absorbing boundary condition allowing the waves to leave the simulated area

without unexpected reflection [2]. The FDTD method surely has its own limitations.

The algorithm naturally requires a completely structured grid also known as the Yee

grid. However, Many real world problems have complicated geometries which causes

troubles when the objects being modeled do not fit the grid very well. This will be

discussed in great detail in the next chapter.

On the other hand, FDTD algorithm has many useful characteristics that make

it one of the most popular numerical methods in computational electrodynamics.

FDTD algorithm is a time marching forward method which easily makes a visual

representation of the fields and gives the user a more intuitive insight into the model.

This method also scales very well since the number of computation required is propor-

tional to the size of the model and the method requires no large-scale linear algebra

computation. The method has been demonstrated to scale linearly, which turns out

1



to be a good advantage compared with other methods. Another benefit of FDTD

is that a single simulation can provide the results for either ultra-waveband tempo-

ral waveforms or the sinusoidal steady-state response at any frequency within the

excitation spectrum [20].

1.1 Maxwell’s Equations and Constitutive Relations

We will show how FDTD algorithm works by building the updating equations from

the time-dependent Maxwell’s equations. We follow the paper [20] to present both

differential and integral forms of the equations. These equations assume there is no

electric or magnetic current sources.

Faraday’s Law:

∂B

∂t
= −∇× E−M (1.1)

∂

∂t

¨
A

B · dA = −
˛
l

E · dl−
¨
A

M · dA (1.2)

Ampere’s Law:

∂D

∂t
= ∇×H− J (1.3)

∂

∂t

¨
A

D · dA =

˛
l

H · dl−
¨
A

J · dA (1.4)

Gauss’ Law For the electric field:

∇ ·D = 0 (1.5)

2



‹
A

D · dA = 0 (1.6)

Gauss’ Law For the magnetic field:

∇ ·B = 0 (1.7)

‹
A

B · dA = 0 (1.8)

The Constitutive Relation:

D = εE (1.9)

B = µH (1.10)

3



where the symbols and their units are defined as below:

E : electric field (volts/meter)

D : electric flux density (coulombs/meter2)

H : magnetic field (amperes/meter)

B : electric flux density (webers/meter2)

J : electric current density (amperes/meter2)

M : equivalent magnetic current density (volts/meter2)

ε : electric permittivity (farads/meter)

µ : magnetic permeability (henrys/meter)

In this paper, both J and M are set to zero to simplify the Maxwell’s equations. In

fact, the constitutive relations can become more complex when the materials become

nonlinear and anisotropic. For anisotropic dielectrics, the electric permittivity ε, turns

out to be a dielectric tensor.

1.2 The Basic Algorithm and Yee Grid

Based on the work of Kane Yee [23], we derive the basic FDTD algorithm to solve the

Maxwell’s equations. By following Yee’s paper, there have been tremendous efforts

towards improvements of the basic FDTD algorithm. The current form of the basic

algorithm is outlined in Algorithm 1.1.

To build the updating equations for the electric and magnetic fields, we first apply

4



Algorithm 1.1: Outline of FDTD

1: Build a space incorporating the tested device with PMLs
2: Set all fields equal to zero
3: repeat
4: Update D from H
5: Update E from D
6: Preform needed changes to handle E -field source
7: Update B from E
8: Update H from B
9: Preform needed changes to handle H -field source

10: Record field data
11: until enough cycles have been run then show the results
12: Perform post-processes on the recorded data

finite difference scheme to the Maxwell’s equations.

∇× E(t) = −∂B(t)

∂t

= −
B|(t+ ∆t

2
) −B|(t−∆t

2
)

∆t
(1.11)

and

∇×H(t+ ∆t
2

) =
∂D(t)

∂t

=
D|(t+∆t) −D|(t)

∆t
(1.12)

Then the updating equations can be formed using (1.11) and (1.12) as below:

B|(t+ ∆t
2

) = B|(t−∆t
2

) −∆t(∇× E|(t)) (1.13)

and

D|(t+∆t) = D|(t) + ∆t(∇×H|(t)) (1.14)

5



It is important to note that these updating equations stagger E and H fields in time,

where E is updated at the whole time steps while H is updated at the half time steps.

Therefore we only know E or H at a given time, and have to interpolate one or the

other to have them at the same time. This can be done by using midpoint rule in our

finite difference scheme.

Figure 1.1: A classic unit cell in the Yee grid as the black dotted line box where the E-
components are at the midpoints of the edges and H-components are at the centers of the
faces. This figure is a reproduction from [19].

In Figure 1.1, you can see that not only E and H stagger in time, but each

component of the fields E and H also stagger in space. This elegant design solve the

Maxwell’s equations efficiently. By setting up the field components in this way, the

algorithm is naturally divergence free, thereby satisfying Gauss’ laws directly.

Under the situation of diagonal dielectric tensors, the Maxwell’s equations along

6



with constitutive relation (1.13) and (1.14) become

Ex|(t+∆t) = Ex|(t) +
∆t

εxx

(
∂Hz

∂y
− ∂Hy

∂z

)
Ey|(t+∆t) = Ey|(t) +

∆t

εyy

(
∂Hx

∂z
− ∂Hz

∂x

)
Ez|(t+∆t) = Ez|(t) +

∆t

εzz

(
∂Hy

∂x
− ∂Hx

∂y

)
Hx|(t+ ∆t

2
) = Hx|(t−∆t

2
) −

∆t

µxx

(
∂Ez
∂y
− ∂Ey

∂z

)
Hy|(t+ ∆t

2
) = Hy|(t−∆t

2
) −

∆t

µyy

(
∂Ex
∂z
− ∂Ez

∂x

)
Hz|(t+ ∆t

2
) = Hz|(t−∆t

2
) −

∆t

µzz

(
∂Ey
∂x
− ∂Ex

∂y

)
(1.15)

Then by applying finite different scheme, we get the electric and magnetic field up-

7



dating equations as below.

Ex|(t+∆t) = Ex|(t) +
∆t

εxx

(
H i,j,k
z |(t+ ∆t

2
) −H i,j−1,k

z |(t+ ∆t
2

)

∆y

−
H i,j,k
y |(t+ ∆t

2
) −H i,j,k−1

y |(t+ ∆t
2

)

∆z

)

Ey|(t+∆t) = Ey|(t) +
∆t

εyy

(
H i,j,k
x |(t+ ∆t

2
) −H i−1,j,k

x |(t+ ∆t
2

)

∆z

−
H i,j,k
z |(t+ ∆t

2
) −H i−1,j,k

z |(t+ ∆t
2

)

∆x

)

Ez|(t+∆t) = Ez|(t) +
∆t

εzz

(
H i,j,k
y |(t+ ∆t

2
) −H i−1,j,k

y |(t+ ∆t
2

)

∆x

−
H i,j,k
x |(t+ ∆t

2
) −H i,j−1,k

x |(t+ ∆t
2

)

∆y

)

Hx|(t+ ∆t
2

) = Hx|(t−∆t
2

) −
∆t

µxx

(
Ei,j+1,k
z |t − Ei,j,k

z |t
∆y

−
Ei,j,k+1
y |t − Ei,j,k

y |t
∆z

)

Hy|(t+ ∆t
2

) = Hy|(t−∆t
2

) −
∆t

µyy

(
Ei,j,k+1
x |t − Ei,j,k

x |t
∆z

− Ei+1,j,k
z |t − Ei,j,k

z |t
∆x

)
Hz|(t+ ∆t

2
) = Hz|(t−∆t

2
) −

∆t

µzz

(
Ei+1,j,k
y |t − Ei,j,k

y |t
∆x

− Ei,j+1,k
x |t − Ei,j,k

x |t
∆y

)
(1.16)

As you can see in Figure 1.2, the Hz component is located at the midpoint of two

neighboring Ey components and also at the midpoint of neighboring two Ex com-

ponents. This also hold for all other five field components. In Section 3.1, we will

develop new updating equations for Hz, Ex and Ey components cross the interface

of two different dielectric media based on the integral form of the Maxwell’s equations.

8



Figure 1.2: A classic unit cell in the Yee grid with a representation of the updating equation
for Hz, located at the midpoint of two Ey terms and the midpoint of two Ex terms. This
figure is a reproduction from [19].

Figure 1.3: A common setup for a two dimensional FDTD. The total-field and scattered-
field under white background are separated by solid lines and PML layer is shown as green
along the edge.

