
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1992

Multiplexed pipelining : a cost effective loop Multiplexed pipelining : a cost effective loop

transformation technique transformation technique

Satish Pai
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Pai, Satish, "Multiplexed pipelining : a cost effective loop transformation technique" (1992). Dissertations
and Theses. Paper 4425.
https://doi.org/10.15760/etd.6303

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4425
https://doi.org/10.15760/etd.6303
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Satish Pai for the Master of Science in Electrical

Engineering presented May 22, 1992.

Title: Multiplexed Pipelining: A Cost Effective

Loop Transformation Technique

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Andrew Fraser

Parallel processing has gained increasing importance over the last few years. A

key aim of parallel processing is to improve the execution times of scientific programs by

mapping them to many processors. Loops form an important part of most computational

programs and must be processed efficiently to get superior performance in terms of exe-

cution times. Impo1tant examples of such programs include graphics algorithms, matrix

operations (which are used in signal processing and image processing applications), par-

tide simulation, and other scientific applications. Pipelining uses overlapped parallelism

to efficiently reduce execution time.

2

Loop transformations exploit the potential parallelism within loops by rearrang­

ing loop components to reduce execution time. Loop transformations can also be viewed

as a solution to a mapping problem in which the computation space associated with the

loops is mapped to processor space and time.

A new loop transformation method called multiplexed pipelining (MUP) is

presented in this thesis. The MUP method considers the cost of operation and makes

efficient use of a limited number of processors by using pipelining for mapping the loop

computation space. The MUP method considers partitioning at a fine grain level includ­

ing parallelism within individual statements. Execution models for the MUP method are

developed. Other mapping methods are considered and execution models for them are

developed. The models are used to evaluate MUP relative to the other methods in tenns

of cost, execution time and flexibility.

Our analysis shows that for different loop size parameters MUP is a suitable

choice over other mapping methods. The choice for MUP can be made at compile time

using the execution models. These execution models make use of static program charac­

teristics such as the loop size parameters. Hence, for a given loop, MUP can be selected

as the best mapping before the program executes.

The execution models for MUP are validated by empirical measurements of pro­

gram loops. These measurements also show a speedup of as much as 4.9 on 6 processors

for a small loop iterated 1600 times.

MULTIPLEXED PIPELINING: A COST EFFECTIVE

LOOP TRANSFORMATION TECHNIQUE

by

SATISHPAI

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL ENGINEERING

Portland State University
1992

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Satish Pai

presented May 22, 1992.

Andrew Fraser

APPROVED:

Rolf Schaumann, Chair, Department of Electrical Engineering

TABLE OF CONTENTS

LIST OFT ABLES PAGE
. • • • . . • . • . v

LIST OF FIGURES . vi

LIST OF SYMBOLS. Vll

CHAPTER

I

II

III

INTRODUCTION. . . . 1

1.1 Problem statement. 1

1.2 Thesis objective. 1

1.3 Thesis overview. 2

LOOP TRANSFORMATIONS. 3

II.1 Structure of program loops. 3

Il.2 Loop transformation-definition. 4

II.3 Pipelining-An example mapping. 7

II.4 Computation space for our research. 11

II.5 Exploration of important mapping methods. 13

II.6 Motivation for our research. 17

PERFORMANCE EVALUATION FOR MULTIPLEXED
PIPELINE METHOD.

III.1 Multiplexed pipeline mapping.

111.2 Exploring the solution space. . .

III.3 Comparison of mapping. methods.

19

19

20

30

IV

v

EXPERIMENTAL RESULTS AND ANALYSIS.

IV .1 Types of experiments.

IV.2 Graph model for experiments.

IV.3 The experimental setup. . . .

IV .4 Measurement of the stage time.

IV .5 Execution time experiments.

IV.6 Speedup measurement ..

IV. 7 Experimental result analysis.

SUMMARY AND CONCLUSIONS.

iv

37

37

37

38

39

40

46

49

51

REFERENCES. 53

TABLE

I

IT

III

IV

v

VI

VII

VIII

IX

x

LIST OF TABLES

Lower Execution Time between MNP and MUP Method for E > K.

Lower Execution Time between MNP and MUP Method for E = K.

Lower Execution Time between MNP and MUP Method for E < K.

Calculation of Stage Time. . . .

Execution Times for 400 iterations

Execution Times for 800 iterations . .

Execution Times for 1200 iterations.

Execution Times for 1600 iterations.

Uniprocessor Execution Time(seconds).

Speedup results.

PAGE

33

33

33

40

41

41

42

42

47

47

LIST OF FIGURES

FIGURE

1. Block Level Structure of a Loop code.

2. Basic structure of a pipeline processor.

3. A Simple pipeline operation.

4. Computation space for pipelined operation.

5. Computation Space for the loop structure.

6. Multiplexed Pipeline Mapping.

7. First case K = S = E. . . .

8. General case LCF subspace.

9. General case LCE subspace.

10. Graph Model for Experiments.

11. Execution Time For iterations 400 and 800.

12. Execution Time For iterations 1200 and 1600.

13. For L1=0, 1, 2, 3, 4 and 5.

14. Pipelined Speedup for iterations 400 and 800.

15. Pipelined Speedup for iterations 1200 and 1600.

PAGE

5

8

8

9

12

19

22

28

28

38

44

45

46

48

49

LIST OF SYMBOLS

N Total number of iterations

S Total number of loop paths

E Total number of sub steps in a path

K Total number of processors used

/).. Pipeline delay

TI Mapping function for Time

P Mapping function for processor space

Tex Total execution time

Tu Number, of units required for N iterations

Tm Measured execution time

Tpred Predicted execution time

Ts Pipeline stage time

LC Loop control statement

TH Threads(processing statements)

A Entry node in a path

ORD Orderings of threads

ord Orderings of paths(including loop control statement)

CHAPTER I

INTRODUCTION

I.1 PROBLEM STATEMENT

Parallel processing has become a necessary means for improving the execution

times of scientific programs. The key task in parallel processing is mapping a sequential

program to different processors for simultaneous execution. Efficient mapping of these

programs requires the exploitation of potential parallelism within the program code.

Loops play an important role in most compute intensive scientific programs and

efficient parallel execution of these programs requires a methodology for the efficient

partitioning of programs and the scheduling of the program components within the parti­

tions,[!]. Loop transformations and pipelining are often proposed as a way to automati­

cally (or manually) improve the performance of scientific programs on high performance

computer system. Pipelining improves performance by overlapping the execution of

several different instructions. If there are no interactions between the instructions, several

instructions can be in different stages of execution simultaneously. Pipelining also makes

very efficient use of limited hardware resources. It is important, therefore, to develop

pipeline -oriented loop transformations.

I.2 THESIS OBJECTIVE

The goal of our research is to develop a cost effective loop transformation method

which improves the execution performance of program loops. The use of pipelining is

considered to get the benefits of overlapped parallelism. The proposed method, called

2

multiplexed pipelining (MUP) is presented as a solution to the problem of mapping the

computation space defined by a loop to processors and time. Fine grain partitioning of

the loop is used to expose more parallelism. MUP considers the cost of the solution and

makes efficient use of a limited number of processors. MUP is compared to other map­

ping methods for performance evaluation.

The evaluation process begins with the development of models for execution time

and cost for each method The models are used to evaluate the merits of each method.

The models for MUP are validated via several experiments. Our analysis shows that for

certain cost constraints, MUP outperforms the other methods.

I.3 THESIS OVERVIEW

Chapter II defines the nature of program loops. It describes the space-time

representation of a computational process. Simple pipelining is used to illustrate mapping

problem and the space-time notation. The computation space for our research is defined.

Several common mapping methods are introduced and modeled using the space-time

notation.

Chapter III describes the MUP method in detail. Execution time models are

developed and are used to identify key factors determining performance. Finally MUP is

compared with the mapping methods introduced in Chapter IL

Chapter IV discusses the design of experiments to validate the models for MUP's

performance and presents results of the experiments. The results confirm the models.

Finally Chapter V presents the summary and conclusions and discusses MUP's impor­

tance as compared with other mapping methods.

CHAPTER II

LOOP TRANSFORMATIONS

II. l STRUCTURE OF PROGRAM LOOPS

The structure of a loop is illustrated by its pseudo code. Shown below is the

pseudo code for a FORTRAN "DO" loop. The loop limits are arbitrary and chosen for

this example.

