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Abstract 

Ecological conservation and restoration in the anthropocene must struggle with 

overlapping drivers of biodiversity and cultural loss; ruptures of the ecological 

environment mirror ruptures of human relationships with nature. And yet 

technology cannot remove humans from nature; technological and infrastructural 

reconfigurations of nature create new vulnerabilities and risks for humans and 

ecosystems alike. How can conservation and restoration science productively 

grapple with complex infrastructure systems and decision-making processes as 

biophysical and social drivers of ecosystem change?  

Using dam removals in the USA and in the Mid Columbia River region of 

the Pacific Northwest, this dissertation develops a conceptual framework for Social, 

Environmental, and Technological Systems (SETS), and applies it at three spatial 

and temporal scales to the practice of dam removal as a river restoration strategy. 

Drawing upon existing data sets, as well as biophysical, document, survey, and 

interview data this dissertation addresses how dam removals have functioned in the 

context of the social histories of river restoration programs, examines how these 

restoration programs must continue to renegotiate the human relationships with 

nature through the infrastructure systems that enable certain forms of existence 

while precluding others.  
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Of particular interest is how restoration programs have increasingly 

functioned to deliver novel infrastructure solutions, while ignoring longer-term 

changes in ecological structure and function due to infrastructure development; in 

other words, the infrastructural work of restored ecosystems, and the infrastructural 

blind spots of restoration programs.  

How restoration planning considers, or does not consider, infrastructural 

blind spots, is indicative of not only the biophysical drivers of threatened and 

endangered species loss, but also the political dynamics of decision making at 

large, and the power-knowledge relationships constituting legitimate and relevant 

knowledge in the decision making space.  

In the Pacific Northwest, there appears to be a tipping point of social 

convention in centering treaty rights and obligations vis-à-vis ongoing processes of 

colonization and institutionalized scientific expertise. Ecological restoration will 

only be successful if it addresses both engineered infrastructures and social justice. 
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Introduction: Systemic and Reflexive Knowledge in the new Conservation Science  

Biodiversity loss worldwide continues due to the synergistic effects of habitat 

destruction, climate change, and a host of other anthropogenic stressors (Barnosky 

et al. 2011), a loss so rapid and significant it constitutes a global change in its own 

right (Chapin iii et al. 2000). Globally freshwater species have declined at a far 

faster rate than their terrestrial counterparts (Dudgeon et al. 2006). These ecological 

declines are not surprising, as aquatic ecosystems, and riverine ecosystems in 

particular, are highly sensitive to landscape level changes, directly compete with a 

variety of human domestic, agricultural, and industrial uses of water and space, 

and integrate human physical and chemical alteration of the environment (Allan 

2004). These biodiversity losses interlock with very human concerns in water 

resource management, including the relationships between land use and 

management and water quality, the sustainable management of ground and surface 

water resources, built development in floodplain and wetland habitat (Dudgeon et 

al. 2006, Defries et al. 2012).  

In the Pacific North West of the United States, the pre-eminent crises of 

conservation that combines both terrestrial and aquatic issues is the crisis of 

Salmon.  Despite being sustainably managed for thousands of years, in less than 

150 years of colonization and industrialization, salmon fisheries have been over-

exploited in the rivers and the seas, and seen widespread habitat destruction due to 

physical, chemical, and biological factors (NRC 1996). In addition, extensive dam, 

irrigation, power transmission, and transportation infrastructures have not only 
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physically displaced habitats and species, but enabled new human uses of the 

landscape inimical to salmon co-habitation, which ironically have themselves now 

come under threat due to increasingly global drivers of anthropogenic climate 

change (Mote and Salathe 2010; Chang and Psaris 2013).  

All of these drivers of ecosystem decline can be plausibly linked back to the 

installation of colonial and explicitly imperial modes of defining and managing the 

natural world, transporting a logic of maximum exploitation and industrial 

regularity indicative of high modernist approaches to river management (Pritchard 

2011, White 2011, Worster 1985) to a diverse landscape previously typified by 

seasonal variability and diversity in human-ecological relationships (Hunn and 

Selam 1991; Fisher 2010; Jacob 2013; Beavert 2017).  Thus the biological losses of 

concern for conservation science, are accompanied by profound social and 

cultural disruptions, events such as the cultural, ecological, epistemological, and 

biological genocides occurring during the ongoing colonization of the so called 

‘Americas, (Deloria, 2003). These events cannot be separated fro the rise of 

centralized state bureaucracies that disrupted customary ways of relating to and 

governing nature typical of the advent of modern and high modern forms of 

industrialized society (Jacoby 2001, Scott 1998, Hess 1995), which have been 

increasingly subsumed under the rhetoric of the ‘anthropocene’ (Zalasiewicz et al. 

2008). Contemporary conservation is thus thoroughly embroiled in the conflicts of 

what types of knowledge are best used to manage the environment, which can be 
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broadly divided what James Scott (1998) calls ‘metis,’ or place based knowledges, 

and ‘techne,’ or abstractable generalizable knowledge of ‘how things work.’  

Biocultural rupture, ecological decline, and infrastructural transformation 

however are not totalizing forces, they have all stimulated social reactions to 

preserve ecosystems, often through spurring novel political coalitions confronting, 

resisting, reforming, and evolving physical infrastructures, land uses, and overall 

systems of river governance (Lowry 2003; McCool 2012). These new coalitions and 

collaborations must also face the obduracy of social and technological 

infrastructures embedded within land and hydroscapes (Star 1999; Miller et al. 

2008), the ways in which managers and decision makers can address dispersed 

processes of land use and climate change (Hoyer and Chang, 2014), which may 

very well depend upon their ability to work together with a common language and 

understanding (Granek et al 2010). Building such a common understanding, and 

understanding how such multi-vocal knowledge practices can manifest in practical 

changes to current management systems often requires reflexive and collaborative 

research practices (Spoon 2014).  

Placed in the current social context, shifts in the focus of river management 

have occurred alongside broader social changes; disillusionments with the 

promises of modernity, resurgent practices of indigenous governance reclaiming 

autonomy, self-determination, and cultural and spiritual environmental practices, 

and a broader turn towards the creation of multi-lateral, decentralized, and non-
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regulatory forms of environmental governance indicative of ‘environmentality’ 

(Agrawal and Lemos 2007). From such a vantage point, all environmental 

‘problems’ simultaneously become negotiated by social forces operating in concert 

with and counter to technological trajectories.  

The main question this dissertation seeks to answer, is have these social 

movements genuinely led to transformative forms of river governance, or has the 

techno-managerial approach to conservation and restoration remained supreme? 

To answer this question I trace the evolution of new systemic forms of organizing 

knowledge around the design and management of infrastructural systems; explicitly 

exploring them as co-produced by social, environmental, and technological forces 

(Chapter 1). I then go on to apply this line of thinking to examine at a high level the 

evolution of dam removal practice in the United States (Chapter 2). Chapter 3 digs 

deeper into three fairly high profile dam removals to understand how they were 

produced by multi-scalar political and financial forces along with their more 

broadly defined SETS domains, setting up an appeal to examine the lived 

experiences of individuals engaged in collaborative forms of river governance 

affected by the process and outcomes of dam removal in chapter 4. 

Overall, this dissertation charts new terrain in the vital questions of the 21st 

century – can humans learn to transform their core infrastructural systems to 

preserve the integrity of their ecological well being, and do so in a way which is 

socially just and honors the agreements and wisdom of indigenous ways of 

knowing and relating to the land. 
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Chapter 1: Infrastructures as socio-eco-technical systems 

Previously Published In the ASCE Journal of Infrastructure Systems: 

Grabowski, Z.J., Matsler, A.M., Thiel, C., McPhillips, L., Hum, R., Bradshaw, A., 
Miller, T. and Redman, C. (2017). Infrastructures as socio-eco-technical systems: 
Five considerations for interdisciplinary dialogue. Journal of Infrastructure Systems 
23(4): 02517002.  DOI: 10.1061/(ASCE)IS.1943-555X.0000383� 

Need for Interdisciplinarity in Infrastructure Studies  

Infrastructure plays a key role in 21st century sustainability challenges related to 

burgeoning populations, increasing material and energy demand, environmental 

change, and shifts in social values. Social and political controversy over 

infrastructure decision making will continue to intensify without robust 

interdisciplinary and inter-sectoral dialogue over national-scale and local-scale 

infra- structure trajectories. Alongside large investments in physical and social 

systems, the infrastructure community—including planners, engineers, public 

works specialists, financiers, and sustainability scientists—needs to articulate a 21st 

century vision addressing the interrelated technological, social, and environmental 

dimensions of infrastructure systems. Such a vision needs to address existing 

systems in the industrialized world and new systems in countries seeking to 

improve human welfare through infrastructure development.  

Infrastructure systems—discussed here as primarily those integrating the built 

environment (Jones et al. 2001; Pulselli et al. 2007), transportation (Greene and 

Wegener 1997), power generation and distribution (Jacobson and Delucchi 2009), 

food production and processing (Food and Agriculture Organization of the United 
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Nations 2011), manufacturing (Jovane et al. 2008), water delivery (Gleick 2003; 

Muller et al. 2015; Palmer et al. 2015), and waste treatment (Melosi 2008)—

underpin the unprecedented material wealth of contemporary human society. 

These technological systems have developed alongside extensive social 

infrastructure including specialized knowledge and expertise housed in institutions, 

informal knowledge systems of operation and maintenance, and a broader system 

of governance and regulatory politics setting budgetary priorities, policy directions, 

and regulatory certainty. In combination with these policy processes, user behavior 

and demographic change influence the demand and maintenance costs for 

infrastructure services, both of which have an identified overall investment need of 

$3.6 trillion (ASCE 2013), $2 trillion of which is needed by 2027 (ASCE 2017). 

Because infrastructure relies on environmental inputs to function, channels and 

protects society from environmental forces, and impacts environmental systems, 

attitudes about technology and appropriate human–nature relationships set the 

goals for long-term infrastructure sustainability. They do so through both a social 

willingness to pay for infrastructure systems and a social consciousness of and 

desire for specific types of systems. Shifting environmental conditions, including 

climatic changes and dispersed atmospheric pollutants, are exacerbated by the 

externalities of present infrastructure systems and the technologies they support. 

The extent of these shifts is rarely apparent until systems become overwhelmed 

(Gross 2010; Perrow 1999). For example, in the case of Hurricane Sandy, siloed 

sys- tem management created unforeseen vulnerabilities propagating through 
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critical infrastructure systems (Klinenberg 2013, Comes and Van de Walle 2014), 

serving as an example of cascading failure (Rinaldi et al. 2001), as well as affecting 

system restoration (Sharkey et al. 2015). At the same time, infrastructure systems 

and the technologies and behaviors they enable serve as sources of risks and costs 

to public and environmental health; 8 of 10 people now live in urban areas with 

excessive air pollution primarily due to transport, manufacturing, and energy 

generation (WHO 2016).  

How has contemporary infrastructure practice come to this point? The modern 

infrastructure ideal of large, networked systems such as power generation, 

information technology, and transport (Duenas-Osorio et al. 2007; Haimes and 

Jiang 2001; Winkler et al. 2011) has enabled lowered unit costs and greater 

accessibility while splintering social and environmental systems (Graham and 

Marvin 2001). In response, discourse on appropriate technology, emphasizing cost 

efficiency on both the supply side and the demand side of infrastructure thinking 

(Basu and Weil 1998), and work on inverse infrastructures examining self 

organizing forms of user-generated infrastructures (Egyedi and Mehos 2012) 

advocate for an improved fit between technological capabilities and social goals 

across scales.  

Current infrastructure thinking must therefore address two fundamental challenges, 

one physical and one social. Physically, infra- structure must continue to evolve in 

design, implementation, and operations and maintenance in a world changing due 
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to the impacts of infrastructure systems and the human activities they enable. 

Socially, the infrastructure community must acknowledge the in- inherently 

political nature of infrastructure systems in order to overcome siloed decision-

making processes around single systems. Such an understanding requires 

embracing the added intellectual challenge of understanding how social perception 

and values frame the parameters of desirable infrastructure development.  

Reimagining Infrastructures as Social, Ecological, and Technological Systems  

One answer to overcoming these challenges in infrastructure discourse is to 

catalyze broader social engagement within existing processes of infrastructure 

planning, design, operations, and management. Established infrastructure decision-

making processes appear contained within narrow domains of expertise, subject to 

a large degree of physical and social inertia (Hall 2016). To foster public 

engagement, the infrastructure community needs to high- light the broad and cross-

sectoral role infrastructure decision- making plays in escaping unsustainable 

development trajectories (Karlsson 2014), as well as its potential to alleviate 

inequality in income and access to economic opportunity, as is being taken up by 

numerous current policy propositions. Providing defensible analysis of those 

claims, however, requires a strong interdisciplinary framework capable of 

illuminating the interrelated dimensions of the almost invisible but necessary 

support systems of contemporary life (Edwards 2003).  

This paper provides a conceptual framework for facilitating dialogue around 



11 

infrastructural systems as irreducibly interdependent social, ecological, and 

technological systems (SETs). Such a complex SETs framework facilitates the 

integration of infrastructure knowledge and practice on two fronts. The first 

involves the integration of different forms of expertise, shifting the emphasis in 

infrastructure research away from academically siloed or specialist- led programs to 

one engaging the infrastructure design, implementation, management, and research 

communities to frame problems and solutions collaboratively. Secondly, the 

authors emphasize the need for better process integration, whereby design, 

implementation, and management processes integrate technological systems with 

social and ecological systems. The framework herein simultaneously allows for the 

interdisciplinary analysis of the (uneven) economic benefits of infrastructure 

development while thinking more carefully about the environmental and social 

impacts of infra- structure (Monstadt 2009) by expanding on the idea of 

infrastructure ecosystems (Pandit et al. 2015). The infrastructure community must 

acknowledge that the negative impacts of infrastructure, previously considered as 

externalities, have transitioned from being simply impacts on the environment, to 

increasingly being felt as stresses on human systems, including risk to life and 

property, in- creased maintenance and operations costs, declining service levels,  

and disruptions to social life. The community must also acknowledge that there are 

enormous opportunities for increasing planning and design effectiveness through a 

more integrated approach to re- duce costs, decrease system down-time, and 
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maximize cobenefits of joint systems operation and maintenance. 

As part of thinking about the true costs and benefits of infra- structure, infrastructure 

systems science requires a more equitable process for articulating infrastructure’s 

goals and design considerations. Just as the sociotechnical imaginaries of the New 

Deal gave rise to such examples of modernity as the Tennessee Valley Authority 

and the Bonneville Power Authority, the authors envision a New Green Deal, 

which formulates a socially equitable vision of ecological sustainability to guide 

technological progress (Barbier 2010; Jones and Conrad 2008). Such a vision adds 

to the current national dialogue on the need for large public investment in infra- 

structure (Infrastructure Week 2016).  

This paper articulates the notion of infrastructure systems as socio-eco-

technological systems, a framework entangling the social, ecological, and 

technological as dimensions of a system, rather than a series of component pieces. 

Dimensions must be viewed relationally, allowing the treatment of infrastructure 

systems as interdisciplinary objects variably constructed from differing social, 

ecological, and technological forces; in this sense, technologies serve as hybrids of 

socialized cognitive processes and the material world they inhabit. Thus SETs allow 

for analyzing and evaluating the impacts of different methods of analysis and 

system representation of infrastructure science on infrastructure governance [see 

Manuel-Navarrete (2015) for socio-ecological systems research examples]. Through 

such a practice these authors hope to provide a framework to simultaneously 
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analyze the impacts of conceptual models of infrastructure systems on 

infrastructure decision making and engage in the infrastructure community to 

improve them.  

Social dimensions of infrastructure comprise embedded social networks, tacit 

knowledge, discourses, institutions, policy, and planning in and around 

infrastructure systems in their imagining, implementation, and maintenance. This 

dimension includes the normative goal-setting processes of planning, associated 

analysis and apportionment of costs, risks, and benefits, and the role of regulations 

and subsidies in guiding technological change. Both the process and the outcomes 

of infrastructure planning must be equitable in order to maintain long-term 

involvement and to facilitate social, ecological, and financial returns on 

infrastructure investments.  

For example, in the context of climate change, energy-intensive transportation, 

manufacturing, housing, and energy extraction infrastructures stemming from late-

nineteenth-century inventions have created risks that threaten their continued 

function. Although it is tempting to view such problems as primarily technological, 

they are intrinsically social systems, being conceived by social actors (Jasanoff and 

Kim 2013), and they set the backdrop of individual social worlds and physical 

realities of the environment. Such a socialization of infrastructure through an 

exploration of its sociopolitical dimensions illuminates infrastructure’s nature as a 

“total social fact” [after Marcel Mauss (1966) in Edgar and Sedgwick (1999)] 
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because the study of infrastructure weaves together a diverse array of social lives, 

and the nature of infrastructure from the perspective of the individual can be used 

to expose the nature of society [after Bowker’s infrastructural inversions (1994) in 

Star (1999)]. Such a perspective mirrors that of Alexander’s (1977) idea of the 

lattice, in which interwoven and overlapping social, technological, and ecological 

systems combine to create the emergent urban experience. The way that people 

interact with infra- structure through use, operation, planning, financing, 

maintaining, and regulating all contribute to its manifestation as a physical 

phenomenon and bound the opportunities for physical system integration and 

decentralization (Derrible 2017). By taking these social processes into account, key 

operational and financial uncertainties can be exposed early on and compensated 

for, positively impacting longevity and functionality.  

Ecological dimensions of infrastructure are composed of ecological structures (i.e., 

organisms, populations, communities, and ecosystems—generally networks of 

plants, animals, microbes, and so on), functions (i.e., primary productivity, food 

web interactions, carbon and nutrient cycling), and behaviors (e.g., squirrels 

nesting in transformer boxes, dam-building beavers) that make up, contribute to, 

and threaten infrastructures. Many of these ecological features and processes 

manifest independently of human intention, although they are enhanced or 

hindered by human activities and built infrastructures. This includes attempts to 

protect, maintain, and enhance existing and restored ecological elements providing 
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ecosystem services, improved human well-being, urban function, and a stable 

global climate. Ecological networks and actors should be afforded the same 

consideration as social actors by being pro- tected from harm, encouraged in their 

contribution to infrastructure function, and not just treated as potential sources of 

risk or uncertainty.  

Much of the urban ecology literature has focused on humans’ negative first-order 

impacts on pre-human nature (Grimm et al. 2000; McKinney 2006). This is usually 

understood in terms of urbanization’s impact on individual organisms, and 

organisms’ ability to inhabit urban space. Within urban ecology, scholarship has 

moved toward analyzing ecology of the city, which includes analysis of how 

sociopolitical processes shape urban ecosystems, rather than the previously 

dominant tradition of urban naturalism, which focused on the spatial patterns of 

plants, animals, insects, and so on, which now is referred to as ecology in the city 

(Collins et al. 2011; Grimm et al. 2000). Both ecology in the city and ecology of 

the city lend themselves to a valuation of urban ecosystems in terms of the 

ecosystem goods and services provided to humans (Gaston et al. 2013), largely 

focusing on health (Lee and Maheswaran 2011; Tzoulas et al. 2007), higher-order 

cognitive abilities (Kahn 1999), and regulation of the environmental quality and 

function of the urban environment via the use of green infra- structure (Amati and 

Taylor 2010).  

Aside from explicitly using ecological processes to perform infrastructural work (as 
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in the case of green infrastructure), infra- structure serves an ecological role in 

transforming possibilities for material, energy, and information flow throughout the 

urban system and beyond (Kennedy et al. 2007; Sahely et al. 2005). Infrastructure 

function also is dependent upon ecological flows operating in and around it. It is 

up to the infrastructure community to beneficially integrate these ecosystem 

processes or inevitably face them as sources of risk and operational constraint at 

local to global scales. Calls for infrastructure investment should internalize such 

ecological considerations both in terms of direct impacts on eco- logical patterns 

and processes and system-level feedback such as impacts on climate and 

hydrology.  

Technological dimensions of infrastructure are composed of the physical 

technologies (e.g., hardware, steel, concrete, rebar, cable, plant, equipment, and 

tools) and knowledge systems (e.g., data generation and management, software, 

and operating instructions) of an infrastructure network, including both expert-

engineered and informal work. This dimension includes the linkages between 

disparate infrastructure systems and their complex adaptive system nature (Rinaldi 

et al. 2001), therefore acknowledging the interdependent functionality of existing 

technological systems (e.g., necessary interactions between electricity, information 

technology, financial infrastructure, and mass transit). Technology and  

its developmental pathway cannot be seen as a value-neutral object. Rather, 

technology has embedded material and social con- sequences in terms of how it is 
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managed, how it reshapes social life, and its inherent ecological interdependency 

and impacts.  

Technological innovation can have direct and indirect impacts on infrastructure 

function, including ways of representing infra- structure systems through data, 

models, and media. For instance, the widespread use of GPS technology combined 

with advanced information systems has revolutionized understandings of com- 

muter behavior and given rise to the smart city ideal (Batty et al. 2012) as well as its 

associated problems (Gabrys 2014). However, information technology 

management can only go so far in re- solving on-the-ground infrastructure 

problems; physical design constraints provide outer limits to system adjustment, 

and the relationship between the two provides fertile ground for research. This 

relationship between macro and micro technology (Crawford and French 2008; 

Edwards 2003; Kemp 1994) constrains and high- lights the relationship between 

consumer-scale technological innovation and systemic innovations in larger 

infrastructure systems, often by affecting user behavior, demand for infrastructure 

services, and avenues for service delivery and unit costs.  

Five Critical Considerations Illuminated by SETs  

Five critical considerations emerge from a SETs framing (Fig. 1) and provide a novel 

way of thinking about the infrastructure life- cycle. These are (1) setting 

infrastructure goals, (2) addressing complexity and scale, (3) understanding 

ecological-technological hybridity, (4) operating resiliently, and (5) system 
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evolution. 

These considerations are implicit in all infrastructure projects but are often taken 

for granted and thought to take place outside the arena of infrastructure design and 

management itself. A SETs framing illuminates the important role of social and eco- 

logical systems alongside technology within all infrastructure life- cycle stages (Fig. 

2).  

Democratically Setting Goals for Infrastructure Systems  

Who articulates the goals of an infrastructure project? At what so- cial and political 

level are goals set? What policies and regulations frame the market environment 

determining unit costs? Who owns infrastructure and to what purpose? How do 

different organizational structures affect infrastructure performance? What cultures, 

norms, and behaviors of the design and user communities influence design 

considerations? In response to traditional technocratic planning practices, 

participatory-based, scenario-based, and charrette based design and planning 

approaches have sought to open decision-making processes to facilitate co-design 

of urban environments (Innes and Booher 2010; Wates 2014).  
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Figure 1. SETS frame as a prism; five interdependent critical considerations can be 
seen when viewing infrastructure through the multifaceted lens of SETS rather than 
along usual, component-based disciplinary boundaries  
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Figure 2. Infrastructure lifecycle through the SETS prism; each consideration has 
several nested components relating to how infrastructure is designed, operated, and 
evolved  

Goals are defined as an infrastructure system’s ultimate purpose, be it the provision 

of safe, reliable transport; clean drinking water; or dependable electricity. Goals 

fundamentally constrain the definition of costs, benefits, and financing of a given 

project and set up the trade-offs to be negotiated. They are a reflection of the 

values, identities, beliefs, and relationships of those at the goal-setting table. Thus, 
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prior to any technical discussion of the efficiency of providing services, discussions 

need to focus on the context- specific desirability of services and options for 

delivering them.  