1.3 Aspects of Running the FDTD Algorithm

In Figure 1.3, we implement a two dimensional FDTD algorithm. The total field is

the inner region which is simulated by the FDTD and the scattered field is the outer

region which only count for the scattered field thus allowing the waves to leave the

9



simulated area. In order to excite the fields, an incident wave source is excited within

the total-field region. The source is not counted in the scattering-field. Meanwhile,

a perfectly matched layer(PML) absorbing boundary condition is also introduced

around the scatter field region. The PML layer ensures the system absorbs incoming

electromagnetic waves to let the waves leave the whole region without any unexpected

reflection.

The FDTD implementation in two dimensional environment can be easily ex-

tended to one or three dimensional scenarios. Since the topics of total-field/scattered-

field, PML boundary condition, and incident wave source are not the focus of this

dissertation, we do not discuss them in more details.

10



Chapter 2

Literature Review

In this chapter, we will review the most recent improvements on the FDTD algorithm

as a foundation of our new scheme presented in the next chapter. In particular, we

will focus on the related literature that use FDTD method to solve the Maxwell’s

equations within a domain consisting of multiple media with distinct permittivities.

This leads to discontinuity for discretization of the Maxwell’s equations across the

interface between different media.

The original FDTD algorithm proposed in Yee’s paper assigned each of the field

component an electric permittivity and a magnetic permeability solely based on the

material properties at its location [23]. The discretization of the field components can

lead to the meshed shape of the device quite different from its real shape as shown

in Figure 2.1. This is commonly known as the staircasing or pixelation problem.

Therefore, the original algorithm proposed by Yee has been regarded as the staircasing

method.

This pixelation introduces an error in the FDTD algorithm. In general, the stair-

casing has an error that scales with O(∆x2) given a grid size of ∆x for cells that

are homogenous. However, in cells that contain a media interface, the local error

becomes O(1). Even though the number of cells that contain an interface is often a

small fraction of the total cells, these local errors can cause a rough global error of

O(∆x). Furthermore, small changes in the grid in either size or position could induce

11



Figure 2.1: (a)The staircasing method to model devices with curved surfaces leads to heavy
pixelation; (b) A close look up of the field components. This figure is a reproduction from
[17].

large changes for the global error. Therefore, it is possible that decreases in grid size

could lead to a substantial increase in the global error of the algorithm. Such sporadic

behavior of the error makes the staircasing method undesirable for many cases [21].

2.1 Approaches to Overcome the Pixelation Problem

Recent research in modern optics and electromagnetism dealing with the Maxwell’s

equations have focused on more and more complex geometries with different materials

so that the complicated dielectric tensor can cause serious pixelation issues. In turn,

there have been many improvements in FDTD algorithms to overcome these pixela-

tion issues. The main goal of these research resutls is to ensure the FDTD algorithm

still retains the second-order global error in a non-homogenous domain consisting of

multiple media. However, many proposed algorithms not only increase the algorithm

complexity significantly, but also lose the benefits of the FDTD algorithm. In order

to maintain the benefits of the FDTD algorithm, the following approaches have been

proposed. Each of them has its own merits and drawbacks.

12



One way to overcome the pixelation problem is by fitting the mesh to the de-

vice, thereby generating the so-called non-orthogonal FDTD. As seen in Figure 2.2,

the constructed mesh provides an accurate representation of the device [7]. Even

though this method converges faster than the standard FDTD method, it suffers

from many problems. The complexity of the algorithm is much larger than origi-

nal FDTD method as this method is a hybrid of FDTD and finite element method

(FEM). Meanwhile, it has well-known time stability issues [4].

Figure 2.2: Showing the comparison of orthogonal mesh (a) and nonorthogonal mesh (b) of
a cylinder in a 2D setup [7]. This figure is a reproduction from [7].

Another method is to keep the orthogonal grid but refine the mesh around the

cells close to the interfaces, also known as the sub-griding method. Much like the

Finite element method, this method just decreases the mesh size in those neighboring

cells in order to increase the accuracy of the algorithm while keeping the computation

load increase as minimal as possible [14]. The problem of this method occurs at the

boundary of the two different meshes as seen in figure Figure 2.3. Not only the

locations of field components may not match at the boundary, but the calculation

of the field components at the boundary is also complicated since the adjacent field

13



components may not exist. The main concern of this method is how to handle the

boundary of two different meshes to ensure the method is both stable and accurate.

Figure 2.3: The boundary of the original grid and the subgrid with refinement factor r = 3
on a 2D orthogonal TE case, showing how some of the boundary field components require
modified updating equation. This figure is a reproduction from [14].

To keep a completely structured grid and maintain all the benefits of FDTD,

another method redefines Maxwell’s integral equations around the boundary of the

device to match its contour. This is known as the contour-path (CP) FDTD, as seen

in Figure 2.4. This method has specialized updating equations for each cell near the

boundary, and some field components go unused, some are borrowed from the nearest

neighbor and some field components must be interpolated [12]. The benefits of this

method is that it only slightly increase the CPU time and memory load. However,

the requirement of borrowing the nearest neighbor can give rise to instabilities issues

[4]. Also there is some loss of the accuracy since some field components are unused

by the algorithm.

The methods discussed in the next section will be the focus of this dissertation.

They use so-called sub-pixel smoothing techniques to change the permittivities of the

field components in order to produce better results by taking account of many different

factors, such as the interface conditions, permittivities of adjacent field components
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Figure 2.4: (a) shows the Faraday contours. (b) shows the changes in the Faraday updating
equations to match the boundary condition of the device. This figure is a reproduction from
[12].

and so on. While there are various approaches as shown in the next section, these

effective permittivities smooth out the pixel error or at the very least stabilize it. The

main benefit of these methods is that there is a negligible increase of the numerical

load since all the permittivities have been calculated beforehand and stored in a

matrix before the main FDTD algorithm loop. Also, these effective permittivities

can handle many situations and can be combined with other methods seamlessly.

2.2 Methods of Sub-pixel Smoothing and Effective Permittivities

The key point in developing a method for sub-pixel smoothing is to compute effective

permittivities for all the cells around the boundary, even for devices with very simple

geometries, as in seen in Figure 2.5. The earliest method of sub-pixel smoothing is the

volume average effective permittivity (V-EP) because of its simple implementation.

This method assigns effective permittivities for all the field components in a cell that

contains media boundary. The effective permittivities are calculated by taking a

weighted average based on how much percent of the volume each medium occupies.

15



Figure 2.5: One-quarter cross-section of a dielectric cylinder showing a surface cause many
ways to determine effective permittivity. This figure is a reproduction from [5].

The equation is as follows.

εeff = Vε1(i, j, k) ∗ ε1 + (1− Vε1(i, j, k)) ∗ ε2 (2.1)

Where Vε1(i, j, k) is the ratio of the volume of the (i, j, k) cell occupied by the material

with permittivity ε1 over the whole cell volume [5].

This method is very simple for implementation, quite intuitive and has very low

computation cost. Moreover, it greatly stabilizes the error fluctuation that occurs in

the staircasing method. All these factors have made this method quite popular [5].

The big drawback of this method is that it does not decrease the error rapidly and

in some situations, its error can be worse than staircasing method.

It was quickly noticed that boundary conditions played an important role in de-

termining effective permittivity in order to maintain the algorithm’s accuracy. In

particular, those methods based on perturbation theory to fix the pixelation prob-

lem failed to predict the lowest-order behavior and often gave incorrect results if the

electric permittivity was discontinuous at the interface of the media. Such problems

were compounded when the permittivity of the device became a dielectric tensor.
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Therefore, new smoothing methods which forces the continuous electric dielectric

permittivity were proposed to overcome these issues [11].

The first attempts of smoothing the dielectric permittivity resolved some of the

problems with discontinuous permittivities but caused new issues. Some of the new

smoothing methods ended up with worse errors than FDTD algorithms without any

smoothing. The main problem was identified as not always satisfying the interface

conditions for electromagnetic fields, that is, the component of E parallel to the

interface (E‖) and the component of D perpendicular to the interface (D⊥) should be

continuous across the material interface. To address this issue, an effective dielectric

tensor was proposed for isotropic materials as follows.

ε−1 = P[ε−1] + (1−P)[ε]−1 (2.2)

where P is the projection matrix Pij = ninj onto the normal direction of the interface,

[ε−1] and [ε] are the volume average of ε−1 and ε in each cell [6].