DO 10 I= 1,100

S 1CI) => fCS u(I), S 12(1), ... ,S in CD);

S 2CD => fCS 21(I),S22(1), ... ,s 2n CD);

S 3(I) => fCS 31(D, S 32(1), ... ,S 3n (D);

Sn (I)=> fCSn 1 (D, Sn2(I), ... ,Snn CD);

10 CONTINUE.

The pseudo code consists of two main components:loop control statement and

processing statements. The loop control statement in the above example is represented by

the DO statement and the CONTINUE statement. The processing statements are enclosed

between the DO and CONTINUE statements. The DO statement specifies actions which

define the initialization, comparison and increment functions for the loop. The termini­

tialization refers to actions taken before the first loop iteration, in this case setting I to 1.

The comparison function checks the loop limits at each iteration and either repeats or ter-

4

minates loop execution. In this case, I is compared with 100 and the loop is terminated

when I is greater than 100. The increment function increments the iteration count for the

next loop iteration, in this case I is incremented by 1.

The processing statements assign a value that is a function of its substeps to a

variable. As an example, the following is a simple processing statement.

a=b+c-d

where the variable a is assigned the value of a function of b, c and d. The terms +

and - represents the substeps in the statement.

Based on the above description, a graphical representation of the loop is given in

Figure 1. The general structure of the loop includes four main blocks. The first block

represents the initial portion of program before the loop body. The second block

represents initialization for the loop operation. The third block represents the loop body

which consists of loop control statement and processing statements. The fourth block

represents the rest of the program.

11.2 LOOP TRANSFORMATION-DEFINITION

Loop transformations are a powerful collection of methods that improve the per­

formance of a program by matching the program to architectures. Loop transformations

effectively rearrange the loop components to enhance the execution speed on a specific

multiprocessor system. Transformations of a program produce execution speed enhance­

ment through the exploitation of inherent parallelism and by effectively exploiting

memory hierarchies and interprocessor communication networks. In recent years many

researchers including Wolfe[l], Kennedy[4], Kumar[2] and Banerjee[IO] have looked at

loop transformation methods as an important compilation tool for parallel processing sys­

tems.

INITIAL PIECE OF

PROGRAM

INITIALIZATION FOR

THE LOOP

LOOP BODY

PROCESSING
STATEMENTS

HREADS

REST OF THE

PROGRAM

Figure I.Block Level Structure of a Loop code.

II.2.1 Loop Transformation as a Mapping Problem

5

Loop transformation techniques can be defined as a process which maps the given

computation space (or computation structure) into a processor space by partitioning and

scheduling the partitions in an efficient way[ll]. A computation space consists of nodes

corresponding to computations and arcs showing the flow of data or. the dependence

between nodes.

A node in the computation space can represent the individual elements which are

assigned to processing elements. Nodes of different grain sizes can be used. Miranker

and Winkler[l 1] define two types of nodes for their computation. For uniprocessor exe-

cution, where a single processing element is used for computation, a node is the entire

loop. For multiprocessor execution, nodes are individual iterations. Sheu and Tai[20]

6

define a node as a partition consisting of iterations which are independent of each other.

Moldovan[12] defines a node as set of iterations for mapping the cyclic loop algorithms

on VLSI arrays.

Various types of arc dependences can also be defined. Sheu and Tai[20] and Mol­

dovan[12] consider the dependence existing between iterations and define the concept of

a dependence vector. If a variable generated at iteration i is used later by iteration j, then

the dependence relation for that variable is represented by a dependence vector from i to

j. Shang and Fortes[l6] define uniform data dependencies where the values of the depen­

dence vectors are independent of iterations. Wolf e[9] considers the dependences existing

between statements in a loop for the vectorization test. The term vectorization here refers

to the conversion of code written for serial execution into code which uses the vector

instructions of the target machine. Wolfe[9] also considers the possibility of dependences

that can occur between substeps in a loop statement.

A processor space is a description of the processing elements available for the

given computation. Two main types of processor spaces are of interest. The first one is a

uniprocessor space and consists of a single processor. The second one is a multiprocessor

space and consists of several processors. There exist various types of multiprocessor

spaces based on the interconnection topology between the processors. Important exam­

ples include local area networks, n-dimensional hypercubes and systolic arrays.

Winkler and Miranker[ll] consider both types of processor spaces. For the

uniprocessor space they assume the coordinates of the given processor to be the ori­

gin(0,0,0). For the multiprocessor space, the coordinates of each processor is triple of

integers. Sheu and Tai[20] use the n-dimensional hypercube topology as the processor

space for their computation. The coordinates of each processor is a point in this n­

dimensional space. Moldovan[12] uses VLSI systolic arrays as the processor space for

the mapping of loop algorithms. In this case the position of each processing cell is

7

described by its two-dimensional Cartesian coordinates.

Time space can be combined with processor space to define a computation. A

node in the given computation space is mapped to a specific coordinate in processor

space and time, defining when and where the node executes.

Loop transformation techniques can be defined as the process of mapping the

computation space to the given processor and time spaces. The physical process of com­

putation can be interpreted in terms of physical space and time. Winkler and

Miranker[l l] define the above technique as the space-time representation of the compu­

tation space. Two distinct functions II and Pare defined by Moldovan[12]. II represents

the mapping from computation space to time space for the given computation process. P

represents the corresponding mapping from computation space to processor space.

Several types of mapping methods have been considered. Moldovan[12] uses a

linear mapping method to map the loops to VLSI systolic arrays. Sheu and Tai[20] use a

hyperplane method which considers a linear mapping scheme to map the iterations to the

n-dimensional hypercube. The widely used uniprocessor mapping is an example of a

nonlinear mapping scheme. Other methods are intuitive methods like a separate proces­

sor assigned to every node of the computation space for each iteration.

II.3 PIPELINING-AN EXAMPLE MAPPING

Pipelining offers an economical way to realize parallelism in modern digital com­

puters. The concept of a pipeline is similar to an assembly line in a manufacturing plant

where the input task gets divided into a series of subtasks and each subtask can be exe­

cuted by a specific stage that operates concurrently with other stages in the pipeline. All

tasks are driven into the pipeline and executed in an overlapped fashion at the subtask

level. Pipelined processing has led to tremendous performance improvement in modem

computing systems.

II.3.1 Basic Structure

A basic linear pipeline is shown in Figure 2.

c

L: latch
S; :ith stage

L

S1

C:clock

L L L

S2

Figure 2.Basic structure of a pipeline processor.

8

L

sk

Output

The pipeline consists of a cascade of processing stages. The stages are separated

by interface latches. The latches are fast registers used to hold the intermediate results. A

common clock drives all stages simultaneously.

The speedup of a k-stage linear pipeline is defined to be the ratio of execution

time on a non-pipelined processor to execution time on a pipelined processor.

Figure 3 gives the Gantt chart for the pipeline of Figure 2.

STAGE

PSK

PS3

PS2

PSI Tl

Tl T2 T3 -- TN
Tl T2 T3 --- TN

Tl T2 T3 -- TN

Tl T2 T3 --- TN

T2 T3 --- TN

TIME

Figure 3.A simple pipeline operation.

9

Tl, T2, etc represent the instructions in the pipeline. PS 1, PS2, etc. represent the

stages in the pipeline.

II.3.2 Pipeline Computation Space

Pipelined operation can be obtained via mapping process. For this purpose the

computation space has to be defined. As mentioned above, the linear pipeline executes

instructions which are made of subtasks. There is a precedence relation between adjacent

subtasks in an instruction. The node of computation is an individual subtask. A computa­

tion space suitable for pipelining is shown in Figure 4.

L

G--0-@----->G
N

G__.~e---->B
Figure 4.Computation space for pipelined operation.

Several variables define an instance of this computation space:

1. L represents maximum length (number of subtasks) of an instruction.

2. N represents total number of instructions.

An individual node is labeled (l,n) where 1~1~Land1 ~ n ~ N.

11.3.3 Processor Space for Pipelined Computation

Two types of processor spaces can be considered for the pipeline computation

space shown in Figure 4. They are:

1. Uniprocessor space: The pipeline computation space is mapped to a single pro­

cessor.

10

2. Multiprocessor space: The pipeline computation space is mapped to several pro­

cessors connected in a pipelined fashion. If K processors are used, an individual

processor will be labeled p, where 1 5 p 5 K.

Il.3.4 Uniprocessor Pipeline Mapping

This method employs a single processor for its operation. The processor mapping

P, in this case is

P(l,n)=l

The above equation means that entire computation takes place at the single pro­

cessor. The time mapping function, II, in this case is given by

II (/, n) = (n - 1) * L +I (1)

The equation for the mapping function II consists of two terms. The first term,(n

- 1) * L represents the time taken to execute first (n - 1) instructions and the second term,

1 represents the time mapping for the substeps of the nth instruction. The total execution

time Tex is the maximum value of II and is given by

Tex = max II = (N - 1) * L + L = N * L
l,n

(2)

This means that N * L cycles are needed to complete the given computation using

a single processor.

