
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 7-16-2018

Emulating Balance Control Observed in Human Test Emulating Balance Control Observed in Human Test

Subjects with a Neural Network Subjects with a Neural Network

Wade William Hilts
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Mechanical Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hilts, Wade William, "Emulating Balance Control Observed in Human Test Subjects with a Neural Network"
(2018). Dissertations and Theses. Paper 4499.
https://doi.org/10.15760/etd.6383

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4499
https://doi.org/10.15760/etd.6383
mailto:pdxscholar@pdx.edu

Emulating Balance Control Observed in Human Test Subjects with a Neural Network

by

Wade William Hilts

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Mechanical Engineering

Thesis Committee:
Alexander J. Hunt, Chair

David Turcic
Faryar Etesami

Portland State University
2018

i

Abstract

Human balance control is a complex feedback system that must be adaptable and ro-

bust in an infinitely varying external environment. It is probable that there are many

concurrent control loops occurring in the central nervous system that achieve stability

for a variety of postural perturbations. Though many engineering models of human

balance control have been tested, no models of how these controllers might operate

within the nervous system have yet been developed. We have focused on building a

model of a proprioceptive feedback loop with simulated neurons. The propriocep-

tive referenced portion of human balance control has been successfully modeled by a

PD controller with a time delay and output torque positive feedback. For this model,

angular position is measured at the ankle and corrective torque is applied about the

joint to maintain a vertical orientation. In this paper, we construct a neural network

that performs addition, subtraction, multiplication, differentiation and signal filtering

to demonstrate that a simulated biological neural system based off of the engineering

control model is capable of matching human test subject dynamics.

ii

Acknowledgements

I would like to express my gratitude to my professors and advisor at Portland State for

guiding me through all of the obstacles I faced during my research. Dr. Alex Hunt gave

me the inspiration to pursue a bio-inspired robotic control system, and taught me a

lot about how to frame a research question and to express my hypothesis and results

in a coherent and concise manner. Dr. David Turcic provided a wealth of experiential

knowledge in the classical controls regime, showed me how to connect control theory

and practice, and all the complications that arise with real-world systems. Outside of

PSU, I received advice and guidance for Robert J. Peterka (OHSU), who provided me

with the foundational experimental data and counsel on my approach to human bal-

ance modeling. Nicholas Szczecinski developed the neural subnetworks that were the

building blocks of the controller I designed, and provided immense technical support

and counseling on the subject. Additionally, I’d like to acknowledge my lab partners

Alex Steele, Tiffany Hamstreet and Karmand Rasheed for providing me with good com-

pany, advice and insight on my research that was based off of their unique perspectives

and experiences.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

Nomenclature viii

1 Introduction and Motivation 1

2 Classical Control Methods 3

2.1 Methods for System Identification and Controller Design 3

3 Neural Network Control Methods 11

3.1 Neural Network Simulation . 11

4 Results 20

5 Discussion 28

Bibliography 31

A Appendix: Neural Network Simulation Parameters and Control Code 33

A.1 Neuron Parameters Used in Controller 33

iv

A.2 Synapse Parameters Used in Controller 33

A.3 MATLAB Program for Neural Controller 34

A.4 Greybox State Space Model for Classical Controller in MATLAB 40

A.5 Greybox State Space Plant Model in MATLAB 41

A.6 Plant System ID MATLAB Code . 41

v

List of Figures

2.1 Controlled system in this experiment. The system is comprised of a

several pieces of steel rigidly fastened together, with torque controlled

motor acting as the base joint. 5

2.2 Block diagram of human balance control engineering model. There are

two nested feedback loops here. The inner feedback loop consists of

a time delayed controller receiving a low-passed positive torque feed-

back signal. The outer loop is a negative angular position feedback

loop, drawn from the output of the plant model’s (Gp) response to the

torque signal. 8

2.3 Jitter observed at 500 Hz sampling frequency. The sampling period

varies by approximately 50 percent of its mean value. 9

2.4 Jitter observed at a 150 Hz sampling frequency. The sampling period

variance is approximately 20 percent of its mean value. 10

vi

3.1 A network of neurons and synapses that outputs a torque command

based on a joint angle input signal. The circuit is a collection of in-

terconnected addition, subtraction, multiplication and derivative sub-

networks and is broken into two sections, each governing the clockwise

and counterclockwise regions (about the marginally stable midpoint)

of the pendulum system. CW and CCW torque response signals are

manifest in the membrane potentials of neurons 14 and 22. 12

3.2 Graphical representations of the neurons and synapses. From left

to right: addition, subtraction, multiplication and derivative subnet-

works. Synapses terminating in a triangle are excitatory, whereas the

shaded circular terminals are inhibitory synapses. 14

3.3 Example of a sinusoidal test error signal being processing by a deriva-

tive gain subnetwork. The subnetwork was tuned to take the derivative

of the error signal and increase the magnitude by a factor of two. . . . 17

3.4 Schematic representation of information flow between software and

hardware platforms. MATLAB regulates the communication between

the motor/pendulum system and the neural controller in Animatlab. . 18

4.1 Comparison of human test data with the responses of the classical con-

troller design in both simulation and experiment, as well as the re-

sponse of the neural controller in an experiment 21

vii

4.2 Modeling the frequency response of the motor-pendulum system with

commanded torque as input and angular position as output. A simple

proportional controller was used with a gain of Kp = 30. The test data

was collected by observing the steady state frequency response of the

system at various input frequencies. 22

4.3 The frequency response of the neural controller and motor pendulum

system is explored with various proportional gain values (Kp) 24

4.4 The frequency response of the neural controller and motor pendulum

system is explored with various derivative gain values (Kd) 25

4.5 The frequency response of the neural controller and motor pendulum

system is explored with various positive torque feedback gain values (Kt) 26

4.6 The frequency response of the neural controller and motor pendulum

system is explored with various time delay values (τd) 27

viii

Nomenclature

Gp The plant model transfer function, represented in the Laplace do-
main

Gc The controller transfer function, represented in the Laplace domain
HT The controller in the feedback loop, represented in the Laplace do-

main
τd The Padé approximant, represented in the Laplace domain
Kp Proportional gain coefficient
Kd Derivative gain coefficient
Kt Positive torque feedback gain coefficient
ωc Low-pass filter cutoff frequency, rad/s
PD Short for Proportional-Derivative
J Moment of inertia, kg·m2/s2

b Damping coefficient
θ Ankle joint angle, rad
m Mass, kg
g Acceleration due to gravity, m/s2

h Center of mass height, m
Cm Membrane capacitance, F
Gm Membrane conductance, S
V Absolute membrane potential, V
U Membrane potential difference from neuron resting potential, V
I Current, A
∆E Operating range of the synaptic connection between neurons, V

1

Chapter 1

Introduction and Motivation

In recent years, neuromorphic computing chips with promises to revolutionize com-

puting technology have become available. These chips effectively model neurons and

synapses in a compact architecture that consumes orders of magnitude less power

than a comparable digital system [10,14]. However, there are few synthetic neural con-

trol algorithms that can utilize these chips. Most synthetic neural research has been

focused around pattern recognition, image processing, or decision making [3, 5, 6]. Al-

most all of these systems do not require quick reactions to external changes or interac-

tion with an unpredictable environment.

Several synthetic neural control systems have been developed with varying success.

A few of them are used to control legged systems, and must quickly process sensory

data and make control actions to maintain effective interaction with the surrounding

environment [7–9]. However, these neural systems are built on individual case studies

and though insights can be gathered from how the control systems worked, they are

not easily portable to new problems or systems.

To this end, tools that assist in creating neural controllers for new systems have

been developed. Nengo provides methods to set up spiking neural systems and then

train them to produce specific desired outputs [2]. I have crafted methods in which pa-

2

rameters in small neural systems can be set analytically to perform mathematical op-

erations such as addition, subtraction, multiplication, division, differentiation, and in-

tegration [17]. These different subnetworks can be developed independently and then

added together to perform complex mathematical operations. I have also developed

tools for analyzing and setting parameters in pattern generating circuits common in

locomotion [16]. However, it is unclear how effective these methods are when applied

to even more dynamic and unsteady control problems encountered in the robotics

world.