Historically, large infrastructure spending programs reflected both specific political, 

social, and cultural projects and collective imaginaries that envisioned human 

progress as embodied in large, centralized technologies (Jasanoff and Kim 2013). 

The authors posit that a current shift in thinking calls for a new representation of 

possibilities, including both technical models and media presentations of systems 

that utilize technological change to preserve ecological security and integrity at 

local, regional, and planetary scales; it is a call to articulate desired ecological 

trajectories of clean air and water and resilient, biodiverse, and beautiful 

ecosystems vital to human well-being.  

ASCE has embarked upon a promising approach to meeting these shifting demands 

through its integrated systems approach. Integrating between infrastructure systems 

should allow for cost savings in terms of installation and maintenance (although 

with in- creased costs during design), as in the case of dedicated bundled utility 

service corridors. Without such physical integration, many municipalities and 

nations face the challenge of attempting to create integrated asset management 

systems on top of spatially and administratively fractured systems (Halfawy 2008; 

Meite 2015; Shahata and Zayed 2010). Although such approaches represent the 

cutting edge of infrastructure management, their cost savings, risk reductions, and 
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performance improvements would be much higher if the design process were 

similarly integrative; in both cases integration must bring together the many 

stakeholders needed to plan and maintain a diverse integrated system (ASCE 2009). 

Although the more open design process may hold the key to providing a forum for 

collaboration on infrastructure design, opening the process of decision making 

further complicates the neatness of designed solutions and requires changes to the 

current structure of the political arena (including bureaucracies and agencies) 

surrounding infrastructure design and operation.  

Addressing Complexity and Scale  

Infrastructure systems operate at different spatial, temporal, and social scales, and 

their successful implementation requires that they adequately deal with the 

complexity inherent in crossing scales. Most straightforwardly, crossing scales adds 

complexity to calculating the distribution of infrastructure effects in terms of service 

provision, cost recovery/revenue generation, and the apportionment of risks. 

Unintended consequences may accumulate downstream of infrastructure 

interventions, as evidenced by increased flood risk downstream of traditional flood 

defenses such as dikes and hardened banks (Wheater and Evans 2009). Likewise, 

consequences may accrue differentially over time, and subsequent generations may 

be harmed or reap the benefits of projects (Stirling 2010).  

A SETs perspective makes apparent not only the complexities of how technological 

systems interact, but also how interdependencies between different processes at 
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different scales can be harnessed to improve system function and lower unit costs. 

It becomes apparent that broad categorizations of urban form (e.g., residential, 

commercial, industrial, high/low density) are not particularly useful for 

characterizing ecological and technological relationships, even though housing 

types may predict coarse gradients of ecosystem service provision (Tratalos et al. 

2007). Additionally, a large body of literature on how cities function as agents in 

global networks of infrastructure (Tranos and Gertner 2012) requires bridging 

global political boundaries to local levels while remaining cognizant of over 

privileging the local (Jun 2013) when conceptualizing infra- structure. To deal with 

issues of scaling, it becomes critical to first accurately characterize drivers affecting 

the process at hand (e.g., climatic, landscape, and hydrogeomorphological drivers 

affecting flooding, stormwater management, drinking water, and/or energy 

provision in a complex hydraulically engineered landscape) and match the scale of 

the process to the scale of the intervention. Citywide modeling at superfine scales 

may be necessary to appropriately integrate ecological and technological systems, 

at least through current decision-making systems, especially as predetermined 

topographic/geomorphic boundaries are not necessarily relevant to many 

ecological processes (Post et al. 2007).  

Lastly, different disciplines and sectors have different foci on very different spatial, 

temporal, and social scales. Acknowledging scale dependency of different 

analytical frameworks will be required to address those types of scale 
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incompatibilities. The generation of knowledge academically as well as 

operationally around infrastructure must take scale dependencies into account 

when generating data, as well as analyzing operations, maintenance, and 

management.  

Designing Ecological-Technological Hybrids  

The ecological-technological hybridity of urban infrastructures highlights the 

interdependency of ecosystems and built infrastructures. All human-built 

infrastructure is embedded in an ecological system; ecology and earth systems form 

the background, base parameters, and many of the component pieces of the 

services provided by infrastructure (Carse 2012; Edwards 2003). During the design 

process, particular representations of natural processes be- come fixed in design 

criteria, including metaphysical ideas about how nature works [e.g., resilience, 

frailty (Gunderson and Holling 2002)] and technically constructed models of 

biophysical processes, such as climate change projections. Careful attention must 

be paid to the actual representativeness of these social and technical constructs in 

order to adequately design systems.  

From a purely ecology-based approach to infrastructure, humans simply act as 

another ecological engineer (Smith 2007), capable of transforming their physical 

habitat for their benefit in ways that impose, improve, and worsen conditions for 

other members of the ecological community. Research on urban metabolism 

(Kennedy et al. 2007; Pincetl et al. 2012; Wolman 1965) and industrial ecology 
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(Erkman 1997) function to analyze and optimize industrial material, energy, and 

information flows at the landscape scale. Through the combination of these 

perspectives, infrastructures act as the multifunctional and redundant systems of a 

robust hybrid techno-ecosystem designed and operated by multiple ecological 

actors. As evidenced by emergent urban ecosystem services research (Millennium 

Ecosystem Assessment 2005; Potschin and Haines-Young 2011), green 

infrastructure designs intend to produce multiple benefits; however, benefit 

provision depends on where a facility falls along the ecological-technological 

continuum [see Royal Society (2014) for a similar treatment]. Explicitly analyzing 

the connections and interdependencies along an eco- techno continuum between 

technological and ecological systems transcends existing ways of thinking about 

the impacts of infra- structure decision-making just based on system footprints.  

Such a multibenefit approach is illuminated by a SETs framing in which social and 

technical successes are inextricably linked to ecological function. For example, 

many cities already pursue joint strategies of improved stormwater management by 

increasing conveyance capacity through traditional grey infrastructure and 

reducing runoff rates to combined sewer systems by using distributed green 

infrastructure, such as Portland, Oregon, Philadelphia, and New York City. Green 

and grey facility types require different maintenance regimes (i.e., plants are 

managed differently than pipes), requiring different kinds of expertise at the local 

management level (Carlet 2015). However, if integrated wisely, such hybrid gray-



26 

green systems can provide functional certainty as well as co- benefits including 

ameliorating urban heat islands (Emmanuel and Loconsole 2015), improving air 

quality of indoor environments (Wang et al. 2014), enhancing the visual and 

recreational quality of development (Nazir et al. 2014), and contributing to urban 

renewal and city competitiveness (Bennett 2013; Philadelphia Water Department 

2011). However, as with all infrastructure interventions, there exist inherent social 

conflicts over appropriate methods and consequences of urban renewal (Lubitow 

and Miller 2013).  

Debate continues over such soft path versus hard path approaches toward 

infrastructure planning (e.g., Gleick 2003; Palmer et al. 2015; Muller et al. 2015); 

acknowledging hybridity in all approaches can resolve this debate by focusing 

instead on an appropriate degree of hybridity for the task at hand. Significant 

consensus on the value of ecosystems’ infrastructural work has already created 

substantial policy instruments, such as the Water Resources Reform and 

Development Act of 2013. Ultimately, infrastructure systems evolve alongside and 

in relation to their resident ecologies; design should be flexible enough to 

anticipate change and robust enough to deliver under uncertainty.  

Performing Resiliently  

Traditional infrastructures are designed to operate reliably to reach the agreed upon 

goals and functions of the system, often in a fail- safe manner (Ahern 2011), and 

their resilience is often defined by their ability to continue to operate under surprise 
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shocks (Rogers et al. 2012) or their ability to recover quickly and adapt to changing 

circumstances through networked architecture reinforcing learning behavior 

(Woods 2015). However, mounting challenges specifically related to climate 

change create wicked problems, defined by irreconcilable problem framings (Rittel 

and Webber 1973), manifest in disagreement over the relative desirability of using 

infra- structure to adapt to or to mitigate the impacts of climate change. While 

technical and political blocs argue over solutions, climatic conditions continue to 

shift with increasing variability exceeding known conditions (Seager et al. 2012), 

making fail-safe systems increasingly difficult to design and maintain.  

With the advent of unpredictable hazards, a growing body of engineering literature 

attempts to move from the traditional approach of risk management toward an 

ecological-resilience approach within a systems-engineering framework, explicitly 

including the value of social learning and knowledge. Such an approach refers to 

an infrastructure systems’ social, ecological, and technological ability to recognize 

and absorb variation, disturbances, and surprises (Hollnagel et al. 2007), often 

through adaptive management (Linkov et al. 2013). Systems approaches to 

resilience engineering embrace system dynamics (Fiksel 2003) and evolve systems 

through a constant cycle of anticipation, monitoring, and adaptation (Seager et al. 

2012; Woods 2015).  

These approaches can draw upon strategies developed by Ahern (2011) to integrate 

ecological interdependencies for enhancing resilience capacity; for example, 
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redundancy—having multiple infrastructure components that could provide the 

same service in case of failure of one component. Although traditionally this has 

been seen as inefficient in optimized engineered systems (Park et al. 2013), 

integrated planning identifies a desirable level of redundancy for a system to 

continue to function when disturbed (Mitra et al. 2010). The strategy of multi-

functionality in resilient infrastructural systems (Ahern 2011) can be leveraged 

using the notion of ecological-technological hybridity. Thus, multifunctional infra- 

structure can allow a smaller amount of space and funds to pro- vide the same 

benefits as multiple single-function infrastructures. For example, in the city of 

Rotterdam, spaces have been designed to be multifunctional: parks and basketball 

courts most of the time can serve as water storage facilities in times of flooding 

(Klinenberg 2013; Shorto 2014).  

Alongside this sensitivity and resistance to pulses and pressures of physical systems, 

a key component of resilience is a system’s social infrastructure, or the ways in 

which operators generate and share knowledge and experience through their 

networked relation- ships (often in unanticipated ways) to maintain function and 

minimize damage under extreme stress, as well as recover after extreme events 

(Aldrich and Meyer 2015) and more generally in day-to-day operations and 

maintenance (O+M). Previous disasters like the Chicago heat wave of 1995 and 

Hurricane Sandy in 2013 highlight the importance of social capital and community 

networks in pre- venting mass casualties. Extending the notion of social 
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infrastructure beyond the confines of a single system, it becomes apparent that 

overall system resilience also requires sustainable economic connections and 

financing. Systems recoup costs either through revenue generation or through 

public expenditures requiring highly politicized financial administration, either of 

which critically deter- mines design parameters and O+M budgets. System 

resilience cannot be defined in isolation of how the system lives socially; adaption 

to change requires intelligent behavior before, during, and after its design phase, as 

well as a public that experiences its benefits as equitable rather than contributing to 

economic and social inequalities (Fernández et al. 2016).  

An excessive focus on resilience, in all four senses of the word [system rebound, 

robustness, extensibility, and adaptability (Woods 2015)], neglects the more 

pressing need facing infrastructure systems—that of evolving the system. Such a 

consideration goes beyond emerging joint frameworks for analyzing sustainability 

and resilience, which certainly address numerous considerations articulated within 

this paper (Bocchini et al. 2014). However, it has become clear that infrastructure 

systems, and the sociopolitical relations that have produced them, are becoming 

primary drivers of risk generation to those systems, risks that continue to intensify 

the more the current system architecture is maintained, enhanced, and defended.  

Such a claim will likely make many within the current infrastructure community of 

practice uncomfortable. However, in an era of intensifying climate change, rising 

economic and political inequality, and clamoring demand for new services and 
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economic structures, the infrastructure community cannot continue to defend 

outmoded, increasingly obsolete and maladaptive forms of infra- structure 

planning, design, and governance. Efforts will be better spent thinking creatively 

about how to evolve.  

Evolving Systems  

The last stage in this framework pertains to infrastructure systems’ evolution, which 

critically must overcome constraints on innovation. In theory, it would be quite 

easy to utilize current calls for infrastructure investment to significantly improve 

and redesign existing infrastructure systems. However, in the existing planning and 

policy environment, legal, regulatory, and institutional structures have privileged 

particular forms of expertise and created both physical and intellectual path 

dependencies via sunk costs in social and technological infrastructures. Often, 

political and financial decision makers choose to make incremental fixes to existing 

systems in the face of knowledge that incremental fixes are inadequate (Hommels 

2005). In this sense, a financial path dependency occurs, where obdurate modes of 

infrastructure spending accumulate costs over time, neglecting spending on 

preventative measures and locking-in undesirable trajectories (Kong and Frangopol 

2003). Obduracy refers to the inability to evolve a system despite recognized need 

for change and, less dramatically, constrains the directions in which the system can 

evolve despite recognition of new goals and design considerations. When 

designing infrastructure systems of the future, planned obsolescence may be a key 
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yet underappreciated component of infrastructural evolution (Lemer 1996). 

Modular and appropriately scaled systems that meet the demands of shifting 

demographics (Ansar and Pohlers 2014), overcoming routinized learned behavior 

(Star 1999), and adapting to changing environments (Infrastructure Climate Change 

Impacts: Report Card 2015) may prove to be even more effective.  

With the advent of regulation of waste disposal practices [a social and economic 

decision with technological consequences (Melosi 1990)], many cities in the 

United States were historically forced to confront the challenge of no longer 

discharging untreated sewage into open water bodies using combined sewer 

infrastructure. Many opted to channel both storm and sanitary systems to 

centralized wastewater treatment plants before discharge. However, changes in 

storm frequencies and continued population growth has overwhelmed the capacity 

of these combined systems, causing major ongoing water quality and public health 

issues. Due to the perceived high cost of separating combined sewer systems, most 

municipalities opt to maintain the existing pipe network (EPA 2004), and increase 

capacity by increasing the size of central conveyance arteries and treatment plants, 

as in the case of Portland, Oregon’s Big Pipe project, and in the current London 

Thames Tideway Tunnel Projects. Although often touted as cheaper than separating 

systems, such centralized projects incur enormous long-term costs associated with 

financing and miss opportunities to derive additional services from system wide 

improvements. These systems continue to face large uncertainties in future 
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performance requirements due to changing flooding frequencies around the 

continental United States (Melillo et al. 2014), exacerbated by in- creased runoff 

rates from ongoing land use (Grimm et al. 2008), and further complicated in 

coastal regions by rising sea levels (Hallegatte et al. 2013).  

These factors highlight the interplay between the complexity of anticipating 

multiscalar changes in system parameters and socially negotiating desirable 

developmental pathways. Broader patterns of land use and urban development 

affect infrastructure path- ways in more ways than stormwater volume increases; 

patterns of built environment development fundamentally define infrastructure 

needs and costs by defining service density and demand. Thus, urban and spatial 

planning should ideally be utilized to coordinate long-term development 

trajectories with infrastructure needs as an explicit part of the planning calculus.  

Overcoming physical path dependencies and cost barriers, large-scale 

infrastructure integration and evolution faces the challenge of bringing together 

managers and agencies across a range of disciplines and overcoming barriers to 

public engagement. Traditionally, specific agencies with relevant expertise 

managed particular types of infrastructure at politically determined scales, e.g., 

municipal, state, or federal levels. Bridging existing silos requires coordination of 

conflicting perspectives and expertise as well as diverse funding sources and 

budget allocations. The ASCE has identified interdisciplinary coordination as a key 

to infrastructure planning and management and has stated that the failure to share 
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knowledge across agencies can compromise the system’s ability to properly 

function under extreme events (ASCE 2009). On the municipal level, New York 

City provides one example of successful inter-department coordination for 

infrastructure management: the New York City Department of Parks and 

Recreation, Department of Environmental Protection (DEP), and Department of 

Transportation (DOT) have forged a coordinated effort to implement bioretention 

swales in city sidewalks that will manage stormwater runoff in addition to 

providing co-benefits like pollinator habitat and shade (NYC DEP 2013). On the 

federal level, the U.S. Department of Housing and Urban Development (HUD), 

DOT, and EPA have formed a partnership to coordinate housing and transportation 

development in pursuit of creating more sustain- able communities (EPA 2014). 

However, agency coordination without public engagement around qualitatively 

different goals will not evolve systems.  

New Directions for Infrastructure Systems  

Achieving sustainable, integrated infrastructural systems requires an 

interdisciplinary research approach that bridges the silos of different expertise, 

forms of governance, and social worlds (Lave et al. 2014). The infrastructure 

community will also need to work across spatial, temporal and organizational 

scales: microscopic to global, seconds to centuries, species to ecosystems, town 

halls to Congress and beyond.  

Overall, the authors hope to invigorate research and dialogue around infrastructure 
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systems in order to guide investments that wisely integrate into ecosystems, provide 

for improved social well-being, and utilize the best technical knowledge. The real 

test for this framing will be its application in live infrastructure planning processes 

open to public and expert participation. Such a framework lends itself readily to 

analysis of both opportunities to improve the effective management and 

investments in existing infrastructure systems, as well as providing a platform for 

thinking about how to evolve infrastructure systems to meet a wider variety of 

socially conscious and environmentally friendly goals while providing for human 

well being. The authors hope a stimulated interdisciplinary discussion will help the 

infrastructure community collectively en- vision new infrastructure ideal, 

sustainably utilizing humans’ vast transformational capabilities to better the human 

condition while improving relations with the rest of life on earth.  
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Chapter 2: Fracturing dams, fractured data: Empirical trends and characteristics 

of existing and removed dams in the United States 

Previously Published in River Research and Applications: 

Grabowski, Z. J., Chang, H., & Granek, E. L. Fracturing dams, fractured data: 
Empirical trends and characteristics of existing and removed dams in the United 
States. River Research and Applications. https://doi.org/10.1002/rra.3283 

Abstract: Dam removals in the United States continue to accelerate in pace and 

scope, but no national analyses have examined how removed dams compare with 

existing dam stock. Here, we review and analyse the best available national data 

on dams from the National Inventory of Dams (NID), dam removals from American 

Rivers, the U.S. Geological Survey, and the National River Restoration Science 

Synthesis databases to compare trends and characteristics of removed versus 

existing dams in the United States. If historical trends continue, by 2050 the United 

States can expect between 4,000 and 36,000 total removals, including 2,000–

10,000 removals of NID dams. Best‐fit regression models estimate total costs 

between $50.5 million and $25.1 billion (mean $10.5 billion, median $416.5 

million) for all removals and $29.6 million to $18.9 billion (mean $7.2 billion, 

median $285 million) for NID removals, a significant cost savings over present 

stated dam rehabilitation needs. Structural characteristics and ages of documented 

removals are not representative of existing dams, with privately owned 

hydroelectric dams subject to public oversight and water supply dams the most 

disproportionately removed. We conclude that dam removal science would benefit 

from the creation of an interdisciplinary framework for studying dams as 
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environmental, social, and technological interventions, facilitated by transparent 

datasets around dams and removals and reflexive research approaches that 

combine statistical approaches with place‐based analyses.  

1 INTRODUCTION  

Following the release of the Oroville dam spillway incident report (IFT, 2018), an 

urgent need remains for systematic assessment of the state of existing dams in the 

United States to avoid loss of life, property, and critical infrastructure function 

(Phillips 2017, Nunez 2017, Ho et al. 2017, NEST 2017). At the same time, dam 

removal has become a mainstream option for dam safety management (Wildman 

2002) and restoring river and coastal ecosystems and the human communities that 

depend on them (Doyle et al. 2008, Pittock and Hartmann 2011, Beck et al. 2012, 

Lovett 2014, O’Connor et al. 2015, Tullos et al. 2016). In the USA, over 1,300 

documented removals (AR, 2016) have attracted international attention due to the 

potential for large-scale river restoration through improved infrastructure policy 

(McCulloch 2008, Barraud 2011). Today, documented removals of dams over 6ft 

(1.8m) tall have outpaced documented dam constructions in the United States (AR 

2016, NID 2016). Yet only a few analyses have examined whether removals 

represent existing dam stock, with two exceptions being Magilligan et al.’s (2016) 

comparison of heights and basin characteristics for existing and removed dams in 

New England, and Foley et al.’s (2017) comparison of landscape context and a few 

dam variables of scientifically evaluated removals and existing dams within the 
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National Inventory of Dams (NID). No analysis to date has investigated how 

representative removals are of the existing dam stock in terms of their functions and 

construction type, limiting our understanding of what processes drive removal as a 

rehabilitation option. While shifts in the political economy of river and 

infrastructure management may be driving removals (Lowry 2003, Hawley 2011, 

McCool 2012), the major considerations of dam safety management - operational, 

functional, and engineering dimensions of dams as infrastructures - remain largely 

absent in the dam removal literature. Disciplinary and sectoral differences in the 

ontology and epistemology of dams and removals have thus fractured dam data, 

science, and governance. This paper provides an overview of available data on 

dams and removals in the USA, analyzes trends in dam building and removal, and 

estimates numbers of removals and associated costs through 2050. Our 

conclusions point towards promising research avenues for investigating the 

likelihood of dam removals of different classes. Drawing upon our results, we make 

three major recommendations for improving dam removal science.  

2 DATA AND METHODS 

We examined the American Rivers Dam Removal Database (AR DRD - AR, 2016), 

the United States Geological Survey’s database of dam removals associated with 

peer-reviewed literature (the USGS DRD, from Bellmore et al. 2017), and a 

database of dam removals with before and after studies (the BAR DRD from Foley 

et al. 2017), and compared them against the NID (obtained by request from 
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USACE-NID (2016) (see Tables 1, 2, and 3). The USGS DRD is generally inclusive 

of the BAR DRD, although the two databases represent two levels of scientific 

scrutiny.  

While there are an estimated 2-2.5 million dams in the USA (NRC, 1992), the 

~90,000 dams in the NID are commonly referenced as they are the only national 

scale inventory of dams. The NID was authorized by Congress in 1972, directing 

the Army Corps of Engineers to inventory all dams higher than 25ft (7.6m) and/or 

impounding at least 50 acre ft. (6.2e-5 km3), excluding those less than 6 ft. (1.8m) 

or with storage below 15 acre ft. (1.8e-5 km3), unless deemed by the FEMA 

Director to be a public safety hazard (ASDSO 2014).  

American Rivers annually compiles the AR DRD from projects they were involved 

in and voluntary reports from partner organizations (Jessie Thomas-Blate, personal 

communication). The BAR and USGS DRDs contain removal dam NID identifiers, 

though since the AR DRD does not, it was divided into subsets of dams of differing 

probabilities of inclusion in the NID based on height, those over 25ft (7.6m) (high 

likelihood), over 6ft (1.8m) (moderate likelihood). We also evaluated shifts in 

removals over time by creating three subsets of the AR DRD of dams removed prior 

to 1999 (the mainstreaming of dam removal), during the first decade of major dam 

removals (2000-2010), and dams removed during the last 5 years of complete data 

(2011-2015). Additional cost data on dam removals was obtained from the 
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National River Restoration Science Synthesis (NRRSS) database (Bernhardt et al.  

2005). 

