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AN ABSTRACT OF THE THESIS OF Satish Pai for the Master of Science in Electrical 

Engineering presented May 22, 1992. 

Title: Multiplexed Pipelining: A Cost Effective 

Loop Transformation Technique 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Andrew Fraser 

Parallel processing has gained increasing importance over the last few years. A 

key aim of parallel processing is to improve the execution times of scientific programs by 

mapping them to many processors. Loops form an important part of most computational 

programs and must be processed efficiently to get superior performance in terms of exe-

cution times. Impo1tant examples of such programs include graphics algorithms, matrix 

operations (which are used in signal processing and image processing applications), par-

tide simulation, and other scientific applications. Pipelining uses overlapped parallelism 

to efficiently reduce execution time. 
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Loop transformations exploit the potential parallelism within loops by rearrang

ing loop components to reduce execution time. Loop transformations can also be viewed 

as a solution to a mapping problem in which the computation space associated with the 

loops is mapped to processor space and time. 

A new loop transformation method called multiplexed pipelining (MUP) is 

presented in this thesis. The MUP method considers the cost of operation and makes 

efficient use of a limited number of processors by using pipelining for mapping the loop 

computation space. The MUP method considers partitioning at a fine grain level includ

ing parallelism within individual statements. Execution models for the MUP method are 

developed. Other mapping methods are considered and execution models for them are 

developed. The models are used to evaluate MUP relative to the other methods in tenns 

of cost, execution time and flexibility. 

Our analysis shows that for different loop size parameters MUP is a suitable 

choice over other mapping methods. The choice for MUP can be made at compile time 

using the execution models. These execution models make use of static program charac

teristics such as the loop size parameters. Hence, for a given loop, MUP can be selected 

as the best mapping before the program executes. 

The execution models for MUP are validated by empirical measurements of pro

gram loops. These measurements also show a speedup of as much as 4.9 on 6 processors 

for a small loop iterated 1600 times. 
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CHAPTER I 

INTRODUCTION 

I.1 PROBLEM STATEMENT 

Parallel processing has become a necessary means for improving the execution 

times of scientific programs. The key task in parallel processing is mapping a sequential 

program to different processors for simultaneous execution. Efficient mapping of these 

programs requires the exploitation of potential parallelism within the program code. 

Loops play an important role in most compute intensive scientific programs and 

efficient parallel execution of these programs requires a methodology for the efficient 

partitioning of programs and the scheduling of the program components within the parti

tions,[!]. Loop transformations and pipelining are often proposed as a way to automati

cally (or manually) improve the performance of scientific programs on high performance 

computer system. Pipelining improves performance by overlapping the execution of 

several different instructions. If there are no interactions between the instructions, several 

instructions can be in different stages of execution simultaneously. Pipelining also makes 

very efficient use of limited hardware resources. It is important, therefore, to develop 

pipeline -oriented loop transformations. 

I.2 THESIS OBJECTIVE 

The goal of our research is to develop a cost effective loop transformation method 

which improves the execution performance of program loops. The use of pipelining is 

considered to get the benefits of overlapped parallelism. The proposed method, called 
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multiplexed pipelining (MUP) is presented as a solution to the problem of mapping the 

computation space defined by a loop to processors and time. Fine grain partitioning of 

the loop is used to expose more parallelism. MUP considers the cost of the solution and 

makes efficient use of a limited number of processors. MUP is compared to other map

ping methods for performance evaluation. 

The evaluation process begins with the development of models for execution time 

and cost for each method The models are used to evaluate the merits of each method. 

The models for MUP are validated via several experiments. Our analysis shows that for 

certain cost constraints, MUP outperforms the other methods. 

I.3 THESIS OVERVIEW 

Chapter II defines the nature of program loops. It describes the space-time 

representation of a computational process. Simple pipelining is used to illustrate mapping 

problem and the space-time notation. The computation space for our research is defined. 

Several common mapping methods are introduced and modeled using the space-time 

notation. 

Chapter III describes the MUP method in detail. Execution time models are 

developed and are used to identify key factors determining performance. Finally MUP is 

compared with the mapping methods introduced in Chapter IL 

Chapter IV discusses the design of experiments to validate the models for MUP's 

performance and presents results of the experiments. The results confirm the models. 

Finally Chapter V presents the summary and conclusions and discusses MUP's impor

tance as compared with other mapping methods. 



CHAPTER II 

LOOP TRANSFORMATIONS 

II. l STRUCTURE OF PROGRAM LOOPS 

The structure of a loop is illustrated by its pseudo code. Shown below is the 

pseudo code for a FORTRAN "DO" loop. The loop limits are arbitrary and chosen for 

this example. 

DO 10 I= 1,100 

S 1CI) => fCS u(I), S 12(1), ... ,S in CD); 

S 2CD => fCS 21(I),S22(1), ... ,s 2n CD); 

S 3(I) => fCS 31(D, S 32(1), ... ,S 3n (D); 

Sn (I)=> fCSn 1 (D, Sn2(I), ... ,Snn CD); 

10 CONTINUE. 

The pseudo code consists of two main components:loop control statement and 

processing statements. The loop control statement in the above example is represented by 

the DO statement and the CONTINUE statement. The processing statements are enclosed 

between the DO and CONTINUE statements. The DO statement specifies actions which 

define the initialization, comparison and increment functions for the loop. The termini

tialization refers to actions taken before the first loop iteration, in this case setting I to 1. 

The comparison function checks the loop limits at each iteration and either repeats or ter-



4 

minates loop execution. In this case, I is compared with 100 and the loop is terminated 

when I is greater than 100. The increment function increments the iteration count for the 

next loop iteration, in this case I is incremented by 1. 

The processing statements assign a value that is a function of its substeps to a 

variable. As an example, the following is a simple processing statement. 

a=b+c-d 

where the variable a is assigned the value of a function of b, c and d. The terms + 

and - represents the substeps in the statement. 

Based on the above description, a graphical representation of the loop is given in 

Figure 1. The general structure of the loop includes four main blocks. The first block 

represents the initial portion of program before the loop body. The second block 

represents initialization for the loop operation. The third block represents the loop body 

which consists of loop control statement and processing statements. The fourth block 

represents the rest of the program. 

11.2 LOOP TRANSFORMATION-DEFINITION 

Loop transformations are a powerful collection of methods that improve the per

formance of a program by matching the program to architectures. Loop transformations 

effectively rearrange the loop components to enhance the execution speed on a specific 

multiprocessor system. Transformations of a program produce execution speed enhance

ment through the exploitation of inherent parallelism and by effectively exploiting 

memory hierarchies and interprocessor communication networks. In recent years many 

researchers including Wolfe[l], Kennedy[4], Kumar[2] and Banerjee[IO] have looked at 

loop transformation methods as an important compilation tool for parallel processing sys

tems. 



INITIAL PIECE OF 

PROGRAM 

INITIALIZATION FOR 

THE LOOP 

LOOP BODY 

PROCESSING 
STATEMENTS 

HREADS 

REST OF THE 

PROGRAM 

Figure I.Block Level Structure of a Loop code. 

II.2.1 Loop Transformation as a Mapping Problem 

5 

Loop transformation techniques can be defined as a process which maps the given 

computation space (or computation structure) into a processor space by partitioning and 

scheduling the partitions in an efficient way[ll]. A computation space consists of nodes 

corresponding to computations and arcs showing the flow of data or. the dependence 

between nodes. 

