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AN ABSTRACT OF THE THESIS OF Selvaraj Ramachandran for the Master of Science in 

Mechanical Engineering presented February 11, 1992. 

Title: Hypoid Gear Optimization. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

A hypoid gear optimization procedure using the method of feasible directions has been 

developed. The objective is to reduce the gear set weight with bending strength, contact strength 

and facewidth-diametral pitch ratio as constraints. The objective function weight, is calculated from 

the geometric approximation of the volume of the gear and pinion. The design variables selected 

are number of gear teeth, diametral pitch, and facewidth. The input parameters for starting the 

initial design phase are power to be transmitted, speed, gear ratio, type of application, mounting 

condition, type of loading, and the material to be used. In the initial design phase, design 

parameters are selected or calculated using the standard available procedures. These selected 

values of design parameters are passed on to the optimization routine as starting points. 

The design problem is first linearized to find the search direction. Along this search 

direction, the minimum value is found using the Golden section search method. The iterations are 

continued until the minimum value is reached or the constraints are violated. The final output 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

In the most general terms, optimization theory is a body of mathematical results and 

numerical methods for finding and identifying the best candidate from a collection of alternatives 

without having to explicitly enumerate and evaluate all possible alternatives [1]. The process of 

optimization lies at the root of engineering, since the classical function of the engineer is to design 

new, better, more efficient, and less expensive systems as well as to devise plans and procedures 

for the improved operation of existing systems. 

Any problem in which certain parameters need to be determined to satisfy constraints can 

be formulated as an optimum design problem. Good problem formulation is the key to the 

success of an optimization study and is to a large degree an art. Optimization techniques are 

quite general, having a wide range of applications in diverse fields. The range of applications is 

limited only by the imagination or ingenuity of design engineers. 

In engineering applications optimization criteria could be either economic factors or 

technological factors. The technological factors for instance, might be maximum torque, minimum 

weight, minimum energy utilization, maximum production rate, and so on. Regardless of the 

criterion selected, in the context of optimization the 'best• will always mean the candidate system 

with either the minimum or maximum value of the performance index [1]. 

After selecting the performance criterion, the next key element is the selection of 

independent design variables that are adequate enough to characterize the design formulation. 

Once the variables are selected, the problem model has to be assembled in a manner that the 

performance criterion is influenced by the independent variables. 
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Optimization gives a systematic approach and insight to design decisions, where one 

relies heavily on intuition and experience. But this does not wholly mean that the design process 

can be reduced to a computer work and intuitive thinking is unimportant; rather it helps in 

automating the process and spending more time on the creative aspects. 

Some of the initial optimization studies were conducted by necessity in order to mitigate 

inherently unavoidable dynamic stresses, forces, and vibrations to tolerable degrees in high speed 

mechanisms. Having been inspired by the results of these embryonic optimum design studies, 

one of the early pioneers in optimum design Ray C. Johnson [4], conducted many others for a 

broader range of bases for optimum design. 

1.2 DESIGN PROCESS AND ROLE OF COMPUTERS 

Mechanical design is one of the most challenging problems which can confront a 

practicing engineer. The complex relationships existing among the factors associated with the 

definition of design is the cause of such a challenge. Mechanical design can be defined as the 

selection of materials and geometry which satisfies specified and implied functional requirements 

while remaining within the confines of unavoidable limitations. The basic problem of design is 

considered more difficult than the problem of analysis, since for the latter, both geometry and 

materials are assumed to be known constants and limitations such as space restrictions are of 

no significance. 

Design is an iterative process. The designer's experience, intuition, and ingenuity are 

required in the process of design. Iteration involves analyzing several trial systems in a sequence 

before an acceptable design is obtained. Such repetitive calculations are ideally suited for 

computer implementation. 

Before computers, engineering designs were evaluated the hard way. They were built, 

tested, modified, retested, remodified - and so on. Computers improved the process dramatically, 

enabling much of the evaluation to be done with mathematical models rather than expensive 
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prototyping. But that did not help the designer. The designer still had the root problem of juggling 

parameter values to find the right combination. And since there are endless possibilities, one 

could only hope that the final intuitive design was close to optimal. 

The overall design process, shown in Figure 1, consists of an iterative cycle involving 

definition of the structure of the system, model formulation, model parameter optimization, and 

analysis of the resulting solution. The final optimal design will be obtained only after solving a 

series of optimization problems. 

1.3 PROBLEM FORMULATION 

In this topic, mathematical formulation of a design optimization problem is discussed. The 

problem is always converted to minimization of a cost function with proper constraints on design 

variables. 

All machines and components are designed with an objective in mind. The objective can 

be weight, cost, life, efficiency, reliability or other merit measures, which are calculable functions 

of design variables. Similarly, there are usually a number of operational constraints placed on the 

design, such as stress limits, load limits, and size limits, which again are functions of the design 

variables. 

The task of formulating the optimum design problem mainly hinges on proper 

identification of design variables. After identifying the proper variables, the cost and constraint 

functions should be formulated in terms of these variables. 

It must be realized that the overall process of designing systems in different fields of 

engineering is roughly the same. Analytical and numerical methods for analyzing various systems 

can differ somewhat. Statement of the design problems can contain terminology that is specific 

to the particular domain of application. However, once the problem from different fields have been 

converted into mathematical statements using a standard notation, they all look alike [2]. 

The standard design optimization model is defined as follows: Find an n-vector 
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X = (xl, Xz, ... Xn) 

of design variables to minimize a cost function, 

f(X) = f(xl' x2, ... xn) 

Subject to the equality constraints 

hk(X) = hk(xl, Xz, ... xn) = 0 

and the inequality constraints 

gj(X) = gj(xl, Xz, ... Xn) ~ 0 

k=1top 

j=1tom 
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(1.1) 

(1.2) 

(1.3) 

(1.4) 

where p is the total number of equality constraints and m is the total number of inequality 

constraints. 

The above form of stating the problem is not unique. The optimization problem can be 

stated in different equivalent statements. One such example is to maximize instead of minimizing 

the cost function f(X), .and also the inequality sign of g(X) can be reversed, so that it is less than 

or equal to zero. If the problem is to maximize, -f(X) can be minimized and the inequality being 

positive, the geometric significance at the optimum is equated to the gradients of the objective 

and all critical constraints point away from the optimum design. 

1.4 DESIGN OPTIMIZATION OF GEARS 

The design of a gear set is a highly difficult task which involves the satisfaction of many 

constraints. Savage et al. [5], Carrol et al. [6], and Vanderplaats et al. [7] have published methods 

for optimum design of spur gear sets. Savage, Coy and Townsend studied the problem of 

designing a spur gear set of minimum size by considering the interaction of the bending stress 

and contact stress constraints. Vanderplaats et al., studied the problem of maximizing the mesh 

life of spur gears. In an interesting paper, Lin and Johnson [8] have proposed a new strategy of 

incorporating expert systems with optimal spur gear design to overcome the imprecise nature of 
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design parameters. This has opened a new area of research on attaining optimum design by 

using the techniques of artificial intelligence coupled with numerical algorithms. Tremendous 

amount of research work is being conducted in the optimal design of other types of gears. 

In the Master's thesis of S.N.Muthukrishnan [9], at Portland State University, minimizing 

the weight of helical gear set using a Random search technique has been discussed. This thesis 

presents a method to optimize the design parameters of a hypoid gear set. 

1.5 OBJECTIVES 

Practical hypoid gear design is discussed in many engineering books [10, 11]. But it is not 

a trivial task to apply the available information to produce a good design. The complexity derives 

from the need to consult various graphs, tables and data. A novice often finds the process difficult 

to apply. The standard procedure suggested by Gleason Works [11] gives the designer a 

substantial amount of latitude in choosing some important parameters which are not rigidly 

defined. Based on this procedure a computer program has been developed to take the burden 

of the selection and calculation of parameters. 