2.1 Descriptive Statistics and Dam Age 

We summarized each database from above in terms of the number (n) of dams in 

each database, n reporting for each data field, as well as summary statistics and 

results of Welch’s two-sided t-tests (from the base R package stats - R core team 

2016) for quantitative variables with n > 15 (Table 1). The distributions of build 

year, removal year, and age of existing and removed dams were examined for 

normality using Shapiro-Wilkes (R core team, 2016), and multi-modality using the 

package ‘diptest’ (Maechler 2015). Parametric (Welch’s), non-parametric 

(Kendall’s) t-tests, and a linear model (‘lm’ in R base package ‘stats’ – R core team 

(2016)), were utilized to examine correlations between dam build and removal 

years. 

2.2 Functions, Types, and Ownership of Removed and Existing Dams 

Dam primary type and function (defined by the NID as the first listed and 

reclassified within the AR DRD to match NID categories) of removed dams from 

the AR DRD, USGS, and BAR subsets were compared against dams in the NID 

(Tables 1, 2, 3, and Figure 5). Given that over 75% of dam removals with a 

documented build year were built prior to 1940 and only 25% of NID dams were 

built prior 1940, we also performed a separate comparison of removed and existing 
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dams built pre-1940. Motivations for removal were also examined for the USGS 

and BAR data. 

Table 1. Summary statistics for the 2016 AR DRD, subsets over 25ft (7.6m) (AR h>25), 6ft 
(1.8m) (AR h>6), and the NID. For categorical variables, ‘n’ refers to the number of dams 
reporting values for that variable, and ‘%’ refers to reporting. For quantitative variables, 
‘Mn’ refers to mean, ‘Md’ refers to median, and SD refers to standard deviation.  For 
numerical variables with n > 15, Welch’s Two Sample T-test results with p < 0.05 
indicated by bold for differences between AR DRD subsets and overall AR DRD 
(excluding subset from main); * indicates difference between AR h>6 and AR h>25, and 
Italic for differences between AR subsets and the NID. 
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2.3 Trends, Empirical Removal Probabilities, and Cost Estimates 

Time series of AR DRD and the over 6ft (1.8m) tall subset were constructed and 

examined for trends using linear and exponential forms with R package ‘stats’ (R 

Core team 2016), and checked for step changes using the function “breakpoints” in 

package strucchange in R (Zeileis et al. 2003). Using the ‘predict’ function (R 

package ‘stats’) upper, lower and fitted annual removal totals for different trend 

lines were estimated (Table 3). Historical empirical probabilities of NID dam 

removal from 1915 to 2015 were estimated using the following formula (Figure 

4.a.):

removal_pyear i = removalsyear i / (existing_damsyear i + removalsyear i  )  [eq. 1] 

where, removal_pyear i = the removal probability in year i, removalsyear i = the 

number of removals over 6ft (1.8m) tall in year i, and existing_damsyear i = the 

number of existing dams in year i derived from cumulative sums of dams in the 

current NID. We added in removals in the denominator as the NID deletes 

removed dams from the inventory (USACE, personal communication. A second 

order polynomial (best fit model) using ‘lm’ (as above) was fit to the time series of 

removal_p from 1978 to 2015, and the function ‘predict’ (as above) was used to 

obtain a 95% prediction confidence envelope of removal probabilities for years 

from 2017 through 2050 (Figure 4.b.), with regression equation below:  
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removal_pi = 8.256e-04 * YEAR2 + 2.805e-04 * YEAR + 2.178e-04 [eq. 2] (R2 = 

0.808) [eq. 2] 

With these annual removal probabilities, total future removals (f_removalsyear i) were 

estimated using a step function with equations 3 and 4: 

f_removalsyear i = f_removal_pyear i * existing_damsyear i [eq. 3] 

existing_damsyear i + 1 = existing_damsyear i – f_removalsyear i [eq. 4] 

where f_removal_pyear i is the fitted future removal probability. As dam building has 

decreased steeply in the US, this model includes no new dams being built through 

2050; however, if included, removal numbers would increase given model 

structure.  

For the above regressions, all terms are highly significant (p < 0.001). The lower 

5% from the over 6ft (1.8m) tall AR DRD (as the NRRSS has no height information) 

and the median, mean, and upper 95% values from the NRRSS were used with 

estimates of annual total removals to estimate the range of costs in Table 3.  
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3 RESULTS AND DISCUSSION 

3.1 Existing and Removed Dam Ages and characteristics 

It is clear that the ‘golden age’ of dam building was from 1950 to 1980, when three 

to six dams in the NID were completed per day (Graf 1999, Babbit, 2002, Doyle et 

al. 2003), after 1980 dam building plateaued, declining steeply in 2006 to be 

currently outpaced by removals over 6ft (1.8m) tall (Figure 1.a. and b). Removed 

dams are on average 39 years older than existing dams (Figure 1.b and 2.a); by 

2055, when the mean age of NID dams equals those in the AR DRD (95 years), 

over 51,000 dams will have ages within the 1st and 3rd quartiles of removed dams. 

To put these numbers in perspective, the Federal Emergency Management 

Administration (FEMA) estimates that the operational life span of approximately 

76,990 dams (85% of the NID) ends in 2020 (Doyle et al. 2003).  

There is no significant correlation between dam built and removal year for 

removed dams with both documented (n = 418 of 1293 in the AR DRD), explained 

by large differences in ranges years of their removal (mean(SD): 2003(13.6)) and 

building (mean(SD): 1915 (43.4), Figure 2), a finding which holds across all dam 

primary purpose and type classes. These results are not surprising, as no other 

analysis to date has found a statistically significant relationship between dam age 

and removal probability (Pohl 2002, Ashley, 2004, though see Lowry 2003), as 

dam maintenance and construction quality outweigh age in determining dam 

conditions (Jansen 2012, Wildman 2013). Empirical analyses of dam failures 
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provide some insight, as 50% of dam failures occur within 5 years of operation 

(Regan 2009).  

Figure 1. a) (top) All dam building and removals over time in the USA and since 1990 (inset), 
number of NID dams built (dashed line), all American River’s documented removals (AR DRD, solid 
green line), over 6ft/1.8m tall (AR DRD >=6, dashed blue line), and over 25ft/7.6m tall (AR DRD >= 
25ft, dotted red line). b) (bottom) Cumulative density of build years for removed dams (left dotted 
line), NID dams built (center purple line), and dams removed (right dashed line). 
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Otherwise, statistically significant differences exist between removed and existing 

dam heights, construction years, and reservoir volumes, although analyses are 

limited by a lack of comparable data fields (Tables 1 and 2). Interestingly, subsets 

of the USGS and BAR removals with NID identification numbers do not differ 

structurally from NID dams except for the characteristic of reservoir volume; 

removed dams have significantly smaller reservoirs (Table 2). 

Figure 2. a) (top) Side by side 
box and whisker plots (center 
line = median, box = 1 and 3rd 
quartiles, whiskers = 1.5 * Inter 
Quartile Range, all points 
outlying) of build years for 
removed dams in the American 
Rivers Dam Removal Database 
(AR DRD n = 437 out of 1,293) 
and existing dams in the 
National Inventory of Dams 
(NID, n = 76,359 out of 
90,580), and b) (bottom) 
scatterplot with regression line 
of build year vs removal year 
for all removed dams (n = 419).  
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3.2 Representativeness of Removed Dam Types, Functions, and Ownership 

Information on dam types, function, and ownership has increased over time (Tables 

3 and 4). However, removed dams do not represent primary dam functions of 

existing NID dams for any AR DRD subset (Figure 5). Examining differences based 

on size, function and time period, recreation and irrigation removals appear to be 

more prevalent in recent years, and there are some notable functional differences 

between size classes. Hydroelectric dams have been extremely disproportionately 

removed for all databases. Hydroelectric dam removals may be driven by periodic 

hydro-electric relicensing, a public hearing type process demanding regulatory 

compliance with a host of social and environmental regulations (Manahan and 

Verville 2004), lending further empirical support to the importance of democratic 

governance for river restoration (Lowry 2003). While hydroelectric dams are, as a 

class, older than other dam types in the NID (mean completion year of 1928 vs. 

1961, Welch’s p < 0.001), no significant correlation exists between hydro-dam 

completion year and removal year. Smaller ‘other’ (mostly old mill) dams and large 

irrigation dams are also over-represented, with flood control, fishponds, farm and 

fire ponds and recreation dams are all under-represented (Figure 5.a., Table 3). The 

majority of dams classified as ‘Other’ in the AR DRD are obsolete milldams, and 

historical preservation considerations may explain the under-representation of 

larger ‘Other’ dams. The over-representation of water supply dam removals 

contrasts with other studies (Hoenke et al. 2015), possibly due to ‘water supply’ not 

being differentiated into potable, industrial, or power generation uses, the 
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replaceability of water supply, or ongoing surface water quality deterioration. 

While 78.6% of NID are single function, over 95% of removals are single function, 

not surprisingly since the majority of removed dams were dams built prior to the 

era of large multi-purpose dam building. Notably, removals with NID identification 

numbers also over represent hydroelectric dams, although major differences 

disappear for other primary functions. 

Removals also do not represent NID dams with regards to dam type (Table 4, 

Figure 5.b.) particularly for concrete dams (extremely overrepresented) and earthfill 

dams (underrepresented), a counterintuitive finding. Earth fill dams do however 

make up over 60% of removals >25ft (7.6m) tall, likely because large earthfill dams 

are more susceptible to settling, overtopping, seepage, and other types of 

deformation (Jansen 2012). Interestingly, while single purpose dams are 

overrepresented in the AR DRD (indicating a relative lack of multi-functional dam 

removals), single type dams are underrepresented, indicating that composite dams 

may be more prone to deterioration and complex rehabilitation issues. 
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Figure 3. Time series of all removals with regression lines and 95% confidence intervals (inset) and 
with numbers of removals predicted until 2050 trend analysis a) (top) linear regression with two 
breakpoints (1981 and 1999) discovered using function breakpoints in R package strucchange 
(multiple R2 = 0.89), and b) (bottom) using a logarithmic trend line using function glm post 1981 
(multiple R2 = 0.87). 
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3.3 Trends in dam building, dam removal, and associated costs 

Annual removals have increased dramatically over time, appearing to increase 

exponentially since 1981 (Figure 3.b.). However, a linear regression with two trend 

breaks outperforms an exponential model (Figure 3a, Table 5), with one breakpoint 

in 1981, potentially indicating a lag between policy implementation and improved 

dam safety management (the first NID was created in 1976, ASDSO, 2014), and 

another breakpoint of 1999 coinciding with the creation of the American Rivers 

DRD, indicating potential reporting bias. The 1990s also saw the rise of the 

‘modern’ period of dam removal with the development of major federal and state 

restoration programs (Lowry 2003, McCool 2012).  

Removal probabilities fluctuate dramatically until the late 1970s, at which point 

they climb steadily due to slowdowns in dam building and increases in annual 

removal rates (Figure 4.a). If trends continue, we can expect between 4,000 and 

36,000 total dam removals, including 2000 - 10,000 removals of NID dams by 

2050. The lower 2.5%, median, and upper 97.5% of per removal costs from the > 

6ft (1.8m) AR DRD (n = 184) are $13,000, $132,500, and $2,955,000. The cost 

distribution has two outliers, the $84 million and $62 million dollar removals of the 

San Clemente and Great Works dams. The NRRSS (Bernhardt et al. 2005) has a 

cost distribution for dam removals with 2.5%, median, mean, and upper 97.5% of 
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$5,000, $90,072, $2,280,848, and $4,689,150 per removal. Large differences 

between models indicate an urgent need for improved class based cost  

Figure 4. a) (top) Dam removal probabilities given national scale data for removals over 6 feet tall 
from the American Rivers Dam Removal Database (608 removals) and dams in existence from the 
National Inventory of Dams. b) (Bottom) b) Annual dam removals with fitted annual predictions 
based on empirical removal probability from historical values using eq. 2 removal_pi = 8.256e-04 * 
YEAR2 + 2.805e-04 * YEAR + 2.178e-04, all terms significant at p < 0.001, adjusted R2 0.80, with 
upper and lower prediction intervals, and c) the number of dam removals observed (red) and 
predicted until 2050; upper 2.5 % confidence interval (purple), fitted (green), and lower 2.5% 
confidence interval (blue) using eq. from 4.b. 
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categorization and future removal likelihood estimates; using current data best fit 

models for all removals estimate cumulative 2050 costs between $50.5 million and 

$25.1 billion (mean $10.5 billion, median $416.5 million), and between $29.6 

million and $18.9 billion (mean $7.2 billion, median $285 million) for all NID 

removals.  

To frame these numbers, the ASCE (2017) estimates a need for over $45 billion to 

repair and upgrade an estimated 2,170 structurally deficient high hazard dams (an 

average rehabilitation cost of $20.7 million/dam), which includes an estimated $25 

billion needed to address deficiencies for the 709 USACE owned dams ($35.2 

million/dam); and the Association of State Dam Safety Officials (ASDSO, 2016) 

estimates a present need of $64 billion to rehabilitate all US dam infrastructure 

($706,557/NID dam). These estimates of need will only increase over time, as 

federal funding for dam rehabilitation is currently not appropriated (ASCE 2017).  

Given these very large ranges likely due to regional and project level factors 

(Whitelaw and Macmullen 2002, Tonitto and Riha 2016), our goal with these 

estimates is not to provide absolute certainty in rates and costs of future removal, 

but to highlight the magnitude of trends, their economic relevance given other 

estimates of dam safety need, and make a case for more systematic data collection 

to refine our understanding and future projections. 
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Figure 5. Comparisons of function and type of dams in the National Inventory of Dams (NID) and 
American Rivers Dam Removal Database (AR DRD) subsets, green = AR DRD > 25ft/7.6m, orange 
= AR DRD > 6ft / 1.8m, purple = all removals in AR DRD, pink = all dams in NID. A) (top) Primary 
function b) (bottom) primary type. 
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4 OPPORTUNITIES FOR IMPROVING DAM REMOVAL SCIENCE 

Our analyses point to large expected increases in dam removal in the United 

States, although highlight unevenness in the functions and types of removed dams 

as compared against existing dam stock. Existing data points to the cost-

effectiveness of dam removal as a rehabilitation option, however, findings indicate 

that the incidence and costs of dam removal has particular social and technological 

contingencies, meriting further analysis. Below, we lay out three key considerations 

for improving work examining the likelihood and rate of future removals and their 

associated costs. 

4.1. Developing Interdisciplinary Frameworks  

The lack of relationship between built and removal years may simply be a function 

of incomplete data sets, but is more likely a function of the influence of significant 

rehabilitation and maintenance operations. Thus, ongoing work on the engineering 

dimensions of dam management (Wildman 2013) should be integrated with 

analyses of their resident landscapes and ecosystems (Foley et al. 2017, Magilligan 

et al. 2016) and constellations of conflicting social interests (Magilligan et al. 

2017). Despite this rich literature, dam removal science remains fragmented 

between largely biophysical evaluations of dam removal impacts, and the legal, 

policy, and social dimensions of removal decision making, both of which are 

largely disconnected from the dam rehabilitation literature. Such fragmentation 

mirrors that of general problems in the field of ecological restoration, which 
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continues to struggle with framing multi-scalar drivers of river conditions when 

analyzing and planning river restoration programs (Bernhardt et al. 2005). One 

recently proposed framework of dams and removals as Political, Financial, 

Environmental, Social, and Technological Systems (PFESTS), has recently been 

proposed (Grabowski et al. 2017a). While that framework is preliminary, it may 

serve as a heuristic for stimulating discussion around how best to address the 

systemic complexity of dam removal decisions, including the influence of policies, 

social-environmental contexts, and socio-economics. In order for dam policy and 

analysis to be truly comprehensive, policy and research communities should 

combine knowledge and approaches from dam safety engineering, ecological 

restoration, social studies of science and technology, and the communities affected 

by dams and removals. Building a shared language and reflexive analytical 

framework for these disciplines to meaningfully engage diverse social actors 

remains a top priority.  

4.2. Improve comparability and utility of dam and removal databases 

A key component of building a shared language and approach for dam removal 

science will be improving and standardizing dam removal and dam databases for 

evaluating dam decision-making at the national, state, and local level. Most dam 

studies currently do not utilize strictly comparable data sets of existing dams and 

removals without qualifying their lack of comparability.  
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Ongoing regional analyses, such as the New England Sustainability Consortium’s 

“Future of Dams” project (NEST, 2017), indicate large discrepancies between state 

dam inventories and the NID (Magilligan et al. 2016), including differences in 

defining dams and removals. Given differences in state level policy requirements 

for inventorying dams, combining state databases must be done with caution to 

ensure representativeness of data. Removal databases that do not attempt to qualify 

inclusion in comparable dam inventories can only be reliably compared against the 

nation’s estimated two million un-documented dams (NRC 1992), currently an 

analytical impossibility. Removals are also inconsistently defined and reported, 

including inconsistencies in defining dam failures vs. removals, with some small 

reporting errors to the AR DRD known but not currently quantified. In the case of 

Wisconsin, where the state has identified over 900 removals and dam failures since 

the 19th century (WI DNR 2017) in contrast to the AR DRD’s 127 WI documented 

removals since 1950 (AR DRD 2016). Thus, data sets on dams and dam removals 

must be transparent in their definitions of dams and removals, and will likely 

require further ground-truthing.  

With comparable data sets in hand, the research community can continue to make 

headway on linking dam and removal data to a wide variety of relevant existing 

datasets. Similar to Foley et al.’s (2017) utilization of the National Anthropogenic 

Barrier Data Set (NABDS) and National Hydrography Dataset, these efforts can 

expand pre-existing databases such as the AR and USGS DRDs, although the 
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NABDS needs to be updated to include the 40,000+ dams added to the NID since 

2009. Likewise, Foley et al.’s (2017) BAR DRD linkage to the National Fish Habitat 

Partnership (NFHP) database represents a promising approach for understanding 

the impacts and rationales of removals, though the NFHP should also be linked to 

datasets of existing dams (which would also provide controls for BAR studies). 

Additionally, data on dam operations currently contained with the NID could be 

improved on and linked to removals to improve the analysis of dam removal 

impacts. For example, Foley et al.’s (2017) analysis of BAR studies on impacts on 

stream thermal regimes show mixed responses to dam removal, but do not have 

information on the pre-removal dam operational regime which would either create 

an elevated (e.g., top spill or bypass reach), decreased (e.g., consistent bottom 

release), or mixed (intermittent bottom release) thermal pre-removal baseline. 

Similarly, in addition to the land use and land cover characteristics of existing and 

removed dams serving as proxies for anthropogenic stressors influencing river 

ecosystems (Foley et al. 2017), researchers could also include analyses of off-

channel dams (Mantel et al. 2017), other barriers to fish passage (Januchowski-

Hartley et al. 2013), and relevant socio-economic and demographic variables 

available from the US Census and American Community Survey that may indicate 

declines in dam utility. AR’s recent decision to make its updated DRD publically 

available represents a step forward in dam removal science, and, if updated in its 

data fields, can facilitate analysis of dam removal likelihood, costs, and socio-

ecological impacts.  
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4.3. Investigate contextual and systemic complexity of dams and removals 

While the creation of interdisciplinary frameworks and robust comparative datasets 

will accelerate understanding and application of dam removal and restoration 

research, it is clear that contextual variables also drive dam removals. National and 

state dam policies must always interact with local contexts in removal decision-

making (Chaffin and Gosnell 2017), although examining exactly how they do so 

requires building relationships with affected stakeholders in the course of place-

based research.  

In the context of the Americas, the resurgent practices of self-determination by 

indigenous communities, many of whom have been culturally and materially 

harmed by dam building (Fisher 2010), will continue to be a critical factor in 

driving dam removals. The centrality of practices have been documented in the 

case of numerous dam removals led by the Grand Traverse Band of Ottawa and 

Chippewa Indians (Fox et al. 2017), and the pivotal role of the Lower Elwha 

Klallam tribe in the largest dam removal in the world to date from the Elwha river 

(Guarino 2013). However, continued neo-colonial practices of dam building on 

Indigenous territories, such as the Site C dam’s pivotal role within the 

“Industrialization of the North,” (Lavoie 2015), also highlight the contingency and 

contestation of Tribal influence on the political economy of regional and national 

infrastructure development. We must therefore remain cognizant of how treaty 

rights and contestations influence broader infrastructural trajectories and dam 
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futures and their intersections with national and state agricultural, trade, 

environmental, and energy policies (Hawley 2011). Without addressing this 

systemic and contextual complexity, dam removal may stall as a policy option, and 

at the project level contested removals can vastly increase project costs and 

undermine budgets available for follow up restoration activities (Becker 2006). 

Thus, identifying how local and systemic contexts influence project costs requires 

parsing for deconstruction, restoration, project management, administration, legal, 

and planning costs (Bonham 2008). At present, authorized federal funds for dam 

safety programs have yet to be appropriated (S 216 (2016), S 2735 (2006)), and the 

NID currently does not allow for public scrutiny of dam condition assessments, 

meaning owner level cost considerations and state dam safety programs will 

increasingly determine dam futures. Thus, researchers can be useful for improving 

dam decision-making by combining state and federal level economic analyses 

(Whitelaw and Macmullen 2002), with research on owner level considerations and 

experiences of dam removal and rehabilitation. Given the large interest in 

streamlining hydropower licensing processes and adding significant non-federally 

owned hydro-electric capacity in the USA  (Bracmort et al. 2015), combined with 

the infrastructural turn of re-developing large water infrastructure systems in the 

United States in the face of climate change (Perry and Praskievicz, 2017), the 

evolution of the function of dams within complex infrastructure systems remains a 

pressing research need (Grabowski et al. 2017b). 
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5 CONCLUSION 

Dam removal is established as a mainstream policy option to improve dam safety 

and restore socio-ecological systems. Yet, data on dams and removals remains 

fractured in disciplinary and administrative siloes, requiring the elaboration of 

frameworks and data sets for interdisciplinary analysis. Such a joint research and 

practice agenda represents an exciting opportunity to overcome historical 

antagonisms between infrastructure and ecosystem management. Failure to do so 

will increase administrative costs of removals, further entrenching inefficient 

systems with large bureaucratic overhead, primarily benefiting law firms (Lind 

2015) and consultants (Becker, 2006), instead of deficient infrastructures, human 

communities, and damaged ecosystems. In an era of increasing political 

polarization on issues of economic security, regulatory certainty, labor justice, and 

the environment, the conservation and restoration community must continue to 

frame river restoration agenda around the alignment of those seemingly diverse 

interests (Jones 2009).  Thus dam removal represents an inherently political 

practice, where decisions about appropriate human-river relations, including the 

role of aesthetics, history, identities, what is natural, and what is desirable all come 

to a head. Collaborations between communities, academics, policy makers, river 

dependent industries, and non-governmental organizations will provide the 

democratic basis for sound dam decision making within a broader arc of socio-

technological evolution and environmental justice.  
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Abstract: Dam removal in the United States has continued to increase in pace and 

scope, transitioning from a dam-safety engineering practice to an integral 

component of many large-scale river restoration programmes. At the same time, 

knowledge around dam removals remains fragmented by disciplinary silos and a 

lack of knowledge transfer between communities of practice around dam removal 

and academia. Here we argue that dam removal science, as a study of large 

restoration-oriented infrastructure interventions, requires the construction of an 

interdisciplinary framework to integrate knowledge relevant to decision-making on 

dam removal. Drawing upon infrastructure studies, relational theories of 

coproduction of knowledge and social life, and advances within restoration 

ecology and dam removal science, we present a preliminary framework of dams as 

systems with irreducibly interrelated political, financial, environmental, social, and 

technological dimensions (PFESTS). With this framework we analyse three dam 

removals occurring over a similar time period and within the same narrow 

geographic region (the Mid-Columbia Region in WA and OR, USA) to demonstrate 

how each PFESTS dimension contributed to the decision to remove the dam, how it 
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affected the process of removing the dam, and how those dimensions continue to 

operate post removal in each watershed. We conclude with a discussion of a joint 

research and practice agenda emerging out of the PFESTS framing. 