A node in the computation space can represent the individual elements which are 

assigned to processing elements. Nodes of different grain sizes can be used. Miranker 

and Winkler[l 1] define two types of nodes for their computation. For uniprocessor exe-

cution, where a single processing element is used for computation, a node is the entire 

loop. For multiprocessor execution, nodes are individual iterations. Sheu and Tai[20] 
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define a node as a partition consisting of iterations which are independent of each other. 

Moldovan[12] defines a node as set of iterations for mapping the cyclic loop algorithms 

on VLSI arrays. 

Various types of arc dependences can also be defined. Sheu and Tai[20] and Mol

dovan[12] consider the dependence existing between iterations and define the concept of 

a dependence vector. If a variable generated at iteration i is used later by iteration j, then 

the dependence relation for that variable is represented by a dependence vector from i to 

j. Shang and Fortes[l6] define uniform data dependencies where the values of the depen

dence vectors are independent of iterations. Wolf e[9] considers the dependences existing 

between statements in a loop for the vectorization test. The term vectorization here refers 

to the conversion of code written for serial execution into code which uses the vector 

instructions of the target machine. Wolfe[9] also considers the possibility of dependences 

that can occur between substeps in a loop statement. 

A processor space is a description of the processing elements available for the 

given computation. Two main types of processor spaces are of interest. The first one is a 

uniprocessor space and consists of a single processor. The second one is a multiprocessor 

space and consists of several processors. There exist various types of multiprocessor 

spaces based on the interconnection topology between the processors. Important exam

ples include local area networks, n-dimensional hypercubes and systolic arrays. 

Winkler and Miranker[ll] consider both types of processor spaces. For the 

uniprocessor space they assume the coordinates of the given processor to be the ori

gin(0,0,0). For the multiprocessor space, the coordinates of each processor is triple of 

integers. Sheu and Tai[20] use the n-dimensional hypercube topology as the processor 

space for their computation. The coordinates of each processor is a point in this n

dimensional space. Moldovan[12] uses VLSI systolic arrays as the processor space for 

the mapping of loop algorithms. In this case the position of each processing cell is 
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described by its two-dimensional Cartesian coordinates. 

Time space can be combined with processor space to define a computation. A 

node in the given computation space is mapped to a specific coordinate in processor 

space and time, defining when and where the node executes. 

Loop transformation techniques can be defined as the process of mapping the 

computation space to the given processor and time spaces. The physical process of com

putation can be interpreted in terms of physical space and time. Winkler and 

Miranker[l l] define the above technique as the space-time representation of the compu

tation space. Two distinct functions II and Pare defined by Moldovan[12]. II represents 

the mapping from computation space to time space for the given computation process. P 

represents the corresponding mapping from computation space to processor space. 

Several types of mapping methods have been considered. Moldovan[12] uses a 

linear mapping method to map the loops to VLSI systolic arrays. Sheu and Tai[20] use a 

hyperplane method which considers a linear mapping scheme to map the iterations to the 

n-dimensional hypercube. The widely used uniprocessor mapping is an example of a 

nonlinear mapping scheme. Other methods are intuitive methods like a separate proces

sor assigned to every node of the computation space for each iteration. 

II.3 PIPELINING-AN EXAMPLE MAPPING 

Pipelining offers an economical way to realize parallelism in modern digital com

puters. The concept of a pipeline is similar to an assembly line in a manufacturing plant 

where the input task gets divided into a series of subtasks and each subtask can be exe

cuted by a specific stage that operates concurrently with other stages in the pipeline. All 

tasks are driven into the pipeline and executed in an overlapped fashion at the subtask 

level. Pipelined processing has led to tremendous performance improvement in modem 

computing systems. 



II.3.1 Basic Structure 

A basic linear pipeline is shown in Figure 2. 

c 

L: latch 
S; :ith stage 

L 

S1 

C:clock 

L L L 

S2 

Figure 2.Basic structure of a pipeline processor. 
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L 

sk 

Output 

The pipeline consists of a cascade of processing stages. The stages are separated 

by interface latches. The latches are fast registers used to hold the intermediate results. A 

common clock drives all stages simultaneously. 

The speedup of a k-stage linear pipeline is defined to be the ratio of execution 

time on a non-pipelined processor to execution time on a pipelined processor. 

Figure 3 gives the Gantt chart for the pipeline of Figure 2. 

STAGE 

PSK 

PS3 

PS2 

PSI Tl 

Tl T2 T3 -- TN 
Tl T2 T3 --- TN 

Tl T2 T3 -- TN 

Tl T2 T3 --- TN 

T2 T3 --- TN 

TIME 

Figure 3.A simple pipeline operation. 

-------

-------

-------
-------

-------
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Tl, T2, etc represent the instructions in the pipeline. PS 1, PS2, etc. represent the 

stages in the pipeline. 

II.3.2 Pipeline Computation Space 

Pipelined operation can be obtained via mapping process. For this purpose the 

computation space has to be defined. As mentioned above, the linear pipeline executes 

instructions which are made of subtasks. There is a precedence relation between adjacent 

subtasks in an instruction. The node of computation is an individual subtask. A computa

tion space suitable for pipelining is shown in Figure 4. 

L 

G--0-@----->G 
N 

G__.~e---->B 
Figure 4.Computation space for pipelined operation. 

Several variables define an instance of this computation space: 

1. L represents maximum length (number of subtasks) of an instruction. 

2. N represents total number of instructions. 

An individual node is labeled (l,n) where 1~1~Land1 ~ n ~ N. 

11.3.3 Processor Space for Pipelined Computation 

Two types of processor spaces can be considered for the pipeline computation 

space shown in Figure 4. They are: 

1. Uniprocessor space: The pipeline computation space is mapped to a single pro

cessor. 
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2. Multiprocessor space: The pipeline computation space is mapped to several pro

cessors connected in a pipelined fashion. If K processors are used, an individual 

processor will be labeled p, where 1 5 p 5 K. 

Il.3.4 Uniprocessor Pipeline Mapping 

This method employs a single processor for its operation. The processor mapping 

P, in this case is 

P(l,n)=l 

The above equation means that entire computation takes place at the single pro

cessor. The time mapping function, II, in this case is given by 

II ( /, n ) = (n - 1) * L +I (1) 

The equation for the mapping function II consists of two terms. The first term,(n 

- 1) * L represents the time taken to execute first (n - 1) instructions and the second term, 

1 represents the time mapping for the substeps of the nth instruction. The total execution 

time Tex is the maximum value of II and is given by 

Tex = max II = (N - 1) * L + L = N * L 
l,n 

(2) 

This means that N * L cycles are needed to complete the given computation using 

a single processor. 

11.3.5 Multiprocessor Pipeline Mapping 

In this case, the processor mapping P, is given by 

P (l,n )=I 

Since this mapping is pipelined, the overlap between the instructions must be 

considered. The time mapping function, II, in this case is given by 
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Il (I, n ) = (n - 1) [Ti] - (n - 1) [T 2] + [T 3] 

where 

T 1 represents the time to complete a single instruction; 

T 2 is overlap between the instructions; and 

T 3 is time mapping for the subtasks of the last instruction. 

Substituting the values for each term, we get 

Il (I, n ) = (n - l)[L] - (n - l)[L - 1] + I (3) 

The physical interpretation of the above equation is as follows. It takes L cycles to com-

plete a single instruction. The overlap between the successive instructions is (L - 1) and a 

total of (n - 1) overlapping instructions. The last term 1 represents the time mapping for 

the subtasks of the last instruction. 

