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The analog to digital converter (ADC) samples a continuous analog signal 

and produces a stream of digital words which approximate the analog signal. The 

conversion process introduces noise into the digital signal. In the case of an ideal 

ADC, where all noise sources are ignored, the noise due to the quantization process 

remains. The resolution of the ADC is defined by how many bits are in the digital 

output word. The amount of quantization noise is clearly related to the resolution 

of the ADC. Reducing the quantization noise results in higher effective resolution. 

The traditional method of increasing resolution by increasing the number of 



2 

levels in the quantizer becomes impractical when the resolution becomes high due 

to limitations in analog circuit technology. A popular method of circumventing 

these limitations is to oversample the input using a low resolution quantizer and 

increase the effective resolution of the digital signal with digital signal processing. 

An important factor in the analysis of oversampled ADC's is the character

istics of the quantization noise. It is often assumed that the quantization noise has 

characteristics similar to white noise. This assumption makes analysis of oversam

pled ADC's simpler, but it can provide misleading results. 

This study focuses on the digital signal produced by two types of oversam

pled ADC's. A low resolution traditional ADC and the sigma delta modulator, 

which uses a one bit quantizer and a feedback configuration. Simulated signal 

and noise performance is compared against predicted performance based on the 

white noise assumptions. Further work is done to develop an understanding of the 

quantization noise dynamics for the different types of ADC configurations. Com

parisions are made with theoretical models which provide exact descriptions of the 

the quantization noise. 

It is discovered that the low resolution traditional ADC performance is very 

different than the performance predicted using the white noise assumption. The 

performance of the sigma delta modulator compares much better to the predictions 

made with the white noise assumption. However, simulations and exact theories 

point out areas of signal amplitudes and freqeuncies where the performance is not 

as good. 
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CHAPTER I 

INTRODUCTION TO ANALOG TO DIGITAL CONVERSION 

This is a study about some of the issues involved in the process of converting 

an analog signal to a digital signal. An analog signal, for the purposes of this 

study, will be defined as a continuous voltage signal. A digital signal is defined as 

a sequence of binary values with a specified number of bits, or word length. The 

goal of analog to digital conversion is to obtain a sequence of binary numbers which 

accurately represents the analog input signal. The primary interest of this study 

is to gain an understanding of the issues that affect the accuracy of the analog to 

digital conversion process. The important advantage of analog to digital conversion 

is that the virtually limitless number of phenomena which can be represented by 

analog voltage signals can be transformed to a signal which is accessible to the 

power and flexibility of digital computers. Application areas which use analog 

to digital conversion include audio, video, communications, data acquisition, and 

many more. 

The analog to digital converter, referred to from here on as an ADC, is 

an electronic device which is used to perform analog to digital conversion. The 

key component of the ADC is the quantizer, which takes the analog input value 

and produces a digital output value. There are a couple basic input and output 
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characteristics of a quantizer which define its operation. One of these is the valid 

input voltage range. Voltages within the range will be accurately converted to the 

corresponding digital value. If the input goes outside of the valid range, the output 

will be clipped at the minimum or maximum digital value. 

Another primary characteristic of a quantizer is the resolution of the output. 

If the digital output word has n bits, then the quantizer is said to have a nominal n 

bit resolution. The resolution of a quantizer indicates that it is capable of resolving 

the input signal range into 2n evenly spaced levels. Figure 1 shows the transfer 

relationship between the analog input and digital output for a quantizer with 3 

bit resolution. Since error is introduced into the output when when the input is 

rounded to one of the output levels, the resolution of a quantizer is related to the 

amount of quantization error that will be present in the output. Higher resolution 

quantizers will introduce less noise into the output than low resolution quantizers. 

In general, a quantizer with a specific resolution has an associated nominal amount 

of quantization noise. In practice, an ADC with an n bit quantizer may, for any 

number of reasons, produce an output which has more noise than would be expected 

for n bit resolution. In this case, the effective resolution of the ADC is less than 

the nominal resolution. Since most real world devices are not ideal, the effective 

resolution of a quantizer will usually be lower than the nominal resolution. On the 

other hand, this study will be devoted to examining methods for increasing the 

effective resolution of an ADC above the nominal resolution of the quantizer. 
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-Input 
-Output 

Figure 1. Transfer characteristic of a 3 bit ADC. 

1.1 SAMPLING FUNDAMENTALS 

The ADC is typically part of a sampling system in which the digital values 

must be produced at a specified rate or frequency. The conversion process samples 

the analog signal to produce a discrete time analog signal which is then converted to 

a digital signal. The well known nyquist sampling theorem states that a continuous 

signal must be sampled at a frequency which is at least twice the input signal 

bandwidth in order for the original signal to be reconstructed, with no distortion, 

from the discrete signal. The input signal bandwidth is defined as the frequency 

range from de to the highest frequency that is considered a valid input. If the 

highest frequency of the signal bandwidth is !max, then the nyquist frequency is 

defined as fn = 2fmax· Thus, the minimum reasonable value for the sampling 

frequency, fs, is fn· The sampling bandwidth will be defined as the frequency 
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range from de to 1t. 
Since the output signal is only capable of representing frequencies less than 

1t, if the input contains frequencies greater than 1f, then these frequencies will 

appear in the output as lower frequencies. This is known as aliasing. Figure 

2 shows the discrete frequency spectrum of a discrete signal. The spectrum is 

centered around zero, and is periodic with period fs· The negative side of the 

spectrum is identical to the positive side. If the spectrum of the input signal 

extends beyond 1t, then that part of the input spectrum w!ll be aliased back from 

1t. For example, an input frequency of ~fs will be aliased to 1t- ifs in the output. 

Figure 3 shows a typical ADC circuit configuration. The analog low pass filter at 

the front end is used to remove frequencies above the signal bandwidth in order to 

prevent aliasing. 

-3f s 

2 
-f s :k 

2 
0 ~ 

2 
f 

Figure 2. The discrete time frequency spectrum. 

~ 
2 
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Analog -P- +~o··t11 
o:ut Input 

Analog Sample Quantizer 

Anti- and 
Aliasing Hold 
Filter 

Figure 3. Typical ADC circuit configuration. 

I.2 ADC NOISE SOURCES 

According to the nyquist theorem, a discrete time signal is a perfect repre-

sentation of the analog signal if the conditions of the theorem are satisfied. How-

ever, the digital signal produced by the ADC is not a perfect representation of the 

analog signal even when the sampling requirements are met. This is a result of 

the quantization of the analog samples. When the analog sample is converted to 

a digital word, a small amount of error is introduced. The amount of error will be 

somewhere in the range of±%, where~ = 2n~ 1 . The process of quantization adds 

noise to the signal. The error caused by the quantization process is referred to as 

the quantization error or quantization noise. 

There are several other error sources which will introduce noise in the output 

signal. These other sources of noise will be mentioned here and then dismissed for 
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the rest of the study. If the input signal is outside of the input range, the ADC 

output will be clipped at its minimum or maximum value. This type of error is 

known as saturation error. It will be assumed for this study that the input signal 

has its amplitude limited to fall within the valid input range. Offset error occurs 

when the digital signal does not match the analog signal by a fixed offset value. 

That is, if the input line in the transfer characteristic does not pass through the 

origin, then there is an offset error. Gain error occurs when the output reaches 

saturation either sooner or later than it should. Gain error can also be explained 

by noting that the input line in the characteristic will have a slope not equal to one. 

If the input line in the transfer characteristic is not straight, then the quantizer 

has a linearity error. Error can also occur if the quantizer levels, or 6.'s, are not 

uniformly spaced. An ADC where all the 6.'s are equal is called a uniform ADC. 

Another source of noise that could occur in an actual ADC could be related to the 

input low pass analog filter. If the passband of the filter is not fl.at, then the input 

will be distorted before it is even quantized. If the passband does not attenuate 

the signal strongly enough by half of the sampling bandwidth, then high frequency 

input signals will be aliased to low frequencies, causing yet another source of error. 

Figure 4 shows an ADC transfer function which includes some of the errors listed 

here. Many of the errors here are caused by imperfections in the implementation 

of the ADC. If the quantizer is ideal and the input signal is bounded by the valid 

input range of the quantizer and the valid frequencies of the signal bandwidth, 

then all the noise sources can be eliminated except for the quantization noise. 
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--- Input 
-Output 

Figure 4. 3 Bit ADC Transfer Function Including Errors. 

1.3 REDUCING QUANTIZATION NOISE 

There is no way to avoid the quantization error, even in an ideal ADC. An 

obvious method for reducing the quantization error in an ADC is to increase the 

resolution of the quantizer. Unfortunately, quantizer circuits become increasingly 

difficult to implement as the resolution becomes high. One of the difficulties is 

the design of the anti-aliasing analog filter. For high resolution quantizers, the 

passband of the anti-aliasing needs to have a very flat response and the stop band 

must have very strong attenuation after ft. If fn = fs, then the transition between 

passband and stopband should be as narrow as possible in order to avoid wasting 

bandwidth. It is a very challenging task to design a good anti-aliasing analog filter 

[3) . The sample and hold circuit must be able to accurately sample and hold the 

analog voltage level. The major errors caused by the sample and hold circuit are 
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timing errors and amplitude errors. The sample and hold circuit must be able to 

quickly settle to the correct amplitude during the sample mode, and then be able 

to maintain the correct amplitude during the hold mode. A common method for 

performing the analog to digital conversion, or quantization, is by a method called 

successive approximation. This quantization method works by testing each bit of 

the n bit word and converting the word back to an analog value and comparing it 

with the input value to determine whether the bit belongs in the output. As the 

resolution increases, more tests are required, which reduces the time allowed for 

the test to occur. 

Another method of quantization which is simpler than the successive ap

proximation approach is called flash conversion. The flash converter directly com

pares the input voltage level against the voltage levels of a resistive ladder. Digital 

logic then converts the results of the comparisons into a digital value. The draw

back to this method is that requires 2n - 1 comparators. Also, the resistors in the 

resistive ladder must all be very accurate so that the quantizer levels are uniformly 

spaced. So, for high resolution quantizers, the flash converter is not suitable. 

l.4 OVERSAMPLED ADC'S 

Since there are practical limitations to the resolution of a quantizer using 

traditional methods, other methods of increasing the resolution have been devised. 

One successful method is to oversample the input signal. Oversampling means 

that the signal is sampled more than necessary. Since it is necessary to sample at 
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least at ln, oversampling means that ls > ln· The oversampling ratio is defined as 

M = h.. fn • 

The basic idea of oversampling is that instead of increasing the quantizer 

resolution to reduce noise, the sampling frequency is increased. The goal is to 

take many low resolution digital values and construct, through digital filtering and 

decimation, a high resolution value at the desired rate. For example, taking the 

average of every M low resolution values to produce the final output should result 

in a much better approximation of the input at ~th the frequency. The digital 

filtering and decimation circuits will take an input with a small digital word length 

and high frequency and produce an output with a larger word length and lower 

frequency. Thus, oversampling can make the effective resolution of a quantizer 

higher than its nominal resolution. 

The advantage of oversampling is that the analog circuitry can be made with 

cruder parts tolerances, and most of the work to produce high resolution output 

can be performed by digital signal processing circuits. Since ls is much higher than 

ln, the amount of bandwidth available for the transition band of the anti-aliasing 

analog input filter is larger. This relaxes the need for a high-order low pass filter 

which can be difficult to implement [3] and allows the use of a relatively crude 

analog filter which is easier to implement. The high performance filtering tasks are 

handed over to the digital circuitry after quantization. The technological advantage 

is that the digital circuitry can be implemented more reliably in comparison to 

implementing very precise analog filters. Another implementation advantage is 



10 

that a low resolution quantizer can be used, such as a fast low resolution flash 

converter. 

The increase in effective resolution of a low resolution quantizer by oversam

pling is achieved by filtering out all the frequencies above the signal bandwidth. 

If it is assumed that the amount of noise energy is constant for a particular quan

tizer resolution, independent of the sampling rate, and if the noise energy is fairly 

evenly distributed across that entire sampling bandwidth, then oversampling and 

filtering out the noise energy above the signal bandwidth will remove more noise 

from the output than if no oversampling is done. Thus, the effective resolution of 

the quantizer is increased above its nominal, or nyquist rate, resolution. 

Further improvements in the performance of the oversampled quantizer can 

be achieved by adding a feedback loop around the quantizer. A popular configu

ration known as the sigma delta modulator is one such circuit. It is common for 

the sigma delta modulator to use a one bit quantizer. The purpose of the feedback 

loop is to attempt to cause more of the noise energy to fall in the frequencies above 

the signal bandwidth where it can be filtered out. The feedback loop acts in a way 

such that low frequency noise is reduced and high frequency noise is increased. The 

effect of the feedback loop on the noise spectrum is known as noise shaping. Noise 

shaping quantizer systems will realize even greater increases in effective resolution 

due to oversampling than just oversampling a traditional quantizer. Both of these 

cases will be presented in this study. 
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l.5 SCOPE OF STUDY 

The primary purpose of this study is to examine a couple types of oversam

pled ADC's and gain an understanding of how the quantization noise affects their 

performance. A crucial factor in determining the effectiveness of an oversampling 

system is understanding the characteristics of the quantization noise. Because 

quantization is a highly nonlinear process, various assumptions and simplifications 

are often used when doing analysis. The most common assumption is that the 

quantization noise is white across the sampling bandwidth. Given a deterministic 

input, such as a sinusoid, this is clearly not true since the error will also be de

terministic and closely related to the input. However, this assumption has been 

shown to be true, or at least a good approximation, given that certain conditions 

hold. One of these conditions is that the resolution of the quantizer is high. 

When analyzing oversampling systems, the distribution of noise energy in 

the spectrum is important. If the noise is white and uniform, than noise shaping 

configurations will be successful in shaping the spectrum so that most of the noise 

falls in the high frequencies. An important point to note is that oversampled ADC 

systems often use low resolution quantizers, going as low as one bit resolution. In 

these cases, the assumption that the quantization noise is white will clearly be 

untrue. The question that remains is how good an approximation the white noise 

assumption provides. It is important to study the characteristics of the quanti

zation noise, since actual noise characteristics could cause performance problems 
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which would not be expected if simplistic assumptions about the noise distribution 

are made. For example, even if actual noise power is equivalent to the noise power 

predicted by the white noise assumption, the actual performance can be unsatis

factory if all of the actual noise power is located in a few harmonics instead of 

being spread evenly over the signal bandwidth. One of the most important char

acteristics of the noise is the power spectrum of the noise. The power spectrum 

shows how the noise energy is distributed in the sampling bandwidth, and knowing 

what the spectrum is will provide indications of how well oversampling and noise 

shaping work. 

This study will take a detailed look at the characteristics of the quantization 

noise of two oversampling ADC systems which utilize low resolution quantizers. 

