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Abstract 

Pluvial flooding is caused by rainfall events that overwhelm drainage systems 

and do not allow excess water to be absorbed by soils or water infrastructure. 

This type of flooding occurs frequently in urban systems and leads to public 

inconveniences and infrastructure deterioration, which could cost more than 

fluvial flooding over time. Increased rainfall intensity, which is projected to 

increase with climate change, could result in increased pluvial flooding. This 

study aims to examine the vulnerability of pluvial flooding in Portland, OR (2010-

2017) by incorporating an interdisciplinary framework that examines the physical 

and socioeconomic vulnerability of flooding through citizen-reported flooding 

data. We use a spatially dense network of 5-minute interval rainfall measurement 

to examine 3-day storm events associated with flooding reports to correlate 

storm size with the frequency of reports. Additionally, we use a Topographic 

Wetness Index (TWI) to identify the hotspots of pluvial flooding over space and 

characterize the sociodemographic and building characteristics of hotspots by 

performing a spatial analysis using census tract and tax lot level data. We 

investigate how individual neighborhood characteristics (i.e. ethnicity, education, 

gender, age, income) and building characteristics (i.e. building type, building age) 

contribute to reported flooding. This research seeks to identify where pluvial 

flooding occurs across the city, and how flood management planning can better 

address flood vulnerability through the biophysical and socioeconomic 

characteristics that exists amongst communities in Portland. 
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Background 

This research explores the spatial characteristics of urban flooding in 

Portland, Oregon (OR) through three interdisciplinary frameworks that examine 

the physical and sociodemographic vulnerability to flooding through citizen-

reported flooding data. Flooding within the context of this research refers to 

small-scale urban flooding known as pluvial or nuisance flooding, which is 

caused by either short, intense rainfall events or a steady duration of rainfall 

events that overwhelm drainage systems and do not allow excess water to be 

absorbed by soils or water infrastructure. Unlike large-scale river flooding, fluvial 

flooding, which can be attributed to 50-year and 100-year storm events, pluvial 

flooding occurs frequently in urban systems and leads to public inconveniences 

such as traffic congestion, building infrastructure deterioration, sewer system 

overflows and basement sewer backups. While previous research has focused 

on quantifying the damages and costs associated with fluvial flooding events, 

little attention has been given to pluvial flooding events that occur more 

frequently and could be costlier than fluvial flooding events over time (Moftakhari 

et al. 2015, Moftakhari et al. 2017).  

Portland, OR. is known for its large-scale flooding events as the 

Willamette River experienced notable and severe flooding events during the 

1800s and 1900s from lack of proper water infrastructure (Laenen & Dunnette 

1997). Some of the most notable flooding events within the current city boundary 
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have been the flood of 1894, the Vanport floods in 1948 and the flood of 1996 

which all caused massive damages to city infrastructure, industry, and human 

and animal life (Oregon Historical Society 2018). Although these events were 

much larger than pluvial flooding events, it is important to acknowledge the 

impact of increases in precipitation intensity that fluctuate seasonally and the 

need for proper stormwater infrastructure which could leave Portland vulnerable 

to more localized flooding events over time (Cooley & Chang 2017).    

Furthermore, the population in Portland has increased by 9.6% from 2010 

to 2016 (U.S. Census Bureau 2016), and the addition of more buildings (i.e. 

impervious surface) does not allow water to infiltrate the soil and exacerbates 

flood risk. Consequently, this causes more runoff to overwhelm storm drainage 

systems and creates overland flow (Chang & Franczyk 2008, Hailegeorgis & 

Alfredsen 2017). While Portland has a fairly advanced and efficient stormwater 

management system in place, localized pluvial flooding events still occur across 

the system, and there is a lack of certainty in the spatial location of these events. 

City stormwater engineers have been able to create predictive models of 

flood risk using hydraulic and hydrologic modeling, but have not been able to 

validate these models with citizen-generated reports of where flooding actually 

occurs across the system. For this reason, it is important to understand the 

correlation between predictive flood models and flooding data, which can be best 

reported by individuals on the ground who actually experience flooding issues 

(Fazeli et al. 2015, Singh 2014). Comparing predictive models based on 
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topography of the urban system with citizen-observed data creates a better 

understanding if the models are accurately predicting where flooding 

predominantly occurs, and gives citizens a participatory role in flood 

management planning. 

The main component of this study is the use of citizen-observed flooding 

data to understand where pluvial flooding occurs in Portland. This type of 

research draws on concepts of citizen-science, which refers to projects in which 

volunteer’s partner with scientists to answer real-world questions (Cornell 

University 2018). Citizen-science accounts for citizens observing natural events 

and scientists using these observations to advance understanding, which is what 

this study aims to do. Additionally, the use of participatory spatial data has 

become increasingly relevant for visualizing natural hazards through Geographic 

Information Systems (GIS), as fields such as Participatory GIS (PGIS) and 

Voluntary Geographic Information (VGI) have emerged within the realm of spatial 

analysis (Fazeli et al. 2015, Hung et al. 2016, Klonner et al. 2016, Singh 2014, 

Uson et al. 2016).  

PGIS refers to the involvement of local communities contributing 

information that can be used within GIS and spatial decision-making which 

affects these communities (Dunn 2007). VGI was coined by Goodchild in 2007 

and refers to user-generated geographic information, as a way of creating, 

assembling, and disseminating geographic data provided by volunteers (Fazeli et 

al. 2015). Multiple studies have explored how PGIS and VGI can be effective in 
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geospatial analyses of natural hazards, as it incorporates local knowledge, 

personal experiences and more relevant georeferenced information (Fazeli et al. 

2015, Klonner et al. 2016). Unlike typical static flood hazard mapping that relies 

on morphological approaches, remote sensing and simulation methods, PGIS 

and VGI offer researchers the ability to constantly review and update spatial data 

of flooding events that occur rapidly (Fazeli et al. 2015). Previous studies have 

explored the different levels of participatory spatial data through crowdsourcing, 

distributed intelligence, participatory science and citizen science, and noted the 

benefits of having access to various sources of spatial data to accurately assess 

disaster management strategies (Hung et al. 2016, Klonner et al. 2016).  

In addressing social vulnerability to natural hazards, there could be 

potential inequalities associated with communities most impacted by pluvial 

flooding as marginalized populations could be more impacted by natural 

disasters over time. While previous studies have indicated that the effects of 

climate change will be unequally felt by less-developed countries (LDC), 

research has also shown the unequal spatial distribution of flooding impacts on 

marginalized communities in the U.S. by examining three key components of 

social vulnerability: exposure, sensitivity, and adaptive capacity (Denton 2002, 

Douglas et al. 2012, Ge et al. 2017). Adapting to changes in climate and the 

repercussions of flooding requires a prior knowledge of how the climate is 

changing and resources to cope with natural hazards. Socioeconomic differences 
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between communities could create a divide between individuals who will be most 

impacted by flooding over time (Douglas et al. 2012). 

The three frameworks explored in this research are the biophysical 

processes that cause pluvial flooding, the role of participatory flooding reports, 

and social vulnerability within stormwater system and flood risk planning. While 

previous studies have examined each of these frameworks individually regarding 

urban flood risk, few studies have combined these three frameworks to examine 

pluvial flood risk at a city scale.  