The total execution time Tex is maximum value of Il and is given as 

Tex =max Il = (N - 1) [L] - (N - 1) [L -1] + L 
l,n 

Since L = K, Simplifying the above equation we get, 

Tex =K -1 +N (4) 

As expected, this shows that K - 1 cycles are required to fill the pipeline and then 

N cycles are required to complete N tasks. 

II.4 COMPUTATION SPACE FOR OUR RESEARCH 

Figure 5 illustrates the computation space we will consider in this research. LC 

represents the loop control statement which includes the functions INC and TEST as 

shown in Figure 1. Sl, S2, etc., represent the processing statements. The symbol i refers 

to the execution of the loop statement in the ith iteration. Circles represent the substeps 
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in the statement. There is a sequential dependence between these substeps. The term 

sequential dependence refers to the dependence from a node to its successor node. The 

nodes denoted by symbol A are the entry nodes for the statements. Entry nodes are ini

tialized at the start of the execution. 

LC(i) 

N 

I I 

v v 

Ss(i) 

E 

I 
I 
I 

* 

-------> 

I 

v 

Figure 5.Computation Space for the loop structure. 

Three variables define an instance of this computation space: 

1. N : Total number of iterations, (1 ~ i ~ N). 

s 

2. S : Total number of statements(includes loop control statement),(1 ~ s ~ S). 

3. E : Total number of substeps in a statement. All statements in this computation 

space assume equal length. (Es = E for all S), (1 ~ e ~ E). 
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The computation space shown in Figure 5 consists of two main loop 

components:loop control statement and processing statements. Both of these com

ponents can be realized as individual paths in the loop. These paths are made up of sub

steps with a sequential precedence relation existing between them. 

The computation space considered in this research is similar to actual program 

loops. In fact, most loops can be transformed to our computation space, perhaps with a 

small loss of parallelism. This loss of parallelism stems from the pipelined nature of our 

computation space. 

First, note that there is no dependence between statements in our computation 

space. For a loop having such dependence, all statements involved in the dependence can 

be merged into a single "super-statement". This may result in the loss of parallelism 

between the portions of the dependent statements that are independent. Second, an actual 

program statement may not require the linear ordering of our computation space. In other 

words, substeps of a statement may be executed in parallel. Such a statement can be 

mapped to our computation space by enforcing an arbitrary ordering on any substeps that 

could execute in parallel. 

Finally, the statement lengths were assumed equal in our computation space. 

There exist a dependence arc from the loop control statement to other processing state

ments. This can cause delays in the pipelined execution, if the statements are of unequal 

length. Assuming that the statements are of equal length simplifies the analysis. A short 

statement in an actual loop can be padded with no ops to match our assumption. These no 

ops are identical to the delays a short statement would cause. 

II.5 EXPLORATION OF IMPORTANT MAPPING METHODS 

The mapping problem consists of assigning our computation space to the given 

processor space and time. Given this concept, many mappings can be suggested. We 
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have tried to look at a few important ones categorized in terms of processor space and 

degree of pipelining used. 

II.5.1 Uniprocessor Method (UM) 

This method employs a single processor for the entire computation. There is no 

parallelism or pipelining involved. This is a widely used mapping method and can be 

used in the cases where execution time is not a main criterion. This method is used in 

commercially available uniprocessor computers. For this case the processor mapping P 

is 

P (i,s,e )= 1 

A typical mapping function, II, for this case is given by 

II ( i, s, e ) = (i - 1) * S * E + (s - 1) * E + e (5) 

The above equation represents the time mapping for the uniprocessor computa-

tion. The equation is split into three terms. The first term, (i - 1) * S * E represents the 

time required for all the iterations before the ith iteration. The last two terms represent 

the time mapping for the last iteration. The second term, (s - 1) * E represents the time 

taken for all the paths in a single iteration except the last path. The third term, e gives the 

time mapping for the substeps of the last path. The total time required for the computa-

tion, Tex is given by the maximum value of II. 

Tex =max II 
l,S,e 

Substituting the maximum limits of each parameter in equation 5, we get 

Tex= (N -1) * S * E + (S - 1) * E + E 

The total execution time is thus given by 

Tex =N * S * E (6) 
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The above equation represents the total time required to execute N iterations of S 

statements with E substeps. 

II.5.2 Multiprocessor no Pipeline Method (MNP) 

This method uses several processors to perform the given loop computation. 

Defining total number of processors to be K,(1 ~ p ~ K) two cases can be considered. If 

the number of statements is less than or equal to number of processors(S ~ K), each state

ment is assigned to a single processor. This is called a no wrap-around case. Several 

statements can be assigned to each processor if the number of statements is greater than 

the number of processors,(S > K). This is called as a wrap-around case. This technique 

might be called the statement(s) per processor method. Multiple Instruction-Multiple 

Datastream(MIMD) architectures use this kind of technique [5], where each instruction 

stream as well as data stream is processed by a single processing element. Each loop 

statement corresponds to an instruction stream. Considering no wrap-around of state-

ments we can represent the processor mapping P as 

P (i,s,e )=s 

The time mapping function, TI, is given by 

TI (i, s, e ) = (i - 1) * E + e (7) 

The equation representing function TI consists of two terms, the first term 

represents the time required to execute a single iteration and the second term represents 

the time mapping for the substeps of the last iteration. The total execution time Tex, is 

given in terms of maximum value of TI. 

Tex= 1)1ax TI 
i,s,e 

Replacing the maximum limits of the parameters in equation 7, we get 

Tex =N * E (8) 
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The above equation represents total execution time for the loop code having S 

statements, each of length E over N iterations for the no wrap-around case. 

Using the same approach for the wrap-around of paths(S > K), the total execution 

time Tex, for the MNP method is given by 

Tex =N * E f il (9) 

The above equation represents the time required to execute S instructions, each of 

length E over N iterations for both the wrap-around and no wrap-around cases. 

II.5.3 Multiprocessor Individual Pipeline Method (MIP) 

This method is an example of fine grain parallelism with each node (step in the 

statement) assigned to a single processor. For this case each statement uses its own pipe

line. This method might be called the step-per-processor method and is used in systolic 

systems[5]. A systolic system consists of a set of interconnected cells, each capable of 

performing some simple operation. Information in a systolic system flows between cells 

in a pipelined fashion. The processor mapping function, P, for this method is given by 

P (i, s, e ) = (s - 1) * E + e 

The time mapping function, TI, for this method is given by 

TI(i,s,e )=E-l+i (10) 

The total execution time Tex is given by the maximum value of II. 

Tex = i:nax II 
1,s,e 

Substituting the maximum value of each parameter in equation 10 gives 

Tex =E -1 +N (11) 
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The above equation represents the total time required to execute the given loop 

code over N iterations using the MIP method. 

The above mapping methods will be compared with our new method. The unipro

cessor method is the most general method and does not provide any advantage in terms 

of parallelism. It is independent of the grain size of nodes. The MNP method considers 

the partitioning at the statement level. The MIP method considers the computation at a 

fine grain size. 

In practice there are many other mapping methods such as iteration per processor, 

iterations per processor, etc. These methods map an iteration or iterations to each proces

sors. These methods do not consider any intraloop parallelism in the mapping process. 

Therefor these methods offer coarse grain parallelism for the given computation. Our 

research focuses on intraloop parallelism, which considers the parallelism at a finer grain 

level. Other fine grain methods such as a separate processor for each node for each indi

vidual iteration can be considered. However these methods require a large number of 

processors. Therefor these methods are too expensive to be practical. 