First a low resolution traditional quantizer, and secondly, a first order, or one 

feedback loop, sigma delta modulator with a one bit quantizer. The format of the 

study will be to present theoretical predictions of the ADC performance and then 

to verify the predictions by examining simulated results. Theories based on the 

assumption of white quantization noise will be presented first. Improved theories 

which deal more directly with the quantization process and predict exact results 

for some of the noise characteristics will also be presented and verified. Simulations 

will then be performed and compared to the theoretical results. Since the more 

complicated exact theories do not always readily provide intuitive understanding of 

the expected results, the results of the simulations are also used to provide insights 

into the theoretical results. 
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In many papers that discuss this topic, simulated results are given for a 

couple examples and compared to whatever theory is being presented. Since the 

behavior of the quantization noise is complex and dependent on the input frequency 

and the oversampling ratio, the approach taken in this study is to characterize 

the behavior of the quantization noise over the entire signal bandwidth. This 

requires a lot of simulations, but the simulations coupled with the various theories 

help provide more insight into the behavior and performance of oversampled ADC 

systems. 



CHAPTER II 

UNIFORM ADC THEORY AND SIMULATIONS 

The uniform ADC will be studied first. Since the uniform ADC is about as 

simple as an ADC can get, understanding its operation and noise characteristics will 

provide a basis for the study of sigma delta modulators. The low resolution uniform 

ADC is the focus here because sigma delta modulators typically use low resolution 

quantizers. Although the uniform ADC is a conceptually simple device, it can 

be difficult to analyze since the quantizing process is nonlinear. Since nonlinear 

systems are generally more difficult to solve, various methods are often employed 

to linearize the uniform ADC to simplify analysis. The most common assumptions 

and approximations will be developed here. It will also be demonstrated that 

the linearized uniform ADC analysis is limited in its usefulness. A more complex 

analysis will then be developed to provide a better explanation of the observed 

performance. 

II.1 THE WHITE NOISE ASSUMPTION 

The most common method used in analysis of the uniform ADC is to model 

the quantizer as an additive noise source, as shown in figure 5. The following 

equation can be written to describe this system. 
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£n 

Xn 
I ~nl 

Figure 5. Model of quantizer error in the uniform ADC. 

Yn = Xn +En (Il.1) 

The error signal En is the result of a several different processes. As it was 

mentioned in chapter I, it will be assumed that the quantizer is ideal and that the 

input signal stays within the valid range, so the only error process that will be 

considered is the quantization error. Thus, En represents the quantization error. 

The critical factor affecting the ease of analysis is the nature of En. Although it 

is not apparent in figure 5, En is dependent on the value of Xn· This makes it 

difficult to determine the affect of the quantization error on system performance 

without knowing the input signal in advance. If it can be assumed that En is 

independent of Xn, then the performance of a particular quantizer can be analyzed 

without worrying that a different input signal will result in a completely different 

performance. 

It has been shown that En can be assumed to be independent of Xn when Xn 

meets certain requirements (6]. These requirements are: 

• The quantizer does not overload. 
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• The quantizer has a high resolution. 

• .6.. is small. 

• The probability distribution of pairs of input samples is given by a smooth 

probability density function. 

The independence of tn from Xn allows for a linear analysis of the quantizer. 

To ease the analysis further, it is often assumed that tn is a uniformly distributed 

white noise source. In other words, the density of tn over the sampling bandwidth 

is uniform. With these assumptions it is possible to calculate the total quantization 

noise power for an n bit quantizer. 

The following characteristics are known for a white noise source. The sample 

average mean is 

1 N 
M { tn} = lim N I: tn = 0 

N->oo 
n=l 

and the sample average power is 

N .6.,2 
2 l • 1 "'""' c2 _ _ M { t: } = im - L..J '-n - 12 

N->oo N n=l 

The sample autocorrelation is defined as 

rf(k) = M{tntn+k} 

(11.2) 

(II.3) 

and rf(O) = ~; and rf(k) = 0 for k =J. 0. These characteristics of the white noise 

quantization error are a basic result because they represent the most common 

assumptions made when analysis of ADC's is performed. The moments and auto-

correlation of the white noise spectrum presented here are important because they 
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will be used throughout the rest of this study as a basis for comparison with more 

complex theoretical and simulated noise characteristics. 

The power of En, as defined in equation Il.3, depends only on the resolution 

of the quantizer. A value that can used to measure the performance of a uniform 

ADC is the signal to quantization noise ratio, or SQNR. The SQNR will be used 

when there are sinusoidal inputs to the ADC. It will be assumed that the sinusoidal 

inputs have a full scale amplitude, where full scale amplitude is ! . The SQNR will 

be measured in decibels. 

Using equation Il.3, an expression for the SQNR can be derived. 

SQNR = lOlog (Mtt:2}) (II.4) 

which reduces to 

SQNR = 6.02N + l.16db (Il.5) 

Equation Il.5 shows that the SQNR increases by about 6db with each addi

tional bit of resolution in the quantizer. 

II.2 OVERSAMPLED UNIFORM ADC'S 

Now that the uniform ADC has been analyzed using the white noise as

sumption, it is time to include oversampling in the system and see what affect it 

will have. Intuitively, oversampling should reduce the amount of quantization noise 

that will be seen in the output. Equation II.3 implies that the total quantization 

noise power for the uniform ADC is constant no matter what ls is. Thus, since 
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the noise is assumed to be uniformly distributed, as M is increased, the amount of 

quantization noise inside the signal bandwidth decreases. So, by digitally filtering 

out the noise above the signal bandwidth, the error due to quantization noise is re

duced and the effective resolution of the quantizer is increased. Figure 6 illustrates 

how this looks in the frequency domain. 

All that remains to do is to develop the equations with oversampling incor

porated into them. It will be assumed that an ideal lowpass filter with a cutoff 

at 1f" is used. Along with the assumptions listed above, it is also assumed that 

the quantization noise for the oversampled uniform ADC is uniform over the range 

±~. The SQNR for the oversampled uniform ADC can be computed based on 

equation II.4. Since the oversampling ratio is M, only ~th of the uniform noise 

spectrum will remain in the signal bandwidth. 

SQNR = lOlog ( t,J{c2}) (II.6) 

which reduces to 

SQNR = 6.02n + lOlog(M) -1.25db (II.7) 

Equation II.7 shows that the SQN R increases by about 3db every time fs, 

or M, is doubled. This demonstrates how oversampling can be used to reduce the 

quantization noise. The reduction for the uniform ADC is relatively modest. The 

sigma delta modulator, which will be examined later, shapes the noise spectrum so 

that most of noise is located out of the signal bandwidth and can be filtered out. 
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CHAPTER III 

SIMULATION TECHNIQUES 

Now that a theory has been developed for the noise characteristics of the 

uniform ADC, it is time to see how well the theory stands up against simulations. 

Before the simulations of the uniform ADC are performed, the methods used to 

simulate the ADC will be presented in detail. Most of the techniques introduced 

here will apply to the simulation of the sigma delta modulator as well. 

III.1 SIMULATION METHODS AND TECHNIQUES 

The goal of simulating the operation of an ADC is to obtain an understand

ing of how the actual ADC will perform. The results of the simulation can be 

processed and compiled in various ways to provide measurements of the perfor

mance of the simulated ADC. As mentioned before, the goal of this study is to 

understand the quantization noise characteristics of oversampled ADC's with low 

resolution quantizers. Understanding the quantization noise will provide an idea 

of how much gain in effective resolution can be expected from oversampling. 

One of the most important characteristics for predicting ADC performance 

is the frequency spectrum of the quantization noise. The frequency spectrum 

provides the information needed to compute the total noise power for a given 
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input signal. The two types of input signals that will be considered are de inputs 

and sinusoidal inputs. The de input is important because it represents the system 

in a quiet state. The sinusoid input is important because it is typically used as a 

standard signal for system analysis. It will be of interest to discover how the noise 

spectrum behaves as these inputs vary across the valid ranges. For de inputs, the 

range will be from 0 to ±0.5. For sinusoidal inputs, the frequency of the input 

signal can range from 0 hz to 1f- hz, which is the signal bandwidth. 

In order to analyze the performance of ADC's, it is necessary to simulate 

their operation to obtain sample output sequences. Using the output sequences, it 

is possible to compute the frequency spectrum and frequency power spectrum of 

the output. This enables the computation of the total noise power and total signal 

power. These quantities can be used to calculate the signal to quantization noise 

ratio, or SQNR. The SQNR is defined as the ratio of the total signal power and the 

total quantization noise power. The SQNR will be used when the input signal is a 

sinusoid since the frequency spectrum of a sinusoid is a spike and is easily found. 

When de inputs are used, the total quantization noise power will be examined. 

111.2 THE SIMULATION PROCESS 

The simulation process will first be described in general terms. Then the 

issues involved in performing each step of the simulation will be described in detail. 

The general steps in the simulation process are as follows. 
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• Generate an input signal to represent the analog input. This can either be a 

de or sinusoidal input. 

• Sample the input signal at fs and generate a quantized output signal. 

• Lowpass filter the output signal, when oversampling, to remove high fre-

quency n01se. 

• Analyze the filtered output signal to find quantities of interest, such as the 

total quantization noise and the SQNR. 

III.3 SIMULATION OF INPUT SIGNAL 

The front end of the simulations, which involves generating an input signal 

and producing an output signal, were performed using the MIDAS software system 

developed at Stanford University [9]. MIDAS is a functional simulator for mixed 

digital and analog sampled-data systems. MIDAS provides the ability to specify 

and configure the functional modules of a system. The modules of particular 

interest here are modules to generate test signals and modules which perform a 

quantizing function. Other useful functions which can be used are adders and 

delays. Other system parameters like the input frequency, sampling frequency, 

and nyquist frequency are specified. After a particular system is set up, MIDAS 

is used to simulate the system and produce the output of the quantizer. The full 

capabilities of MIDAS were not utilized in the simulation process. MIDAS was 

used only as a convenient method to set up various ADC configurations. Actually, 
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MIDAS was used primarily for the uniform ADC. By the time simulations for the 

sigma delta modulator were performed, greater performance was desired and C 

programs were written to generate the inputs and compute the outputs. 

III.4 COMPUTING SQNR AND TOTAL NOISE POWER 

When an ADC which uses oversampling is simulated, it is necessary to filter 

out all frequencies above 1f" in order to obtain the benefits of oversampling. The 

frequency spectrum of the filtered output sequence will be the source of most of 

the calculations which will measure ADC performance. By calculating the Discrete 

Fourier Transform (DFT) of the output sequence, the frequency spectrum can be 

found. The average power spectrum of the output sequence can be computed 

by finding the magnitude squared of each frequency component. With the power 

spectrum, it is possible to compute the total quantization noise power and the 

total signal power. All that needs to be done is to identify the sections of the 

spectrum which belong to each part. With sinusoidal inputs, it is expected that 

there will be a spike of power in the spectrum at the frequency which corresponds 

to the input frequency. It is assumed that the power spike corresponding to the 

input frequency will be the largest spike in the spectrum. To calculate the total 

quantization noise power, the spectrum is integrated, excluding the part of the 

spectrum which contains the spike of the input signal. The opposite is done to 

compute the signal power. These values, which have been found directly from the 

simulated results, can then be used to compute the simulated SQNR. For de inputs, 
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the input signal is obviously the de part of the spectrum, so the quantization noise 

power can be computed by integrating the spectrum, not including the de part. 

III.5 COMPUTING THE POWER SPECTRUM 

The previous section described how the power spectrum is used to compute 

various performance measurements. Now it is time to look at how the power 

spectrum itself is computed. As it was stated in the previous section, the DFT can 

be used to find the frequency spectrum of the output signal. In practice, it is much 

more efficient and speedy to compute the DFT using the Fast Fourier Transform 

(FFT) algorithm. The only practical limitation this imposes is that the number 

of elements in the sequence should be a power of two. This is no problem, since 

any number of output samples can be generated. If a sequence of 2n real values in 

the time domain are transformed by the FFT, then the result will be a sequence 

of 2n-l complex values in the frequency domain which represent the sinusoidal 

frequency components of the input sequence. The n frequency components are 

divided evenly in the range of 0 to ft. Actually, they range from =f- to ft, but the 

negative components are normally combined with the positive components. To find 

the power of a frequency component, the square of the magnitude of the complex 

frequency component is computed. From here on, the frequencies represented by 

the FFT will be referred to as bins. 

There are some more complexities involved with using the FFT. As men-
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tioned above the FFT produces bins at frequencies which are multiples of ~. The 

number of bins in the range 1f- can be thought of as the resolution of the FFT. 

Frequency components of the input signal which fall exactly on a bin frequency will 

have all of their spectral energy located at that bin. However, if the signal contains 

frequencies which are not equal to one of the bin frequencies, then the spectral en

ergy of those frequency components will leak out to the surrounding bins. This 

is known as spectral leakage. Spectral leakage results because a finite number of 

samples are used and the DFT assumes that the set of samples is periodic. If, for 

example, a non-integer number of periods of a sinusoid is represented by the input 

sample, then there is a discontinuity in the sample. This discontinuity results in 

the leakage of the input power throughout the signal bandwidth. A method used 

to control spectral leakage is known as windowing. The n samples which are fed 

into the FFT can be thought of as an infinite sequence of samples which are mul

tiplied by a rectangular window which has a value of 1 for n points and a value 

of zero everywhere else. This rectangular window preserves the discontinuity in 

the input sample. Various windows have been devised which rise up gradually 

from zero. This has the tendency to reduce the discontinuities at the ends of the 

input sample. Clearly, windowing affects the input data and it will have associated 

errors. The error caused by windowing is called spectral smearing. The error is 

called smearing because a frequency which falls exactly on a bin value and would 

normally be a spike in the spectrum will be smeared. Instead of a spike, the signal 
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power will be spread across the surrounding bins. The proper choice of windows 

will limit the smearing to a set of localized bins and reduce the leakage to distant 

bins. 

All of the FFT calculations performed for this study were windowed by the 

Blackman-Harris window function (8, 4]. The particular form of Blackman- Harris 

window used is designed to reduce spectral leakage by 92 dB within 5 bins from a 

spike. In other words, a frequency which would have a spike of a single bin with 

rectangular windowing will be now be a nine bin wide peak. The original bin with 

leakage to ±4 bins around it. However, by the fifth bin, the leakage is virtually 

non-existent. So, although the resolution is degraded for frequencies which fall 

exactly on bins, the situation is improved and predictable for all other frequencies 

which fall somewhere between bins. 

111.6 FILTERING THE OUTPUT SIGNAL 

Developing a filtering technique for the simulation was one of the most 

difficult steps in setting up the simulation process. As stated above, the goal is to 

lowpass filter the ADC output signal, when oversampling is being used, to remove 

high frequency noise, and hopefully, increase the effective resolution of the ADC. 

The filtered output sequence is then available for processing, such as computing 

an FFT. In a real oversampled ADC, the output signal would be digitally filtered 

and decimated back down to fn· For this study, the decimation step was ignored 

since the primary interest is the quantization noise characteristics. 
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Initial attempts at filtering were made by using digital filters. One such 

attempt used an FIR (Finite Impulse Response) filter. This proved to be trouble

some because the order of the filter must increase as the sampling rate increases 

in order to maintain the same width transition band between the pass band of the 

filter and the stop band of the filter. This is because as the sampling rate increases, 

the size of the transition band, which remains constant, decreases relative to the 

sampling bandwidth. It was found that the required filter order increased beyond 

practicality for higher oversampling ratios of interest (around 64 to 256). 

