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Abstract

Viscoelastic polymer materials are being actively considered as a novel

material for semiconductor packaging applications as a result of their abil-

ity to develop strong adhesive bonds at lower temperatures. Viscoelastic

thermoset materials are impacted by the stresses generated during the cur-

ing process, which is also accompanied by a dissipation of thermal energy.

There is a need to develop a generic modeling formulation that is applicable

to any material of interest in order to enable the study of different bonding

materials and develop optimized curing cycles. This study reports a nu-

merical formulation to evaluate the stress generated and energy dissipated

during the cure of viscoelastic polymers. A generalized method to define the

transient variation of degree of cure was developed using a 4th order Runge

Kutta approximation. The mathematical formulation was implemented us-

ing a novel evaluation methodology that helped reduce the computational

power requirement. The commercially-available 3501-6 resin was simulated

as a characteristic material in this study. The numerical model was vali-

dated against analytically derived solutions for both a single Maxwell model,

and a Generalized Maxwell Model (GMM) for cases of constant-strain in-

puts, and subsequently for sinusoidal strain inputs, wherein, material prop-

erties were considered to be constant or varying linearly with degree of cure.
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A good agreement was obtained between the present model and analytical

solutions.
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1 Introduction

Miniaturization of electronic devices and components has lead to several

technological advances in a variety of fields such as consumer electronics,

space technology, and defense systems, among others. Applications have

been developed that require a need for higher computational power, packed

on to smaller surface geometries, and the materials used in the construc-

tion of various IC packages are of great importance to their functionality

and reliability (Tummala et al., 2002; Liu et al, 2008; Tu, 2011). Their

mechanical, electrical, and chemical properties establish the foundation for

electronic packaging, and ultimately its performance.

Epoxy resins are thermoset materials that are currently being used in

several applications in semiconductor packaging due to their good mechan-

ical and thermal properties. Epoxies are viscoelastic materials that are

significantly influenced by the rate of straining or stressing. As the name

implies, viscoelasticity combines both elastic and viscous properties and

hence can be represented using various models that contain two main com-

ponents, spring and dash-pot. Since time is a very important factor in their

behavior, these materials can be characterized using constitutive equations

that include time as a variable in addition to stress and strain. There are
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of two types of viscoelastic polymers, linear viscoelastic materials and non-

linear viscoelastic materials. Linear viscoelastic materials are those whose

material properties remain constant, whereas, for non-linear viscoelastic

polymers, properties vary with degree of cure. One of the most important

characteristic of epoxy resins is their adhesion to numerous substances.

Curing process can be described as a chemical reaction in which monomers

cross-link to form a three-dimensional network resulting in a hard substance

with excellent combination of mechanical, electrical, chemical and thermal

properties. Adhesion strength of the polymer depends on the rate of cur-

ing, a more rapid cure results in a weaker bond. Hence, it is important to

optimize the rate of curing.

Lee et al. (1982) experimentally determined the variation of material

properties of viscoelastic polymer such as 3501-6 (amine-cured) epoxy resin

system, which is used extensively in the industry. Empirical relations were

developed for properties such as the heat of reaction, degree of cure, and

viscosity as these influence the curing of the polymer. Results for heat of

reaction and degree of cure were obtained by carrying out experiments us-

ing a Differential Scanning Calorimeter (DSC) under isothermal conditions

for a range of temperatures as well at constant increasing rate and the re-

lations obtained show how the degree of cure varies with time for a given

temperature.
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Loos and Springer (1983) reported models that simulated the curing of

thermosetting materials by relating the curing process to the actual phe-

nomena (chemical, thermal, physical) that are in occurrence within the

composite. A computer code was developed, which accepted key inputs

such as geometry, boundary conditions (temperature, pressure, initial cure

state), material properties, etc., and was used to calculate the temperature

distribution and resin flow in the composite. One of the applications of this

effort was to enable the ability to determine an appropriate cure cycle for

any given application with the broad objectives of minimizing cure time

and maximizing cured-strength by reducing the occurrence of voids in the

cured material.

Adolf and Martin (1996) reported a detailed theoretical analysis to de-

termine the changes in material properties of a non-linear viscoelastic poly-

mer as it undergoes curing, which involves cross-linking reactions, and is

an exothermic process. Combining experimental data with their analysis, a

power-law based correlation was proposed for the variation of shear modu-

lus with degree of cure. The authors remarked on the specific applicability

of their correlations for future modeling codes.

Yi and Hilton (1995) formulated, for the first time, cure-dependent me-

chanical response of thermosetting resins using models that represented

their chemo-rheological behavior during the manufacturing process. These
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polymers were modeled as viscoelastic models that had material properties

that were dependent on time, temperature and cure-dependent parameters.

The residual stresses and strain fields in the resin were calculated using

these parameters for the entire time temperature history of the polymer

during its curing process. Hilton and Yi (1992) also formulated expressions

for stored and dissipation energies in a viscoelastic polymer in response to

a given loading. These were also derived using generalized Maxwell models

with varying material properties. Knowing the dissipation energy or the

residual stresses, can help to chose a polymer for a specific purpose without

carrying out detailed experimental analysis. Yi et al. (1997) also developed

a finite element model to simulate the curing process in polymers to predict

the temperature distributions throughout cure cycle. Polymers used for

this study were Glass-polyster and Hercules AS4/3501-6 epoxy and these

had non-linear viscoelastic characteristics wherein, their material properties

were dependent on temperature and degree of cure. Temperature distribu-

tions from finite element analysis were compared with experimental results

and a good agreement was obtained.

Polymers are used widely in electronic packaging applications. Once

such application is their use as underfill in flip-chip packaging, to reduce

relative movement between silicon chip and organic substrate caused by

mismatch in coefficient of thermal expansion. Yi and Chian (2001), stud-
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ied the importance of curing method in thermosetting polymers that are

used as underfill for semiconductor applications. The chemical and thermal

changes that occur to the polymer during cure was studied and empirical

relations were developed to show the dependence of material properties on

temperature and degree of cure. These correlations were obtained by mod-

eling using time dependent standard viscoelastic models and determining

the changes in their behavior while varying parameters such as temperature

and degree of cure.

Yi et al. (2001) also investigated microwave curing process for undefill

in flip chip packaging. This was used as an alternative to traditional ther-

mal curing that takes a long time due to poor conductivity of the polymer

wherein energy transfer takes place through conduction, convection or radi-

ation from the surfaces. In microwave curing, energy is transferred through

molecular interaction and therefore results in faster heating. The study was

conducted using 3D finite element simulations for a variable frequency mi-

crowave and was verified using analytical calculations for simple conditions.

Liu et al. (2004, 2005) also conducted further studies on microwave cure of

underfill using finite element studies. Results from numerical analysis were

obtained for various step sizes, and it was observed that a small change in

step size can cause huge differences when compared to analytical solution.

Cure kinetics of the underfill material was investigated for both microwave
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and thermal curing using DSC, and no difference was found in reaction

mechanism.

Yim and Paik (1998, 2006) provided a detailed study on the applications

of Anisotropic Conductive Films (ACF). These are composed of adhesive

epoxies with conductive fillers embedded and are used for LCD packaging

technologies wherein the bonding can have fine pitch interconnect capabil-

ity. This technology is an alternative to soldering due to higher connection

resistance, lower bonding temperature that reduces residual stresses and

fine pitch conduction pads as compared to solder bumps. They highlighted

the advances in developing low temperature curable ACFs, which are par-

ticularly of interest for both LCD modules, as well as other semiconductor

applications sensitive to the typical higher levels of bonding temperature.

Several patents were filed by these authors including Yim and Paik (2001),

Paik and Yim (2005).

Eom et al. (2000) developed two models to predict the change in vis-

coelastic properties of a thermoset resin by varying parameters such as time,

temperature and degree of cure. This can be used to determine the internal

stresses induced in the specimen when it undergoes processing. An amine-

based epoxy resin was used to develop a cure kinetics model to obtain a

relationship between time, temperature and degree of cure using a Differ-

ential scanning calorimeter and a phenomenological model to evaluate the
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variation in relaxation modulus during the entire range of curing process.

Liang and Chandrashekhara (2006) reported an experimental study on

the cure kinetics and rheological properties of a novel soy-based epoxy resin

using DSC and viscometry, respectively. A neural network-based rheological

model was proposed. This material was of particular interest due to its

higher reactivity and therefore greater potential for cross-linking.