11.3.5 Multiprocessor Pipeline Mapping

In this case, the processor mapping P, is given by

P (l,n)=I

Since this mapping is pipelined, the overlap between the instructions must be

considered. The time mapping function, II, in this case is given by

11

Il (I, n) = (n - 1) [Ti] - (n - 1) [T 2] + [T 3]

where

T 1 represents the time to complete a single instruction;

T 2 is overlap between the instructions; and

T 3 is time mapping for the subtasks of the last instruction.

Substituting the values for each term, we get

Il (I, n) = (n - l)[L] - (n - l)[L - 1] + I (3)

The physical interpretation of the above equation is as follows. It takes L cycles to com-

plete a single instruction. The overlap between the successive instructions is (L - 1) and a

total of (n - 1) overlapping instructions. The last term 1 represents the time mapping for

the subtasks of the last instruction.

The total execution time Tex is maximum value of Il and is given as

Tex =max Il = (N - 1) [L] - (N - 1) [L -1] + L
l,n

Since L = K, Simplifying the above equation we get,

Tex =K -1 +N (4)

As expected, this shows that K - 1 cycles are required to fill the pipeline and then

N cycles are required to complete N tasks.

II.4 COMPUTATION SPACE FOR OUR RESEARCH

Figure 5 illustrates the computation space we will consider in this research. LC

represents the loop control statement which includes the functions INC and TEST as

shown in Figure 1. Sl, S2, etc., represent the processing statements. The symbol i refers

to the execution of the loop statement in the ith iteration. Circles represent the substeps

12

in the statement. There is a sequential dependence between these substeps. The term

sequential dependence refers to the dependence from a node to its successor node. The

nodes denoted by symbol A are the entry nodes for the statements. Entry nodes are ini­

tialized at the start of the execution.

LC(i)

N

I I

v v

Ss(i)

E

I
I
I

*

------->

I

v

Figure 5.Computation Space for the loop structure.

Three variables define an instance of this computation space:

1. N : Total number of iterations, (1 ~ i ~ N).

s

2. S : Total number of statements(includes loop control statement),(1 ~ s ~ S).

3. E : Total number of substeps in a statement. All statements in this computation

space assume equal length. (Es = E for all S), (1 ~ e ~ E).

13

The computation space shown in Figure 5 consists of two main loop

components:loop control statement and processing statements. Both of these com­

ponents can be realized as individual paths in the loop. These paths are made up of sub­

steps with a sequential precedence relation existing between them.

The computation space considered in this research is similar to actual program

loops. In fact, most loops can be transformed to our computation space, perhaps with a

small loss of parallelism. This loss of parallelism stems from the pipelined nature of our

computation space.

First, note that there is no dependence between statements in our computation

space. For a loop having such dependence, all statements involved in the dependence can

be merged into a single "super-statement". This may result in the loss of parallelism

between the portions of the dependent statements that are independent. Second, an actual

program statement may not require the linear ordering of our computation space. In other

words, substeps of a statement may be executed in parallel. Such a statement can be

mapped to our computation space by enforcing an arbitrary ordering on any substeps that

could execute in parallel.

Finally, the statement lengths were assumed equal in our computation space.

There exist a dependence arc from the loop control statement to other processing state­

ments. This can cause delays in the pipelined execution, if the statements are of unequal

length. Assuming that the statements are of equal length simplifies the analysis. A short

statement in an actual loop can be padded with no ops to match our assumption. These no

ops are identical to the delays a short statement would cause.

II.5 EXPLORATION OF IMPORTANT MAPPING METHODS

The mapping problem consists of assigning our computation space to the given

processor space and time. Given this concept, many mappings can be suggested. We

14

have tried to look at a few important ones categorized in terms of processor space and

degree of pipelining used.

II.5.1 Uniprocessor Method (UM)

This method employs a single processor for the entire computation. There is no

parallelism or pipelining involved. This is a widely used mapping method and can be

used in the cases where execution time is not a main criterion. This method is used in

commercially available uniprocessor computers. For this case the processor mapping P

is

P (i,s,e)= 1

A typical mapping function, II, for this case is given by

II (i, s, e) = (i - 1) * S * E + (s - 1) * E + e (5)

The above equation represents the time mapping for the uniprocessor computa-

tion. The equation is split into three terms. The first term, (i - 1) * S * E represents the

time required for all the iterations before the ith iteration. The last two terms represent

the time mapping for the last iteration. The second term, (s - 1) * E represents the time

taken for all the paths in a single iteration except the last path. The third term, e gives the

time mapping for the substeps of the last path. The total time required for the computa-

tion, Tex is given by the maximum value of II.

Tex =max II
l,S,e

Substituting the maximum limits of each parameter in equation 5, we get

Tex= (N -1) * S * E + (S - 1) * E + E

The total execution time is thus given by

Tex =N * S * E (6)

15

The above equation represents the total time required to execute N iterations of S

statements with E substeps.

II.5.2 Multiprocessor no Pipeline Method (MNP)

This method uses several processors to perform the given loop computation.

Defining total number of processors to be K,(1 ~ p ~ K) two cases can be considered. If

the number of statements is less than or equal to number of processors(S ~ K), each state­

ment is assigned to a single processor. This is called a no wrap-around case. Several

statements can be assigned to each processor if the number of statements is greater than

the number of processors,(S > K). This is called as a wrap-around case. This technique

might be called the statement(s) per processor method. Multiple Instruction-Multiple

Datastream(MIMD) architectures use this kind of technique [5], where each instruction

stream as well as data stream is processed by a single processing element. Each loop

statement corresponds to an instruction stream. Considering no wrap-around of state-

ments we can represent the processor mapping P as

P (i,s,e)=s

The time mapping function, TI, is given by

TI (i, s, e) = (i - 1) * E + e (7)

The equation representing function TI consists of two terms, the first term

represents the time required to execute a single iteration and the second term represents

the time mapping for the substeps of the last iteration. The total execution time Tex, is

given in terms of maximum value of TI.

Tex= 1)1ax TI
i,s,e

Replacing the maximum limits of the parameters in equation 7, we get

Tex =N * E (8)

16

The above equation represents total execution time for the loop code having S

statements, each of length E over N iterations for the no wrap-around case.

Using the same approach for the wrap-around of paths(S > K), the total execution

time Tex, for the MNP method is given by

Tex =N * E f il (9)

The above equation represents the time required to execute S instructions, each of

length E over N iterations for both the wrap-around and no wrap-around cases.

II.5.3 Multiprocessor Individual Pipeline Method (MIP)

This method is an example of fine grain parallelism with each node (step in the

statement) assigned to a single processor. For this case each statement uses its own pipe­

line. This method might be called the step-per-processor method and is used in systolic

systems[5]. A systolic system consists of a set of interconnected cells, each capable of

performing some simple operation. Information in a systolic system flows between cells

in a pipelined fashion. The processor mapping function, P, for this method is given by

P (i, s, e) = (s - 1) * E + e

The time mapping function, TI, for this method is given by

TI(i,s,e)=E-l+i (10)

The total execution time Tex is given by the maximum value of II.

Tex = i:nax II
1,s,e

Substituting the maximum value of each parameter in equation 10 gives

Tex =E -1 +N (11)

17

The above equation represents the total time required to execute the given loop

code over N iterations using the MIP method.

The above mapping methods will be compared with our new method. The unipro­

cessor method is the most general method and does not provide any advantage in terms

of parallelism. It is independent of the grain size of nodes. The MNP method considers

the partitioning at the statement level. The MIP method considers the computation at a

fine grain size.

In practice there are many other mapping methods such as iteration per processor,

iterations per processor, etc. These methods map an iteration or iterations to each proces­

sors. These methods do not consider any intraloop parallelism in the mapping process.

Therefor these methods offer coarse grain parallelism for the given computation. Our

research focuses on intraloop parallelism, which considers the parallelism at a finer grain

level. Other fine grain methods such as a separate processor for each node for each indi­

vidual iteration can be considered. However these methods require a large number of

processors. Therefor these methods are too expensive to be practical.

II.6 MOTIVATION FOR OUR RESEARCH

In Chapter III, we propose a loop transformation method which maps the given

computation space to a limited number of processors in a pipelined fashion. The motiva­

tion for this idea has arisen from the following facts.

The first important point is the level of parallelism considered in the mapping

process. Partitioning at a fine grain level offers more parallelism in the mapping process.