It is my hypothesis that the analytical methods I have developed, combined with

classical control techniques will provide a reasonable starting point for developing dy-

namic controllers. I test this hypothesis by developing a neural controller that is analo-

gous to a classical control model fit to human test subjects [12,13]. In this model, a PD

controller with time delay and low-passed positive feedback uses corrective torque to

keep an inverted pendulum system upright. I first use the engineering model to deter-

mine the proportional, derivative, time delay, filter and positive feedback parameters

that match the stability characteristics of the control system. Then, I employ neural

network design methods [17] to lay out the framework and set the parameters of the

neural network, the resulting neural controller is shown to match the classical control

system behavior.

3

Chapter 2

Classical Control Methods

2.1 Methods for System Identification and Controller Design

2.1.1 A Linear Model for Human Balance

The linear model for human balance control in this paper was based off a model pro-

posed by Peterka derived from human test subject data collected on a tilting plat-

form [12]. The test subjects in Peterka’s experiment had profound vestibular loss, and

the data was collected with their eyes closed. Additionally, the subjects were strapped

to a fixture that allowed them to only use corrective torque at the ankle joint. Hu-

man balance control is postulated to rely on vestibular, proprioceptive and visual feed-

back [1, 13], this experiment effectively eliminated the contribution of vestibular and

visual feedback while constraining the corrective output to only torque at the ankle

joint.

Frequency response data points were collected for these test subjects and Peterka

proposed a simple control architecture that fit the test data. Peterka’s plant model for

the human body consisted of a simple inverted pendulum model, free of any damping

effects. He also proposed a model for the control response that includes a time delay,

positive force feedback with a low-pass filter, a PD controller in the standard controller

4

position and a feedforward controller modeling the passive muscle dynamics (unaf-

fected by the time delay) [12]. Peterka’s results provide an engineering control model

that has been tuned to match human test data in simulation on an inverted pendu-

lum plant model. This engineering model was used as the basis for the neural control

structure in this paper.

2.1.2 Identifying the Plant Model Used in the Experiment

The first step to implementing a control system that matches human balance char-

acteristics is accurately identifying the plant’s dynamic response to inputs, and fitting

a model to this data. The system being controlled was a single-jointed inverted pen-

dulum model with a motor placed at the base joint (Figure 2.1) modeled by the time

domain differential equation:

J θ̈+bθ̇−mg h · si n(θ) = Tc . (2.1)

Where θ is the angular position, T is the commanded torque, J is the moment of in-

ertia, b is the damping ratio and the mg h term is the destabilizing torque due to gravity.

We assume an ideal motor that produces the commanded torque instantly, the HEBI

X8-9 torque control motor is capable of behaving as such according to manufacturer

specifications. We also use the small-angle approximation, si n(θ) = θ, to linearize the

model.

5

Figure 2.1: Controlled system in this experiment. The system is comprised of a
several pieces of steel rigidly fastened together, with torque controlled motor act-
ing as the base joint.

6

2.1.3 Plant Model Validation

System identification is performed using a closed loop controller because the inverted

pendulum plant model is unstable for open-loop position control. While certain pa-

rameters of the system can be measured or calculated individually (e.g. moment of

inertia, mass), the damping ratio of the system must be determined empirically. A pro-

portional controller was used to experimentally determine the gain and phase shift of

the system output with a closed loop transfer function in the Laplace Domain:

θact

θdes
= Kp

J s2 +bs −mg h +Kp
= GcGp

1+GcGp
(2.2)

Where Gc = Kp represents the proportional controller and Gp is the plant model. An

8-degree peak to peak sinusoidal commanded position signal was used. The propor-

tional gain, Kp , was set to 30 and the moment of inertia, mass and center of mass height

were measured before the experiment. These values were found to be J = 0.44 kg·m2,

and mg h = 9.5 kg·m2/s2.

A state space model of this system in MATLAB was constructed, and the theoreti-

cal form of the model enforced by using the ’greyest’ linear function fitting tool. This

was done by setting the damping ratio parameter completely free and fixing the other

known parameters, as the motor used to control the system had more complex dy-

namics at torque values near zero and introduced unknown damping to the system.

The greyest function was used to optimize the damping ratio value to closest match

experimental results, by minimizing the error between the model prediction and the

experimental data (Appendix A.6 and A.5).

7

2.1.4 Designing a Controller that Will Produce a Closed Loop Response Similar to

the Test Subject Data

After identifying a linear plant model for the inverted pendulum system, I developed a

controller that produces similar frequency response characteristics as the human test

subjects. The proposed control system takes a single input, the inverted pendulum’s

angular position, and outputs a corrective torque that is applied at the base joint. This

control system can be represented by the block diagram in Figure 2.2 and closed loop

transfer function, Equation 2.3:

θact

θdes
= τdGcGp

1−τdGc HT +τdGcGp
, where (2.3)

Gp = 1

J s2 +bs −mg h
(2.4)

Gc = Kp +Kd s (2.5)

HT = Ktωc

s +ωc
(2.6)

τd = (−τs +2)

(τs +2)
≈ e−τs (2.7)

where Kp is proportional gain, Kd is derivative gain, Kt is positive torque feedback

gain, ωc is low-pass filter cutoff frequency and τ is a time delay. A first order Padé

approximant was used to linearize the time delay 2.7.

8

∑ G
+_

Cmd
Position

Cmd
Torque

Actual
Position

c

HT

Gpτd

Figure 2.2: Block diagram of human balance control engineering model. There are
two nested feedback loops here. The inner feedback loop consists of a time delayed
controller receiving a low-passed positive torque feedback signal. The outer loop
is a negative angular position feedback loop, drawn from the output of the plant
model’s (Gp) response to the torque signal.

2.1.5 Control Model Validation and Signal Processing

Using a similar method as in the plant model identification, the above transfer function

can be converted into state space form and plugged into the MATLAB greyest function

(Appendix A.4). We set the time delay, low-pass filter cutoff frequency, and the propor-

tional, derivative and torque positive feedback gains as free parameters and used the

greyest function to minimize the error bet en the test subject data and the controlled

system’s predicted closed loop frequency response. This process produced a controller

for my inverted pendulum plant model that would emulate Peterka’s model controller

for the response of a blindfolded human with vestibular loss on a tilting platform using

only corrective torque at the ankle joints.

As with many control system applications, high frequency noise wreaks havoc on

the derivative component of a controller, and frequencies higher than the Nyquist fre-

quency must be filtered out. The control loop was run at a frequency of 150 Hz. We

included two second order Butterworth low-pass digital filters, each with cutoff fre-

9

0 1 2 3 4 5 6 7 8 9

Control Loop Duration (s)

0

1

2

3

4
T

im
e
 B

e
tw

e
e
n
 S

a
m

p
le

s
 (

s
) 10-3 Jitter at 500 Hz Sampling Frequency

Figure 2.3: Jitter observed at 500 Hz sampling frequency. The sampling period
varies by approximately 50 percent of its mean value.

quencies of 50 Hz, to filter the incoming position feedback and outgoing torque com-

mand signals. Additionally, the Windows 10 operating system that MATLAB is running

on introduces a phenomena known as jitter, introducing a variance in the timing of

the control loop period. For this system, the jitter has a peak magnitude of about one

millisecond, independent of the sampling frequency.

The controller was validated using MATLAB’s system identification toolbox to de-

rive the closed loop transfer function of the controlled system. We used time domain

experimental data to obtain a transfer function rather than fitting to frequency domain

data. Filtered Gaussian white noise was sent as an input, with a low-pass filter applied

that removed frequencies above 2 Hz. The max amplitude was set at 8 degrees peak to

peak, which represented the majority of the operating space observed in the human

data [12]. We took the input and output time domain data and fit it to a fourth order

transfer function using the MATLAB System Identification toolbox based on the plant

model and the controller design that was defined in Equation 2.3. The resulting closed

10

0 1 2 3 4 5 6 7 8 9

Control Loop Duration (s)

0

2

4

6

8

T
im

e
 B

e
tw

e
e
n
 S

a
m

p
le

s
 (

s
) 10-3 Jitter at 150 Hz Sampling Frequency

Figure 2.4: Jitter observed at a 150 Hz sampling frequency. The sampling period
variance is approximately 20 percent of its mean value.

loop system should be well represented by a transfer function with 4 poles and 3 ze-

ros. The transfer function fit to this data was then compared to the human data and

theoretical prediction.