Yang et al. (2007) summarized the effect of polymer cure on the vis-

coelastic characteristics of polymers, and noted that the presence of filler

materials has an opposite effect on residual stresses, because, with an in-

crease in filler concentration, the glass and rubbery modulus increases, while

the coefficients of thermal expansion and cure-caused shrinkage decreases.

Accordingly, they investigated the suitability of models to accurately model

the effect of filler concentration on shear/bulk moduli and coefficient of ther-

mal expansion. Novolac Bisphenol-A compound was used in this study and

it was found that Eilers model was most applicable for the variation of fully

cured shear modulus with filler concentration, and a differential scheme

method was better suited for describing the bulk modulus.

Zhang et al. (2009) developed a 3-D FEM model to predict the temper-

ature and degree of cure of an epoxy undergoing cure, and this model was

subsequently used to study the effect of different cure ramp cycles on the

degree of cure. The data predicted by the model was successfully validated
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against experimental data.

Sadeghinia et al. (2012a) studied the changes in the viscoelastic prop-

erties of an epoxy adhesive compound, Novolac Bisphenol-A. Differential

scanning calorimetry (DSC) and high-pressure dilatometry was used to

measure the cure kinetics, coefficient of thermal expansion, and shrink-

age during cure. The storage modulus, which is dependent on time and

temperature, was measured using a Dynamic Mechanical Analyzer (DMA).

The effect of filler on these properties was also investigated. It was reported

that the presence of filler reduced the shrinkage of epoxy during cure. Their

study fitted the experimentally obtained data to regression-based models.

Subsequently, Sadeghinia et al. (2012b) investigated the change in vis-

coelastic properties of the same epoxy compound during the curing process

with a DMA. They conducted an intermittent cure test that collected tran-

sient data to derive the shear modulus. DSC was used to drive the change

in glass transition temperature with respect to the degree of cure. Their

data for cure-dependent shear modulus was compared against the scaling

law of Adolf and Martin (1996) and a good agreement was reported.

Hossain et al. (2009, 2014), reported a detailed review of models for vis-

coelastic cure of polymers. They reported a cure-dependent thermodynami-

cally consistent model to simulate small strain deformations. Saseendran et

al. (2016) reported two experimental approaches that exposed the LY5052
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epoxy resin system to various curing temperature/time sequences and an-

alyzed the viscoelastic properties using Dynamic Mechanical and Thermal

Analysis (DMTA) equipment, that yielded a greater understanding of these

properties in the glassy and rubbery regions. Carlone et al. (2014) high-

lighted the necessity of simulation models to aid in the optimization of cure

cycles, and proposed an artificial neural network (ANN)-based meta-model

for this purpose which involved coupling an FEM thermo-chemical model

of the curing process with ANN.

The above brief literature review indicates relatively few studies have

focused on modeling the stress-strain characteristics of viscoelastic polymer

materials in a form that is generalized and applicable to any other material

as well. There is a need to develop a generic modeling formulation that

is not heavily reliant on empirical data and thereby limited to only those

bonding materials, but rather uses fundamental equations to model the cur-

ing process. In this thesis, a numerical formulation has been reported to

evaluate the stresses generated during the chemo-thermo cure of viscoelas-

tic polymer materials. The viscoelastic material was modeled using the

Maxwell model. The variation of degree of cure with time is a key input to

this formulation, and the 4th order Runge Kutta-based method was used in

order to define this relationship, and thereby enabling its generic applicabil-

ity to any polymer material. Subsequently, the predicted stress was used to
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determine the energy dissipated during the curing process. Since this pro-

cess is transient in nature, an effort was made to reduce the computational

requirements which are directly proportional to the duration of time that

is being simulated. Accordingly, a novel modeling methodology was devel-

oped, wherein, key functional terms are evaluated only once and stored for

subsequent usage in the evaluation of stress. As a test case, the commer-

cially available 3501-6 resin was simulated on account of its well-reported

reaction kinetics and rate of cure characteristics in the literature. For this

test case, the modeling methodology included determination of the change

in temperature based on disspation energy, and subsequently used the new

temperature value for stress calculations at subsequent time intervals. For

validation purposes, the numerical model was compared against an analyt-

ically derived solution for a constant strain input, and a good agreement

was obtained. Finally, this formulation was extended for the case of a Gen-

eralized Maxwell Model (GMM). The results from GMM case were also

compared against an analytical derived solution and a good agreement was

obtained.
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2 Cure Reaction Kinetics

2.1 Differential scanning calorimetry

The cure kinetics model for a polymer can be used to predict the degree

of cure and reaction rate which vary with time and temperature. This can

be experimentally obtained based on the data obtained using Differential

Scanning Calorimetry (DSC). DSC is a thermal analysis technique which is

used to measure the heat flow rate required to increase the temperature of

a sample and a reference, as a function of time. The underlying principle is

that, as the sample undergoes a phase change, it results in an exothermic

or endothermic reaction based on the amount of heat that flows into the

sample to maintain itself and the reference sample at the same temperature.

DSC measures the heat of reaction and thereby the degree of cure for an

epoxy resin over a wide range of temperatures.

Two different methods are used to examine the cure kinetics of a poly-

mer: Isothermal Scanning - where the sample is maintained at constant

temperature, and Dynamic Scanning - wherein the sample is heated at a

constant rate over a given range of temperatures. In dynamic measure-

ments, the rate of heat generated, (dQ), is plotted against time, and area

under the curve is used to determine the heat of reaction which is given by



12

Eq.(2.1) wherein, HR refers to the total heat of the reaction and tf is the

total time taken for the reaction to be completed.

HR =
∫ tf

0

dQ

dt
dt (2.1)

Isothermal measurements are used to determine the amount of heat re-

leased until a given time t, by plotting the rate of heat generated (dQ) ver-

sus time and integrating the area of the exothermic peak given by Eq.(2.2)

wherein H refers to the heat of reaction up to time t.

H =
∫ t

0

dQ

dt
dt (2.2)

The value for degree of cure α of any given polymer ranges from 0 (being

completely uncured) to 1 (fully cured) and can be obtained as

α(t) =
H

HR

(2.3)

Then, the rate of degree of cure is calculated as

dα

dt
=
dQ

dt

1

HR

(2.4)

2.2 Generalized model to calculate degree of cure

Various cure kinetic models have been developed in order to describe the

curing process of thermoset resins. Among these, nth order and bi-nodal

models are widely used for the modeling of thermosetting polymers. The
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nth order kinetics can be expressed as

dα

dt
= k0(1− α)n (2.5)

Another model proposed by Kamal et al. is as shown below

dα

dt
= (k1 + k2α

m)(1− α)n (2.6)

In the equations above, k0, k1 and k2 are rate constants, which depend

on temperature, material properties, and m and n are constants. The above

equations can be solved for any given value of m and n by using an efficient

numerical method to evaluate first order ordinary differential equations. In

this study, the Runge Kutta 4th order method has been used to solve the

ordinary differential equations as given in Eq.(2.5) and (2.6) to obtain a

relation between degree of cure, α, and time, t. Let us define the rate of

cure as

dα

dt
= f(t, α) (2.7)

The curing process starts at time, t0, increments in steps of dt , and

proceeds until the final time tf . Then step size, h, is given by, h = dt/N .

Accuracy of the numerical model can be increased by using a smaller value

for h. In order to solve the ordinary differential equation in Eq.(2.7), an

initial condition for degree of cure (α) is required.

α(t = t0) = y0 (2.8)
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Let B1 be the slope at the beginning of the time step (t0).

B1 = f(t0, y0) (2.9)

If we use the slope B1 to step halfway through the time step, then B2

is an estimate of the slope at the midpoint.

B2 = f(t0 +
h

2
, y0 +

B1

2
h) (2.10)

If we use the slope B2 to step halfway through the time step, then B3

is another estimate of the slope at the midpoint.

B3 = f(t0 +
h

2
, y0 +

B2

2
h) (2.11)

Finally, B4 is an estimate of the slope at the end point.