Earlier researchers have tried partitioning on the iteration level. The iterations are parti­

tioned considering the dependences between them and these partitions are assigned to the

available processors. No intraloop parallelism was involved in the mapping process. In

other words, the level of parallelism was not significantly high in the given mapping pro-

18

cess.

This parallelism can be greatly increased by considering the internal partitioning

of an iteration. Partitioning can be performed on the fine grain level such as a single step

in the statement These fine grain partitions can be mapped to the given processor space.

We have tried to explore the intraloop parallelism and considered fine grain partitioning

for our proposed transformation method.

Second, the use of pipelining improves the system perf onnance by overlapping

the execution of several different instructions. When there is no interaction among the

instructions, several instructions can be in different stages of execution simultaneously,

making the execution process faster. Thus a high degree of overlapped parallelism is pos­

sible by pipelining a small number of processors.

The third important point is that the number of processors required by a mapping

must be considered. The statement per processor method (MNP) assigns a loop statement

to an individual processor. Thus the processor space in this case depends on the number

of statements in the loop code. This method calls for more processors as the number of

loop statements increases. The step-per-processor method (MIP) maps an individual sub­

step in the loop statement to a processor. The processor space in this case is a function of

number of statements as well as the length of each individual statement. Thus for these

two methods, the number of processors may rapidly become impractical.

A method that can achieve good performance with few processors is highly

desired. The uniprocessor scheme is not a solution to this problem as it does not offer any

parallelism. Therefor a mapping method which can provide a compromise solution is

needed. The multiplexed pipeline method (MUP) meets this requirements. It is described

in detail in the next Chapter.

CHAPTER ill

PERFORMANCE EVALUATION FOR

MULTIPLEXED PIPELINE METHOD

111.1 MULTIPLEXED PIPELINE MAPPING

Recall that the computation space shown in Figure 5 consists of two main com-

ponents. These components are loop control statement and processing statements. In

what follows, these components are referred to as paths. Each of these path is made up

of substeps with a sequential precedence relation between substeps. The multiplexed

pipeline transformation maps the loop to processors arranged in a pipeline.

S14 s 2,4 s 3,4 - - - ---- S s,4
'

PS4

PS3 s 1,3 s 2,3 s 3,3 - - - - --- S s,3

s 1,2 8 22 s 3,2 - -- - - - · S s,2
'

PS2

s 1,1 8 21 s 3,1 -- - --- S s,1
'

PSl

Figure 6.Multiplexed Pipeline Mapping.

Figure 6 shows a Gantt chart illustrating the execution of a loop mapped via mul­

tiplexed pipelining. S;,j denotes substep j of path i. PSj is the jth pipeline stage or pro­

cessor. As evident from the figure, each stage of the pipeline contains a substep from

each path. The mapping can be informally described as follows.

20

Substep j of each path is assigned to processor PSj. If there are more substeps per

path than there are processors, the assignment wraps around to the first processor. In

other words, for K processors, substep K + 1 is assigned to processor 1 and so on. At each

processor, the substeps are executed in same order that obeys the dependence constraints

of the program.

As seen from Figure 6, there exist various ways in which the loop paths can be

ordered for execution. This can be explained with respect to the mapping functions II

and P. Since the path lengths are assumed equal, for different ordering of loop paths, the

processor mapping function P is fixed. However for different ordering of loop paths, the

time mapping function II may vary. Therefor it is a necessary task to evaluate the effect

of the ordering of loop paths on TI and on execution time. The analysis below fixes P and

considers the effect of these ordering on the time mapping function II and tries to find an

ordering which will result in minimum execution time.

ill.2 EXPLORING THE SOLUTION SPACE

For this analysis, the solution space must first be described. Each ordering of loop

paths is a point in this solution space. For the loop computation space having S paths,

there are S substeps at the first processor. If we assume the same ordering is used at all

processors, the total number of orderings becomes S !. As S grows, the solution space

quickly becomes enormous. To simplify analysis, we group the loop components into

two classes. These classes can be arranged in various permutations to cover the total

solution space. These classes are:

1. LC : This class contains the loop control statement.

2. TH: This class contains all the threads (processing statements).

The loop control statement plays an important role in execution. We consider the

permutations of threads relative to the placement of the loop control statement. Based on

21

the placement of the loop control statement with respect to the threads, solution sub­

spaces are defined. The notation ORD below represents all possible orderings of threads

within that solution subspace. The subspaces are:

1. Loop control statement at the beginning followed by all arrangements of threads

and denoted LC ORD(fH). (LCF subspace)

2. Loop control statement at the end preceded by all arrangements of threads and

denoted ORD(TH) LC. (LCE subspace)

3. Loop control statement in between threads. (LCB subspace) This subspace con­

tains all the permutations from the total solution space excluding the above two

subspaces. This subspace can be denoted by LCB = { 0 I 0 is the path ordering

with loop control statement in between threads }

We next generate a model which will predict the execution time of the given

loop. Recall that the following variables, first defined in section II.4, describe the compu­

tation space for a loop:

1. N : Total number of iterations.

2. E: Total number of substeps in a path.

3. K: Total number of processors used for computation.

4. S : Total number of paths in the loop(including the loop control statement).

The general function for the execution time of the loop can be represented as

Tex = F (ord (S 1.i. S 2,1' S 3,1' ... , Sn .1), N, E, S, K)

where ord represents the ordering of the substeps of each path at the first proces-

sor.

To simplify analysis, we proceed as follows. We start with a simple first case

where S, Kand E are assumed to be equal. For this case, we develop a general model and

then illustrate its performance for each of the three solution subspaces. The simple case

22

gives an intuitive feeling for the analysis performed while developing the execution

models. This will help in understanding the model for the more complicated situation

when all parameters are independent

PS4

PS3

PS2

PSI

PS4

PS3

PS2

PSI

PS4

PS3

PS2

PSI

PS4

PS3

PS2

PSI

L

Sl

Sl

Sl

L

Sl

Sl

L

St

S2

St

S2

L

Sl

S2

Sl

L

S2

Sl

S2

L

Sl

S2

S3

L Sl S2 S3 L St S2 S3

Sl S2 S3 L Sl S2 S3

S2 S3 L Sl S2 S3

S3 L St S2 S3

7(a) Gantt Chart for K=S=E, LCF

Sl L S2 S3 Sl L S2

L S2 S3 Sl L S2 S3

S2 S3 Sl L S2 S3

S3 Sl L S2 S3

7(b) Gantt Chart for K=S=E,LCB

St S2 L S3 Sl S2

S2 L S3 Sl S2 L

L S3 Sl S2 L S3

S3 Sl S2 L S3

7(c) Gantt Chart for K=S=E, LCB

Sl S2 S3 L St

S2

S3

L

S3 L Sl S2

L Sl S2 S3

Sl S2 S3 L

7(d) Gantt Chart for K=S=E, LCE

Figure 7 .First case K = S = E.

S3

L S3

S3

S2 S3 L

S3 L

L

23

III.2.1 First Case : K = S = E

Figure 7 shows Gantt charts for a loop with the number of paths, the number of

substeps per path and the number of processing elements equal. L represents the execu­

tion of the loop control statement in the pipeline stages. Sl, S2, S3 etc., represent the

execution of processing statements in the pipeline stages. PSl, PS2, PS3 etc., represent

the pipeline stages or processors. There are four Gantt charts, each showing a different

position of the loop control statement with respect to the rest of the threads. Entry nodes

of each path are assigned to the first stage of the pipeline execution.

The processor mapping, P, in this case is given by

P (i,s,e)=e

Since the multiplexed pipeline method uses pipelining, there is an overlap

between the iterations in the pipe. This overlap has to be considered in the time mapping

function, IT. Therefor the equations representing the time mapping for this method are of

the form:

IT (i, s, e, ~) = (i - 1) * [Ti] - (i - 1) * [T 2 - ~] + [T 3]

where

T 1 = Time required for a single iteration without considering the overlap;

T 2 = Overlap time between iterations; and

T 3 = Time mapping for the substeps of the last iteration.

In this case, the time mapping is

IT (i, s, e, ~) = (i - 1) * (E - 1 + S) - (i - 1) * (E - 1- ~) + e - 1 + s (1)

The term T 1 means that E cycles are required to complete the first path and S - 1

cycles are required to complete the remaining paths. T 2 represents the possible overlap

between the iterations. The value of this overlap ranges between 0 and (K- 1). The term

24

!:l. refers to the pipeline delay between iterations created by the loop control statement and

the dependence between itself and other processing statements. The third term represent­

ing T 3 gives the time mapping for each substep for the ith iteration. The total execution

time Tex is given by the maximum value of function IT.