The objective of this project is to develop a software to automate the hypoid gear design 

process, and using the parameters selected as design variables, optimize the weight of a gear 

set. 

To achieve the objective, the following has to be done. 

1. Collect the standard data used in the hypoid gear design process and create data files 

for them. 

2. Interpolate the graphs into polynomial equations for easy implementation with computers. 

3. Approximate the geometry of the hypoid gears for volume calculation. 

4. Develop the source code for the optimization algorithm, the method of feasible directions. 

5. Develop the source code for the simplex linear optimization algorithm, bisection algorithm 

and golden section algorithm, which are used by the method of feasible directions. 
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The design objective in this work is taken to be weight optimization; the other objectives 

that could be considered are, maximizing the mesh life or minimizing the dynamic load. 

The design process has been automated; minimizing the art and maximizing the science 

in order to meet the demands of an increasingly complex world. 

1.6 ADVANTAGES AND LIMITATIONS 

Application of numerical techniques for mechanical design has advantages and some 

limitations. The major advantage is the reduction in time spent on design and the systematized 

logical design procedure which does not depend on intuition and experience. Some of the 

limitations are, optimization can seldom be guaranteed to give the global design optimum; and 

most optimization techniques are ill-equipped to deal with discontinuous and highly nonlinear 

functions. When the number of design variables in the problem increases, the computation time 

increases and sometimes the cost is prohibitive. 

In general, if the techniques are used effectively with the proper understanding of the 

theory, efficient and economic designs can be achieved. All these optimization techniques can 

only give an improvement in the design but may not yield the "best• possible. But optimization 

techniques are valuable tools which, on proper utilization, can improve the existing systems and 

design methods. 



CHAPTER II 

THE METHOD OF FEASIBLE DIRECTIONS 

2.1 INTRODUCTION 

The method of feasible directions is one of the earliest primal methods for solving 

constrained optimization problems. This method belongs to the group of direction generation 

methods based on linearization. In this method, rather than relying on an inaccurate linearization 

to define the precise location of a point, linear approximations are utilized only to determine a 

locally good direction for search. Along this direction the location of the optimum point could be 

established by direct examination of values of the original objective and constraint functions, 

rather than by recourse to the linearized constraints, which lose their accuracy once a departure 

from the base point is made. This strategy is analogous to that employed in gradient based 

unconstrained search methods. In that, a linear approximation, i.e. the gradient, is used to 

determine a direction, but the actual function values are used to guide the search along this 

direction. In the constrained case, the linearization will involve both objective function and 

constraints, and the direction generated will have to be chosen to lead to the feasible points. 

2.2 BASIC OPTIMUM DESIGN CONCEPTS 

The following concepts which are described briefly are discussed in most of the design 

optimization texts. These are the basic concepts which must be understood properly in order to 

utilize a numerical optimization technique. 

The optimization problem is to find a design in the feasible region which gives a minimum 

value to a cost function. A function f(x) of n variables has global (absolute) minimum at x• if 
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f(x*) ~ f(x) (2.1) 

for all x in the feasible region. If strict inequality holds for all x other than x* in the above equation, 

then x* is called a strict global minimum. A function f(x) of n variables has a local (relative) 

minimum at x* if the above inequality holds for all x in a small neighborhood N of x* in the feasible 

region. If strict inequality holds, then x* is called a strict local minimum. Neighborhood N of the 

point x* is mathematically defined as the set of points 

N = { x I xeS with I lx-x* 11 < o } (2.2) 

for some small 6 > o. Geometrically, it is a small feasible region containing the point x*. 

For a graphical explanation of global and local minima, consider graphs of a function f (x) 

shown in Figure 2. In part(a) of the figure where x is between ..Cl) and co, points B and D are local 

minima since the function has its smallest value in their neighborhood. Similarly, both A and C 

are points of local maxima for the function. There is however, no global minimum or maximum for 

the function since the domain and the function f(x) are unbounded, i.e. x and f(x) are allowed to 

have any value between ..Cl) and co. If we restrict x to lie between a and b as in part(b) of the Figure 

2, then the point E gives the global minimum and F the global maximum for the function. 

Weierstrass theorem 

The theorem on the existence of global minimum states that if f(x) is continuous on a 

feasible set S which is closed and bounded, then f (x) has a global minimum in S. A set S is 

closed if it includes all its boundary points and every sequence of points has a subsequence that 

converges to a point in the set. A set is bounded if for any point x e S, xTx<c, where c is a finite 

number. When conditions of the Weierstrass theorem are satisfied, existence of global optimum 

is guaranteed. But even when the conditions are not satisfied, there still might be a global 

solution. 



• (a} f(x} 
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x 
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(b) f(x) 
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Figure 2. Optimum points. (a) Unbounded domain and function (no global 
optimum). (b) Bounded domain and function (global minimum and maximum 
exist). Source: [2] 
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~/ 
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Figure 3. Gradient vector for f(x1, x2, x3' at the point x·. Source: [2] 
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Gradient vector 

Since the gradient of a function is used in the method of feasible directions to find the 

feasible search direction, its geometric interpretation is discussed here. Geometrically, the 

gradient vector is normal to the tangent plane at the point x• as shown in Figure 3 for a function 

of three variables. Also, the gradient vector points in the direction of maximum increase in the 

function. Mathematically, the gradient vector is the partial derivative of a function f(x), where xis 

any variable. The partial derivative of f (x) is represented as 

at(x) 
P; = ax; where i = 1 to n (2.3) 

The gradient vector is represented as, Vf, af!ax, or grad f. Thus, the gradient vector of a function 

f(x) of n variables at a point x• is defined as, 

Vf(x*) = [ at(x*) 8f(x*) at(x* )] T 
axl ax2 . . . axn 

(2.4) 

where superscript T denotes the transpose of the row vector. Each component of the above 

gradient vector is a function in itself and must be calculated at the given point x•. 

Status of the constraint at a design point 

An inequality constraint can be either active, £-active, violated or inactive at a given 

design point. The equality constraint can only be active or violated at the design point. An 

inequality constraint g1(x) ~ O is said to be active at design point x", if the constraint value is zero. 

If the constraint has a positive value then it is called inactive constraint. If it has negative value, 

then it is called violated constraint. If the constraint value is within a boundary, i.e. ±£,where £ 

is greater than zero, then it is called £-active constraint. 



[z] :aoJnos ·(u 5 
u 5 0 JOJ 1epow,un) 0u 5 u 5 0 JOJ (U)J UO!JOUnJ 1epOW!UnUON ·s 0Jn6!,~ 

":o = .0 .0=.0 • .o 

.) 

(.o)j 



13 

Unimodal function 

In the method of feasible directions, the multi-variable problem is reduced to a single 

variable problem in a after finding the direction vector using the basic equation 

x<1> = x<0> +ad (2.5) 

where x<0> and d are known. Now the minimum of the univariate function is found which gives the 

minimum of the multi-variable problem, the values of the updated variables being obtained by 

substituting the value of a in the above equation. For a univariate function to have a unique 

minimum within a certain interval, the function must be unimodal. Figure 4 shows the graph of 

such a function which decreases continuously until the minimum is reached. A function as shown 

in Figure 5, has many local minima and is thus not a unimodal function. Interval searching 

methods such as golden section search, are employed easily when the functions are unimodal. 

2.3 THE ALGORITHM FOR METHOD OF FEASIBLE DIRECTIONS 

The feasible direction method of Zoutendijk [12) has proven to be one of the most efficient 

algorithms currently available for solving nonlinear programming problems with only inequality 

type constraints [13). Since in most mechanical design problems we deal only with inequality type 

constraints like stress, displacement, etc., this method should be a very good choice for 

optimization. 