11

Chapter 3

Neural Network Control Methods

3.1 Neural Network Simulation

I created a neural network controller, shown in Figure 3.1, to emulate a PD controller

with a time delay and low passed positive torque feedback. This was done by assem-

bling a series of subnetworks with defined behaviors. The neurons and synapses in

each subnetwork are assigned specific characteristics and connections to approximate

the mathematical operations of the classical controller. This work utilizes a leaky, in-

tegrating, non-spiking neuron model. Information is encoded in the neurons’ mem-

brane voltage, and is transmitted via synaptic connections. The membrane voltage of

a neuron is governed by:

Cm
dV

d t
= Ileak + Is yn + Iapp (3.1)

Where Cm is the membrane capacitance, V is membrane voltage, and Ix are the various

current sources and sinks.

Ileak =Gm(Er −V) (3.2)

12

Upper half of circuit

is active if θ is CCW

of upright

Input θ

Lower half of circuit

is active if θ is CW of

upright

1 2

3

4

5

6

7

10

9 8

13

12

14

11

15

16

18

17
19

20

21 22
Vmem to

Torque

Vmem to

Torque

Corrective

Torque Output,

CW

Corrective

Torque Output,

CCW

θ to Iapp

(nA)

1

3

6

7

9

4

11

13

12

5

2

17

16

15

32

19

29

22

18

21

20
26

24

23

27

30

8

25

28

10

14

10

θ θ desired

Kp Kd

Kd*dθe/dt

dθe/dt

θerror

+Kt*T

-dθe/dt

t1

t2>t1

Kp*θe

Kp*θe +

Kd*dθe/dt

Kd*dθe/dt
Kp*θe +

Kd*dθe/dt

θerror

t1

t2>t1

-dθe/dt

dθe/dt

Kp*θe

31

24 2333 Kt

25 Kt*T

26

Kt*T

34

35

37

41

38

40

Proportional gain Derivative gain

Torque Positive

Feedback gain

36

39

Figure 3.1: A network of neurons and synapses that outputs a torque command
based on a joint angle input signal. The circuit is a collection of interconnected ad-
dition, subtraction, multiplication and derivative subnetworks and is broken into
two sections, each governing the clockwise and counterclockwise regions (about
the marginally stable midpoint) of the pendulum system. CW and CCW torque
response signals are manifest in the membrane potentials of neurons 14 and 22.

Where Gm is the membrane conductance. Neurons transmit information via synapses.

This current, Is yn , is defined as:

Is yn =
n∑

i=1
Gs,i (Es,i −V). (3.3)

13

Where Gs,i represents the synapse conductance of the i th synapse. The synapse con-

ductance can be described by a piecewise function:

Gs,i =

0 Vpr e < Elo

gs,i
Vpr e−Elo

Ehi−Elo Elo ≤Vpr e ≤ Ehi .

gs,i Vpr e > Ehi

(3.4)

The above equation parametrizes the range over which postsynaptic neurons receive

current from the presynaptic neurons. Below the value of El o , there is no current, be-

tween El o and Ehi , there is a linear increase in current until saturation at Ehi , in which

the postsynaptic neuron receives no additional current when the presynaptic neuron’s

voltage goes higher.

Iapp , is an external stimulus current. For the purpose of this simulation, the exter-

nal stimulus current is injected into a neuron to represent outside information, such

as the angular position of the inverted pendulum model, a descending command from

the brain, or unmodeled feedback pathways.

To more easily describe neural arithmetic operations mathematically, I employ the

simplifying definition:

∆Es,i = Es,i −Er,post (3.5)

Where ∆E(s, i) is the potential difference between the synaptic equilibrium potential

and the postsynaptic neuron’s resting potential.

14

3.1.1 Subnetworks

The complete neural controller is composed of fundamental building blocks, called

subnetworks. Each subnetwork performs a specific operation on an input signal to

produce a desired output. A graphical representation of each subnetwork is shown in

Figure 3.2. Throughout this section, I will point to Figure 3.1 to provide examples of

where the subnetworks are employed in the overall controller.

U1 U2

Usum

1 2

U1 U2

Udif

1 2

U1 U2

Uprod

1

2

U3

2

t1 t2>t1

dU/dt

2 3

U

1 1

Figure 3.2: Graphical representations of the neurons and synapses. From left to
right: addition, subtraction, multiplication and derivative subnetworks. Synapses
terminating in a triangle are excitatory, whereas the shaded circular terminals are
inhibitory synapses.

The following optimal parameters were calculated using Szczecinski’s methods [16,

17] and are for a network designed with R = 20.

Neural Addition

Neurons can perform elementary addition, where two presynaptic neurons resting po-

tentials can be summed and reflected in a postsynaptic neuron. For example, in the

neural controller, the proportional (neuron 10) and derivative (neuron 13) contribu-

15

tions to the CW output torque (neuron 14) are all part of an addition subnetwork. Op-

timal parameters are:

gs,1 = gs,2 = 0.115 µS ∆Es,1 =∆Es,2 = 194 mV

a gain can be applied to the U 1 and/or U 2 input signals by multiplying gs,1 or gs,2 by

a desired gain factor. This is useful because of the order of magnitude limitations that

will be outlined in the multiplication network in Section 3.1.1.

Neural Subtraction

Subtraction is a very important calculation for closed loop control systems with neg-

ative feedback. For example, the input angle (neuron 1) and desired angle (neuron 2)

are subtracted to produce a CCW error signal (neuron 3). The selected parameters are:

gs,1 = 0.115 µS gs,2 = 0.55775 µS

∆Es,1 = 194 mV ∆Es,2 =−40 mV

, addition and subtraction networks can be used together in any number of combina-

tions, allowing a single neuron to add and subtract multiple values at once.

Neural Multiplication

Multiplication is required to apply gain to a signal. This network can apply a gain of 0.1

to 1.0 and retain a relatively linear behavior across varying input signal magnitudes.

Thus, in my control circuit it regulates the overall gain on a signal. Neurons 8, 9 and 10

16

are an example of a multiplication subnetwork that is applying a gain proportional to

the CCW error signal fed into neuron 10. The stimulus current on the U 2 neuron (see

Figure 3.2) determines the gain value. The selected parameters are:

gs,1 = 0.115 µS gs,2 = 20 µS

∆Es,1 = 194 mV ∆Es,2 =−1 mV

With tonic stimulus applied to U 3: Ist i m,U 3 = 20 n A.

Neural Differentiation

A neural subnetwork can compute the derivative of an input neuron by routing the

input neuron’s membrane voltage to two separate neurons with different membrane

capacitances. This difference in membrane capacitance creates a response time-delay

between the neurons. Subtracting these neurons’ membrane potentials gives an ap-

proximation similar to a backward difference function. In the neural controller, neu-

rons 4 and 5 are time-shifted versions of the CCW error signal in neuron 3. They are

subtracted to create a positive derivative signal (neural 6) and a negative derivative

signal (neuron 7). The selected parameters are:

gs,1 = gs,2 = 0.115 µS gs,2 = 0.55775 µS

∆Es,1 =∆Es,2 = 194 mV ∆Es,3 =−40 mV

τ1 = 0.1 ms τ2 = 8.0 ms

17

3.1.2 Subnetwork Tuning

Each neural subnetwork must be tuned to match the gains and behavior specified in

the classical controller design. This is achieved by isolating portions of the network,

inputting test signals and observing the output. For example, the derivative gain sub-

network is tuned to match the specified gain of the classical controller, shown in Figure

3.3.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.0601

-0.06005

-0.06

-0.05995

-0.0599

M
e

m
b

ra
n

e
 P

o
te

n
ti
a

l
(V

)

Derivative Network Testing Kd = 2

Positive Derivative Neuron

Negative Derivative Neuron

Ankle Angle Error Neuron

Figure 3.3: Example of a sinusoidal test error signal being processing by a deriva-
tive gain subnetwork. The subnetwork was tuned to take the derivative of the error
signal and increase the magnitude by a factor of two.

18

3.1.3 Simulating the Network in Animatlab

The subnetworks outlined above were assembled into a larger network that emulates

the classical controller design (Figure 3.1). The network was simulated in Animat-

lab [4], an open source neuromechanical simulation tool. It provides a powerful en-

vironment based in C++ that can perform neural network simulation in real-time. It

simulates the same leaky integrator non-spiking neuron model as used in Szczecin-

ski’s subnetworks [17]. Animatlab also allows the user to construct a visual model of

the network and graphically represent the signal at different points throughout the cir-

cuit.