II.6 MOTIVATION FOR OUR RESEARCH 

In Chapter III, we propose a loop transformation method which maps the given 

computation space to a limited number of processors in a pipelined fashion. The motiva

tion for this idea has arisen from the following facts. 

The first important point is the level of parallelism considered in the mapping 

process. Partitioning at a fine grain level offers more parallelism in the mapping process. 

Earlier researchers have tried partitioning on the iteration level. The iterations are parti

tioned considering the dependences between them and these partitions are assigned to the 

available processors. No intraloop parallelism was involved in the mapping process. In 

other words, the level of parallelism was not significantly high in the given mapping pro-
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cess. 

This parallelism can be greatly increased by considering the internal partitioning 

of an iteration. Partitioning can be performed on the fine grain level such as a single step 

in the statement These fine grain partitions can be mapped to the given processor space. 

We have tried to explore the intraloop parallelism and considered fine grain partitioning 

for our proposed transformation method. 

Second, the use of pipelining improves the system perf onnance by overlapping 

the execution of several different instructions. When there is no interaction among the 

instructions, several instructions can be in different stages of execution simultaneously, 

making the execution process faster. Thus a high degree of overlapped parallelism is pos

sible by pipelining a small number of processors. 

The third important point is that the number of processors required by a mapping 

must be considered. The statement per processor method (MNP) assigns a loop statement 

to an individual processor. Thus the processor space in this case depends on the number 

of statements in the loop code. This method calls for more processors as the number of 

loop statements increases. The step-per-processor method (MIP) maps an individual sub

step in the loop statement to a processor. The processor space in this case is a function of 

number of statements as well as the length of each individual statement. Thus for these 

two methods, the number of processors may rapidly become impractical. 

A method that can achieve good performance with few processors is highly 

desired. The uniprocessor scheme is not a solution to this problem as it does not offer any 

parallelism. Therefor a mapping method which can provide a compromise solution is 

needed. The multiplexed pipeline method (MUP) meets this requirements. It is described 

in detail in the next Chapter. 



CHAPTER ill 

PERFORMANCE EVALUATION FOR 

MULTIPLEXED PIPELINE METHOD 

111.1 MULTIPLEXED PIPELINE MAPPING 

Recall that the computation space shown in Figure 5 consists of two main com-

ponents. These components are loop control statement and processing statements. In 

what follows, these components are referred to as paths. Each of these path is made up 

of substeps with a sequential precedence relation between substeps. The multiplexed 

pipeline transformation maps the loop to processors arranged in a pipeline. 

S14 s 2,4 s 3,4 - - - ---- S s,4 
' 

PS4 

PS3 s 1,3 s 2,3 s 3,3 - - - - --- S s,3 

s 1,2 8 22 s 3,2 - -- - - - · S s,2 
' 

PS2 

s 1,1 8 21 s 3,1 -- - --- S s,1 
' 

PSl 

Figure 6.Multiplexed Pipeline Mapping. 

Figure 6 shows a Gantt chart illustrating the execution of a loop mapped via mul

tiplexed pipelining. S;,j denotes substep j of path i. PSj is the jth pipeline stage or pro

cessor. As evident from the figure, each stage of the pipeline contains a substep from 

each path. The mapping can be informally described as follows. 
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Substep j of each path is assigned to processor PSj. If there are more substeps per 

path than there are processors, the assignment wraps around to the first processor. In 

other words, for K processors, substep K + 1 is assigned to processor 1 and so on. At each 

processor, the substeps are executed in same order that obeys the dependence constraints 

of the program. 

As seen from Figure 6, there exist various ways in which the loop paths can be 

ordered for execution. This can be explained with respect to the mapping functions II 

and P. Since the path lengths are assumed equal, for different ordering of loop paths, the 

processor mapping function P is fixed. However for different ordering of loop paths, the 

time mapping function II may vary. Therefor it is a necessary task to evaluate the effect 

of the ordering of loop paths on TI and on execution time. The analysis below fixes P and 

considers the effect of these ordering on the time mapping function II and tries to find an 

ordering which will result in minimum execution time. 

ill.2 EXPLORING THE SOLUTION SPACE 

For this analysis, the solution space must first be described. Each ordering of loop 

paths is a point in this solution space. For the loop computation space having S paths, 

there are S substeps at the first processor. If we assume the same ordering is used at all 

processors, the total number of orderings becomes S !. As S grows, the solution space 

quickly becomes enormous. To simplify analysis, we group the loop components into 

two classes. These classes can be arranged in various permutations to cover the total 

solution space. These classes are: 

1. LC : This class contains the loop control statement. 

2. TH: This class contains all the threads (processing statements). 

The loop control statement plays an important role in execution. We consider the 

permutations of threads relative to the placement of the loop control statement. Based on 
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the placement of the loop control statement with respect to the threads, solution sub

spaces are defined. The notation ORD below represents all possible orderings of threads 

within that solution subspace. The subspaces are: 

1. Loop control statement at the beginning followed by all arrangements of threads 

and denoted LC ORD(fH). (LCF subspace) 

2. Loop control statement at the end preceded by all arrangements of threads and 

denoted ORD(TH) LC. (LCE subspace) 

3. Loop control statement in between threads. (LCB subspace) This subspace con

tains all the permutations from the total solution space excluding the above two 

subspaces. This subspace can be denoted by LCB = { 0 I 0 is the path ordering 

with loop control statement in between threads } 

We next generate a model which will predict the execution time of the given 

loop. Recall that the following variables, first defined in section II.4, describe the compu

tation space for a loop: 

1. N : Total number of iterations. 

2. E: Total number of substeps in a path. 

3. K: Total number of processors used for computation. 

4. S : Total number of paths in the loop(including the loop control statement). 

The general function for the execution time of the loop can be represented as 

Tex = F ( ord ( S 1.i. S 2,1' S 3,1' ... , Sn .1 ), N, E, S, K ) 

where ord represents the ordering of the substeps of each path at the first proces-

sor. 

To simplify analysis, we proceed as follows. We start with a simple first case 

where S, Kand E are assumed to be equal. For this case, we develop a general model and 

then illustrate its performance for each of the three solution subspaces. The simple case 
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gives an intuitive feeling for the analysis performed while developing the execution 

models. This will help in understanding the model for the more complicated situation 

when all parameters are independent 
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III.2.1 First Case : K = S = E 

Figure 7 shows Gantt charts for a loop with the number of paths, the number of 

substeps per path and the number of processing elements equal. L represents the execu

tion of the loop control statement in the pipeline stages. Sl, S2, S3 etc., represent the 

execution of processing statements in the pipeline stages. PSl, PS2, PS3 etc., represent 

the pipeline stages or processors. There are four Gantt charts, each showing a different 

position of the loop control statement with respect to the rest of the threads. Entry nodes 

of each path are assigned to the first stage of the pipeline execution. 

The processor mapping, P, in this case is given by 

P (i,s,e)=e 

Since the multiplexed pipeline method uses pipelining, there is an overlap 

between the iterations in the pipe. This overlap has to be considered in the time mapping 

function, IT. Therefor the equations representing the time mapping for this method are of 

the form: 

IT ( i, s, e, ~) = (i - 1) * [Ti] - (i - 1) * [T 2 - ~] + [T 3] 

where 

T 1 = Time required for a single iteration without considering the overlap; 

T 2 = Overlap time between iterations; and 

T 3 = Time mapping for the substeps of the last iteration. 