This proposed method which satisfies interface conditions for electromagnetic

fields in equation 2.2 was shown later to have late-time instabilities. To overcome

this, many possibilities to average the effective dielectric tensor were explored as seen

in Figure 2.6. Part (c) of Figure 2.6 was the one that was chosen since it made the

effective dielectric tensor symmetric and positive semi-definite. The new method re-

placing (b) by (c) as seen in Figure 2.6 ensured all the eigenvalues are non-negative

so that eigenmodes have real frequencies in the standard Yee algorithm to avoid late

time instabilities caused by complex frequencies [22]. After that, subsequent work

on the effective dielectric tensor continued and began to include general anisotropic

materials, until they could achieve convergence between first-order and second-order

[13], [18]. The most recent scheme that has shown the highest accuracy takes the
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Figure 2.6: Four methods of interpolating Ex by using εxy and its neighboring values of Dy.
(b) was used [6] until (c) was proven to be the only stable scheme in [22]. This figure is a
reproduction from [22].

average of eight “triplets” as shown in Figure 2.7 [1].

Although the method shown in Figure 2.7 is highly accurate, this effective dielec-

tric tensor denoted as εacc can still be asymmetric thus unstable for certain conditions.

Therefore the last improvement of the effective dielectric tensor makes it symmetric

as seen below [21].

εeff =
1

2
(εacc + εTacc) (2.3)

While the method reduces the accuracy of those cells containing the interface to a

local error of O(1), the local error for the homogenous cells is still O(∆x2). This gives

a global error as O(∆x). The numerical results showed that this scheme gives the

best result in general and the error in practice lies in between first and second-order
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Figure 2.7: This figure demonstrates how the effective dielectric tensor is calculated by
averaging eight “triplets” in the most recent schemes achieving the highest accuracy. This
figure is a reproduction from [21].

in most cases.

Therefore, the effective permittivities (dielectric tensor) has to be constructed

carefully to avoid instabilities by paying close attention to the properties of both the

tensor and the fields components along the boundary. In the next section, we will

introduce a new 2D FDTD algorithm to solve the Maxwell’s equations in multiple

media with constant permittivities and demonstrate that this algorithm can achieve

second-order convergence when the material interface is orthogonal to the Yee grid.

2.3 A Second-Order FDTD Algorithm for Transverse Electric Case

As reported in the literature, no subpixel smoothing method that works in the full

3D FDTD algorithm can achieve second-order convergence. However, if the FDTD
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algorithm is applied to a 2D transverse electric(TE) case, it may achieve the second-

order convergence. For the TE case, the six electric and magnetic field components

are reduced to three components. That is, there are two electric field components and

one magnetic component, as shown in Figure 2.8. The other case is the transverse

magnetic (TM) case where the the one-component electric field is always continuous

across the boundary so there is no need to construct effective permittivities as in TE

case. Therefore, our research always focuses on the challenging TE case and ignores

the trivial TM case.

Figure 2.8: The TE FDTD configuration with material interface orthogonal to the Yee grid.
This figure is a reproduction from [10].

One of the second-order methods can achieve second order convergence only if the

media interface is orthogonal to the Yee grid as seen in Figure 2.8. The electric fields

are constructed as follows:

En+1
y(j,k)

= En
y(j,k)

+
∆t

ε∗y∆z

(
H
n+ 1

2
x

(j,k+ 1
2 )
−Hn+ 1

2
x

(j,k− 1
2 )

)
+O(∆t2) +O(∆z2) (2.4)
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where

ε∗y =

(
1

2
+ d

)
ε1 +

(
1

2
− d
)
ε2 (2.5)

where d is the distance to the interface from the edge of the unit cell as seen in

Figure 2.8, and

En+1
z(j,k)

= En
z(j,k)

+
∆t

ε∗z∆z

(
H
n+ 1

2
x

(j+ 1
2 ,k)
−Hn+ 1

2
x

(j− 1
2 ,k)

)
+O(∆t2) +O(∆y2) (2.6)

where

1

ε∗z
=

d

ε1
+

1− d
ε2

(2.7)

It will be shown in the next chapter that our new algorithm can be reduced to the

same equations when the boundary interface in those cells is orthogonal to the Yee

grid.

Figure 2.9: Various material interface boundaries in a unit cell for CP-EP method. This
figure is a reproduction from [17].

This work was then extended to the so-called contour-path effective permittivities
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(CP-EP) method [17]. This CP-EP method first addressed the orthogonal cases

as shown above, then extended to handle with more general geometry. Unlike the

previous method, it could handle arbitrary boundary with any orientation of the

boundary which is sufficiently smooth as seen in Figure 2.9. Since there are various

kinds of effective permittivities constructed in their work, we will only show one

example of CP-EP schemes as follows.

ˆ j∆y

(j−1)∆y

Dxdy = {d[ε1n
2 + ε2(1− n2)] + (∆y − d)ε1}Ex (2.8)

Compared with traditional staircasing methods, the CE-EP method has almost no

additional runtime cost since determination of the effective permittivities has been

done before the main FDTD loop.

However, we will demonstrate in the next chapter that this method is incomplete

and does not incorporate one important term from the interface conditions into the

numerical FDTD algorithm. We will then develop a new FDTD algorithm for the

2D TE case where the missing term will be re-considered in order to produce a more

accurate and stable algorithm.

There are two more research work that also need to be mentioned in this literature

review chapter. The first one included the electromagnetic field boundary condition

in a complete sense and has shown second order convergence [16]. However, this

algorithm added many terms and has an additional step in the main FDTD loop

to increase numerical load significantly. The second work used the reflection coeffi-

cients to derived effective permittivities and showed the algorithm can also achieve a

second-order convergence with several slanted angles between the interface and the

Yee grid rather than just orthogonal to the Yee grid [8], [9]. However, its derivation

was quite complicated and had no ways to be extended to arbitrary interface. Due
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to their extreme computational complexity, we will leave both of them outside our

consideration range.

In subsequent chapters, we will introduce our new method that is shown to have

second order convergence theoretically. We will add a few terms to the boundary cells

when necessary so as to keep the numerical load increase as minimum as possible.

Then our numerical tests can clearly verify that our algorithm has a much better

performance than CP-EP algorithm, VEP algorithm and staircasing algorithm while

still maintaining numerical stability. Our research work has been published in Journal

Nanotechnology [15] and another paper is currently under preparation for future

submission to Journal Optics Express .
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Chapter 3

New Second Order FDTD Schemes

In this chapter, we will propose a new second order finite difference time domain

method to solve Maxwell’s equations in a domain composed of two different media

with different electric permittivities. To simply the algorithm description, we will

focus on the most important transverse electric (TE) scenario. That is, E(x, y) =

Exi + Eyj is located in the incident xy-plane while H(x, y) = Hzk is along z-axis.

Moreover, we restrict our discussion to dielectric and non-magnetic media such that

D(x, y) = εE(x, y) and B(x, y) = H(x, y) where ε stays as a constant in different

media. Based on the integral version of the Maxwell equations, we derive the new

second-order algorithm for any orientation of the interface. This is a significant im-

provement over all current methods which can only achieve second-order convergence

under specific angles between the interface and Cartesian coordinate system, such as

parallel or orthogonal to x-axis.

3.1 Second-order FDTD Scheme in Homogeneous Medium

In this section, we will derive FDTD scheme bases on the integral forms of Maxwell’s

equations and show that the scheme has indeed achieved second-order convergence

in a uniform homogeneous medium. As usual, the incident xy-plane is discretized by

using space increments ∆x and ∆y along x and y axis, respectively.
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E (D )x x

H =Bz z
E (D )y y

(i, j)
(i-0.5, j)

(i,j-0.5)

Figure 3.1: Positions of D(E) and H(B)

According to the Yee scheme, Hz(Bz), Ex(Dx) and Ey(Dy) are positioned at loca-

tions (i, j), (i, j − 1
2
) and (i− 1

2
, j) respectively, as shown in Figure 3.1.

Let us express Faraday’s law integral form

∂

∂t

¨
S

B · ndS = −
˛
∂S

E · dl (3.1)

and Ampere’s law in integral form

∂

∂t

¨
S

D · ndS =

˛
∂S

H · dl (3.2)

First, let’s discretize Faraday’s law (3.1) as follows: Choose S to be the rectangular

box centered at (i, j). then the unit norm vector of S is n = k along z axis and ∂S

denoted the four sides of the rectangle shown in Figure 3.2.