Animatlab has the ability to interface with external devices or software via a serial

connection. In order to control the HEBI motor in the inverted pendulum system, the

HEBI MATLAB API is used to send torque commands and pull feedback information

from the motor.

Animatlab

Simulation

Motor &

Pendulum

θ Feedback

Torque Command

Desired θ,

Feedback θ

Torque Commands

{Serial}{Ethernet}

Figure 3.4: Schematic representation of information flow between software and
hardware platforms. MATLAB regulates the communication between the mo-
tor/pendulum system and the neural controller in Animatlab.

A virtual serial port is used to provide communication between Animatlab and

MATLAB. During each iteration of the control loop, MATLAB gets feedback from the

motor and writes the current angular position to the serial port going to Animatlab.

Animatlab then transforms this position value into an external stimulus current that

19

is injected into Neuron 1. This stimulus current affects the membrane voltage of Neu-

ron 1. The signal is processed by the subnetworks, resulting in the control signal being

represented in Neurons 14 and 23’s membrane voltages. Animatlab writes the mem-

brane voltage of Neurons 14 (CCW torque) and 23 (CW torque) to the serial port going

to MATLAB. This signal is read into MATLAB, transformed, and summed to generate a

commanded torque value that is sent to the motor.

Neural Controller Parameter Sensitivity Testing

To develop a better understanding of how sensitive the neural controller is to control

parameter variation, I conducted several experiments varying Kp , Kd , Kt and τd . The

input and output data was processed in the same way as the classical and primary

neural controllers’ data, using time domain data to derive a transfer function for the

controlled system (Section 2.1.5). The parameters were varied to the minimum and/or

maximum bounds allowed by the multiplication subnetwork, or until the system be-

came unstable in closed loop control and accurate data could not be collected.

20

Chapter 4

Results

4.0.1 Primary Results

Time domain data for both the classical and neural closed loop systems was obtained

for the white noise experiments. Fitting a 4-poles, 3-zeros transfer function to the

this input/output data resulted in the highest degree of accuracy compared to other

transfer function forms for both the neural and classical controllers. For the classical

controller, the parameters that were found to be the best fit are Kp =11.69, Kd =1.90,

Kt =0.0548, ωc =0.209 and τ=0.0774. The neural network parameters selected to emu-

late the classical control performance are given in Appendix A.1 and A.2. The neural

and classical controllers’ gain and phase margin in the frequency domain matched

well, having significant overlap and following similar trajectories.

All of the tested and simulated models agreed reasonably well with the phase and

gain plots of the human test data, until they diverge near 0.4 Hz. The human data

drops in gain and phase much quicker than the other models beyond this threshold.

The neural network system response exhibits a slight swell in gain and phase in the

higher frequencies between 0.5 and 1.5 Hz that the classical controller simulation and

experimental data do not show.

The theoretical model and experimental data for the plant model identification

21

10-2 10-1 100 101

Frequency (Hz)

-20

-10

0

10

20
M

a
g

n
it
u

d
e

 (
d

B
)

Controlled System Response

Human Test Data

Classical Sim

Classical Exp

Neural Exp

10-2 10-1 100 101

Frequency (Hz)

-400

-200

0

200

P
h

a
s
e

 (
d

e
g

)

Figure 4.1: Comparison of human test data with the responses of the classical con-
troller design in both simulation and experiment, as well as the response of the
neural controller in an experiment

part of this experiment (Section 2.1.2) are compared (Figure 4.2). After running the

optimization script, it was found that fixing the theoretical parameters for moment of

inertia, J , and destabilizing torque, mg h, and only allowing the damping term, b, to be

free placed the model closest to the experimental results. The plant parameters that

were used are J=0.44, b=0.40 and mg h=9.50.

22

100

Frequency (Hz)

-20

0

20
M

a
g

n
it
u

d
e

 (
d

B
)

 Closed Loop Pendulum & Motor System

Test Data

Plant Model

100

Frequency (Hz)

-200

-150

-100

-50

0

P
h

a
s
e

 (
d

e
g

)

Figure 4.2: Modeling the frequency response of the motor-pendulum system with
commanded torque as input and angular position as output. A simple propor-
tional controller was used with a gain of Kp = 30. The test data was collected by
observing the steady state frequency response of the system at various input fre-
quencies.

4.0.2 Neural Controller Parameter Sensitivity Testing Results

The neural controller has different behavior depending on the gains assigned within

the network. I tested how changes in these gains affected the overall system. For clar-

ity of understanding, the multiplication subnetwork gains controlled by a stimulus

current within the network have been converted to their classical control parameter

equivalents in the proceeding figures.

Decreasing the proportional gain of the controller was found to have a mid-

frequency amplitude boosting effect due to the inherently unstable open-loop dynam-

ics of the plant model (Figure 4.3). Higher proportional gain allows the system to ad-

here to gain values closer to 0 dB at lower frequencies, until a break frequency of the

system is reached at just under 2 Hz and the gain drops off. Gains higher than 15.4

caused instability due to the proportional term accelerating the system with insuffi-

cient damping to maintain stability. Gains lower than 9.8 were unstable because the

proportional contribution of the controller becomes less than the destabilizing torque

23

due to gravity, thus the system cannot return to equilibrium and succumbs to gravita-

tional forces.

The derivative gain values had the greatest effect near the crest of the gain swell

from 0.2 to 2.0 Hz (Figure 4.4). Greater damping force from higher Kd values reduced

the gain at these frequencies and smoothed out fluctuations in the phase. The deriva-

tive term had less gain reduction at lower frequencies where the system velocities are

smaller and the positive torque feedback term dominates.

The positive torque feedback gain in the controller was varied from 0 to 1, and the

system maintained stability throughout this range (Figure 4.5). While typically positive

feedback causes a system to be unstable, the 30 second time constant of the low-pass

filter coupled with the positive torque feedback loop allows this feedback to interact

with the system without entering instability. The highest Kt value of 1.0 increased the

magnitude of the gain peak at approximately 0.17 Hz, but also caused a very steep de-

crease in gain below 0.1 Hz. Additionally, a significant amount of positive phase is ob-

served at frequencies of 0.1 Hz and lower. When the positive feedback was effectively

shut off by setting Kt to zero, the system’s resonance peak was completely eliminated,

and low frequency gain values were nearly constant at frequencies below 0.5 Hz.

An increase in the time delay parameter resulted in a system with a slightly slower

break frequency, and a much larger gain swell approaching the break frequency (Fig-

ure 4.6). Longer time delay also increased the phase lag at higher frequencies because

the controller reacts slower and falls further behind the commanded position. This ef-

fect becomes much more significant at high frequencies where the time delay is larger

relative to the input frequency’s period. The time delay has little effect on the lower

frequencies below 0.1 Hz.

24

10-2 10-1 100

Frequency (Hz)

-20

-10

0

10

20

M
a

g
n

it
u

d
e

 (
d

B
)

Varying Proportional Gain

Human Test Subject Data

Kp = 9.8

Kp = 11.7

Kp = 13.6

Kp = 15.4

10-2 10-1 100 101

Frequency (Hz)

-400

-300

-200

-100

0

100

P
h

a
s
e

 (
d

e
g

)

Figure 4.3: The frequency response of the neural controller and motor pendulum
system is explored with various proportional gain values (Kp)

25

10-2 10-1 100 101

Frequency (Hz)

-20

-10

0

10

20

M
a
g
n
it
u
d
e
 (

d
B

)

Varying Derivative Gain

Human Test Subject Data

Kd = 0.77

Kd = 1.2

Kd = 1.9

Kd = 2.6

10-2 10-1 100 101

Frequency (Hz)

-400

-300

-200

-100

0

100

P
h
a
s
e
 (

d
e
g
)

Figure 4.4: The frequency response of the neural controller and motor pendulum
system is explored with various derivative gain values (Kd)

26

10-2 10-1 100 101

Frequency (Hz)

-20

-10

0

10

20

M
a

g
n

it
u

d
e

 (
d

B
)

Varying Positive Torque Feedback Gain

Human Test Subject Data

Kt = 0

Kt = 0.06

Kt = 1

10-2 10-1 100 101

Frequency (Hz)

-400

-300

-200

-100

0

100

P
h

a
s
e

 (
d

e
g

)

Figure 4.5: The frequency response of the neural controller and motor pendulum
system is explored with various positive torque feedback gain values (Kt)

27

10-1 100 101

Frequency (Hz)

-20

-10

0

10

M
a

g
n

it
u

d
e

 (
d

B
)

Varying Time Delay

Human Test Subject Data

 = 44 ms

 = 57 ms

 = 77 ms

 = 90 ms

 = 104 ms

 = 124 ms

10-2 10-1 100 101

Frequency (Hz)

-400

-300

-200

-100

0

100

P
h

a
s
e

 (
d

e
g

)

Figure 4.6: The frequency response of the neural controller and motor pendulum
system is explored with various time delay values (τd)

28

Chapter 5

Discussion

I hypothesized that the methods presented in this paper would produce a reasonable

starting point for developing dynamic neural controllers. I demonstrated this by taking

an classical control model fit to test subject data and reproducing this model’s behav-

ior using a simple network of neurons. My experiment shows that neural networks are

capable of emulating classical control in a specific system, however this process could

be generalized to any physical system that can be linearly modeled. It also enables the

designer to specify the desired dynamics in these systems and perform system anal-

ysis in the well-mapped classical controls domain. Using the methods in this paper,

any classical controller can be converted into a neural analog. Combining this neu-

ral control architecture with compliant actuators (Festo muscles), biologically inspired

joints [15], and physical properties that maximize open loop stability [11], is an excit-

ing path in the field of bio-inspired robotics.