In this case, the time mapping is 

IT ( i, s, e, ~) = (i - 1) * (E - 1 + S) - (i - 1) * (E - 1- ~) + e - 1 + s (1) 

The term T 1 means that E cycles are required to complete the first path and S - 1 

cycles are required to complete the remaining paths. T 2 represents the possible overlap 

between the iterations. The value of this overlap ranges between 0 and (K- 1). The term 
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!:l. refers to the pipeline delay between iterations created by the loop control statement and 

the dependence between itself and other processing statements. The third term represent

ing T 3 gives the time mapping for each substep for the ith iteration. The total execution 

time Tex is given by the maximum value of function IT. 

Tex= max IT 
i ,s ,e ,11 

Substituting the maximum values for the parameters and rearranging gives: 

Tex = [(E - 1) + (S + ~) * N - !:l.] (2) 

The above equation shows that it takes (E - 1) cycles to fill up the pipeline and 

each iteration is completed after (S + !:l.) cycles. The above equation represents all posi

tions of the loop control statement, i.e., all threads orderings. The range of !:l. determines 

the solution subspace, i.e., LCF, LCE, LCB. 

111.2.1.1 LCF Subspace. The Gantt chart for this case is shown in figure 7(a). The 

general model for execution time was 

Tex =[(E -l)+(S +~) * N -!:l.] 

For the LCF subspace, !:l. is zero. Thus the equation can be rewritten as 

Tex = [ (E - 1) + S * N] (3) 

This is a normal pipeline equation which resembles equation 4 in Chapter II. 

Once the pipeline is full (after E - 1 cycles), then each iteration is completed after S 

cycles. To complete N iteration requires S * N cycles. Thus, LCF is fully pipelined with 

no delay between the iterations. 

To verify that this model is correct for all points in the LCF solution subspace, 

consider Figure 7(a). It can be seen that changing the relative positions of the threads 

within the TII group does not change the execution time since the threads are identical in 
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length. 

III.2.1.2 LCE Subspace. The Gantt chart for this case is shown in Figure 7(d). The 

general model for execution time was 

Tex = [(E - 1) + (S +A) * N -A] 

For this subspace, A is ( S - 1 ) and the execution time is 

Tex = [(E - 1) + (S + S - 1) * N - ( S - 1 )] 

Since E = S, we have 

Tex = [ (E - 1 + S) * N] (4) 

This shows that the pipeline is filled and drained for each iteration, i.e., there is no 

overlap between iterations. In other words it means that once the pipelined is filled after 

E - 1 cycles, it is drained for S cycles before it is filled again. Again, since the threads are 

identical, this model is valid for all orders of the TH group. 

III.2.1.3 LCB Subspace. The Gantt chart for this case is shown Figure 7(b) and 

Figure 7(c). The general model for execution time was 

Tex = [(E - 1) + (S + M * N - A] (5) 

The value of pipeline delay A in LCB subspace varies from 1 to S - 2, with larger 

A giving higher execution time. Equation 5 describes the cases with some pipeline delay 

and some overlap between iterations. 

III.2.1.4 Summary for the First Case (S = E = K). For this simple case we can say 

that, 

Tex (L\ = 0) ~Tex (0 <A< S - 1) ~Tex (L\ = S-1) 

or 

TeX/cf ~ T ex1cb ~ T ex1c, 
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Thus execution time increases with A, i.e., as the loop control statement is moved 

toward the end of the ordering. 

ID.2.2 General Case : All Parameters Varied 

In this case, all the parameters are varied independently resulting in a general 

model for multiplexed pipelining. The processor mapping function, P, is given by 

P (i, s , e) = ( e - 1 ) mod K + 1 

The time mapping function, n, is given by 

Il (i, s, e, A)= (i - 1) * [Ti] - (i - 1) * [T 2 - A]+ [T 3] 

where 

T 1 = Time required for a single iteration without considering the overlap; 

T 2 = Overlap time between iterations; and 

T 3 = Time mapping for substeps of the last iteration. 

Substituting for T 3 gives: 

II= (i - I) * [T 1] - (i - I) * [T 2 - ~] + [ (e - I) mod K + s + le K 1 J * max (K, S )] 

where 

T 1 = (E + S - 1) for S g(; 

T 1 = [ K - 1 + [ E ; S ] ] for S > K and E/K is an integer; 

T 1 = [ r fl * S + E nwd K - I ] for S > Kand E/K is not an integer; 

T 2 = [S - 1] for S ~ (E - 1) mod K; and 

T 2 = [ (E - 1) mod K ] for S > (E - 1) mod K. 

There are three distinct equations for the term T 1. In the first case, the number of 
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paths in the loop is less than or equal to number of processors. This T 1 resembles the 

basic pipeline equation where the first path takes E cycles to complete and the remaining 

paths are finished in S - 1 cycles. 

In the second case, the number of paths is greater than the number of processors 

and E/K is an integer. The first term of Ti. K - l, is the number of cycles required to fill 

the pipeline and the second term, is the number of cycles required to finish the paths, 

after the pipeline is full. 

In the third case, the number of paths is again greater than the number of proces

sors and E/K is non-integer. The equation representing the third subcase is shown above. 

This case is similar to the previous case, except that a path may finish without passing 

through all the stages of the pipeline. 

Execution time (Tex) for the loop is equal to the maximum value of TI and is 

given by 

Tex= .maxTI=N * [T1]-(N -1) * [T2-A] 
1,s,e,/J.. 

(6) 

T 1 represents the time for a single iteration without any overlap and T 2 stands for 

the maximum overlap between the iterations. These terms are shown below for different 

conditions. 

T 1 = (E + S - 1) for S g; 

T 1 = [ K - 1 + [ E ; S ]] for S > K and E/K is an integer; 

T 1 = [ f ~1 * S + E mod K - I ] for S > K and E/K is not an integer; 

T 2 = [S - 1] for S :::; (E - 1) mod K; and 

T 2 = [ (E - 1) mod K ] for S > (E - 1) mod K. 

Again we illustrate the general equation for each of the three solution subspaces. 
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III.2.2.1 LCF Subspace. Figure 8 shows the Gantt chart for the LCF subspace. 

L Sl S2 S3 S4 

L Sl S2 S3 S4 L Sl S2 S3 S4 

L Sl S2 S3 S4 L Sl S2 S3 S4 

L Sl S2 S3 S4 L Sl S2 S3 S4 

Figure 8.General case LCF subspace. 

The general model for execution time is 

Tex = N * [T 1] - (N - 1) * [T 2 - 8.] 

The pipeline delay ll. is zero for this subspace. Therefor the execution time is: 

Tex = N * [Ti] - (N - 1) * [T ii 
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(7) 

The LCF subspace has the minimum execution time as compared to other two 

solution subspaces. 
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III.2.2.2 LCE Subspace. Figure 9 shows a sample Gantt chart for LCE subspace. 
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Figure 9 .General case LCE subspace. 

The general execution time model is 
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Tex = N * [T 1] - (N - 1) * [T 2 - A] 

For this subspace the loop control statement executes after the other processing 

statements. Thus the pipeline delay, A achieves the value of T 2• Thus the execution time 

is 

Tex =N * [T1] (8) 

The LCE subspace has the worst execution time of all the three solution sub

spaces due to no overlap between iterations. 

111.2.2.3 LCB Subspace. The general execution model is again 

Tex = N * [T 1] - (N - 1) * [T 2 - A] (9) 

The value of pipeline delay A in the LCB subspace increases from 1 to T 2 - 1. 

Thus the execution time in the LCB subspace lies between the LCF and LCE subspaces. 