Another attempt was made using FIR filters with fixed order as the over

sampling ration was increased. In this case the size of the transition band relative 

to the sampling bandwidth remains constant. However, it also results in a dou

bling of the size of the transition band between the passband and the stopband as 

the sampling frequency is doubled. No matter how narrow the transition band is 

made for low sampling frequencies, as the sampling frequency increases, the tran

sition band will soon dominate the signal bandwidth. That is, partially filtered 

noise power from the transition band will overwhelm the power contained in the 

signal bandwidth, which is decreasing relative to the sampling bandwidth as the 

oversampling ratio is increased. 

In real oversampled ADC systems, the filtering will most likely be imple

mented as a multi-stage digital filter which combines the decimation process [3]. A 

brief attempt was made at using a multi-stage decimation filter. In retrospect, it 

appeared to have worked correctly, but since the investigation was beginning to get 
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bogged down in filter design instead of the specified goals, a simple and effective 

filtering scheme was developed. 

The filtering technique finally arrived at does not attempt to simulate a 

digital filter that might be used in an ADC system. Instead, the goal is to get the 

same results without the adding to the simulation the complications of a multi

stage digital filter. Instead of filtering the output signal and then computing the 

FFT to get the spectrum, the filtering stage is ignored and the FFT is computed 

for the raw output signal itself. Filtering is achieved by simply truncating the 

spectrum at the desired cutoff frequency, thereby achieving an ideal low pass filter. 

Actually, this method is not truly ideal since the FFT spectrum is distorted a 

bit by the spectral leakage and smearing problems described above. However, the 

truncated spectrum should be just as good as the spectrum produced from the 

FFT of a digitally filtered signal. 

There is one complication involved with using this method when studying 

oversampled systems. If there are n points in the output sample, then the FFT 

will produce % bins. If n remains constant as fs is increased, then the number of 

bins representing the signal bandwidth will decrease. That is, the bin resolution 

of the signal bandwidth decreases. This is a problem because of the spectral 

leakage problem of the FFT. Since all the FFT's computed for this study use the 

Blackman-Harris window discussed before, it is known that the energy of a sinusoid 

will spread out over nine bins. Now consider an example where n is 1024 and M is 

128. For this case, the part of the FFT spectrum which corresponds to the signal 
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bandwidth will be the first ~;~ = 4 bins. Clearly, the signal power which should 

be contained in the signal bandwidth will not even fit inside the signal bandwidth, 

which will obviously cause computation errors. 

In order to prevent this problem, the following procedure was developed. 

For M = 1, decide how many bins should represent the signal bandwidth in the 

spectrum. If this number is 256, for example, then n = 512 samples need to be 

produced by the simulation of the ADC and fed into the FFT. As M increases, 

it is desirable that the number of bins representing the signal bandwidth remains 

constant. This can be accomplished doubling n every time M doubles. Thus, 

n = M x 512 samples need to be generated for a particular value of M. Using 

this technique keeps the bin resolution of the signal bandwidth constant, although 

it does require using large values of n to compute the FFT when M gets large. 

This method is obviously not a model for the operation of a real ADC, but the end 

result should be the same. 



CHAPTER IV 

SIMULATIONS OF THE UNIFORM ADC 

IV.1 SIMULATION RESULTS 

Now that a theory has been developed and the simulation technique has 

been discussed, it is time to simulate the uniform ADC. Various parameters of the 

ADC need to be defined. A four bit quantizer will be used and fn = 48K Hz. 

The input signal will be sinusoids with frequencies in the range from ( 0, 1f]. After 

running the simulations for a range of input frequencies and computing the SQNR, 

the results are plotted, SQNR versus M. Figure 7 shows results for several input 

frequencies spanning the range of the signal bandwidth. The theory predicts that 

the SQNR curve will be linear with a slope of 3 db. However, it is observed that 

the curve plateau's at a level lower than the predicted level for low frequencies. 

The level of the plateau rises with frequency until it suddenly disappears and then 

the SQNR curve rises much higher than the predicted linear curve for higher values 

of M. 

Clearly, the simulated results do not match the white noise theory closely. 

At low frequencies, the SQNR is too low and at high frequencies it is too high. 

The SQNR dependency on the input frequency shows clearly that the assumptions 

made about the independence of the quantization noise with the input are not 
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valid for this example. Depending on the type of application, this type of behavior 

could be very undesirable. In this case the primary factor affecting the SQNR 

behavior is the resolution of the quantizer. Four bits is a fairly low resolution. If 

the simulations are run again using a ten bit quantizer it can be seen that the 

SQNR matches the predicted performance much more closely over the range of 

possible inputs. Figure 8 shows results for several frequencies spanning the signal 

bandwidth using a 10 bit quantizer. However, as stated above, this study will 

focus on low resolution quantizers and the affect that oversampling has on them. 

IV.2 AN IMPROVED UNIFORM ADC THEORY 

The most interesting feature of the simulations is the plateau in the curves 

at low frequencies. By examining the simulations it is observed that the plateau 

effect abruptly disappears around the input frequency of 8K Hz. To explain this 

behavior it is observed that as the sampling frequency becomes much higher than 

the input frequency, the output signal begins to take on a stairstep-like shape. As 

ls is increased, the stairstep shape becomes more defined and sharp. Thus, once 

the value of ls is high relative to the input frequency, the output signal becomes 

essentially fixed and periodic in nature. So, it could be predicted that the SQNR 

will stop increasing since if the signal does not change, then the spectrum will not 

change. Figure 9 illustrates this behavior for a low input frequency and several 

values of M. Note that as M increases, the noise floor drops, but the harmonic 

spikes remain virtually constant in height. The power in the noise floor eventually 
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becomes insignificant compared to the unchanging noise power contained in the 

harmonics and the SQNR flattens out for high values of M. [See A.2] By analyzing 

the structure of the output signal, an improved theory for the behavior of the low 

resolution quantizer uniform ADC can be developed. 

If the input sinusoid is sampled and quantized at a frequency approaching 

infinity, then the output becomes a periodic stairstep wave. This stairstep can be 

decomposed into a set of rectangular pulse waves as shown in figure 10. The reason 

for doing this is because the frequency spectrum for a rectangular pulse wave is easy 

to find using Fourier Series analysis. In order to compute the frequency spectrum 

of the stairstep wave, all that needs to be done is to sum the spectrums of the 

rectangular waves that compose the stairstep wave. Computing this spectrum will 

determine that limiting spectrum that the simulation results are approaching as 

M increases. This spectrum should provide a good estimate of ADC performance 

for high values of M. 

The Fourier Series for a periodic function is defined as [8] 

00 

J(t) = L Ckejkwot 
k=-oo 

1 E. 
Ck = -j 2 J(t)e-jkwotdt p -P 

2 

(IV.l) 

(IV.2) 

P is the period of the function. Let P = 27r for this analysis. Also, define X 1 to 

be the start of the pulse, X 2 to be the end of the pulse, and h to be the height of 

the pulse. X 1 and X 2 are constrained to be within the range (0, 27r]. A bit of math 
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will show that the values of ck for this rectangular pulse are 

h 
Ck= 

2
7rk [(sin(27rkX2) - sin(27rkXi)) + j (cos(27rkX2) - cos(27rkXi))] (IV.3) 

For convenience a sine wave with zero phase and period 27r and amplitude 

1 will be used. The height will be % for the base square pulse, and .6. for all the 

smaller width rectangular pulses. For each positive height pulse, there is a negative 

pulse with a phase shift of 7r. For the positive pulses 

Xip = sin-i(a) (IV.4) 

X2p = 7r - Xip (IV.5) 

And for negative pulses 

Xi =Xi + 7r n p 
(IV.6) 

X2n = -Xip (IV.7) 

Where sin-i (a) are the points at which pulses begin. 

a= 0,.6.,2.6.,3.6., ... ,(2N-i -1).6. (IV.8) 

By using the values from equations IV.4 through IV. 7 in equation IV.3 

several simplifications can be made. It turns out that the real parts of the pulses 

for odd values of k and the imaginary parts for even values of k are always zero. 

Furthermore, for even values of k, the real parts of a pair of positive and negative 

pulses cancel each other out. The imaginary parts for odd values of k are equal for 
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a pair of positive and negative pulses. So, equation IV.3 can be reduced to 

ck= -j4 hk cos(kX1 ) 27r p 
(IV .9) 

for odd values of k and positive values of h only. All of the other terms are 

zero. 

If the results of equation IV.9 are added together for all the pulses that make 

up a quantized sine wave, then the power spectrum of the quantized sine wave can 

be computed by taking the magnitude squared of the sequence of ck 's. By limiting 

k to be less than or equal to fj;, the computed spectrum can be effectively low 

pass filtered with cutoff at 1f. 
The resulting spectrum consists of the fundamental frequency and zero or 

more of the odd numbered harmonics depending on the value fx· This spectrum 

can be used to predict what the upper limit of t~e SQNR should be for any input 

frequency. For low values of f x there will be many harmonics included in the 

spectrum. As fx increases, the harmonics will be filtered out one by one. Since 

the power of each harmonic does not change as f x changes, the SQNR will stay 

constant until another harmonic is filtered out. Then the SQNR will jump to a 

higher level and stay constant until the next harmonic is filtered out. A close 

look at the simulation results will confirm that this occurs. All of the harmonics 

will be filtered out when fx > J:. At this point the SQNR would theoretically 

become infinite. In the simulations, the value of fx when this occurs is 81{ Hz, 

which is exactly the point where a sudden switch is observed from the SQNR 
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curve flattening to the SQNR curve rising sharply. The SQNR jumps much higher 

for J x greater than 8/{ Hz, but it does not go to infinity since ls is obviously not 

infinite. Figure 11 shows the SQNR over the frequency range for the simulated 

results for M = 128 and for the theoretical prediction. Up to the point of 8/{ Hz, 

the simulated and theoretical results match very closely. 

The Fourier Series analysis of the ideal quantized sine wave matches very 

closely with the simulation results where the sampling frequency is high. The lesson 

learned here is that the assumption that the error signal is random and independent 

from the input breaks down as the sampling frequency increases. Instead, the 

error signal becomes very deterministic and periodic in nature. This effect is very 

noticeable for the simulation results which used a four bit quantizer. Increasing 

the number of bits in the quantizer will reduce these effects and make the original 

white noise assumptions more valid, as was seen for the case of a ten bit quantizer. 



Ov 

OOOOt 
I ~· I 

~ 
I 

0 

-0£ 

llNbS 



CHAPTER V 

THE SIGMA DELTA MODULATOR 

As shown in chapter IV, an oversampled uniform ADC with a low resolu

tion quantizer has quantization noise characteristics that are highly dependent on 

the frequency of the input sinusoid. Other ADC circuit configurations have been 

developed which have better performance. The rest of this study will focus on 

a particular ADC known as the sigma delta modulator, or "E,6M. The E6M is 

a popular ADC circuit which uses oversampling and a feedback loop to improve 

the effective resolution of a one bit quantizer. The general configuration of a first 

order, or one loop, "E,6M is shown in figure 12. Keeping in mind that the goal of 

the study is to understand the quantization noise characteristics, it is important 

to clarify exactly what the quantization noise is for the "E,6M. There are two 

important quantization noise signals to be considered for the E6M. The first one, 

which will be called the quantization noise, is the difference between the signals Yn 

and Un· This is the error of the quantizer by itself. Also of interest is the quantiza

tion noise of the whole E6M. This second quantizer noise signal will be referred 

to as the total quantization noise. The total quantization noise is defined as the 

difference between Yn and Xn. The total quantization noise is the error between 

the output and the input to the E6M. 
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While the uniform ADC was simple to understand conceptually, the oper-

ation of the E6.M is more difficult to understand because of the feedback loop. 

Inspection of the circuit and some intuitive reasoning can provide a general under-

standing of how the E6.M works. The key to understanding is to start by looking 

at the quantizer. The analog signal Un is quantized to produce the digital output 

signal Yn· The output Yn provides an estimate of the input. However, with a one 

bit quantizer, any one output value will very likely be a very poor approximation 

of the input. But, since the input is oversampled, a moving average of M output 

values will tend to track the input much better. The digital filtering and decima-

tion block in figure 12 bring the frequency of the output back down to the desired 

frequency and, at the same time, filter out all noise energy above the signal band-
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width. For the purposes of this study, it will be assumed that the low pass digital 

filter is ideal and that the decimation process is ideal. So, it should be sufficient 

to study the L,6,.M output signal Yn in order to understand the characteristics of 

the quantization noise. 

Now, back to the discussion on the operation of the "Eb.M. The output Yn 

is converted back to an analog signal in the feedback loop and subtracted from 

the input Xn to produce Wn. The transfer function H(z) in the circuit will be 

assumed to be a simple discrete time analog integrator for the purposes of this 

study. Figure 13 shows the diagram of an integrator circuit. Note that the discrete 

time analog integrator is actually summing up the difference between the input 

and the output signal. This explains the L,6,. in the name of the circuit. Actually, 

since the integrator has a delay, the output signal lags one time unit behind the 

input. Nevertheless, if the input signal changes little between samples, then Wn 

will be a close approximation to the opposite of the total quantization error. If 

the oversampling ratio M is high and the input signal is limited to the signal 

bandwidth, then Xn will change slowly between samples. 

By subtracting the total quantization error from Un, the "Eb.Mis continually 

attempting to correct the output value. Since the output of a one bit quantizer 

is most likely in error at any given instant, whenever a particular output state is 

reached, the "Eb.M immediately attempts to correct the error by heading towards 

the opposite output state. The number of cycles it takes to reverse the output 

depends on what the total quantization error is. Note that if level of Xn is close to 
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Delay 

Figure 13. Discrete time analog integrator. 

one of the output levels, then the total quantization error will be very small for one 

output value and very large for the other. Thus, when the output level nearest the 

input is reached, it may take many cycles for Un to change sign. When it does, the 

output changes state and a large quantization error is subtracted from Un, causing 

it to immediately change sign again. The output signal favors the output state 

closest to the level of the input value. 

If a signal is close to zero, or midway between the quantizer outputs, then 

the output will tend to oscillate evenly between the two output states. Figure 14 

shows an input sinusoid with its corresponding output signal. The behavior just 

described can be clearly observed in this figure. Whatever the input signal is, the 

'E~M has a tendency to oscillate. The frequency of the oscillation is determined 

by the level of the input signal. Thus, the input signal is being modulated by fs· 
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Amplitude 

Figure 14. Ebi.M output with sinusoidal input. 

Hence, the remainder of the circuits name becomes clear. 