B4 = f(t0 + h, y0 + hB3) (2.12)

We then use a weighted sum of these sloped to get the final estimate of

t1 = t0 + h as,

y1 = y0 +
h

6
(B1 + 2B2 + 2B3 +B4) (2.13)

Numerical model validation

Lee et al. (1982) conducted an experimental investigation of the key proper-

ties of a commercially available resin 3501-6 and reported correlations that
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relate the rate of cure with reaction kinetics. By using Dynamic Scanning

Calorimetry (DSC), it was identified that heat generated during the curing

process has two peaks (refer to Figure 2.1) as a result of separate reactions

that occur during the curing process, with the shift occurring at a degree of

cure of 0.3. Accordingly, two separate correlations were developed for cures

below and above this threshold value as

Figure 2.1: Rate of heat generation versus time for resin 3501-6 (Lee et al.,
1980)

For α ≤ 0.3

dα

dt
= (K1 +K2α)(1− α)(B − α) (2.14)

For α > 0.3

dα

dt
= K3(1− α) (2.15)

where

K1 = A1 exp(−4E1/RT ) (2.16)
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K2 = A2 exp(−4E2/RT ) (2.17)

K3 = A3 exp(−4E3/RT ) (2.18)

A1, A2 and A3 are pre-exponential factors given by

A1 = 2.101× 109 min−1

A2 = −2.014× 109 min−1

A3 = 1.960× 109 min−1

4E1, 4E2 and 4E3 are activation energies given by

4E1 = 8.07× 104 J/mol

4E2 = 778× 104 J/mol

4E3 = 5.66× 104 J/mol

R is the universal gas constant given by 8.314 J/molK, B is constant with

a value of 0.47± 0.07.

In order to validate the numerical model, Eqs.(2.14) and (2.15) have

been solved analytically and the results are compared with the numerical

solution. Once the results are verified for this simple viscoelastic model,

the same numerical analysis can be used to determine cure kinetic relations

for any composite polymer. Analytical solution for rate of change of degree

of cure relation with respect to time is given below.
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Solving for Eq.(2.14) for α ≤ 0.3 lead to

dα

(K1 +K2α)(1− α)(B − α)
= dt (2.19)

dα

K2(
K1

K2
+ α)(α− 1)(α−B)

= dt (2.20)

dα

(k + α)(α− 1)(α−B)
= K2dt (2.21)

where k = K1/K2.

Separately evaluating L.H.S of Eq.(2.21) as

1

(k + α)(α− 1)(α−B)
=

a

α− 1
+

b

α−B
+

c

(k + α)
(2.22)

=
1

g(α)
[a(α− S)(α + k) + b(α− 1)(α + k) + c(α− 1)(α− S)]

=
1

g(α)
[a(α2− (B−k)α−Bk)+b(α2− (1−k)α−k)+c(α2− (1+B)α+B)]

=
1

g(α)
[(a+b+c)α2−{a(B − k) + b(1− k) + c(1 +B)}α−aBk−bk+cB]

where

g(α) = (α− 1)(α−B)(α + k) (2.23)

Constants a, b and c should be chosen such that the numerators for

L.H.S and R.H.S in Eq.(2.22) are equal for every α.

a+ b+ c = 0 (2.24)

−a(B − k)− b(1− k)− c(1 +B) = 0 (2.25)

−aBk − bk + cB = 1 (2.26)
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We can rewrite the above equations in matrix form as

Gx = y (2.27)

where

G =



1 1 1

−(B − k) −(1− k) −(1 +B)

−Bk −k B


(2.28)

x =



a

b

c


(2.29)

and

y =



0

0

1


(2.30)

We can solve the above equation by taking the inverse of G such that

x = G−1y where,

G−1 =
1

|G|



−B − 1 −B − 1 −B − 1

B2(1 + k) B(1 + k) (1 + k)

−k2(1−B) k(1−B) −(1−B)


(2.31)

wherein determinant of G is given as

|G| = −B −B2 − k +B2k − k2 +Bk2 (2.32)
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= (k + 1)B2 + (k2 − 1)B − (k2 + k) (2.33)

Accordingly, we obtain

x =



a

b

c


=

1

|G|



−B − k

1 + k

−1 +B


(2.34)

Eq.(2.21) can be re-written as

a dα

α− 1
+

b dα

α−B
+

c dα

(α + k)
= K2dt (2.35)

− a dα

1− α
− b dα

B − α
+

c dα

(k + α)
= K2dt (2.36)

− a dα

1− α
− b dα

B(1− α
B

)
+

c dα

k(1− α
k
)

= K2dt (2.37)

Integrating Eq.(2.37) leads to

−a(−1) ln |1−α|− b

B
(−B) ln |1− α

B
|+ c

k
(k) ln |1+

α

k
| = K2t+const (2.38)

a ln |1− α|+ b ln |1− α

B
|+ c ln |1 +

α

k
| = K2t+ const (2.39)

At t = 0, α = 0, therefore, const = 0. Then we have

a ln |1− α|+ b ln |1− α

B
|+ c ln |1 +

α

k
| = K2t (2.40)

Finally,

t =
(
a

K2

)
ln |1− α|+

(
b

K2

)
ln |1− α

B
|+

(
c

K2

)
ln |1 +

α

k
| (2.41)
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where

a =
−B − k

(k + 1)B2 + (k2 − 1)B − (k2 + k)

=
−B − K1

K2

(K1

K2
+ 1)B2 + ((K1

K2
)
2 − 1)B − ((K1

K2
)
2

+ k)

=
−(K2B +K1)K2

(K1K2 +K2
2)B2 + (K1

2 −K2
2)B − (K1

2 +K1K2)

=
−(K2B +K1)K2

(K1 +K2)(K2B2 + (K1 −K2)B −K1)

=
−(K2B +K1)K2

(K1 +K2)(K2B +K1)(B + 1)
=

−K2

(K1 +K2)(B − 1)
(2.42)

b =
1 + k

(k + 1)B2 + (k2 − 1)B − (k2 + k)

=
1 + k

(K1

K2
+ 1)B2 + ((K1

K2
)
2 − 1)B − ((K1

K2
)
2

+ k)

=
(K2 +K1)K2

(K1K2 +K2
2)B2 + (K1

2 −K2
2)B − (K1

2 +K1K2)

=
(K2 +K1)K2

(K1 +K2)(K2B +K1)(B − 1)
=

K2

(K2B +K1)(B − 1)
(2.43)
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c =
−1 +B

(k + 1)B2 + (k2 − 1)B − (k2 + k)

=
−1 +B

(K1

K2
+ 1)B2 + ((K1

K2
)
2 − 1)B − ((K1

K2
)
2

+ k)

=
(B − 1)K2

2

(K1K2 +K2
2)B2 + (K1

2 −K2
2)B − (K1

2 +K1K2)

=
(B − 1)K2

2

(K1 +K2)(K2B +K1)(B − 1)
=

K2
2

(K1 +K2)(K2B +K1)
(2.44)

Therefore,

a

K2

=
−1

(K1 +K2)(B − 1)
(2.45)

b

K2

=
1

(K2B +K1)(B − 1)
(2.46)

c

K2

=
K2

(K1 +K2)(K2B +K1)
(2.47)

Substituting the above equations into Eq.(2.41) leads to

t =
−1

(K1 +K2)(B − 1)
ln |1− α|+ 1

(K2B +K1)(B − 1)
ln |1− α

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

K2α

K1

| (2.48)
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Analytical solution for the rate of change of degree of cure Eq.(2.15) for

α > 0.3 is given by

dα

dt
= K3(1− α) (2.49)

Re-arranging the above equation and integrating yields,

∫ dα

(1− α)
=
∫
K3dt+ C (2.50)

− ln(1− α) = K3t+ C (2.51)

The initial condition used to solve Eq.(2.51) is

At α = 0.3, t = tc where tc is obtained by substituting α = 0.3 into

Eq.(2.48),

tc =
−1

(K1 +K2)(B − 1)
ln(0.7) +

1

(K2B +K1)(B − 1)
ln |1− 0.3

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

0.3K2

K1

| (2.52)

Then Eq.(2.51) becomes

− ln(1− α) = K3t− ln(0.7)−K3tc (2.53)

Therefore, for α > 0.3, we have

t = − 1

K3

ln
(1− α)

0.7
+ tc (2.54)
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Eqs.(2.14) and (2.15) have been modeled numerically using the Runge

Kutta 4th order numerical method. Let us define

y =
dα

dt
= f(α(t), t) (2.55)

For α ≤ 0.3, initial conditions are, α = 0, t = 0 and f is

f(α(t), t) = (K1 +K2α)(1− α)(B − α) (2.56)

For α > 0.3, initial conditions are, α = 0.3, t = tc and f is

f(α(t), t) = K3(1− α) (2.57)

This numerical method has been used to approximate the value of α

by numerically solving the first order ordinary differential Eqs.(2.56) and

(2.57) using a step size h that is used to approximate the degree of cure.

Fig. 2.2 is a plot of degree of cure α vs. time from t = 0 to t = 200s in

steps of dt = 0.1s for a temperature of 450K and time step h = dt/5. This

can be used to calculate the four weighted averages as

B1 = f(t0, y0) (2.58)

where B1 is the slope f(t, α) at the beginning of the time step t = t0.