111.2.2.4 Summary for the General Case. Considering the models for each of the 

solution subspaces, for a general loop with S paths, each path having E substeps, with 

iteration count N and executed on K processors we can say that, 

T ex1c1 ~ T ex1cb ~ T ex1c, 

The LCF category begins with the execution of the loop control statement at the 

leftmost position in the Gantt chart. The loop control statement is responsible for the gen

eration of future iterations. The rightward motion of the loop control statement intro

duces delays for future iterations. The maximum delay occurs when the loop control 

statement is at the end, i.e., in the LCE subspace. 

The execution models developed for the multiplexed pipeline method reflects this 

behavior. In the LCF subspace, the value of pipeline delay A is always zero, which 

corresponds to the minimum execution time obtained for the multiplexed method. This 

delay increases for LCB and LCE subspaces, increasing the execution times for those 
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subspaces. 

ID.3 COMPARISON OF MAPPING METHODS 

In this section we compare the mapping methods developed in Chapter II and III. 

The mapping methods were compared with respect to the following performance meas-

ures: 

1. Cost: This is the number of processors used. 

2. Execution Time. 

3. Flexibility: This refers to the usability of the mapping method for a wide range of 

loops. 

III.3.1 Uniprocessor and Multiprocessor Methods 

The uniprocessor mapping method maps loop code of any size to a single proces-

sor. This method wins in terms of cost. However it looses with respect to the execution 

time except when 

S = 1andE=1. 

In this case no parallelism is possible. Loops of much bigger sizes will be encoun

tered in the practical case. Thus for the loop sizes where S > 1 and E > 1, the multipro

cessor mapping schemes can be considered for better execution time. 

III.3.2 Between MNP and MIP Method 

MIP is a fine grain method in terms of parallelism and yields the best execution 

time. Comparing with MNP we get: 

Tmnp > Tmip 

NE>E-l+N 

(N -1) E > (N -1) 

E > 1 
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Therefor for E > 1 

Tmip < Tmnp 

In other words, MIP is faster whenever paths have more than one substep. For a 

loop with path lengths greater than 1, MIP uses more processors than MNP. Therefor, 

when E > 1, MIP is faster but costlier. For the case where E = 1, the two methods are 

identical. 

III.3.3 Between MUP and MNP Method 

The multiplexed pipeline method uses a fixed number of processors, K indepen

dent of the loop size parameters. The MNP method with no wrap-around uses S proces-

sors. Under these conditions: 

1. If S > K, the MNP is faster by a factor of S/K.. For this case, MUP is cheaper than 

MNP by a difference of (S - K) processors. 

2. If S ~ K, the MNP is better than MUP in terms of both execution time and cost. 

Given a fixed number of processors K, for both methods, several cases must be 

considered. 

III.3.3.1 E > K, S > K, S/K not an integer, E/K an integer. Under these conditions, 

when 

NE> _ K (K -1) 

MUP has lower execution time than the MNP method. 

III.3.3.2 E > K, S > K, S/K. not an integer, E/K. not an integer. Under these condi-

tions, when 

N E > ( K - ( E mod K) ) N S + ~( E mod K ) - 1 ) K 
K -(S mo K) 

MUP has lower execution time than the MNP method. 
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III.3.3.3 E > K, S > K, S/K an integer. Under these conditions, MNP always has 

lower execution time than the MUP method. 

III.3.3.4 E > K, S ~ K. Under these conditions, MNP always has lower execution 

time than the MUP method. 

III.3.3.5 E = K, S > K, S/K not an integer. Under these conditions, when 

E -1 
N > K _ ( S mod K ) 

MUP has lower execution time than the MNP method. 

III.3.3.6 E = K, S > K, S/K an integer. Under these conditions, MNP always has 

lower execution time than the MUP method. 

III.3.3.7 E = K, S ~ K. Under these conditions, when, 

NE>K-l+NS 

MUP has lower execution time than the MNP method. 

111.3.3.8 E < K, S > K, S/K not an integer. Under these conditions, when, 

N E > _ ( E _- 1 ) K __ , 

MUP has lower execution time than the MNP method. 

III.3.3.9 E < K, S > K, S/K an integer. Under these conditions, MNP always has 

lower execution time than the MUP method. 

III.3.3.10 E < K, S ~ K. Under these conditions, when 

NE>E-l+NS 

MUP has lower execution time than the MNP method. 

Therefor, for fixed cost, MUP shows better performance in terms of execution 

time as compared to MNP method and remains a suitable choice under those loop size 

conditions. 
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TABLE I 

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE > K 

E>K 

S>K S~K 

S/K=integer S/K=non-integer 

MNP K (K -1) 
N E > K - ( S mod K) MNP 

N E > { K - { E mod K2} N S + ~ ( E mod K 2 - 1 2 K 
K -("S mo K ~ 

TABLE II 

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE= K 

E=K 

S>K S~K 

S/K=integer S/K=non-integer 

MNP MUPifN > K -(~ ~~d K) MUP if N E > K - 1 + N S 

TABLE III 

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE< K 

E<K 

S>K S~K 

S/K=integer S/K=non-integer 

MNP MUP"fN E {E-l)K 1 > K - ( S moa K ) MUPifN E >E-l+N S 

Table I, II and III summarizes the comparison between MNP and MUP method 

for the conditions E > K, E = Kand E < K respectively. From the comparison of the 
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MUP and MNP method, it is seen that MUP method has lower execution time than the 

MNP method for various loop size conditions shown above. Under these conditions, 

MVP method is a suitable choice. 

ill.3.4 Between MVP and MIP Method 

The MIP method uses more processors compared to MNP and MUP methods. 

The number of processors required for MIP is the product of number of paths and length 

of each path (S * E). For MIP, wrap-around of a loop path can take place lengthwise if 

number of processors are less than (S * E). The MIP method can be defined as step(s) per 

processor method with individual pipeline for each path. 

Given the loop, the choice between MUP and MIP method can be made as shown 

below. Two types of comparisons are shown. The first type assumes unlimited processors 

while the second type assumes fixed number of processors. Considering unlimited pro

cessors, the comparison between MUP and MIP can be made as follows. MUP uses K 

processors independent of loop size. 

1. If S * E > K, the MIP is faster by a factor of E : S than MUP method. In this 

case MUP is cheaper than MIP method by a difference of (E * S - K) processors. 

2. If S * E :::;; K, MIP is better than MUP in terms of both execution time and cost. 

Given fixed number of processors, comparison between MUP and MIP is depen

dent upon size of the loop. In case of a wrap-around, there is a bound on the number of 

processors used for MIP method. The minimum number of processors MIP method 

requires in case of a wrap-around is S * n, where 1 < n < E. The fixed processors M in 

this case is 

M =S * n 

Under this condition, two cases can be considered. 
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A. In case, when S is less than M and the value of variable n is between 1 and E, 

MIP has has lower execution time than MUP method. 

B. In case, when n = 1 or n < 1, which means that S = M or S > M, then MIP method 

is no longer valid for operation, as the step(s) per processor allocation is no longer 

true. In this case, MUP turns out to be more flexible as compared to MIP. There

for for this case, MUP method is the valid choice. 

In order to summarize the above comparison, definitions of all methods can be 

referenced. 

1. Uniprocessor method uses a single processor. 

2. MNP method uses S processors. In case of fewer processors, paths are wrapped 

around the processors. 

3. MIP method uses S * E processors and avails the facility of individual pipeline 

for each loop path. MIP considers the wrap-around of paths lengthwise if number 

of processors is less than S * E. The minimum number of processors required by 

MIP is S * n, where 1 < n < E. 