The purpose of this study is to understand the nature of the quantization 

n01se. Given that the Ebi.M has a one bit quantizer, a lot of quantization noise is 

generated. However, if the input signal tends to change slowly and the output of 

the quantizer tends to oscillate, then the total quantization error will tend to be an 

active, rapidly changing signal. Consequently, it is likely that a significant portion 

of the spectral energy will be concentrated at higher frequencies. Since the output 
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signal will be ideally lowpass filtered with a cutoff at 1;, most of the quantization 

noise will be removed from the output signal. Recall how oversampling the uniform 

ADC resulted in a relative low frequency quantization noise signal which could not 

be filtered out for low frequency inputs. The 'E~M eliminates this problem by 

shaping the quantization noise so that noise in the signal bandwidth is reduced 

and high frequency noise is increased. Noise shaping enables the 'E~M to achieve 

greater performance through oversampling than the uniform ADC. However, it is 

important to study the quantization noise characteristics since the noise may not 

behave in the way it is assumed to behave, if, for example, the quantization noise 

is assumed to be white. 

V.2 FORMAL ANALYSIS OF THE 'E~M 

Now it is time to develop a more rigorous analysis of the 'E~M, so that the 

general insights above can be validated. For the purposes of analysis the circuit 

can be simplified to the discrete time model shown in Figure 15. The quantizer has 

been modeled as an additive noise source. By writing down some of the difference 

equations that describe this model, further insight into the L,~M can be developed. 

The quantization error signal can be written as follows. 

tn = Yn - Un· (V.1) 

With some algebraic manipulation, it can be shown that the difference equa

tion describing the output of the. L,~M in terms of the input and the quantizer 
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En 

Xn H(z) 
Yn 

I I '!11111 

Figure 15. 'f,6.M discrete time model. 

error ls 

Yn = Xn-1 +En - En-1• (V.2) 

This equation clearly shows the relationship between the quantization error 

and the total quantization error. The total quantization error is En - En-1, which 

is just the difference between the current and previous quantization noise values. 

Based on the general discussion above of the operation of the 'E,6.M, it is desirable 

that the spectrum of En - En-l have its energy concentrated mostly in the high 

frequencies. 

In order to calculate the spectrum of the quantization error, it is useful to 

transform the time based difference equations into the frequency domain using the 

z-transform. Using the concept of superposition, the circuit model of figure 15 

can be split into two models, one for each signal [1]. The signal model is shown 
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in figure 16 and the noise model is shown in figure 17. The outputs of these two 

models can be added together to get the output for the total model. Using these 

models, two transfer functions can be developed. One between the input and the 

output (W(z)) and one between the noise and the output (T(z)). These transfer 

functions are 

H(z) 
W(z) = 1 + H(z) 

1 
T(z) = 1 + H(z) 

(V.3) 

(V.4) 

The output of the Eb..M is the summation of Xn modified by W(z) and En modified 

by T(z). 

There are some general desired properties of the transfer functions W ( z) and 

T(z) which are necessary to provide optimal noise shaping behavior. For the best 

response, W(z) should be flat in the low frequencies since the signal bandwidth 

should be passed through with as little disturbance as possible. On the other hand, 

to provide as much noise attenuation in the low frequency range as possible, the 

T(z) should be a high pass function which attenuates low frequencies. 

For the Eb..M configuration under consideration, the transfer function H ( z) 

is the only part of the system available for modification. It is necessary to specify 

H(z) in order to analyze the affect it will have on W(z) and T(z). A typical H(z) 

for the Eb..M is the integrator, as shown in figure 13. 

-1 z 
H(z) = 

1 
_ z- (V.5) 



x.i H(z) .1o2 

Figure 16. Ef::l.M discrete time signal model. 

en 

H(z) Ya1 

Figure 17. Ef::l.M discrete time noise model. 

Using this H(z), W(z) and T(z) can be found as follows. 

1 
W(z) =; 

T(z) = z - 1 
z 
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(V.6) 

(V.7) 

Computing the magnitude of these transfer functions gives the frequency 

response of the transfer functions. 

IW(z)l2 = 1 

IT(z)l 2 = 4sin2 (7r f) 
(V.8) 

(V.9) 

W(z) meets the requirement that it have a low pass frequency response. It 

allows the input signal to pass straight through. The T(z), which is of greater 
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interest because it describes how the noise will behave, also has the desired char

acteristics. As figure 18 shows, it cuts off low frequencies and passes the high 

frequencies. 

If lq(z)l 2 and jE(z)l 2 represent the power spectrum of the total quantizer 

noise and quantizer noise respectively, then 

lq(z)l2 = IT(z)i2 IE(z)l2 

= 4sin2 (7r f) IE(z)l2 

(V.10) 

Equation V.10 describes how the quantizer noise spectrum is shaped to obtain the 

total quantizer noise spectrum. 

Shaped Power SpeclnD 

l'ower 

Unilmm Power Spec1na 

0 Sipal llmdwiddl Sllllplills ......... 

Figure 18. Spectrum shaping effect of T(z). 
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The crucial factor which determines the total quantization noise is the quan

tization noise. If t:(z) is known, then lq(z)l 2 can be integrated over the baseband 

to obtain the total quantization noise power. If le( z) 12 has a simple form, then 

a closed expression can be derived, otherwise, the integration can be performed 

numerically. 

At this point, a couple different approaches can be taken. The simplest is 

to make the assumption that the quantizer noise has a uniform density, as was 

done for the uniform ADC. That is, the quantization noise is assumed to be white. 

If the input and the noise are uncorrelated, then the performance of the system 

depends only on the characteristics of the noise and H ( z). The more difficult 

approach is to assume that the noise is not independent of the input. In this 

case the characteristics of the noise will change as the input changes, making the 

performance of the ED..M dependent on the input signal as well. This results in a 

nonlinear system which is difficult to analyze. 

Both of these approaches will be covered. First, an analysis based on the 

assumption of white quantization noise will be developed. The white noise analysis 

will assume that the input signal is a sinusoid. After this, analysis based on the 

actual operation of the ED..M will be developed. This will be divided into several 

parts based on the type of input signal. The reason for this is that in actual 

operation, the ED..M quantization noise has different characteristics for different 

kinds of inputs. First, de inputs will be examined. The coverage of de inputs will 

include theoretical analysis and simulations to compare against the theory. After 
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de inputs are discussed, sinusoidal inputs will be covered in a similar fashion. 

V.3 'E.6.M ANALYSIS USING WHITE NOISE ASSUMPTION 

Simulation results for the uniform ADC showed that the assumption of white 

quantizer noise was not valid for low resolution quantizers, although it did a fairly 

good job for high resolution quantizers. The 'E.6.M only has a one bit quantizer, but 

due to modulation, it produces an active output signal which should result in an 

active noise signal. This is different than the situation for the uniform ADC where 

the noise signal actually became less active as the oversampling ratio increased. 

Thus, it is reasonable to at least consider the possibility that assuming the quantizer 

noise is white for the 'E.6.M might be able to provide a useful approximation to 

It:( z )12. Since the generation of noise in the 'E.6.M is caused by a different process 

than in the uniform ADC, this assumption may not be valid. It will be necessary 

to validate the theories based on this assumption by simulation. 

From equation II.3, it is known that the total quantization noise power for 

a quantizer with a uniform distribution is ~;. Therefore, 

.6_2 1 
l1:(z)l

2 
= 12 fs (V.11) 

An equation for the SQNR, assuming a sinusoidal input signal, can be <level-

oped. The total quantization noise can be expressed as follows given that .6. = 1. 

f 2 1 
lqu(z)l2 = (2sin7r J) 12fs (V.12) 
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To calculate the total quantization noise power, it is necessary to integrate 

over the baseband. This assumes that all spectral energy above the baseband will 

be filtered out. To simplify the integration, it is assumed that ls > > ln· This 

will allow the assumption that sin( x) ~ x. 

The total signal power is 

hi 

Pn = j 2 
/qu(z)/ 2dl 

=-1.u. 
2 

= 7r
3 

( ln )3 
36 ls 

a2 
Ps = 2 

where a is the amplitude of the sinusoid, and so the SQNR is 

SQN R = l8a2 M3 
7r3 

If a is equal to the maximum input level of ~, then 

(
9M3) SQN R = 10 log 
2

7r
3 

= 30 log(M) + 10 log(9) - 10log(27r3 )db 

(V.13) 

(V.14) 

(V .15) 

(V .16) 

Equation V.16 says that the SQNR increases by 9 db every time M is 

doubled. This is an improvement over the Uniform ADC which predicted 3 db im-

provement. Again, this theory must be verified by experiment since the assumption 

that the quantizer noise is white has not been determined to be true. In fact, it 

will be shown that the quantizer noise is not white. However, it is useful to find 

out how valid equation V .16 is, since it provides a intuitively simple explanation 

of how the noise shaping of the L,~M works. 



CHAPTER VI 

EXACT DC ANALYSIS OF THE E.tlM 

The assumption of white quantization noise provides a simple method of 

modeling the quantization noise characteristics of the E.tlM. It is an assumption 

which has been shown to be reasonable for uniform ADC's under certain conditions. 

However, simulations of the uniform ADC demonstrated that the quantization 

noise is definitely not white for a four bit quantizer. Even though the E.tlM has 

a one bit quantizer, the feedback loop should act in such a way to make the noise 

signal more active than it was for the uniform ADC. Thus, while the white noise 

assumption may prove to predict the SQNR behavior of the E.tlM fairly well, it 

still does not provide any information about the actual noise characteristics. 

If the white quantization noise assumption is not used, then another ap

proach to analysis is to model the E.tlM in a more exact way. This is done by 

solving for the noise characteristics of the actual output sequences for given input 

sequences instead of assuming the noise characteristics. To understand how the 

EtlM works in an exact way, it is useful to begin by examining how it works 

for a de input. The de input is an important signal to consider because it is the 

simplest signal to analyze and can be used later to develop an understanding of 

slowly varying signals. The de performance is also important in some applications, 
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such as audio. After an exact analysis has been done for de inputs, the analysis 

will be expanded to include sinusoidal inputs. The analysis of de inputs will be 

presented in two parts. First will be an analysis of the structure of the output 

signal for de inputs. This is a more formal way of describing some of the intuitive 

ideas discussed in the previous chapter. Also, it is useful to understand how the 

output signal is generated because it can provide insights into how the Eb.M will 

operate for more complicated signals. Secondly, an analysis that predicts the exact 

structure of the quantization noise spectrum will be presented. Knowledge of the 

spectrum provides theoretical predictions for how much noise will be generated for 

a specific de input. 

VI.I Eb.M OUTPUT SIGNAL STRUCTURE FOR DC INPUTS 

A Eb.M with a 1 bit quantizer modulates the de input at the rate fs to 

produce an output signal which can be thought of as a sequence of square pulses of 

height % . For convenience, it will be assumed that b. = 1. A moving average of M 

output values will approximate the de input. It was noted earlier that the Eb.M 

operates by adding the opposite of the total quantization error to the integrator 

at each time interval. For the case of de inputs, there are only two possible values 

for the total quantization error, x + t and x - ~'where xis the de input value and 

±t are the output levels. Let 

1 
O'. = x - 2 (Vl.1) 



1 
f3=x+2 

The Ef::l.M's operation is then described as follows. 

Un > = 0 : Un+ 1 = Un + O'. 

Un < 0 : Un+ 1 = Un + /3 

Note that a <= 0 and j3 >= 0 for all x in the valid range. 
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(VI.2) 

(VI.3) 

(VI.4) 

A little thought will reveal that for any value of x in the valid range, the 

output will always stay at one of the output states for exactly one cycle. The 

output state this occurs on is the one farthest from x. For example, if x < 0, then 

lal > 1/31. So, if Un < 0 and Un+1 > 0, then Un+l < /3. Thus, Un+2 will always be 

negative. If Un+l = o+, then Un+2 = a. It will take exactly I~ I cycles for Un to 

become positive again. Of course, I~ I is most likely not an integer value and this is 

a discrete time system, so I~ I represents the average number of cycles it will take 

for Un to become positive. 

For x < 0, the output signal will consist of a sequence of, on average, l~I 

negative pulses followed by one positive pulse. So, the output is a can be thought 

of as a square wave which has a frequency of 

1 
fx = l~I + 1 fs (VI.5) 

= /3Js 

This equation holds for all values of x in the valid range. If the equation had been 
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developed based on an example where x > 0, then the equation would be 

l 
(VI.6) 

= -afs 

Taking into account the frequency folding about 1;J due to aliasing 

fx = /3Js = -afs (VI.7) 

For x < 0, the number of negative pulses will actually be either (1~1) or (1~1) + 1 

where (a) is the integer part of a. The signal obviously contains noise since the 

input is a constant and the output is an oscillating signal. It would appear that 

f x could be the fundamental frequency of this noise. It will be shown that this is 

true. 

VI.2 RECURSIVE STRUCTURE OF OUTPUT SIGNAL 

The previous analysis describes the average behavior of the output signal 

for de inputs to the 'f,f:::..M. That is, if the ratio of ~ is not a whole number or 

the reciprocal of a whole number, then the frequency f x can only be the average 

frequency of the square wave and not a true description of the output signal. The 

analysis can be extended to give a description off the output behavior to any desired 

prec1s10n. 

The description of the output signal turns out to be recursive in nature. The 

original de input x 0 results in an output signal composed of the two output states 
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of the quantizer. The output wave will be a periodic sequence with R outputs of 

the output state closest to the de input and one output of the other state, where 

n = { l~I if !al > 1/31 
l~I if 1/31 > lal 

If R is not an integer, then this is not physically possible, so the output will consist 

of two patterns. One pattern is (R} of the output state closest to the de input and 

one output of the other state. The other pattern is (R} + 1 of the output state 

closest to the de input and one output of the other state. The pattern that R is 

closest to will tend to occur more often. This is analogous to the original de input. 

So, if [R] - ! is thought of as an input to a Eb.M and the two patterns are thought 

of as the two output states, then the first level of recursion has been described. 

This process can be continued until Rn is an integer value. If the original de input 

is rational, then the recursion will eventually end and the output signal will be 

periodic. If the de input is irrational, then the recursion will continue infinitely 

and the output signal will never repeat itself. 

The recursive nature of the "f,D.M output signal for a de input can be de-

scribed by the following notation. The initial level is described first. The £ terms 

are used to denote the output states of the current recursion level. 

x0 = de Input Level 

1 
ao = Xo - 2 

1 
JJo = Xo + 2 

(VI.8) 

(VI.9) 

(Vl.10) 



Ro= { 
\~\ if \o:o\ >\,Bo\ f3o 

\~~ \ if \,Bo\> \o:o\ 
-1 

Lmino = 2 
1 

Lmaxo = 2 

Loneo = { 
Lmino 

Lmaxo 

if Xo > Q 

if Xo < Q 

{ 
Lmaxo 

Lmanyo = Lmino 
if Xo > Q 

if XO < Q 

1 
fxo = \Ro\+ 1 j~ 

Now the nth level of recursion is defined. 