B2 = f(tp +
h

2
, yp +

B1

2
h) (2.59)

B2 is the estimate of the slope at t = t0 + h/2

B3 = f(tp +
h

2
, yp +

B2

2
h) (2.60)
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B3 is another estimate of the slope at t = t0 + h/2

B4 = f(tp + h, yp + hB3) (2.61)

B4 is the estimate of the slope at t = t0 + h

Then y becomes

y(t0 + h) = y(t0) +
h

6
(B1 + 2B2 + 2B3 +B4) (2.62)

The analytical and numerical solutions for Eqs.(2.14) and (2.15) have

been combined in Fig. 2.2. It was observed that the accuracy of the plot

does not change by reducing time interval or increasing the step size for the

numerical model.

The variation of degree of cure, α, with respect to time for various

temperatures have also been plotted in Fig.2.3. It can be observed that

polymer cures at shorter intervals of time at higher temperature.
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3 Modeling Methodology

3.1 Introduction to Maxwell Model

Consider a viscoelastic polymer represented as a single Maxwell model as

shown in Fig.(3.1) that has time and temperature dependent material prop-

erties G(t, T ) and η(t, T ).

2η 2G

Figure 3.1: Schematic of a Maxwell model.

The stress-strain relation for spring and dashpot are as follows

γ
(G)
kl (x, t) =

τkl(x, t)

2G(t, T )
(3.1)

∂γ
(η)
kl (x, t)

∂t
=
τkl(x, t)

2η(t, T )
(3.2)

τkl = τ
(G)
kl = τ

(η)
kl (3.3)

γkl = γ
(G)
kl + γ

(η)
kl (3.4)
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where τkl is the total stresses in the model which is the same in the spring

and dashpot, γkl is the total strain which is the sum of individual strains of

spring and dashpot when connected in series.

Differentiating Eq.(3.4) yields

dγkl
dt

=
dγ

(G)
kl

dt
+
dγ

(η)
kl

dt
(3.5)

Substituting Eq.(3.1) and Eq.(3.2) into Eq.(3.5) leads to

∂γkl(x, t)

∂t
=

∂

∂t

(
τkl(x, t)

2G(t, T )

)
+
τkl(x, t)

2η(t, T )

=
1

2G(t, T )

∂

∂t
(τkl(x, t)) + τkl(x, t)

∂

∂t

(
1

2G(t, T )

)
+
τkl(x, t)

2η(t, T )
(3.6)

Multiplying Eq.(3.6) by 2G(t, T ) yields

2G(t, T )
∂γkl(x, t)

∂t
=

∂τkl(x, t)

∂t
+ τkl

[
G(t, T )

∂

∂t

(
1

G(t, T )

)
+
G(t, T )

η(t, T )

]
(3.7)

Rearranging Eq.(3.7) we obtain

∂τkl(x, t)

∂t
+
τkl(x, t)

λ(t, T )
= 2G(t, T )

∂γkl(x, t)

∂t
(3.8)

where λ is the relaxation time defined as

1

λ(t, T )
=

[
G(t, T )

∂

∂t

(
1

G(t, T )

)
+
G(t, T )

η(t, T )

]
(3.9)
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Eq.(3.8) is a linear, non-homogeneous first order ODE of the form ẋ +

p(t)x = q(t) which has an analytic solution

x =
1

u(t)

(∫
u(t)q(t)dt+ C

)

where, u(t) = e
∫
p(t)dt , p(t) = 1

λ(t)
, q(t) = 2Gγ̇

Therefore, solution for Eq.(3.8) is given as,

τkl(x, t) = 2e−F (x,t)
∫ t

0
eF (x,t′)G(T, t, t′)

∂γkl(x, t
′)

∂t′
dt′ + Ce−F (x,t) (3.10)

where,

F (x, t) =
∫ t

0

dt

λ(x, t, T )
=

∫ t

0

[
G(t, T )

∂

∂t

(
1

G(t, T )

)
+

G(t, T )

η(t, T )

]
dt

(3.11)

The constant C in Eq.(3.10) can be obtained using initial condition

γkl(x, 0) = γ
(G)
kl (x, 0) =

τkl(x, 0)

2G(0, T )

Therefore,

τkl(x, 0) = 2G(0, T )γkl(x, 0) (3.12)

Evaluating C by substituting Eq.(3.12) into Eq.(3.10) for time, t = 0.

C = τkl(x, 0)eF (x,0) = 2G(0, T )γkl(x, 0)eF (x,0) (3.13)

where

F (x, 0) =
∫ 0

0

[
G(t, T )

∂

∂t

(
1

G(t, T )

)
+

G(t, T )

η(t, T )

]
dt = 0 (3.14)
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Therefore,

eF (x,0) = e0 = 1 (3.15)

Then,

C = τkl(x, 0)eF (x,0) = 2G(0, T )γkl(x, 0) (3.16)

By substituting Eq.(3.16) into Eq.(3.10), the stress-strain relation for a

single Maxwell model is given as

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,t)+2
∫ t

0
e−[F (x,t)−F (x,t′)]G(T, t, t′)

∂γkl(x, t
′)

∂t′
dt′

(3.17)

In this study, the time dependent material co-efficients G(t, T ) and

η(t, T ) are assumed to vary linearly with degree of cure and are, therefore,

expressed as

G(α(t, T )) = G0 +G1α (3.18)

η(α(t, T )) = η0 + η1α (3.19)

Substituting Eqs.(3.18) and (3.19) into Eq.(3.11), F (x, t) can be ex-

pressed as

F (x, t) =
∫ t

0

G0 +G1(α)

η0 + η1(α)
dt −

∫ t

0

∂

∂t
[G0+G1(α)]

(
1

G0 +G1(α)

)
dt (3.20)
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3.2 Numerical analysis of stress-strain characteristics

Consider a viscoelastic polymer represented as a Maxwell model with strain

input, γkl(x, t), applied to the model until time, tp. Then,

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,tp)+2
∫ tp

0
e−[F (x,t)−F (x,t′)]G(T, t, t′)

∂γkl(x, t
′)

∂t′
dt′

(3.21)

The equation above can be solved numerically by discretization of the

strain input γkl(x, t) for very small time intervals such that 4γkl(tn) is

constant over 4tn, accordingly,

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,tp)

+ 2
p∑

n=1

∫ tn

tn−1

e−[F (x,tp)−F (x,t′)]G(t, t′, T )dt′
4γkl(tn)

4tn
(3.22)

Adding and subtracting F (x, tn) to [F (x, t′) − F (x, tp)], Eq.(3.22) can

be re-written as

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,tp)

+2
p∑

n=1

∫ tn

tn−1

e[F (x,t′)−F (x,tp)+F (x,tn)−F (x,tn)]G(t, t′, T )dt′
4γkl(tn)

4tn

= 2G(0, T )γkl(x, 0)e−F (x,tp)

+ 2
p∑

n=1

e[F (x,tn)−F (x,tp)]
∫ tn

tn−1

e[F (x,t′)−F (x,tn)]G(t, t′, T )dt′
4γkl(tn)

4tn
(3.23)
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Eq.(3.23) can be re-written as

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,tp)

+ 2
∫ tp

tp−1

e[F (x,t′)−F (x,tp)]G(t, t′, T )dt′
4γkl(tp)
4tp

+ 2
p−1∑
n=1

e[F (x,tn)−F (x,tp)]
∫ tn

tn−1

e[F (x,t′)−F (x,tn)]G(t, t′, T )dt′
4γkl(tn)

4tn
(3.24)

Let us define h as

h(tp) =
2

4tp

∫ tp

tp−1

e[F (x,t′)−F (x,tp)]G(t, t′, T )dt′

=
2

4tp
e−F (x,tp)

∫ tp

tp−1

eF (x,t′)G(t, t′, T )dt′ (3.25)

The definite integral in Eq.(3.25) is evaluated using the Trapezoidal

rule that works by approximating the region under the curve as a trapezoid

which is obtained by plotting f(t) with respect to time, t and calculating

the area. Let,f(t) = eF (x,t′)G(t, t′, T ), then

∫ tp

tp−1

f(t)dt =
(tp − tp−1)

2

[
f(t(p−1)) + f(t(p))

]
(3.26)

The results of the integral can be approximated by partitioning the

integration interval (into N parts), applying the trapezoidal rule to each

sub-interval, and summing the results. Then h becomes

h(tp) =
2

4tp
e−F (x,tp)

p∑
n=1

(tn − tn−1)
2

[
f(t(n−1)) + f(t(n))

]
(3.27)