1 Entering the age of dam removal 

For the first time in US history, the annual number of documented dam removals 

has exceeded the number of documented dam constructions (American Rivers, 

2016; NID, 2016; Grabowski et al., in preparation). Thus, 15 years after the 2002 

special issue in BioScience heralding the beginning of the 'dam removal era' 

(Babbit, 2002), the United States appears to have an annual net loss of dams. Such 

a dramatic shift in river management reflects broader socioeconomic changes and 

the maturation of environmental interest groups into national-scale political forces 

(Lowry, 2003; McCool, 2012), who increasingly recognise the importance of the 

social, political, and cultural dimensions of biophysical systems in need of 

restoration (NRC, 1996). 

Within this context, dam removals have evolved from a 'normal' dam safety 

engineering intervention (Wildman, 2013) to a cornerstone of river and riparian 

wetland ecosystem restoration strategies (American Rivers et al., 1999). As attested 

to by this special issue, a research agenda focused on the biophysical impacts of 

dam removals (e.g. Tullos et al., 2016; Magilligan et al., 2016; Bellmore et al., 

2016; Tonitto and Riha, 2016) has expanded to include the social and political 

origins and consequences of removals. Cross-scale analyses of social, political, and 
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cultural factors operating across economic sectors (McCool, 2012), as well as 

place-based micro-political, experiential, and relational dimensions of dam 

removals (Fox et al., 2016) and their historical and institutional contingencies 

(Magilligan et al., 2017) have refined our understanding of why dam removals do 

or do not occur. And yet, despite the well-documented need for inter-sectoral and 

interdisciplinary approaches for analysing dam removals (Graf, 2003), a conceptual 

framework for synthetic analysis of both academic and experiential knowledge still 

does not exist. Without such synthesis, science-heavy managerial attitudes threaten 

to replicate long-understood problematic modes of technocratic governance of 

ecological infrastructure projects (Scott, 1998; Carse, 2012). Additionally, we 

remain limited in predicting or identifying causal factors leading to dam removals 

versus other management options (with Lowry, 2003 and Magilligan et al., 2017 as 

notable exceptions). 

In this paper, we engage in three major tasks. First, drawing upon existing 

literature, we propose a conceptual framework for integrating existing knowledge 

around dam removal through a Political-Financial-Environmental-Social-

Technological Systems (PFESTS) lens. With PFESTS, we also seek to provide a 

platform for integrating academic, practitioner, and community knowledge and 

perspectives in dam removal decision-making processes. PFESTS provides a 

relational way of synthesising knowledge for improving practice (Deloria Jr., 2003), 

which hinges upon understanding how each dimension of PFESTS can be 
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understood as a composite of specific components. Second, we discuss relevant 

components of each dimension of PFESTS, and briefly discuss how to address 

knowledge gaps and improve dam removal practice in each dimension. Lastly, we 

illustrate the analytical value of this framework through three case studies of the 

Condit, Marmot, and Powerdale dam removals in Southern Washington and 

Northern Oregon, USA. We choose these case studies because despite their 

geographic and temporal proximity and similar overarching policy process 

(hydroelectric relicensing), each case highlights distinct issues. We provide tables 

identifying relevant factors in each dimension, as well as a narrative description of 

the PFESTS for each case before, during, and after removal. We conclude with a 

discussion of how these three removals provide insight into the broader 

applicability of the PFESTS framework in contributing to future research and 

practice. 

2 Dams through the PFESTS lens 

Dams have long been understood as civil engineering works embodying ideas 

about progress, development, and modernity, ideas underpinned by beliefs about 

appropriate relationships between human society and the natural world (Worster, 

1985; Lee, 1994; Pritchard, 2011). Dam removal likewise serves an important 

symbolic role in restoring the natural world from harms caused by contemporary 

industrialised civilisations (Abbey, 1975; Babbit, 2002; DamNation, 2015); and has 

generated extensive studies of hydro-geomorphology, riverine ecology, and cost 
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benefits of dam building and removal (reviewed within Tullos et al., 2016 and 

Bellmore et al., 2016). In addition to these biophysical studies, a recognised need 

for interdisciplinary analysis (Born et al., 1998; McCool, 2012) has linked project 

complexity with policy analysis (Lowry, 2003), and engaged social, scientific, and 

economic dimensions from the practitioner perspective (Bonham, 2008). In parallel, 

emerging dam engineering literature has started to think about dams as systems 

linked to social, economic, and environmental systems (Regan, 2010; Ho et al., 

2017). 

Dam removals could be studied through existing coupled and human natural 

systems frameworks such as Socio-Ecological Systems [SES] (Collins et al., 2011), to 

identify feedbacks between social and ecological processes, or Socio-Enviro-

Technical Systems [SETS], to understand the role of technologies and the social 

power of technical expertise (Grabowski et al., 2017). However, field work of the 

authors continues to find that both SES and SETS frameworks tend to obscure, 

rather than make explicit, the political forces pushing removals at relevant scales 

(e.g. national policies, federal agency activities, state programmes, and local 

politics), and the financial calculus of dam owners and overseeing agencies. 

Therefore, we argue that dams should be seen through the prism of PFESTS – 

Political-Financial-Ecological-Social-Technical Systems (displayed in Figure 1), a 

framework developed for improving ecological restoration practices (Grabowski et 

al., 2016). 
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Figure 1. Dam removal through the PFESTS lens.  While all dimensions and 
components are interdependent, the strength of the connection depends upon the 
context of the dam removal project. This figure serves as a schematic to highlight 
the major components within each dimension discussed in section 3. 

The PFESTS framework presented here thus extends work in SES and SETS by 

drawing upon work in Political Ecology and Economy to highlight the Political and 

Financial dimensions of decision-making. Secondly, we draw upon Social Studies 

of Science / Society and Technology Studies to ground scientific analyses in social 

reality (Latour, 2010), making it clear that it is impossible to perform apolitical 

scientific labour. By expanding upon Bruno Latour’s work with insights from 

Swyngedouw (2010), we go beyond the question of 'is scientific practice socially 
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constructed?' to the more pertinent and trickier questions of 'how well is our 

science constructed, for whom, and to what ends?' 

Through PFESTS, we provide a tool for 1) building reflexivity, political savvy, and 

social awareness into existing dam removal science dominated by technical 

approaches, b) better identifying the full range of participatory and collaborative 

efforts, technical expertise, and funding necessary for any given dam removal, and 

c) improving our ability to identify likely candidates for removals through the

PFESTS lens. In the following section, we provide a definition of each PFEST 

dimension, explain its connections to dam removal, highlight key components of 

each dimension in terms of existing knowledge, and identify ways of improving 

both dam removal research and practice. 

3 P: Political dimension of dam removals 

Definition of political 

We define the political dimension in two parts. The first pertains to who gets to 

determine the 'correct' course of action for any given group of people (or to 

paraphrase Ranciere (2015) – the first political question pertains to who constitutes 

the political class, and who must be content to simply reproduce their lives). The 

second, more nuanced portion of this definition pertains to the processes by which 

certain parties take on authority and others do not. Taken together this definition 
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refers to both who have decision-making power relative to other parties, and how 

they come by it. 

Importance of the political to dam removal 

Those who have participated in a high-profile dam removal process often refer to 

the ways in which decision-making was 'politicised' regarding the deals that had to 

be cut between parties to reach agreement on the proper course of action (Bonham, 

2008). In contrast, many small dam removals, occurring for public safety purposes, 

have had little fanfare or public outcry (Born et al., 1998), and thus are political in 

the sense that federal and state policies have manifested in black-boxed 

programmes of dam inventorying and safety assessments, funds for dam removal or 

rehabilitation, and legal frameworks that assign liability for dam failure to dam 

owners. To simplify discussion of the political, we categorise existing knowledge 

into three tangible components: policies and regulations (Bowman, 2002); 

programmes of particular organisations, including agencies, institutions, and 

businesses, non-governmental organizations, and their representatives (Born et al., 

1998; Mogren, 2014); and interpersonal relationships, micro-politics, and discourse 

affecting people’s attitudes on removal (Baker et al., 2013; Fox et al., 2016). 

Information on components of the political dimension 
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Policies and regulations 

Much of the complexity in dam removal projects comes from the nuanced and 

overlapping nature of policies and regulations that govern infrastructure, society, 

and rivers. Policies and regulations regarding dams can be broadly classified into 

those associated with the dam itself, those stemming from the regulations affecting 

rivers more generally, treaty rights and other agreements between sovereign nations 

that regulate operations, and those affecting economic sectors with strong linkages 

to dams. 

At the national level, notable dam failures have resulted in a reactionary policy 

approach to dam management manifesting in the National Dam Safety Program 

(Rogers, 2012), creating a National Inventory of Dams (NID) by the US Army Corps 

of Engineers [USACE] for all dams over 25 feet (ft) tall or impounding >50 acre-feet 

(unless under 6 ft tall – around 90,000 dams), requiring emergency management 

plans for all high hazard dams (ASDSO 2014). At the state level, the NDSP 

provides funding for inventorying, and potentially removing, dams, although 

requirements are variable from state to state, creating incompatibilities for 

comparative analysis between states (Grabowski et al., in preparation). The Federal 

Water Power Act of 1920 created the Federal Energy Regulatory Commission 

[FERC] to regulate and coordinate the development of non-federal hydroelectric 

power projects in the United States, the licensing processes of which have led to 

the largest dam removals to date. The Endangered Species Act [ESA] and the Wild 
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and Scenic Rivers Act of 1968 pertain to dams affecting endangered species and 

those in specially administered rivers. Impacts on water quality are also regulated 

under the Clean Water Act of 1972 [CWA], and play a significant role in some dam 

removal decisions. Lastly, dams are regulated under the Coastal Zone Management 

Act of 1972, which may become increasingly important with wider recognition of 

the relationship between retained dam sediments and coastal resilience (Syvitksi et 

al., 2005). The broader policy dimensions linking dams to other economic sectors 

(Hawley, 2011) display even more complexity, as policies pertaining to one sector, 

like the farm bill, have profound implications for the demand of dam services, 

including demand for irrigation water, electricity, and navigational services from 

large publicly financed and operated systems (McCool, 2012). 

While comprehensive reviews of regulations affecting dam removals exist (see 

Bowman, 2002; Hydropower Reform Coalition, 2016), few have examined 

fundamental issues of jurisdiction and/or sovereignty as and their influence on 

claims over appropriate use of land and waterways. U.S. vs. Washington, otherwise 

known as the 1975 Boldt Decision, provided sovereign co-management over 

fisheries to tribal governments. This continues to require enormous efforts on the 

part of tribes to be enforced (Guarino, 2013), and, in the case of the Columbia 

River, harms to fisheries and tribal societies remain largely unmitigated and 

uncompensated (Ulrich, 1999). Even more poignantly, the universal right to self-

determination of Indigenous Peoples has become increasingly important in 



86 

asserting jurisdiction and rights over traditional lands and resources, which may 

have profound implications for infrastructural management (Alfred 1999). 

Additionally, dealings between the US and Canadian governments, e.g. the 

Columbia River Treaty, regulates the number of dams, level of flow, and sale of 

energy. 

Institutional actions 

The complex and somewhat contradictory regulations outlined above are enforced 

by a diverse set of local, state, and federal agencies, often in conflict with one 

another. These institutional networks vary depending on dam function, with 

multipurpose dams (>24% of dams (NID, 2016)) tying together a larger number of 

institutional interests than single purpose dams. Aside from the agencies described 

above, the US Department of Agriculture [USDA], Bureau of Reclamation, 

Department of Defence, and the Tennessee Valley Authority own and operate a 

significant number of dams throughout the country, though over 64% of dams in 

the USA are privately owned (NID, 2016). Both the US Fish and Wildlife Service 

[USFWS] and National Marine Fisheries Service [NMFS] are required to provide 

input into FERC licensing processes and to partner with the Environmental 

Protection Agency, US Geological Service, and state environmental departments to 

manage mandates of the ESA and the CWA. The now defunct Coasts and 

Communities grant program administered by NOAA and USFWS was instrumental 

in pushing along early dam removal for restoration throughout the United States 
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(Lowry, 2003). Conversely, the USDA owns numerous dams and provides support 

for water resources development, conservation programmes, and irrigation dam 

financing. Aside from state safety statutes, state regulations can require specific 

permits for dam construction, water storage, and operations. Some of these 

constrain the impacts of dam removals themselves, such as the Oregon Revised 

Statutes pertaining to hydropower decommissioning, preventing conversion of 

hydropower water rights to instream use should they "injure the rights of another 

party" (ORS, 2015). Additionally, state-level programmes seeking to restore rivers 

can be significant players in dam removal projects, such as the Oregon Watershed 

Enhancement Board, and the Salmon Recovery Funding Board in Washington. 

Overall, institutions translate policy and regulations into actions, and the ways they 

do so depend largely upon the scales at which they operate (Vogel, 2012). Lastly, 

state and federal programmes and agencies designating and protecting structures of 

historical significance can serve to protect dams from removal. 

Networks, micro-politics, and discourse 

While it is tempting to see agencies as having blanket jurisdiction, all decisions 

surrounding dam removal are made by individuals balancing their own interests 

with their institutional affiliation, operating in both formal governance networks 

(Mogren, 2014), and informal social networks within which individuals influence 

other individuals, typical of infrastructure governance in general (Eakin et al., 2017). 

As Fox et al., demonstrate in their review of the contestation over dam removals in 
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New England, individual-level relationships are where history, identity, and ideas 

of nature become concrete and significant for decision making. These findings 

highlight the importance of context, discourse and rhetoric in shaping policy 

decisions, both at that individual and group level and how the media disseminates 

emotionally compelling narratives of both removal advocates and opponents to a 

broader public (Jørgensen and Renöfält, 2013). 

Application to dam removal decision-making 

Improving research and addressing knowledge gaps 

Key research questions remain as to the consequences of policy shifts across scales 

on public processes of dam management and dam removal. While it is obvious that 

specific agency programmes have pushed removals, we need better research on 

how conflicting agency and institutional agendas can be resolved most effectively 

to minimise post-removal conflict. Aside from such an action-oriented agenda, we 

also need more research on how networks of institutions operate around dams to 

enforce their conflicting mandates. Another key research area pertains to how post-

removal environmental impacts affect both other dams within the system in terms 

of shifting regulatory oversight for any remaining endangered species or water 

quality issues. A key political-financial question for many removals and restoration 

programmes also pertains to who reaps the immediate economic benefits of 

restoration programmes (Whitelaw and Macmullan, 2002). 
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Improving dam removal practice 

Appeals to objectivism and reductionism, be it environmental claims, or more 

objective economic analyses, reveal a naiveté in the political economy of 

infrastructure management which has always defended its public legitimacy via 

appeals to objective analyses of the public good (Lee, 1994; Pritchard, 2011; 

McCool, 2012). To improve the uptake of science in highly politicised decision-

making contexts, we should avoid making absolutist claims as to the necessity and 

impacts of dam removal. Rather, we need to situate science within the political 

context of decision-making, recognise both its strategic value and the risks inherent 

in using science as a tool for political mobilisation. Such a practice goes beyond 

improvements to 'science communication' – improving practice entails continuing 

to build coalitions of stakeholders who, further empowered by sound science, can 

both exert pressure on existing political processes and facilitate the creation of new 

ones through existing institutional channels and direct action. 

4 F: Financial dimensions of dam removal 

Definition of financial 

The financial dimension of PFESTS is defined by the systems of managing and 

accounting for direct monetary flows of dams and removals. As for any enterprise 

or infrastructure system, financing refers to the ways in which capital can be raised, 

direct costs associated with design, implementation, operation and maintenance 
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(O&M), what revenues are generated and how they are tied back in to different 

enterprise functions, subsidies and taxes associated with dams, the assignation of 

financial liability, the projections of future costs and revenues, and the out-of-

pocket costs of compliance with regulations. 

Importance of the financial to dam removal 

While there has been limited analysis to date of the financial dimensions of dam 

removal within the restoration community, it is clear that financial considerations 

are relevant before, during, and after removal decisions. However, economic 

analyses of removals, while identifying broader impacts, rarely identify how 

financial flows affect operator decision-making (Rye, 2000). Dam operators’ 

inability to financially comply with regulations is often mentioned as a key driver of 

removals, and yet it is rarely, if ever, formally analysed. Here, we propose to 

simplify the above definitional considerations to address 1) the structural economic 

context of dam financing, 2) actual costs, revenues and subsidies for dam 

operations and removal, and 3) the distribution of realised costs and benefits from 

dams and their removal for their stakeholders. 

Information on components of the financial dimension 

Structural economics 

Dam finances hinge upon their role in the structure of the local, regional, national 

and international economy, all of which are affected by dam removals (Kruse and 
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Scholz, 2006). For example, hydropower dams respond to global energy prices, 

flood protection infrastructure often requires regional inter-agency coordination 

and financing, and local recreational dams may be financed privately. Dam 

finances also include historical impacts, sunk costs, and future projections; the 

evaluation of what goods and services dams produce remains sensitive to the 

temporal window utilised for analysis, as well as who has and who will bear the 

costs of the dam (as evidenced in FERC estimates for economic viability of 

hydroelectric projects). Historical adjustments of economic structures by dams are 

particularly poignant for many indigenous peoples who consistently voiced 

opposition to dam construction, and to whom reparations have not been 

forthcoming despite the increasing visibility of removals for restoring human-river 

relationships (Ulrich, 1999; Fisher, 2010). Thus, how one conceives of the 

appropriate spatial and temporal scale of dam finances fundamentally influences 

how one justifies dam removal or continued operation (Whitelaw and Macmullan, 

2002; Hawley, 2011; McCool, 2012). 

Revenues, costs, and subsidies 

Given that removals usually take place in the face of a change to normal operations, 

we must understand the regular revenues and costs of O&M in relation to financial 

costs associated with removal. There are the administrative costs of dam removal 

processes (e.g. legal costs, organisational person-hours devoted to the project), 

knowledge costs (e.g. feasibility studies, specialised analyses, consultants), and 
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costs associated with the labour and materials of repairing, modifying or removing 

the dams. Flows of revenue into the dam can be highly regulated and tightly 

coupled to performance, as in rates for electricity, or largely informal and weakly 

coupled, as in homeowner association fees or local tax revenue going into a 

general budget. Revenue streams can also be impacted by macroeconomic trends, 

such as when hydroelectric dams utilised for manufacturing become defunct due to 

technological revolutions in electricity generation and decline of manufacturing in 

the so-called developed world. Feasibility studies and assessments of the 

hydrologic, geologic, economic, social, and ecological components of restoration 

often come from federal and state agencies, although environmental non-

government organisations (NGOs), tribal governments, and local governments can 

all be involved in paying for knowledge generation around dam removals. 

Congressional financing for removals can occur through partial grant financing 

from participating agencies (including dam safety funds or ecological-mitigation 

funds), or through changes in regulations affecting the operator’s finances (e.g. 

allowed rate increases). Dams owned by private individuals may be susceptible to 

changes in markets and may have greater financial uncertainty than publicly 

owned infrastructures or those owned by large corporations. 

Distribution of stakeholder costs, benefits, and risks 

Whether a stakeholder accepts or disapproves of a dam removal hinges upon the 

actual and perceived costs and benefits resultant from a dam or its removal. Robust 
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projections of anticipated stakeholder costs are extremely challenging as there are 

inherent subjectivities in post-removal financial projections. To a property owner, 

dam removal may be perceived as a risk to lake front property values, while post-

project property values may rapidly increase along newly created river frontage 

with increased lot sizes, which may in turn adversely affect other owners by 

increasing property taxes. As the impacts of a dam reverberate through watersheds 

and sociopolitical systems, the ways in which economic activities of individuals 

not directly coupled with the dam are affected become felt and can serve as a basis 

for increased perceived certainty around the impacts of dam removals in other 

contexts (Johnson and Graber, 2002). 

Application to dam removal decision-making 

Improving research and addressing knowledge gaps 

Scholarship in the political ecology of restoration urges us to remain critical in 

understanding the financial beneficiaries of emerging restoration economies (Lave 

et al., 2010). For example, while there is potential for small-scale, locally based 

collaborative watershed restoration efforts to boost local employment economies 

(Nielsen-Pincus and Moseley, 2013), complex removal projects often require most 

of the labour to come from other regions across the state and country (Rozance et 

al., in preparation), or from companies historically involved in dam construction 

and maintenance. This use of 'outsider' labour can impact public support of the 

project. Conversely, money for dam removals and restoration projects that goes 
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back into forest industries, or engineering and contracting firms historically 

engaged in infrastructure projects for extractive purposes, can simultaneously build 

political support for removals and provide employment in areas with declining 

shares of natural resources-based employment, but also create conflicts around 

who is perceived to benefit the most from dam-removal projects. While the moving 

water recreation industry certainly appears to benefit from removals (McCool, 

2012), care should be taken when making economic arguments as to net benefits, 

as other recreational interests may be displaced. Thus, similar to how large-scale 

public investments in dam infrastructure may have simply shifted economic 

activities such as farming from one part of the country to another (Hawley, 2011), 

dam removals may also shift economic activities from one sector to another 

(Whitelaw and Macmullan, 2002). More research is needed on how the finances of 

dam operators affect removal decisions, the relative costs of removals versus other 

rehabilitation options, and how economic activities are affected by removals at a 

variety of spatial, temporal, and social scales. 

Improving practice 

Dam removal advocates must pay critical attention to the feedback between 

political and social conflict and complexity and the administrative costs of removal 

projects. Once a dam has been slated for removal, studies that look at flows of dam 

removal funding can shed light on other elements of PFESTS. As these projects can 

be costly and variable (mean and standard deviation of removals reporting costs in 



95 

Washington State is 2.6 and 5 million USD, respectively – Grabowski et al., in 

preparation), accountability on administrative overhead, deconstruction costs, and 

labour issues can impact public trust and support on future projects. Dam removal 

projects should therefore strive to increase transparency about the financing of 

projects and where money goes during the removal process. This can bolster 

support for removals as project costs and benefits can be more accurately defined 

and therefore defended as appropriate. Additionally, changes in the financial 

fortunes of enterprises connected to dammed and undammed rivers also need to be 

transparent to justify the social financial benefits and costs of removals. 

5 E: Environmental dimensions of dam removals 

Definition of environmental 

We define the environmental dimensions of dam removals as pertaining to basic 

earth processes (climatic, hydrological, and geomorphological processes), 

ecological processes (populations, communities and ecosystems, including the 

influence of human-led restoration efforts), and how the relationship between the 

two becomes integrated by the 'riverscape' (Fausch et al., 2002). 