1 
Xn = [Rn-l] - 2 

1 
O'.n = Xn - 2 

1 
/3n = Xn + 2 

/Jn { 
1 ~1 

Rn= \~\ 
if \o:n\ > \,Bn\ 
if \,Bn\ > \o:n\ 

Lminn = (Rn-1) Lmanyn-1' Lonen-1 

Lmaxn = ( (Rn-1) + 1 )Cmanyn-1' Lonen-1 

Lanen = { 
Lminn 

.Cmaxn 

if Xn > 0 
if Xn < Q 

C, _ { Lmaxn if Xn > 0 
manyn - r •f Q 

,4...minn l Xn < 
1 

fxn = \Rn\size(Cmanyn) + size(Conen)fs 
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(VI.11) 

(VI.12) 

(VI.13) 

(VI.14) 

(VI.15) 

(VI.16) 

(VI.17) 

(VI.18) 

(VI.19) 

(VI.20) 

(VI.21) 

(VI.22) 

(VI.23) 

(VI.24) 

(VI.25) 

If [Rn] = 0, then Lmaxn+l = Lminn+l, and the series of recursions ends. 

Observe that the output sequence is actually defined by a sequence of de inputs 

which are derived from the fractional remainder of the ratio R. This series of de 
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inputs can be defined as 

1 
Xo,x1,X2, ... ,xn = [Rn-1]-2;n = 1,2,3, ... (Vl.26) 

If the input x 0 is a rational number, then the series of equation VI.26 is finite 

and the output sequence of the E~M is periodic. If the input x 0 is an irrational 

number, then the series of equation Vl.26 is infinite and the output sequence of 

the E~M is not periodic. Thus, the basic structure of the output sequence has 

been defined. It can be roughly described as a square wave which has a frequency 

of fxo, as discussed above. However, since the E~M is a discrete time system and 

fs is unlikely to be an exact multiple of fxo, the recursive algorithm detailed above 

can be used to generate the patterns of highs and lows in the output signal. The 

average frequency fxn for recursion levels greater than 0 have not been observed 

to indicate anything of significance. These sub-frequencies will be referred to later 

on. Figure 19 shows an example of how the algorithm works for a specific rational 

de input value. 

Vl.3 E~M NOISE CHARACTERISTICS FOR DC INPUTS 

The previous analysis provides a detailed description of how the output 

signal of the "£,~Mis structured. However, it does not easily lend itself to providing 

a description of the power spectrum of the signal. If the de input is rational, 

then a Fourier Series analysis similar to the analysis done for the Uniform ADC 

above could be done since the output sequence is periodic. But, if the de input 
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1
0/a 

Cmany1 = Cmin1 

Cone1 = Cma:t:1 
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Figure 19. Example with de input of ; 0 • 
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is irrational, then the output signal is not periodic and a Fourier Series analysis 

would not give an exact description of the spectrum. Irrational response could 

be approximated by truncating the output sequence at a suitable point and then 

continuing the analysis as if the input were rational. 

Gray [7] has developed a method of exact analysis which is able to predict 

the power spectrum of the E6.M for all de inputs. Gray splits the analysis into the 

rational and irrational cases. This seems reasonable since the recursive algorithm 

above indicates that the output signal has different characteristics depending on 

the rationality of the input. Gray develops the analysis by first developing an 

expression to describe the error sequence of the quantizer. The first and second 

moments are then derived for the error sequence. Gray then develops an expression 

for the autocorrelation. The next step is to find the fourier transform of the 

autocorrelation which is well known to represent the power spectral density of 

the sequence. The resulting power spectrum describes the characteristics of the 

quantizer error. Gray makes the point that the result is definitely not white noise. 

The analysis is continued to find the spectrum of the total quantization noise. 

The spectrum of the total quantization noise can also be found by multiplying the 

spectrum of the quantization noise by the noise shaping expression from above 

(equation 4.6b ). 
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VI.4 FUNDAMENTAL DEFINITIONS AND RESULTS 

Here are the results of Gray's development. Gray begins by developing 

expressions for the normalized quantizer and quantizer error sequences, Yn and (n· 

Yn = q~ubn) = ((n - 1),8) - (n,B) + ;b (VI.27) 

and 

(n = En - 1 ( 2b - 2 - n,B) (VI.28) 

where b = ~' ,B = ;b + !, and n = 0, 1, 2, .... Note that Yn is the output of the 

E~M and Un is the output of the integrator. Gray observes that Yn and (n can be 

described in terms of the following simpler sequence. 

Wn = (n,B) (VI.29) 

Thus, 

1 
(n = 2 -Wn (VI.30) 

and 

x 
Yn = Wn-1 - Wn + 

2
b (VI.31) 

Gray develops his analysis by studying the sequence wn, which is a well 

known sequence in the field of ergodic theory. The form of the analysis differs 

depending on the nature of ,B. As the recursive analysis above demonstrated, if ,B 

is rational, then Wn will be periodic with period N, if ,B = ~ where ~ is in lowest 

terms. A periodic signal can be analyzed using a fourier series method similar to 
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the method used to analyze the uniform ADC. If /3 is irrational, then the sequence 

Wn is not periodic and a different method is necessary to analyze it. 

The mean or time average of a sequence is an important element of Gray's 

development. Gray defines the sample average for a time sequence {gn; n = 

0, 1, 2, ... } as 

1 N 
M{gn} = J~ N ~gi (VI.32) 

If the time sequence is produced by a stationary and ergodic random process, 

then the mean would be defined as an expectation. In this case, the time average 

of the sequence is being dealt with directly. The operator M is similar to the 

expectation and is linear in the sense that M { agn + bfn} = aM {gn} + bM {fn}. 

Vl.5 MOMENTS OF IRRATIONAL INPUTS 

Another important tool for Gray's analysis when dealing with irrational 

values of /3 is a result from ergodic theory known as Weyl's formula. For any 

integrable function f and for any irrational /3, it is known for any y that 

1 n-1 

1
1 

lim - I'., f((y - k/3)) = f(r)dr 
n--+oo n k=O 0 

(VI.33) 

Without going into a proof of this, a little thought can provide insight into 

the correctness of this result. On the left side, as n --t oo, the quantity (y - k/3) 

will take on every value in the range [O, 1) in the limit since /3 is irrational. So, 

the left side of equation VI.33 covers the same interval as the right side, just not 

in the same order. 
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Using these mathematical tools for analyzing the case for irrational values 

of /3 the moments of the sequence Wn can be derived. 

1 
M{wn} = 2 

1 
M{w~} = 3 

(VI.34) 

(Vl.35) 

Using these results and the linearity of the M operator, the moments of the quan-

tizer error sequence (n can be derived. 

and 

M{(n} = O 

1 
M{(~} = 12 

(VI.36) 

(VI.37) 

The autocorrelation can also be found. For non-negative l, the autocorrelation 

function is shown to be 

1 1 
rw(l) = M{wkWk+I} = 3 - 2 (l/3) (1 - (l/3)) (VI.38) 

From rw( l), the autocorrelation for the quantizer error sequence is shown to be 

1 ( l /3) 
rc(l) = - - -(1 - (l/3)) 

12 2 
(VI.39) 

Gray observes that the quantizer error sequence has mean values which are 

identical to the values of a uniformly distributed random variable over the same 

range. This is consistent with the frequent assumption that the quantizer error 

is a uniformly distributed error. However, the second order properties seen in the 
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autocorrelation function diverge from this assumption. If the error sequence was 

truly random, or uncorrelated, then r((l) would be 0 for all nonzero l. This is 

obviously not true. 

VI.6 MOMENTS OF RATIONAL INPUTS 

In order to study the sequence Wn for rational values of /3, some more mathe-

matical tools need to be developed. Instead of using the result from ergodic theory 

( eqn VI.33), the following result from the study of finite fields is used. If ~ is in 

lowest terms, then the collection of numbers 

{(k:) ;k = 0,1,2, ... ,N -1} 

is the same as the collection of numbers 

k 
{N;k = 0,1,2, ... ,N·-1}. 

Note that each collection contains the same set of numbers, although the numbers 

are not generated in the same order. This is similar to the process involved in 

Wey l's formula, except that for the case of irrational numbers, there are an infinite 

number of elements in the collection. 

Using the result for rational numbers, the moments of the sequence Wn can 

be derived. 

1 N - I 
M{wn} = 2,]V (VI.40) 
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and the second moment is 

1 1 1 
M { w~} = 3 - 2N + 6N2 (VI.41) 

For rational input values the first moment of the quantizer error sequence is 

and the second moment is 

1 
M{(n} = 2N 

1 1 
M{(~} = 12 + 6N2 

The autocorrelation can then be derived for rational values of (3. 

1 1 1 
rw(l) = M{wkWk+i} = 3 + 

6
N 2 - 2 (/3) (1 - ((3)) 

(VI.42) 

(VI.43) 

(VI.44) 

From rw(l), the autocorrelation for the quantizer error sequence is shown to be 

rc(l) = ~ + - 1- - (lf3) (1 - (l/3)) 
12 6N2 2 

(VI.45) 

The moments and autocorrelation for rational (3 are similar to the results for 

irrational /3 except that the results for rational (3 also include a term which depends 

on the period of the error sequence. N represents the period of the sequence and 

is closely related to the denominator of the lowest fractional form of the rational 

input. Note that as N becomes large, or as the input becomes closer to being 

irrational, the results for rational /3 approach the results for irrational /3. 

VI.7 COMPUTING THE SPECTRUM AND THE BOHR-FOURIER SERIES 

It is a well known result in the analysis of deterministic waveforms or se-

quences that the fourier transform of the auto-correlation re( l) represents the power 
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spectral density of the sequence. This result applies to the case where /3 is rational 

since rc(l) for rational /3 will be periodic in l and have a period of N samples. How-

ever, for irrational inputs, the auto-correlation will not be periodic, so the re( l) 

may not have a fourier sequence. It can be shown that rc(l) is a nearly periodic 

sequence and that a Bohr- Fourier series can be found for it. Gray concludes that 

the power spectral density for irrational /3 can be represented exactly with the 

Bohr-Fourier sequence. 

A sequence 9n possesses a Bohr-Fourier series if there is a countable sequence 

of distinct number >.1 in the range [O, l] such that 

lim M { 9k - f a1e
2
7ri>.ik 

2

} = 0 
N-+oo 1=-N 

(VI.46) 

If this is true, then 

00 

9n = 2: a1e21rin>., (Vl.47) 
l=-oo 

This is actually a generalized form of a fourier series, except that it is not necessary 

that 9n be periodic. If 9n is periodic with period N, then the Bohr-Fourier series 

reduces to a Fourier series where .\1 = -k, l = 0, 1, 2, ... , N - 1. 

where 

For the case of irrational /3 and the sequence (n, Gray shows that 

00 

(n = 2: ake21rin(k{3) 

k=-oo 

ak = M { (1e-i27rkl{3} = { 0 i ~f k = o 
21rk 1f k -:f 0 

(VI.48) 

Note that .\1 has been replaces by (k/3), which is a countable infinite collection of 

distinct number in (0, l]. 
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VI.8 SPECTRUM RESULTS FOR IRRATIONAL AND RATIONAL INPUTS 

After proving these results, Gray shows that the power spectral density for 

irrational values of f3 is 

{ 
O if k=O 

S((k) = _1_ if k :/= 0 
{27rk)2 

(VI.49) 

s((k) is the area of the impulse located at the frequencies (k(~ + x)), where the 

sampling frequency has been normalized. Due to aliasing, the frequencies are the 

fractional portion of the number and are folded into the range [O, 0.5). 

For rational inputs the power spectral density is found to be as follows 

S((k) = { r l ~f k = 0 
N sin2 11"1. if k :/= 0 

N 

(VI.SO) 

This result differs from the irrational case, but note that it converges to the irra-

tional result as N becomes large. 

VI.9 EQUALITY OF IRRATIONAL AND RATIONAL RESULTS 

An interesting point which Gray did not bring out is the relationship be-

tween the results for rational and irrational cases. He makes the point that the 

rational result will converge to the irrational result as N becomes large. However, 

there is a further observation to make. The first thing to note is that the equation 

to determine the frequencies of the noise values is the same for both cases. All 

the noise pulses are harmonics of f xo, which was defined earlier as the frequency 

of the average square wave which could define the output signal. The only differ-
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ence between rational and irrational cases is that the irrational spectral frequencies 

never repeat and the rational frequencies begin to repeat after N values. The ra-

tional result has a sum which goes from 0 to N - 1 while the irrational result goes 

from -oo to +oo. There is no reason why the irrational result cannot be used 

with rational numbers. The only thing to keep in mind is that the total spectral 

value for a particular frequency is the sum of an infinite number of terms since the 

frequencies overlap. The following equation should clarify the intended meaning 

here. 

1 1 1 
00 

( 1 1 ) 
4N2 sin(7r4) = 411"2 E (k + nN)2 + (N - k + nN)2 

(VI.51) 

for k = 1, 2, ... , N - 1 

Equation VI.51 can be shown to be true through the use of a computer 

program. A mathematical proof of this has not been determined yet. Table I 

shows computed results for equation VI.51. The results shown are specifically for 

low values of N, since Gray's results are most different for low N. 

The results in Table I show clearly that equation VI.51 is valid. The irra-

tional result can be used to find the spectrum for irrational and rational cases. The 

rational result is just a more convenient form to use when the rational case is being 

considered. Actually, equation Vl.51 was does not include the de component, or 

the result for k = 0. At this time, is has not been shown that the rational and 

irrational results match exactly for the de component. 
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TABLE I 

RATIONAL AND IRRATIONAL THEORY RESULTS 

N K Irrational Theory Rational Theory Difference 
(k = 1 to 10000) 

2 1 0.062499 0.062500 0.000001 
4 1 0.031250 0.031250 0.000000 

2 0.015625 0.015625 0.000000 
3 0.031250 0.031250 0.000000 

8 1 0.026673 0.026674 0.000000 
2 0.007812 0.007812 0.000000 
3 0.004576 0.004576 0.000000 
4 0.003906 0.003906 0.000000 
5 0.004576 0.004576 0.000000 
6 0.007812 0.007813 0.000000 
7 0.026673 0.026674 0.000000 

Vl.10 TOTAL QUANTIZATION ERROR SPECTRUM 

To find the power spectrum for the total quantization error, just modify the 

results by the noise shaping factor developed above. For irrational inputs, 

Pn(k) = 4sin2 (7r f L,,. 1.v1 ;if k :/= 0 (Vl.52) 

For rational inputs, 

Pn(k) = 4sin2(7rf/ )N
1 

. 2

1 
k ;if k :/= 0 

s sm 71" N 
(Vl.53) 

However, since it has been shown that the irrational theory, which is simpler, can 

produce the same results as the rational theory, the irrational theory will be used 

for the simulations of the :EAM. 



CHAPTER VII 

SIMULATION OF El::t.M WITH DC INPUTS 

Although de inputs were not even considered with the uniform ADC, it is 

important to consider the de input with the El:l.M. A de input will produce a fixed 

error signal with a uniform ADC. However, due to the modulating operation of the 

EC::t.M, a de input will have a noise signal which, as the theory predicts, will be a 

series of harmonics with a fundamental period related to the de value. Simulations 

were performed for the El:l.M with a series of de inputs. 