When fitting a transfer function to experimental data, it was found that a 4 poles,

3 zeros transfer function provided a better fit than other transfer function orders. This

suggests that my overall theoretical transfer function 2.3 for the system model was an

accurate representation. For the controller experiments (Figure 4.1), there are many ar-

eas where error can be introduced. Effects such as the time delay, noise, Coulomb fric-

29

tion, and other nonlinearities introduce some error between my test data and model.

Any errors in the plant model will propagate into the overall system with a controller.

Thus, having an accurate plant model was an important achievement.

The controllers simulated and tested in this paper deviated from human test data

more significantly at higher frequencies. This stems from the lack of a feedforward PD

component, which increases phase lag and gain drop in this region. The feedforward

part of Peterka’s model was included to model passive muscle dynamics [1, 12], so it

was intentionally omitted in this work as it is an artifact of the physical constraints of

the human body - not a deliberate control calculation. I intend to merge physical com-

ponents and actuators that emulate biological systems into future robotic designs, so

capturing these dynamics within my controller is not desirable.

Overall, the plant model provided an excellent fit to the experimental data. This

model is crucial to obtaining predictable results when designing a controller. As shown

in Figure 4.2, the best fitting second order transfer function has a small amount of de-

viance from the experimental data. This discrepancy can be explained by the motor’s

non-linear and/or non-ideal behavior at very low torque values (low frequency input

signals) due to Coulomb friction, and also that the sin(θ)=θ linearizing assumption be-

comes less accurate at high gain values near resonance.

The neural controller and motor/pendulum system was determined to be a fourth

order system. With higher order systems, the effects of individual parameters can be

complex and interconnected, making it difficult to predict how each parameter might

affect the system. In Section 4.0.2, I showed how varying control parameters impacted

the frequency response in the neural network. The control parameters were varied

by modifying the stimulus currents in the multiplication subnetworks, so all the gains

30

were controlled within the network. This process allows the neural network to process

gain adjustments via the stimulus current to these multiplication networks. The con-

tinuum of different frequency responses represented in Figures 4.3 through 4.6 shows

the flexibility of the neural controller within the biological constraints, and how the

controller can produce a range of behaviors under the same general network design.

This neural control design process could be expanded to build a full scale robot

with a cascaded control model built off of many neural subnetworks. Centralized

vestibular and visual information could be used to determine the desired stabilizing

maneuvers that are necessary to achieve the optimal posture for quality sensory feed-

back and minimize the likelihood of falling over [1]. Engineering models of human

balance control that include vestibular and visual feedback loops have already been

postulated [12, 13], where the reliance of each of these sensory signals varies depend-

ing on their quality. The methods in this paper could be used to design a neural con-

troller that uses multi-sensory feedback. The multiplication subnetwork can set the

relative weighting of individual feedback signals and update the gains during opera-

tion, based on perceived changes in the quality of the feedback signal. In Figure 3.2,

Neurons 8, 12 and 24 act as gain adjustment neurons, where the gain is affected by

their membrane voltage. A stimulus current proportional to sensory feedback quality

could be applied to similarly functioning neurons that control the gain of a feedback

signal (e.g. vestibular feedback) to dynamically adjust the behavior of the controller. In

future works, employing a learning algorithm that adjusts gains "on the fly" based on

performance metrics of the system and combined feedback from a variety of different

sensors is an interesting prospect.

31

Bibliography

[1] L. ASSLÄNDER AND R. J. PETERKA, Sensory reweighting dynamics following re-
moval and addition of visual and proprioceptive cues, Journal of Neurophysiology,
116 (2016), pp. 272–285.

[2] T. BEKOLAY, J. BERGSTRA, E. HUNSBERGER, T. DEWOLF, T. C. STEWART, D. RAS-
MUSSEN, X. CHOO, A. R. VOELKER, AND C. ELIASMITH, Nengo: a Python tool
for building large-scale functional brain models, Frontiers in Neuroinformatics,
7 (2014).

[3] M. CHU, B. KIM, S. PARK, H. HWANG, M. JEON, B. H. LEE, AND B. G. LEE, Neu-
romorphic Hardware System for Visual Pattern Recognition With Memristor Ar-
ray and CMOS Neuron, IEEE Transactions on Industrial Electronics, 62 (2015),
pp. 2410–2419.

[4] D. COFER, G. CYMBALYUK, J. REID, Y. ZHU, W. HEITLER, AND D. EDWARDS, Ani-
matLab: A 3d graphics environment for neuromechanical simulations, Journal of
neuroscience methods, 187 (2010), pp. 280–8.

[5] F. CORRADI, H. YOU, M. GIULIONI, AND G. INDIVERI, Decision making and per-
ceptual bistability in spike-based neuromorphic VLSI systems, in 2015 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), May 2015, pp. 2708–2711.

[6] J. A. G. FRANCO, J. L. D. V. PADILLA, AND S. O. CISNEROS, Event-based image pro-
cessing using a neuromorphic vision sensor, in 2013 IEEE International Autumn
Meeting on Power Electronics and Computing (ROPEC), Nov. 2013, pp. 1–6.

[7] A. J. HUNT, M. SCHMIDT, M. S. FISCHER, AND R. D. QUINN, A biologically
based neural system coordinates the joints and legs of a tetrapod, Bioinspiration
& Biomimetics, 10 (2015), pp. 055004–055004.

[8] A. J. HUNT, N. S. SZCZECINSKI, E. ANDRADA, M. FISCHER, AND R. D. QUINN,
Using Animal Data and Neural Dynamics to Reverse Engineer a Neuromechanical
Rat Model, in Biomimetic and Biohybrid Systems, S. P. Wilson, P. F. M. J. Verschure,

32

A. Mura, and T. J. Prescott, eds., no. 9222 in Lecture Notes in Computer Science,
Springer International Publishing, July 2015, pp. 211–222.

[9] W. LI, N. S. SZCZECINSKI, A. J. HUNT, AND R. D. QUINN, A Neural Network with
Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a
Bipedal Model, in Biomimetic and Biohybrid Systems: 5th International Confer-
ence, Living Machines 2016, Edinburgh, UK, July 19-22, 2016. Proceedings, N. F.
Lepora, A. Mura, M. Mangan, P. F. Verschure, M. Desmulliez, and T. J. Prescott,
eds., Springer International Publishing, Cham, 2016, pp. 144–154.

[10] C. MEAD, Neuromorphic electronic systems, Proceedings of the IEEE, 78 (1990),
pp. 1629–1636.

[11] K. NARIOKA, S. TSUGAWA, AND K. HOSODA, 3d limit cycle walking of muscu-
loskeletal humanoid robot with flat feet, in 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Oct. 2009, pp. 4676–4681.

[12] R. J. PETERKA, Simplifying the complexities of maintaining balance, IEEE Engi-
neering in Medicine and Biology Magazine, 22 (2003), pp. 63–68.

[13] R. J. PETERKA AND P. J. LOUGHLIN, Dynamic Regulation of Sensorimotor Integra-
tion in Human Postural Control, Journal of Neurophysiology, 91 (2004), pp. 410–
423.