Tex= max IT
i ,s ,e ,11

Substituting the maximum values for the parameters and rearranging gives:

Tex = [(E - 1) + (S + ~) * N - !:l.] (2)

The above equation shows that it takes (E - 1) cycles to fill up the pipeline and

each iteration is completed after (S + !:l.) cycles. The above equation represents all posi­

tions of the loop control statement, i.e., all threads orderings. The range of !:l. determines

the solution subspace, i.e., LCF, LCE, LCB.

111.2.1.1 LCF Subspace. The Gantt chart for this case is shown in figure 7(a). The

general model for execution time was

Tex =[(E -l)+(S +~) * N -!:l.]

For the LCF subspace, !:l. is zero. Thus the equation can be rewritten as

Tex = [(E - 1) + S * N] (3)

This is a normal pipeline equation which resembles equation 4 in Chapter II.

Once the pipeline is full (after E - 1 cycles), then each iteration is completed after S

cycles. To complete N iteration requires S * N cycles. Thus, LCF is fully pipelined with

no delay between the iterations.

To verify that this model is correct for all points in the LCF solution subspace,

consider Figure 7(a). It can be seen that changing the relative positions of the threads

within the TII group does not change the execution time since the threads are identical in

25

length.

III.2.1.2 LCE Subspace. The Gantt chart for this case is shown in Figure 7(d). The

general model for execution time was

Tex = [(E - 1) + (S +A) * N -A]

For this subspace, A is (S - 1) and the execution time is

Tex = [(E - 1) + (S + S - 1) * N - (S - 1)]

Since E = S, we have

Tex = [(E - 1 + S) * N] (4)

This shows that the pipeline is filled and drained for each iteration, i.e., there is no

overlap between iterations. In other words it means that once the pipelined is filled after

E - 1 cycles, it is drained for S cycles before it is filled again. Again, since the threads are

identical, this model is valid for all orders of the TH group.

III.2.1.3 LCB Subspace. The Gantt chart for this case is shown Figure 7(b) and

Figure 7(c). The general model for execution time was

Tex = [(E - 1) + (S + M * N - A] (5)

The value of pipeline delay A in LCB subspace varies from 1 to S - 2, with larger

A giving higher execution time. Equation 5 describes the cases with some pipeline delay

and some overlap between iterations.

III.2.1.4 Summary for the First Case (S = E = K). For this simple case we can say

that,

Tex (L\ = 0) ~Tex (0 <A< S - 1) ~Tex (L\ = S-1)

or

TeX/cf ~ T ex1cb ~ T ex1c,

26

Thus execution time increases with A, i.e., as the loop control statement is moved

toward the end of the ordering.

ID.2.2 General Case : All Parameters Varied

In this case, all the parameters are varied independently resulting in a general

model for multiplexed pipelining. The processor mapping function, P, is given by

P (i, s , e) = (e - 1) mod K + 1

The time mapping function, n, is given by

Il (i, s, e, A)= (i - 1) * [Ti] - (i - 1) * [T 2 - A]+ [T 3]

where

T 1 = Time required for a single iteration without considering the overlap;

T 2 = Overlap time between iterations; and

T 3 = Time mapping for substeps of the last iteration.

Substituting for T 3 gives:

II= (i - I) * [T 1] - (i - I) * [T 2 - ~] + [(e - I) mod K + s + le K 1 J * max (K, S)]

where

T 1 = (E + S - 1) for S g(;

T 1 = [K - 1 + [E ; S]] for S > K and E/K is an integer;

T 1 = [r fl * S + E nwd K - I] for S > Kand E/K is not an integer;

T 2 = [S - 1] for S ~ (E - 1) mod K; and

T 2 = [(E - 1) mod K] for S > (E - 1) mod K.

There are three distinct equations for the term T 1. In the first case, the number of

27

paths in the loop is less than or equal to number of processors. This T 1 resembles the

basic pipeline equation where the first path takes E cycles to complete and the remaining

paths are finished in S - 1 cycles.

In the second case, the number of paths is greater than the number of processors

and E/K is an integer. The first term of Ti. K - l, is the number of cycles required to fill

the pipeline and the second term, is the number of cycles required to finish the paths,

after the pipeline is full.

In the third case, the number of paths is again greater than the number of proces­

sors and E/K is non-integer. The equation representing the third subcase is shown above.

This case is similar to the previous case, except that a path may finish without passing

through all the stages of the pipeline.

Execution time (Tex) for the loop is equal to the maximum value of TI and is

given by

Tex= .maxTI=N * [T1]-(N -1) * [T2-A]
1,s,e,/J..

(6)

T 1 represents the time for a single iteration without any overlap and T 2 stands for

the maximum overlap between the iterations. These terms are shown below for different

conditions.

T 1 = (E + S - 1) for S g;

T 1 = [K - 1 + [E ; S]] for S > K and E/K is an integer;

T 1 = [f ~1 * S + E mod K - I] for S > K and E/K is not an integer;

T 2 = [S - 1] for S :::; (E - 1) mod K; and

T 2 = [(E - 1) mod K] for S > (E - 1) mod K.

Again we illustrate the general equation for each of the three solution subspaces.

PS4

PS3

PS2

PSI

III.2.2.1 LCF Subspace. Figure 8 shows the Gantt chart for the LCF subspace.

L Sl S2 S3 S4

L Sl S2 S3 S4 L Sl S2 S3 S4

L Sl S2 S3 S4 L Sl S2 S3 S4

L Sl S2 S3 S4 L Sl S2 S3 S4

Figure 8.General case LCF subspace.

The general model for execution time is

Tex = N * [T 1] - (N - 1) * [T 2 - 8.]

The pipeline delay ll. is zero for this subspace. Therefor the execution time is:

Tex = N * [Ti] - (N - 1) * [T ii

28

(7)

The LCF subspace has the minimum execution time as compared to other two

solution subspaces.

PS4

PS3

PS2

PSI

III.2.2.2 LCE Subspace. Figure 9 shows a sample Gantt chart for LCE subspace.

Sl S2 S3 S4 L

Sl S2 S3 S4 L Sl S2 S3 S4 L

Sl S2 S3 S4 L Sl S2 S3 S4 L

Sl S2 S3 S4 L Sl S2 S3 S4 L

Figure 9 .General case LCE subspace.

The general execution time model is

29

Tex = N * [T 1] - (N - 1) * [T 2 - A]

For this subspace the loop control statement executes after the other processing

statements. Thus the pipeline delay, A achieves the value of T 2• Thus the execution time

is

Tex =N * [T1] (8)

The LCE subspace has the worst execution time of all the three solution sub­

spaces due to no overlap between iterations.

111.2.2.3 LCB Subspace. The general execution model is again

Tex = N * [T 1] - (N - 1) * [T 2 - A] (9)

The value of pipeline delay A in the LCB subspace increases from 1 to T 2 - 1.

Thus the execution time in the LCB subspace lies between the LCF and LCE subspaces.

111.2.2.4 Summary for the General Case. Considering the models for each of the

solution subspaces, for a general loop with S paths, each path having E substeps, with

iteration count N and executed on K processors we can say that,

T ex1c1 ~ T ex1cb ~ T ex1c,

The LCF category begins with the execution of the loop control statement at the

leftmost position in the Gantt chart. The loop control statement is responsible for the gen­

eration of future iterations. The rightward motion of the loop control statement intro­

duces delays for future iterations. The maximum delay occurs when the loop control

statement is at the end, i.e., in the LCE subspace.

The execution models developed for the multiplexed pipeline method reflects this

behavior. In the LCF subspace, the value of pipeline delay A is always zero, which

corresponds to the minimum execution time obtained for the multiplexed method. This

delay increases for LCB and LCE subspaces, increasing the execution times for those

30

subspaces.

ID.3 COMPARISON OF MAPPING METHODS

In this section we compare the mapping methods developed in Chapter II and III.

The mapping methods were compared with respect to the following performance meas-

ures:

1. Cost: This is the number of processors used.

2. Execution Time.

3. Flexibility: This refers to the usability of the mapping method for a wide range of

loops.

III.3.1 Uniprocessor and Multiprocessor Methods

The uniprocessor mapping method maps loop code of any size to a single proces-

sor. This method wins in terms of cost. However it looses with respect to the execution

time except when

S = 1andE=1.

In this case no parallelism is possible. Loops of much bigger sizes will be encoun­

tered in the practical case. Thus for the loop sizes where S > 1 and E > 1, the multipro­

cessor mapping schemes can be considered for better execution time.