4. MUP method uses K processors independent of the loop size. 

III.3.5 Summary of Comparison 

MUP is compared with UM, MNP and MIP methods. MUP loses with respect to 

cost, but wins in terms of execution time when compared to UM. While comparing MUP 

with MNP and MIP, two types of comparisons were taken into consideration. The first 

type assumed unlimited processors, while the second type assumed fixed processors. In 

case when number of processors is unlimited, MUP justifies its value in terms of cost as 

compared to MNP method. When number of processors is fixed, MUP justifies its value 

in terms of execution time compared to MNP method for various loop size conditions. 

Thus for the fixed cost, MUP method proves itself to be better in terms of execution time 
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than MNP method. 

In case when number of processors are unlimited, MUP method justifies its value 

in terms of cost as compared to MIP method. When number of processors are fixed, MIP 

has a lower execution time than MUP for certain loop size conditions. However, for 

other conditions MUP proves itself to be flexible in terms of usability for a wide range of 

loop sizes. 

The above comparison considered the size of computation. For different compu

tation sizes, other methods fail in terms of any of the three perlormance measures men

tioned above. MUP tries to fill the slot of this failure with respect to these perlormance 

measures. Finally summarizing the comparison we conclude. that MUP method justifies 

its value in terms of cost of operation , execution time and flexibility compared to rest of 

the mapping methods and remains a suitable choice. 



CHAPTER IV 

EXPERIMENTAL RESULTS AND ANALYSIS 

IV.1 TYPES OF EXPERIMENTS 

To verify the execution models for the multiplexed pipeline method, experiments 

were designed and performed. The execution models give the execution time in terms of 

number of time units. The individual time unit is the time to complete a pipeline stage. 

Thus to predict execution time, the measurement of this stage time was necessary. 

Three kinds of experiments were performed. The first set measured pipeline stage 

time. The second set measured the total multiprocessor execution time versus the pipe

line delay A. Loops with iteration counts of 400, 800, 1200 and 1600 were considered. 

The third set of experiments measured uniprocessor execution time, which was used to 

calculate speedup. 

IV.2 GRAPH MODEL FOR EXPERIMENTS 

A suitable dataflow cyclic graph matching our loop model was chosen and used in 

the experiments. The general structure of graph is shown in Figure 10. The threads inside 

the loop control statement represent the processing statements. The circles represent the 

substep in the loop paths. The Figure shows the general program graph with parameter 

variation represented by arrows. To find pipeline stage time, graph with parameters, E = 

9, S = 3 and N = 50, 100, 200, 300 and 500 was considered. To validate the model, 

graph with parameters, E = 12, S = 7 and N = 400, 800, 1200 and 1600 was considered. 6 

processors were used for the experiment purpose, i.e., K = 6. To calculate speedup, the 



same graphs were used with 1 processor . 
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Figure 10.Graph Model for Experiments. 

IV.3 THE EXPERIMENTAL SET UP 
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Experiments were run on Sun 3/50 workstations. The experiments were run at the 

midnight, when the system load is expected to be low. The wall clock time as opposed to 

CPU time was measured. 

The ParPlum system, Jingsong[21] was used to conduct the experiments. The 

ParPlum mapping system consists of several stages. Its operation begins with reading the 

input graph and the architectural information. Using this information, the partitioning 
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algorithm divides the program graph into some number of modules. The partitioning 

information is passed to allocation algorithms which assign the existing program 

modules to specific processors. Scheduling decides the ordering of the tasks within these 

partitions and does the job of assigning priorities. Finally, the mapped program is exe

cuted under the control of a parallel interpreter for dataflow graphs. The partitioning, 

allocating and scheduling steps.implement the multiplexed pipeline method with variable 

~. 

IV.4 MEASUREMENT OF THE STAGE TIME 

The models developed in Chapter III give total execution time in terms of the 

number of time units required for execution of the loop. This time unit is a single stage 

time in the execution. The stage time is a combination of the execution time for a single 

step and the communication time between the steps. Measurement of the stage time was 

needed to evaluate the models for the specific experiments used for validation. 

The total number of stages for a single iteration of the sample graph were calcu

lated using the execution model. The number of stages thus obtained was multiplied by 

the iteration count to calculate the total stages required for executing the loop. Five dif

ferent iteration counts: 50, 100, 200 , 300 and 500 were considered. 

Each graph was then executed using the ParPlum mapping system. The execution 

time for each case was measured. The stage time was calculated by dividing the meas

ured execution times by the total number of stages calculated via execution models. The 

stage time used (Ts = 0.063 second) was taken as the average stage time for the five 

values of iteration count. Table IV shows the data for this analysis. 

The process can be more precisely explained as follows. Let 

Tu =Number of units required for N iterations. (This is given by the models) 



Tm = Measured execution time via experiment. 

Ts = Pipeline stage time. 

The three variables are related by the equation 

Tm =Tu* Ts 

Therefor, the stage time is given by 

Tm 
Ts= Tu 

TABLE IV 

CALCULATION OF STAGE TIME 

N 50 100 200 300 

Tu 502 1002 2002 3002 

Tm (seconds) 37.32 56.11 120.14 165.23 

Ts (seconds) 0.074 0.056 0.060 0.055 
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(1) 

500 

5002 

350.52 

0.070 

In section IV.5, predicted execution time is calculated from the model and the 

stage time, i.e., Tpred = Tex * Ts· 

IV.5 EXECUTION TIME EXPERIMENTS 

These experiments were run to compare the model with actual execution times. 

We were particularly interested in the effects of pipeline delay, A. The experiments used 

E = 12, S = 7, K = 6 and A= 0, 1, 2, 3, 4 and 5, and four different iteration counts. Table 

V and Table VI summarizes the results for 400 and 800 iterations while Table VII and 

Table VIII shows results for 1200 and 1600 iterations. The term Absolute Difference 

represents the difference between average measured value and predicted value. 
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TABLEV 

EXECUTION TIMES FOR 400 !TERA TIONS 

For 400 iterations 

ti Measured( seconds) Predicted( seconds) Absolute Difference(seconds) 

Ave Max Min 

0 370 379 360 353 17 

1 403 410 390 378 25 

2 421,t 435 410 403 18 

3 449 460 437 428 21 

4 471 483 460 453 18 

5 498 510 481 478 20 

TABLE VI 

EXECUTION TIMES FOR 800 !TERA TIONS 

For 800 iterations 

ti Measured( seconds) Predicted( seconds) Absolute Difference(seconds) 

Ave Max Min 

0 753 765 748 705 48 

1 783 790 778 756 27 

2 839 847 832 806 33 

3 897 910 890 856 41 

4 942,t 951 937 907 35 

5 990 1020 970 957 33 
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TABLE VII 

EXECUTION TIMES FOR 1200 ITERATIONS 

For 1200 iterations 

!!,. Measured( seconds) Predicted( seconds) Absolute Difference( seconds) 

Ave Max · Min 

0 1116 1128 1108 1058 58 

1 1184 1194 1178 1134 50 

2 1247 1258 1241 1209 38 

3 1337 1350 1331 1285 52 

4 1384 1391 1378 1360 24 

5 1476 1491 1465 1436 40 

TABLE VIII 

EXECUTION TIMES FOR 1600 !TERA TIONS 

For 1600 iterations 

!!,. Measured( seconds) Predicted( seconds) Absolute Difference(seconds) 

Ave Max Min 

0 1505 1518 1496 1411 94 

1 1586 1602 1572 1512 74 

2 1677 1682 1674 1612 65 

3 1765 1771 1759 1713 52 

4 1850,t 1862 1840 1814 36 

5 2005 2028 1998 1915 90 
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The system load was an important consideration while running the experiments. 