Importance of the environmental to dam removal 

The environmental expectations of dam removals cannot be easily teased apart 

from their political, financial, social, and technological dimensions. While many 

dam removal organisations have touted the ecological benefits of removing dams, 
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actual ecological impacts of dam removals involve trade-offs between ecological 

states (Stanley and Doyle, 2003), which are often subjectively determined (Hull 

and Robertson, 2000). Environmental expectations surrounding dam removal are 

directly tied to how these infrastructures and ecosystems are perceived and valued 

by the environmental managers, scientists, local stakeholders, and community 

members taking part in the process (Escobar, 1998; van Riper et al., 2017). Dam 

removals as restoration interventions often operate with the goal of recovering pre-

dam environmental conditions and the desired ecological services (Palmer et al., 

2014; Magilligan et al., 2016). However, the ways in which financial, political, and 

regulatory rationales and ongoing activities interact with environmental realities, 

will determine whether lost ecological connections and functions are re-established. 

Information on components of the environmental dimension 

Earth system processes 

As hydraulic infrastructures, dams fundamentally alter and rely upon climatic 

hydrological patterns for their basic functions, and the interplay between their 

structural attachment to local geology and hydro-climatic forces as enacted through 

design and operations determines how safe and effective a dam is over time (Regan, 

2010). In contrast to the impacts of dam removals, the impacts of dams on flow 

regimes (the magnitude and timing of high flows, modification of diurnal flow 

regimes, decreases in baseflow, changes in river chemistry and temperature) and 

the resultant impacts on channel geomorphology (reduced bedload transport, 
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increased channel incision, reduced floodplain development and main-channel 

connectivity) have been known for quite some time (Graf, 2006). Thus, much of the 

knowledge of how dam removals may affect earth system processes has emerged 

out of studies of dams’ impacts on those same systems. And while we know that we 

must adequately account for the diversity of river system responses to dam 

removals of different types (Poff and Hart, 2002), how dams have enabled land use 

activities within their basins makes simple 'before and after' comparison of dam 

impacts on earth processes difficult if not impossible. 

Ecological processes 

Ecological research on dam removals tends to focus on responses in fish 

community assemblages, habitat availability for migratory and anadramous fish, 

and transformations from lentic to lotic ecosystem structures (Bednarek, 2001). 

Studies have also attempted to integrate analyses of river ecosystem responses at 

basin scales involving numerous small dam removals (Raabe, 2012), and examine 

the impacts of large-scale restoration programmes (Bennett et al., 2016). Narrowing 

the ecological scope to the river itself, we know that changes within fish 

community structure influence the basic physical, chemical, and biological 

properties of streams; one well-documented example being the positive feedbacks 

between increasing anadromous returns and the size and number of offspring 

(Janetski et al., 2010). Similarly, while we have known for some time that 

anadromous fish (particularly Pacific salmon) provide nutrients to terrestrial systems 
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(Gende et al., 2002) and terrestrial ecosystems subsidise river food webs 

(Richardson et al., 2010), the extent and magnitude of those connections vary 

greatly from system to system. In order to better assess overall impacts of dam 

removals, we need to improve the integrative abilities, connectivity, and ecological 

and geographic extent of science around dam removal, for which we can build off 

of existing work on habitat and process connectivity. 

Riverscape integration 

The environmental impacts, including the ecological and earth system processes, of 

dam removals depend upon both exogenous watershed factors and complex in-

stream processes, all of which are acted upon by the other dimensions of PFESTS. 

Since dams participate in transformations of land, such as providing irrigation water, 

controlling flooding, and historically enabling logging, mining, milling and 

manufacturing activities, dams impact landscapes and not just rivers, and in turn 

watershed scale land use characteristics also influence fundamental properties of 

river systems (Allan, 2004). Studies attempting to integrate these various influences 

have generally relied upon integrative biophysical constructs such as the watershed 

or more recently, the 'riverscape' (Fausch et al., 2002). The riverscape concept 

allows one to examine how riverine conditions are driven by both landscape and 

within channel processes. Understanding undammed landscapes requires thinking 

about how the removal of hydraulic infrastructures influences the landscape 

conditions influencing river ecosystems as well as within river processes. 
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Application to dam removal decision-making 

Improving research and addressing knowledge gaps 

Biophysical uncertainties must be better understood, such as how migratory fish 

communities (McKernan et al., 1950; Van Hyning, 1968), system-level habitat 

diversity (Rosenfeld et al., 2000), and ecological agents in the broader riverscape 

(e.g. directly through beavers in Pollock et al., 2004 and indirectly through wolves 

in Roemer et al., 2009) respond to and impact dam removal. Additionally, parsing 

uncertainties in the biophysical processes affected by dam removals (documented 

in Bellmore et al., 2016; Tullos et al., 2016; Tonitto and Riha, 2016) to social, 

political, financial, and technological changes in the riverscape such as planning 

processes around urban development, or agricultural intensification or change, 

remains a key research agenda. Given that habitat-based models (such as the 

Ecosystem Diagnosis and Treatment model) remain the scientific basis for planning 

diverse types of restoration activities, we would do well to analyse how they relate 

to actual measurements of ecological function such as trophic structure (in 

particular of algae, zooplankton, and invertebrates) and ecological productivity. 

Analysing and communicating such contingency in the environmental dimensions 
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of dam removals stands in contrast to previous studies primarily seeking to provide 

certainty as to the impacts of removals (Poff and Hart, 2002; Tullos et al., 2016; 

Tullos personal communication), but remain critically important. 

Improving practice 

During the dam removal process, it is important to take a step back and evaluate 

why the dam is being removed, the expected outcomes, and how/if these 

expectations fit with the reality and uncertainty of what is currently understood 

about these complex and dynamic systems. In addition, it is key to question how 

outcomes are being valued and by whom. Acknowledging these linkages, 

expectations, and uncertainties will in turn create a more informed dam 

management and removal processes. 

6 S: Social dimensions of dam removal 

Definition of the social dimension 

We define the social dimension in terms of how individuals and communities 

relate to one another and create collective or individualistic experiences of the 

world (Becker, 1982), as well as the way these relationships form and are 

influenced by robust social structures such as institutions (Weber, 1946; Giddens, 

1984), and political economies (Marx, 2008). This definition encompasses how 

individuals and communities relate to one another based upon individual and 

collective identities, specific formal and informal relationships that structure social 
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networks, and how knowledge of the world is or is not transmitted through these 

networks. 

Importance of the social to dam removal 

Like all infrastructure interventions (Bowker and Star, 1999), dam removals embody 

complex social processes in terms of how and why they are performed, what social 

relationships they change, the new forms of social life produced by undammed 

landscapes, and the feedbacks between those new social realities and the impetus 

for further removals, restoration activities, or modifications to hydraulic 

infrastructures. 

Different groups of people have different views of the appropriate use of rivers by 

humans. The management actions taken to achieve each of these visions are often 

contradictory. Ultimately, social and political processes negotiate these 

contradictions, embedding them into policies that guide the building and removal 

of dams. 

Information on components of the social 

Cultural values and identities 

Although many stakeholders in dam removal projects ostensibly represent 

institutions and organisations (such as federal, state, local, and/or tribal agencies, 

business interests, or homeowners’ associations) each has an individual identity 
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and worldview constrained or reinforced by the cultures they participate in 

(Mogren, 2014). In many cases, the ways in which personal and collective identity 

is (un)attached to a dam drives the ways in which the dam is valued (Rye, 2000). 

Additionally, identity and values can form the underlying psychological motivation 

to engage in decision-making processes, or undertake political projects of 

mobilisation and organisation either for or against removal (Fox et al., 2016; 

Magilligan et al., 2017) 

Knowledge systems 

Knowledge systems represent a robust body of work providing useful insight into 

the relationship between expertise, legitimacy and the framing of infrastructure 

value by examining which social actors are able to influence and participate in the 

knowledge systems driving decision-making (Bowker and Star, 1999; Jasanoff, 

2004; Miller et al., 2010; Carse, 2012; Larkin, 2013; Munoz-Erickson, 2014). In 

contemporary society, scientific knowledge dominates the ways in which we 

collectively understand and interpret the world around us (Ozawa, 1991; Knorr-

Cetina, 1999). Scientific framings of dams as primarily technical and environmental, 

with the underlying assumption that if dams are removed pre-dam environmental 

conditions and the desired ecological services will return (Palmer et al., 2014; 

Magilligan et al., 2016), require a certain set of assumptions about society-nature 

relationships. In this sense, dam removals do not differ dramatically from other 

ecological restoration work suffering from a 'lack of social-imagination' (Hull and 
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Robertson, 2000). Choices about how to frame the environment, even those 

perceived to be 'apolitical', have power, and stem from inevitable differences and 

rhetorical value of claims as to the 'natural' (Rayner and Hayward, 2013). Often, 

restoration actions value the historic (first) nature over the present nature, and 

disregard the complex historic, current, and future socio-ecological dynamics, 

which may lead to unexpected ecological restoration outcomes. 

 

The current decision-making process around dam removal prioritises information 

produced by federal and state agencies, although work performed by consultants is 

often used by municipal governments and NGOs to vie for legitimacy in dam 

decision-making. Agency scientists and decision-makers often view traditional 

knowledge of rivers with scepticism, even when their interests may align with 

traditional Indigenous knowledge holders (Blackstock, 2005), or other forms of 

vernacular knowledge. In many cases, western science in the form of archaeology 

and anthropology make traditional ecological knowledge claims, appropriating and 

legitimating that knowledge in the decision-making space (Alfred and Corntassel, 

2005; Zent, 2012). How knowledge transfer occurs depends on the social 

relationships of the knowledge system, and can benefit traditional Indigenous 

knowledge holders or rob them of voice and identity. On rivers where dams have 

been removed, post-removal monitoring, particularly of sediment and fish, may 

benefit greatly from the inclusion of vernacular knowledge as possessed by 
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fishermen and boaters, knowledge which generally also must be translated into 

scientific terms to be considered legitimate by governing institutions. 

Application to improving dam removal decision-making 

Improving research and addressing knowledge gaps 

In the context of dams, it is important to consider the ways sociocultural systems 

frame our views of the natural world, including views and assumptions about rivers, 

riparian areas, and floodplains. Ideas about 'nature' serve as a rhetorical resource 

within discourse (Rayner and Hayward, 2013), with profound implications for 

management strategies (Cronon, 1996; Hull, 2002), and social life (Hartmann, 

1998; Swyngedouw, 2010). 

Thus, key research questions remain as to how stakeholder worldviews, values, and 

identities influence perceptions of the symbolic and material value of dam 

removals. Similarly, we need more research on the practical significance of how 

environmental systems are conceptualised by stakeholders in ways which guide 

both the construction of technical information about removals and the 

interpretation and uptake of different types of information about removals. Another 

major area of research should address how organisational cultures interact and 

evolve during dam removal decision-making processes, and how these relate to 

shifting political mandates and new financial realities at local to national scales. 
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Improving practice 

When thinking about how and why dams come to be removed we must remember 

that dams are built as infrastructure systems by specific groups of people for 

particular purposes; dams are also removed by specific groups of people for 

different purposes. When social appeals to expertise are made to resolve conflicts 

over dam removal, the knowledge systems participating in dam removal become 

apparent both as sources of authoritative information on how and why a dam 

should be removed and its potential impacts, and also sites of contestation between 

values over what constitutes legitimate knowledge. Thus, while it may not be 

possible or desirable to 'manage' social interactions between stakeholders in dam 

removal decision-making processes, scientists and practitioners engaged in those 

processes should at least understand the importance of avoiding triggering rhetoric 

which exacerbates pre-existing cultural and social conflicts. 

7 T: Technical 

Definition of technical 

We define the technical dimension of PFESTS in terms of both the physical 

technologies of dam building, dam removal, and restoration practice (e.g. materials, 

tools, equipment), the technologies of representing dams and rivers (e.g. data 

collection practices, tools for analysing and modelling), as well as the softer 
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technologies of governance (Bowker and Starr, 1999; Carse, 1999; Agrawal, 2005) 

that accompany all technical systems. 

Importance of the technical to dam removal 

Understanding dams as technological infrastructure systems performs a variety of 

functions in the analysis of dam removal decisions. First, it clarifies the ways in 

which experts and knowledge systems portray the technologies of dam 

construction, operation, and removal, and the ways these portrayals impact the 

likelihood and practice of dam removal. Additionally, understanding dams as 

technological infrastructure systems can demonstrate what impacts of dam removal 

are likely to be felt in the rest of the infrastructure linked to the dam. Finally, the 

ways in which impacts of dams are 'known' are increasingly mediated through 

particular technologies of collecting data and monitoring post-removal outcomes, 

analysing those data, and ultimately presenting them to stakeholders. Whether 

these technical practices and representations align with the grounded experiences 

of those affected by dam removal often determine their future viability and 

involvement in dam removal projects. 

Information on components of the technical 

Dam types, functions, characteristics and removal methods 

Dam type and size both significantly influence the likelihood of its removal 

(Grabowski et al., in preparation) as well as its removal method and costs. Even 
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dams of the same type can have significant variation in construction style and 

quality, significantly influencing dam longevity (Charlwood, 2009). Likewise, dam 

functions or purposes, including those with multiple functions can also be 

subjectively defined, and underlies issues with consistent documentation of what 

types of dams have been removed (Grabowski et al., in preparation). Some dam 

functions will be completely lost upon dam removal, others can be and often are 

easily replaced through other means (such as the use of pumps for irrigation and 

water supply withdrawals). The methods for removing dams may also affect the 

timing and likelihood of dam removal, e.g. the short-term impacts of rapid reservoir 

drawdown causing conflict between project stakeholders. In this sense, the impacts 

and costs of a dam removal fundamentally depend on the technology employed in 

designing and constructing the dam, as well as its connections to other 

infrastructure systems. 

Relationships to infrastructure systems 

Thinking of dams as embedded within larger infrastructure systems (Regan, 2010) 

requires us to carefully analyse the scale at which a dam removal will have impacts, 

as certain linkages may preclude a social appetite for dam removal (e.g. extensive 

built development in floodplains downstream of flood control dams). These 

connections can cut both ways however, as dams serve as significant sources of 

risk to downstream human communities in the event of failure, and higher hazard 

dams face increased monitoring scrutiny and potentially increased likelihoods of 



108 

removal (Ashley, 2004). The same holds true for hydroelectric dams, which must 

compete financially with other sources of electricity generation for revenue, but 

which can also provide below national market rate power for local consumers, 

which may require subsidies to achieve consensus for dam removal (as in the case 

of the Elwha Dam removals – NPS, 2016). 

Technologies of monitoring, analysis, and representation 

The ways in which society and the environment are known increasingly depend on 

technologies ordering phenomena into units of accounting within a particular 

disciplinary framework (Latour, 1999). Thus there is no single class of objects 

'dams', rather, referencing Nancy Cartwright (1999), we have a 'dappled world' of 

dams, where different data sources, while having internally consistent quantitative 

descriptions of dams, are often incompatible as they are not only subjectively 

constructed based upon the motivations, technical/disciplinary training, world view 

and personal idiosyncrasies of the individual and/or data compiling agency, but 

also fragmented by the technologies and policies of data storage and retrieval. For 

instance, the NID has become classified and key pieces of it, including dam hazard 

ratings, conditions, and locations, are not accessible to non-USACE employees 

(USACE personal communication). 
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Application to improving dam removal decision-making 

Improving research and addressing knowledge gaps 

While technological factors are significant and of concern to the dam safety 

community attempting to understand relationships between dam ages and dam 

failures (Regan, 2009), they have received little attention with the dam removal 

science community which has sought ecological classifications of dams based 

upon reservoir and drainage basin characteristics (Poff and Hart, 2002). 

Overcoming these technical silos would allow dam removal scientists to better 

understand why and how particular dams need to be removed, knowledge held by 

many dam removal practitioners but not translated into the academic literature. 

Even less is known about how different dam designs affect the cost and nature of 

dam removal, which requires expertise like dam construction but also new forms of 

knowledge related to controlled demolition. A few different removal strategies have 

been publicly tested, and are currently being studied by a USGS-led dam-removal 

synthesis workgroup (Powell Center Working Group, 2016), but more systemic 

information should be collected on the technologies of deconstructing dams and 

how they relate to technological characteristics of dams. Even more fundamentally, 

we are constrained in linking case study level insights with systemic analysis of 

dam removal by the lack of data consistency around removals at both the state and 

national scale. Creating consistent databases of dams and removals for both 
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comparisons between existing and removed dams, as well as understanding 

variance within removals should remain a top research priority. 

Improving practice 

The technical dimension can improve dam removal practice by improving methods 

of analysing and representing scientific information regarding the impacts of dam 

removal in public processes. We should also seek opportunities to improve 

technical databases representing dam conditions to identify potential synergies 

between public safety dam management and restoration objectives. Lastly, by 

evolving a dam-removal practice, we can increase public support for dam removals, 

as existing practice has served as a source of conflict in prior decisions. 

8 Case studies 

Three case studies below highlight the interdependencies of PFESTS as they apply 

to dam removals in the Pacific Northwest. These three dam removals, occurring in 

2008 (Marmot), 2010 (Powerdale), and 2011 (Condit), all resulted from FERC re-

licensing processes within the same narrow geographic area, influenced by 

ongoing negotiations over endangered species in the Columbia River Basin. 

Marmot and Condit received substantial media attention, shifting the national 

discourse around dam removal. On the other hand, Powerdale is more 

representative of a broader class of small hydroelectric facilities with lesser 

symbolic value, but profound impacts on rivers and their communities. While 

ultimately all three dams were removed because the operator could not justify the 



111 

relicensing expenses, each case highlights specific considerations that dramatically 

altered the PFESTS of dam removal. The Marmot case highlights the role of large 

local institutional players in facilitating removals, as well as the contingency of 

environmental impacts based upon social and political contestations over 

appropriate technologies of environmental management. The Condit case 

highlights not only the importance of representations of dam removal technologies 

to immediate stakeholders, but also the interplay between stakeholder conflicts and 

project costs. Powerdale, with its post-removal conflicts over appropriate in-stream 

flow requirements, highlights the social contingency of dam removal impacts on 

both environmental and social systems in highly technologically modified 

landscapes. 

Powerdale Dam, Hood River Basin (HRB), Oregon 

Powerdale Dam was a 6000 kW (powering ~3000 modern households) 

hydroelectric combination concrete roller gate and earth embankment dam that 

began operation in 1923. The dam diverted water to a powerhouse three miles 

downstream just one and a half miles from the river’s current mouth on the 

Bonneville Pool of the Columbia. PacifiCorp, a private regional electric utility 

company, had initially planned on renewing the dam’s FERC licence in 1998, a 

plan that was the preferred alternative for FERC. However, in 1999 the Mid-

Columbia Evolutionarily Significant Unit of Steelhead was listed under the ESA, 

which alongside a 1998 Thermal Total Maximum Daily Load regulatory process, 



112 

provided regulatory teeth in opposition of continued operations. After input on the 

draft environmental assessment from the NMFS, the Oregon Department of Fish 

and Wildlife [ODFW], and the Confederated Tribes of the Warm Springs [CTWS] 

who have treaty fishing rights on Hood River, and five other stakeholders, FERC’s 

updated licence conditions, finalized in 2002, imposed costs that would render the 

project uneconomical for PacifiCorp. Costs were imposed both by operational 

changes required to meet state water quality standards and upgrading fish screens 

and passage. 

The subsequent settlement process proceeded rapidly with involvement from 

several federal agencies, NOAA, the State of OR, CTWS, and other non-

governmental organisations including American Rivers and reached an agreement 

in 2003. The settlement process had large consequences for the longer-term 

impacts of the dam removal. FERC issued an environmental assessment for the 

settlement agreement later that year, and accepted surrender of the license in 2005. 

The project included removal of the main dam structure and partial removal of the 

flow-line to the powerhouse. In 2003, FERC granted a retroactive and temporary 

continuation of the license to continue operation for revenue generation until 

2010, although the 2006 flood partially destroyed the flowline preventing further 

power generation and public access to the dam site. Prior to removal, ODFW and 

CTWS conducted extensive monitoring work to ascertain baseline fish populations 

bypassing the dam via a working fish ladder.  
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The Hood River Watershed Group [HRWG], a regionally recognised pragmatic and 

collaborative watershed council consisting of representatives from all major 

watershed stakeholders facilitated the transfers of lands on which the dam, 

flowline, and powerhouse were situated. Land was transferred both to Hood River 

County, and the Columbia Land Trust (CLT) for its conservation value and access 

for public recreation, which continues to be negotiated by public processes (HR 

News, 2017).  Secondly, conflicts over how to treat released water rights remain in 

negotiation. Following decommissioning, PacifiCorp converted the 500 cubic-

feet/second water right from the Powerdale Dam project to in-stream water rights 

held in trust by the Oregon Water Resource Department (OWRD) using a 1932 

priority date jeopardising junior water rights in low-flow years (which have become 

increasingly common). Since that time, OWRD issued a proposed final order of a 

partial conversion of in-stream water rights, which has been contested by NOAA, 

CTWS, and two other parties, and is still being negotiated without public 

involvement. Considerable statutory ambiguity in the OR statutes means that this 

case could set an important legal precedent for post removal of in-stream flow 

requirements in the state. Because of these ongoing political and social 

contestations reverberating far upstream of where the dam used to stand, large 

uncertainty remains around the ultimate impacts of dam removal on one of the 

world’s most productive orchard regions and Indigenous salmonid fisheries. 
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Marmot Dam Complex – Big Sandy and Little Sandy Dams, Sandy River Basin 

(SRB), Oregon 

On the opposite slope of Mount Hood/Wy’east in Northern Oregon, lies the Sandy 

River, aptly named for the enormous volume of fine glacial sediment it transports. 

The 22 MW Marmot dam complex owned by Portland General Electric was 

composed of a large roller-compacted concrete dam (47 ft high, 195 ft long) on the 

main stem of the Sandy River, diverting water several miles to the Little Sandy Dam 

(a 15.75 foot high diversion dam) through the Little Sandy River. Water from the 

Little Sandy was moved to Roslyn Lake, a popular recreation spot for the local 

community, which served as a staging pond for a powerhouse on the Lower Bull 

Run River within the Sandy Watershed. When the FERC licence came up for 

renewal in 2004, it became quickly obvious to PGE that the costs of compliance 

demanded by other relicensing parties (including NMFS and USFWS) of protecting 

salmon, listed as threatened under the ESA in 1999, meant that relicensing was not 

financially viable, even with recent improvements to fish passage. Parties to 

relicensing came to a settlement shortly thereafter with the aid of a professional 

mediation organisation. One of the major parties to the FERC relicensing process, 

and the lead entity on the Sandy River Basin Watershed Plan (which funded 

numerous analyses utilised within the FERC process), was the City of Portland, 

which manages the existing dams on the Bull Run River as the main source of the 

city’s water supply. The city was engaged in its own regulatory compliance process 
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through the creation of the Bull Run Water Supply Habitat Conservation Plan in 

order to maintain its incidental take permit which allows an entity to adversely 

influence endangered species under the ESA, as well as comply with CWA 

regulations pertaining to the temperature impacts of the water supply system on the 

Lower Sandy. 