[14] C. D. SCHUMAN, T. E. POTOK, R. M. PATTON, J. D. BIRDWELL, M. E. DEAN, G. S.
ROSE, AND J. S. PLANK, A Survey of Neuromorphic Computing and Neural Net-
works in Hardware, arXiv:1705.06963 [cs], (2017). arXiv: 1705.06963.

[15] A. G. STEELE, A. HUNT, AND A. C. ETOUNDI, Development of a Bio-inspired Knee
Joint Mechanism for a Bipedal Robot, in Biomimetic and Biohybrid Systems, Lec-
ture Notes in Computer Science, Springer, Cham, July 2017, pp. 418–427.

[16] N. S. SZCZECINSKI, A. J. HUNT, AND R. QUINN, Design process and tools for dy-
namic neuromechanical models and robot controllers, Biological Cybernetics, 111
(2017), pp. 105–127.

[17] N. S. SZCZECINSKI, A. J. HUNT, AND R. D. QUINN, A Functional Subnetwork Ap-
proach to Designing Synthetic Nervous Systems That Control Legged Robot Loco-
motion, Frontiers in Neurorobotics, 11 (2017).

33

Appendix A

Appendix: Neural Network Simulation Parameters and Control Code

A.1 Neuron Parameters Used in Controller

Table A.1: Neuron parameters used in the controller shown in Figure 3.1

Neuron Number Resting Potential (mV) Time Const (ms) Stim Current, Iapp (nA)
1,2 −50 20 0

3,6-7,10,13,15-16,19-21 −60 1 0
4,17 −60 0.1 0
5,18 −60 8 0

8 −60 1 12.5
9,12,24 −60 1 20

11 −60 1 13.5
14,22 −60 20 0

23 −60 1 0.8
25,26 −60 30,000 0

A.2 Synapse Parameters Used in Controller

Table A.2: Synapse parameters used in the controller shown in Figure 3.1

Synapse Number ∆E (mV) Conductance, gs (µS) Notes
1,3-4,6,9,12-13,19-21,

194 0.115 Addition
24-25,29-30,35,37,40-41

2,7-8,18,23,26,36,39 −40 0.55775 Subtraction Negative
5,22 194 2.2 Mult. Kp

10-11,27-28 194 54 Mult. Kd

14-17,31-34,38 0 20 Mult. Syn 2

34

A.3 MATLAB Program for Neural Controller

%% Wade Hilts - Portland State University

%% Animatlab Serial interface with MATLAB and HEBI MATLAB

API

clear all;

clc;

% setup serial connection properties

delete(instrfindall)

s = serial('COM3');

set(s,'BaudRate ' ,256000); % it is critical that strict

baudrate emulation is enabled on the virtual serial

port driver

s.InputBufferSize =1024;

s.Timeout =15;

fopen(s);

r = serial('COM9');

set(r,'BaudRate ' ,256000); % Animatlab seems to be

tolerant of very high virtual baudrates. I could have

gone to 10^6

fopen(r);

% setup HEBI motor API and connection

startup (); % this startup function is called to setup

HEBI communication

serials = {'X -80103 '}; % my HEBI motor serial number

ctrl = CommandStruct ();

group = HebiLookup.newGroupFromSerialNumbers(serials);

group.setCommandLifetime (.25);

group.setFeedbackFrequency (150);

HebiLookup

% initialize variables

n=200000; % initializes the maximum number of serial

bytes that will be read before vectors are full (set

to well above what sim time needs)

cmd = 1;

cmd_cw = 1;

cmd_ccw = 1;

ct=1;

adv =0;

35

CW_T=zeros(n,1); % CW torque commmand vector

CCW_T=zeros(n,1); % CCW torque commend vector

val=zeros(1,n);

var=zeros(1,n);

cmd_sm=zeros (7,1);

cmd_lg=zeros (13 ,1);

error_adv=zeros (3,1);

chksum =0;

% Control Parameters

gain = 515;

Vout = -.060; %V used to normalize commanded torque

Tout=zeros(n,1);

delay =5; %originally 5

% setup serial package for writing to animatlab

pos_head =[255 255 1 18 0 23 0];%defines header , message

ID , message size and Data ID

pos_des_head =[24 0];

pos_msg=zeros (1,12);

pos_rad=zeros(1,n);

crit_error = 0;

% Generate filtered Gaussian white noise for sys ID

Fs = 150;

d = fdesign.lowpass('Fp ,Fst ,Ap,Ast' ,2,8,.5,60,Fs);

B = design(d,'equiripple ');

% create white Gaussian noise the length of your signal

x = 4.* randn (20000 ,1);

% create the band -limited Gaussian noise

pos_des = filter(B,x)*(pi/180);

% yt=y(1:(length(y) -1));

% Initialize HEBI 's logging

% group.startLog ();

fbk = group.getNextFeedbackFull ();

t0 = fbk.hwTxTime;

% Control Loop below. HEBI motors have a command lifetime

, so updated

% commands must be sent in less than this time or else

the motor will turn

% off

while crit_error == 0

36

val(ct)=fread(s,1);% read from serial port

switch var(ct)

case 0 % first header value

if val(ct) == 255

var(ct+1) = 1;

end

case 1 % second header value

if val(ct) == 255

var(ct+1) = 2;

end

case 2 % Message ID: data send or error

if val(ct) == 1 % valid message

var(ct+1) = 3;

elseif val(ct) == 2 % error report from animatlab

fprintf('error @ cmd=%d\n',cmd)

error_adv=fread(s,3);

else % some other error has occurred

fprintf('message ID is %d @ cmd %d \n',val(ct),cmd)

end

case 3 % proceed to reading message size

adv=fread(s,1); % advance read position to skip unused

byte

switch val(ct) % this is the message size

case 12 % small message (1 command)

cmd_sm = fread(s,7);

if cmd_sm (1:2) == [21; 0] % CCW only

CCW_T(cmd_ccw ,:) = typecast(uint8(cmd_sm (3:6)),'single ');

% convert 8 bit data to single precision

cmd_ccw = cmd_ccw +1; % advance CCW command index

elseif cmd_sm (1:2) == [22; 0] % CCW only

CW_T(cmd_cw ,:) = typecast(uint8(cmd_sm (3:6)),'single ');

cmd_cw = cmd_cw +1; % advance CW command index

end

if cmd_sm (7) ~= mod(sum([val((ct -3):ct)'; adv; cmd_sm

(1:6)]) ,256) % checksum

disp('checksum error! on cmd_sm ')

% crit_error =1;

end

case 18 % large message (2 commands)

cmd_lg = fread(s,13);

37

CCW_T(cmd_ccw ,:) = typecast(uint8(cmd_lg (3:6)),'single ');

CW_T(cmd_cw ,:) = typecast(uint8(cmd_lg (9:12)),'single ');

cmd_cw = cmd_cw +1;

cmd_ccw = cmd_ccw +1;

if cmd_lg (13) ~= mod(sum([val((ct -3):ct)'; adv; cmd_lg

(1:12)]) ,256)

disp('checksum error! on cmd_lg ')

% crit_error = 1;

end

otherwise

fprintf('message size is %d @ cmd = %d \n',val(ct),cmd)

end

% Next , HEBI API is called to obtain position feedback

fbk = group.getNextFeedbackFull ();

pos_rad(cmd) = fbk.position;

pos_byte = typecast(single(pos_rad(cmd)),'uint8 ');

des_byte = typecast(single(pos_des(cmd)),'uint8 ');

chksum = mod(sum([pos_head pos_byte pos_des_head des_byte

]) ,256);

pos_msg = [pos_head pos_byte pos_des_head des_byte chksum

]; % package up serial message

fwrite(r,pos_msg ,'uint8 '); % write serial message to

animatlab sim

Tout(cmd)=((CW_T(cmd_cw -1)-Vout) -(CCW_T(cmd_ccw -1)-Vout))

*-gain; % Commanded Output is defined here

% if statement below controls a time delay between torque

command realization and command issuing.

% I'm not sure if this works properly as it causes a lot

of instability.