Then Eq.(3.24) becomes

τkl(x, t) = 2G(x, 0)γkl(x, 0)e−F (x,tp) + h(tp)4γkl(tp)
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+
p−1∑
n=1

e[F (x,tn)−F (x,tp)]h(tn)4γkl(tn) (3.28)

Let us define Rp as

Rp =
p−1∑
n=1

e[F (x,tn)−F (x,tp)]h(tn)4γkl(tn) (3.29)

Then we have

Rp−1 =
p−2∑
n=1

e[F (x,tn)−F (x,tp−1)]h(tn)4γkl(tn) (3.30)

Then Rp can be re-written as

Rp = e[F (x,tp−1)−F (x,tp)]h(tp−1)4γkl(tp−1)

+
p−2∑
n=1

e[F (x,tn)−F (x,tp)]h(tn)4γkl(tn) (3.31)

= e[F (x,tp−1)−F (x,tp)]h(tp−1)4γkl(tp−1)

+ e[F (x,tp−1)−F (x,tp)]
p−2∑
n=1

e[F (x,tn)−F (x,tp−1)]h(tn)4γkl(tn)

Therefore,

Rp = e[F (x,tp−1)−F (x,tp)] [h(tp−1)4γkl(tp−1) +Rp−1] (3.32)

Then,

τkl(x, t) = e−F (x,tp)2G(x, 0)γkl(x, 0) + h(tp)4γkl(tp) + Rp (3.33)

A broad overview of the methodology that can be used to run the present

numerical model is shown in Fig.3.2
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Figure 3.2: Flow chart to a basic numerical model to solve the stress-strain
relation for Maxwell model.

However, this method lacks efficiency on account of multiple evaluations

of F and h for each of their occurrences in the numerical formulation.

While the term, h, is generally evaluated for a relatively small period of

time, each evaluation of F at time, t, involves an integration from time,

t = 0 to t = tn, (where n is the number of step sizes until final time

tp), which becomes progressively more time-consuming to evaluate. For

instance, when solving a model with step size 1/10th of the time intervals

at which stress is being evaluated, there are 35 distinct evaluations of the

function F , and 12 distinct evaluations of the function h. In order to address

this issue, a computationally less-intensive methodology was developed, as

shown in Fig.3.3, wherein F and h are evaluated for the entire range of time
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that is of interest. Subsequently, these values are merely extracted for each

step in the calculation of stress.

Figure 3.3: Flow chart to an efficient numerical model to solve stress-strain
relation for Maxwell model.

3.3 Results and Discussion

The stress-strain relation of a Maxwell model has been solved numerically

in Eq.(3.33) for any strain input and material properties changing as curing

progresses. The validation for this model is reported below wherein, the

strain input and the material properties are taken to be constants as the

polymer is considered to be completely cured, i.e (α = 1). Using these input

parameters, the stress-strain relation has also been solved analytically and

the solution from numerical model is verified with analytical equations.
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Model Validation

In order to validate the numerical model, the following input parameters

are used. The strain input used is a constant strain given as

γkl(x, t) = γ0

Material properties of the polymer are considered to be constants, i.e.

G = G0 +G1

η = η0 + η1

These properties have been obtained by substituting (α = 1) into Eqs.(3.18)

and (3.19). These are used under the consideration that the polymer has

been fully cured and hence the properties do not vary with time. Results

are obtained both numerically and analytically and are plotted in Fig.3.4

The stress-strain relation has been solved numerically

τkl(x, t) = e−F (x,tp)2G(x, 0)γkl(x, 0) + h(tp)4γkl(tp) + Rp (3.34)

For constant strain, since γkl(tn) = γkl(x, 0) = γ0, then 4γkl(tn) = 0,

4γkl(tp) = 0 and Rp = 0. Therefore,

τkl = 2Gγ0e
−F (x,tp) (3.35)
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Analytical solution is obtained by carrying out the following derivations.

The stress-strain relations for spring and dash-pot for a Maxwell model with

constant material properties are given below.

γ
(G)
kl =

τkl(x, t)

2G
(3.36)

∂γ
(η)
kl

∂t
=
τkl(x, t)

2η
(3.37)

Differentiating Eq.(3.36) and adding it to Eq.(3.37),

∂γkl
∂t

=
∂

∂t

(
τkl(x, t)

2G

)
+
τkl(x, t)

2η
(3.38)

Since G and η are independent of time, Eq.(3.38) can be re-written as,

∂γkl
∂t

=
1

2G

∂τkl(x, t)

∂t
+
τkl(x, t)

2η
(3.39)

Multiplying Eq.(3.39) by 2G,

2G
∂γkl
∂t

=
∂τkl(x, t)

∂t
+
τkl(x, t)

λ
(3.40)

where λ is the relaxation time which can be defined as given below,

1

λ
=
G

η

Initial condition for Maxwell model is,

γkl(x, 0) = γGkl(x, 0) =
τkl(x, 0)

2G(0, T )

Using this initial condition, Eq.(3.40) can be solved for τkl as,

τkl = 2G
∫ tp

0
e[F (x,t′)−F (x,t)]∂γkl(x, t

′)

∂t′
dt′ + 2Gγkl(x, 0)e−F (x,t) (3.41)
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where,

F (x, t) =
∫ t

0

dt

λ
=
∫ t

0

(
G

η

)
dt =

G

η
t (3.42)

For constant strain, γkl(tn) = γkl(x, 0) = γ0 and ∂γkl
∂t

= 0, therefore

τkl = 2Gγkl(x, 0)e−F (x,t) (3.43)

Using these input parameters, the numerical model is evaluated. The

stress is calculated for a temperature of 500K, and inputs for material prop-

erties, G and η are G0 = 1, G1 = 5, η0 = 0.5, η1 = 10. Stress vs time plot

has been evaluated for a time period of 5 secs. Eq.(3.43) describes the stress

relaxation phenomenon for Maxwell model under constant strain wherein

the stresses gradually decreases with time. This phenomenon is shown in

Fig. 3.4.

Viscoelastic Polymer with Transient Material Properties

Once the numerical model has been validated, the model can be used to plot

the variation of stress for more complex parameters. Consider a constant

strain input used for solving the numerical model such that

γkl(x, t) = γ0

The material properties of the polymer are considered to be time dependent

i.e., the properties vary as the cure progresses. In order to obtain these plots,
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Figure 3.4: Validation of numerical solution for Maxwell model with con-
stant strain input and time independent material properties.

we need to understand the variation of degree of cure as time progresses

and this has been solved for 3501-6 resin in Section 2.2 using the Runge-

Kutta 4th order method. The results have been plotted in Fig. 3.5 for a

temperature value of 500K.

The variation of G(α, t, T ) and η(α, t, T ) with respect to time are as

given in Eqs.(3.44) and (3.45). Constant values have been assigned as inputs

for material properties in order to plot their variation with time as shown

Figs. 3.6 and 3.7 so as to understand their impact on the variation of stress.
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Figure 3.5: Degree of cure vs time for temperature of 500K.

Constant material inputs are given by, G0 = 1, G1 = 5, η0 = 0.5, η1 = 10.

G(α, t, T ) = G0 + G1α (3.44)

η(α, t, T ) = η0 + η1α (3.45)
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Figure 3.6: Viscosity with time for cure dependent viscoelastic model.
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Figure 3.7: Variation of Shear modulus with time for cure dependent vis-
coelastic model.
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The variation of stress with respect to time is as shown in Fig. 3.8. It

can be observed that for a constant stress, with material properties increas-

ing, the stresses tend to increase for a short time period and then stress

relaxation occurs similar to the validation case from Fig. 3.5.
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Figure 3.8: Plot of stress τkl vs time for constant strain input and transient
material properties.
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4 Generalized Maxwell model (GMM)

4.1 Introduction

The Generalized Maxwell model (GMM) can be formulated as M + 2

Maxwell bodies placed in parallel. The first and last Maxwell bodies are

degenerate ones such that η0 = GM+1 = ∞. The load in each Maxwell

body is τmkl while its deformation is γmkl which is equal to the γkl of entire

GMM. Total stress for M + 2 Maxwell bodies placed in parallel is given by

τkl(x, t) =
M+1∑
m=0

τmkl (x, t) (4.1)

The stress-strain relations for degenerate bodies, spring and dash-pot

are.