Removing the dam on the main-stem Sandy River opened several miles of river to 

white water recreation, although with limited access points, the opened section of 

river has not become a major destination for anglers or boaters. A small but vocal 

number of fishermen represented by the Native Fish Society engaged in a public 

and legal battle against ODFW, alleging that hatchery strays previously sorted at 

the Marmot Dam complex have now been enabled to spawn and dilute the 

genetics of wild stock throughout the upper Sandy River Basin. These contestations 

have engaged numerous scientific analyses on fish population genetics, as well as 

adding new regulations regarding the number of hatchery fish released into the 

basin (Handleman, 2014). As in the case of Powerdale, dam removal has increased 

scientific uncertainty around the status migratory fish in the basins, and unlike 

Powerdale, has increased the use on habitat-based models in restoration planning 

processes.  
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One of the primary impacts of the Marmot removal appears to be allowing the City 

of Portland to cost effectively maintain the legality of its water supply system with 

regard to endangered species and water-quality concerns. 

Condit Dam, White Salmon River Basin (WSRB), WA 

Condit Dam was completed in 1913, roughly three miles from the river’s current 

mouth on the Bonneville pool across the Columbia from Hood River, Oregon. 

Within a year of construction, floods destroyed the dam’s fish ladders, and after an 

unsuccessful replacement attempt, the owner paid mitigation fees to the state of 

WA instead of replacing them. The dam’s impacts on fisheries was noted, and 

subject to intensive legal scrutiny during compensation processes for the Federal 

Columbia River Power System (Ulrich, 1999), and Indigenous People living at the 

mouth of the White Salmon were forced by the damming of the Columbia River to 

move again to an 'in-lieu' of traditional access site at the present river mouth, and 

remain largely uncompensated (Fisher, 2010). With the dam’s FERC licence 

expiring in 1993, PacifiCorp (the same operator of the Powerdale Dam) initially 

sought relicensing for the project in 1991, only to be mired in a contentious 

process for years. This process resulted in a 1999 settlement agreement, updated in 

2005, and a final one in 2010 with Skamania and Klickitat counties that had 

successfully slowed removal through asserting local jurisdiction, which PacifiCorp 

repeatedly fought invoking federal law. Although PacifiCorp initially intended to 

renew the licence to operate, by 1996 it was obvious that revenues from the 
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project could not exceed costs of financing NMFS-required fish passage. Much of 

the conflict focused on the removal plan to rapidly dewater the reservoir, as well as 

the loss of cultural ecosystem services related to the reservoir, mobilising local 

stakeholders, notably residents owning cabins but leased from PacifiCorp lands, 

and the White Salmon Steelhead Fishermen, concerned about loss of habitat below 

the dam, to petition local and state government representatives to defend their 

interests. Skamania and Klickitat counties hired lawyers and paid consultants to 

challenge state-level permitting for the dam removal, and added over USD3.3 

million in costs to the dam removal process (Becker, 2006). These lengthy legal 

battles continue to have significant social and political ramifications, and may have 

contributed to the failure of the State Water Resource Inventory Planning Process. 

On October 26, 2011, after PacifiCorp obtained all necessary permits, a tunnel 

drilled at the base of the dam was dynamited, rapidly draining the reservoir and 

transferring an unanticipated amount of sediment downstream, blocking a boat 

ramp at the in-lieu fishing site. 

 

Presently, a Yakama Nation project of dredging a channel and building a boat 

ramp is being paid for by funds set aside in the settlement agreement. Additionally, 

some fears of lake residents were realised with erosion from the former reservoir 

site requiring bank stabilisation, several wells drying up, and some damage to 

foundations of former houses close to the lake resulting in condemnation and 

removal (Pesanti, 2016). Meanwhile salmon and steelhead have returned to river 
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reaches above the dam. The White Salmon area serves as a Mecca for a global 

whitewater kayaking scene, and the commercial whitewater industry on the White 

Salmon continues to boom. However, no watershed-level coordination body exists 

to balance competing concerns around maintaining the quality of water resources 

in the basin and regional residential development pressures continue to increase. 

On former Pacificorp lands, stakeholders are seeking to resolve issues of ownership 

and river access, as well as continuing to manage ecological restoration of the 

former dam site. At the same time, ongoing monitoring efforts by the USGS, YN, 

the Underwood Conservation District, and others are seeking to determine the 

impacts of removal on migratory fish populations within the basin (Jezorek and 

Hardiman, 2017). How dam removal has affected river governance remains an 

active topic of research in the basin. 

9 Discussion and conclusion 

Our PFESTS framework provides a useful tool for integrating existing knowledge 

around dam removals, understanding and improving decision making, and guiding 

future research. Of primary interest to this special issue, we highlight how the 

impacts of dam removals themselves are socially and politically contingent. We 

offer PFESTS as a framework to synthesise existing knowledge, inform future 

research efforts, and improve dam-removal practices. 
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From our descriptions of PFESTS dimensions and relevant components we have 

provided a cohesive set of considerations for analysing how each PFESTS 

dimension co-produces the other, and what steps we can take to build off existing 

knowledge to improve dam-removal practices. Our case studies illustrated how 

dam removal is driven by the interactions of PFESTS dimensions. Going forward we 

hope to inform both 'thick' descriptions of individual removals and how they are 

situated within larger policy and planning processes, as well as provide a basis for 

comparative research on dam removals at the local, state, national, and 

international level. 

Overall, we need an invigorated discussion between different elements of the dam-

removal community (e.g. dam-safety professionals, water-resources-development 

policy makers, restoration practitioners, and affected communities) to more clearly 

articulate normative goals around dam removal. Effectively removing dams thus 

requires a re-engagement with both core-democratic principles around public 

processes and a renewed appreciation of Indigenous Peoples’ relationships with 

rivers in the Americas. Restoring nature requires restoring and evolving human 

relationships with ecosystems; how we do so will determine if the dam-removal era 

will continue to accelerate, or be momentary blip in the history of human river 

relations. 
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Chapter 4: A tale of three dam removals: Historical and contemporary co-

production of science and watershed governance in the mid-Columbia river 

region 

Abstract: 
Dam removals and collaborative watershed governance have emerged as leading 

river restoration strategies, requiring new methods for understanding the 

interdependency of social, environmental, and technological dimensions of 

watershed conditions. Here, we provide a synthetic framework and methodology to 

study three dam removals in the Hood, Sandy, and White Salmon Rivers in the 

Mid-Columbia River Region, USA. Utilizing social science (participant observation, 

surveys with 52 participants in watershed groups), and interviews with 18 highly 

engaged individuals), biophysical (stream temperature and fish return data), and 

synthetic (land use change) data, we provide a descriptive analysis of the impacts 

of three dam removals on watershed ecological integrity in their governance 

contexts. While we find a high degree of alignment in the values, worldviews, and 

problem-solution framings of participants in watershed governance programs, the 

impacts of dam removal remain dependent on multi-scalar political arenas and the 

representation of rivers by their resident knowledge systems. While removals 

provide rapid ecological and social benefits, they also have negative impacts on 

different sets of socio-nature relations, potentially undermining watershed 

restoration efforts even in the context of robust collaborative governance. While 

strong institutional leadership can provide overarching guidance to restoration 
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programs, it may paradoxically occur due to the crossing of regulatory ecological 

thresholds (e.g. Endangered Species Act listing). In contrast to reactive US state and 

federal regulations, treaty rights and responsibilities provide an overarching and 

pre-emptive framing of human rights and obligation. Watershed restoration, as form 

of environmental governance, is not limited by information, but by social power. 

Introduction 

Dam removal as a river restoration practice has emerged during the same period as 

widespread adoption of collaborative watershed governance approaches. While 

the academic and policy literature situates dam removal as a biophysical 

intervention within a complex array of interests, institutions, and social processes 

attached to dams (Stephenson 2000; Bonham 2008; Sneddon et al. 2017a), few 

analyses have situated removals within the overarching restoration concerns 

addressed by collaborative watershed governance bodies (but see: Lowry 2003; 

Gosnell and Kelly 2010). Of particular interest is the role that dam removals play in 

affecting the longer-term concerns and strategies of these bodies, and the 

relationship between the scientifically evaluated and perceived impacts of dam 

removals (Sneddon et al. 2017b). We define collaborative watershed governance 

bodies as multi-partner organizations (Agrawal and Lemos 2007), coalescing 

around a particular hydro-geomorphologically defined watershed (Sabatier et al. 

2005), representing an active political arena as much as a biophysical scale (Molle, 

2009).  
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In the Mid-Columbia River, debates over dam removal continue to evolve as 

the region struggles to overcome its colonial legacy and manage the Federal 

Columbia River Power System (FCRPS) in accordance with treaty obligations and 

contemporary environmental laws (Cosens et al. 2014, 2018). Over the last 30 

years, in response to numerous crises of fish population declines (White 2011), 

tributary restoration has become a major focus for federal entities in the region, and 

has interacted with tribal, local, state, regional, and national institutions and 

organizations in reshaping regional rivers (Hawley 2011). Drawing upon mixed 

social and biophysical methods, we examined the relationship among dam 

removal, watershed conditions, and the political economy of river restoration in the 

Sandy, Hood, and White Salmon river basins. We synthesized our results using a 

conceptual model for co-productive socio-enviro-technological systems (SETS) to 

identify the ultimate impacts of dam removal on watershed ecological integrity.  

2. Dam Removal through a grounded Socio-Enviro-Technological Systems (SETS)

Lens 

Methods to study dam removals and river restoration have proliferated in recent 

years, expanding on biophysical surveys and assays to extensive participant 

observation, surveys, interviews (Wallace 2014; Fox et al. 2016, 2017), and 

examinations of the policy literature (Lowry, 2003; McCool, 2012). While few have 

answered Graf’s (2005) call to produce more synergistic and relevant research for 

dam removal science, the quest for sufficiently interdisciplinary frameworks 
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continues (see Sneddon et al. 2017a). While we have published an integrative 

framework for understanding the causes and impacts of dam removal elsewhere 

(Grabowski et al. 2017a), here we place dam removal within its broader watershed 

governance context in order to understand its ultimate impacts on the ecological 

integrity of rivers.  Our first major methodological and theoretical step is to seek to 

understand the causal factors affecting the ecological integrity of a watershed 

through a socio-enviro-technological systems (SETS) framework (Redman and 

Miller 2016; Grabowski et al. 2017b), in order to frame the systemic interactions of 

dam removals. 

To aid this causal analysis, we draw upon work in event ecology arguing for 

the importance of multi-scalar and historical processes affecting present socio-

ecological conditions (Walters and Vayda, 2005). In this sense, the ‘event’ of dam 

removal reverberates through the SETS, ultimately affecting ecological integrity 

through its direct (e.g., removed fish passage barriers, and restored sediment flux, 

instream flows in the bypass reach and riparian vegetation in the former reservoir 

area – see Tullos et al. 2017), and indirect impacts (e.g., social agreements on 

instream flows, political conflicts over appropriate plans and enforcement). In this 

sense, scientific information informs a broader social narrative of dams and rivers, 

illuminating the political economy of river restoration, and laying the experiential 

ground out of which notions of ‘what is to be done’ grow and become shaped by 

cognition, affinity, expertise, and power. Conflicts and negotiations over dam 

removal thus reflect and magnify ongoing social dynamics of governing resident 
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watersheds; as well as the efforts of actors not rooted in the same geographic 

spaces and affinities as ‘local’ or ‘watershed’ residents. In all cases, the social 

narratives at work provide the basis for a common or differentiated understanding 

of the ‘baseline’ forces affecting watershed conditions, which in turn guide 

landscape management and restoration programs.  

Collaborative governance organizations have become central actors in 

restoring and managing watersheds, providing novel arenas for adjudicating power 

inequalities in collaborative settings (Molle 2009; Brisbois et al. 2018). Debate 

continues over the ecological effectiveness of collaborative watershed governance 

(Sabatier 2005; Wortley et al. 2013), with evaluative research often focusing on self 

reported and ad hoc metrics of effectiveness, such as easier to measure habitat 

characteristic data over fish return and outmigration data, or the achievement of 

programmatic goals (Palmer et al. 2005; Roni et al. 2008). Collaborative 

governance programs also rely on knowledge systems, or formal bodies of 

knowledge through which complex systems become known. Formal knowledge 

largely consists of the production and analysis of data via disciplinary means, 

making the watershed scientifically and politically ‘legible’ (Latour, 1999), thus 

enabling the managerial activities of governing institutions (Scott 1998). How 

knowledge becomes enacted in affecting and modifying the riverscape SETS, 

however, depends on the institutional and organizational practices of managing 

land and rivers, building infrastructure, as well as the human activities outside of 

institutional control and steering. Because collaborative governance bodies in the 
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PNW often feel limited by financial and organizational stability (Chaffin et al. 

2015), they must balance the interests of multi-scalar stakeholder groups, and they 

cannot adopt approaches threatening their financial well-being or political capital 

(Lubell 2004). Collaborative watershed governance and dam removal thus both 

occur within the broader neo-liberal turn in environmental governance of 

decentralizing state authority to more local sets of stakeholders who must negotiate 

a multi-scalar socio-economic terrain in order to govern the environment (Agrawal 

and Lemos, 2007). In this context, both framing and enacting watershed restoration 

is continuously re-negotiated by actors of varying influence and capabilities (Hull 

and Robertson, 2000; Lave et al. 2010; Violin et al. 2011). Which human activities 

can be effectively governed by these novel structures seeking improved institutional 

‘fit’ with the watershed (Folke et al. 2004), and which are inherently ungovernable, 

remains a key question for human-nature scholars. 

Our interrogation of the power-knowledge dynamics of watershed 

governance however is not content with a simple critique of the inevitable power 

knowledge relationships, rather we draw upon the notion of ‘matters of concern’ 

(Latour 2004), in a broader attempt to understand the underlying processes of 

making the ‘environment’ known. In this sense, the ecological integrity of rivers as 

a matter of social concern indicated both by fish exhibiting their own agency in 

inhabiting certain types of habitats and rivers (Schiemer 2000; Druschke et al. 

2017) and as a social construct and boundary object (Moog and Chovanec 2000) 

motivating the engagement and knowledge production of a diverse set of social 
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actors. In order to understand ecological integrity, we must therefore 

simultaneously understand the biophysical causality of integrity as well as the 

inherently political processes of framing, filtering, and adjudicating between 

definitions of integrity. To do so we draw upon Foucault’s notions of genealogy and 

the episteme (Foucault 2002), where  ‘knowledge’ depends on deeply held a-priori 

beliefs about causality in nature and society (Ross, 1994 in Jacoby 2014, 6; Hull 

and Robertson 2000; Raynor and Hayward 2010) underpinning specific 

disciplinary and methodological, or technical, practices (Kuhn 1976; Latour 1999). 

These technical practices in turn, are situated within specific institutions of varying 

social power, which often hinges upon their claims of representativeness of ‘real 

world’ phenomenon (Wynne, 1992). Knowledge from this point of view is not a 

collection of facts, but currency within a social system of generating, analyzing, 

communicating, and defending claims of what has happened and what is to be 

done (Munoz-Erickson 2014). Two important sub-domains of this overarching area 

of concern are the notion of ‘wickedness’ (Rittel and Weber 1978), and the notions 

of cultural theories of nature (Holling et al. 2001). 

The ‘wickedness’ of many water issues refers to inseparability of problem 

framing and resultant sets of proposed solutions, and the inevitable contestations of 

problem framing that arise from different experiences of the phenomena 

characterized as problematic (Lach et al. 2005). The cultural theory of nature 

hypothesizes that all people possess a mental model of causality in nature, and thus 

fundamentally impacts how they frame problems of human nature relations. The 
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five models thought to be in circulation in questions of natural resource 

management include ‘nature as chaotic – necessitating trial and error, nature as 

fragile – necessitating precautionary management, nature as resilient – 

management as promoting stable states, nature as balanced – requiring minimal 

management, and nature as evolving – requiring adaptive management (Holling et 

al. 2001). In addition to these five models, we add the idea of nature as kin, or a 

relational model of nature requiring non-anthropocentric management (Klain et al. 

2017).  

In our work here we test the cultural theories of nature in affecting problem-

solution framings, although we also draw upon Jennifer Mason’s notion of “affect 

as aperture” and affinity as a charged and living relationship to examine the role of 

particular experiences in shaping human-watershed relations (Mason 2018). Affect 

and affinity form a vital part of placed-based research, as they engender empathetic 

understanding for other research participants, and allow for explicit examination of 

the agency of the researcher, participants, and non-humans (Kohn 2013), all co-

inhabiting a more-than-human world (Whatmore, 2017). Utilizing our own senses 

as apertures also allows us to draw upon inspiration from our own living 

relationships with landscapes, peoples, and rivers, all of which affect the scope and 

purpose of our research. Such a practice embraces and emphasizes co-presence 

(Chuah 2015) complementing collaborative and participatory research methods 

utilizing research return and the translation of results for contextual application, 

creating opportunities for co-learning (Baba 2002, Spoon 2014). 
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By emphasizing affinity as resulting from living relationships making the 

world discernable through our sensory faculties, we expose the ‘sense making’ 

processes at work in delineating study objects, as well as desirable vs. undesirable 

courses of action. Such a turn towards the senses and the ways in which affinities 

are experienced through them, allows us to investigate the ways in which senses 

and affinities between people and the land can simultaneously span multiple time 

periods, including the distant past and the possible future. Affinity also allows us to 

unpack what is considered ‘sensible’ in the practice of dam removal (i.e., in 

reference to American Rivers’ slogan, “Removing Dams that Don’t Make Sense”), 

which often forms the center of contestation in removal decisions (Fox et al. 2016, 

Sherren et al. 2017). Human relations with landscapes undergird specific 

restoration practices, and the charged energies of affinity motivate individuals to 

become involved in collaborative governance bodies (Powers, 2000; Cronin and 

Ostergren, 2007; CRITFC, 2013).  

3. Case Study Region

The Columbia River, or the ‘big river’ Nch’I Wana in the native Sahaptin language, 

continues to be re-worked by a constellation of networked international, tribal, 

national, regional, state, and local authorities and organizations (Mogren et al. 

2014). Similar to other rivers around the world (Pritchard 2011), these networked 

institutions draw upon technical practices to manage the river as an ‘organic 

machine’ (White 2011). The river has the fifth largest average annual discharge 
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(7500 cms) in the United States, draining 670,810 sq km and flowing over 2,000 

km. The geologically young landscape averages a gradient of 0.38 m/km as it 

crosses the Cascade Mt. Range through the bedrock canyons of the Columbia River 

Gorge carved by a series of glacial floods (the Missoula floods; NW Council, 2018). 

Highly climatically variable, the region contains parts of the arid Columbia Plateau, 

where annual precipitation averages 18 to 38 cm/yr, through the highly variable 

precipitation belt of the Eastern Cascades (56 to 234 cm/yr), to the wet slopes of the 

Western Cascades where precipitation averages 152 to 254 cm/yr, WRCC 2017). 

Each of our case study rivers has its source at the top of one of the twin peaks of the 

region – Wy’East / Mt. Hood (elev. 11,250’ or 3429 m) for the Sandy and Hood 

Rivers South of the big river, and Pah’to / Klickitat / Mt. Adams (elev.12,280’ or 

3743 m) for the White Salmon River to the north (Figure 3a and b). 

Prior to the era of dam building, widespread beaver extirpation, wetland 

filling, >90% deforestation, and fisheries exploitation (White 2011), the river was 

one of the largest salmon fisheries in the world (CRITFC 2018). While these 

changes continue to profoundly disrupt  not only the river, but tribal life throughout 

the region (Ulrich 2007; Barber 2011), recent scholarship re-centers the agency of 

tribal peoples in self determination and cultural resurgence (Fisher 2010; Jacob 

2013). These ongoing acts of resistance (Scott 1990) continue to evade easy 

categorization with typical declensionist and progressive tropes in the Americas 

(Cronon 1991). Institutionally, these dynamics manifest as ongoing contestation 

and litigation over the interpretation and enforcement of the scope of treaty rights 
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and obligations to recognized Tribes, and dealing with compensation for ongoing 

losses incurred by dam building by River Indians (Ulrich 2007; Barber 2011), who 

themselves have complex relationships with past and present processes of federal 

tribal recognition (Fisher, 2011). In addition to fundamental governance questions 

over sovereignty, jurisdiction, and the legality of settler uses of the landscape, 

significant contestation exists over the enforcement and interpretation of US State 

and Federal Laws including the Endangered Species and Clean Water Acts (Hawley 

2011).
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4. Methods and Data

Conceptual Framework  

River restoration scholarship has embraced socio-ecological systems thinking 

(Drouineau et al. 2018; Fernández‐Manjarrés et al. 2018), the watershed scale 

(NRCC 1999; Nguyen et al. 2016), and addressing issues of inter-sectoral 

governance (Song et al. 2018).  To address these interdependent concerns we 

sought to operationalize an empirical framework for evaluating both how 

watershed level restoration practitioners conceptualized the dominant issues facing 

their watersheds post dam removal, as well as what data could be used to evaluate 

the effectiveness of different governance regimes. Similar to Song et al.’s (2018) 

four discursive mechanisms of inland fisheries governance: characterizing the 

system, valuation, power relations, and vertical policy integration, we hoped to 

create a conceptual framework to understand how institutional arrangements 

(power relations), values, and world views of human-nature relations (Holling et al. 

2001; Klain et al. 2017) themselves influence system characterization. Such an 

approach builds off of parallel developments in socio-eco-technical systems (SETS) 

work attempting to understand the social forces shaping different models or 

representations to be studied and managed (Manuel-Navarette 2015), as well as the 

relationship of physical infrastructures in shaping social and ecological possibilities 

of restoration (Grabowski et al. 2017). To this end, we iteratively constructed a 

SETS conceptual framework to guide data collection and analysis (Figure 3). 

However, the irreducible complexity of coupled human and natural systems 
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quickly became apparent, and overwhelming for empirical evaluation. We 

therefore chose a subset of key factors to examine using empirical variables (Table 

1) from the framework.
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Social Narrative 

To provide the necessary context for current restoration and governance challenges 

in the basin we drew upon historical narratives centering Indigenous Peoples, 

restoration, and infrastructure development (Hunn and Selam 1991; Lichatowicz 

2001; Jetté 2007; Ulrich 2007; Barber 2011; Fisher 2010; Hawley 2011; Jacob 

2013; Deloria et al. 2016; CRITFC 2018) to construct an overall narrative that 

minimized the silencing of ‘inconvenient narratives’ (Trouillot in Jetté, 2007). Such 

an approach purposefully disrupts the extant hegemonic and imperialist narratives 

which frame the history of the region largely in terms of Euro-American 

achievement against the forces of nature (BPA [1941] 2016), a framing obscuring 

the conditional and contextual developments of human-nature relationships. The 

end result of our historical analysis is a timeline of key social, environmental, and 

technological changes in the study region (Appendix A). 

Planning Documents 

For each watershed, we selected the most recent post-dam removal watershed level 

planning documents in each basin for comparative analysis. We used discourse 

analysis (Schensul and Lecompte 2012) facilitated by keyword searches for ‘goals,’ 

‘recommendations,’ ‘actions,’ ‘activities,’ ‘treaties,’ ‘tribal,’ ‘rights,’ and 

‘responsibilities,’ and text extraction to tables to examine the overall framings of 

restoration need, restoration goals, and their specific recommendations, activities, 
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acknowledgment of treaty rights, and a distillation of these results along Social, 

Environmental, and Technological dimension (results in Table 3).  