First a search vector d is found, and then by moving along this direction, the vector as 

given in the following equation is updated. 

ii = 11-1 + a*ci (2.7) 

After determining the search vector, a• is determined using the golden section method. 

To reach the minimum, the method follows the constraint boundaries, without necessarily 

being tangent to them. The method could be easily understood by referring to Figure 6. The 

gradients of the objective function and constraints are calculated first. Consider the design point 
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x0 on the constraint boundary g1 (x). The lines tangent to the line of constant objective and 

constraint boundary are the linear approximations to the problem. Now a search direction S (or 

d) has to be found which will reduce the objective function without violating the active constraint 

for a finite move. Zoutendijk[12) postulated that a direction d would be a good direction for search 

if it were a descent direction, that is 

Vf(x<0» . d < O (2.8) 

This direction is feasible if for a small move in that direction, the active constraint is not violated. 

That is, 

Vgi(x<0» . d ~ O (2.9) 

for all constraints gJ(x) that are active at x<0>. The direction which satisfies the above inequalities 

is called a feasible direction. At each iteration, to determine the vector d which will be both a 

descent and feasible direction, a scalar parameter 8 > O is introduced such that 

Vf(x<0>) d S - 8 

V gj(x<0» d ~ 8 

and 
(2.10) 

and 8 is as large as possible. The vector d is normalized by imposing the bounds -1 s d1 s 1, 

i = 1,2, ... ,N; where N is the number of design variables. 

Once finding the direction vector, the next updated value of x could be found by 

searching on a along the line 

X = x<0> + Qd(l) (2.11) 

until either the optimum of f(x) is reached or a constraint is encountered. Instead of leaving the 

a unbounded, a line search on each gJ(x) could be conducted to find the a values greater than 

zero at which the constraints are bounding. The smallest among the a values called (i which bind 

the constraints gJ(x) is chosen. Now, a line search could be conducted to find the a in the range 

OS a S ii that would minimize f(x<0> + ad<1>). 
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Figure 6. Feasible search direction. Source: [3] 
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The algorithm is coded in the C language as MOFD.c. The basic algorithm was adopted 

from (1), and is given below. 

Let I (t) be the set of the active constraints at x<•>, within some tolerance f, that is, 

1<1> = { j: o s gi(x'-'>) s e, i = 1,2, ... ,J} (2.12) 

for a small f > o. The following steps give the complete iteration of the feasible direction method. 

Step 1 : Solve the linear programming problem 

Maximize fJ 

Step 2: 

Step 3: 

Subject to Vf(x<1>) d s - fJ 

Vgi(x<1» d ~ fJ i £ 1<1> 

- 1 S d; S 1 i = 1,2, ... ,N 

the solution from above problem is d(t) and o<t>. 

If fJ <•> s 0, then the iteration process terminates, since no further improvement is 

possible. Otherwise, determine 

a= min{a:gj(x<1> +ad<'» = 0, j = 1,2, ... ,J and a~ O} 

if no (i > O exists, set (i = co. 

Find a<•> by line search, such that 

f(x<1> + a<1>d<1» = min{f(x<1> +ad<'» : o s a s a} 

Using the a<•> value, set x<•+i> = x<•> + a<•>d<•> and continue the iteration. 

In the computer code of the algorithm, the search direction was found using the simplex 

method of optimization. The search for the boundary and the line search for the optimum are 

found using the bisection and golden-section search methods respectively. The partial derivatives 

of the gradient vector are found using the central difference method. The method can be simply 

stated as, 



t' (x) = f(x + A s) - f(x - A s) 
2As 

where f' (x) is the numerical derivative at the value of x and As the small increment. 

2.4 FINDING SEARCH DIRECTION BY SIMPLEX METHOD 
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(2.13) 

The direction finding problem in the step 1 of the feasible direction method algorithm is 

solved using the modified simplex method. The basic algorithm and the computer code in C 

language of this method, are adopted from Numerical Recipes [14]. The only restriction in 

applying the method to the direction finding problem is the normalizing constraint on d, 

-1 ~ d, ~ 1 i = 1,2, ... ,N 

where N is the number of design variables. Since the simplex method's standard form needs the 

value of d1 to be greater than zero, the above constraints can be changed to the following form, 

Let, d1 = d1°ew - 1 

dnew<2 
i -

The new value of d1 is substituted in the problem and solved for the variables d1°ew and 8. After 

finding the d1new values they are again substituted in the above equation to get the real values 

of the direction vector. 

The feasible vector that maximizes the objective function is called the optimal feasible 

vector. This vector can fail to exist for two reasons, 

1. there are no feasible vectors, i.e. the given constraints are incompatible. In this case the 

constraints could be rewritten in a different format and tested again for solution. 

2. there is no maximum, i.e. the maximum of the objective function can go to infinity, giving 

an unbounded solution while still the constraints are satisfied. In this case the problem 

is under-constrained and could be overcome by putting additional constraints on the 

variables. 
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2.5 THE BISECTION ALGORITHM 

The bisection method is used in finding the boundary of the feasible region. The 

appropriate er values when the constraints become bounding, i.e. gi(x) = O is found and used for 

finding the minimum in the line search. The bisection method is based on the intermediate value 

theorem. For a continuous function, defined on the interval [a,b] such that f(a) and f(b) of 

opposite sign, then there exists p, a < p < b, for which f(p) = o. The method works by repeated 

halving of subintervals of [a,b] and, at each step, locating the "half" containing p. The basic 

algorithm is given below. 

Step 1 : Set i = 1 

Step 2: while i s N 

Step 7 

Step 3 Set p = a + (b - a)/2 

Step 4 If f(p) = o or (b - a)/2 < TOL then 

Output p; 

End 

Step 5 Set i = i + 1 

Step 6 If f(a).f(p) > O then a = p 

Else b = p 

Goto step 2 

Output ("The method failed for N iterations, N =",N); 

Output ("Repeat the procedure by changing the N value"); 

Stop. 

The inputs are the bounds a,b, the tolerance TOL and the maximum number of iterations 

N. The above inputs can be changed appropriately to get the correct solution. This algorithm is 

coded as Bisect.c. After finding the er values for the different binding constraints, the smallest er 

is selected and is called Ci. 
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2.6 THE GOLDEN SECTION SEARCH METHOD 

The third step in the basic algorithm of the method of feasible directions is the line search 

to find the minimum. The golden section method is chosen for the line search to find the minimum 

because of its proven advantages. This method is easily programmed on digital computers. The 

function is assumed to be unimodal and need not have continuous derivatives. The rate of 

convergence of this method is known, as compared to polynomial or curve-fitting techniques. 

The lower and upper bounds of the variable a are O and ii and these bounds will be 

called as X1 and ><u respectively. The corresponding function values at these bounds are also to 

be evaluated. Now two intermediate points X1 and X2 are picked, such that X1 < X2 and functions 

are evaluated at these points to provide F1 and F2. Since the function is unimodal, the values of 

either X1 or X2 will form a new bound on the minimum. 

The values of X1 and X2 are defined as follows. 

X1 = (1 - 1)X1 + 1Xu 

X2 = 1X1 + (1 - 1)Xu 

The ratio X2 to X1, called the golden section number, is given as 

and the value of 1 = 0.38197. 

X2 = 1.61803 
X1 

(2.14) 

(2.15) 

The golden section search is coded as Golden_search.c. This is written as a function and 

called by the main program MOFD.c. The flowchart of the algorithm is given in Figure 7. 