The first chapter of this study will explore the biophysical processes that 

cause pluvial flooding by associating citizen-observed flooding reports with 3-day 

storm sizes to understand the relationship between storm size and frequency of 

reports. The first chapter will also explain the categorization, standardization and 

overall data processing of citizen-generated flood reports. The second chapter of 

this study will explore the validity and usefulness of citizen-inputted flood data for 

evaluating flood risk by examining the relationship of reports with both a 

predictive surface flood model based on topography, and with socio-demographic 

and building characteristics at the census tract scale. While the first chapter will 

explain some of the caveats with collecting and processing citizen-inputted data, 

the second chapter will explore some potential issues surrounding equity of using 

citizen-inputted data within city-wide flood risk planning. Thus, this research 

uniquely examines the full cycle of how participatory flooding data gets recorded 

and analyzed within urban flood risk and stormwater system planning.  
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Research Objective and Questions 

The objective of this research is to examine the spatial characteristics and 

frequency of citizen-observed flooding reports from 2010-2017 in Portland, OR, 

as well as the validity of using participatory data to evaluate urban flood risk. This 

research aims to explore how future stormwater management and flood risk 

planning can better address the physical and social dimensions of flood 

vulnerability through biophysical processes and socioeconomic characteristics 

that exists among communities in Portland. This research aims to address the 

following questions:  

1. What are the spatial patterns of flooding reports at different periods of the

wet season?

2. Does storm size influence the frequency of reports generated?

3. Are reports spatially correlated with known topographic characteristics that

cause surface flooding?

4. What are the building and socio-demographic characteristics associated

with flooding reports?
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Chapter 1 

1. Introduction

Weather-related hazards are expected to occur more frequently as climate 

change projections anticipate uncertainty in precipitation patterns that could vary 

spatially and temporally at local and regional scales (Chang & Franczyk 2008). 

As climatic uncertainty increases, the ability for urban systems to predict and 

cope with weather-related hazards becomes increasingly pertinent to 

understand. One of the more common weather-related hazards within urban 

systems is pluvial flooding, which is most often associated with rapid 

urbanization, increased population, installation of varied infrastructure and 

changes in precipitation patterns (Jenkins et al. 2017). While this type of flooding 

does not pose serious threats to human life or infrastructure, it occurs frequently 

and disrupts daily activities, increases traffic congestion, strains sewer systems 

and causes property damage (Moftakhari et al. 2018).  

Previous studies have examined different measurements of precipitation 

associated with flooding events (annual maximum, 3-day total, daily, hourly and 

one-minute rainfall) to understand how rainfall intensity will affect the occurrence 

of flooding events (Guerreiro et al. 2017, Hailegeorgis & Alfredsen 2017, Ye et al. 

2017). Since pluvial flooding is most often caused by intense, localized storm 

events that could take several days to develop, it is important to understand 

storm sizes over a 3-day period (Guerreiro et al. 2017, Ye et al. 2017). It should 
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be acknowledged that strong winter storm events in the Pacific Northwest (PNW) 

that induce flooding events are often caused by Atmospheric Rivers (ARs) which 

contain large amounts of water vapor and are responsible for more than 90% of 

atmospheric water vapor transport in the mid-latitudes (Ralph & Dettinger 2010).  

The city of Portland has the largest wastewater collection system in 

Oregon and serves over 588,000 customers, spanning more than 94,000 acres 

in service area (City of Portland 2010). The city manages stormwater in three 

distinct systems: combined sewer system (CSS), underground injection control 

Figure 1: Map of the three sewer systems across Portland. Purple indicates the combined 
sewer system, grey is the Sumps/UICs, and the yellow to brown tones are the separate sewer 
system regions (City of Portland 2010). 
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(UIC) and separate (i.e. sanitary) storm sewer (SSS) system. As shown in Figure 

1, CSSs are predominantly located in central regions of the city near the 

Willamette River and collect stormwater runoff and sewage from streets and 

buildings into the same pipes. While most of this stormwater is routed towards 

treatment plants in the city, heavy rainfall can cause combined sewer overflows 

(CSO) to the Willamette. The city completed its CSO control system in 2011 to 

alleviate a majority of the sewage overflows to the Willamette when it rains (City 

of Portland 2010). UICs (i.e. sumps), located in the northeast and eastern 

regions of the city where the ground is more permeable, route stormwater runoff 

to the ground, and replenish groundwater to feed rivers and streams (City of 

Portland 2010). SSS systems, mostly located in the outer regions of the city, 

route sewage from buildings to treatment plants, and collect stormwater runoff 

through stormwater conveyances such as pipes, drainages, and swales (City of 

Portland 2010).  

While Portland has a fairly advanced and efficient stormwater 

management system in place, localized pluvial flooding still occurs across the 

system, and there is a lack of certainty in the spatial location of these events. City 

stormwater engineers have been able to create predictive models of basement 

sewer backups, surcharged manholes and sanitary sewer overflows (SSO), but 

have not been able to validate these models with reports of where flooding 

actually occurs across the system. Previous studies have explored the 

usefulness of participatory spatial data to validate predictive modeling of flood 
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risk as citizens who report flooding incorporate local knowledge, personal 

experiences and more relevant georeferenced information (Fazeli et al. 2015, 

Hung et al. 2016, Klonner et al. 2016, Sing 2014). For these reasons, this study 

will use a dataset of mostly citizen-observed flooding reports to understand the 

spatial distribution of pluvial flooding across Portland in order to compare results 

to predictive surface modeling of flooding.   

2. Study Area

Figure 2: Study area map of Portland, OR 
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The center of Portland, OR. is located at 45.51 degrees north latitude and 

122.66 degrees west longitude in the Pacific Northwest (PNW). Portland is 

located in the mid-latitudes within the Willamette Valley, bordered by the Coast 

Range and Cascade Range. The Coast Range provides partial shielding from the 

Pacific Ocean, and the Cascade Range causes orographic uplift from westerly 

winds, which results in moderate rainfall throughout the Willamette valley during 

fall, winter, and spring months. Portland experiences relatively little precipitation 

in comparison to other regions of the PNW, yet still receives approximately 92.96 

cm (36.6 in) of rain annually with about 61.98 cm (24.4 in) occurring between 

November and April (based on 1981-2010 climate normals) (Chang 2007, Cooley 

& Chang 2017). The beginning of the wet season (October-December) on 

average receives approximately 38.1 cm (15 in) of rain, the middle (January-

February) receives approximately 25.4 cm (10 in), and the end of the wet season 

(March-April) receives approximately 15.24 cm (6 in) of rain (Daly et al. 1994).  

The city contains two urban watersheds, Johnson Creek and Fanno 

Creek, and both watersheds possess high flooding potential due to their flashy 

and mostly high streamflow during wet periods of winter (Chang et al. 2010). The 

topography of Portland is much steeper further west of the city as residential 

homes are backed up to hills, while the east side has a much flatter terrain. 

Additionally, soil on the west side of the city is mostly clay while soil on the east 

side is more permeable and allows for more water infiltration (City of Portland 
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2015). These differences in elevation, slope and soil characteristics contribute to 

where pluvial flooding occurs across the landscape.   

3. Methods

3.1 Data Collection and Processing 

As a collaborative effort with the City of Portland, Bureau of Environmental 

Services (BES), mostly citizen-observed flooding reports (n= 9804) were flagged 

from six different categories in the City’s TrackIT database, which a database 

managed by the Portland Bureau of Transportation to log customer calls about 

sewer and stormwater related problems (Table 1). While a majority of reports 

were made by citizens, the TrackIT database could also contain reports made by 

city practitioners, although this was a seldom occurrence. The six categories 

examined were as follows: sewer cleaning, sewage release, sewer repair, 

plugged inlets, stormwater, and slide.  