% I have delay set to zero so commands are instant.

if cmd > delay

ctrl.effort = Tout(cmd -delay);

group.send(ctrl); % this is the HEBI API 's function for

sending motor commands

end

%flush serial buffers

flushinput(s);

flushoutput(r);

cmd=cmd+1; % advance command index

end

38

ct=ct+1; % advance serial index

end

%% analyse Animatlab output

% subtraction cicuit output graph:

sub_net=fopen('C:\Users\Wade Hilts\Google Drive\AnimatLab

\InvertedPendulum_mscfbk_02_26_18_exptest\InputOutput.

txt','r');

sub_data_headers=textscan(sub_net ,'%s\t %s\t %s\t' ,3);

sub_data=textscan(sub_net ,'%f\t %f\t %f\t');

t=sub_data {1};

N_1=sub_data {2};

N_2=sub_data {3};

fclose(sub_net);

%downsample from Ts=.2 to Ts =6.667 ms

N_1_ds = downsample(N_1 ,33) .*(200) +10;

N_2_ds = downsample(N_2 ,33) .*(200) +10;

t_ds = downsample(t,33);

figure;

plot(t_ds ,N_1_ds ,t_ds ,N_2_ds);

legend('Measured ','Desired ');

%% plot 8 transfer function fits at once

Tsi =0;

load('maple_analysis.mat');

w_plot=logspace (-1.1 ,1.2 ,1000);

[mag_n ,phase_n ,w_n1]=bode(tf1 ,w_plot);

mag_c1=squeeze(mag_n);

phase_c1=squeeze(phase_n);

[mag_n ,phase_n ,w_n2]=bode(tf2 ,w_plot);

mag_c2=squeeze(mag_n);

phase_c2=squeeze(phase_n);

[mag_n ,phase_n ,w_n3]=bode(tf3 ,w_plot);

mag_c3=squeeze(mag_n);

phase_c3=squeeze(phase_n);

39

[mag_n ,phase_n ,w_n4]=bode(tf4 ,w_plot);

mag_c4=squeeze(mag_n);

phase_c4=squeeze(phase_n);

[mag_n ,phase_n ,w_n5]=bode(tf5 ,w_plot);

mag_c5=squeeze(mag_n);

phase_c5=squeeze(phase_n);

[mag_n ,phase_n ,w_n6]=bode(tf6 ,w_plot);

mag_c6=squeeze(mag_n);

phase_c6=squeeze(phase_n);

[mag_n ,phase_n ,w_n7]=bode(tf7 ,w_plot);

mag_c7=squeeze(mag_n);

phase_c7=squeeze(phase_n);

[mag_n ,phase_n ,w_n8]=bode(tf8 ,w_plot);

mag_c8=squeeze(mag_n);

phase_c8=squeeze(phase_n);

w_plot=logspace (-1.5 ,1.5 ,1000);

[mag_p ,phase_p ,w_p]=bode(gfr ,w_plot);

mag_f=squeeze(mag_p);

phase_f=squeeze(phase_p);

Ts=0;

figure;

subplot (2,1,1)

semilogx(w_p ./(2*pi) ,20*log10(mag_f),w_n1 ./(2* pi) ,20*

log10(mag_c1),...

w_n2 ./(2*pi) ,20*log10(mag_c2),w_n3 ./(2* pi) ,20*log10(

mag_c3),...

w_n4 ./(2*pi) ,20*log10(mag_c4),w_n5 ./(2* pi) ,20*log10(

mag_c5),...

w_n6 ./(2*pi) ,20*log10(mag_c6),w_n7 ./(2* pi) ,20*log10(

mag_c7),...

w_n8 ./(2*pi) ,20*log10(mag_c8),'Linewidth ' ,2);

xlabel('Frequency (Hz)');

ylabel('Magnitude (dB)');

40

legend('Human Test Subject Data','trial 1','trial 2','

trial 3','trial 4','trial 5','trial 6','trial 7','

trial 8','Location ','southwest ');

title('Controlled System Response ');

subplot (2,1,2);

semilogx(w_p ./(2*pi),phase_f ,w_n1 ./(2*pi),phase_c1 -360,...

w_n2 ./(2*pi),phase_c2 -360, w_n3 ./(2*pi),phase_c3 -360,...

w_n4 ./(2*pi),phase_c4 -360, w_n5 ./(2*pi),phase_c5 -360,...

w_n6 ./(2*pi),phase_c6 -360, w_n7 ./(2*pi),phase_c7 -360,...

w_n8 ./(2*pi),phase_c8 -360,'Linewidth ' ,2);

xlabel('Frequency (Hz)');

ylabel('Phase (deg)');

av_num =(tf1.Numerator+tf2.Numerator+tf3.Numerator+tf4.

Numerator+tf5.Numerator+tf6.Numerator+tf7.Numerator+

tf8.Numerator)./8;

av_den =(tf1.Denominator+tf2.Denominator+tf3.Denominator+

tf4.Denominator+tf5.Denominator+tf6.Denominator+tf7.

Denominator+tf8.Denominator)./8;

av_exp_Kt_20=idtf(av_num ,av_den);

A.4 Greybox State Space Model for Classical Controller in MATLAB

%% Wade Hilts - idgrey call -out function

function [A,B,C,D] = Human_Cntrl(Kp,Kd ,Kt,wc,tau ,a,b,c,Ts

)

% Human balance control model

c4=(tau*a+Kt*wc*tau*Kd*a);

c3=(Kt*wc*tau*Kp*a+Kt*wc*tau*Kd*b+2*a-tau*Kd -2*Kt*wc*Kd*a

+b*tau+tau*wc*a);

c2=(Kt*wc*tau*Kd*c+b*tau*wc+tau*c+Kt*wc*tau*Kp*b+2*b+2*wc

*a-2*Kt*wc*Kd*b-tau*Kp -2*Kt*wc*Kp*a-tau*Kd*wc+2*Kd);

c1=(2*c-tau*Kp*wc -2*Kt*wc*Kd*c+Kt*wc*tau*Kp*c+tau*wc*c+2*

Kd*wc -2*Kt*wc*Kp*b+2*Kp+2*wc*b);

c0=2*c*wc+2*Kp*wc -2*Kt*wc*Kp*c;

b3=-tau*Kd;

b2=(2*Kd-tau*Kp-tau*Kd*wc);

41

b1=(2*Kp -(-2*Kd+tau*Kp)*wc);

b0=2*Kp*wc;

% set up matrices

% X0=aux(4:end);

A=[0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; ...

-c0/c4, -c1/c4, -c2/c4 , -c3/c4];

B=[0 0 0 1/c4]';

C=[b0 , b1 , b2 , b3];

D=0;

% K=zeros (8,1);

if Ts >0

s = expm ([[A B]*Ts; zeros (2 ,10)]);

A = s(1:8 ,1:8);

B = s(1:8 ,9:10);

end

end

A.5 Greybox State Space Plant Model in MATLAB

%% Wade Hilts - idgrey call -out function

function [A,B,C,D] = OLTF_graybox(a,b,c,Kp,Ts)

% define parameters common to all subjects

A=[0, 1; -(c+Kp)/a, -b/a];

B=[0 Kp/a]';

C=[1 0];

D=0;

end

A.6 Plant System ID MATLAB Code

%% Wade Hilts - Portland State University - Fall 2017

% Motor -Pendulum System Identification

% pendulum is T shape , with T orthogonal to axis of

rotation (larger J)

clc;

42

clear all;

% close all;

startup ();

HebiLookup

serials = {'X -80103 '};

group = HebiLookup.newGroupFromSerialNumbers(serials);

cmd = CommandStruct ();

group.setFeedbackFrequency (150);

n=1000000;

cmd_pos=zeros(n,2);

act_pos=zeros(n,2);

tor_cpl=zeros(n,2);

ts=1;

error =0;

error_m1 =0;

tor_c =0;

%

Kpi =30;

Kd=0;

count =0;

w = 2*pi *.975;

amp = 3*(pi/180); % 8 degrees pp

group.startLog ();

fbk = group.getNextFeedbackFull ();

t0 = fbk.hwTxTime;

while true

fbk = group.getNextFeedbackFull ();

t = fbk.hwTxTime - t0;

count=count +1;

pos_c = amp*sin(w*t);

error = pos_c - fbk.position;

% cmd_pos(ts ,1:2)=[t pos_c];

% act_pos(ts ,1:2)=[t fbk.position];

tor_c = Kpi*error + Kd*error_m1;

% tor_cpl(ts ,1:2) = [t tor_c];

cmd.effort = tor_c;

43

group.send(cmd);

ts=ts+1;

error_m1=error;

if t > 140*(2* pi/w)

break

end

end

log=group.stopLogFull ();

figure;

plot(log.time (2:end),diff(log.time));

figure;

plot(log.hwTxTime (2:end),diff(log.hwTxTime));

figure;

plot(log.time , log.effort);

% figure;

hold on

cmd_pos(ts ,1:2) = [t pos_c];

plot(log.time , amp.*sin(w.*log.time))

plot(log.time , log.position);

legend('torque ','cmd position ','act position ')

%% Compile FR data

% close all;

s=tf('s');

% removed first decade of static system behavior in freq

dom

% f=[.01 .03 .08 .1 .2 .4 .7 .8 .9 .95 .9625 .975 .9875 1

1.25 1.5 2 3 4 6];

f=[.2 .4 .7 .8 .9 .95 .9625 .975 .9875 1 1.25 1.5 2 3

4];

% dt =[226.6 -225.1 108.8 -108.3 78.31 -78.08 62.63 -62.47

51.31 -51.23 45.68 -45.62...