VII.1 SETUP OF SIMULATIONS 

Some comments are in order at this point. First of all, the equations for 

irrational de inputs will be used to make the theoretical calculations. Although 

numbers used in a computer simulation are rational, most will have a long period, so 

the irrational equation should give a good approximation. Also, it has been shown 

in the previous chapter that the irrational theory will produce the same answer as 

the rational theory. The theory predicts that the spectrum of the output can occur 

anywhere in the continuous frequency range [O, 11; ). Simulation results, on the 

other hand, will be confined to ~ discrete frequencies in that same range where N 

is the number of bins used to compute the DFT. In order to compare theory with 
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simulation, the frequencies of the theoretical values were rounded to the nearest 

DFT bin frequency and added to the value for that bin. In order to reduce error 

caused by this, the DFT's were calculated with 65536 points, which results in a 

32768 point spectrum for the range [O, 1; ). The final result is two power spectrums. 

The simulation spectrum is obtained by computing the DFT of a simulated E~M 

output sequence. The theoretical spectrum is obtain by calculations based on the 

theory of the previous chapter. Although the theoretical frequencies are quantized 

to the DFT bin frequencies, this error should not be significant since 32768 bins 

are used. 

With these two spectrums, it is now possible to obtain noise characteristics 

of the E~M for de inputs at different values of M (oversampling ratio). The mea

sure of interest here is the total quantization noise power. This is the integration of 

the power spectrum over the range (0, ~ ). The simulations and theoretical calcu

lations were performed for values of M ranging from 1 to 256 for 205 evenly spaced 

de input values in the range (-0.499502, 0.499502]. These particular numbers were 

chosen in order to avoid using rational inputs with small denominators. For each 

input value, the spectrum is obtained experimentally and theoretically and then 

each spectrum is integrated over the baseband to find the total noise power in the 

baseband. 

For each input value, a theoretical and simulated spectrum of 32768 points 

is computed. The 32768 point spectrum can be used to find the total noise power 

for all values of M from 1 to 256. This means that the frequency resolution of 
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the signal bandwidth for M = 256 is 128 points. As M is reduced, the frequency 

resolution of the signal bandwidth increases. This point is mentioned only because 

for the simulations of the uniform ADC with sinusoid inputs, the number of points 

in the spectrum was based on M so that there were always 256 points in the signal 

bandwidth after filtering was performed. The only impact is that low values of 

M will have a more finely resolved spectrum, but the total noise power will not 

change. 

A practical consideration for integrating the simulated spectrum is that the 

first 5 values must be dropped since the spike at de will spread over the next 4 

bins due to spectral smearing caused by the Blackman-Harris data window. For 

integration of the theoretical spectrum, only the first bin needs to be ignored. The 

final result is that the total noise power of the experimental spectrum matches the 

total noise power of the theoretical spectrum exactly to at least 6 decimal places. 

Since a very high resolution DFT (65536 points) was used, this could be expected. 

Table II, shows the difference between the theoretical and simulated results for a 

few example input values. 

The fact that the simulated and theoretical total noise power matches in

dicates that the theory is correct. However, the total noise power is just one 

characteristic of the quantization noise. Since the total noise power is an average, 

it does not provide detailed information about about the structure of the noise 

spectrum. Figure 20 shows the total noise power for the range of de input values 

for a number of oversampling ratios. These figures show that the total noise power 



75 

TABLE II 

TOTAL QUANTIZATION NOISE POWER 

DC Input levels 
M 0.004897 0.176295 0.249751 0.499502 
1 0.000000 0.000000 0.000000 0.000000 
2 0.000000 0.000000 0.000000 0.000000 
4 0.000000 0.000000 0.000000 0.000000 
8 0.000000 0.000000 0.000000 0.000000 
16 0.000000 0.000000 0.000000 0.000000 
32 0.000000 0.000000 0.000000 0.000000 
64 0.000000 0.000000 0.000000 0.000000 
128 0.000000 0.000000 0.000000 0.000000 
256 0.000000 0.000000 0.000000 0.000000 

varies widely depending upon the de input. 

In order to understand why the noise power varies for different inputs, it 

is necessary to go back to the simulations and theory and look at the spectrum 

of the noise. The exact theory for describing the quantization noise spectrum is 

relatively simple. It says that the power spectrum is made up of a fundamental 

frequency, which is dependent on the input frequency, and all of the harmonics of 

the fundamental frequency. The power of the harmonics decrease by the square 

of the harmonic. So, most of the noise power will be located in the fundamental 

and first few harmonics. The problem at hand is to determine how this noise will 

contribute to the noise power of the EAM system. 

An intuitive understanding can be developed by first considering a de input 

of zero. With a de input of zero, the output of of the Ef::iM will change at every 
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Figure 20. Total noise power vs de input. 
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cycle. Since there is no input, all of the output is noise, and the output is a 

periodic signal with frequency 1:f. So, the power spectrum consists of just a spike 

at ft. Now, if the de input value is increased by a small amount, the fundamental 

noise frequency is predicted to be slightly greater than ft, which, when aliasing is 

accounted for, will be slightly less than 1f. Continuing with this line of reasoning 

will show that the fundamental noise frequency starts at ft for a zero input, and 

moves to zero for a full scale de input. Further thought reveals that all of the 

harmonics have similar behavior, except that they move faster. The fundamental 

crosses the sampling bandwidth one time. The second harmonic will cross two 

times, and so on. So, harmonics of the fundamental appear to bounce back and 

forth across the sampling bandwidth. Finally, the theory predicts that the even 

harmonics begin from zero frequency and the odd harmonics begin from ft. Figure 

21 shows the frequency position of the first few harmonics for the range of de input 

values. 

Figure 22 shows the harmonics from 21, and in addition, it shows the posi

tions of the set of frequencies predicted by the recursive algorithm which described 

the structure of output sequence of the ~~M for de inputs. The fundamental fre

quency for both exact theories is the same. The sub-frequencies of the structural 

theory are the average frequencies of the output pattern at each level of recursion. 

Except for the fundamental, the significance of the sub-frequencies of the struc

tural theory was not determined. Figure 22 does show, however, that they have a 

definite relationship to the harmonics of the quantization noise. 
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The power spectrums produced by simulations and theory do in fact demon

strate the behavior just described. Video clips A.3 and A.4 show the spectrums for 

theory and simulations for a range of de inputs from zero to full scale. The har

monics bouncing back and forth inside the sampling bandwidth is easy to observe. 

The similarity in the two clips provides additional verification that the behavior 

predicted by the theory is correct in simulation. 

Understanding the nature of the quantization noise power spectrum of the 

E~M for de inputs will aid in understanding the total noise power in figure 20. 

The first thing to note is that any harmonic which does not fall within the signal 

bandwidth will be filtered out, and will not contribute to the noise power. The next 

thing to note is that the noise power will likely be higher when the fundamental or 

low numbered harmonics are located within the signal bandwidth. A qualification 

to this last point is that the noise frequencies will make their biggest contribution 

to noise power when they are located at the high end of the signal bandwidth, or 

t. When the harmonic approaches zero frequency, its contribution drops to zero 

due to the effect of noise shaping. 

In figures 20 it is easy to see this in effect, especially for the fundamental 

noise frequency. The fundamental frequency starts at the high end of the sampling 

bandwidth for zero input and moves towards zero as the input increases. So, the 

fundamental frequency will not enter the sampling bandwidth until the input is 

close to full scale. Since the fundamental contains the greatest noise power, it 

should be obvious when it enters the signal bandwidth. The point at which the 
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fundamental enters the signal bandwidth depends on the value of M. Low values 

of M have a wider range of input values which are affected by the fundamental. 

The range decreases as M increases. 

Thus, the exact theory provides a good way to understand the behavior of 

the quantization noise for the E~M with de inputs. Knowledge of which harmonics 

are located in the signal bandwidth for a de input can provide a good indication 

of when to expect a higher amount of quantization noise. A good rule of thumb is 

to expect more noise when the fundamental or low numbered harmonics are inside 

the signal bandwidth. However, it does not seem to be the case that the highest 

noise peaks correspond to the order of the noise harmonics. The situation becomes 

complicated because several higher numbered harmonics in the signal bandwidth 

could possibly combine to produce greater noise than a lower numbered harmonic. 

This is possible since the fundamental and second harmonic only contribute to 

noise power at the ends of the input range. Since the noise power goes by the 

inverse of the harmonic squared, higher numbered harmonics are closer in power 

than the low numbered harmonics. 



CHAPTER VIII 

EXACT ANALYSIS OF "f,fl.M WITH SINUSOID INPUTS 

VIII.I EXACT ANALYSIS FOR SINUSOIDAL INPUTS 

In the case of the exact de analysis, several characteristics of the quanti

zation noise were found. The characteristics found were the average, power, and 

autocorrelation. For the general case of irrational de inputs, it was found that 

the autocorrelation was a nearly periodic sequence which had a Bohr-Fourier se

ries. The Bohr-Fourier series was interpreted to represent the power spectrum, and 

simulation results matched this theory very well. The goal in analyzing the noise 

behavior with sinusoidal inputs is the same. Instead of assuming the characteristics 

of the quantization noise, the goal is to find an exact solution for the important 

characteristics. 

The exact analysis of the "f,fl.M for sinusoidal inputs was developed by 

Gray [5). The technique for solving the noise characteristics for sinusoidal inputs is 

similar to the de input case, although a bit more complicated. To begin, a difference 

equation that is suitable for solving will be developed for the quantization noise. 

The input sequence to the quantizer can be written as follows, 

Un = Xn-l + Un-l - q( Un-1) (VIII.I) 
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The quantization error sequence can be written as 

en= q(un) - Un= Xn - Un+l (VIII.2) 

As stated above, the desired result is an exact solution for the characteristics 

of the quantization noise in VIII.2 instead of assuming that the characteristics are 

like white noise. In a previous chapter, the SQNR performance of the 'EL::..M has 

already been predicted for the case where the quantization noise is assumed to 

be white. The results of the exact analysis here will provide an indication of the 

accuracy of the white noise assumption. 

In order to facilitate the solution, equation VIII.2 is shifted and normalized. 

1 en-1 Un 1 Xn-1 
Zn= 2- U = 

2
b -2-2b;n = 1,2, ... (VIII.3) 

The following equations show how the various normalized 'EL::..M sequences can be 

represented in terms of Zn. The quantization error sequence. 

(n = en-1 - 1 
2b - 2 - Zn+l 

The quantization input sequence. 

The output sequence. 

Un 1 Xn-1 

2b = Zn-2 + 2b 

Xn-1 
q(un) =Zn - Zn+l + 2b 

qn = 2b 

(VIII.4) 

(VIII.5) 

(VIII.6) 

Equation VIII.6 is actually the same as V.2. The total total quantization 

noise of the L,t:J.M is the difference between two consecutive quantization noise 
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values. Equation VIII.5 provides more insight into the operation of the 'f,6.M by 

interpreting the quantizer input as the input sequence dithered by the previous 

quantization error. Dithering is a technique in which a dither signal is added to an 

input signal with the hope that output performance will be improved. Recalling 

the simulation results of the low resolution, uniform ADC, the SQNR performance 

was poor for low input frequencies because the quantization noise signal became 

very periodic as the sampling frequency was increased. Adding a small, random 

dither signal to the input would have the effect of breaking up the periodicity of the 

quantization error signal and result in improved performance. Thus, the 'f,f::iM can 

now be seen as an ADC which is generating its own dither signal, and the question 

to be solved is how well does the dither signal work to improve performance. 

In preparation for solution, equation VIII.6 can be rewritten in terms of the 

input sequence. 

Z1 = 0 (VIII.7) 

Zn = Zn-1 + Xn-2 - q(2bYn-1 - b + Xn-2) 
2b 2b ; n = 2, 3, ... (VIII.8) 

Equation VIII.8 can be rewritten in a recursive form as follows, 

/ 1 Xn-2) 
Zn = \ Zn-1 + 2 + U ; n = 2, 3, ... (VIII.9) 

which can be rewritten as follows, 

(

n-2 (1 ) 
Zn= L 2 + ;~) = (sn); n = 1, 2, ... 

k=O 
(VIII.10) 
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The important characteristic of equation VIII.10 is that it can be used to 

find the sequences in equations VIII.4 to VIII.6 for any input sequence Xn E [-b, b]. 

Note that in the case of a de input, Xn = x, 

Zn = \ ( n - 1) ( ~ + ;b) ) (VIII.11) 

Equation VIII.11 is identical to VI.29, which was the basis for the exact de input 

analysis. So, the development here is the same as before, although is has been 

written in more general terms. 

Now that the difference equations describing the quantization noise of the 

Ef:lM have been defined in a general way, it is time to solve for the characteristics 

of the quantization noise. Equation VI.32 defined a time average operator, which is 

an expectation like operator, which can be used to find the desired characteristics. 

The characteristics desired are the mean, power and sample autocorrelation for the 

normalized quantization error signal. These can be written as follows. 

1 N 1 
M{(n} = lim NL (n = - - M{zn+d 

N-oo n=l 2 
(VIII.12) 

2 . 1~2 1 {} {2} M { Cn} = hm N L.J Cn = - - M Zn+i + M zn+l 
N-oo n=l 4 

(VIII.13) 

1 
r((k) = M{(n(n+d = rz(k) - 4 + M{(n} (VIII.14) 

Thus, the characteristics of (n can be computed if the characteristics of Zn can be 

solved. 

Zn can be written as Zn = g(sn) where g(x) =< x >. The function g is a 
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periodic function with period 1, so it has a Fourier series representation, 

00 

g(x) = L g(l)e27rjlx (VIII.15) 
l=-oo 

The error signal can now be written as 

00 

Zn = L g( Z)e27rjlsn (VIII.16) 
l=-oo 

Now, take this result and combine it with the sample average operator. 

M {Zn} = M L~oo 9(l)e"i1•• } = i~~oo .§( l)M { ei"''•} (VIII.17) 

The big trick here is the interchange of sum and the sample average operator. This 

interchange is not valid in every situation, so it needs to be shown to be valid for 

any particular case. 

A simple average characteristic function can be defined as follows 

<I> ( l) = M { ej27rlsn}. (VIII.18) 

So, the sample average of the noise sequence is 

00 

M {zn} = L g(l)<I>(l) (VIII.19) 
l=-oo 

This technique can be used to develop the rest of the desired characteristics. 

The sample power can be written as 

00 

M {z~} = L h(l)<I>(l) (VIII.20) 
l=-oo 

where h(l) are the Fourier series coefficients for h(x) =< x2 >. The sample auto-

correlation can be written as 

00 00 

rz(k) = L L g(i)g(l)<I>k(i, l) (VIII.21) 
i=-oo 1:-oo 
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where the sample joint characteristic function is defined as 

<I> k ( i, l) = M { ei21r( isn +lsn+k )a} (VIII.22) 

For all of these characteristics, the infinite sums of the Fourier series ex-

pansions of the functions g and h have been interchanged with the time average 

operator M. This interchange can be shown to be valid under certain conditions. 

For the case of a sinusoidal input sequence, the interchange is valid. 

The previous equations show the desired noise characteristics in general 

terms for a set of situations where the required interchanges can be shown to be 

valid. In order to obtain exact solutions for the characteristics given a sinusoidal 

input, the interchange must be shown valid and the equations must be solved. 