III.3.2 Between MNP and MIP Method

MIP is a fine grain method in terms of parallelism and yields the best execution

time. Comparing with MNP we get:

Tmnp > Tmip

NE>E-l+N

(N -1) E > (N -1)

E > 1

31

Therefor for E > 1

Tmip < Tmnp

In other words, MIP is faster whenever paths have more than one substep. For a

loop with path lengths greater than 1, MIP uses more processors than MNP. Therefor,

when E > 1, MIP is faster but costlier. For the case where E = 1, the two methods are

identical.

III.3.3 Between MUP and MNP Method

The multiplexed pipeline method uses a fixed number of processors, K indepen­

dent of the loop size parameters. The MNP method with no wrap-around uses S proces-

sors. Under these conditions:

1. If S > K, the MNP is faster by a factor of S/K.. For this case, MUP is cheaper than

MNP by a difference of (S - K) processors.

2. If S ~ K, the MNP is better than MUP in terms of both execution time and cost.

Given a fixed number of processors K, for both methods, several cases must be

considered.

III.3.3.1 E > K, S > K, S/K not an integer, E/K an integer. Under these conditions,

when

NE> _ K (K -1)

MUP has lower execution time than the MNP method.

III.3.3.2 E > K, S > K, S/K. not an integer, E/K. not an integer. Under these condi-

tions, when

N E > (K - (E mod K)) N S + ~(E mod K) - 1) K
K -(S mo K)

MUP has lower execution time than the MNP method.

32

III.3.3.3 E > K, S > K, S/K an integer. Under these conditions, MNP always has

lower execution time than the MUP method.

III.3.3.4 E > K, S ~ K. Under these conditions, MNP always has lower execution

time than the MUP method.

III.3.3.5 E = K, S > K, S/K not an integer. Under these conditions, when

E -1
N > K _ (S mod K)

MUP has lower execution time than the MNP method.

III.3.3.6 E = K, S > K, S/K an integer. Under these conditions, MNP always has

lower execution time than the MUP method.

III.3.3.7 E = K, S ~ K. Under these conditions, when,

NE>K-l+NS

MUP has lower execution time than the MNP method.

111.3.3.8 E < K, S > K, S/K not an integer. Under these conditions, when,

N E > _ (E _- 1) K __ ,

MUP has lower execution time than the MNP method.

III.3.3.9 E < K, S > K, S/K an integer. Under these conditions, MNP always has

lower execution time than the MUP method.

III.3.3.10 E < K, S ~ K. Under these conditions, when

NE>E-l+NS

MUP has lower execution time than the MNP method.

Therefor, for fixed cost, MUP shows better performance in terms of execution

time as compared to MNP method and remains a suitable choice under those loop size

conditions.

33

TABLE I

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE > K

E>K

S>K S~K

S/K=integer S/K=non-integer

MNP K (K -1)
N E > K - (S mod K) MNP

N E > { K - { E mod K2} N S + ~ (E mod K 2 - 1 2 K
K -("S mo K ~

TABLE II

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE= K

E=K

S>K S~K

S/K=integer S/K=non-integer

MNP MUPifN > K -(~ ~~d K) MUP if N E > K - 1 + N S

TABLE III

LOWER EXECUTION TIME BE1WEEN MNP AND MUP FORE< K

E<K

S>K S~K

S/K=integer S/K=non-integer

MNP MUP"fN E {E-l)K 1 > K - (S moa K) MUPifN E >E-l+N S

Table I, II and III summarizes the comparison between MNP and MUP method

for the conditions E > K, E = Kand E < K respectively. From the comparison of the

34

MUP and MNP method, it is seen that MUP method has lower execution time than the

MNP method for various loop size conditions shown above. Under these conditions,

MVP method is a suitable choice.

ill.3.4 Between MVP and MIP Method

The MIP method uses more processors compared to MNP and MUP methods.

The number of processors required for MIP is the product of number of paths and length

of each path (S * E). For MIP, wrap-around of a loop path can take place lengthwise if

number of processors are less than (S * E). The MIP method can be defined as step(s) per

processor method with individual pipeline for each path.

Given the loop, the choice between MUP and MIP method can be made as shown

below. Two types of comparisons are shown. The first type assumes unlimited processors

while the second type assumes fixed number of processors. Considering unlimited pro­

cessors, the comparison between MUP and MIP can be made as follows. MUP uses K

processors independent of loop size.

1. If S * E > K, the MIP is faster by a factor of E : S than MUP method. In this

case MUP is cheaper than MIP method by a difference of (E * S - K) processors.

2. If S * E :::;; K, MIP is better than MUP in terms of both execution time and cost.

Given fixed number of processors, comparison between MUP and MIP is depen­

dent upon size of the loop. In case of a wrap-around, there is a bound on the number of

processors used for MIP method. The minimum number of processors MIP method

requires in case of a wrap-around is S * n, where 1 < n < E. The fixed processors M in

this case is

M =S * n

Under this condition, two cases can be considered.

35

A. In case, when S is less than M and the value of variable n is between 1 and E,

MIP has has lower execution time than MUP method.

B. In case, when n = 1 or n < 1, which means that S = M or S > M, then MIP method

is no longer valid for operation, as the step(s) per processor allocation is no longer

true. In this case, MUP turns out to be more flexible as compared to MIP. There­

for for this case, MUP method is the valid choice.

In order to summarize the above comparison, definitions of all methods can be

referenced.

1. Uniprocessor method uses a single processor.

2. MNP method uses S processors. In case of fewer processors, paths are wrapped

around the processors.

3. MIP method uses S * E processors and avails the facility of individual pipeline

for each loop path. MIP considers the wrap-around of paths lengthwise if number

of processors is less than S * E. The minimum number of processors required by

MIP is S * n, where 1 < n < E.

4. MUP method uses K processors independent of the loop size.

III.3.5 Summary of Comparison

MUP is compared with UM, MNP and MIP methods. MUP loses with respect to

cost, but wins in terms of execution time when compared to UM. While comparing MUP

with MNP and MIP, two types of comparisons were taken into consideration. The first

type assumed unlimited processors, while the second type assumed fixed processors. In

case when number of processors is unlimited, MUP justifies its value in terms of cost as

compared to MNP method. When number of processors is fixed, MUP justifies its value

in terms of execution time compared to MNP method for various loop size conditions.

Thus for the fixed cost, MUP method proves itself to be better in terms of execution time

36

than MNP method.

In case when number of processors are unlimited, MUP method justifies its value

in terms of cost as compared to MIP method. When number of processors are fixed, MIP

has a lower execution time than MUP for certain loop size conditions. However, for

other conditions MUP proves itself to be flexible in terms of usability for a wide range of

loop sizes.

The above comparison considered the size of computation. For different compu­

tation sizes, other methods fail in terms of any of the three perlormance measures men­

tioned above. MUP tries to fill the slot of this failure with respect to these perlormance

measures. Finally summarizing the comparison we conclude. that MUP method justifies

its value in terms of cost of operation , execution time and flexibility compared to rest of

the mapping methods and remains a suitable choice.

CHAPTER IV

EXPERIMENTAL RESULTS AND ANALYSIS

IV.1 TYPES OF EXPERIMENTS

To verify the execution models for the multiplexed pipeline method, experiments

were designed and performed. The execution models give the execution time in terms of

number of time units. The individual time unit is the time to complete a pipeline stage.

Thus to predict execution time, the measurement of this stage time was necessary.

Three kinds of experiments were performed. The first set measured pipeline stage

time. The second set measured the total multiprocessor execution time versus the pipe­

line delay A. Loops with iteration counts of 400, 800, 1200 and 1600 were considered.

The third set of experiments measured uniprocessor execution time, which was used to

calculate speedup.

IV.2 GRAPH MODEL FOR EXPERIMENTS

A suitable dataflow cyclic graph matching our loop model was chosen and used in

the experiments. The general structure of graph is shown in Figure 10. The threads inside

the loop control statement represent the processing statements. The circles represent the

substep in the loop paths. The Figure shows the general program graph with parameter

variation represented by arrows. To find pipeline stage time, graph with parameters, E =

9, S = 3 and N = 50, 100, 200, 300 and 500 was considered. To validate the model,

graph with parameters, E = 12, S = 7 and N = 400, 800, 1200 and 1600 was considered. 6

processors were used for the experiment purpose, i.e., K = 6. To calculate speedup, the

same graphs were used with 1 processor .

...........................
Initial Qata
Generation

I

*

Threads

v s

0

v
I _____________________ J

6
N iterations

:···:
Rest of the program

Code

Figure 10.Graph Model for Experiments.

IV.3 THE EXPERIMENTAL SET UP

Comparison
actors

38

Experiments were run on Sun 3/50 workstations. The experiments were run at the

midnight, when the system load is expected to be low. The wall clock time as opposed to

CPU time was measured.