% 47.55 -47.49 49.11 -49.05 49.23 -49.16 42.63 -42.37

40.03 -39.74 39.53 -39.23 ...

% 39.06 -38.74 41.58 -41.25 30.14 -29.8 33.13 -32.84

31.36 -31.12 27.24 -27.08 ...

% 24.435 -24.31 20.46 -20.38];

dt =[51.31 -51.23 45.68 -45.62...

47.55 -47.49 49.11 -49.05 49.23 -49.16 42.63 -42.37

40.03 -39.74 39.53 -39.23 ...

39.06 -38.74 41.58 -41.25 30.14 -29.8 33.13 -32.84

44

31.36 -31.12 27.24 -27.08 ...

24.435 -24.31];

cmd_pp=ones(length(f) ,1) '*2*amp;

% act_pp =[.05789+.06845 .06217+.06444 .06105+.06527

.06131+.065 .06247+.06595 ...

% .07647+.07278 .1049+.1052 .1343+.1305 .2075+.2036

.6031+.5838 .6047+.5803 ...

% .5885+.5699 .5627+.5436 .5645+.5509 .1921+.1858

.09472+.08714 .04088+.03731 ...

% .01639+.01427 .01008+.005246 .005429+.001605];

act_pp =[.06247+.06595 ...

.07647+.07278 .1049+.1052 .1343+.1305 .2075+.2036

.6031+.5838 .6047+.5803 ...

.5885+.5699 .5627+.5436 .5645+.5509 .1921+.1858

.09472+.08714 .04088+.03731 ...

.01639+.01427 .01008+.005246];

dB=20.* log10(act_pp ./ cmd_pp);

w=(2*pi).*f;

ph=dt.*f*-360;

Kpi =30;

Ai=.44;

Bi=.4;% bi=.9;

Ci= -9.5;

OLTF =1/(Ai*s^2+Bi*s+Ci);

CLTF_f=feedback(Kpi*OLTF ,1);

Ts=0;

s=tf('s');

sysID =120.9/(s^2+3.349*s+103.8);

w_plot=logspace (.1 ,1.4 ,1000);

[mag_sys ,phase_sys ,w_sys]=bode(CLTF_f ,w_plot);

mag_s=squeeze(mag_sys);

phase_s=squeeze(phase_sys);

figure;

45

subplot (1,2,1)

semilogx(w./(2* pi),dB,'Linewidth ',2,'Linestyle ','-.');

hold on;

semilogx(w_sys ./(2*pi) ,20* log10(mag_s),'Linewidth ',2,'

Color ','r')

hold off;

xlabel('Frequency (Hz)');

ylabel('Magnitude (dB)');

legend('Test Data','Plant Model','Location ','southwest ');

title('

Closed Loop Pendulum & Motor System ');

subplot (1,2,2);

semilogx(w./(2* pi),ph,w_sys ./(2*pi),phase_s ,'Linewidth '

,2,'Linestyle ','-.');

hold on;

semilogx(w_sys ./(2*pi),phase_s ,'Linewidth ',2,'Color ','r')

;

xlabel('Frequency (Hz)');

ylabel('Phase (deg)');

data=(act_pp ./ cmd_pp).*exp(1j*ph*pi/180);

gfr = idfrd(data ,w,Ts);

% fit=procest(gfr ,'P1D ');

load('BVL_SurfaceTilt_1deg_EyesClosed.mat');

clear tf

s=tf('s');

Ktot =5;

wn=23;

z=1.2;

Kpi =30;

%

% Ai =.433;

% Bi=.6;% bi=.9;

% Ci= -10.48;

% OLTF =1/(I*s^2+ frc*s-m*g*h);

46

OLTF =1/(Ai*s^2+Bi*s+Ci);

% CLTF_w =(Ktot*wn^2)/(s^3+2*z*wn*s^2+(wn^2)*s+Ktot*wn^2);

CLTF_f=feedback(Kpi*OLTF ,1);

CLTF=feedback(OLTF ,1);

CLTF_d=c2d(CLTF_f ,.002,'tustin ')

%%

% mass of pendulum: ~3.36 kg

% moment of inertia: ~0.433 kg*m^2

% COM height: .318 m

Kpi =30;

% Ti =0.0005;

Ai =.433;% bi=.9;

Bi=.4;

Ci= -10.25;

Tsi =0;

par={'a',Ai;'b',Bi;'c',Ci;'Kp',Kpi};

aux ={};

% use idgrey function to generate data comparison

TF_fit = idgrey('OLTF_graybox ',par ,'cd',aux ,Tsi);

Ap=TF_fit.a;

Bp=TF_fit.b;

Cp=TF_fit.c;

% generate estimated Kp, Kd, Kt, wc, tau

TF_fit.Structure.Parameters (1).Free = true;

TF_fit.Structure.Parameters (2).Free = true;

TF_fit.Structure.Parameters (3).Free = true;

TF_fit.Structure.Parameters (4).Free = true;

% TF_fit.Structure.Parameters (5).Free = false;

% human_fit.Structure.Parameters (9).Free = false;

TF_fit.Structure.Parameters (1).Maximum = 1.1*Ai;

TF_fit.Structure.Parameters (1).Minimum = .9*Ai;

TF_fit.Structure.Parameters (2).Maximum = 2.5*Bi;

TF_fit.Structure.Parameters (2).Minimum = .2*Bi;

TF_fit.Structure.Parameters (3).Maximum = .8*Ci;

47

TF_fit.Structure.Parameters (3).Minimum = 1.2*Ci;

TF_fit.Structure.Parameters (4).Maximum = 1.05* Kpi;

TF_fit.Structure.Parameters (4).Minimum = .95* Kpi;

TF_est = greyest(gfr ,TF_fit)

% compare(gfr ,human_fit ,hum_cntrl_est)

% Plot results

w_plot=logspace (-1,2,1000);

[mag_p ,phase_p ,w_p]=bode(gfr ,w_plot);

mag_f=squeeze(mag_p);

phase_f=squeeze(phase_p);

[mag_n ,phase_n ,w_n]=bode(TF_fit ,w_plot);

mag_c=squeeze(mag_n);

phase_c=squeeze(phase_n);

[mag_n1 ,phase_n1 ,w_n1]=bode(TF_est ,w_plot);

mag_c1=squeeze(mag_n1);

phase_c1=squeeze(phase_n1);

figure;

subplot (2,1,1)

semilogx(w./(2* pi),dB,w_n ./(2*pi) ,20* log10(mag_c),w_n1

./(2*pi) ,20* log10(mag_c1),'Linewidth ' ,2);

% semilogx(w./(2*pi),dB,w_n ./(2* pi) ,20*log10(mag_c),'

Linewidth ',2);

xlabel('Frequency (Hz)');

ylabel('Magnitude (dB)');

legend('Test Data','Unfit Model','Model Fit','Location ','

southwest ');

% legend('Test Data ','Model ','Location ','southwest ');

title('Closed Loop');

subplot (2,1,2);

semilogx(w./(2* pi),ph,w_n ./(2*pi),phase_c ,w_n1 ./(2*pi),

phase_c1 ,'Linewidth ' ,2);

% semilogx(w./(2*pi),ph,w_n ./(2* pi),phase_c ,'Linewidth

48

',2);

xlabel('Frequency (Hz)');

ylabel('Phase (deg)');

% figure;

% pzmap(TF_est)

	Emulating Balance Control Observed in Human Test Subjects with a Neural Network
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	Nomenclature
	Introduction and Motivation
	Classical Control Methods
	Methods for System Identification and Controller Design

	Neural Network Control Methods
	Neural Network Simulation

	Results
	Discussion
	Bibliography