Table 1: Categorization of citizen-observed flooding reports in City TrackIT database 

TrackIT 
Categories 

Potential Causes of Flooding Reports 

Capacity Maintenance Maintenance or 
Capacity 

No 
System 

Others Poor 
Design 

Total 

Plugged 
Inlets  

168 6004 199 12 56 66 6505 

Sewage 
Release 

60 865 660 1 11 10 1607 

Sewer 
Cleaning 

77 1081 80 3 136 10 1387 
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While these six categories were identified as portraying potential flooding 

reports by BES, extensive data processing was required to specifically flag 

flooding reports within these six distinct categories. Each report contained the 

following fields to help decipher flooding potential: location, date and time, 

description and comment fields. A description of the flooding report was 

conveyed to a city practitioner by the citizen through a telephone or web-based 

platform. A comment field was then inputted by a city employee who went into 

the field and inspected the location and issue reported. Reports were evaluated 

for flooding based on a review of the description and comment fields, and an 

association with precipitation data.  

The review of flooding reports initially started with grouping reports into six 

different categories to help city stormwater managers understand what potentially 

caused the flooding issue. These six potential causes of flooding were identified 

by city stormwater managers as the following: Capacity, Maintenance, 

Maintenance or Capacity, No system, Others, or Poor System. After grouping 

reports into potential causes, a more in-depth review consisted of scanning for 

keywords between the description and comment fields that indicated flooding, 

such as: basement sewer backup, overloaded system, plugged control basin 

Sewer 
Repair 

1 8 1 1 11 

Slide 3 4 10 1 68 86 
Stormwater 8 138 10 10 20 22 208 
Total 317 8100 959 27 292 109 9804 
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(PCB), sewage backup/release, surcharged manhole, street flooding etc. 

Additionally, the description and comment fields were cross-referenced to check 

for consistency between the citizen’s observation of the flooding issue, and an 

actual inspection of the potential flooding issue by a city practitioner.  

Reports categorized as flooding issues were often induced by surcharged 

manholes, PCBs and basement sewer backups. Reports that were categorized 

as non-flooding issues were often related to broken pipes, potholes, sinkholes, 

etc. Since mostly citizens submitted reports to TrackIT, locations and other 

details of flooding reports might not be completely accurate. For example, a 

report might be associated with the address of the reporting party, rather than the 

flooding location itself. Additionally, report descriptions and comments were not 

always clearly articulated or complete, thus it was challenging at times to 

decipher the true issue being reported. Regardless, the review of flooding reports 

relied on using best judgement with the information provided. 

3.2 Correlating citizen-observed flooding reports with storm events 
Precipitation data were obtained from the City of Portland, HYDRA rainfall 

network from 2010-2017. This study used 39 gages across the city which record 

rainfall at a resolution of 5-minute intervals per day (see Appendix). Rainfall data 

pertaining to each gage was associated with flooding reports using Thiessen 

polygons (ArcMap 10.5.1, see Figure 3). Thiessen polygons, an interpolation 

method that is commonly used for precipitation, were used based on traditional 

methods of computing mean areal precipitation over basins (Fiedler 2003). 5-
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minute rainfall intervals were summed to a 24-hour time-frame and used to 

compute prior 3-day storm sizes.  

This study chose to associate flooding reports with 3-day storm sizes to be 

consistent with similar studies that have examined storm events associated with 

pluvial flooding, and the influence of Atmospheric Rivers that are responsible for 

a majority of winter storm events in the PNW (Guerreiro et al. 2017, Ralph & 

Dettinger 2010, Ye et al. 2017). This method accounts for larger storm sizes that 

could take 3 days to develop, and the potential subjectivity of the actual date a 

citizen makes a flooding complaint. It should be noted that 3-day storm sizes are 

Figure 3: Methodology of associating HYDRA rain gages with flood reports 
based on Thiessen polygons   
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the rain accumulation of 2 days prior to the report date and the report date’s 

rainfall volume. Days and times when a gage was malfunctioning were compared 

against report dates and times to see if a gage was down before, after, or during 

the report date. If a gage was down 72 hours prior to the report date, the report 

was associated with the nearest neighboring gage and the rainfall amount for 

that gage. This occurrence was rare and occurred less than .01% of the time.  

To understand the frequency of reports per storm size, we first examined 

the raw number of reports generated at 3-day storm sizes. In order to remove 

bias of the high frequency of reports generated at smaller storm sizes, we 

normalized reports across gages and days to account for the effect of less 

frequent or larger storm sizes. This normalization took a ratio of the total number 

of reports per rain interval over the total number of calendar days that received 

the different intervals of rain, which is a more accurate representation of reports 

generated at different 3-day storm sizes.  

3.3 Spatial distribution of flooding reports 
Flooding reports were divided into three distinct periods of the wet season 

to account for differences in precipitation totals that occur across the PNW; 

beginning (October-December), middle (January-February), and end (March-

April). As previously stated, the beginning of the wet season receives the most 

rainfall out of the three time periods, thus we would expect to see more flooding 

reports generated in the beginning of the wet season (Daly et al. 1994). Late 

spring and summer months (May-September) were grouped together to account 
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for drier and warmer months that rely more heavily on runoff from snowmelt to 

feed rivers and streams than precipitation (Oregon Institute for Water and 

Watersheds 2012). 

In order to analyze the spatial distribution of flooding reports across 

different periods of the wet season, a map of report density was generated. The 

kernel density method in GIS was used to create a smooth curved surface over 

all fitted points (Anderson 2009). The algorithm of a kernel density analysis relies 

on a specific cell size and search radius to determine the weighted distance 

between points. To be consistent with similar analyses completed by BES GIS 

practitioners, a cell size of 3 feet and a search radius of 1000 feet were used in 

the calculation for each of the four maps generated. Maps were then symbolized 

using the percent-clip stretch option in ArcMap which removes a percentage of 

the highest and lowest values to reduce the influence of outliers in the dataset 

(ESRI 2017).  

 
 
4. Results 

4.1 Frequency of flooding reports per 3-day storm size 
Figure 4a indicates the raw number of reports produced at three-day 

storm sizes with a range 0.25-15.49 cm (0.10-6.10 in) of rainfall over the 

observed time-period. The figure indicates that a majority of flooding reports were 

generated after 5 cm (2 in) or less of rainfall within a 3-day period while fewer 

reports were generated at larger storm sizes. Figure 4b indicates the 
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normalization of reports generated per storm size across all days and rain gages 

to account for the effect of less frequent or larger storm events. This graph 

indicates that although larger storm events did not occur as frequently over the 

observed time period, there was still a high number of reports generated at larger 

storm sizes of 10-15 cm (4-6in).  
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Figure 4: a) total flooding reports (n=9804) from 2010-2017 at different 3-day storm sizes 
(cm), b.) Ratio of flooding reports over the total calendar days per 3-day storm size (cm) 

(a) 

(b)



20 

4.2 Spatial analysis of flooding reports by different periods of the wet season 

(5a) 
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(5b) 

(5c) 
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The results shown in Figure 5a-d displays the spatial distribution of 

reports generated by indicating high to low density of reports across the city. The 

highest density of reports is indicated in red, while the lowest density of reports is 

indicated in blue. It should be acknowledged that legends are not standardized 

across the four maps, thus relative density is being shown as opposed to equal 

density. Overall, results from the four maps proved to be consistent with the 

assumption that most reports were generated in the beginning of the wet season, 

with the least number of reports generated during the late spring and summer 

months. Most reports were also clustered within the combined sewer system with 

Figure 5: Maps of the density of reported flooding from 2010-2017. a) Oct-Dec. reports. 
b) Jan.-Feb. reports. c) March-April reports. d.) May-Sept. reports

(5d) 
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only a few regions of high clustering within the sanitary sewer system. The 

beginning of wet season is comprised of three months (Oct.-Dec.) while the 

middle and end of the wet season are comprised of only two months; therefore it 

is important to understand these results by normalizing reports per month, which 

maps do not indicate this normalization.  