For all numerical methods a criterion must be defined to know when the process has 

converged. The initial interval of uncertainty, ><u-X1 is reduced to some fraction f of initial interval 

or some specific magnitude Ax. The f is referred to as a relative tolerance, dependent on the 

initial interval and Ax as the absolute tolerance which is independent, the value being selected 

as 0.0001. 
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The relative tolerance is calculated from the absolute tolerance as, 

h. x 
E = X -X, 

u 

(2.16) 

This relative tolerance E is converted to a maximum number of function evaluations in 

addition to the three required to evaluate F1, F1, and F 
0

• The interval is reduced by the fraction 

T(0.38197) on every iteration. Thus the tolerance can be expressed as 

E = (1 - T)N-3 (2.17) 

where N is the total number of function evaluations. Solving the above equation we get 

In E 
N = + 3 = - 2.078 In E + 3 

In (1 - T) 
(2.18) 

The value of N is used as a convergence criterion in terminating the iteration process. 

2. 7 TOPKIS - VEIN OTT VARIANT 

In the basic algorithm of the feasible direction method, the successive direction-generating 

subproblems differ in the active constraint set I<•> used at each iteration. This aids in reducing 

the size of the linear programming problem. Since, the only constraints considered are the ones 

binding at the current feasible point, a zig-zag pattern results, which slows down the progress 

towards the minimum and converges to points that are not Kuhn-Tucker points. This is known as 

jamming, and occurs when the steps taken become shorter and shorter as direction vector d 

alternates between closely adjacent boundaries. The steps become shorter not because optimum 

is reached but due to a nearby constraint not considered when the direction finding sub-problem 

is encountered. 

To overcome the problem, an alternative approach Topkis-Veinott variant method [15] is 

used. In this method the active constraint concept is replaced with the direction-finding 

subproblem as follows: 
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Maximize 8 

Subject to Vt(x<'>) d S - 8 

gj(x<'» + v g})«'» d ~ 8 j = 1,2, ... ,J 

1~d~-1 

The remaining algorithm is unchanged. The primary difference in the subproblem definition is the 

inclusion of the constraint value in the inequality associated with each constraint. If the constraint 

is loose at x<•>, i.e. g1(x<•» > o, then the selection of d is less affected by this constraint, because 

the positive constraint value will counterbalance the effect of the gradient term. This method, as 

proved by Topkis (15], ensures that no sudden changes are introduced in search direction as 

constraints are approached, thus jamming is avoided. In the computer code of the algorithm 

MOFD.c this approach is incorporated thus ensuring that the minimum is reached faster. 

2.8 EXAMPLE PROBLEM 

The following problem from [1] is solved using the computer code of the feasible direction 

method MOFD.c and the results were found to be very close to the theoretical results. The 

problem and results are given below. 

Minimize f(x) = (x1 - 3)2 + (x2 - 3)2 

Subject to g1(x) = 2x1 -x2
2 -1 ~ O 

g2(x) = 9 - a.ax/ - 2x2 ~ o 

Initial values of x1 = 1, x2 = 1, f(x) = 8.0 



I Iteration No. I X1 

0 1.0 

1 2.179487 

2 2.477958 

3 2.503471 

4 2.4985 

I 
Theoretical 

Method of Feasible Directions 

% Difference 

TABLE I 

ITERATION HISTORY 

I Xz 

1.0 

0.606838 

1.988929 

1.993010 

1.99924 

TABLE II 

COMPARISON OF RESULTS 

I X1 I Xz 

2.50 2.0 

2.4985 1.99924 

0.06 0.04 
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I 
f(x) 

I 
8.0 

6.400467 

1.294793 

1.260569 

1.253032 

I 
Minimized f(x) 

I 
1.250 

1.253032 

0.242 



CHAPTER Ill 

HYPOID GEAR DESIGN 

3.1 INTRODUCTION 

Hypoid gears are similar to spiral bevel gears except that the pinion axis is offset above 

or below the gear axis. If there is sufficient offset, the shafts can pass one another and a compact 

straddle mounting can be used. Unlike spiral bevels, the hypoids should have non-symmetrical 

profile curvatures for proper tooth action, so the pressure angles on the two sides are unequal. 

Hypoid pinion has a larger spiral angle than the gear. Since the normal pitch in both members 

should be the same for mating, the transverse pitch in the hypoid pinion is greater. This makes 

the hypoid pinion larger in size, therefore stronger than the corresponding spiral bevel pinion. 

Moreover, the hypoids have a lengthwise sliding action, the amount being a function of the 

difference between the spiral angles on the pinion and gear. 

Hypoid gears, like bevel gears, can be used for transmitting power between shafts at 

practically any angle and speed. But they are especially recommended when the peripheral 

speeds are in excess of 1000 feet per minute or 1000 rpm, whichever occurs first. They can be 

used at lower speeds, if extreme smoothness and quietness are required. When used for large 

reduction ratios, hypoid gears can achieve a substantial reduction in size. The main advantages 

of hypoid gears over spiral bevel gears are that the pinion can be made stronger for the same 

ratio, and the shafts do not intersect. 

Hypoids are almost universally used in automobiles, and to some extent in trucks, 

because of their smoother operation and greater size and strength, which allows higher reduction 

ratios while still maintaining the required pinion shank size. Together with the shank offset, the 

hypoid set assists in lowering the car body, which is an additional advantage. In precision 
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machine tool applications, hypoids are used instead of worm gears when the ratio exceeds 1 O 

to 1, because of their better accuracy. 

3.2 DESIGN CONSIDERATIONS 

Hypoid gears are suitable for transmitting power at practically any angle and speed. The 

power, speed, gear ratio and operating conditions must be defined as the first step in designing 

a gear set for the specific application. The operating condition requirements are the following. 

1. Application - whether the gear to be used in automotive or non-automotive field. 

2. Mounting conditions - Q 

ii) 

Both members straddle mounted 

One member straddle mounted 

iii) Neither member straddle mounted (both overhung). 

3. Whether the gear is to be ground for finishing. 

4. Type of loading on the prime-mover and the driven member : uniform, medium shock, or 

heavy shock. 

5. Type of material to be used (Appendix A). 

From the above inputs, gear pitch diameter is estimated based on the gear torque using 

the graph in Appendix B. The charts are based on case-hardened steel and if the material and 

heat-treatment is different, then the estimated gear size must be multiplied by the material factor 

given in Appendix A. If the gear is to be ground, then the size is multiplied by 0.80. Pinion pitch 

diameter is obtained, by dividing the gear diameter by the speed ratio. Using the pinion pitch 

diameter, number of teeth and facewidth can be estimated using tables and graphs in Appendix 

A and B. The diametral pitch is now calculated as the ratio of number of gear teeth to gear pitch 

diameter. Hypoid offset in general should not exceed 25 percent of the gear pitch diameter for 

power drives and for very heavily loaded gears must be limited to 12.5 percent of gear pitch 

diameter. As a good approximation, suggested by Gleason Works (11], the maximum allowable 

values are considered for offset. The pressure angle is unbalanced on both sides of a gear tooth 
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in order to produce equal contact ratios on two sides. For automotive and light duty drives, 19" 

is used, and for heavy duty drives, 22.5° is used, as average pressure angles. 

3.3 CONTACT AND BENDING STRENGTH 

The rating formulas given below are specifically prepared for hypoid gears in which the 

tooth contact pattern has been developed to give good results in the final mounting under full 

load. The design procedure was developed by Gleason Works [11] and is widely accepted in the 

industry circles. 