The ParPlum system, Jingsong[21] was used to conduct the experiments. The

ParPlum mapping system consists of several stages. Its operation begins with reading the

input graph and the architectural information. Using this information, the partitioning

39

algorithm divides the program graph into some number of modules. The partitioning

information is passed to allocation algorithms which assign the existing program

modules to specific processors. Scheduling decides the ordering of the tasks within these

partitions and does the job of assigning priorities. Finally, the mapped program is exe­

cuted under the control of a parallel interpreter for dataflow graphs. The partitioning,

allocating and scheduling steps.implement the multiplexed pipeline method with variable

~.

IV.4 MEASUREMENT OF THE STAGE TIME

The models developed in Chapter III give total execution time in terms of the

number of time units required for execution of the loop. This time unit is a single stage

time in the execution. The stage time is a combination of the execution time for a single

step and the communication time between the steps. Measurement of the stage time was

needed to evaluate the models for the specific experiments used for validation.

The total number of stages for a single iteration of the sample graph were calcu­

lated using the execution model. The number of stages thus obtained was multiplied by

the iteration count to calculate the total stages required for executing the loop. Five dif­

ferent iteration counts: 50, 100, 200 , 300 and 500 were considered.

Each graph was then executed using the ParPlum mapping system. The execution

time for each case was measured. The stage time was calculated by dividing the meas­

ured execution times by the total number of stages calculated via execution models. The

stage time used (Ts = 0.063 second) was taken as the average stage time for the five

values of iteration count. Table IV shows the data for this analysis.

The process can be more precisely explained as follows. Let

Tu =Number of units required for N iterations. (This is given by the models)

Tm = Measured execution time via experiment.

Ts = Pipeline stage time.

The three variables are related by the equation

Tm =Tu* Ts

Therefor, the stage time is given by

Tm
Ts= Tu

TABLE IV

CALCULATION OF STAGE TIME

N 50 100 200 300

Tu 502 1002 2002 3002

Tm (seconds) 37.32 56.11 120.14 165.23

Ts (seconds) 0.074 0.056 0.060 0.055

40

(1)

500

5002

350.52

0.070

In section IV.5, predicted execution time is calculated from the model and the

stage time, i.e., Tpred = Tex * Ts·

IV.5 EXECUTION TIME EXPERIMENTS

These experiments were run to compare the model with actual execution times.

We were particularly interested in the effects of pipeline delay, A. The experiments used

E = 12, S = 7, K = 6 and A= 0, 1, 2, 3, 4 and 5, and four different iteration counts. Table

V and Table VI summarizes the results for 400 and 800 iterations while Table VII and

Table VIII shows results for 1200 and 1600 iterations. The term Absolute Difference

represents the difference between average measured value and predicted value.

41

TABLEV

EXECUTION TIMES FOR 400 !TERA TIONS

For 400 iterations

ti Measured(seconds) Predicted(seconds) Absolute Difference(seconds)

Ave Max Min

0 370 379 360 353 17

1 403 410 390 378 25

2 421,t 435 410 403 18

3 449 460 437 428 21

4 471 483 460 453 18

5 498 510 481 478 20

TABLE VI

EXECUTION TIMES FOR 800 !TERA TIONS

For 800 iterations

ti Measured(seconds) Predicted(seconds) Absolute Difference(seconds)

Ave Max Min

0 753 765 748 705 48

1 783 790 778 756 27

2 839 847 832 806 33

3 897 910 890 856 41

4 942,t 951 937 907 35

5 990 1020 970 957 33

42

TABLE VII

EXECUTION TIMES FOR 1200 ITERATIONS

For 1200 iterations

!!,. Measured(seconds) Predicted(seconds) Absolute Difference(seconds)

Ave Max · Min

0 1116 1128 1108 1058 58

1 1184 1194 1178 1134 50

2 1247 1258 1241 1209 38

3 1337 1350 1331 1285 52

4 1384 1391 1378 1360 24

5 1476 1491 1465 1436 40

TABLE VIII

EXECUTION TIMES FOR 1600 !TERA TIONS

For 1600 iterations

!!,. Measured(seconds) Predicted(seconds) Absolute Difference(seconds)

Ave Max Min

0 1505 1518 1496 1411 94

1 1586 1602 1572 1512 74

2 1677 1682 1674 1612 65

3 1765 1771 1759 1713 52

4 1850,t 1862 1840 1814 36

5 2005 2028 1998 1915 90

43

The system load was an important consideration while running the experiments.

The experiments were run at midnight when the system load is expected to be low. Five

runs were taken for each set of parameter values. For a few runs, the accuracy of the

measured value was doubtful as compared to the rest of the runs for that particular point.

For these suspicious runs, the run was discarded and another run was made to obtain five

values for each point. The points indicated by t in Table V, Table VI and Table VIII

each had one run discarded.

This process can be illustrated via the following example. One suspicious run was

encountered for the iteration count (N = 400) and pipeline delay (~ = 2) as shown in

Table V. The initial execution times measured for this case were 410, 435, 430, 971, 412.

In this case, the execution time corresponding to fourth run (Tm = 971) was out of range

as compared to other points. The run was repeated and the measured execution time was

Tm = 418. The new value was in line with other measured values for the execution time.

Therefor the suspicious value for the execution time was replaced with the new measured

value and the average was taken. In total three runs were discarded.

Figure 11 plots measured and predicted execution time versus ~ for 400 and 800

iterations, while Figure 12 plots the same for 1200 and 1600 iterations. The solid line

represents the measured values for the total execution times while the dashed line

represents the predicted values for execution times. The solution subspaces are shown

for each curve. For all the four cases the execution time increases as the value of ~ is

increased. In other words, the best performance occurs when the outer loop is executed

first (~ = 0). This is exactly the results predicted by the model. The predicted values are

within 10 percent of the actual values and the curves are of the same general form. LCF,

LCB and LCE represents the solution subspaces and are shown for each curve. In both

cases, the optimum execution time is achieved under LCF solution subspace and the

worst case execution time is obtained under LCE subspace.

1100

1000

900

800

Total ?00
Exec
Time

in
seconds 600

500

400

300

,
,,'""

LCB

,'

LCE

For 800 iterations

LCE

For 400 iterations

Measured:solid line
Predicted:dashed line

200...L~--1~~_J_~~~~;--~-;---~~~~
0 1 2 3 4 5 6 7

Pipeline delay ti

Figure 11.Execution Time for iterations 400 and 800.

44

2200

2000

1800

Total 1600
Exec
Time

Ill

seconds 1400

1200

1000

.,"
.,"

,A',
.,"

., .. "
Ii',"

.,"

.,"

,,"

,"
.-"

,A''

A.., "

.,"

.-"
A""

A""

.,"
.,"

LCE

,,A

For 1600 iterations

LCE

For 1200 iterations

Measured:Solid line
Predicted:dashed line

800-'-~---'~~_._~__._~~_..__~__._~~-'-~-'

0 1 2 3 4 5 6 7

Pipeline delay 11

Figure 12.Execution Time for iterations 1200 and 1600.

45

46

Figure 13 plots the total execution time of the program versus the iteration count.

Six curves are shown, one for each value of pipeline delay A. As expected, as the itera­

tion count goes up, the total execution time goes up.

2250

2000 LCE

1750 LCB l!i

15001 ~LCF
Total 1250
Exec
Time

in
seconds 1000

750

500

250

0 300 600 900 1200 1500 1800 2100

Iteration count for the graph

Figure 13.For /!l = 0, 1, 2, 3, 4 and 5.

IV.6 SPEEDUP MEASUREMENT

Speedup is defined as the ratio of the execution time of a given graph on a non-

pipelined processor to the execution time on a pipelined processor with K stages. The

47

graphs . were executed on a uniprocessor using the ParPlum mapping system, Jing­

song[21] using a uniprocessor mapping and the corresponding execution times were

measured. The graphs were identical with those used in section IV.5.(Note that A is not a

parameter of the uniprocessor mapping.) Table IX shows the results.

Average

A

0

1

2

3

4

5

TABLE IX

UNIPROCESSOR EXECUTION TIME(SECONDS)

400 iterations

1555

1560

1533

1513

1524

1537

400 iterations

4.1

3.8

3.6

3.4

3.3

3.1

800 iterations 1200 iterations

3216 4905

3219 4911

3224 4928

3210 4920

3231 4923

3220 4917

TABLEX

SPEEDUP RESULTS

Measured Speedup

800 iterations 1200 iterations

4.3 4.4

4.1 4.2

3.8 3.9

3.6 3.7

3.4 3.5

3.2 3.3

1600 iterations

7365

7360

7391

7375

7379

7374

1600 iterations

4.9

4.6

4.4

4.2

3.9

3.7

Table X shows the results for the measured speedups. Figure 14 shows the

speedup curves for iteration counts of 400 and 800 while Figure 15 shows the speed up

48

curves for iteration counts of 1200 and 1600. Both figures show the pipelined speedup

deteriorating as A is increased. Again the best speedup is achieved when the outer loop is

executed first. Also note that the speedups range from 4.1 to 4.9 which is quite good

compared with the theoretical maximum of 6.