In examining the spatial patterns of flooding reports over different periods 

of the wet season, there were only slight differences in spatial clustering of 

reports. In looking at the spatial distribution of reports (approximately 1655 

reports per month) generated in the beginning of the wet season in Figure 5a, 

there was high clustering of observed flooding reports in the central regions of 

the city near the Willamette. Most of the high clustering appears to be within the 

central NW region and in the central eastside and SE neighborhoods. Figure 5b 

shows the spatial distribution of reports (approximately 875 reports per month) 

generated in the middle of the wet season (Jan.-Feb.), which has a similar spatial 

pattern to the previous map, but reports are not as densely clustered in central 

downtown regions. This map also indicates high clustering of reports in the outer 

NE neighborhoods of the city.  

The results from the end of the wet season (March-April) show far fewer 

reports generated during this time period as expected (approximately 706 reports 

per month) (Figure 5c). Regardless, a high density of reports remains clustered 

in the central downtown regions west of the Willamette, with some relatively high 

clustering in the central eastside districts. Lastly, the spatial distribution of reports 
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generated during the drier months of late spring and summer (May-Sept.) show a  

similar pattern to the beginning of the wet season as most reports were clustered 

within the central west and east sides, as well as the SE regions of the city 

(approximately 336 reports per month) (Figure 5d).  

 

5. Discussion 

5.1 Frequency of reports by storm size  
 
 Results indicate that citizen-observed flooding reports were predominantly 

generated at smaller storm sizes (i.e. less than 5 cm of rainfall over a 3-day 

period) throughout the observed time period. One potential interpretation of this 

result is that smaller storms occur more frequently, thus we can expect the 

frequency of reports to be closely correlated with the frequency of storm events. 

Another interpretation is that citizens may not report flooding at larger storm sizes 

because they might assume the city is already aware of such flooding issues, 

hence reporting a flooding complaint on days with heavy precipitation would be 

repetitive, which is something that has not been previously discussed in 

supporting literature. 

In normalizing reports across all days and rain gages to account for the 

effect of less frequent or more localized storm events, results indicated that while 

larger storms do not occur as frequently as smaller storm sizes, the rate at which 

citizens report larger storm sizes is still relatively high. For example, after 13.21 

cm (5.2 in) of rainfall within a 3-day period, 14 flooding reports were generated 
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even though only four calendar days received this much rainfall within the 

observed time period. This result counters previous assumptions that citizens do 

not report flooding at larger storm sizes due to city’s knowledge of such events, 

and thus requires a further understanding of what provokes citizens to report 

flooding.  

5.2 Spatial distribution of flooding reports 
Overall, we found a similar clustering of reports within the central regions 

of the city regardless of the amount of precipitation received during the year. 

Across the beginning, middle and end of the wet season, as well as the drier 

early spring and summer months, we found the density of reports mainly 

clustered around the NW downtown and central eastside regions of the city. This 

high density of reports could be because these are the most densely populated 

regions of the city for residents and businesses. These regions also receive 

heavy foot traffic and congestion from commuters passing through downtown 

since these are the main business and commercial districts of the city. Another 

potential interpretation of these results could be based on the topography of the 

west side which has a steeper terrain than the east side. Since a majority of 

westside residential homes are backed up to the SW hills, these homes 

experience surface flooding from rainfall making its way downhill onto taxlots. 

Thus, we can interpret the high density of reports in central regions of the city to 

be related to population density and varying topography in Portland.  
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We also infer that most reports were clustered downtown due to 

differences in pipe size upstream versus downstream of the Willamette. The 

smaller diameter upstream collection pipes can convey the flow downstream, but 

the downstream collection system becomes overwhelmed with the accumulated 

flow from upstream. Additionally, larger storm sizes 5.08-15.24 cm (2-6 in.) can 

overwhelm the smaller diameter pipes upstream, and therefore flow is not able to 

make it downstream. This may be why a majority of reports were clustered 

downstream near the Willamette since most reports were generated at smaller 

storm events.  

Most reports were generated within the CSS, indicating that periods of 

heavy rainfall might have caused pipes to exceed capacity. These regions are 

more subject to basement sewer backups and surcharged manholes because 

when stormwater does not make its way into the CSS, sewers reach capacity, 

which does not allow for sewage water to mix with stormwater, leading to sewage 

overflows from pipes. However in looking at the potential causes of flooding 

reports in Table 1, we found most flooding reports categorized as maintenance 

issues with the most common keyword and issue amongst all six categories to be 

from plugged catch basins (PCB). Since PCBs are most often caused by debris 

buildup (i.e. cement, dry dirt, mud, etc.) or fallen leaves from deciduous trees, it 

is possible that a majority of flooding reports were not from capacity issues in the 

CSO system, but clogged inlets from building debris or fallen leaves. Since the 

location of flooding reports are within the central regions of the city where new 
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buildings projects (i.e. high-rises and condominiums) are being constructed, it is 

possible that plugged inlets were caused by building debris. Additionally, 

downtown and other regions with a high number of flood reports have a large 

number of street trees, in which 92% of street trees in Portland are broadleaf 

deciduous trees that lose their leaves during the fall and winter months (DiSalvo 

et al. 2017). Thus it is likely that flooding reports within the beginning of the wet 

season were also caused by plugged inlets from fallen leaves. 

Another possible interpretation of reports being clustered in central 

regions of the city could be attributed to citizens on the east side being more 

accustomed to localized flooding from UICs. UICs were built before the CSS and 

are therefore much older and cannot keep up with the level of construction 

occurring on the eastside. Since UICs have been functioning for over 60 years, 

they have degraded over time and need to be renovated, but have not seen the 

same level of renovation as the CSS which was updated in 2011 to control CSOs 

to the Willamette (City of Portland 2010, 2015). Therefore, surface flooding 

should occur frequently on the outer eastside, but the dataset is not 

representative of reported flooding in these regions.  

6. Conclusions

The objective of this part of the research was to examine the spatial 

distribution and frequency of citizen-observed flooding reports from 2010-2017. 
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Furthermore, this part of the study aimed to address if the frequency of reports 

was associated with specific storm sizes, and if the spatial distribution of reports 

was similar or different depending on the time of the wet season in the PNW. 

Results from this analysis suggests that the highest frequency of flood reports 

were associated with smaller storm sizes (i.e. 5 cm or less) since smaller storm 

events occurred most often during the observed time period. Although, results 

from this analysis found that citizens do report flooding induced by larger storm 

sizes at a relatively high frequency, but larger storm events do not occur as often. 

Results also indicated that reports were mainly clustered in central regions of the 

city regardless of the time of year the reports were generated. Since the central 

NW and eastside regions of the city is where a majority of residents and 

commercial businesses exist, as well as where many new construction projects 

are occurring, this result could be indicative of population density within these 

regions. 

While these results are helpful in determining where localized pluvial 

flooding occurs across the city, there are still major caveats in using participatory 

spatial data that should be acknowledged. Previous studies have explored the 

inherent issues of credibility and reliability in using participatory spatial data for 

mapping urban flood risk in terms of quality assurance and quality control of the 

data (Fazeli et al. 2015, Hung et al. 2016, Singh 2014, Uson et al. 2016). 

Regardless of the results indicated by this analysis, it is important to 

acknowledge the difficulties with categorizing and standardizing citizen-observed 
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data. While the review and flagging of flood reports was based on 

recommendations from BES stormwater engineers, there are still potential 

uncertainties introduced in this approach due to unavoidable human error in the 

translation and review process of reports.  

Since the description of the report relies on the citizen’s own knowledge of 

the infrastructure that experienced flooding, the citizen could be inaccurately 

describing a flooding issue by not using the proper terminology. While the 

address of the flooding complaint is recorded by a city practitioner, it is possible 

the citizen reporting the issue could be giving their home address while the 

flooding occurred in the intersection near their home or where they work. 