The basic equation for contact stress in a hypoid gear or pinion is, 

S = C J 2Tpmaxco N2CsCmC'f 
c p ---

CVFD2 n2 I 

The basic equation for bending stress in hypoid gear is 

for diametral pitches less than 16, 

2T GKo pd KsKm s, = -----­
KV FGD JG 

Ks= . __ 1_ 
p 0.25 

d 

for diametral pitches greater than 16, Ks= 0.5 

where, 

JT 
Tpmax 

(3.1) 

(3.2) 

Sc = calculated contact stress at point on tooth where its value will be maximum, lb/in1 

S1 = calculated tensile bending stress at root of gear teeth, lb/in 1 

CP = elastic coefficient of the gear and pinion materials combination, ./lb/in 

T p.T G = transmitted torques of pinion and gear, respectively, lb-in 

T pmax = maximum transmitted pinion torque lb-in 

K_,,C
0 

= overload factors for strength and durability, respectively 
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!<y,Cv = dynamic factors for strength and durability, respectively 

~.Cs = size factors for strength and durability, respectively 

K.n,Cm = load distribution factors for strength and durability, respectively 

Cr = surface condition factor for durability 

I = geometry factor for durability 

J = geometry factor for strength. 

The elastic coefficient for hypoid gears with localized tooth contact pattern is given by 

c, • f ~ 1 

1 - µ 2 1 - µG2 __ ,_+ __ _ 
E, E0 

(3.2) 

where, µP,µG = Poisson's ratio for materials of pinion and gear, respectively. Since all the 

materials considered are ferrous, a value of 0.30 is used. 

Ep.EG =Young's modulus of elasticity for materials of pinion and gear, respectively. For 

steel, 30.0x106 lb/in2 is used. 

The transmitted torque in pound inches is calculated directly from the power transmitted and is 

given as follows. 

Torque = 

where, P = power transmitted in hp 

N = speed in rpm of gear or pinion. 

The maximum transmitted pinion torque is calculated using the above equation by 

selecting the corresponding values of power, and pinion speed. 

The overload factors~ and C0 , makes allowance for the roughness or smoothness of 

operation of both the driving and driven units. In determining the overload factor, consideration 
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should be given to the fact that many prime-movers develop momentary overload torques which 

are very much greater than the rated normal operating torque. The overload factor table in 

Appendix A is used for selecting the factor. 

The dynamic factors Ky & Cv, reflect the effect of inaccuracies in profile, tooth spacing, 

and runout on instantaneous tooth loading. If the accuracy of the hypoid gear is AGMA Class 11 

or higher, then the dynamic factor can be taken as unity from curve no. 1 of dynamic factor graph 

in Appendix B. Otherwise for lower accuracy gears the dynamic factor can be obtained from 

Curve no. 2. 

The size factors ~ & C
5

, take into account the fact that the allowable stress is a function 

of the size of the specimen and the hardenability of the material. The effect of specimen size 

shows up most clearly on the allowable bending stress; and less noticeable on the allowable 

contact stress. The size factor for durability is taken as 1.0. 

Performance of the hypoid gears is dependent to a considerable degree upon their 

alignment under operating conditions, the load distribution factors ~ & Cm, is introduced in the 

rating formulas to make allowance for this effect. This factor is based on the magnitude of the 

relative displacements of the gear and pinion and is selected from the load distribution factor 

table in Appendix A. 

The surface condition factor for durability C1 , depends on surface finish as affected by 

cutting, lapping, grinding, shot peening, etc. On the assumption that first class gear 

manufacturing practice is followed, the surface condition factor is taken as unity. 

The geometry factor for durability I, incorporates the relative radius of curvature between 

mating tooth surfaces, the load location, the load sharing between pairs of teeth, the effective 

facewidth, and the inertia factor resulting from a low contact ratio. The series of graphs in 

Appendix B gives the durability geometry factors for some of the most commonly used gear sets. 

The geometry factor for strength J, incorporates tooth form factor, the load location, the 

load sharing between pairs of teeth, the effective facewidth, the stress concentration and stress 
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correction factors, and the inertia factor resulting from a low contact ratio. The series of graphs 

in Appendix B gives the strength geometry factors for some of the most commonly used gear 

sets. 

The graphs of geometry factor I and J are converted to polynomial equations of the 

following form to get the appropriate values. The intermediate values can be obtained by 

interpolation or extrapolation. 

I J 2 3 n or = Bo + a1 n + a2n + a3n + . . . + 8nn 

The converted polynomial equations are plotted against the number of pinion teeth, to verify their 

accuracy with the original curves. For a correlation of 90% to 99% the order of polynomials 

obtained for the geometry factors ranged from 5 to 10. The order of the polynomial equations 

were increased if their accuracy is not atleast 90%. 



CHAPTER IV 

OPTIMIZATION PROBLEM AND RESULTS 

4.1 HYPOID GEAR DESIGN AS OPTIMIZATION PROBLEM 

The traditional hypoid gear design procedure is similar to the design cycle of a 

mechanical component. In general, mechanical design begins with an estimate of the size of the 

component based on power transmitted, load capacity or physical conditions, etc. After making 

a good estimate, the component's specifications are analyzed to satisfy various constraints it has 

to undergo in practical situation. If the estimate does not satisfy the constraints, then the value 

has to be properly adjusted and the analysis must be done again to check the constraints. This 

procedure is repeated until we get a satisfactory design. 

By using an optimization technique, the preliminary estimation and detailed design 

mentioned above are replaced with a numerical search algorithm. The major advantage of using 

an optimization method is that once specifications and constraints are given, the numerical search 

algorithm can utilize this information and automatically search through the design space defined 

by the geometric variables (design variables). 

The common design objective for hypoid gears is weight minimization. The hypoid gear 

design problem can be stated in a general design optimization form as follows. 

Minimize, 

Weight = Density x Volume 

Subjected to 

1. Contact stress constraint 

2. Bending stress constraint 

3. Facewidth constraint 
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and the side constraints on the design variables based on manufacturing process are, 

1. Facewidth, F ~ 1.0 inches 

2. Number of gear teeth, N ~ 5 

3. Diametral pitch, Pd ~ 1.0 

Contact Stress Constraint 

The calculated contact stress due to the loading must be equal to or less than the 

allowable contact stress of the material to avoid surface failure, i.e. 

Sc~ Sac 

The equation 3.1 gives the value for calculated Sc. The allowable contact stress for different gear 

materials is given in the Table XII in Appendix A. 

Bending Stress Constraint 

The calculated bending stress due to the loading must be equal to or less than the 

allowable bending stress of the material to avoid failure in bending, i.e. 

s. ~sat 

The equation 3.2 gives the value for calculated s •. The allowable bending stress for different 

materials is given in the Table XIII in Appendix A. 

Facewidth Constraint 

The facewidth of the hypoid gear should be limited to 

F < 10 
- pd 

Increasing the facewidth adds the strength and durability theoretically, but at a rapidly diminishing 

rate. This causes manufacturing difficulties by requiring cutters of less point width and decreases 

possible fillet radii. It can also increase the possibility of breakage and wear if the load becomes 

concentrated on the smaller end of the teeth. 
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Volume of the gear 

The volume of the hypoid gear is approximated by a geometry having two truncated 

cones with a common base diameter. The half angle of the cone is the pitch angle and mean 

pitch diameter is considered as the base diameter. Since hypoid gear geometry is quite 

complicated and very difficult to deal with analytically, some assumptions have to be made in the 

approximations, and are mentioned below. As can be seen from the parameters in the volume 

equation, reduction in the facewidth will lead to the reduction of volume. 

Let, 

Facewidth 

Figure 8. Hypoid gear geometry for volume calculation. 

g = gear pitch angle 

x = 0.1 x Pitch circle diameter 

h = F cos(g) 

The total volume can be calculated by considering the gear as two truncated cones having 

common base diameter and placed as shown in the Figure 8. The volume of the top truncated 

cone can be calculated by subtracting the volumes of the full cone and the truncated cone having 

base diameter as b, from the full cone having base diameter of PCD. 