 

Focused Ethnography and Participant Observation 

Document analysis occurred concurrently with over three years of mixed methods 

focused ethnographic work (Schensul and Lecompte, 2012) on individuals engaged 

in collaborative watershed governance initiatives and groups. Focused ethnography 

provides a relatively rapid assessment of the social dynamics affecting a particular 

issue of concern (in this case the relationship of dam removal to watershed 

governance), and aims for strategic research participation of both core and 

peripheral stakeholders in order to bound major issues and themes (Schensul and 

Lecompte 2012). A major component of focused ethnographic work involved 

identifying individuals who could provide insights into the hidden transcripts (Scott 

1990) of dam removal and watershed restoration not available from the official 

planning documents. To this aim we attended over 15 watershed group meetings 

and related events in 2013-2015, and used initial observations and impressions to 

design preliminary survey instruments and tested them using focus groups in each 

of our watersheds. While tribal perspectives in literature and planning documents 

were heavily considered, there is very little direct tribal involvement in the 

watershed groups under consideration, and thus we focused largely on tribal staff.  

 

Survey 
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We constructed a survey instrument (Appendix B) with seven sections of 2-10 items 

each: relative ranking watersheds values, how issues affecting watershed health 

were framed, potential solutions to those issues, how dam removal appeared to 

affect watershed conditions, organizational affiliations, world-views, and 

demographic variables. After the research project was introduced in open 

meetings, surveys were distributed through email list-serves of collaborative 

watershed groups, yielding 52 complete individual responses, out of 300 potential 

respondents (response rate ~15%). Ordinal ranked variables of values and world 

views were examined for statistical differences between basins using Student’s t-

test. Categorical variables of problem-solution framings, and the scales, interests, 

and types of organizational and institutional affiliations were examined for between 

basin differences using Pearson’s Chi-sq tests (see Appendix C). 

Semi Structured-Interviews 

From this pool of respondents, 18 willing individuals of varying degrees of 

centrality to collaborative governance efforts (defined by the duration of their 

involvement in the watershed and degree of involvement across watersheds) were 

contacted for semi-structured interviews. Selection criteria (n = 2 per criteria per 

basin) were based on a combination of reputational and snow-ball sampling 

(Schensul and Lecompte 2012), as well as purposefully selecting individuals born 

and raised in each watershed, long term transplants (having resided for over 10 

years in the basin but not being born there, recent immigrants having moved within 
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the last 10 years). Interviews intended to explicate relationships between surveyed 

factors and construct more detailed narrative histories of watershed change pre-and 

post dam removal as experienced by individuals of varying life histories and 

affinities with other participants and the land itself.  

Interviews provided deeper insight into the affective factors driving different levels 

of engagement in governance activities, including relationships with other 

watershed stakeholders, the landscape, and extra-humans, revealing some of the 

hidden transcripts (Scott 1990) and lessons learned from dam removals from 

different organizational perspectives. We were also particularly interested in 

identifying ‘blind spots’ in watershed management and restoration programs in 

terms of how specific problems and solutions were framed by some stakeholders 

but were not taken up in wider discourse or formal action plans or management 

activities, and what opportunities existed to address these under-acknowledged 

limiting factors. Interviews were selectively transcribed to clarify points where 

notes were insufficient, and content was thematically coded to identify the relative 

importance of factors in our overall causal model.  

Stream Temperature and Fish Returns 

In consultation with biophysical science professionals, researchers, and agency 

representatives working on watershed issues in each study basin, we identified a 

sampling scheme for stream temperatures that would be representative of the river 
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network and allow us to estimate sub-basin level factors affecting this critical 

biophysical parameter (Peterson et al. 2013). Stream temperature remains a 

concern in all of the study basins, with formal thermal Total Maximum Daily Loads 

(TMDLs) having been established in both the Sandy and Hood River basins. In all 

three basins, stream temperature had been a consideration of dam operational 

management during re-licensing, and remains a mater of concern tied to mainstem 

and tributary low flow conditions resulting from human water abstraction (see 

below in results of document analysis for more detail). At each major stream 

junction we utilized a network sampling strategy to measure above and below 

stream junction temperatures using standard Hobo water temperature loggers 

(Onset corp. .2 C accuracy) logging on a 5 or 15 minute interval (some loggers had 

a maximum resolution of 15 minutes) in order to provide high temporal resolution 

of stream temperature fluctuations. Our temperature data were combined with data 

from the US Geological Survey National Water Information System (USGS 2018), 

the Underwood Conservation District (Carly Lemon, personal communication), 

ongoing USGS studies of fish habitat in the White Salmon (Ian Jezorek personal 

communication), and US Forest Service monitoring of temperatures in the Sandy 

Basin (Todd Parker personal communication). Data were checked for consistency 

and accuracy, reformatted and collated for summary analysis in R for the period of 

June 15th to September 9th 2016, the peak temperature season of the region. Daily 

summary statistics were calculated for these sites during the seasonal period above 

for the regulatory metric of the maximum 7 Day Average of the Daily Maximum 
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Temperatures (WAC 2018), the average daily flashiness, the flashiness of daily 

means (see Grabowski et al. 2016), seasonal mean, mean daily range, maximum 

daily range, standard deviation of daily mean temperatures, percent of samples and 

number of days with minimum above 12, 17, and 20C, respectively, the total 

hourly degree accumulation, and the number of continuous measurements at each 

site. (Appendix 4). Lastly, we compiled and synthesized reports and published data 

on fish returns (Hardiman and Allen 2015; Jezorek and Hardiman 2017; French et 

al. 2017; SRBWC 2017; Fish Passage Center 2018) post dam removal to evaluate 

the impacts of dam removal on habitat availability and fish populations. 

Land Use and Land Use Change 

For each basin we examined land use change from 2001 to 2011 using data from 

the National Land Cover Dataset (NLCD) for 2001 (Homer et al. 2007), and 2011 

(Homer et al. 2015), as well as the 2001 to 2011 land cover change index. We 

examined land cover change for all NLCD classes at the basin scale as well as 

within the 60 m (180ft) stream buffers roughly coinciding with the 200 ft buffer 

zone for streams with annual average flows greater than 20 cfs in the State of 

Washington (WA DEC 2018), and encompassing the 60-80 ft buffers for Salmon, 

Steelhead, and Bull Trout bearing streams mandated by 2017 updates to the 

Oregon Forest Management Act for small and medium streams (ORDF, 2018). We 

also examined land cover and land cover change within the Wild and Scenic River 
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(WSR) designated portions of each basin, which also mandates that no vegetative 

disturbance shall occur within 200ft of the designated watercourse regardless of its 

classification as a wild, scenic, or recreational river, although enforcement is 

subject to negotiation and interpretation of the respective role of voluntary, federal, 

state, and county level institutions (see Appendix 3) 

5. Results

5.1. Plan Comparison the Sandy, Hood, and White Salmon River Basins.  

In the context of the large scale infrastructural development, land use change, and 

governance regime change (described in detail in Appendix 1), the Sandy, Hood, 

and White Salmon rivers have all been re-conceptualized as cohesive planning 

units for improving watershed conditions. Within these watersheds complex drivers 

of ecosystem change are represented in formal planning processes with designated 

lead entities and collaborative partnerships of varying organizational scope and 

richness undertaking restoration efforts of varying complexity and scope. A 

comparative analysis of planning documents in each basin yields several notable 

differences. First, plans vary with regards to the comprehensiveness in addressing 

different drivers of watershed integrity loss in social, environmental, and 

technological domains (Table 2), as well as in their motivations for addressing 

environmental concerns, which are broadly split between compliance with state 

and federal regulations, maintaining the legality of economically beneficial land 

uses, and a concern for treaty obligations.  
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In the Sandy River basin, there is no mention of treaty obligations in the Bull Run 

Habitat Conservation Plan (which pertains to the entire basin), although the recent 

‘State of the Sandy’ (SRBWC 2017) does mention that the basin contains ceded 

lands of both the Confederated Tribes of the Grande Ronde and Warm Springs. In 

contrast, both the White Salmon and Hood River Basin plans reference the role of 

contemporary tribal governments, as well as traditional Tribal use and relationships 

with those sub-basins. However, these references are largely to voluntary efforts to 

engage Tribal managers (and funds) in basin projects and strategies. Omissions of 

treaty rights and the treaty obligations of settlers, federal, and state agencies within 

planning documents are made even more striking by the centrality of treaty 

concerns and rights as outlined in the overarching Mid-Columbia River restoration 

strategy put forth by CRITFC (2014), whereby: 

“The treaty promises of the United States to protect the aboriginal 

right of our tribes to take fish at all of our usual and accustomed 

fishing places precedes all other laws affecting the Columbia 

Basin and were not diminished by those laws.“ 
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Table 2. Plan comparisons using a SETS lens 

In line with this position, CRITFC and tribal leaders view the treaty obligations of 

settlers residing and working on treaty lands as akin to a conditional ‘lien’ on their 

title and use of the land, which is spelled out in plain language in the Chinook 

Trilogy (CRITFC 2014). Otherwise, sub-basin planning processes frame biophysical 

concerns around habitat needs, and rely on technical expertise to prioritize projects 

and frame matters of concern.  

 5.2 Survey and Interview Results 
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Survey and interview results indicate key differences between basins in terms of the 

values, problem-solution framings, perceived impacts of dam removal, and 

institutional types, interests, and scales at work on restoration in each basin. 

Overall, however, respondents displayed a high degree of alignment around 

relational and both anthropocentric and eco-centric value systems in collaborative 

governance participants. These results indicate the importance of contextualizing 

values within local drivers of watershed conditions, which remain largely subject to 

control by county, state, and federal government authority as well as the un-

mediated human behaviors beyond regulatory control.  

Survey Respondent Values 

Overall, survey results indicate mixed alignment and significant differences on the 

values of watersheds, although all respondents had high values for recreation, 

connection, and drinking water. 
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Figure 3. Distributions of value rankings in the Hood, White Salmon, and Sandy River watersheds 
for survey respondents. * indicates significant difference of Student’s T-Tests, between basins at 
p<0.1. 

Problem-Solution Framings 

Given this mixed agreement and disagreement on the values of watersheds, there 

was a surprising amount of agreement on the overall problem-solution framings of 

restoration needs in the three basins, indicating that the motivations of those 

involved in collaborative governance efforts may be somewhat generalizable 

despite their contextualized activities. Overall, there was a strong preference for 

habitat restoration to address diverse drivers of habitat loss and degradation, with 

demographic and economic pressures dominating issues of concern. In the Sandy 
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river, where survey response rates were much lower than the other two basins, 

climate change and extreme weather made the top three (with increasing use and 

land use in the top five). In the Hood river, where collaboration was reported as 

strong, financial incentives were seen as more important for changing land owner 

behavior than in the other two basins, indicating an entrenched neo-liberal turn of 

governance. In the heavily agricultural Hood River basin, where there are extensive 

programs in place to mitigate the impacts of irrigation infrastructure, technological 

innovation was seen as more important, and water availability was seen as much 

more of a concern than in the other basins. Additionally, in the White Salmon and 

Sandy basins, respondents ranked the solution of more collaboration 2nd to 

addressing the constellation of watershed issues, compared to Hood river 

respondents who ranked it 5th.
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Organizational and Institutional Scale, Type, and Interests 

Significant differences exist (Pearson’s Chi-squared test p << 0.01) in the 

constellation of organizational scales, types, and interest across the three basins. 

These results indicate that the types of organizations, as well as their interests and 

scales of operation may have significant implications for the perceived efficacy of 

collaborative governance efforts. It is also worth noting that many respondents 

were active in several organizations, indicating that collaborative watershed groups 

provide additional cross linkages between individuals who themselves link across 

organizations. 

In the Hood River, the HRWG truly does appear to serve a coordinating 

function between a large number of other voluntary and statutory organizations, 

including advocacy groups, irrigation districts, and county government. However, 

respondents tended to be involved in either natural resource, agricultural groups, or 

non-river recreation interests, and no respondents identified affiliation with the 

Chamber of Commerce, terrestrial recreation organizations, or volunteer fire 

departments. In the Sandy River Basin, there was very little cross over between 

survey respondents and official planning and municipal government bodies, 

although a high degree of overlap between the Sandy River Basin Watershed 

Council and the Sandy River Basin Partners, as well as some representation from a 

number of national and regional river-based organizations. In the White Salmon 

there was no distinct organizational hub that respondents coalesced around as in 

the Sandy and Hood Rivers, rather several non-profit and advocacy organizations 
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served as clusters, and respondents were also less involved in county level political 

processes as compared to Hood River. While others have noted the importance of 

federal and state agency relationships in driving collaborative governance success 

in the PNW (Chaffin et al. 2015), these results indicate that we should also pay 

attention to the cross institutional and organizational affiliations of participants in 

watershed groups (Figure 6). Interview results indicated that there was much more 

engagement in county level political processes in the Sandy and Hood river basins 

than in the White Salmon, which was corroborated by their respective relatively 

larger affiliations of survey respondents with public bodies. Overall results indicate 

that participants in watershed restoration efforts felt more successful when they 

participated in established community-based organizations and structured political 

processes than when pursuing purely voluntary efforts. 

Impacts of Dam Removal 

Dam removal affected the majority of respondents in each basin; overall results 

indicate that while dam removals certainly have large biophysical impacts on their 

resident SETS, their social and infrastructural impacts may either jeopardize or 

enervate collaborative restoration programs at the watershed scale. The most 

commonly stated impacts of dam removal included both upstream and 

downstream fish passage improvements, and in dam removal’s capacity to 

‘stimulate a conversation about the rivers future’. Dam removals were also thought 

to increase within river flows, and create new recreational opportunities (Figure 9). 
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Some notable differences included that dam removal on the Hood and White 

Salmon rivers increased conflict over water resources, while decreasing conflict on 

the Sandy. Interestingly, removing dams with fish passage facilities like the 

Powerdale (Hood) and Marmot (Sandy), did increase uncertainty in fish population 

statuses, as the dams had previously acted similarly to main-stem Columbia dams 

in providing standardized fish ladder counts. While many respondents from the 

White Salmon and Hood basins perceived new recreation opportunities resulting 

from dam removal, there were also those who felt that recreation and river access 

had been lost post dam removal; highlighting the perceived tradeoffs of dam 

removal.  

World Views 

Underlying world views of respondents corroborated with a dominant narrative of 

human population growth as being inherently opposed to watershed health. The 

vast majority of respondents felt that nature is fragile, although comments on the 

question revealed strong emotive responses that nature is also resilient, and how 

nature was particularly vulnerable to human influence, as well as strong responses 

to the contrary, indicating a significant minority opinion on the resilience of nature 

captured by this one comment:  

“Individuals in nature, and individual species, and individual bits of 

ecosystems (a wetland, for example) are fragile, but "nature" is not 
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fragile. Nature has been here for millions of years. Nature changes, 

but it's not fragile.“ (Euro-American Female, Farmer) 

Respondents also felt very strongly about nature being balanced without human 

influence, although multiple respondents indicating contingency and directionality 

of human influence being important qualifiers, with several respondents indicating 

that nature now needed human involvement to be balanced. The idea of nature 

being chaotic was perhaps the most ambivalently responded to, although there was 

also profound disagreement with the statement that humans should strive to control 

natural systems. Even more agreement was found with the idea that nature is 

evolving, and that human management must proceed on an adaptive cycle. In 

contrast, the vast majority of respondents strongly agreed (58%) that ‘Humans, 

plants, and animals are all related as kin.’ In line with this idea, most respondents 

felt that human management of ecosystems should take into account the 

perspective of non-humans, despite one respondent indicating that “this type of 

language is not very effective in a rural town” (Euro-American female, college 

student). Taken together these results indicate that respondents generally were 

highly sympathetic to both relational, kinship, and non-anthropocentric approaches 

towards managing ecosystems. Although, the majority of respondents felt that they 

did indeed rely on ecosystem for their well being (over 95%), so it seems that 

relational and non-anthropocentric values and utilitarian values are non-exclusive.  
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When asked about the relationship of Native peoples and the land, 

responses were positive but the content of comments was striking. Several 

statements are worth reproducing in full:  

“Not anymore, they can barely manage their own reservations!” (50-

60yr old Euro-American male, Bachelors Degree) 

“The mastadons were wiped out within 100 years of humans arriving 

in this continent. We've learned from Mesa Verde that whenever there 

are too many humans, they exhaust natural resources of an area. “ 

(70-80 year old Eureo-American female, Masters degree) 

“Although I am disappointed that they keep gill-netting the salmon in 

the Columbia River. This is inconsistent with their traditional values in 

my opinion, and harmful to the salmon which they so highly value. “ 

(60-70 year old Euro-American Female, Doctorate). 

These comments indicate racist tropes, and treating traditional ecological practices 

as necessarily static (or essentialized policing - Gómez-Baggethun et al. 2013),  are 

still issues in recognizing tribal relations with land in co-management programs 

(Deloria 1992). Thus overall, while there is consistency in values, and to some 

extent, world-views, in respondents from collaborative governance groups, the 

ways in which those values translate into institutional structures and land 

management practices is highly contingent upon the relationships between 
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individuals in institutions. How this social terrain maps onto the biophysical terrain 

of the river SETS is what we turn to now. 

6.3. Biophysical Indicators of Watershed Condition 

Stream Temperatures 

All three rivers have thermally flashy glacially fed headwater streams exhibiting 

considerable variation in their 24 hour temperature cycles, as well as significant 

thermal impairment (Appendix 2). Overall, the White Salmon has the lowest stream 

temperatures through the summer season, although 14 % of monitored sites (all 

tributaries) have seven day average of daily maximum thresholds (7DADMax) 

above the regulatory and migratory threshold of 18 C (EPA 2001). The Hood in 

contrast has 18% of its sites above the 18 C 7DADMax threshold (mainstem and 

tributaries), and the Sandy has over 40% of monitored sites above that threshold 

(mainstem and tributaries). Examining thermographs for the main-stem Columbia 

for summer 2016, all three Columbia sites exceed 18 ℃ for the entire study period 

of early July through early September, and display a stunning lack of variability 

(~3℃ for all sites). High mainstem temperatures on the Hood and Sandy rivers 

provide mixed support for prior claims that large tributaries provide thermal refugia 

when Columbia temperatures exceed the lethal threshold of 20 ℃ (Goniea et al. 

2006) as lethal temperatures of 20C 7DADMax were experienced in all rivers 

studied (9, 19, and 14 % of the Hood, Sandy, and White Salmon logger sites 

respectively). Some of these sites were affected by either irrigated agriculture (Trout 
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and Rattlesnake creeks in the White Salmon) or extensive urbanization (Beaver 

Creek and the lower Sandy River in the Sandy Basin), although many of them, 

especially in the Sandy, are dispersed throughout mixed public and private land. In 

all of the basins, there were slight temperature increases from above former 

reservoir sites to below them, although these temperature increases were below <1 

℃ except on the hottest of days.  

 

Land Use Change 

Land use change analysis identifies several notable differences among basins in 

specific land use transition dynamics (Figure 9), indicating the importance of 

forestry practices in influencing basin scale, riparian (60m stream buffers), and 

Wild and Scenic River designated areas land cover, despite the fact that 

development pressure was seen as the dominant concern by most survey 

respondents (Figure 10). The Hood River basin experienced two significant forest 

fires during this period (the Blue and Gnarl Ridge fires), so it is not clear what 

amount of forest to grassland or bare earth transition is due to inherently dynamic 

and non-equilibrium ecological processes (Botkin 1990), which nevertheless 

remain heavily influenced by historical and ongoing management decisions 

(Langston 2005). In the White Salmon basin, these changes can largely be 

attributed to forest management on public lands. In all basins, development 

pressure is definitely present and increasing, especially for ‘open space,’ and all 

basins have notable increases in high and medium intensity development – 
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indicating that the stated concerns of survey respondents are founded, but perhaps 

biased by the relative visibility of development land use transitions, as well as their 

potentially irreversible ecological impacts. Even the restrictive governance regimes 

of designated Wild and Scenic Rivers (WSR) are highly variable (NWSRS 2018), 

and almost all those studied here have had significant land use conversions from 

forest to grassland/herbaceous and/or shrub/scrub (Figure 11). Although it does 

appear that the combination of WSR and Wilderness designation may constrain 

land use change, as indicated by the Sandy sub-basins WSRs of the Zig Zag and 

Salmon Rivers (Appendix 3. 
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Fish Returns 

While most fish populations of concern appear to be increasing in these three 

basins, they remain intensively managed by hatchery operations and detailed 

information as to their statuses remain dependent upon ongoing and complex 

scientific efforts pursued by Tribal, State, and Federal agencies as well as volunteer 

efforts. In the Sandy basin, Fall Chinook populations remain depressed, but other 

historical runs appear to have large increases in documented spawning redds, 

juveniles, and returning adults (SRBWC 2017). In the Hood river, which has long 

served as a laboratory for genetic management of hatchery fish, similar efforts are 

underway, and overall fish populations appear to be increasing despite increased 

uncertainties in their estimates (French et al. 2017). In the White Salmon, where 

Condit dam served as a complete fish passage barrier for up-migrating fishes, 

reaches upstream of the former dam site have been rapidly re-occupied by 

spawning Spring Chinook, Fall Chinook, Tule Chinook, bright fall Chinook, Coho, 

and Steelhead (Hardiman and Allen, 2015). Of these fish, only Steelhead were 

found above the dam prior to its removal, and those resident rainbow trout may be 

re-anadromizing, corroborated by limited pit tag data pre-dam removal of out-

migrating rainbow trout.  

While not explicitly mentioned in most interviews and survey comments, 

recovering fish populations must deal with the subtle deleterious effects of 

emerging (primarily pharmaceuticals and personal care products and flame 

retardants) and legacy contaminants (e.g. extensive pesticides in the Hood River 
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Basin) associated with forestry, agriculture, and residential land use (Nilsen et al. 

2007; Temple and Johnson 2011). Isolating the relevant dominant uncertainties 

affecting fish population status cannot be separated from the knowledge system or 

political arena of managing the SETS. Perhaps most importantly, fish in these sub-

basins must also be considered as sub-populations subject to the population 

fluctuations of the Columbia river / Nch’I Wana. In the big river, salmonids appear 

to be recovering despite population explosions of the introduced anadromous shad 

(Alosa sapidissima), although Coho and Chum remain in a perilous state (CRITFC 

2014; Figure 12).  

7. Discussion and Conclusion: living SETS, and an affinity for justice

Our survey and interview results indicate that while scientific information is 

actively sought to frame restoration needs, goals, and project priorities, motivations 

for restoration are split between compensating for ongoing harms of economically 

desirable land uses, deep historical injustices, and a sense of relational affinity with 

non-humans and the broader landscape. Our analysis of stream temperatures, land 

use, and fish populations are all inherently analyses of SETS, and yet, the realities 

they attempt to adequately represent are of life and death significance for the 

species of concern. Given our results, we must confront the paradox that strong 

settler institutions managing the environment, either as highly centralized entities, 

or as dispersed collaborative bodies, may only come into being in response to 

ecological degradation or crisis, and that the infrastructural transformations of the 
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landscape may preclude any return to ‘pre-disturbance’ conditions. However, 

drawing upon affinity and notions of grounded ecological governance, we can 

reframe governance challenges around the need for incremental and iterative 

learning through a sense of responsibility and interdependence (Turner and Berkes 

2006).  And while conservation has historically focused on “‘natural’ areas 

management”, the relatively small footprint of developed areas in each basin 

indicates that a much-needed focus on improving infrastructures (Doyle and 

Havlick 2009). A treaty perspective addresses all of these concerns through an 

affinity and relational based experience of the land as living kin that has already 

confronted dispersed and centralized infrastructures in its plans (CRITFC 2014). 