Discretization of the left hand side term of (3.1) at time tn by centered finite

difference scheme yields:

˜
S

Hn+ 1
2 · ndS −

˜
S

Hn− 1
2 · ndS

∆t
= −
˛
∂S

En · dl +O(∆t∆x∆y) (3.3)
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E (D )x x

E (D )x x

H =Bz z
E (D )y y E (D )y y(i, j)
(i-0.5, j) (i+0.5, j)

(i,j-0.5)

(i,j+0.5)S

Figure 3.2: Discretization of Faraday’s law

or

¨
S

Hn+ 1
2 · ndS =

¨
S

Hn− 1
2 · ndS −∆t

˛
∂S

En · dl +O(∆t2∆x∆y) (3.4)

which can be simplified as

ˆ (i+ 1
2

)∆x

(i− 1
2

)∆x

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

H
n+ 1

2
z dxdy =

ˆ (i+ 1
2

)∆x

(i− 1
2

)∆x

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

H
n− 1

2
z dxdy

−∆t

[ˆ (i+ 1
2

)∆x

(i− 1
2

)∆x

En
(x,j− 1

2
)
dx+

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

En
(i+ 1

2
,y)
dy −

ˆ (i+ 1
2

)∆x

(i− 1
2

)∆x

En
(x,j+ 1

2
)
dx

−
ˆ (j+ 1

2
)∆y

(j− 1
2

)∆y

En
(i− 1

2
,y)
dy

]
+O(∆t2∆x∆y) (3.5)

where the terms in [ ] denotes
¸
∂S

En · dl.

Applying integration midpoint rule to all the integrals in the last equation yields

H
n+ 1

2
z(i,j)∆x∆y = H

n− 1
2

z(i,j)∆x∆y −∆t[En
x

(i,j− 1
2 )

∆x+ En
y
(i+ 1

2 ,j)
∆y − En

x
(i,j+ 1

2 )
∆x

− En
y
(i− 1

2 ,j)
∆y] +O(∆x3∆y) +O(∆x3∆t) +O(∆y3∆t) +O(∆t2∆x∆y) (3.6)
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Divining both sides by ∆x∆y and noticing ∆x ∼ ∆y ∼ ∆t with ∆x∆t ≤ 1
2
∆x2 +

1
2
∆t2, we obtain

H
n+ 1

2
z(i,j) = H

n− 1
2

z(i,j) −∆t[
En
x

(i,j− 1
2 )
− En

x
(i,j+ 1

2 )

∆y
+
En
y
(i+ 1

2 ,j)
− En

y
(i− 1

2 ,j)

∆x
]

+O(∆x2) +O(∆y2) +O(∆t2) (3.7)

which shows that discretization of Faraday’s law by Yee Scheme generates second-

order algorithm to update H
n+ 1

2
z term within a uniform medium.

Secondly we will discretize Ampere’s law (3.2) to update En
x and En

y respectively

as follows:

Ex

Hz

Hz

(i, j)

(i,j-0.5)

(i,j-1)

Figure 3.3: Discretization of Ampere’s law

To update En
x , choose S in (3.2) to be a rectangle in yz-plane whose projection

on the xy-plane is the line segment L0 from node (i, j − 1) to node (i, j) and whose

height is ∆z. Then the unit norm vector of S is~i along x-axis and ∂S is composed of

four line segments: L0, L∆z which is parallel with L0 with ∆z apart, and other two

line segments perpendicular to L0 in yz-plane. Since both E and H are independent
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of z, (3.2) becomes

d

dt

ˆ j∆y

(j−1)∆y

εEx(i,y)
dy ·∆z = Hz(i,j)

·∆z −Hz(i,j−1)
·∆z (3.8)

Discretization of the left hand side at time tn+ 1
2

by center finite difference scheme

yields

ε

´ j∆y
(j−1)∆y

En+1
x(i,y)

dy −
´ j∆y

(j−1)∆y
En
x(i,y)

dy

∆t
= H

n+ 1
2

z(i,j) −H
n+ 1

2
z(i,j−1) +O(∆t∆y) (3.9)

Applying integration midpoint rule to all integrals in (3.9) yields

ε

(
En+1
x

(i,j− 1
2 )
− En

x
(i,j− 1

2 )

)
·∆y = ∆t

(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+O(∆y3) +O(∆t2∆y)

(3.10)

which can be simplified as

En+1
x

(i,j− 1
2 )

= En
x

(i,j− 1
2 )

+
∆t

ε

H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

∆y
+O(∆y2) +O(∆t2) (3.11)

Which also shows that discretization of Ampere’s law by Yee scheme generates second-

order algorithm to update En+1
x term within a uniform medium.

Similarly, we can discretize (3.2) to update En+1
y at (i− 1

2
, j) by choosing S to be

a rectangle in xz-plane with one side from node (i− 1, j) to node (i, j) as follows:

En+1
y
(i− 1

2 ,j)
= En

y
(i− 1

2 .j)
+

∆t

ε

H
n+ 1

2
z(i−1,j) −H

n+ 1
2

z(i,j)

∆x
+O(∆x2) +O(∆t2) (3.12)
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3.2 Relation of D(x, y) and E(x, y) Across the Interface

In order to set up the new second-order FDTD method to solve Maxwell’s equations

in a domain composed of two different media, we need to find the relation of D(x, y)

and E(x, y) across the interface of these two media. It is well known that H(x, y) is

continuous in the whole domain composed of two different media. Meanwhile, across

the interface between these two media, the tangential component Eτ (x, y) of the

electric field and the normal component Dn(x, y) of the electric flux are continuous

as well. In this section, we will utilize this fact to derive the relation of E(x, y) and

D(x, y) across the interface Γ as show in figure 3.4 where n = (nx, ny) is the outward

unit norm vector from region 1.

n=(n ,n )x y

A
E , D1 1

E ,D2 2

Figure 3.4: Relation of D and E across Γ

Choose A ∈ Γ. Let’s set up the relation between D1(A) = (Dx1(A), Dy1(A)) and

D2(A) = (Dx2(A), Dy2(A)), the electric fluxes at A from different media, as well as

the relation between E1(A) = (Ex1(A), Ey1(A)) and E2(A) = (Ex2(A), Ey2(A)).

Suppose n = (nx, ny) is the unit norm vector at A from region 1, then the corre-

sponding tangent unit vector is τ = (ny,−nx). Therefore at point A, we can calculate
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Eτ and Dn in different regions as follows.

Eτ1 = E1 · τ = Ex1ny − Ey1nx (3.13)

Eτ2 = E2 · τ = Ex2ny − Ey2nx (3.14)

Meanwhile,

Dn1 = ε1En1 = ε1Ex1nx + ε1Ey1ny (3.15)

Dn2 = ε2En2 = ε2Ex2nx + ε2Ey2ny (3.16)

Based on the fact that Eτ1 = Eτ2 and Dn1 = Dn2 , we have


Ex1ny − Ey1nx = Ex2ny − Ey2nx

ε1Ex1nx + ε1Ey1ny = ε2Ex2nx + ε2Ey2ny

Or  ny −nx

ε1nx ε1ny


Ex1

Ey1

 =

 ny −nx

ε2nx ε2ny


Ex2

Ey2

 (3.17)

Therefore, we obtain based on n2
x + n2

y = 1:

Ex1

Ey1

 =

 ny −nx

ε1nx ε1ny


−1  ny −nx

ε2nx ε2ny


Ex2

Ey2
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Or Ex1

Ey1

 =

 ε2
ε1
n2
x + n2

y ( ε2
ε1
− 1)nxny

( ε2
ε1
− 1)nxny n2

x + ε2
ε1
ny


Ex2

Ey2

 (3.18)

Giving


Ex1 = ( ε2

ε1
n2
x + n2

y)Ex2 + ( ε2
ε1
− 1)nxnyEy2

Ey1 = ( ε2
ε1
− 1)nxnyEx2 + (n2

x + ε2
ε1
n2
y)Ey2

(3.19)

Furthermore, by using Di = εiEi at A, we obtain easily,


Dx1 = ( ε1

ε2
n2
y + n2

x)Dx2 + (1− ε1
ε2

)nxnyDy2

Dy1 = (1− ε1
ε2

)nxnyDx2 + ( ε1
ε2
n2
x + n2

y)Dy2

(3.20)

If the interface Γ is parallel or orthogonal to x-axis, either ny = 0 or nx = 0 so

nx ·ny = 0. Then the relation (3.19) involving E1 and E2 will be simplified such that

Ex1 and Ey1 will only depend on Ex2 or Ey2 respectively. Same holds for D1 and D2

in relation (3.20).

By using (3.20), we can express Dx2 in region 2 based on its neighbor Dx1 in region

1 and its corresponding Dy2 in the same region 2. Similar formula can also be derived

for Dy2 based on Dy1 and Dx2 .

Dx2 =
ε2

ε2n2
x + ε1n2

y

Dx1 +
(ε1 − ε2)nxny
ε2n2

x + ε1n2
y

Dy2 (3.21)

Dy2 =
(ε1 − ε2)nxny
ε1n2

x + ε2n2
y

Dx2 +
ε2

ε1n2
x + ε2n2

y

Dy1 (3.22)

(3.19) will be used to derive the new second-order scheme for Faraday’s law while
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(3.21) and (3.22) will be used to derive the new second-order scheme for Ampere’s

law in the next section.