The parameters shown in the figure can be calculated as follows. 

B = PCD-2 [-h l 
tan(g) 

b = PCD -2Fsin(g) 

bb = b - 2 F cos(g) 
tan(g) 

BB= bb-2x 

Top full cone volume, having base diameter PCD 

X1. !11 rr PCD 
3 2 2tan(g) 

Top full cone volume, with base diameter b 

1 rbr b 
X2 = 3 7r ~ 2 tan(g) 

Truncated cone volume, with base diameter b 

X3. r~ 11 ~J bra;W>]- r~ 11 ~J bb~W)l 
Bottom full cone volume, with base diameter PCD 

X4 = ! 11 [PCoJ PCD tan(g) 
3 2 2 

Bottom cone volume, with base diameter B 

X5 = ! 7r rBr B tan(g) 
3 ~ 2 
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Cylinder volume, with diameter BB and height h 

X6 = w ~r h 

Now the total volume can be calculated from the above quantities. 

Total gear volume= X1 - X2 - X3 + X4 - X5 - X6 

Volume of the pinion 

The Hypoid pinion geometry is much simpler compared to the gear for calculating the 

volume. The volume of the pinion is calculated as a truncated cone having base diameter of 

pinion PCD. 

FACBW:WTH(F) 

PCD 

Figure 9. Hypoid pinion geometry for volume calculation. 

Let, 

P.A = Pinion pitch angle 

1 rDl PCD _ !71" Volume = 3 11" 2 2 tan(P A) 3 
CD - 2 F sin(P A) r PCD l tan(P A) - F cos(P A) 
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The pinion and gear pitch angles are calculated using the formulas given in Table XIV. The pinion 

facewidth and pitch circle diameter are also calculated using the formulas in Table XIV. 

4.2 DESIGN PROBLEM AND RESULTS 

The Hypoid gear CAD procedure has been extensively tested for a large number of 

industrial and automotive designs. The efficiency of the Feasible Directions method, directly 

depends on the starting solution lying within the feasible domain. Since most of the parameters 

are chosen from standard tables, the starting solutions are nearer to the optimal point, thus 

enhancing the computational efficiency. A typical design example is presented here. 

Problem 

Results 

Transmitted power 

Input pinion speed 

Gear ratio 

Other requirements 

350 HP 

2100 RPM 

4 

1) The gear is to be used for industrial application. 

2) One member is straddle mounted. 

3) The gear should be ground for finishing. 

4) Loading on the prime-mover and the driven member is with heavy shock. 

5) Material to be used is oil hardened steel of 400 BHN for both gear and pinion. 

Using the input data, allowable bending and contact stress values are read from the data 

files. Initial values of design variables are selected and appropriate correction factors are applied 

to them. The results of the optimization is presented in Table Ill and IV. 



Iteration Gear teeth (N) 

Initial 56 

1 56 

2 56 

3 56 

4 56 

5 56 

TABLE Ill 

OPTIMIZATION RESULTS 

Diametral pitch (Pd) Facewidth (F), in. 

3.355 2.560 

3.635 2.751 

3.723 2.739 

3.692 2.709 

2.141 1.164 

2.141 1.164 
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Gear weight (lb) 

43.580 

42.779 

40.970 

40.836 

28.253 

28.253 

The results show the weight of the gear has been reduced by 35.17%. The overall weight 

reduction of the gear-pinion set is 18.7%, which is significant. The design variables, diametral 

pitch(Pd) and gear facewidth(F) have reduced considerably while the number of gear teeth did 

not experience any change. Since the gear teeth values are selected from a table which gives the 

field tested values, the optimization program could not reduce it further. The table values can be 

accepted as optimum, since their inclusion as design variable did not change the optimization 

path. Also this shows that to reduce the weight it is enough to consider facewidth and diametral 

pitch as the design variables. But this may not be the case for all applications. 

Figure 1 o, shows the contour plots of the constraints with facewidth and diametral pitch 

as the variables. This plot is drawn for the above example and only the feasible region is shown. 

The plots show that the contact stress constraint does not play any role on the minimization. The 

entire optimization process is constrained only by the bending stress constraint and the width 

constraint. Figures 11, 12 and 13, show the change in design variables and the weight. 
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A comparison between the initial selected values and the final optimized values is given in Table 

IV. 

TABLE IV 

COMPARISON BElWEEN INITIAL AND OPTIMIZED VALUES 

Parameter Initial value Optimized value 

Number of gear teeth 56 56 

Number of pinion teeth 14 14 

Diametral pitch 3.355 2.141 

Gear facewidth (in.) 2.560 1.164 

Pinion facewidth (in.) 3.870 1.580 

Gear pitch diameter (in.) 16.690 25.040 

Pinion pitch diameter (in.) 4.380 7.150 

Weight of gear (lb) 43.580 28.253 

Weight of pinion (lb) 9.000 14.520 

Bending stress (lb/in2
) 44887.820 49999.910 

Contact stress (lb/in2
) 128632.060 135100.690 

Allowable bending stress (lb/in2) 50000.000 

Allowable Contact stress (lb/in2
) 180000.000 
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4.3 CHECK FOR KUHN-TUCKER OPTIMAUlY CONDITIONS 

Kuhn-Tucker conditions are the necessary and sufficient conditions for checking the 

optimality criteria for both nonlinear equality and inequality constrained problems. The Kuhn-

Tucker problem formulation given in [1] is used to check the optimal solution obtained in hypoid 

gear design problem. For the optimum design vector x•, 

3 
V f (K*) - }: u.Vg.(K*) = o 

. 1 J 'J 
J• 

gj (K*) ~ 0 

uigi(K*) = O 

ui ~ o 

for, j = 1,2,3 

At optimum the contact stress and facewidth constraints are inactive. Only bending stress 

constraint is active. The Lagrange multiplier for the inactive constraints is zero to satisfy Kuhn-

Tucker conditions. Now, the Kuhn-Tucker condition at optimum becomes, 

V f (K*) - ubending V gbending (K*) = 0 

Substituting the gradient values at x*, 

(0.83 - 21.71 + 32.88) = ubending (1080.74 - 37528.26 - 42949.54) 

~nding = 1.845 x 10"3 > o· 

and, ~nding9bending(x) = 0 

The above equations prove that Kuhn-Tucker optimality conditions are satisfied at 

optimum for the hypoid gear problem. 
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CHAPTER V 

CONCLUSION 

The methodology applicable to constrained optimization problem has been studied and 

tested with examples. Considerable amount of time is devoted to the discussion of formulation 

of problem and to the computational devices expediting the solutions. The design of hypoid gears 

has been addressed as a numerical optimization task. The objective here was to demonstrate the 

use of optimization techniques for a design problem and to show the improved results. The 

development of software consistent with the theoretical concepts was necessary to achieve this 

goal. A test problem was given to demonstrate the applicability to typical hypoid gear design 

problem. 

The use of numerical optimization has been shown, for the improved design of gears with 

less weight as the main criterion. In some cases, special algorithms must be used to obtain 

feasible starting points if they are not known. This could be done as a future extension of this 

work to make the algorithm more effective for applications where starting points are not feasible. 

The example provided here is considered sufficient to indicate the breadth of application 

of optimization techniques for mechanical component design. This also presents the importance 

and understanding of problem definition and analyzing the final results. It is hoped that this work 

provides stimulation toward the expanded application of these techniques in practical engineering 

design problems. 
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Gear 

Material 

Case-hardened steel 
Case-hardened steel 
Flame-hardened steel 
Flame-hardened steel 
Oil-hardened steel 
Heat-treated steel 
Heat-treated steel 
Cast iron 
Cast iron 
Cast iron 
Cast iron 

tMinimum values. 
tGears must be file-hard. 