Consequently, the comment field inputted by the city practitioner could be 

misinterpreted due to receiving an inaccurate location of where flooding was 

observed. Lastly, cross-referencing between the description and comment fields 

in flagging flooding reports introduces potential biases because this process is 

solely reliant on an analyst’s perception and best judgement with the information 

provided.  

A potential recommendation for city stormwater managers using 

participatory data to assess the spatial location of pluvial flooding is to create a 

flood specific category within the city tracking database. By having a separate 

category for flood reports, the data collection becomes more streamlined and 

less subjective, as uncertainties associated with searching for flood reports within 

different potential flooding categories is removed. Another recommendation is 
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limiting citizens to only selected keywords (i.e. PCB, surcharged manhole, etc.) 

that describe the potential cause of flooding, as this would make the process of 

standardizing and categorizing reports much more efficient. If citizens are not 

certain of the potential cause of flooding, city practitioners would have to use 

their best judgement in extracting information from the citizen that fits only within 

the selected keywords. It is also important for city practitioners to make sure the 

citizen is giving the correct address or intersection of the flooding issue to not 

introduce potential biases in the spatial location of the point of flooding. These 

improvements would help city managers better understand where they need to 

either prioritize and build new stormwater infrastructure, or where they need 

more maintenance staff attending to plugged storm drain inlets.  

Furthermore, while the city TrackIT database has an online and phone-

application platform that citizens can access to report flooding issues, almost all 

flood reports were from telephone calls. This could be due to issues with usability 

and accessibility of the online platforms that need to be improved. Since most 

organizations have transitioned to using online platforms to convey and track 

information, and as citizens have become more accustomed to using these 

online platforms, we need to take advantage of this technology for tracking 

natural hazards, which previous literature has alluded to (Xu & Nyerges 2017). 

One possible suggestion would be the development of a mobile application that 

allows users to directly place the point of flooding on a map, and answer a series 

of questions that allow only certain options as a response. This would alleviate 
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open-ended descriptions of reports, and allow for a more standardized approach. 

If citizens were able to adequately access and use mobile applications to report 

flooding, we believe issues with translating flood reports to city practitioners could 

be lessened.  
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Chapter 2 

1. Introduction

Understanding where pluvial flooding occurs spatially across an urban 

system is not a simple task for city agencies to monitor (Rosenzweig et al. 2018). 

While city and government agencies are often able to create predictive flood 

models based on historical flooding data, they are usually not able to compare 

these models to a ground-truth perspective of where flooding realistically occurs 

within an urban system. For this reason, it is important to understand the 

relationship between predictive flood models and actual flooding data, which can 

be best understood by individuals on the ground who experience flooding issues 

(Fazeli et al. 2015, Singh 2014). By comparing predictive models based on 

topographic characteristics of an urban system with citizen-observed data, we 

are able to gain a better sense if the models are accurately predicting where 

flooding predominantly occurs, and consequently, are giving citizens a 

participatory role in flood management practices and planning. 

While participatory spatial data can help validate predictive models of 

flooding, there are inherent issues of credibility and reliability of the dataset itself, 

since the data is not necessarily spatially comprehensive and is only 

representative of those who participate (Fazeli et al. 2015). Previous studies 

have used in-depth and semi-structured surveys and interviews to understand 

the perspective of residents who experienced natural hazards (Singh 2014, Uson 
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et al. 2016). Specifically, a study by the Johnson Creek Watershed Council 

(JCWC), which is a voluntary watershed council in the Portland area, found 

through conducting surveys and semi-structured interviews of residents on the 

council, that the council over-represented the interests of residents of high 

socioeconomic status, and under-represented residents of predominantly lower 

socioeconomic status (Larson & Lach 2010).  

According to Wisner (2004), social vulnerability stems from certain 

populations having a disproportionately lower capacity to anticipate, cope with, 

resist, and recover from the impact of a natural hazard (11). Previous research 

examined social vulnerability to flooding in relating to the core concepts of 

adaptive capacity, sensitivity and exposure (Douglas et al. 2012, Elliot & Pais 

2006, Romero-Lankao et al. 2014). These studies focused on the ability of low-

income and minority communities to respond to and cope with natural hazards 

before and after they occur, and the need for prior knowledge, resources, and 

adaptation strategies in place for communities to be resilient.  

In addressing the level of preparedness before a natural hazard occurs, 

previous research has shown that low-income and minority communities are not 

provided with the necessary knowledge of the natural hazard directly impacting 

their local community, or the potential impacts of climate change that could 

worsen these impacts over time (Douglas et al. 2012). This lack of awareness 

stems from social and cultural obstacles that exist between agencies and 

communities at risk. Issues of trust and a common language that both parties can 
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relate to and agree with, make it a challenge to convey more technical language 

related to risks and climate change impacts (Agyeman et al. 2002, Lynn 2017, 

Youngman 2009).  

Previous studies have examined socio-demographic characteristics 

associated with high social vulnerability to natural hazards such as race, 

socioeconomic status, renter status, education level, gender and age (Bates 

2012, Cutter & Finch 2007, Denton 2002, Grineski et al. 2012, McKenzie 2013, 

Rasch 2017). While these characteristics are widely used in most social 

vulnerability indexes to examine the impact of natural hazards, the most common 

indicators of vulnerability to natural hazards are race and socio-economic status 

(Douglas et al. 2012, Elliot & Pais 2006, Rasch 2017, Romero-Lankao et al. 

2014). While previous research determined flooding to have a greater impact on 

marginalized communities since more affluent communities have more 

knowledge and access to resources to deal with flooding, there have been few 

studies that understand this correlation at a neighborhood scale through citizen-

inputted data (Douglas et al. 2011, Ge at el. 2017).  

Previous studies have also examined the built environment associated 

with urban flood risk, as factors such as aging infrastructure and amount of 

impervious surface have been known to increase flood risk and vulnerability to 

flooding in urban environments (Jalayer et al. 2014, Jenkins et al. 2017, Koks et 

al. 2015, Krellenberg & Welz 2017, Rothlisberger 2017). Understanding the 

relationship between the built environment and participatory flooding data have 
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been used to understand coping capacity of communities of different socio-

economic backgrounds (Krellenberg & Welz 2017).  

2. Study Area

Figure 6 indicates the level of urbanization in Portland, OR. While the city 

prioritizes green space and street tree planting, more than half of Portland’s land 

area is comprised of impervious surface (i.e. buildings, parking lots, and streets). 

Streets comprise of 25 percent impervious surfaces and rooftops comprise of 40 

percent of impervious surfaces in Portland (City of Portland 2011). This makes 

Figure 6: Study area map of Portland, Oregon 
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stormwater management and stormwater green infrastructure (SGI) imperative 

because of the steady amount of precipitation Portland receives throughout most 

of the year.  

The most populated and dense regions of the city are central downtown 

and east of the Willamette River, as this is where there is the greatest 

concentration of commercial businesses, and heavy foot-traffic from residents 

and tourists. Additionally, these regions have higher rental prices as newer 

condominiums are being constructed rapidly, and rental costs of older single-

family residential homes are increasing due to the urban-growth boundary (UCB) 

that has encouraged density and infill development in Portland (Phillips & 

Goodstein 2010).  