7

6 Solid: Measured

5

Pipelined
Speedup I LCF

4
For 800 iterations

3
For 400 iterations

2--'-~--'~~-'-~----'-~~-'--~--'-~~....._~_.
0 1 2 3 4 5 6 7

Pipeline delay A

Figure 14.Pipelined Speedup for iterations 400 and 800.

Figure 15 shows the speedup curves for 1600 iterations. Again the maximum

speedup is obtained under LCF subspace, where the pipeline delay A is zero.

Pipelined
Speedup

7

6

5

4

3

Solid: Measured

For 1600 iterations

LCE

For 1200 iterations

2~~~~~~~~---~-'-~~---~-'-~----'
0 1 2 3 4 5 6 7

Pipeline delay "1.

Figure 15.Pipelined Speedup for iterations 1200 and 1600.

N. 7 EXPERIMENT AL RESULT ANALYSIS

49

The results of experiments conducted to verify the execution models are

described above. The models approximately predict execution time, matching inform, but

consistently underpredicting. The predicted value consistently falls below the bounds of

the experimental values which indicates a systematic error. To explain the error recall

that the program graph shown in Figure 10 consists of three parts. The first part does the

initial data generation for the loop. The second part contains the loop itself and the third

50

part consists of rest of the program. The execution time models only predict the execu­

tion time for the second part, but the measurements include all three parts of the program.

In fact, the execution time for the first part of the graph should increase with iteration

count Table V, VI, VII and VIII show such an increase adding support to this explana­

tion.

CHAPTERV

SUMMARY AND CONCLUSIONS

This thesis presented a loop transformation technique for scientific programs.

Loops play an important role in compute-intensive programs. Loop transformation tech­

niques can be viewed as a mapping process which maps the computation space to a pro­

cessor space and time. A computation space consists of nodes corresponding to computa­

tion and arcs showing the flow of data or the dependence between nodes.

Two distinct functions define the space-time mapping for a given computation

problem. 11 defines the mapping from computation space to time space while P defines

the mapping from computation space to processor space.

The size of a node defines the granularity of parallelism offered in the given map­

ping process. Earlier researchers have considered an iteration or a group of iterations as

the grain size for their computation and thus ignored intraloop parallelism. The research

presented in this thesis considers intraloop parallelism by looking at nodes at the fine

grain level of substeps in the loop path.

Considering the computation space defined for our research, various mapping

methods were considered for reference. Execution models were developed for these

methods.

Next we defined the multiplexed pipeline method, its two mapping functions II

and P, and execution time models. The performance of the multiplexed pipeline method

is affected by the ordering of the loop components. The models predicted that executing

the loop control statement first would lead to the lowest execution time.

52

Experiments were conducted on a dataflow program graph containing loops to

validate the developed models. The ParPlum mapping system was used for testing. The

execution time experiments show that the optimal execution performance of the graph

was obtained when the loop control statement was executed first, as predicted by the

model.

The value of the multiplexed pipeline method can be explained in terms of three

performance measures. These measures are cost of operation, execution time and flexibil­

ity. The MUP method loses in terms of cost of operation as compared to the uniprocessor

(UM) method and wins in terms of execution time. Under various loop size conditions,

the MUP method outperforms MNP and MIP with respect to cost, execution or both.

Also the execution models for the multiplexed pipeline method provide the

advantage of mapping method selection at the compile time. The execution models were

developed in terms of loop size parameters. Therefor, the user can decide on the MUP

method before the execution of the program with the help of these parameters.

The research presented in this thesis considers the computation space of a loop

which includes the loop control statement and processing statements. The considered

computation space had several restrictions associated with its structure. These restrictions

can be generalized in the future. The pipelined execution of our computation space is

parallel to the concept of pipeline vector chaining. Pipeline chaining is a linking process

that occurs when results obtained from one functional pipe are fed into another functional

pipe. The computation space defined for this research can be considered for the vector

processing applications in the future.

REFERENCES

(1) Michael Wolfe, "The Tiny Loop Restructuring Tool," Proc. of the International
Conference on Parallel Processing., vol. 2, Software, pp. 12-16, August 1991.

(2) K.G. Kumar, D. Kulkarni, A Basu, "Generalized Unimodular Transformations for
Distributed Memory Multiprocessors," Proc. of the International Conference on
Parallel Processing., vol. 2, Software, pp. 146-149, August 1991.

(3) P. tang, G. Michael, "Chain-Based Partitioning and Scheduling of Nested Loops
for Multiprocessors," Proc. of the International Conference on Parallel Process­
ing., vol 2. Software, pp. 243-246, August 1991.

(4) J. R. Allen, K. Kennedy, "Automatic Translation of Fortran Programs to vector
form," ACM Transactions on Programming languages and Systems., vol. 9, pp.
491-542 October 1977.

(5) K. Hwang, F. A. Briggs, "Computer Architecture and Parallel Processing,"
McGraw Hill, Inc 1984.

(6) C.V.Ramamoorthy, "Pipeline Architecture," ACM Computing Surveys., vol. 9,
Number 1, pp. 61-102, March 1977.

(7) J. Robert Jump and S. Ahuja, "Effective Pipelining of Digital System," IEEE
Transactions on Computers., vol. c-27, Number 9, pp. 855-865, September 1978.

(8) Cooper R. G., "Distributed Pipeline," IEEE Transactions on Computers., vol. c-
24, Number 7, pp. 1123-1132, November 1977.

(9) Michael Wolfe, "Optimizing Supercompilers for Supercomputers," The MIT
Press, Cambridge, Massachusetts 1989.

(10) U. Banerjee, S. Chen, D. Kuck, R Towle, "Time and Parallel Processor Bounds
for Fortran-Like Loops." IEEE Transactions on Computers., vol. c-28, Number 9,
pp. 660-670, September 1977.

(11) W. L. Miranker, A. Winkler, "Spacetime Representations of Computational struc­
tures," Computing 32, pp. 93-114, 1984.

(12) D. I. Moldovan, "On the Design of Algorithms for VLSI Systolic Arrays," Proc.
of the IEEE., vol. 71, Number 1, pp. 113-120, January 1983.

54

(13) P. Lee, Z. Kedem, "Mapping Nested Loop Algorithms into Multidimensional
Systolic Arrays," IEEE Transactions on Parallel and Distributed Systems., vol. 1,
Number 4, pp. 64-76, January 1990.

(14) C. King, W. chou, L. Ni, "Pipelined Data-parallel Algorithms:Part 1-Concepts
and Modeling," IEEE Transactions on Parallel and Distributed Systems., vol 1,
Number 4, pp. 470-485, October 1990.

(15) C. King, W. chou, L. Ni, "Pipelined Data-parallel Algorithms:Part 2-Design,"
IEEE Transactions on Parallel and Distributed Systems., vol 1, Number 4, pp.
486-499, October 1990.

(16) W. Shang, J.A.B. Fortes, "Independent Partitioning of Algorithms with Uniform
dependencies," IEEE Transactions on Parallel and Distributed Systems., vol. 41,
Number 2, pp. 190-205, February 1992.

(17) J.P.Sheu, C-Y. Chang, "Synthesizing Nested Loops Algorithms Using Nonlinear
Transformation Method." vol. 2, Number 3, pp. 304-317, July 1991.

(18) D. A. Patterson, J.H. Hennessy, "Computer Architecture-A Quantitative
Approach," Morgan Kaufmann Publishers, Inc. 1990

(19) J. Bruno, J. W. Joneslll, K. So, "Deterministic Scheduling with pipelined proces­
sors," IEEE Transactions on Computers., vol. c-29, Number 4, pp. 308-316, April
1980.

(20) J.P. Sheu and T. Tai, "Partitioning and Mapping Nested Loops on Multiprocessor
Systems," IEEE Transactions on Parallel and Distributed Systems., vol. 2,
Number 4, pp. 430-439, October 1991.

(21) F. Jingsong, "ParPlum: A System for Evaluating Parallel Program Optimization
Methods," M.S Thesis, Department of Electrical Engineering, Portland State
University, Portland, Oregon, August 1991.

	Multiplexed pipelining : a cost effective loop transformation technique
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1531422051.pdf.Uhzva