The experiments were run at midnight when the system load is expected to be low. Five 

runs were taken for each set of parameter values. For a few runs, the accuracy of the 

measured value was doubtful as compared to the rest of the runs for that particular point. 

For these suspicious runs, the run was discarded and another run was made to obtain five 

values for each point. The points indicated by t in Table V, Table VI and Table VIII 

each had one run discarded. 

This process can be illustrated via the following example. One suspicious run was 

encountered for the iteration count (N = 400) and pipeline delay (~ = 2) as shown in 

Table V. The initial execution times measured for this case were 410, 435, 430, 971, 412. 

In this case, the execution time corresponding to fourth run (Tm = 971) was out of range 

as compared to other points. The run was repeated and the measured execution time was 

Tm = 418. The new value was in line with other measured values for the execution time. 

Therefor the suspicious value for the execution time was replaced with the new measured 

value and the average was taken. In total three runs were discarded. 

Figure 11 plots measured and predicted execution time versus ~ for 400 and 800 

iterations, while Figure 12 plots the same for 1200 and 1600 iterations. The solid line 

represents the measured values for the total execution times while the dashed line 

represents the predicted values for execution times. The solution subspaces are shown 

for each curve. For all the four cases the execution time increases as the value of ~ is 

increased. In other words, the best performance occurs when the outer loop is executed 

first (~ = 0). This is exactly the results predicted by the model. The predicted values are 

within 10 percent of the actual values and the curves are of the same general form. LCF, 

LCB and LCE represents the solution subspaces and are shown for each curve. In both 

cases, the optimum execution time is achieved under LCF solution subspace and the 

worst case execution time is obtained under LCE subspace. 
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Figure 13 plots the total execution time of the program versus the iteration count. 

Six curves are shown, one for each value of pipeline delay A. As expected, as the itera

tion count goes up, the total execution time goes up. 
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Figure 13.For /!l = 0, 1, 2, 3, 4 and 5. 

IV.6 SPEEDUP MEASUREMENT 

Speedup is defined as the ratio of the execution time of a given graph on a non-

pipelined processor to the execution time on a pipelined processor with K stages. The 
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graphs . were executed on a uniprocessor using the ParPlum mapping system, Jing

song[21] using a uniprocessor mapping and the corresponding execution times were 

measured. The graphs were identical with those used in section IV.5.(Note that A is not a 

parameter of the uniprocessor mapping.) Table IX shows the results. 

Average 

A 

0 

1 

2 

3 

4 

5 

TABLE IX 

UNIPROCESSOR EXECUTION TIME(SECONDS) 

400 iterations 

1555 

1560 

1533 

1513 

1524 

1537 

400 iterations 

4.1 

3.8 

3.6 

3.4 

3.3 

3.1 

800 iterations 1200 iterations 

3216 4905 

3219 4911 

3224 4928 

3210 4920 

3231 4923 

3220 4917 

TABLEX 

SPEEDUP RESULTS 

Measured Speedup 

800 iterations 1200 iterations 

4.3 4.4 

4.1 4.2 

3.8 3.9 

3.6 3.7 

3.4 3.5 

3.2 3.3 

1600 iterations 

7365 

7360 

7391 

7375 

7379 

7374 

1600 iterations 

4.9 

4.6 

4.4 

4.2 

3.9 

3.7 

Table X shows the results for the measured speedups. Figure 14 shows the 

speedup curves for iteration counts of 400 and 800 while Figure 15 shows the speed up 
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curves for iteration counts of 1200 and 1600. Both figures show the pipelined speedup 

deteriorating as A is increased. Again the best speedup is achieved when the outer loop is 

executed first. Also note that the speedups range from 4.1 to 4.9 which is quite good 

compared with the theoretical maximum of 6. 
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Figure 14.Pipelined Speedup for iterations 400 and 800. 

Figure 15 shows the speedup curves for 1600 iterations. Again the maximum 

speedup is obtained under LCF subspace, where the pipeline delay A is zero. 



Pipelined 
Speedup 

7 

6 

5 

4 

3 

Solid: Measured 

For 1600 iterations 

LCE 

For 1200 iterations 

2~~~~~~~~---~-'-~~---~-'-~----' 
0 1 2 3 4 5 6 7 

Pipeline delay "1. 

Figure 15.Pipelined Speedup for iterations 1200 and 1600. 
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The results of experiments conducted to verify the execution models are 

described above. The models approximately predict execution time, matching inform, but 

consistently underpredicting. The predicted value consistently falls below the bounds of 

the experimental values which indicates a systematic error. To explain the error recall 

that the program graph shown in Figure 10 consists of three parts. The first part does the 

initial data generation for the loop. The second part contains the loop itself and the third 
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part consists of rest of the program. The execution time models only predict the execu

tion time for the second part, but the measurements include all three parts of the program. 

In fact, the execution time for the first part of the graph should increase with iteration 

count Table V, VI, VII and VIII show such an increase adding support to this explana

tion. 



CHAPTERV 

SUMMARY AND CONCLUSIONS 

This thesis presented a loop transformation technique for scientific programs. 

Loops play an important role in compute-intensive programs. Loop transformation tech

niques can be viewed as a mapping process which maps the computation space to a pro

cessor space and time. A computation space consists of nodes corresponding to computa

tion and arcs showing the flow of data or the dependence between nodes. 

Two distinct functions define the space-time mapping for a given computation 

problem. 11 defines the mapping from computation space to time space while P defines 

the mapping from computation space to processor space. 

The size of a node defines the granularity of parallelism offered in the given map

ping process. Earlier researchers have considered an iteration or a group of iterations as 

the grain size for their computation and thus ignored intraloop parallelism. The research 

presented in this thesis considers intraloop parallelism by looking at nodes at the fine 

grain level of substeps in the loop path. 

Considering the computation space defined for our research, various mapping 

methods were considered for reference. Execution models were developed for these 

methods. 

Next we defined the multiplexed pipeline method, its two mapping functions II 

and P, and execution time models. The performance of the multiplexed pipeline method 

is affected by the ordering of the loop components. The models predicted that executing 

the loop control statement first would lead to the lowest execution time. 
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Experiments were conducted on a dataflow program graph containing loops to 

validate the developed models. The ParPlum mapping system was used for testing. The 

execution time experiments show that the optimal execution performance of the graph 

was obtained when the loop control statement was executed first, as predicted by the 

model. 

The value of the multiplexed pipeline method can be explained in terms of three 

performance measures. These measures are cost of operation, execution time and flexibil

ity. The MUP method loses in terms of cost of operation as compared to the uniprocessor 

(UM) method and wins in terms of execution time. Under various loop size conditions, 

the MUP method outperforms MNP and MIP with respect to cost, execution or both. 

Also the execution models for the multiplexed pipeline method provide the 

advantage of mapping method selection at the compile time. The execution models were 

developed in terms of loop size parameters. Therefor, the user can decide on the MUP 

method before the execution of the program with the help of these parameters. 

The research presented in this thesis considers the computation space of a loop 

which includes the loop control statement and processing statements. The considered 

computation space had several restrictions associated with its structure. These restrictions 

can be generalized in the future. The pipelined execution of our computation space is 

parallel to the concept of pipeline vector chaining. Pipeline chaining is a linking process 

that occurs when results obtained from one functional pipe are fed into another functional 

pipe. The computation space defined for this research can be considered for the vector 

processing applications in the future. 
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