3.3 Second-order FDTD Scheme in Nonuniform Media

In this section we consider a domain composed of two different media with relative

permittivities ε1 and ε2. The standard second order FDTD scheme (3.7) (3.11) (3.12)

will not work around the interface between these two media where the rectangle S in

(3.1) and (3.2) intersects with both media. We need to construct new FDTD schemes

around the interface based on Section 3.2.

First let’s discretize Faraday’s law (3.1) around the interface Γ.

(i,j)

(i,j-0.5)

(i-0.5,j)

(i,j+0.5)

(i+0.5,j)

Hz

Ex

Ex

EyEy

n

AO

B

C

D

Figure 3.5: Discretization of Faraday’s law across Γ

As in Section 3.1, we choose S to be the rectangle centered at (i, j). If the interface

Γ between media Ω1 and Ω2 does not cut through interior of S, the standard scheme

(3.7) still applies here. Therefore, we only need to consider the case where Γ intersects

with S.

It’s obvious that Γ will only intersect with at most two sides, e.g. the bottom

and left side as in Figure 3.5. All other cases can be handled in the same way.
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Discretization of the left hand side term of (3.1) at the time tN via finite difference

scheme yields

˜
S

Hn+ 1
2 · ndS −

˜
S

Hn− 1
2 · ndS

∆t
= −
˛
∂S

En · dl +O(∆t∆x∆y)

or

¨
S

Hn+ 1
2 · ndS =

¨
S

Hn− 1
2 · ndS −∆t

˛
∂S

En · dl +O(∆t2∆x∆y) (3.23)

since H is always perpendicular to the incident xy-plane and so is always continuous

across the interface, then by using midpoint rule,

¨
S

Hn+ 1
2 · ndS = H

n+ 1
2

z(i,j)∆x∆y +O(∆x3∆y) (3.24)

¨
S

Hn− 1
2 · ndS = H

n− 1
2

z(i,j)∆x∆y +O(∆x3∆y) (3.25)

However the situation for E is much more complicated. In Figure 3.5 the line integral

of En along the right and top sides can be handled as in Section 3.1 since they are

completely inside Ω2. But the line integrals along the bottom and left sides need to

be handled separately.

˛
∂S

En · dl =

ˆ
bottom

En · dl +

ˆ
left

En · dl

+

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

En
(i+ 1

2
,y)
dy −

ˆ (i+ 1
2

)∆x

(i− 1
2

)∆x

En
(x,j+ 1

2
)
dx

=

ˆ C

O

En
(x,j− 1

2
)
dx−

ˆ D

O

En
(i− 1

2
,y)
dy + En

y
(i+ 1

2 ,j)
∆y − En

x
(i,j+ 1

2 )
∆x

+O(∆x3) +O(∆y3) (3.26)
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Suppose the portion OA of the bottom side in Ω1 has length d, and the portion OB

of the left side in Ω1 has length f as in Figure 3.5, then the first two terms on the

right hand side of (3.26) can be handled as below:

(i,j-0.5)
O A CMM1 M2

n=(n ,n )x y

Figure 3.6: Discretization of the integral along bottom side OC

Let’s calculate the first term on the right hand side of (3.26), as shown in Figure 3.6

where M,M1,M2 are the midpoints of OC (bottom side), OA and AC. Then by

applying the integration midpoint rule and Taylor expansion, we obtain

ˆ C

O

En
(x,j− 1

2
)
dx =

ˆ A

O

En
(x,j− 1

2
)
dx+

ˆ C

A

En
(x,j− 1

2
)
dx

= En
x |M1 · d+O(∆x3) + En

x |M2 · (∆x− d) +O(∆x3)

= En
x |M · d+ En

x |A,Ω2 · (∆x− d) +O(∆x3) (3.27)

By using formula (3.19) with Ω1 and Ω2 interchanged, we have

En
x |A,Ω2 = ( ε1

ε2
n2
x + n2

y)E
n
x |A,Ω1 + ( ε1

ε2
− 1)nxnyE

n
y |A,Ω1 (3.28)
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Putting it into (3.27) and applying Taylor expansion again yields

ˆ C

O

En
(x,j− 1

2
)
dx = En

x |M · d+ ( ε1
ε2
n2
x + n2

y)(∆x− d)En
x |A,Ω1

+ ( ε1
ε2
− 1)nxny(∆x− d)En

y |A,Ω1 +O(∆x3)

= [d+ (∆x− d)( ε1
ε2
n2
x + n2

y)]E
n
x

(i,j− 1
2 )

+ ( ε1
ε2
− 1)nxny(∆x− d)En

y
(i− 1

2 ,j−1)
+O(∆x3) (3.29)

where En
x

(i,j− 1
2 )

= En
x(M)

for the first term, En
y
(i− 1

2 ,j−1)
is the value of En

y located at

point (i− 1
2
, j − 1), which is the closest Ey node to M = (i, j − 1

2
) within Ω1.

Similarly we can calculate the second term on the right hand side of (3.26). Since

the Ey node (i − 1
2
, j) is located within Ω2 instead of Ω1, so the new n should be

negative of old n used above. Therefore we apply integration midpoint rule, Tay-

lor expansion and formula (3.19) where (nx, ny) replaced by (−nx,−ny) and ε1, ε2

interchanged, we have

ˆ D

O

En
(i− 1

2
,y)
dy = [f(n2

x + ε2
ε1
n2
y) + (∆y − f)]En

y
(i− 1

2 ,j)

+ (
ε2
ε1
− 1)nxnyfE

n
x

(i,j+ 1
2 )

+O(∆y3) (3.30)

when En
x

(i,j+ 1
2 )

is the value of En
x located at point (i, j + 1

2
) which is the closest Ex

node to (i− 1
2
, j) within Ω2. By putting (3.29), (3.30) into (3.26), we get

˛
∂S

En · dl = [d+ (∆x− d)( ε1
ε2
n2
x + n2

y)]E
n
x

(i,j− 1
2 )

+ En
y
(i+ 1

2 ,j)
∆y − En

x
(i,j+ 1

2 )
∆x

− [f(n2
x + ε2

ε1
n2
y) + (∆y − f)]En

y
(i− 1

2 ,j)
+ ( ε1

ε2
− 1)nxny(∆x− d)En

y
(i− 1

2 ,j−1)

− ( ε2
ε1
− 1)nxnyfE

n
x

(i,j+ 1
2 )

+O(∆x3) +O(∆y3) (3.31)
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Finally by putting (3.25), (3.26) and (3.31) into (3.23) and dividing both sides by

∆x∆y, we obtain the new second-order discretization of Faraday’s law:

H
n+ 1

2
z(i,j) = H

n− 1
2

z(i,j) − ∆t
∆x∆y

{[d+ (∆x− d)( ε1
ε2
n2
x + n2

y)]E
n
x

(i,j− 1
2 )

+ En
y
(i+ 1

2 ,j)
∆y

− En
x

(i,j+ 1
2 )

∆x− [f(n2
x + ε2

ε1
n2
y) + (∆y − f)]En

y
(i− 1

2 ,j)

+ ( ε1
ε2
− 1)nxny(∆x− d)En

y
(i− 1

2 ,j−1)
− ( ε2

ε1
− 1)nxnyfE

n
x

(i,j+ 1
2 )
}

+O(∆x2) +O(∆y2) +O(∆t2) (3.32)

It should be noted that the last two terms on the right hand side of (3.32) have

been ignored by CP-EP algorithm but they provide necessary corrections for the

interface conditions across multiple media. The numerical tests have verify that in

order to make the algorithm for Faraday’s Law more accurate, instead of using the

nearest neighbor En
y
(i− 1

2 ,j−1)
for the Ex integral along the side OC, we can choose

either the average of En
y
(i− 1

2 ,j−1)
and En

y
(i+ 1

2 ,j)
(if they are both located in Ω1) or the

average of En
y
(i+ 1

2 ,j−1)
and En

y
(i− 1

2 ,j)
(if they are both located in Ω1) to replace En

y
(i− 1

2 ,j−1)

in (3.32) if possible since the midpoint of the above two pairs are more closer to the

intersection A on OC than the nearest Ey neighbor (i − 1
2
, j − 1). Similar trick can

also be applied to replace the nearest Ex node (i, j+ 1
2
) in Ω2 for the Ey integral along

the side OD if possible.