γ
(G)
kl (x, t) =

τkl(x, t)

2G(t, T )
(4.2)

∂γ
(η)
kl (x, t)

∂t
=
τkl(x, t)

2η(t, T )
(4.3)

Stress-strain relation for a single Maxwell model is derived as,

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,t)+
∫ tp

0
e−[F (x,t)−F (x,t′)]G(t, t′, T )

∂γkl(x, t
′)

∂t′
dt′

(4.4)

Substituting of Eqs.(4.2), (4.3) and (4.4) into Eq.(4.1) gives,

1

2
τkl(x, t) = G0(t, T )γkl(x, t) + ηM+1(t, T )

∂γkl(x, t)

∂t
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+
M∑
m=1

∫ tp

0
e−[Fm(x,t)−Fm(x,t′)]Gm(t, t′, T )

∂γkl(x, t
′)

∂t′
dt′

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.5)

where

τmkl (x, 0) = 2Gm(0, T )γkl(x, 0)

For each Maxwell body (m = 1, 2, ...M) the relation for relaxation time

λ is given by Eq.(4.6) and Fm(x, t) by Eq.(4.7). The GMM contains 2M+2

parameters that characterizes the material properties.

1

λm(t, T )
= Gm(t, T )

∂

∂t

(
1

Gm(t, T )

)
+
Gm(t, T )

ηm(t, T )
(4.6)

Fm(x, t) =
∫ t

0

dt

λm(t, T )
(4.7)

4.2 Numerical analysis of non-linear Generalized Maxwell model

(GMM)

The stress-strain relation in Eq.(4.5) can be numerically solved as follows.

1

2
τkl(x, t) = G0(t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+
M∑
m=1

p∑
n=1

∫ tn

tn−1

e−[Fm(x,tp)−Fm(x,t′)]Gm(t, t′, T ′)
4γkl(tn)

4tn
dt′

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.8)
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Assuming that 4γkl(tn) is constant over 4tn, then

1

2
τkl(x, t) = G0(t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+
M∑
m=1

p∑
n=1

∫ tn

tn−1

e−[Fm(x,tp)−Fm(x,t′)]Gm(t, t′, T ′)dt′
4γkl(tn)

4tn

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.9)

Adding and subtracting Fm(x, tn) to [Fm(x, t′) − Fm(x, tp)], Eq.4.9 can

be re-written as

1

2
τkl(x, t) = G0(x, t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+
M∑
m=1

p∑
n=1

∫ tn

tn−1

e[Fm(x,t′)−Fm(x,tp)+Fm(x,tn)−Fm(x,tn)]Gm(x, t′, T ′)dt′
4γkl(tn)

4tn

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0)

= G0(x, t, T )γkl(x, t) + ηM+1(x, t, T )
∂γkl(x, t)

∂t

+
M∑
m=1

p∑
n=1

e[Fm(x,tn)−Fm(x,tp)]
∫ tn

tn−1

M∑
m=1

e[Fm(x,t′)−Fm(x,tn)]Gm(x, t′, T ′)dt′
4γkl(tn)

4tn

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.10)

Then,

1

2
τkl(x, t) = G0(x, t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+
M∑
m=1

∫ tp

tp−1

e[Fm(x,t′)−Fm(x,tp)]Gm(x, t′, T )dt′
4γkl(tp)
4tp
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+
M∑
m=1

p−1∑
n=1

e[Fm(x,tn)−Fm(x,tp)]
∫ tn

tn−1

M∑
m=1

e[Fm(x,t′)−Fm(x,tn)]Gm(x, t′, T )dt′
4γkl(tn)

4tn

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.11)

Let us define hm as

hm(tp) =
1

4tp

∫ tp

tp−1

M∑
m=1

e[Fm(x,t′)−Fm(x,tp)]Gm(x, t′, T )dt′ (4.12)

hm(tn) =
1

4tn

∫ tn

tn−1

M∑
m=1

e[Fm(x,t′)−Fm(x,tn)]Gm(x, t′, T )dt′ (4.13)

Therefore,

1

2
τkl(x, t) = G0(x, t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+ hm(tp)4γkl(tp)

+
p−1∑
n=1

M∑
m=1

e[Fm(x,tn)−Fm(x,tp)]hm(tn)4γkl(tn)

+
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.14)

Let us define Rp,m as

Rp,m =
p−1∑
n=1

M∑
m=1

e[Fm(x,tn)−Fm(x,tp)]hm(tn)4γkl(tn) (4.15)

Then we have

Rp−1,m =
p−2∑
n=1

M∑
m=1

e[Fm(x,tn)−Fm(x,tp−1)]hm(tn)4γkl(tn) (4.16)
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Rp,m can be re-written as

Rp,m =
M∑
m=1

e[Fm(x,tp−1)−Fm(x,tp)]hm(tp−1)4γkl(tp−1)

+
p−2∑
n=1

M∑
m=1

e[Fm(x,tn)−Fm(x,tp)]hm(tn)4γkl(tn) (4.17)

=
M∑
m=1

e[Fm(x,tp−1)−Fm(x,tp)]hm(tp−1)4γkl(tp−1)

+
M∑
m=1

e[Fm(x,tp−1)−Fm(x,tp)]
p−2∑
n=1

M∑
m=1

e[Fm(x,tn)−Fm(x,tp−1)]h(tn)4γkl(tn)

(4.18)

Therefore,

Rp,m =
M∑
m=1

e[Fm(x,tp−1)−Fm(x,tp)] [hm(tp−1)4γkl(tp−1) +Rp−1,m] (4.19)

Then,

1

2
τkl(x, t) = G0(x, t, T )γkl(x, t) + ηM+1(x, t, T )

∂γkl(x, t)

∂t

+ hm(tp)4γkl(tp) + Rp,m +
1

2

M∑
m=1

e−Fm(x,t)τmkl (x, 0) (4.20)

4.3 Numerical model validation

Validation of numerical solution for Generalized Maxwell model is carried

out using a sample viscoelastic model as shown in Fig.4.1, wherein, m =

1, 2. The stress-strain relations for the fully cured polymer with constant
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material properties are computed numerically using Eq.(4.20) for a constant

strain input and the result is compared to the analytical solution.

Gm = G0m +G1m (4.21)

ηm = η0m + η1m. (4.22)

Fm(x, t) =
∫ t

0

dt

λm
=
∫ t

0

(
Gm

ηm

)
dt =

Gm

ηm
t (4.23)

Also strain input is given as,

γkl = γ0

Therefore,

4γkl = 0 (4.24)

η1 η2 

G1 G2

G0

Figure 4.1: Sample viscoelastic model to validate numerical solution for
GMM .
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Stress is calculated numerically using Eq.(4.20) as

1

2
τkl(x, t) = G0γ0 +

1

2

2∑
m=1

e−Fm(x,t)τmkl (x, 0)

+ hm(tp)4γkl(tp) + Rp,m (4.25)

Substituting the above mentioned input parameters into Eq.(4.25),

τkl(x, t) = 2G0γ0 +
2∑

m=1

e−Fm(x,t)τmkl (x, 0) (4.26)

where

τ 1kl(x, 0) = 2(G01 +G11)γ0

τ 2kl(x, 0) = 2(G02 +G12)γ0 (4.27)

The analytical solution to the sample model in Fig.4.1 can be obtained

by considering it as a GMM consisting of two Maxwell models (M=2) and

a spring (G0) connected in parallel. The strain in each model is equal to

the total strain and is given as

γkl = γ1kl = γ2kl = γ0kl (4.28)

Let τ 1kl, τ
2
kl be the stresses in the Maxwell models and τ 3kl is the stress

induced in the spring, then total stresses can be calculated as,

τkl = τ 1kl + τ 2kl + τ 0kl (4.29)

where

τ 1kl = 2G1γkl(x, 0)e−F1(x,t) (4.30)
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τ 2kl = 2G2γkl(x, 0)e−F2(x,t) (4.31)

τ 0kl = 2G0γkl(x, 0) (4.32)

Using Eqs.(4.21), (4.22) and (4.23),

F1(x, t) =
G1

η1
t =

(G01 +G11)

(η01 + η11)
t

F2(x, t) =
G2

η2
t =

(G02 +G12)

(η02 + η12)
t

Therefore,

τkl = 2G1γkl(x, 0)e−F1(x,t) + 2G2γkl(x, 0)e−F2(x,t) + 2G0γkl(x, 0) (4.33)

In order to plot stress-time graphs for both numerical and analytical

solutions, sample values are given for material properties as shown below,

For the first Maxwell body,

m = 1, G01 = 10, G11 = 3, η01 = 5, η11 = 2 (4.34)

For the second Maxwell body,

m = 2, G02 = 5, G12 = 2, η02 = 4, η12 = 1 (4.35)

The spring constant for a degenerate spring is

G0 = 3 (4.36)

The stresses thus obtained numerically are compared with the stress-

strain relations evaluated theoretically for constant strain (γ0 = 1) and
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results are plotted in Fig.4.2. It is observed that the sample model under-

goes stress-relaxation when a constant strain is applied at a temperature of

500K and it can be seen that the stresses decreases gradually with time.
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Figure 4.2: Validation of numerical model using analytical solution for sam-
ple GMM.