Source: [10] 

MATERIAL FACTORS Cm 

Pinion 

Hardness Material 

58 Rct Case-hardened steel 
55 Rct Case-hardened steel 
50 Rct Case-hardened steel 
50 Rct Flame-hardened steel 
375-425 H 8 Oil-hardened steel 
250-300 H 8 Case-hardened steel 
210-245 H 8 Heat-treated steel 

Case-hardened steel 
Flame-hardened st~el 
Annealed steel 
Cast iron 

Material 
factor 

Hardness CM 

60Rct 0.8St 
55 Rct 1.00 
55 Rct 1.05 
50 Rct I.OS 
375-425 H 8 1.20 
55 Rct 1.45 
245-280 H 8 1.65 

.55 Rct 1.95 
50Rct 2.00 
160-200 Hs 2.10 

3.10 

RECOMMENDED TOOTH NUMBERS FOR AUTOMOTIVE APPLICATIONS 

Preferred 
Approximate no. pinion Allowable 

ratio teeth range 
-

1.50/1.75 14 12 to 16 
1.75/2.00 13 11 to 15 
2.0/2.5 11 10 to 13 
2.5/3.0 10 9 to 11 
3.0/3.5 10 9 to 11 
3.5/4.0 10 9 to 11 
4.0/4.5 9 8 to 10 
4.5/5.0 8 7 to 9 
5.0/6.0 7 6 to 8 
6.0/7.5 6 5 to 7 
7.5/10.0 5 5 to 6 

Source: [ 1 OJ 
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Source: [10] 

Type of gear 

Straight bevel 
Spiral bevel 

Zero! bevel 
Hypoid 

Type of gear 

Straight bevel 
Spiral bevel 

Zero! bevel 
Hypo id 

DEPTH FACTOR 

No. pinion teeth 

12 and higher 
12 and higher 
II 
IO 
9 
8 
7 
6 

13 and higher 
11 and higher 
10 
9 
8 
7 
6 

MEAN ADDENDUM FACTOR 

No. pinion teeth 

12 and higher 
12 and higher 
II 
IO 
9 
8 
7 
6 

13 and higher 
21 and higher 

9 to 20 
8 
7 
6 

tUse C1 = 0.270 + 0.230/(m00 )
1

• 

Source: (1 OJ 

Depth factor k1 

2.000 
2.000 
1.995 
1.975 
1.940 
1.895 
1.835 
1.765 
2.000 
4.000 
3.900 
3.8 
3.7 
3.6 
3.5 

Mean addendum 
factor C1 

C,t 
C,t 
0.490 
0.435 
0.380 
0.325 
0.270 
0.215 
C,t 
C,t 
0.170 
0.150 
0.130 
0.110 
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Source: [10] 

Source: [11] 

Application 

CLEARANCE FACTORS 

Type of gear 

Straight bevel 
Spiral bevel 
Zerol bevel 
Hypoid 

Oearance factor k2 

0.140 
0.125 
0.110 
0.150 

OVERLOAD FACTORS Ko. C0 

Character of load on driven member 

Prime mover Uniform Medium shock Heavy shock 

Uniform 1.00 1.25 1.75 
Medium shock 1.25 1.50 2.00 
Heavy shock 1.50 1.75 2.25 

tThis table is for spec:d.<Jecreasing drive; for speed-increasing 
drives add O.Ol(N/n)1 to the above factors. 

LOAD DISTRIBUTION FACTORS K..1• Cm 

Both members One member Neither member 
straddle-mounted straddle-mounted straddle-mounted 

General industrial 1.00-1.10 I. I 0-1.25 1.25-1.40 
Automotive 1.00-1.10 I. I 0-1.25 
Aircraft 1.00-1.25 I. I 0-1.40 1.25-1.50 

Source: [11] 
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ALLOWABLE CONTACT STRESS, Sac 

Minimum hardness 

Con tact stress 
Material Heat treatment Brinell Rockwell C Saco lb/in2 

Steel Carburized (case-hardened) 60 250000 

Steel Carburized (case-hardened) 55 210000 

Steel Flame- or induction- 500 50 200000 
hardened 

Steel and nodular iron Hardened and tempered 400 180000 

Steel Nitrided 60 180000 

Steel and nodular iron Hardened and tempered 300 140 000 

Steel and nodular iron Hardened and tempered 180 100000 

Cast iron As cast 200 80000 

Cast iron As cast 175 70000 

Cast iron As cast 60000 

Source: [10) 
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ALLOWABLE BENDING STRESS, Sat 

Surface hardness 

Bending stress 
Material Heat treatment Brinell Rockwell C S 0 ,. lb/in2 

Steel Carburized (case-hardened) 575-625 55 min. 60000 

Steel Flame- or induction- 450-500 50min. 27 000 
hardened (unhardened 
root fillet) 

Steel Hardened and tempered 450 min. 50 000 

Steel Hardened and tempered 300 min. 42 000 

Steel Hardened and tempered 180 min. 28 000 

Steel Normalized 140min. 22000 

Cast iron As cast 200 min. 13 000 

Cast iron As cast 175 min. 8 500 

Cast iron As cast 5 000 

Source: [1 O] 
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Geometry factor J for strength of hypoid gears with 22.5° average 

pressure angle and E/D ratio of 0.20. Source: [11] 
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FORMULAS FOR COMPUTING BLANK AND TOOTH DIMENSIONS OF HYPOID GEARS 

Item No. Formula 

Pitch diameter of gear I 
N 

D=-
pd 

2 
n 

m=-
N 

3 1fpo = 1f;p 

4 A'E = 90 - 'E 

5 
cos .ti.I: 

tan r; = . 
l.2(m - sm .ti.I:) 

6 R = 0.5(D - F sin r;) 

7 
. E. 

smc; = R sm r; 

8 K1 = tan 1/;p0 sin c; + cos c; 

9 Rn= mRK1 

10 tan 11 = 
E 

R(tan r; cos .ti.I: - sin .ti.I:) + Rn 
first trial 

II sin c2 = E - Rnsin11 

R 

12 
sin 11 

tan ,,2 = + tan .ti.I: cos 11 
tan c2 cos .ti.E 

13 sin c2 = 
sin c2 cos .ti.I: 

cos 1'2 

14 tan "1n = 
K1 - cosc2 

sin c2 

15 .ti.K = sin c2 (tan "1ro - tan 1/;n) 

16 
.ti.Rp 
- = m(Ll.K) 

R 

17 
. . ti.RP . 

sm c1 = sm c2 - R sm 11 

Pinion pitch angle 18 
sin '1 

tan 1' = + tan .ti.I: cos 11 
tan c1 cos ti.E 

19 sin c~ = 
sin c, cos D.E 

cos 1'1 

Pinion spiral angle 20 tan 1/;p = 
K, + Ll.K- cosc; 

sin c~ 

Source: [ 1 O] 
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FORMULAS FOR COMPUTING BLANK AND TOOTH DIMENSIONS OF HYPOID GEARS 

(Continued) 

Item No. Formula 

Gear spiral angle 21 ifG = ifp-c; 