Next, let us discretize Ampere’s law (3.2) around the interface Γ to update En
x

and En
y

To update Ex, we still choose S in (3.2) to be the rectangle in yz-plane whose

projection in xy-place is the line segment OC as in Section 3.2. Suppose the interface

Γ intersect OC at point A and OA = f as in Figure 3.7. Applying time discretization
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(i,j-0.5)
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O
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Figure 3.7: Discretization of Ampere’s law across Γ

to Ampere’s law along S at time tn+ 1
2

yields

´ C
O
Dn+1
x(i,y)

dy −
´ C
O
Dn
x(i,y)

dy

∆t
= H

n+ 1
2

z(i,j) −H
n+ 1

2
z(i,j−1) +O(∆t∆y) (3.33)

Repeat the same procedure as for Faraday’s law while based on formula (3.21), we

can compute the integrals of left hand side as follows.

ˆ C

O

Dn+1
x(i,y)

dy =

ˆ A

O

Dn+1
x(i,y)

dy +

ˆ C

A

Dn+1
x(i,y)

dy

= fDn+1
x

(i,j− 1
2 )

+ (∆y − f)Dn+1
x(A,Ω2)

+O(∆y3)

= fDn+1
x

(i,j− 1
2 )

+ (∆y − f)

[
ε2

ε2n2
x + ε1n2

y

Dn+1
x(A,Ω1)

+
(ε1 − ε2)nxny
ε2n2

x + ε1n2
y

Dn+1
y(A,Ω2)

]
+O(∆y3)

=
f(ε2n

2
x + ε1n

2
y) + (∆y − f)ε2

ε2n2
x + ε1n2

y

Dn+1
x

(i,j− 1
2 )

+
(ε1 − ε2)nxny
ε2n2

x + ε1n2
y

(∆y − f)Dn+1
y(C)

+O(∆y3) (3.34)
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Similarly,

ˆ C

O

Dn
x(i,y)dy =

f(ε2n
2
x + ε1n

2
y) + (∆y − f)ε2

ε2n2
x + ε1n2

y

Dn
x

(i,j− 1
2 )

+
(ε1 − ε2)nxny
ε2n2

x + ε1n2
y

(∆y − f)Dn
y(C)

+O(∆y3) (3.35)

Furthermore,

Dn+1
y(C)

= Dn
y(C)

+
∂Dy

∂t
|tnC ·∆t+O(∆t2)

= Dn
y(C)
− ∂Hz

∂x
|
t
n+ 1

2
C ·∆t+O(∆t2)

= Dn
y(C)
−

Hn+ 1
2

z(i+1,j) −H
n+ 1

2
z(i,j)

∆x

∆t+O(∆t∆x) +O(∆t2) (3.36)

By putting (3.34), (3.35) and (3.36) into (3.33), we obtain

f(ε2n
2
x + ε1n

2
y) + (∆y − f)ε2

ε2n2
x + ε1n2

y

(
Dn+1
x

(i,j− 1
2 )
−Dn

x
(i,j− 1

2 )

)
= ∆t

(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+

∆t

∆x

(ε1 − ε2)nxny
ε2n2

x + ε1n2
y

(∆y − f)
(
H
n+ 1

2
z(i+1,j) −H

n+ 1
2

z(i,j)

)
+O(∆t2∆x) +O(∆y3) +O(∆t3)

(3.37)

which, based on Dx = ε1Ex in Ω1, becomes

En+1
x

(i,j− 1
2 )

= En
x

(i,j− 1
2 )

+ ∆t
ε2
ε1
n2
x + n2

y

f(ε2n2
x + ε1n2

y) + (∆y − f)ε2

(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+

∆t

∆x

(∆y − f)(1− ε2
ε1

)nxny

f(ε2n2
x + ε1n2

y) + (∆y − f)ε2

(
H
n+ 1

2
z(i+1,j) −H

n+ 1
2

z(i,j)

)
+O(∆x2) +O(∆y2) +O(∆t2) (3.38)

Which shows second-order discretization of Ampere’s law for updating Ex.

It should also be noted that the last term on the right hand side of (3.38) have been
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Figure 3.8: Discretization of the integral along OC

ignored by CP-EP algorithm but it provides necessary corrections for the interface

conditions across multiple media. The numerical tests have also verified that in order

to make the algorithm for Ampere’s Law more accurate, these twoHz values in the last

term should stay close to the interface. That is, if the normal direction of the interface

n satisfies nx·ny > 0 as shown in Figure 3.7, we need to use (H
n+ 1

2
z(i,j)−H

n+ 1
2

z(i−1,j)) to replace

the Hz part of the last term since these two Hz points are closer to the interface than

the original terms, while for nx ·ny ≤ 0 case, (3.38) can remain unchanged since their

two Hz nodes are already closer to the interface than other pairs. This improvement

is feasible since Hz in continuous in the whole domain. Same trick can also be applied

to the updating of Ey shown below.

Similarly, update of Ey at point B = (i − 1
2
, j) by Ampere’s law (3.2) can be

taken care analogously as shown in Figure 3.8, Where the interface Γ intersects the

line segment OC, projection of S at xy-plane, at A. Let OA = d. By repeating

the same procedure as above while based on formula (3.22), we can also obtain the

second-order discretization of Ampere’s law for Ey as below:

En+1
y
(i,j− 1

2 )
= En

y
(i,j− 1

2 )
+ ∆t

ε2
ε1
n2
y + n2

x

d(ε1n2
x + ε2n2

y) + (∆x− d)ε2

(
H
n+ 1

2
z(i−1,j) −H

n+ 1
2

z(i,j)

)
+

∆t

∆y

(∆x− d)(1− ε2
ε1

)nxny

d(ε1n2
x + ε2n2

y) + (∆x− d)ε2

(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j+1)

)
+O(∆x2) +O(∆y2) +O(∆t2) (3.39)
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Compared with standard FDTD algorithm (3.7), (3.11) and (3.12) which only

shows second-order convergence within a uniform medium, our new algorithm (3.32),

(3.38) and (3.39) can still achieve second-order convergence in a non-uniform domain

where the orientation of the interface between these two media is arbitrary.

3.4 Second-order FDTD Scheme Reduction to Know Results

In this section, we consider a special case where the interface Γ is parallel with hori-

zontal x-axis, shown in Figure 3.9. We want to demonstrate that our new algorithm

reduces to the established second-order FDTD algorithm for horizontal or vertical

interface with respect to Cartesian Coordinates reported in [10]. Therefore, our new

algorithm can be regarded as the generalization of established second-order algorithm

for any oriented interface.

(i,j)

(i,j-0.5)

(i-0.5,j)

(i,j+0.5)

(i+0.5,j)

Hz

Ex

Ex

EyEy

n

A

O

B

C

D E

Figure 3.9: Second-order scheme for a horizontal interface

First let’s discretize Faraday’s law (3.1) by choosing S to be the rectangle centered

at (i, j) where the interface Γ intersect two vertical sides OD and CE at point B and
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A, respectively. By using the same integration technique as in Section 3.3. we obtain.

H
n+ 1

2
z(i,j)∆x∆y = H

n− 1
2

z(i,j)∆x∆y −∆t

˛
∂S

En · dl +O(∆t2∆x∆y) +O(∆x3∆y) (3.40)

where

˛
∂S

Endl =

˛ C

O

Endl +

˛ E

C

Endl +

˛ D

E

Endl +

˛ O

D

Endl

= En
x

(i,j− 1
2 )

∆x+

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

En
(i+ 1

2
,y)
dy − En

x
(i,j+ 1

2 )
∆x

−
ˆ (j+ 1

2
)∆y

(j− 1
2

)∆y

En
(i− 1

2
,y)
dy +O(∆x3) (3.41)

Next let’s deal with the second and fourth terms on the right hand side of (3.41)

based on relation of E(x, y) across Γ, (3.15) in Sec 3.2. Let OB = AC = f , then

BD = AE = ∆y − f , since n = (0, 1) along Γ, we have the second term

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

En
(i+ 1

2
,y)
dy =

ˆ A

C

En
(i+ 1

2
,y)
dy +

ˆ E

A

En
(i+ 1

2
,y)
dy

= En
y1,A

f + En
y
(i+ 1

2 ,j)
(∆y − f) +O(∆y3)

= ε2
ε1
En
y2,A

f + En
y
(i+ 1

2 ,j)
(∆y − f) +O(∆y3)

= ε2
ε1
En
y
(i+ 1

2 ,j)
f + En

y
(i+ 1

2 ,j)
(∆y − f) +O(∆y3)