4.4 Characterization of sample model with cure dependent ma-

terial properties

Once the sample model in Fig.4.1 has been validated using numerical model,

it can now be used to evaluate the stress induced in the polymer with cure
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dependent material properties as

Gm = G0m +G1mα (4.37)

ηm = η0m + η1mα (4.38)

Variation of degree of cure α with time has been calculated in Section 2.2

based on cure kinetic relations for 3501-6 resin and is plotted in Fig. 4.3

for a temperature of 500K.
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Figure 4.3: Variation of degree of cure with time for a temperature input
of 500K.

For α ≤ 0.3,

t =
−1

(K1 +K2)(B − 1)
ln |1− α|+ 1

(K2B +K1)(B − 1)
ln |1− α

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

K2α

K1

|
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For α > 0.3, we have

t = − 1

K3

ln
(1− α)

0.7
+ tc

where

tc =
−1

(K1 +K2)(B − 1)
ln(0.7) +

1

(K2B +K1)(B − 1)
ln |1− 0.3

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

0.3K2

K1

|

The strain input in this case is also constant given by, γkl = γ0.

For the first Maxwell body,

m = 1, G01 = 10, G11 = 3, η01 = 5, η11 = 2 (4.39)

For the second Maxwell body, input parameters are

m = 2, G02 = 5, G12 = 2, η02 = 4, η12 = 1 (4.40)

The spring constant for a degenerate spring, input parameters are

G0 = 3 (4.41)

Figs. 4.4 and 4.5 show the variation of shear modulus G and modulus

of viscosity η with time for all the components connected parallel in the

sample model.
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Figure 4.4: Modulus of viscosity vs time for Maxwell models 1 and 2.
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Figure 4.5: Plot of Shear modulus vs time for Maxwell models 1, 2, and
Spring component.

Individual stresses in the Maxwell models as well as the spring com-

ponent connected in parallel are plotted in Fig.4.6. It can be noted that
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while the stress in the spring component increases linearly, Maxwell model

stresses initially tend to decrease and then increase. The stresses in Maxwell

model 1 is higher than Maxwell model 2 and spring component due to high

values of material properties as seen in Fig.4.4 and 4.5. Stresses for the

GMM sample model as a whole is poltted in Fig.4.7.At time t = 0, stress

was very high due to initial strain, γ0. Then as time progressed, stresses

seem to be reduced and then eventually increase.
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Figure 4.6: Stress-time plot of individual components for cure-dependent
material properties.
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Figure 4.7: Stress-time plot for cure-dependent material properties.
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5 Dissipation Energy

5.1 Dissipation energy for Single Maxwell model

During the deformation of a viscoelastic polymer, part of the total work of

deformation is stored elastically, whereas, remainder is dissipated as heat

through viscous losses. It is of great interest to determine this energy dis-

sipated as it can create thermal stresses in the material that may affect the

overall efficiency of the electronic package in which it is being used. By

definition, energy is dissipated in the dashpot alone and hence, dissipation

energy is given by,

W d =
∫ t

0
τ ηkl(x, t)

∂γηkl(x, t)

∂t
dt (5.1)

The stress-strain relation for a dash-pot in Maxwell model is as

∂γηkl(x, t)

∂t
=
τkl(x, t)

2η(t, T )
(5.2)

Substituting Eq.(5.2) into Eq.(5.1),

W d =
∫ t

0

[τkl(x, t)]
2

2η(t, T )
dt (5.3)

where

η(t, T ) = η0 + η1α (5.4)

τkl(x, t) = 2G(0, T )γkl(x, 0)e−F (x,t)+2
∫ tp

0
e[F (x,t′)−F (x,t)]G(T, t, t′)

∂γkl(x, t
′)

∂t′
dt′

(5.5)
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Therefore,

W d =
∫ tp

0

[2G(0, T )γkl(x, 0)e−F (x,t) + 2
∫ tp
0 e[F (x,t′)−F (x,t)]G(T, t, t′)∂γkl(x,t

′)
∂t′

dt′]2

2[η0 + η1(α)]
dt

(5.6)

The numerical solution of stress for Maxwell model was derived earlier

as

τkl(x, t) = e−F (x,tp)2G(x, 0)γkl(x, 0) + h(tp)4γkl(tp) +Rp (5.7)

Then,

W d =
∫ tp

0

[e−F (x,tp)2G(x, 0)γkl(x, 0) + h(tp)4γkl(tp) +Rp]
2

2[η0 + η1α]
dt (5.8)

The definite integral for dissipation energy in Eq.(5.8) is evaluated using

the trapezoidal method of numerical integration, wherein, area under the

curve which is obtained by plotting f(t) w.r.t time, t is approximated as a

trapezoid and calculated.

W d =
∫ tp

0
f(t)dt =

(tp − 0)

2

[
f(0) + f(t(p))

]
(5.9)

The results of the integral can be better approximated using composite

trapezoidal rule by partitioning the integration interval (into N parts) and

applying trapezoidal rule to each sub-interval and summing the results.
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Then,

W d =
t1 − t0

2
f(t0) +

p−1∑
N=1

hj + hj+1

2
f(tj) +

tp − tp−1
2

f(tp) (5.10)

where,

hj = tj − tj−1

hj+1 = tj+1 − tj

Validation of numerical model

Validation of the numerical method for determining dissipation energy is

carried out for a single Maxwell model with constant strain input and

constant material properties. The strain input is constant and given by,

γkl(x, 0) = γ0 = 1,then 4γ = 0, the stress-strain relation obtained numeri-

cally and analytically from Eqs.(5.5) and (5.6) can be modified for the input

parameters are is given as,

τkl(x, t) = e−F (x,t)2G(0, T )γ0 (5.11)

For constant material properties, α = 1, therefore,

η(t, T ) = η0 + η1 (5.12)

G(t, T ) = G0 +G1 (5.13)

λ =
η(t, T )

G(t, T )
(5.14)
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F (x, t) =
∫ t

0

dt

λ(t, T )
=

t

λ(t, T )
(5.15)

Substituting Eqs.(5.11), (5.12), (5.13) and (5.15) into Eq.(5.3), analyti-

cal solution is obtained as,

W d =
∫ tp

0

[e−F (x,t)2G(x, 0)γ0]
2

2[η0 + η1]
dt

=
2G2

0γ
2
0

η0 + η1

∫ tp

0
exp (

−2t

λ(t, T )
)dt

=
G2

0γ
2
0

G0 +G1

[
1− exp

(
−2t

λ(t, T )

)]
(5.16)

The numerical solution is obtained by substituting Eqs. (5.11) and

(5.12) into Eq.(5.6) and solving the integral using trapezoidal rule. Fig.5.1

gives a plot comparing the analytical and numerical solution for dissipation

energy of Maxwell model with constant strain input and constant material

properties G and η, where G0 = 1, G1 = 5, η0 = 0.5, η1 = 10. Dissipa-

tion energy vs time plot has been evaluated for a time period of 5s for a

temperature of 500K. From the plot, it can be observed that the numerical

solution coincides with analytical results and hence the numerical model for

dissipation energy can be considered to be validated.
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Figure 5.1: Validation of numerical model for dissipation energy calculation
of Maxwell model with constant material properties (and constant strain
input).

DE plot for polymers with transient material properties

Once the model has been validated for a simple case, it can be used to

characterize polymers whose properties are cure dependent. The strain

input is constant and given by, γkl(x, 0) = γ0 = 1,then 4γ = 0. Inputs

for material properties, G(α, t, T ) and η(α, t, T ) are G0 = 1, G1 = 5, η0 =

0.5, η1 = 10. The variation of G(α, t, T ) and η(α, t, T ) with respect to time,
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in terms of degree of cure, is given by

G = G0 +G1 α

η = η0 + η1 α

Variation of degree of cure as time progresses has been solved for 3501-6

resin in Section 2.2 using the Runge Kutta 4th order method and the results

are as given below

For α ≤ 0.3,

t =
−1

(K1 +K2)(B − 1)
ln |1− α|+ 1

(K2B +K1)(B − 1)
ln |1− α

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

K2α

K1

|

For α > 0.3,

t = − 1

K3

ln
(1− α)

0.7
+ tc

where

tc =
−1

(K1 +K2)(B − 1)
ln(0.7) +

1

(K2B +K1)(B − 1)
ln |1− 0.3

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

0.3K2

K1

|

Dissipation energy is calculated as,

W d =
∫ t

0

[τkl(x, t)]
2

2η(t, T )
dt
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Dissipation energy has been calculated numerically and plotted as in

Fig.5.2.
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Figure 5.2: Plot of dissipation energy vs time for polymer with transient
material properties (and constant strain input).