3. Methods

3.1 Summary of Data 

 3.1.1 Citizen-observed pluvial flooding reports 

Mostly citizen-observed flooding reports (n= 9804) were flagged from six 

different categories in the City of Portland’s TrackIT database (see Table 2). See 

Chapter 1 for how flood reports were processed, standardized and categorized 

in this analysis. 
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Table 2: Summary of data used in analysis 

Variables Description Agency 
Modified Topographic 
Wetness Index (TWI) 

Estimates localized surface 
accumulation based on 
catchment area, runoff 
coefficient, and 
instantaneous slope. 
Masked out TWI scores for 
surface conveyance (i.e. 
streams, ditches, curb, flow, 
roof-tops, and wetlands). 
Computed using 2014 
LiDAR at 1m resolution 

City of Portland, Bureau of  
Environmental Services, 2018 

Citizen-observed  
flood reports (n = 9804) 

Flooding reports from six 
different categories within 
TrackIT database 

City of Portland, Bureau of 
Transportation, TrackIT 
database, 2010-2017  

Female headed 
households 

Percent female-only 
households per land area 
of census tract 

U.S. Census Bureau, 2010 

Households age 65+ Percent households with 
individuals age 65+ per land 
area  
of census tract 

U.S. Census Bureau, 2010 

Households with 
children age 18 and 
under 

Percent households with 
individuals under 18 years  
per land area of census tract 

U.S. Census Bureau, 2010 

Multifamily (MFR) 
housing inventory 

Percentage MFR taxlots per 
land area of census tract, 
and average age of MFR 
taxlots per census tract  

Oregon Metro Regional Land 
Information (RLIS), 2016 

Taxlots Percentage of single-family 
residential (SFR), 
commercial and industrial 
taxlots per land area of 
census tract, and average 
age of all taxlots per census 
tract 

Oregon Metro Regional Land 
Information (RLIS), 2018 

City vulnerability 
analysis risk factors: 
% Renters, % 
Communities of Color 
(CoC), % Population 
age 25+ without a 

Four risk factors were 
calculated as a percentage 
per census tract. CoC refers 
to all communities that are 
not identified as '" non-
Hispanic whites" 

City of Portland, Bureau of 
Planning and Sustainability:  
2012-2016 American Community 
Survey (ACS) 5-Year Estimates 
and 2010-2014 U.S. Department 
of Housing and Urban 
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3.1.2 Topographic Wetness Index (TWI) 

To compare citizen-observed flooding reports to a predictive static model 

of surface flow, this analysis used a topographic wetness index (TWI) created by 

BES to examine where localized surface flow accumulates based on topography. 

The use of a TWI is consistent with previous studies that have examined 

localized flood risk (Grab et al. 2009, Jalayer et al. 2014, Wu et al. 2016). TWI 

was originally created to predict regions vulnerable to overland flow from the 

saturation of land surfaces and stemmed from the TOPMODEL that modeled the 

dynamics of hydrologic fluxes of watersheds (Beven & Kirkby 1979). A standard 

TWI is based on the following equation:  

TWI = log (α/tan β), with α being the local upslope area per unit contour 

length and β the local slope gradient.  

While a standard TWI routes hydrologic flow between grid cells based primarily 

on slope in computer-simulated raster models in GIS, BES created a Modified 

TWI using Python scripting and GIS to calculate a runoff coefficient per cell 

based on slope, soil, vegetation, the stormwater collection system and 

impervious surface. This model routed flow accumulation based on a FD8 

algorithm, which has proven to be successful in previous studies for routing 

upslope flow accumulation to all downhill neighboring cells in one of 8 directions 

bachelor's degree, % 
Households with income 
at or below 80% MFI  

Development (HUD) and 
Comprehensive Housing 
Affordability Strategy (CHAS) 
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(Seibert & McGlynn 2007). To calculate the final modified TWI, BES used a 1-

meter resolution LiDAR digital elevation model (DEM) to determine 

instantaneous slope where each TWI was calculated. BES also masked out TWI 

scores in regions of expected surface conveyance, such as streams, ditches, 

curbs, wetlands, and rooftops since it is assumed that water will accumulate in 

these regions. 

3.1.3. Explanatory factors for social vulnerability to pluvial flood risk 

As previously stated, the main determinants of social vulnerability to urban 

flood risk are predominantly related to race and socio-economic status as 

discussed in previous literature (Elliot & Pais 2006, Douglas et al. 2012, Rasch 

2017, Romero-Lankao et al. 2014). Indicators for race and socio-economic status 

used in this analysis were based on the 2012 City of Portland Vulnerability 

Analysis that assessed the social vulnerability of different neighborhoods (Bates 

2013). This analysis examined four risk factors: communities of color (i.e. all 

racial groups not identified as white non-Hispanic), renters, population age 25 

plus without a bachelor’s degree (BA), and those living at or below 80% of the 

median-family income (MFI) level (Bates 2013).  

Additional socio-demographic variables, such as age and gender, were 

also used in this analysis based on a literature review of populations most 

vulnerable to urban flood risk and weather-related hazards (Denton 2002, 

Grineski et al. 2012, Romero-Lankao et al. 2014, Sansom et al. 2017). To 
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understand the building characteristics associated with flood reports, this study 

chose to examine the percent of industrial, commercial and residential (i.e. 

Single-family and Multi-family residential) land use categories and their average 

building age per census tract which is consistent with similar studies that have 

examined the built environment associated with urban flood risk (Jalayer et al. 

2014, Jenkins et al. 2017, Koks et al. 2015, Krellenberg & Welz 2017, 

Rothlisberger 2017).  

3.2 Correlation—TWI and flood report density 
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Figure 7 indicates the density of flood reports per census tract and the six 

major quadrants of Portland referenced in this study. Since reports were not 

evenly distributed across census tracts, this analysis chose to examine the mean 

density of citizen-observed flooding reports per census tract.  

Figure 7: Density of flood reports per census tract (square meters) and the six major quadrants 
of Portland. 
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A correlation between flood report density and the TWI was tested at two 

different scales: 5-acres (i.e. 12.6 square miles) and area of a census tract. A 5-

acre scale was used to be consistent with the collaborative effort of this study 

with BES as stormwater managers generated seven stormwater risk assessment 

maps that could be compared at a 5-acre hexagon scale (see example Figure 

8). A Spearman Rank Correlation coefficient, which is a nonparametric measure 

of statistical dependence between two variables was used to account for the non-

linearity between flood reports and TWI estimates. 

Figure 8: Mean Topographic Wetness Index (TWI) estimate at 5-acre hexagon scale 
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A Local Bivariate Moran’s I was used to test for spatial autocorrelation 

between the two variables, in which the null hypothesis for Moran’s I assumes 

spatial randomness. Moran’s I values range from -1 to +1, and were tested for 

statistical significance (i.e. pseudo p-value) using 999 permutations, which 

calculates the random distribution of observed values over the locations (Wang 

et al. 2017). Therefore, values close to -1 indicate negative spatial 

autocorrelation, while values close to +1 indicate positive spatial autocorrelation, 

and results from the permutation test indicate the significance of the Moran’s I 

value. Moran’s I values for each set of variables were mapped using Local 

Indicators of Spatial Association (LISA) cluster maps. 

At the 5-acre hexagon scale, the relationship between the density of 

reports and the mean and max TWI estimate per hexagon was tested. At the 

census tract scale, the mean and max TWI estimate was also tested, as well as a 

percentage of each census tract that had TWI values within 5% (i.e. 95% 

confidence interval) and 10% from the mean. 

3.3 Regression Analysis—Flood reports and socio-demographic and building 
characteristics   

The regression analysis of identifying socio-demographic and building 

characteristic factors affecting flood report density consists of three major parts: 

selection of 17 explanatory variables using an OLS model, a limited model to test 

for spatial autocorrelation using a Spatial Lag Regression, and a Geographically 
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Weighted Regression (GWR) of the final model to test for local variations 

amongst variables in space (see Table 3).  