= [ ε2
ε1
f + (∆y − f)]En

y
(i+ 1

2 ,j)
+O(∆y3) (3.42)

Similarly, the fourth term

ˆ (j+ 1
2

)∆y

(j− 1
2

)∆y

En
(i− 1

2
,y)
dy = [ ε2

ε1
f + (∆y − f)]En

y
(i− 1

2 ,j)
+O(∆y3) (3.43)
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putting (3.42) and (3.43) into (3.41), we get

˛
∂S

Endl =

[
En
x

(i,j− 1
2 )
− En

x
(i,j+ 1

2 )

]
∆x+

[
En
y
(i+ 1

2 ,j)
− En

y
(i− 1

2 ,j)

]
[ ε2
ε1
f + (∆y − f)]

+O(∆x3) +O(∆y3) (3.44)

putting (3.44) into (3.40) and dividing both sides by ∆x∆y we obtain

H
n+ 1

2
z(i,j) = H

n− 1
2

z(i,j) −∆t

[
En
x

(i,j− 1
2 )
− En

x
(i,j+ 1

2 )

∆y
+
En
y
(i+ 1

2 ,j)
− En

y
(i− 1

2 ,j)

∆x

·
(
ε2
ε1

f

∆y
+

(
1− f

∆y

))]
+O(∆t2) +O(∆x2) +O(∆y2) (3.45)

If we define ε∗12 by 1
ε∗12

=
f

∆y

ε1
+

1− f
∆y

ε2
, then ε∗12 means the harmonic mean of permittivity

along normal direction, and the above equation is equivalent to

H
n+ 1

2
z(i,j) = H

n− 1
2

z(i,j) −∆t

Dn
x

(i,j− 1
2 ,j)
· 1
ε1
−Dn

x
(i,j+ 1

2 )
· 1
ε2

∆y
+
Dn
y
(i+ 1

2 ,j)
· 1
ε∗12
−Dn

y
(i− 1

2 ,j)
· 1
ε∗12

∆x


+O(∆t2) +O(∆x2) +O(∆y2) (3.46)

which verifies second-order convergence of FDTD along horizontal interface if the

harmonic mean ε∗12 is chosen as the mean of normal permittivity, as reported in

[10]. Next let us discretize Ampere’s law (3.2) to update En
x and En

y with the same

procedure in Section 3.3. To update En
x at (i, j − 1

2
), the surface S will intersect xy-

plane with the line segment from node (i, j− 1) to node (i, j). Therefore, the bottom

portion of the segment with length (∆y
2

+ f) is located in Ω1, while the top portion

with length (∆y
2
− f) is located in Ω2. Apply the time discretization and integration
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technique to (3.2), we have

ˆ (j−1)∆y+( ∆y
2

+f)

(j−1)∆y

Dn+1
x(i,y)

dy +

ˆ j·∆y

(j−1)∆y+( ∆y
2

+f)

Dn+1
x(i,y)

dy =

ˆ (j−1)∆y+( ∆y
2

+f)

(j−1)∆y

Dn
x(i,y)

dy

+

ˆ j·∆y

(j−1)∆y+( ∆y
2

+f)

Dn+1
x(i,y)

dy + ∆t
(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+O(∆t2∆y) (3.47)

Applying relation of D(x, y) across Γ, (3.20) in Section 3.2. to the second term on

both sides yields

Dn+1
x

(i,j− 1
2 )

(∆y
2

+ f) +Dn+1
x

(i,j− 1
2 )

ε2
ε1

(∆y
2
− f) = Dn

x
(i,j− 1

2 )
(∆y

2
+ f)

+Dn
x(i,j)

ε2
ε1

(∆y − f) + ∆t
(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+O(∆t2∆y) +O(∆y3) (3.48)

since Dx = ε1Ex in Ω1, (3.48) becomes

En+1
x

(i,j− 1
2 )

[
(∆y

2
+ f)ε1 + (∆y

2
− f)ε2

]
= En

x
(i,j− 1

2 )

[
(∆y

2
+ f)ε1 + (∆y

2
− f)ε2

]
+∆t

(
H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1)

)
+O(∆t2∆y) +O(∆y3) (3.49)

which can be simplified

En+1
x

(i,j− 1
2 )

= En
x

(i,j− 1
2 )

+
∆t

(1
2

+ f
∆y

)ε1 + (1
2
− f

∆y
)ε2

(H
n+ 1

2
z(i,j) −H

n+ 1
2

z(i,j−1))

∆y

+O(∆t2) +O(∆y2) (3.50)

which verifies second-order convergence of FDTD along horizontal interface if (1
2

+

f
∆y

)ε1 + (1
2
− f

∆y
)ε2 is chosen as the mean of tangential permittivity, as reported in

[10]. Since the surface S used to update En
y at (i − 1

2
, j) is located within Ω2, then
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the formula for En
y is completely the same as the uniform case, that is,

En+1
y
(i− 1

2 ,j)
= En

y
(i− 1

2 ,j)
+

∆t

ε2

(H
n+ 1

2
z(i−1,j) −H

n+ 1
2

z(i,j))

∆x
+O(∆x2) +O(∆t2) (3.51)

In summary, the computational FDTD scheme (3.45), (3.50), (3.51) recovers the

second-order convergence when the interface is parallel with Cartesian coordinates

by choosing the mean of permittivity along normal and tangential directions of Γ as

reported in [10]. Therefore, our new algorithm is the generalization of the existing

second order FDTD scheme for any oriented interface.
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Chapter 4

Numerical Results

In this chapter, we will demonstrate convergence order and stability of our new BC-

EP algorithm numerically. To accomplish this task, we implement our algorithm to

solve the Maxwell’s equations on a dielectric cylinder, together with the staircasing,

V-EP, and CP-EP methods. All the implementations are set up for the 2D FDTD

TE case. The total scattering cross sections (SCS) are calculated by all four methods

and then compared with the well-known analytic solution by Mie Theory [3] so as to

measure the accuracy of each method.

4.1 Numerical Setup

In this section, we set up the numerical simulation environment for all the numerical

tests. Our BC-EP algorithm is implemented as outlined in the previous chapter.

The second algorithm that is tested for the same simulation is CP-EP [17]. Since

there are various kinds of ways to implement the original staircasing method, we

test staircasing as the third method by assigning the effective permittivity for each

field component by its location individually. As for the last V-EP method, we use

the intercepts of the device boundary with the unit cells to create the approximate

volume ratio so as to calculate the effective electric permittivity for the unit cell and

assigns that value to all the field components in that cell. Meanwhile, the analytic
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solution for the dielectric cylinder in our model is calculated by using the Mie theory

in [3].

Figure 4.1: The setup of our numerical test using a dielectric cylinder, giving lots of space
for the total-field/scattered-field and integration line before the PML

The dielectric cylinder is simulated in an area that is ten times the radius of

the cylinder plus some extra space for PML condition. The cylinder is centered at

((Nx

2
+ 0.5) ∗∆x, (Ny

2
+ 0.5) ∗∆y) where Nx and Ny are the number of the cells along

the x and y directions, ∆x and ∆y are the horizontal and vertical mesh sizes of each

cell as seen in Figure 4.1. We ran our test for two cases: one case for a larger cylinder

with radius r = 400nm and another case for a smaller cylinder with r = 150nm. The

total-field/scattered-field line is three times the length of the cylinder radius r away

from the center, and the integration line for calculating SCS is four times r away from

the center, while the PML starts at five times r away from the center.
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The source wave is a planer wave in the Ey direction with a Gaussian envelope

exp(−(t−t0)2

2
∗( 1

π∗(c/λ0−c/λ1)∗
√

2)2 )∗cos((2∗π∗c)∗t), where t0 is six times ∆t, c is speed of

light in a vacuum, and [λ0, λ1] is the testing range of wavelengths. In our simulation,

we calculate SCS for 601 wavelengths ranging from λ0 = 400nm to λ1 = 1000nm

of visual light spectrum with equal distance. Fast Fourier transform (FFT) is then

applied to transform the electric and magnetic fields from spatial domain into light

frequency domain so as to calculate SCS over all related wavelengths.

We use square unit cells with ∆x = ∆y to simplify our simulation. The time step

is set to ∆t = S∆x
c

where S = 0.98√
3

to ensure stability [20]. Also for stability concerns,

∆x were chosen to divide the smallest tested wave length (λ0 = 400nm) by at least

twenty times. The total SCS is calculated by using the Poynting Vector along with

the integration line as seen in Figure 4.1. Meanwhile, Mie theory is used to calculate

the true value of total SCS for each wavelength. The number of iterations for the

main FDTD loop is set large enough in order to give enough time for the electric and

magnetic waves to leave the simulated area for stable SCS calculation.