Gear pitch angle 22 sin c1 tan r = ·+cos c1tan ti.E 
tan 11costi.E 

Gear mean cone 
23 R 

distance AG=--
m sin r 

Pinion mean cone 24 ti.R,. = R ( .0.:,.) 
distance 

25 Ami'= 
Rn+ ti.R,. 

sin-y 

26 R,. = Amr sin -y 

Limit pressure angle 27 tan -y tan r Ami' sin,,,,. - AmG sin ifG 
-tan <f>o1 = X 

cos c; Amr tan -y + AmG tan r 

28 De ( tan if,. tan fG ) 1 n = -tan<f>o1 + + 
A.,,. tan -y AmG tan r Amr cos if,. 

1 
-

AmGcosifG 

29 sec </>o1 (tan if,. - tan </>d 
rel = 

Den 

30 I '" - 11 ::; 0.01 
Loop back to no. IO and change 11 
until satisfied. r,, 

Gear pitch apex 31 Z,. = Amr tan -y sin r - Etan ti.E 

beyond crossing tan c1 

point 
32 R z = -- - z,, 

tan r 

Gear outer cone 33 
0.5D 

A=-
distance 

0 sin r 
34 /::J.F0 = A0 - A..,G 

Depth factor 35 k, (sec Table 34-5) 

Addendum factor 36 C1 (see Table 34-7) 

Mean working depth 37 h = k,R cos fc 

N 

Mean addendum 38 a,.= h - aG ac = C,h 

Source: [10] 
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FORMULAS FOR COMPUTING BLANK AND TOOTH DIMENSIONS OF HYPOID GEARS 

(Continued) 

Item No. Formula 

Clearance factor 39 k2 (see Table 34-6) 

Mean dedendum 40 bp = be + ae - Op be= h(I + ki - C,) 

Clearance 41 c = kih 

Mean whole depth 42 h.., = ae +be 

Sum of dedendum 43 r:o (see Sec. 34-5-2) 
angle 

Gear dedendum angle 44 lie (see Sec. 34-5-2) 

Gear addendum angle 45 ae = r;o - lie 

Gear outer addendum 46 aoe = ae + AF0 sin ae 

Gear outer dedendum 47 boe = be + AF0 sin lie 

Gear whole depth 48 h, = aoe + boe 

Gear working depth 49 ht= h,e - c 

Gear root angle 50 r,. = r - lie 

Gear face angle 51 ro = r + ae 

Gear outside 52 D0 = 2aoecosr +De 
diameter 

Gear crown to 53 Xo = Zp + AFoCOS r - Ooe sin r 
crossing point 

Gear root apex 
54 

z _ z Ame sin lie - be 
beyond crossing R - + . sm r,. 
point 

Gear face apex 55 
A.,e sin ae - ae 

z. = z + . r 
beyond crossing sm • 

point 

56 Q,. = 
A..,eCOSoe -Z 

cos r,. 

57 Q. = 
A..,ecos ae -Z 

cos r. 

58 
Etan AI: 

tan~" = Q,. 

Source: (10) 
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FORMULAS FOR COMPUTING BlANK AND TOOTH DIMENSIONS OF HYPOID GEARS 

(Continued) 

Item No. Formula 

Gear face apex 59 
Etan AI: 

tan~.= 
Q., beyond crossing 

point (continued) 
E cos ~R tan r R 60 sin (cR + h) = 

QR 

61 sin(c0 + ~.) = 
E cos~. tan r. 

Q., 

Pinion face angle 62 sin"Y. = sinAEsinrR + cosAEcosrRcoscR 

Pinion root angle 63 sin "YR = sin AI: sin r. +cos AE cos r. cos c0 

Pinion face apex 
64 G = 

E sin CR cos r R - ZR sin r R - c 
beyond crossing 0 sin "Yo 
point 

Pinion root apex 
65 GR= 

E sin c0 cos r 0 - Z 0 sin r 0 - c 
beyond crossing sin "YR 
point 

66 tan>..'= 
m sin cj cos r 

cos "Y + m cos rcos c; 

Pinion addendum 67 a,.= "Yo- "Y 
angle 

Pinion dedendum 68 Op= "Y - "fR 
angle 

Pinion whole depth 
69 h,,. = 

(x0 + G0 ) sin o,. 
- sin °YR (GR - G0 ) 

COS -Yo 

70 AF;= F- t>.F0 

71 AF0 ,. = h sin cR (I - m) 

72 
F _ AF0 cos>..' 

of' - cos (cj - >..') 

73 F.,. = AF; cos >..' 
' cos (ci - >..') 

74 F0 cos "fo b . 
AB0 = + AF0 ,. - ( G - c) sin -y 

cos a,. 

75 Fcos..,,0 (b . AB, = ---+ AF0 ,. - G - c) sin -y 
cos a,. 

Pinion crown to 76 E 
crossing point x 0 = - R,. tan -y + A80 tan c1 cos AE 

Source: (1 O] 
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FORMULAS FOR COMPUTING BLANK AND TOOTH DIMENSIONS OF HYPOID GEARS 

(Continued) 

Item No. Formula 

Pinion front crown to 
77 

E 
crossing point X; = E - Rr tan -y - AB; 

tan £ 1 cost:. 

Pinion outside 78 d0 -= 2tan-y0 (x0 + G0 ) 

diameter 

Pinion face width 79 F x. - X; p=---
cos-y0 

Mean circular pitch 80 
rA..c 

Pm = p ,,A. 

Mean diametral pitch 81 
A. 

P,m = P,-
Ame 

Thickness factor 82 K(see Fig. 34-17) 

Mean pitch diameter 83 dm = 2Amr sin "Y 

84 Dm = 2A..c sin r 

Mean normal circular 85 t. = Pm COS "1G - T. 
thickness 

86 Kcos,Y 

T. = 0.5p., cos "1G - (ap - aG) tan</> + p 
dm tan</> 

Outer normal 87 B (see Table 34-8) 
backlash allowance 

Mean normal chordal 88 - _ _!L_ (~) 
thickness Inc - t. 6 i:P,,, 0.5B sec</> A. 

89 J"! (AmG) T = T - -- - 0 5B sec</> -"" " 6D!, . A
0 

Mean chordal 90 0.25t! cos "Y 
addendum a,p =Op+ d,. 

91 o.2sn.cos r 
acG = aG + D,. 

Source: [10) 



SNOl.lVn03 lVIV\IONA10d O.l NOISl:::f3ANOO HdVl:::IE:> .:10 3ldll\IVX3 

a XIGN3ddV 



69 

POLYNOMIAL COEFFICIENTS 

Degree Order 6 Order 7 Order 8 Order 9 Order 10 

0 -0.148178 -0.966867 2.86164 11.7518 -13.2241 

1 o.28n98 0.861058 -2.19612 -10.1535 14.5665 

2 -0.0782765 -0.242974 o.7863n 3.85314 -6.85763 

3 0.0104111 0.0356279 -0.155493 -0.824045 1.8532 

4 -0.000719314 -0.00294733 0.0184925 0.109454 -0.318452 

5 0.0000248185 0.000138748 -0.00135222 -0.0093735 0.0363687 

6 0.000000338149 -0.00000346941 0.000059432 0.000518583 -0.00279708 

7 0.000000035786 -0.00000143925 -0.0000179161 0.000143193 

8 0.00000001475 0.000000351633 -0.00000467644 

9 -0.00000000299 0.000000088125 

10 -0.00000000073 

The above table shows the polynomial coefficients for the geometry factor graph shown 

in page 59, with 19° average pressure angle and E/D ratio of 0.15. The polynomial coefficients 

shown above are found for the pinion geometry factor JP' with the number of gear teeth held 

constant at 35. This graph was selected as an example to show the accuracy obtained in 

polynomial conversion. The order of the polynomial coefficients was changed from 6 to 1 O, to get 

the best curve fitting. The figures in the following pages show the original curve and the fitted 

curve for the order 6 to 1 o. After inspecting each one of them, the order 1 O was selected as the 

best curve fit and used for interpolation. The order 9 which gives a good approximation for higher 

values of n, i.e. between 15 to 20, does not give as good a value for the lower range of n, i.e. 5 

to 1 o. Since the overall accuracy obtained for order 1 o was better it is chosen as the best fit. In 

the same way polynomial coefficients are found for all the other graphs. 
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