3.3.1 OLS and Variable Selection 

 As previously stated, the distribution of flooding reports was not normally 

distributed across space. To meet the assumptions of independence, normality, 

and equal variance of the response variable to run an initial OLS model, this 

study used a natural log transformation of flood report density.  

No. Variable Spearman 
Correlation 

VIF N 

1 % Renters 0.336*** 2.26 143 
2 % CoC -0.424***
3 % Households < 80% MFI -0.15 
4 % Age 25+ without BA  -0.5784*** 2.47 143 
5 % TWI estimate within 10% CI  -0.03 
6 % Households Age 65+ -0.378***
7 % Female Headed Households -0.523***
8 % Households with children age 18 

and under  
-0.509*** 2.55 143 

9 % Commercial buildings  0.349***
10 % Industrial buildings -0.12 
11 % SFR buildings -0.184* 
12 % MFR buildings 0.239**
13 Avg. Age of Commercial buildings 0.538*** 1.50 143 
14 Avg. Age of Industrial buildings 0.02 
15 Avg. Age of SFR buildings 0.706*** 1.70 143 
16 Avg. Age pf MFR buildings 0.531*** 
17 Avg. Age of all buildings 0.721*** 

Correlation significance level: p-value <0.05 *, p-value <0.01 **, p-value <0.001*** 

Table 3:  List of 17 explanatory variables used in analysis. Indicating the Spearman Rank 
Correlation Coefficient, significance value (Sig.), Variance Inflation Factor (VIF) and number 
of observations (N) 
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To reduce the number of predictors for completing an initial OLS model, a 

Spearman Rank correlation coefficient and test for multicollinearity were 

employed on all 17 explanatory variables using the statistical program R (R 

Studio 2016) (see Table 3). This process limited predictors that did not have a 

correlation coefficient with the response variable above 0.50 and with 95% 

confidence (i.e. p < 0.05). This study also removed variables that showed signs 

of multicollinearity with other predictor variables.  

Multicollinearity refers to correlations among the predictor variables which 

make it difficult to accurately estimate regression parameters and tease apart the 

unique contributions of each of the predictor variables to variation in the 

response variable. A variance inflation factor (VIF) was used to test for 

multicollinearity between variables which measures how much variances of the 

regression coefficients are inflated compared to when the variables are not 

linearly correlated. This analysis followed suit with previous studies that a VIF 

value greater than 5 suggests possible multicollinearity, while a VIF greater than 

10 is strong evidence that multicollinearity exists and is influential within the 

model (Forgey 1994). This analysis also kept predictors whose coefficients did 

not change sign (i.e. negative to positive) when running the OLS model to not 

misspecify the model.  

In looking at the results of all 17 explanatory variables in Table 3, seven 

variables had a significant correlation with flood report density at the pre-

determined significance level. Before running a full OLS model with seven 
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predictors, this analysis assessed the VIF between variables, finding that the 

average age of all buildings showed signs of high multicollinearity with the other 

four predictors of building age, thus this variable was removed from the full 

model. Additionally, percent of renters maintained a positive correlation with flood 

report density, and since this analysis assumed this would be a significant 

indicator of flood reports within central regions of the city, the variable was 

maintained to run the full OLS model. After running a full OLS with seven 

significant predictors, five variables were significant at the pre-determined 

significance level: percentage of renters, percentage age 25+ without a 

bachelor’s degree (BA), percentage of households with children age 18 and 

under, average age of commercial buildings and average age of single-family 

residential (SFR) buildings (see Figure 9). 
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Figure 9: Spatial patterns of five predicator variables used in final model. a) Percentage 25+ 
without a bachelor’s degree b) Percent households with children under 18 c) Mean Age of Single-
Family Residential buildings d) Mean age of commercial buildings e) Percent renters 
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3.3.2 Spatial Lag Regression 

A Spatial Lag Regression was run for the final five predictors to test for 

spatial autocorrelation in the residuals using the statistical program GeoDa 

(Anselin et al. 2006). This test relied on a hexagon spatial weights matrix which 

defines neighbors by the presence of a common edge between polygons 

(Anselin et al. 2006). A spatial lag was chosen over a spatial error regression 

based on the significance of the Lagrange Multiplier (lag) and its Robust LM (lag) 

in the diagnostics for spatial dependence, which indicated that a Spatial Lag 

model was a good alternative to an OLS. A Bivariate Moran’s I was then 

computed on the residuals and the lag of the residuals of the Spatial Lag model, 

in which significance of the Moran’s I was determined based on 999 

permutations. For this model to not exhibit spatial autocorrelation and instead 

exude spatial randomness amongst variables, the p-value should not be 

significant at the 95% confidence level (i.e. p-value < 0.05).  

3.3.3 Geographically Weighted Regression 

A geographically weighted regression (GWR), a local linear regression, 

was used to model the relationship between the density of flood reports and 

socio-demographic and building characteristics using R. While a traditional linear 

regression model, OLS, quantifies the relationship between dependent and 

possible explanatory variables, it is not well-suited for modeling spatial 
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heterogeneity and non-stationarity of geographical data. A GWR is known to 

capture the variation of spatial relationships across space by analyzing the 

spatial dependency of each variable using either a fixed or adaptive spatial 

weight between each set of parameters (Chun et al. 2017). Additionally, a GWR 

has been successful in previous studies for modeling spatially explicit 

relationships between natural disasters and explanatory factors (Chun et al. 

2017, Wang et al. 2016).   

The formula for a GWR is as follows: 

yi = b0(i) + b1(i)x1i + b2(i)x2i + ….bn(i)xni + £I

b(i) = (XTW(i)X)-1XTW(i)Y 

where (i) is the coordinates of the points in space, and W(i) is a matrix of weights 

specific to each location (i), allowing for a greater weight to be given to 

observations nearer to (i). b represents each predictor variable tested, y is the 

number of observations of the dependent variable, and X is a matrix of 

independent variables (Chun et al. 2017). To be consistent with similar studies 

that have used a GWR to model the spatial relationship of urban flooding with 

explanatory variables, this study used an adaptive bi-square kernel method for 

geographical weighting to estimate local coefficients and bandwidth size since 

the points of observation (i.e. census tracts) were of irregular distances (Chun et 

al. 2017).  
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4. Results

4.1 TWI and Flood Report Correlation 

Table 4 shows the correlation and spatial autocorrelation of mean flood 

report density and TWI estimates at the 5-acre hexagon and census tract scale. 

Overall, there was not a high degree of correlation between the mean density of 

flood reports and TWI at both scales. At the 5-acre hexagon scale, both the 

mean and max TWI estimates were positively correlated with mean flood report 

density, but Mean TWI showed a statistically significant correlation with mean 

flood report density at a 5% significance level. At the census tract scale, only the 

max TWI showed a statistically significant negative correlation with mean flood 

report density at a 5% significance level. There were three statistically significant 

spatial autocorrelations found as shown by Moran’s I values. At the 5-acre 

hexagon scale, the mean TWI showed statistically significant spatial 

autocorrelation with flood reports at a 5% significance level. At the census tract 

scale, the max TWI and percent of census tracts with TWI values within two 

standard deviations also exhibited statistically significant spatial autocorrelation 

at a 5% significance level.  
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Table 4: Correlation of mean flood report density and topographic wetness index (TWI) estimate 
at 5-acre hexagon and census tract scale. Table indicates the Spearman Rank Correlation 
Coefficient and Moran's I, and the significance of these two values. 

         To validate the spatial patterns of significant results shown in Table 4, 

Figure 10a shows significant positive spatial clustering of mean TWI and flood 

reports at the 5-acre hexagon scale in the central regions of the city, with low 

negative spatial clustering in the NW, SW and outer east regions of the city.  