4.2 Accuracy and Error Convergence

In this section, we investigate the accuracy and the error convergence order of our new

algorithm and compare it with other similar methods. We test all the algorithms for

a circular cylinder with radius r = 400nm and permittivity ε = 3. The background

media ia always set as air with ε = 1. The mesh size is originally set to ∆x =

∆y = 10nm. Each algorithm has been run to calculate the total SCS. This process is

then repeated for smaller and smaller mesh sizes. As seen in Figure 4.2, the relative

errors between the numerical values from all methods and the true solution are quite

small. But we can still see that BC-EP has the smallest error while V-EP has the

largest error. Meanwhile, for each mesh size ∆x, the average relative error of SCS
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is calculated among all the wavelengths for each method. In order to observe the

error convergence order clearly, the average relative errors versus the mesh sizes are

converted into a log scale where Nλ denotes the log of the number of mesh points for

the radius of the cylinder, as seen in Figure 4.3.
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Figure 4.2: Total SCS calculation of a cylinder, ε = 3 and radius r = 400nm. The grid size
is ∆x = ∆y = 2.8nm.

This whole process is then repeated for other larger permittivity values until reach-

ing ε = 10. The numerical results are reported in Figure 4.4 and Figure 4.5 for ε = 6,

and in Figure 4.6 and Figure 4.7 for ε = 10. The other ε have similar outcomes.

It can be seen that BC-EP gives the least amount of error for most cases, followed

by CP-EP. Staircasing results are quite erratic and its error doesn’t go down in

a uniform manner due to random nature of some mesh sizes conforming with the

cylinder better than others. V-EP has the worst error but gives a uniform error

decrease with smaller mesh sizes, and therefore gives more consistent results over

staircasing.

To further investigate the order of convergence of all the algorithms, we esti-

mate the convergence order by computing the slopes from the log figures for all the

given permittivity. Table 4.1 shows that BC-EP algorithm converges significantly
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Figure 4.3: The average relative error of a cylinder in log scale, ε = 3 and radius r = 400nm.
Nλ = log(400nm

∆x ).
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Figure 4.4: Total SCS calculation of a cylinder, ε = 6 and radius r = 400nm. The grid size
is ∆x = ∆y = 2.8nm.

faster than all the other algorithms. In most cases, it approaches second-order as

demonstrated theoretically in the previous chapter. CE-EP is the second in terms of

convergence order and outperforms both staircasing and V-EP as already reported in

the literature [17].
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Figure 4.5: The average relative error of a cylinder in log scale, ε = 6 and radius r = 400nm.
Nλ = log(400nm

∆x ).
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Figure 4.6: Total SCS calculation of a cylinder, ε = 10 and radius r = 400nm. The grid
size is ∆x = ∆y = 2.8nm.

To complete the final evaluation of the performance for all the methods, the whole

test suite is then repeated for another circular cylinder with smaller radius r = 150nm.

All the results are very similar and for brevity, we only report the case of ε = 6, as seen

in Figure 4.8 and Figure 4.9. It can be seen that the BC-EP algorithm has a higher
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Figure 4.7: The average relative error of a cylinder in log scale, ε = 10 and radius r = 400nm.
Nλ = log(400nm

∆x ).

Permittivity Staircasing V-EP CP-EP BC-EP

ε = 3 1.6621 1.0860 1.6977 2.4386
ε = 4 1.0700 1.0850 1.4560 1.9251
ε = 5 1.2160 1.1294 1.5267 1.6974
ε = 6 1.3723 1.1476 1.3607 1.5247
ε = 7 1.4322 1.1834 1.3800 1.6014
ε = 8 1.4283 1.1860 1.3564 1.6423
ε = 9 1.4867 1.2262 1.4333 1.6837
ε = 10 1.6172 1.3183 1.5323 1.8006

Table 4.1: Order of convergence for each FDTD algorithm and for each given permittivity
in a cylinder of r = 400nm.

convergence order than others. To be more specific, BC-EP, CP-EP, Staircasing and

V-EP have the order of convergence 1.4005, 0.92869, 0.92802 and 1.0059, respectively,

based on Figure 4.9.

In summary, our new BC-EP algorithm is more accurate and converges faster than

all the similar methods reported in the literature.
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Figure 4.8: Total SCS calculation of a cylinder, ε = 6 and radius r = 150nm. The grid size
is ∆x = ∆y = 2.8nm.
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Figure 4.9: The average relative error of a cylinder in log scale, ε = 6 and radius r = 150nm.
Nλ = log(150nm

∆x ).
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4.3 Stability

In this section, we investigate the stability of our new algorithm since the stability of

other methods have been demonstrated in the literature. In order to test the stability

of the BC-EP algorithm, two different tests are conducted. Firstly, the algorithm

has been run for 200,000 iterations under FDTD main loop which is long enough for

the electric and magnetic waves completely leave the region as seen in Figure 4.10

and Figure 4.11. This process has been repeated for ε = 3, 6, 10, 30 and for mesh size

∆x = 10nm, 7.3nm, 4.6nm, and 2.8nm. At every 2, 000 iterations, a calculation of the

SCS for all 601 wavelengths is conducted. Then the average relative error between

the calculated SCS at that iteration and the exact SCS over those wavelengths is

calculated. We observe that the result are very similar for different ε and different

∆x in the sense that the relative errors drop down to zero very quickly. This shows

that there is no electromagnetic power left in the region and the fields return back to

zero as excepted, meaning no late time instability even at very high contrast.
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Figure 4.10: Relative error in log format for the SCS calculation at a given iteration for the
cylinder with r = 400nm. ∆x = ∆y = 4.6nm.

For the second test, we run the algorithm and meanwhile keep track of the electric
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Figure 4.11: Relative error in log format for the SCS calculation at a given iteration for the
cylinder with r = 400nm and ε = 30. ∆x = ∆y = 4.6nm.

and magnetic fields to assure that they go to zero as well. To this end, the field

values are recorded at every 500 iterations. As seen in Figure 4.12, all the electric

and magnetic fields go to zero quickly with time going on. It gives another strong

evidence that no numerical artifacts are generated to cause instability.
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Figure 4.12: Field values at the stated iterations for the BC-EP implementation with ε = 6
and ∆x = 10nm.
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Chapter 5

Conclusions and Future Reseach

In this final chapter, we will draw conclusions based on the previous chapters. Then

we will briefly discuss the plan for future research.

Chapter 1 went through the background of basic FDTD methods to solve the

Maxwell’s equations. Chapter 2 covered all related numerical methods to solve

Maxwell’s equations to overcome the pixelation issue around the interface among

multiple media.

In Chapter 3, we built our new BC-EP algorithm for the challenging transverse

electric case where the tangential component of the electric field, the normal com-

ponent of the electric displacement and the magnetic field are continuous across the

interface between two different media. We set up a relation for the electric fields (as

well as the electric displacement) on the different sides of the interface. Based on this

important relationship and the integral version of the Maxwell’s equations, we derived

our new FDTD algorithm which represents Maxwell’s equations accurately while the

previous numerical methods skipped some terms from the boundary conditions for

the purpose of algorithm simplification. We then proved that our new algorithm can

reach second-order convergence O(∆x2) with mesh size ∆x = ∆y for any orientation

of the interface between different media.

In Chapter 4, we considered a numerical example of a dielectric cylinder. We

computed its total scattered cross section based on our new BC-EP algorithm and
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compare our result with the analytic solution and the old results from those re-

lated numerical methods using effective permittivities reported in the literature. We

considered two different radius of the cylinder: r = 400nm and r = 150nm. The

numerical results clearly demonstrated that our algorithm always achieves the high-

est convergence (close to second order) compared with all those methods. In order

to demonstrate the stability of our new method, we ran the algorithm for a long

time with high contrast of electric permittivities and found that both the electric and

magnetic fields converge to zero very quickly and the total scattered cross section

calculation was indeed stabilized. Therefore, our algorithm has been shown to be the

most effective FDTD method to solve Maxwell’s equations involving multiple media.

Currently, our new algorithm is very robust for multiple media with constant per-

mittivities. Our next research consideration is to develop a new method based on

our current one to handle more complicated dispersive materials whose permittivi-

ties are complex functions of light frequencies. Another possible research direction

is to extend our algorithm to more general 3D transverse electric problems where

both electric field E(x, y, z) and magnetic field H(x, y, z) are functions of all spatial

variables x, y, z. The extensions of our current method to these two new scenarios

are not straightforward and need further investigation and development of associated

new algorithms.
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