5.2 Dissipation energy of Generalized Maxwell model (GMM)

Numerical analysis of stress-strain characteristics have been analyzed in

Section 4.2. A sample viscoelastic model was chosen as shown in Fig.4.1.

This model was already validated for stress-time characteristics using the

numerical model for constant strain input and constant material proper-

ties, as shown in Fig.4.2. Here, the dissipation energy is validated against

analytical solution for the same input parameters. The result is shown
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in Fig.5.3 and as can be seen, a good agreement is obtained between the

numerical model and analytical solution.
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Figure 5.3: Plot of dissipation energy vs time for constant material proper-
ties (and constant strain input).

Subsequently, the validated numerical model is now used to simulate

the GMM case for transient material properties with constant strain input

loading.

γkl = γ0

These results are reported in Fig.5.4, and as seen therein, dissipation

energy increases with time. The variation of material properties are given
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as,

Gm = G0m +G1mα (5.17)

ηm = η0m + η1mα (5.18)

Variation of degree of cure α with time has been calculated in Section

2.2 based on cure kinetic relations for 3501-6 resin for a temperature of

500K.

For the first Maxwell body,

m = 1, G01 = 10, G11 = 3, η01 = 5, η11 = 2 (5.19)

For the second Maxwell body,

m = 2, G02 = 5, G12 = 2, η02 = 4, η12 = 1 (5.20)

The spring constant for a degenerate spring,

G0 = 3 (5.21)

The variation of dissipation energy with time for the sample model with

transient material properties is as shown in Fig.5.4.
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Figure 5.4: Plot of DE vs time for linear strain input using varying material
properties (and constant strain input).
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6 Characterization of 3501-6 resin

Previously, in Section.2, an assumption was made for simplicity, wherein

material properties for 3501-6 resin, G(α) and η(α) were assumed to vary

linearly with degree of cure and stress-strain characteristics were plotted ac-

cordingly. In this study, actual material properties are chosen for modeling

the stress-stain characteristics based upon the experimental data.

The variation of shear modulus G(α) with alpha is given in Eq.(6.1)

which is obtained from study by Adolf and Martin, (1996), wherein Gf (x, t)

is the shear modulus of a fully cured resin, αg is the degree of cure at gelation

point for a particular resin, αf is the value of α for a fully cured resin.

For 3501-6 resin, Gf (x, t) = 1065Pa, resin gelation point αg has been

calculated by Lee et al.(1982) and found to be, 0.5 and maximum value of

degree of cure, αf = 1.

G(α) = Gf (x, t)

(
α2 − α2

g

α2
f − α2

g

)8/3

(6.1)

The variation of η(α) with degree of cure for 3501-6 resin is given by

Eq.(6.2), which is obtained from the study by Lee et al. (1982) wherein

η∞ = 7.93 × 10−14 Pa.s, U = 9.08 × 104J/mol, R = 8.314J/mol-K, T-
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temperature, K = 14.1± 1.2.

η(x, t) = η∞ exp
(
U

RT
+Kα

)
(6.2)
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Figure 6.1: Variation of shear modulus with respect to time for 3501-6 resin
during curing.

In order to plot the variation of G and η with respect to time as shown

in Figs. 6.1 and 6.2, a relation needs to be obtained between degree of cure

(α) and time. This has been obtained in Section 2.2 for 3501-6 resin using

Runge Kutta 4th order method and the results are as given below,

For α ≤ 0.3,

t =
−1

(K1 +K2)(B − 1)
ln |1− α|+ 1

(K2B +K1)(B − 1)
ln |1− α

B
|
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Figure 6.2: Variation of modulus of viscosity with respect to time for 3501-6
resin during curing.

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

K2α

K1

|

For α > 0.3, we have

t = − 1

K3

ln
(1− α)

0.7
+ tc

where,

tc =
−1

(K1 +K2)(B − 1)
ln(0.7) +

1

(K2B +K1)(B − 1)
ln |1− 0.3

B
|

+
K2

(K1 +K2)(K2B +K1)
ln |1 +

0.3K2

K1

|

Strain input is considered to be sinusoidal due to the nature of loading

for electronic equipments, wherein, γ0 = 1 and frequency here is the ul-
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trasonic frequency ω = 15khz as the bonding is assumed to be carried out

using ultrasonic curing methods that has lower temperature requirement as

compared to the traditional curing methods.

γkl = γ0 sin(ωt) (6.3)

The curing temperature considered is 500K for a time period for 2.5

seconds and the variation of degree of cure w.r.t to time as the temperature

increases with time is shown in Fig. 6.3.
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Figure 6.3: Variation of degree of cure vs time as the temperature varies
with the progress of cure.

Stress is plotted against time with dt = 0.0001 as shown in Fig.6.4.

As observed, stress varies in a sinusoidal manner with increasing ampli-

tude which is similar to the trend seen in Fig.?? for stress variation of
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Maxwell model with linearly varying material properties. The higher rate

of increase in amplitude for the present case is attributed to the usage of re-

alistic properties i.e. G and η have exponential and power-law distributions,

respectively. The rate of increase of these moduli impacts the stress-time

characteristics.

τkl(x, t) = e−F (x,tp)2G(x, 0)γkl(x, 0) + h(tp)4γkl(tp) + Rp (6.4)

where

Rp = e[F (x,tp−1)−F (x,tp)] [h(tp−1)4γkl(tp−1) +Rp−1] (6.5)
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Figure 6.4: Plot of stress vs time using sinusoidal strain input for 3501-6
resin.

Utilizing the calculated stress data, the dissipation energy was deter-

mined for small time intervals, and subsequently using Eq.(6.7), the change
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in temperature of unit mass of material was calculated. Dissipation energy

is given by,

W d =
∫ tp

0

[τkl(x, t)]
2

2η1(α)
(6.6)

This is equivalent to the amount of heat generated, Q, in Joules defined

as

Q = mCp4T (6.7)

where m is unit mass in kg, Cp is the specific heat and 4T is the change

in temperature in K. The specific heat, Cp, is given by Eqs.(6.8) and (6.9).

This is obtained from experimental data as For T < (208.8 + 293.26αd)(K),

Cp = (−92.7 + 5.347T − 364.2αd) (6.8)

For T > (208.8 + 293.26αd)(K),

Cp = (2867.6− 13.322T + 4.304× 10−2T 2 − 3.776× 10−5T 3) (6.9)

Accordingly, the temperature was updated to the newly calculated value

and used to determine material properties and the stress characteristics for

the next unit of time. This procedure was repeated until the desired curing

time was achieved. As seen in Fig.6.6, a reasonable increase in temperature

was observed for the small time period under consideration. It is expected

that with additional curing time, a further increase in temperature would

be observed.
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Figure 6.5: Plot of DE vs time for sinusoidal strain input for 3501-6 resin.
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Figure 6.6: Plot of Temperature vs time for sinusoidal strain input using
realistic material properties.
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7 Conclusions

This study investigated the chemo-thermo cure of viscoelastic polymer

materials in order to determine the stress generated and energy dissipated

during the curing process. A generalized model that is applicable to any ma-

terial is essential in order to enable its applicability towards the comparison

of different bonding substances, and to optimize curing cycle configurations,

and this was one of the fundamental goals of the presently developed numer-

ical model. The mathematical formulation of a viscoelastic material rep-

resented by the Maxwell model was implemented using a novel evaluation

methodology that helped reduce the computational power requirement by

limiting the number of functional evaluations. The commercially-available

3501-6 resin was simulated as a characteristic material on account of its

well-studied reaction kinetics and curing characteristics in the literature.

The numerical model for Maxwell and Generalized Maxwell models were

validated against analytically derived solutions for a constant strain input

with constant material properties, and a good agreement was obtained.

Simulations were performed for problems with sinusoidally varying strain

inputs wherein the materials varied linearly with degree of cure. Lastly,

the numerical Maxwell model was used to calculate stresses for 3501-6 resin



74

wherein, the loading replicated ultrasonic bonding parameters and realistic

material properties for G(α) and η(α) were chosen (based on experimental

data) that varied with degree of cure and temperature.
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