For an input sequence of the form 

Xn = acosnw (VIII.23) 

it can be shown that the interchange is valid. All that remains to do is to solve 

the equations. For the input sequence of equation VIII.23, it can be shown that 

where 

n - l a . ( w) 
Sn = -

2
- + 

4
b + a sm nw - 32 

a 

a= 4bsin I 

(VIII.24) 

This can be plugged into the characteristic functions in the equations above to 

solve for the quantization noise characteristics. Skipping over some of the interme-

diate steps, the final results follow. 
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The sample average for a sinusoidal input is 

1 00 1 a 
M{(n} = -2:-zJ0 (47rla)sin7rl-b 

27!" l=l 
(VIII.25) 

The sample power, or second moment, is 

2 1 1 00 1 a 
M{( } = - - - """'-J0 (47rla) cos 7rl-

n 12 47!" 2 L...J l2 b l=l 
(VIII.26) 

The autocorrelation is shown to be 

m=oo m=oo 
rz(k) = L ejkmw(-1rce(m)2 + L ejk(mw-"')(-1rca(m)2 (VIII.27) 

m=-oo m=-oo 

where 
~ - ~ f: Jo( 47ral) sin (7l"z~); m = 0 
2 7l" l=l 2l b 

1 
00 

lm(47ral) . ( a) 
ce(m) = < -- L sm 7rl- ; 

7l" l=l 21 b 
m even (VIII.28) 

j ~ Im ( 47ral) ( la). 
- L...J l cos 7l" -b ' 
7l" l=l 2 

m odd 

c0 (m) = ! 1 ~ lm(47ra(2l-1)) . ( ( l ) a) 
- - L...J sm 7l" 2 - 1 - ; 

7l" l=l 21 - 1 2b 
j ~ Jm(27ra(2l - 1)) ( (2l ) a). - L...J cos 7l" - 1 -
7l" l=l 21 - 1 2b ) 

m even 

(VIII.29) 
m odd 

Equations VIII.27 - VIII.29 represent the autocorrelation of the output se-

quence Zn. Gray notes that the important fact about these equations is that they 

can be written in the form 

00 

rz(k) = L s1ej2?rk>.1 (VIII.30) 
l=-oo 

Equation VIII.30 defines the Bohr-Fourier series of the sequence of r z ( k). The 

frequencies of the spectrum are represented by >.1, which is normalized in [O, 1 ), 

and the amplitudes are represented by s1. It is useful to consider the indexes l 
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in VIII.30 to have the form l = (m,i);m = ···,-1,0,1,···,i = 1,2. Then the 

following can be written. 

8 (m,1) = (-1rce(m) 2 

s(m,2) = (-1rco(m)2 

A(m,1) = (m~) 

A(m,2) = (m~ - ~) 

(VIII.31) 

(VIII.32) 

(VIII.33) 

(VIII.34) 

These are the results which comprise the exact analysis for sinusoidal inputs to the 

'ED.M. 

If it is assumed that a = b, then the results can be simplified. This represents 

the case of a full scale sinusoid input. The autocorrelation can be represented as 

00 

rz(k) = L Smej2?rk>.m (VIII.35) 
m=-oo 

where 
1 

Sm = 

2' 
(]:_ f: lm(27ra(2l-1))(-l)1)

2
; 

7r l=l 21 - 1 

m =0 

m even (VIII.36) 

(]:_ f lm(47ral)(-l)1)
2

; 

7r l=l 21 
m odd 

and 

{ ~
m~ - ~); m even 

Am = 27r 2 
m:::!._); m odd 

27r 

(VIII.37) 

These formulas for the full scale sinusoid will be the starting point for check-

ing simulation results against the theory. 



CHAPTER IX 

SIMULATION OF THE L,.0.M WITH SINUSOID INPUTS 

Two theories describing the behavior of the "£,.0.M with sinusoidal inputs 

have been presented. The first theory makes the assumption that the quantization 

noise of the quantizer is white. The result is a simple prediction, equation V.16, 

that the SQNR will increase by 9 db as M is doubled. It was observed that the 

assumptions used to develop this theory were carried over from analysis of uniform 

ADC's under conditions where it is was reasonable to assume that the quantization 

noise was white. As the second theory, which performs an exact analysis of the 

"£,.0.M quantization error sequence predicts, the spectrum of the quantization noise 

is far from white. Both theories will be compared against the simulations results. 

The white noise theory predicts the SQNR and can be compared directly with 

simulation SQNR results. The exact theory predicts the spectrum of the quan

tization noise. Since it is computationally expensive to compute this theoretical 

spectrum, due to the infinite sums of bessel functions, it is not practical to use 

the exact theory to compute SQNR values. Thus, the use of the exact theory will 

center around how the predicted error spectrum matches the actual spectrum for 

a couple examples. The primary usefulness of the exact theory will be to use its 

formulas to explain some of the features that will be found in the simulated results. 
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IX.1 SETUP OF SINUSOIDAL SIMULATIONS 

Simulations were performed using a sinusoidal input to the LitlM. In order 

to get a complete picture of the behavior of the LitlM with a sinusoidal input, 

simulations were performed for oversampling ratios of 1 to 128, for the complete 

range of amplitudes and frequencies in the signal bandwidth. The 102 amplitudes 

used are evenly spaced in the range (0.0, 0.499502]. Zero amplitude was not used. 

These amplitudes are the same values used for the de input simulations. The 103rd 

amplitude is the full scale amplitude of 0.5. To cover the signal bandwidth, 241 

frequencies were used based on the following expression. 

fx = 74 + 99i;i: 1,2,3, ... ,241 

To speed up the simulation process, a C program was used to simulate the 

Li6..M instead of using MIDAS. As in the case of the uniform ADC, increasing 

numbers of samples were generated as M increased so that the same number of 

FFT bins will represent the signal bandwidth. For the most part, the following 

discussion of the results will focus on the results for M = 128. The two results 

of interest for the simulations will be the spectrum of the output signal and the 

SQNR. The SQNR was computed for all the cases mentioned above. Obviously, 

due to the method used to calculate the experimental SQNR, the spectrum is 

computed for every case, but the SQNR is a much more compact result than the 

spectrum. So, the actual output spectrum will be examined for a couple examples 

to illustrate the drawback of using only the SQNR value as a measure of the Li6..M 
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performance. 

IX.2 RESULTS OF SINUSOIDAL SIMULATIONS 

A large number of simulations were performed on the E~M with sinusoidal 

inputs. To begin examining the results, a couple cases which show SQNR results 

over the range of oversampling ratios will be discussed. Figure 23 shows results 

for a few input frequencies and for full scale amplitude. Figure 24 shows results 

for a few input frequencies and for an amplitude about 80% of full scale. Both of 

these figures include the theoretical SQNR curve as predicted by the white noise 

theory. The first thing to notice is that these results are not too bad. The results 

of the uniform ADC had serious problems matching the theoretical curve over the 

signal bandwidth, and they varied widely over the signal bandwidth. Here, the 

SQNR curves fall much closer together over the signal bandwidth. The results also 

increase fairly linearly, as the theory predicts, although the slope of increase is a 

little bit smaller than the theory. One unusual point is that the results for the 

80% of full scale amplitude actually have a better SQNR performance than the full 

scale curves. 

At first these results might seem to indicate that the white noise theory 

works well for the E~M. However, there are a few points to consider. The white 

noise theory is based on the assumption that the quantization noise is white. The 

exact theory predicts that the E~M has a very non-white, discrete quantization 

noise spectrum. It is important to remember that the SQNR value does not provide 
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any information about the spectrum. The same SQNR value could be obtained 

from a white, evenly distributed noise spectrum, or from a spectrum where all the 

noise energy is located in a single spike. This kind of behavior was observed in 

the uniform ADC with high oversampling ratios for frequencies under 1;. Under 

those conditions, the noise spectrum was dominated by noise spikes on the odd 

harmonics of the input frequency. 

Since the exact theory predicts a discrete noise spectrum, it is a good idea 

to examine the simulation results more closely. Video clip A.5 fill in the details 

for figure 23 by showing the SQNR curves for the whole signal bandwidth. There 

is some interesting behavior in these curves. For low frequencies, they remain 

relatively stable, but when the frequency gets higher, the curves start to jump 

around a bit, mostly to higher SQNR values. Close observation shows that the 

curves begin jumping around after about 8000 Hz, which is 1f. This is reminiscent 

of the uniform ADC's harmonics. 

Figure 25 shows the complete set of SQNR results for M = 128. The results 

are plotted in the form of a surface with signal amplitude and frequency being the 

two horizontal axes, and SQNR representing the height. [See A.6) This surface 

clearly shows that interesting behavior is occurring in the error spectrum. The 

surface shows fairly regular behavior for low frequencies. At 1:, there is a sudden 

shift, or ridge, that occurs for all amplitudes. From 1f to J:- the surface becomes 

higher and rougher. After J:-, there is another clear shift and the surface becomes 

even higher and rougher. Throughout the high frequency side of the surface, there 
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Figure 25. SQNR surface for M = 128. 

are clear ridges that occur at certain frequencies. Another obvious feature of the 

surface is the significant drop in SQNR as the input signal reaches full amplitude. 

This drop occurs across the whole signal bandwidth. 

The SQNR surface illustrates that the SQNR and the white noise theory 

alone cannot explain the characteristics of the quantization noise in Lil:l.M with 

sinusoidal inputs. 

IX.3 SIMULATIONS AND THE EXACT THEORY 

Now it is time to bring the exact theory into the discussion and see if it 

can provide insight into understanding the results. The SQNR alone does not give 
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any information about the structure of the noise spectrum, since it is basically an 

average. The exact theory predicts the nature of the spectrum. 

First, it is necessary to discuss how the theoretical results were computed 

and how they will be used. The exact theory for sinusoid inputs is related to the 

theory of de inputs, but it is significantly more complicated. The noise power 

for a harmonic in the de theory was a simple result based on the number of the 

harmonic. For the sinusoid case, the power for each term is an infinite sum of bessel 

functions multiplied by a sinusoid. It is difficult to obtain any intuitive feeling for 

how this theory works. Also, it much more computationally expensive to compute 

the noise spectrum since bessel functions take a long time to evaluate when the 

bessel number becomes high. 

Thus, the approach taken with the exact theory for sinusoids is to compute 

a few sample results to verify that the theory works since it would take too long 

to compute a complete set of theoretical results. After showing that the theory 

works, the primary function of the theory will be to explain some of the behavior 

and characteristics which were observed in the simulation results. Taken together, 

the simulations and theory will be able to shed some light on each other. That is, 

the theory can be used to explain some of the simulation results, and the simulation 

results can be used to identify the important parts of the theory. 

It was a relatively challenging job to get the theory to match the simulation 

results. One factor is the need to compute the sums of bessel functions. The 

decision was made to truncate the summation. Typically several hundred terms 
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were computed. Another factor involved in computing the theory was determining 

which frequencies would contribute to the quantization noise. Since it was so 

expensive to compute the spectrum, only the part of the spectrum that will appear 

in the signal bandwidth was computed so as not to waste time working on parts 

of the spectrum that get filtered out. The frequencies work much the same as the 

de case. One difference is that the fundamental frequency of the noise is the same 

as the input sinusoid. This means that the fundamental of the noise ranges only 

within the signal bandwidth instead of the sampling bandwidth in the de case. In 

order to find which harmonics fall in the signal bandwidth, the values of m for which 

the frequencies defined in equations VIIl.33 and VIIl.34 are less than 2~ must be 

found. Some thought will reveal that for mid to high range input frequencies, there 

are long gaps in which the harmonics are outside the signal bandwidth. 

Once the correct harmonics are determined and computed, a spectrum for 

the quantizer noise has been created. The goal is to match this theoretical spectrum 

with the spectrum from simulation. In theory, it should be possible to match the 

theoretical noise spectrum to the simulated spectrum with the exception of the 

fundamental frequency. In order to do this, the theoretical spectrum must be 

shaped by the noise shaping function. When this is done correctly, it is found 

that the theoretical spectrum does in fact match the simulated results quite well. 

Figures 26 - 29 show the spectrums for some sample cases. In general, the theory 

was able to pick out the dominant harmonics. In some cases, it looks as if some of 

the harmonics are missing. Since the dominant harmonics are predicted the lack 
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Figure 26. Theoretical spectrum J x = 8687 Hz. 
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of some of the harmonics is not significant. A theory for why some harmonics do 

not show up is that computational error dominated the computation for that term. 

Anyway, the theory checks out against the simulated results, so now the theory 

can be examined to see if it can predict some of the characteristics observed in the 

simulation results. 

One of the most obvious features is how the SQNR surface appears to have 

bands of activity in it depending on frequency. Low frequencies are fairly stable 

and high frequencies have much higher SQNR values. Some clues to this can be 

obtained by looking more closely at the harmonic structure of the signal bandwidth. 

Equation VIII.33 predicts that all harmonics of the input frequency will appear in 

the noise spectrum, and equation VIII.34 predicts that all harmonics shifted by 7r 

will appear in the noise spectrum. The frequencies for VIII.34 can be disregarded 
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Figure 29. Simulated spectrum fx = 23537 Hz. 

right away since the shift by tr moves them far away from the signal bandwidth. 

Figure 30 shows a partial picture of which harmonics contribute to the signal 

bandwidth for M = 128. The end result is that for low frequencies, harmonics of 

the frequency will appear in the signal bandwidth. Although the sums of bessel 

functions are not highly intuitive, it seems reasonable to make a general assumption 

that the power in low numbered harmonics will be higher than the power in high 

numbered harmonics. The second and third harmonics will be present in the signal 

bandwidth for lower frequencies, so it could be assumed that these frequencies will 

show higher noise power. 

The feature present in the SQNR surface does show that it is likely that 

the second and third harmonics are dominant noise frequencies. This is concluded 

from the fact that significant changes are observed in the SQNR surface as lg- and 
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~ are reached. As these two harmonics pass out of the signal bandwidth, the 

SQNR jumps up to higher values. Since the SQNR is fairly constant below t, it 

is hypothesized that these first two harmonics dominate over the others. This is 

similar to the uniform ADC, where the SQNR jumped significantly when the the 

third harmonic passed out of the signal bandwidth. An important difference in this 

case is that the harmonics are not the same for different values of M. The SQNR 

still rises with M for low frequencies, unlike the uniform ADC case. Video clips A.7 

A.8 shows the spectrum in the signal bandwidth for the range of input frequencies. 

A close observation will show that there are some higher valued harmonics for the 

lower end of the signal bandwidth. After the input frequency passes the halfway 

point, the noise appears to drop somewhat, which matches with the results shown 

in the SQNR surface. 

A feature in the SQNR surface which is more difficult to explain are the 

ridges of high SQNR values which appear along some of the higher frequencies for 

all values of amplitude. There are two parts of the theory that depend on frequency. 

The input frequency determines which harmonics will be present in the signal 

bandwidth, and the bessels functions have a term which includes the frequency. A 

general assumption was made above that the harmonic power values decrease. In 

the de case this was true. However, it is not obvious for the sinusoid case. The 

ridges occur in the high frequency side of the signal bandwidth, so it is known from 

above that only high numbered harmonics which will appear. Figure 31 shows the 
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first harmonics that appear in the signal bandwidth for a few frequencies. The 

important observation here is that in some cases, higher harmonics have greater 

power than lower harmonics. Thus, the frequency interacts in a complex way with 

the sums of bessels to produce the noise power. No method for explaining a ridge 

has been developed except to say that the frequencies must have been just right. 