Treaty considerations also continue to guide legal interventions on infrastructure 

such as the denial of expanded railway capacity in the Columbia Gorge (CRGC 

2017), culverts throughout all of Washington state (Eligon 2018), and dam 

removals elsewhere (Guarino 2013; Fox et al. 2017). Ultimately infrastructures 

ignore their environmental relationships at their own peril, with the cracking of 

Wannapum (Hunter et al. 2016) and Priest Rapids dams (Wang 2018), highlighting 

the transience of all built structures in a dynamic landscape constantly 

reconstituted by social negotiations. 

Overall, this mixed methods study highlights long standing issues in 

restoration ecology, and offers a new framework for understanding the complex 

feedbacks between large infrastructure interventions and the complex factors 

affecting river conditions. The issue of shifting baselines (Balaguer et al. 2014) has 
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run head onto the more ontologically complex notion of ‘re-wilding’ landscapes 

and ecosystems (Corlett 2016), best exemplified by the return of wild fish to the 

White Salmon River. In the PNW, these ideas are further complicated by an 

infrastructurally thick landscape; extensive hatchery infrastructures now seek to 

maintain ‘wild type’ genomes in an effort to control the consequences of their 

biological manipulations; extensive wind power development in the region must be 

occasionally paid to shut down electricity production to avoid generating toxic 

levels of dissolved gasses to avoid paying to put power on the grid (BPA 2011; Flatt 

2017); and urban dwellers in Portland must pay for habitat restoration to maintain 

the legality of their drinking water supply. The riverscape of salmon conservation 

and restoration is thoroughly and irreducibly social, ecological, and technological.  

What does this mean for the science and study of dam removal? It is clear 

that we have much to learn about the intricate ecological connections between 

terrestrial, riverine, and marine ecosystems when restoring ecological connectivity 

(Cooke et al. 2014). Removing significant physical and thermal barriers to fish 

passage can have rapid cross-system ecological benefits (Ishiyama et al. 2018; 

McCaffery et al. 2018), yet in landscapes full of humans, infrastructures, and 

competing land uses, the realization of these benefits will continue to depend on 

how these complex systems are governed, by whom, using what types of 

information, and what types of actions (Song et al. 2018). Recent literature in 

fishery restoration and management indicates a growing awareness of the need for 

strategies of public outreach, engagement, and education in an effort to change 
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hearts and minds (Nguyen et al. 2016; Arlinghaus et al. 2017; Drouineau et al. 

2018; Fernández‐Manjarrés et al. 2018), indicating a potential substantive shift in 

the overall socio-ecological ‘imaginary’ of ecosystem management (Hull and 

Robertson 2000; Cooke et al. 2013). While it is tempting to see a more robust 

system characterization as the discursive terrain within which different value 

constructs, power relations, and policy interactions can be understood (Song et al. 

2018), characterizing these complex systems is itself an inherently political act 

pursued by researchers whose impacts will always be translated by their own social 

and political positionality and community (Chuah 2015). Our results indicate that 

even though engaged individuals have a set of shared values and even problem-

solution framings of watershed issues, their concerns and strategies are generally 

practical and constrained by their political economy rather than any stable cultural 

narrative of how nature and society work. 

Furthermore, it is difficult to find a clear signal in the efficacy of different 

governance regimens and the ecological conditions or recent changes in the 

watersheds we study here. Given the complexity of these systems, it is therefore not 

surprising that in response to the cognitive stress of adequately characterizing 

complex systems (Stirling 2010), individuals resort to familiar narratives of neo-

Malthusian population control and the panacea of sustainable development. These 

tropes may limit political organizing by many individuals within their resident 

socio-ecological systems, as there successful movements rally around desirable 

futures rather than those of inevitable decline and loss.   
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What may such a positive vision be? It is clear we must ask the critical 

questions of what types of economic and social conflicts are inevitable if we are to 

reverse the declines of ecosystems and fisheries world wide (Limburg et al. 2011). 

Our finding treaty rights and responsibilities provide a cohesive organizing 

principle for broader sets of human-nature relations is reinforced by ongoing work 

in the Nch’I Wana basin (Cosens et al. 2018). However, these efforts must deal 

with long standing issues of what constitutes proper relations between a settler-

colonial society that has imposed new forms of governance on the landscape 

inimical to self-determination, all of which have a contested relationship with the 

possibilities of ‘reconciliation’ and the politics of recognition (Coulthard 2014; 

Alfred 1999). Given the history of unequal power relations that have typified the 

social and technological infrastructures of the settler colonial apparatus (Barber 

2011; Fisher 2010), which persist at the local level in the watershed contexts under 

study – the long running concerns over the possibilities and language of 

‘sustainable development’ (Escobar 1996; Banerjee 2005) cannot be dismissed 

away. Real institutional, technological, and ecological transformations are in order, 

and in fact inevitable.   

While these transformations will continue to be subject to the strengths and 

limitations of democratic decision making systems with regards to framing human-

environment relations (Norton and Taylor 2002), egalitarian, deliberative, and 

consensus based decision-making has already emerged within Hood River 

Watershed Group. Recent work shows that social conventions may have tipping 
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points provided a critical mass of change agents (Centola et al. 2018). While the 

ecosystems of the PNW remain under threat from dispersed social, environmental, 

and technological processes, democratic (Purcell 2013) and tribal (Fisher 2011) 

resurgence provides a potential disruptive impetus to initiate the necessary SETS 

transformations for sustained improvements to human and environmental well-

being while delivering environmental and social justice.  
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Conclusion: Whither Conservation in Infrastructure thick Landscapes? A new 
planetary imaginary and its socio-enviro-technical trajectory 

Environmental science and management, along with conservation and restoration 

sciences, have generally continued to treat ‘the environment’ as a distinct 

phenomenological and analytical category distinct from social processes and 

technological artifacts. In this sense, the environment is something ‘out there’ to be 

affected by changing public attitudes, values, knowledge, or behaviors – a 

collection of objects and biological entities either imperiled or saved by human 

action. At the same time, the ‘externalities’ and outputs of human technologies, 

most notably green house gasses and climate change, but also a host of other issues 

of concern ranging from toxic contaminants, agricultural chemicals, human waste, 

and other chemicals of daily life, have also been treated as something external to 

environmental processes largely seen as otherwise benign and requiring protection 

from harm. Thus, conservation and environmental science, have at their root an 

ontological framing that reinforces the Cartesian duality of humans and nature. 

And yet the physical sciences providing the conceptual and methodological 

foundations for these scientific practices make it obvious that there can be no 

separation between the human and the environmental: our very bodies are 

composed of the waters we drink, the air we breathe, and the foodstuffs we 

consume. Following the most positivist and most philosophically purified ‘western 



 

 185 

scientific’ constructs thus leads us back to an eternal truth shared by all major 

philosophical systems; we are all connected, the human is the natural.  

 

Such a finding is not comforting, nor particularly useful for addressing the many 

negative impacts humans have had on each other, ourselves, and other non-human 

forms of life, in the variegated quest for economic progress and political conquest. 

Nature, as a discursive field and rhetorical resource, is broad enough to encompass 

an infinity of moral positions on how humans should relate to one another and to 

the non-human world (Rayner and Heyward, 2013). Such an infinite series of 

possibilities however, has not halted the search for perennial and universal moral 

frameworks of guiding ‘right’ relations between humans and non-humans which 

continues to occupy philosophers around the planet, not least those concerned 

with issues of representation and extra-human democracy (Minteer and Taylor 

2002).  

 

While the principles guiding right relationships between society and nature have 

received much attention and articulate elaboration, not least in the evolution of 

‘biocultural’ models of conservation (Rozzi et al. 2006; Turner and Berkes 2006). 

Despite a panoply of moral principles, such approaches have expended little 

theoretical or empirical energy understanding how the issues they raise apply in 

landscapes already profoundly transformed by human infrastructures (Hughes, 

2004), and what moral principles we should apply to the politics of both physical 
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artifacts (Winner 1980), and ways of representing the natural world via 

technological means (Wynne, 2016).  

 

To address these twin concerns, it is tempting to trace back to Hulme’s postulate 

that morality is inherently a human construction, one which can find no, and 

should not attempt to find, any corollaries in the non-human world. Nature indeed 

may be replete with examples of both cruelty and cooperation – morality lies in our 

choosing one course of action over another. I reject such a postulation just as 

vigorously as I reject the Cartesian duality above, and I am not alone; recent 

research on animal psychology (Rowlands 2015) reinforces long held 

understandings of animal morality held by Indigenous observers of the animal 

world (Cajete 1999). Without delving into the semantic and methodological depths 

of such studies, it appears clear that human and non-human animals have long 

evolved systems of relating to one another for mutual benefit codified behaviorally 

as well as culturally (Kropotkin 2012). 

 

In the Pacific Northwest, such systems evolved over millennia; codifying relations 

between humans and the land in ways that protected fragile ecological processes 

and reinforced others for mutual benefit (Hunn and Selam 1990; Jacob 2013). 

While these traditional forms of knowledge were ruptured by settler colonial 

practices of resource extraction and despoliation of the land, they have remained 

remarkably intact despite waves of cultural, ecological, biological, and 
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epistemological genocide reinforced by large scale infrastructural alterations of the 

land and hydroscape. 

 

The question of conserving salmon then, cannot be isolated from its social 

processes of articulating and enacting more or less moral ways of relating to 

Indigenous societies. Complicating this picture, which has long been studied by 

anthropologists and ethicists, is the role of human technologies and formal systems 

of knowing in constraining and defining possible courses of action. 

 

This dissertation attempts a synthesis of applying concepts of the co-production of 

knowledge and social power, with the co-production of landscapes, society, and 

infrastructure. I have hoped to make it clear that there is no such thing as an 

environment in the Mid Columbia River that is not somewhat affected by human 

activity in its creation. At the same time, with regards to social processes deciding 

how to relate to the environment, it should also be clear that there are limited ways 

of directly experiencing environmental forces; rather the ways in which the 

environment is known is always dependent upon our perceptions and affinities 

with the extra-human world, and increasingly mediated by complex systems of 

constructing knowledge around the environment, including sophisticated 

technologies of counting, hatching, and tracking fish. 
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I have argued here that these infrastructurally mediated environments, 

environments composed of assemblages of human technologies, earth systems, and 

the activities of non-human life forms, are no less deserving of our interest or our 

affinities. Similar to Bruno Latour’s argument for the need to ‘love our monsters’ 

(Latour 2011), the way out of the technological nightmares of modernity may 

actually be in embracing and understanding how our social reality has become 

dependent upon our technological creations. While dams, power lines, rail lines, 

roads, telecommunications, pit-tags, and fish traps, are all temporary creations, 

they are continuously rebuilt by humans motivated by affinities no less genuine or 

real than those seeking deep affective relationships with landscapes. So I would 

add to Latour’s argument for a need to ‘love the machine’ in order to transform it to 

meet the desires of living in a more compassionate and loving way, a need to better 

love our fellow humans involved in the co-production of our irreducibly complex 

landscapes. It is tempting to escape into the simplicity of ignorance, to withdraw 

into the individualist specter still haunting the mythology of the American west. 

And yet as Donald Worster made abundantly clear in Rivers of Empire (1985), the 

myth of the rugged western individual was always made possible by the 

expenditures of big government; be it in the US army evictions of Indigenous 

peoples and cash settlements for territorial claims, government built dams and 

irrigation infrastructures, and government subsidized transportation networks, the 

myth of the individual was always perpetuated by powerful interests seeking to 

dominate the landscape for their own ends.  
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For this work, I have attempted an analysis of a more productive framing of 

infrastructural complexity in contemporary landscapes (Chapter 1), combined with 

an empirical analysis of how the infrastructures of river landscapes are changing at 

large in the so-called ‘USA’ (Chapter 2), how we may more robustly understand the 

causal mechanisms by which dams come to be removed, and how their removals 

may galvanize or hinder broader efforts to restore human river relations (Chapters 3 

and 4). As part of that work I have undertaken an ethnography of relative elites; 

who are also often marginalized actors in the broader processes of designating 

appropriate uses of land and rivers. Overall this dissertation has only offered a slice 

of the social life of these basins, and should be criticized for its omission of a more 

in depth look at the social life beside the irrigation ditch (as proposed by Wortser 

1985), including the contentious politics of using immigrant and naturalized labor 

in pesticide intensive agricultural industries, or a more in depth ethnography of 

Native fisher communities. In this sense I have strayed from the standard practices 

of applied anthropology realm and not attempted an ethnography of the sub-altern, 

but one of relative elites and engaged individuals of diverse means and 

backgrounds in an effort to understand their knowledge and their motivations for 

wading into the complex political, social, and scientific terrain of removing dams 

and restoring rivers. It is my humble aspiration to share at least as much knowledge 

as I have been granted. 
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In the end, I hope I have provided some methodological provocations and novel 

information to inform ongoing efforts of restoring both ecological integrity and right 

relationships between humans and rivers in my case study areas and elsewhere. 

The quest for transdisciplinary understanding, never mind knowledge creation, has 

been fraught with difficulties and many learning moments. While this collection of 

papers and writing seeks to partially fulfill my doctoral dissertation requirements, I 

am left with the thought that the work I undertake here is the work of perhaps not 

one, but many lifetimes. Blessings be to those that undertake it, for in rivers is the 

life of the world. 
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Appendix A. Timeline of Key Events in Social, Environmental, and Technological 
narrative of the mid Columbia Region outwards in space and back in time. 

DATE (CE) EVENTS 

~2 mya 
approximate origin of contemporary salmonid species and drainages in the 
region 

time 
immemorial 

Receiving of original instructions, development of complex trade networks 
and river governance, conservative estimates of 11-16 million salmon returns 
annually 

~18k YBP last glacial maximum 
15-13k YBP Missoula floods 

11500 YBP 
Beg. of archaeological record indicating formation of extensive trade 
networks around Celilo Falls 

2k-200 YBP 
Development of customary laws and contemporary cultural and language 
groups in CRB 

<1800s CE 
establishment of British, American, and French-Metis overland and maritime 
trade  

1763 CE 
British Proclamation banning settlement on Tribal lands without crown treaty 
and consent 

1802/3 CE 
US Army Corps of Engineers (USACE) formed to for exploration of Louisiana 
purchase lands 

1824 CE 
Trail of Tears; Rivers and Harbors Act gives USACE powers to 'enhance' 
waterways 

1830 CE 
Indian Removal Act displaces Eastern Tribes into 'unsettled lands' west of 
Mississippi 

1843 CE Opening of Oregon Trail, CA Gold Rush 
1846 CE Creation of Oregon Territory by Treaty (US-UK) of 1846 

1851 CE 
Indian Appropriations Act funds population transfers and treaty purchases in 
US territories 

1855 - ~1863 
CE 

Treaties grant right of settlement to US citizens, reserve Tribal rights to 
reservation lands and usual and accustomed places,' violation by militias 
sparks Yakama, Coeur de Lane, and Nez Perce wars 

1869 CE 
Establishment of Grant's 'Policy of Peace': emphasizes cultural assimilation 
and reservations 

1871 CE 
Indian Appropriations Act: designates Natives as 'wards,' but upholds validity 
of prior treaties 

1886 CE 
Rivers and Harbors Act: requires USACE permits for obstructions on 
navigable waterways 

1887 CE 
Dawes Act: creates Allotments on reservation lands, allows for sale of 'excess' 
land to white settlers 

1889 CE Indian Appropriations Act: further opens 'unassigned' Native lands to settlers 
1899 CE Federal Refuse Act: Gives USACE mandate to permit pollution 

1902 CE 
Reclamation Act: Authorizes Bureau of Reclamation (BoR) to 'reclaim arid 
lands'  

1905 CE 
US vs. Winans affirms Native interpretation of treaty rights for river and 
fishing access 

1908 CE 
Winters Decision extends prior appropriation to treaty water rights both on 
and off reservation, sets preference for state court adjudication; First Hydro-
electric dam built in Debdon, UK 

1911 CE Record catch of 49,480,000 lbs for all salmonids in Columbia River 
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1910s CE 
Cannery and Railroad booms, development of gas powered marine fisheries, 
explosion in Salmon demand during WWI, Condit completed 1913; Marmot 
complex completed 1912 

1920s CE 
Residential school era, fishery declines, extensive dam building, Powerdale 
completed 1923 

1920 CE 
Federal Water Power Act creates FERC to regulate private and public 
hydropower development 

1927 CE 
Rivers and Harbors Act mandates USACE to survey and build dams on 
mainstem Columbia 

1930s CE Salmon Catch 50% of early 1900s totals 
1931 CE USACE 308 reports propose 10 mainstem Columbia dams for hydropower 

1934 CE 
Indian Reorganization Act creates tribal councils under BIA, repurchases 
some land for reservations 

1938 CE 
Bonneville Project and Mitchell Acts create federal power and hatchery 
system 

1941 CE 
Grand Coulee Dam Completed; BoR proposes 142 dams in CRB; Hanford 
Nuclear Res. created 

1942 CE 
Tulee v. Washington affirms treaty fishing right precedence over state law 
except for 'conservation' 

1944 CE 
Columbia River Basin Project provides federal irrigation and power from 
Grand Coulee Dam 

1945 CE Congress sets aside lands as mitigation sites for In Lieu fishing sites 
1948 CE Vanport Floods create 'demand' for flood protection 
1949 CE Pick Sloan Act sets precedent for joint river planning by USACE and BoR 

1952 CE 
McCarran Amendment grants states jurisdiction over water rights cases 
involving federal rights 

1954 CE 
'Termination' attempts elimination of tribes and treaty land; McNary dam 
completed 

1957 CE 
Whitefoot Decision affirms fishing sites as tribal property; BPA joint ventures 
with regional utilities 

1959 CE Priest Rapids dam completed; Celilo Falls inundated by Dalles Dam 

1962 CE 
Washington Public Power Supply System (WPPSS) begun at Hanford, ongoing 
nuclear waste issues 

1960 CE Columbia River Treaty signed, tribes not consulted, ecosystem not considered 

1960-70s 
Rise of AIM and 'Power' movements; forced sterilization of Native and POC 
women in USA 

1964 CE Western Inter-tie completed allowing sales of CRB power to CA 

1968 CE 
Puyallup v WA Dept. of Game limits tribal commercial season above 
Bonneville, incites protest fishing and two separate legal cases; Wild and 
Scenic River (WSR) Act signed 

1969 CE 
Belloni Decision reaffirms Tribal rights to 'fair and equitable harvest' and 
'meaningful consultation' when states regulate for 'conservation,' declares 
River Indians under treaty Tribe authority 

1972/3 CE Clean Water and Endangered Species Acts signed 

1974 CE 
Boldt Decision states fair share = 50%, and affirms recognized tribes 
administration of treaty fishing  

1975 CE Lower Granite Dam (lower Snake) completed; Alexander v. Morton dismissed 
denying permanent residency at in-lieu fishing sites 
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1976 CE 

Caeppart v United States upholds federal water right process; Colorado River 
Conservation District v. United States sets preference for state level 
adjudication of 'unified' water rights; US Fisheries Conservation and Mgmt. 
Act creates 200 mile Exclusive Economic Zone on coast 

1977 CE 
Creation of Columbia River Intertribal Fish Commission; Columbia River Fish 
Management Compact affirms treaty tribes co-management and review of 
season dates 

1979 CE 
legal cases set legal obligation to regulate marine fishery to protect treaty 
fishery 

1980 CE 
NW Power Act passed by US Congress formalizes co-management of river for 
power and fish; US v Washington Phase II affirms treaty right to protection of 
habitat  

1981 CE 
Riggins Fish Riots in ID; Salmon Scam initiated by FBI prior to Lacey Act 
Amendments 

1982 CE 
Reinhardt decision affirms state (Idaho) cannot abrogate treaty (Nez Perce) 
fishing rights 

1984 CE Attempted evictions of in lieu site fishers on Columbia River 

1985 CE 
Pacific Salmon Treaty: reduces Canadian and Alaskan harvest, adds tribal 
representatives 

1986 CE 
Snake river Coho go extinct; Electric Consumer Protection Act provides 
'equal consideration' of environmental and social issues in power relicensing 
decisions; White Salmon designated as WSR 

1988 CE Sandy River designated as WSR 

1991 CE eviction case closed in favor of River Indians; Snake River Sockeye listed as 
endangered; PacifiCorp files intent to renew Condit License 

1992 CE NMFS issues first BioP on Fed. Col. River Power Sys. (FCRPS) finding 'no 
jeopardy'; Snake River fall and Spring/Summer Chinook listed as threatened 

1993 CE 
NMFS BioP challenged; Hood River Watershed Group Formed; Condit Dam 
license expires 

1994 CE 
FERC allows removals through relicensing; Judge Marsh orders new BiOP; 
NW Forest Plan finalized 

1995 CE NMFS finds FCRPS in jeopardy, recommendations challenged by American 
Rivers; CRITFC develops 'Spirit of the Salmon Plan' 

1997 CE 
Am. Rivers v NMFS upholds challenge to 1995 BiOP; upper CR and Snake 
River Steelhead listed as threatened; Portland General Electric starts 
considering license options for Marmot Dam 

1998 CE 
Bull trout listings; Pacificorp begins to file new license application for 
Powerdale Project 

1999 CE 
CRITFC calls for Lower Snake dam removal; Edwards Dam on Kennebec 
River removed against owner's desires; Chinook, chum, and steelhead 
listings; Condit Settlement Agreement signed 

2000 CE 4th BiOP finds FCRPS jeopardizes fish 

2003 CE 
Judge Redden finds 4th BioP flawed; Powerdale Settlement Agreement Signed 
by all parties 

2004 CE 
5th BiOP on FCRPS claims dams are part of baseline habitat, included 
hatchery fish returns as meeting conservation targets; NPCC begins sub-basin 
planning process for Columbia Tributaries 

2005 CE 
Redden finds fifth BiOP arbitrary and capricious, orders additional spill; 
Lower Col. Coho listed 

2007 CE Marmot Dam removed 
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2008 CE 
Columbia Basin Fish Accords, creates large fund for restoration programs, and 
establishes Tribes as co-managers and co-defendents in CRB; 6th BiOP 
establishes 'trending towards recovery' standard 

2009 CE Hood River receives WSR designation 

2010 CE 
Powerdale Dam Removed; 2010 BiOP published; second Condit Settlement 
Agreement signed 

2011 CE 
Redden rejects 2010 and 2008 BiOPs, orders spill; PacifiCorp removes 
Condit Dam 

2013 CE CRITFIC Spirit of Salmon Plan Updated 
2014 CE Hood River Watershed Action Plan Updated; FCRPS BiOP challenged 

2015 CE 
Judge Simon rules that comprehensive EIS of FCRPS should include Snake 
Dam Removal 

2018 CE 
Klickitat county drafts Shoreline Master Plan; Supreme Court upholds culvert 
removal in WA state 
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App 3. Figure 6. Annual fish counts at Bonneville Fish ladder. Data Source: Fish Passage 

Center (2018). 
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