Finally, the other significant feature of the SQNR output is the drop in 

SQNR as the amplitude of the sinusoid reaches full scale. This implies that the 

total noise energy increases as the amplitude reaches full scale. It is difficult to look 

at the equations for the exact theory and explain why this occurs. The amplitude 

affects both the bessel function and the sinusoid factor. Determining the behavior 

of the sum of the product of these two factors in terms of the amplitude would be 

a complex and difficult task. The drop in SQNR does not seem to be related to 

frequency since it occurs across the frequency range. The sinusoid factor actually 

simplifies when the amplitude reaches full scale and half of the terms drop out for 

both sets of frequency harmonics. Still, there is a significant drop in SQNR. The 

explanation for this drop will be based on the equations for the frequency positions 

of the noise signal components, some intuitive reasoning based on the operation of 

the E~M, and the results from the uniform ADC. 

The increase in noise power for sinusoidal inputs as the amplitude reaches 

full scale is reminiscent of the increase in noise power that occurred for de inputs 

when the input approached full scale. However, there are some major differences. 

For de inputs, the increase in noise was caused by the fundamental frequency of 
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the noise signal entering the signal bandwidth shortly before the de input reaches 

full scale. As the de input reaches full scale, the fundamental frequency of the 

noise reaches zero frequency. In fact, all of the harmonics of the de signal approach 

zero frequency as the de input nears full scale. As they move down through the 

signal bandwidth, they are reduced further by noise shaping. So, at exactly full 

scale, the noise actually disappears. On the other hand, the noise signal appears 

to be greatest at full scale amplitude for a sinusoidal input. For sinusoidal inputs, 

all of the harmonics are not in the signal bandwidth as the amplitude reaches full 

scale. The fundamental frequency of the noise is the only major component of 

the noise signal that remains in the signal bandwidth over the length of the signal 

bandwidth. 

From the discussion of the operation of a 'f,f:lM, it is known that as the 

input value approaches one of the full scale limits, the output will tend to oscillate 

less and spend more time at the value close to the input. In the extreme case of a 

de input equal to full scale, the output does not oscillate at all. So, for a sinusoid 

that has an amplitude which approaches full scale, the output value will tend to 

stay constant when the sinusoid is at a peak. Since the peaks of the sinusoid 

change slowly, it seems reasonable to assume that the output stops modulating for 

a significant period of time. When this occurs, the error signal will tend to develop 

a periodic segment. The period is the fundamental. This is similar to the noise 

structure of the uniform ADC, except that in this case, only a periodic segment of 

the noise has this structure. Also, from the uniform ADC discussion, it is known 
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that the harmonics of the noise signal move out of the signal bandwidth by f~,, so 

the fundamental must be the factor in the SQNR reduction. 

This makes sense because the periodic segment of the noise has a funda

mental frequency equal to the input frequency. From before, it was shown that the 

fundamental of the noise signal will remain in the signal bandwidth over the entire 

range. Since the error signal will have a sign opposite to the sign of the sinusoid 

peak, it seems clear that the noise power will act to reduce the power of the signal 

frequency. This is consistent with the results. Thus, a sinusoid with a full scale 

amplitude will experience a drop in gain. 

An analytical study can be made here to validate the arguments being made. 

The claim is that the output of the 'f,flM will stop oscillating for a while when the 

sinusoid is near a peak. The goal of the analysis will be to obtain some measure 

of the length of time that the oscillation stops. The expected result is that the 

length of no oscillation will rise significantly as the amplitude approaches full scale. 

A couple assumptions are made for this analysis. The first is that the period of 

no oscillation is centered about the peak of the sinusoid. The other assumption is 

that at the beginning of the no oscillation period, 

Un = Xn-1 - q( Un-1) + Un-1 = Xn-1 - q( Un-1)· 

The output will be changing to the no oscillation value for Un, so Un-l will have 

an opposite sign from Un. The assumption being made is that Un-l is very close 

to zero. The result of this assumption is that maximum possible length of the no 
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oscillation period will be found by the analysis. This is acceptable since the goal is 

to obtain a general measure or feel for what is going on. The measure is obtained 

by calculating how long it takes for Un to change sign again. This will occur when 

the sum of all the Xn-l - q(un-l) terms, which will be opposite in sign from Un, to 

become greater than the initial value of Un· 

Assuming that the input is of the form Xn =a cos 27rnf and that the length 

of no oscillation is 2N, then the relation that represents the analysis can be written 

as 

N 

a cos w N + b > = 2 ~ ( b - a cos wn) - b + a (IX.I) 
n=O 

By finding the largest N for which this equation is true for different values of a, a 

measure of the length of the no oscillation period can be obtained. Equation IX. I 

was solved by computer and results were obtained for a number of frequencies as 

a approaches full scale. 

Figure 32 shows the results. The value of N clearly rises as a approaches full 

scale. An interesting feature is that the rise is much greater for lower frequencies. 

The overall period would seem to be longer, however, noise shaping will attenuate 

the power in the fundamental at lower frequencies, so the periodicity of the low 

frequencies should be stronger and longer so that the power in the fundamental 

will be greater. 
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CHAPTER X 

CONCLUSION 

The goal of this study has been to understand the quantization noise char

acteristics of a couple types of oversampled analog to digital converters. Although 

there are other sources of noise due to implementation issues and circuit imper

fections, the quantization noise cannot be eliminated since the values of a digital 

signal are discrete by definition. The only way to reduce the quantization noise is 

to increase the resolution of the digital signal. One method to achieve this is to 

increase the physical resolution of the quantizer by making it able to distinguish 

between more levels. As discussed in chapter I, it becomes increasingly difficult 

to implement quantizers as the resolution increases due to the increasingly severe 

specifications placed on the circuit components, such as the low pass analog anti

aliasing filter. 

Instead of increasing the physical resolution of the quantizer, oversampling 

and spectral shaping can be used to increase the effective resolution of low resolu

tion quantizers. Oversampling increases the signal bandwidth which allows the use 

of a simpler analog anti-aliasing filter. The increase in effective resolution is made 

possible because the quantization noise is spread across the signal bandwidth and 

the part of the sampling bandwidth that is greater than the signal bandwidth can 
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be filtered out with digital filters after the quantization process. The advantage 

of digital processing is that it is precise and not touchy like highly precise analog 

components. Circuits like the Eb.Muse spectral shaping techniques to move more 

of the noise into high frequencies so that more of it will be filtered out and even 

more increase in effective resolution will be achieved. 

X.1 SUMMARY OF RESULTS 

This study did not address the issues involved in the digital filtering and 

decimation process. Assuming that the digital processing is ideal, or at least very 

good, then the important characteristics of the quantization noise will be appar

ent in the oversampled output of the quantizer. Two oversampled ADC's were 

studied. The uniform ADC and the Eb.M. It was found that a uniform ADC 

with a low resolution quantizer did not have good. quantization noise characteris

tics over the signal bandwidth. With a high oversampling ratio, the quantization 

error becomes highly periodic and produces strong odd numbered harmonics. So, 

the output power spectrum for input frequencies in the first third of the signal 

bandwidth will have significant harmonic content. After that, the harmonics move 

into the region of the sampling bandwidth which is filtered out. As a result, the 

SQNR across the signal bandwidth is highly irregular. It was shown that higher 

resolution quantizers performed better. This would indicate that oversampling a 

high resolution uniform ADC could be a practical method to achieve modest in

creases in resolution. However, this study intentionally focuses on low resolution 
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quantizers since the feature ADC considered is the E.6.M, which typically uses a 

one bit quantizer. So, understanding the quantization noise characteristics of low 

resolution oversampled quantizers provides a foundation that provided some in

sights into the operation of the more complicated E.6.M. A Fourier series analysis 

was developed to explain the behavior of the uniform ADC for high oversampling 

ratios. It was useful in explaining the observed behavior. 

One way to look at the E.6.M is to consider it as a one bit quantizer which 

provides its own dither signal. This dither signal can also be viewed as a correction 

signal since the input to the quantizer is modified by the opposite of the previous 

total quantization error. The result is that the quantization noise signal becomes 

much more active and has most of its energy located high in the sampling band

width. This shaping of the power spectrum of the quantization noise results in 

greater increases of the SQNR for the E.6.M in comparison to the uniform ADC. 

Some theoretical analysises of the E.6.M for de and sinusoid inputs were 

discussed. The theories were compared against simulated results which spanned 

the range of the signal bandwidth. The simulated results matched the theoretical 

predictions. The simulation results also brought to light behavior in the quantiza

tion noise signal which was not readily apparent from the theoretical predictions. 

An important feature of this study was the use of simulations over the range of 

valid input signals to bring out behavior that would not have been obvious from 

the theoretical predictions or from a few isolated simulated results. The use of 

extensive simulations over the valid signal ranges also emphasized the limitations 
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of the commonly used assumption that the quantization noise is white. The white 

noise assumption was clearly inadequate for the oversampled, low resolution uni-

form ADC. Although the SQNR results for the 'EAM seemed to indicate a better 

match with the white noise theory, simulations and exact theoretical predictions 

showed some definite frequency and amplitude dependent spectral structure. 

X.2 APPLICATIONS AND EXTENSIONS OF RESULTS 

The base of knowledge of this study is relatively fundamental. First, the 

quantization noise characteristics of the oversampled, low resolution uniform ADC 

were studied and understood. Then the characteristics for the EAM were de

veloped for de and sinusoid inputs. It was found that knowledge of the simpler 

ADC's and simple inputs provided useful insight into the operation of the most 

complicated case considered, which was the sinusoid input to the EAM. 

The one feedback loop, or first order, 'EAM considered here is just the 

beginning. ADC's using higher order 'EAM's can be made. Configurations which 

cascade more than one 'EAM are also possible. Other possible variations include 

using a function other than the discrete time integrator, or increasing the number 

of bits of the quantizers. Whatever the configuration, the results produced in this 

study should be able to provide some insights into the behavior of more complex 

circuits that would not be obtained from assumptions of white quantization noise. 

The important result from this study is that the noise characteristics of 

the oversampled ADC are highly dependent on the input signal. It is important to 
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understand the noise behavior because actual results could be unexpectedly poor if 

simplified assumptions, such as white quantization noise, are made. In particular, 

an application using the 'EAM should probably be designed so that the input signal 

does not approach too close to the limits of the input range. The results of the 

simulations showed that the SQNR dropped for sinusoidal inputs as the amplitude 

reached full amplitude. The noise power for de inputs also reached a maximum 

when the de input was close to the limit. The simulation results also indicate that 

sinusoidal inputs with frequencies in the lower half of the signal bandwidth tend 

to have more noise power localized in a few harmonics. While the SQNR may be 

acceptable, it may be necessary to examine whether the power in these harmonics 

is acceptable or not. 

Although the noise characteristics of the two ADC's examined in this study 

may not be good enough for some applications where very accurate conversion 

is required, knowledge of the noise characteristics could provide the information 

needed to determine if one of the simple ADC's is good enough for a particular 

application. 
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APPENDIX 

VIDEO CLIPS 

A number of animated video clips were generated which demonstrate the 

behavior of some of the processes studied. One of the items of interest in this study 

is to understand how the various processes behave over the range of valid inputs. 

These clips provide a visual illustration to aid in understanding the processes. 

The level of polish on the clips varies. The first couple are finished the most. 

Most of the clips were generated quickly for the purpose of identifying behavior 

that was not obvious from the analysis of the processes. As a result, descriptions 

of what the clips show and what the features of interest are follows. 

A.1 SQNR FOR UNIFORM ADC WITH 4 BIT QUANTIZER 

This segment shows the evolution of the SQNR for oversampling values from 

1 to 128 for a frequency range covering the signal bandwidth. The quantizer used 

has 4 bit nominal resolution. The primary feature of interest is the flattening of 

the curve for low frequencies. As frequency increases, the flat portion of the curve 

rises. After the frequency passes 1f, the flattening effect disappears and the SQNR 

jumps around at values higher than what is predicted by the white noise theory. 
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A.2 SIGNAL BANDWIDTH SPECTRUM FOR 4 BIT QUANTIZER 

This clip shows the evolution of the frequency spectrum of a 4 bit quantizer 

output, with an oversampling ratio of 128, over the range of valid input frequen

cies. The primary feature of interest is the harmonics present in the spectrum 

for frequencies lower than J:. These harmonics explain the flattening effect that 

appeared in A.1. As the harmonics move out of the signal bandwidth, the SQNR 

value will rise. 

A.3 THEORETICAL SPECTRUM OF DC INPUT TO '£6.M 

This clip shows the theoretical spectrum of the '£6.M output for a de input 

over the range of valid de inputs. The entire sampling bandwidth is shown. The 

clip starts with a de input of zero and increases to full scale. The fundamental 

noise frequency begins at 1: and moves down towards zero. The higher harmonics 

can be seen bouncing back and forth at ever increasing speeds. Also of interest is 

the effect of noise shaping. This can be seen as the fundamental approaches zero, 

its amplitude begins to decrease. 

A.4 SIMULATED SPECTRUM OF DC INPUT TO '£6.M 

This clip shows the simulated spectrum of the '£6.M output for a de input 

over the range of valid de inputs. The entire sampling bandwidth is shown. The 

primary importance of this clip is that it shows exactly the same behavior that is 
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observed in A.3. 

A.5 SQNR CURVES FOR 'LiAM WITH SINUSOID INPUT 

This segment shows the evolution of the SQNR of the "f.AM output for over

sampling values from 1to128 for a frequency range covering the signal bandwidth. 

The sinusoidal input has a full scale amplitude. This clip is similar in nature to 

A.1. Note that the flattening effect does not occur here. However, a close look 

will show that for low frequencies, the curve appears to be fairly stable. As the 

frequency increases, the curve jumps around more at higher values. This behavior 

is analogous to the flattening behavior in A.1. 

A.6 SQNR SURFACE FOR "f.AM WITH M = 128 

This clip shows the SQNR surface of 25. It is rotated in this clip to provide 

a clear picture of the nature of the surface. 

A. 7 SPECTRUM FOR "f.AM WITH FULL SCALE SINUSOID INPUT 

This segment shows the evolution of the frequency spectrum of the "f.AM 

output for an oversampling ration of 128 for a frequency range covering the signal 

bandwidth. The sinusoidal input has a full scale amplitude. The feature of interest 

are the harmonics that can be picked out for the lower frequencies. Also, as the 

frequency becomes higher, the noise floor appears to drop somewhat. This verifies 

the behavior seen in A.6. 
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A.8 SPECTRUM FOR EAM WITH 80 % SCALE SINUSOID INPUT 

This segment shows the evolution of the frequency spectrum of the EAM 

output for an oversampling ration of 128 for a frequency range covering the signal 

bandwidth. The sinusoidal input has a amplitude of about 80 % full scale. The 

motivation behind this clip is to see if there are any obvious differences from A. 7, 

since the SQNR surface drops significantly. 
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