Scale Variables Correlation Coef. Moran's 
I 

5-acre
hexagon

Mean Flood Density  Mean TWI 0.119*** 0.082*** 

Max TWI 0.005 0.003 
Census Tract Mean Flood Density  Mean TWI 0.008 0.06 

Max TWI -0.29*** -0.178***
TWI within 2 std. 0.026 0.097**
Top 10% TWI 
values 

-0.044 0.03 

Significance level: p-value <0.05 *, p-value <0.01 **, p-value <0.001*** 

Figure 10: LISA cluster maps of flood report density and TWI at 5-acre hexagon scale. Red 
indicates positive spatial autocorrelation and blue indicates negative spatial autocorrelation, 
while light blue and light pink indicate spatial outliers. a) Mean TWI and mean flood report 
density. b) Max TWI and mean flood report density  
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At the census tract scale, max TWI and flood reports are significantly positively 

spatially clustered in the central downtown and eastside regions of the city with 

significant negative spatial clustering further east of the central city (Figure 11b). 

Figure 11c, the percent of TWI estimates within two standard deviations, shows 

a similar spatial pattern to the max TWI, but indicates a mostly positive significant 

spatial clustering in central regions of the city and includes fewer spatial outliers.   

Figure 11: LISA cluster maps of flood report density and TWI at census tract scale. Red 
indicates positive spatial autocorrelation and blue indicates negative spatial autocorrelation, 
while light blue and light pink indicate spatial outliers. a) Mean TWI and mean flood report 
density. b) Max TWI and mean flood report density. c) % TWI estimates within two standard 
deviations and mean flood report density. d) Top 10% of TWI estimates and mean flood report 
density  
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 4.2 Flood Reports and Socio-demographic and Building Characteristics 

4.2.1 OLS and Spatial Lag model comparison  

Table 5 indicates the results from the minimal OLS and Spatial lag models 

with five predictor variables to run the GWR model. Results from the GWR are 

not shown as the coefficient values did not change from the OLS model, and a 

GWR does not typically rely on the use of significance levels for coefficients (i.e. 

p-value). In comparing results from the OLS and Spatial Lag models, we found

model coefficient values changed slightly but signs of the coefficients did not 

change. Furthermore, only one of the variables (i.e. Average Age of Commercial 

buildings) dropped one level of significance from the OLS to Spatial Lag model.  

Table 5: Statistical comparison between OLS and Spatial Lag Regression models: 

OLS Spatial Lag 
Variable Coefficient Coefficient 
% Renters 0.0101*** 0.006*** 
% Age 25+ without BA -0.0103*** -0.005***
% Households with children age 18 and 
under  

0.8421** 0.724**

Avg. Age of Commercial buildings 0.0056** 0.003*
Avg. Age of SFR buildings 0.006*** 0.003***
AIC 29.85 -5.69
Adjusted R² 0.62 0.74
Significance level: p-value <0.05 *, p-value <0.01 **, p-value <0.001*** 

4.2.2 Variable Coefficients of GWR model 
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Figure 12a-d indicates the significant coefficients from the GWR model. 

Significance level was determined based on a 95% confidence of the t-value 

associated with each coefficient, in which t-values of +/- 1.96 were used as the 

critical region to assess significance of coefficients, which is consistent with 

previous GWR analyses (Matthews & Yang 2012). Census tracts that appear 

white showed no significance according to the t-value. Additionally, red census 

tracts indicate significant positive model coefficients while blue census tracts 

indicate significant negative model coefficients.  

Figure 12: Significant coefficients from the GWR model. a) Percent of population age 25+ 
without a BA. b) Percent of households with children under 18 years of age. c) Mean age of 
single-family residential (SFR) buildings. d) Mean age of commercial buildings. 
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In examining the results of the percent of population age 25+ without a BA 

in Figure 12a, which is the only variable with an entirely negative relationship 

with flood density (i.e. β = -.01), significant negative coefficients decreased (i.e. -

0.023- -0.007) in central regions of the city that had the most flood reports. This 

finding could mean that young adults without a college education are less likely 

to report flooding as the density of reports are clustered within central regions of 

the city, and the majority of young adults without a BA live east of the city (see 

Figure 9a). This could be indicative of those with less education living in regions 

with more affordable housing since central regions of the city are more desirable, 

thus more expensive.  

Looking at the percent of households with children under 18 in Figure 

12b, a strong positive correlation with flood report density was found in the far 

NE region of the city as significant positive coefficients ranged from 0.000-1.761, 

and a strong negative correlation with flood report density (0.000- -2.076) in the 

outer eastern regions of the city. These findings are comparable to the density of 

families with children clustered within upper NW, NE and far eastern regions of 

the city (see Figure 9b). While these specific regions do not see a high density of 

flood reports, they are still indicative of the social vulnerability of families who 

report flooding, as families further east may not have the same response rate to 

report flooding as families in the upper NE region of the city based on eastern 

regions having a lower socio-economic status than NE regions.  



56 

Figure 12c represents the mean age of single-family residential (i.e. SFR) 

buildings, in which significant positive coefficients ranged from 0.004-.020, 

indicating that an increase in the mean age of SFR buildings increased flood 

report calls in the SE regions of the city. This finding is highly related with older 

infrastructure in central regions of the city, leading this study to believe that 

flooding is predominantly occurring or within close proximity to older single-family 

residential homes (see Figure 9c). This finding could also be indicative of the 

older pipe networks surrounding these older homes, which are almost entirely 

within the combined sewer system.  

 Figure 12d indicates the mean age of commercial buildings, which had 

significant positive coefficients ranging from 0.000-.013, and significant negative 

coefficients ranging from -0.014- 0.000. The map shows a positive correlation 

with flood reports in the downtown and SW regions of the city, and a negative 

correlation with flood reports in the SE regions of the city. This finding is also 

indicative of older infrastructure and the density of commercial buildings within 

downtown and central regions of the city, as outer SE regions do not have a high 

density of commercial buildings, and if there are commercial buildings present, 

they were most likely developed after commercial building in central regions. This 

study chose not to interpret the significant coefficients from the percent of renters 

as the spatial distribution of coefficients exhibit potential misspecification of the 

model, which could be due to the initial degree of correlation between percent of 

renters and flood report density below 50%. 
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In interpreting the coefficients in relation to the natural log transformation 

of flood report density, the following formula (eb -1) * 100 was used to understand 

the percent change between flood report density and predictor variables. b used 

in this formula is the coefficient value for each predictor variable from the OLS 

model output, which is the same as the global coefficient in the GWR model (see 

Table 5). Therefore, for every percent increase in population age 25+ without a 

BA, flood report density decreases by 1%. For every percent increase in 

households with children under 18 years of age, flood report density increases by 

132%. For every percent increase in average single-family residential building 

age, flood report density increases by .06%. For every percent increase in 

average commercial building age, flood report density increases by .05%.  

4.2.3 Comparison of OLS, Spatial Lag and GWR models 

Table 6 compares diagnostics from the OLS, Spatial Lag and GWR 

models using an Adjusted R2, Akaike Information Criterion (AIC) and Moran’s I. 

The adjusted R2 is highest for the GWR model (0.83), followed by the Spatial Lag 

(0.74) and OLS (0.62) models, respectively. The AIC, which estimates the quality 

of the model, had the lowest value for the GWR model (i.e. -61.07) and the 

highest value for the OLS model (i.e. 29.85), meaning the GWR model performed 

best since a lower AIC indicates a better model fit. In examining the Moran’s I of 
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the residuals, the OLS and GWR models detected spatial autocorrelation in the 

residuals since both Moran’s I values were significant at a 95% confidence level 

(i.e. p-value < 0.05). On the other hand, the Spatial Lag model did not detect 

spatial autocorrelation as the Moran’s I value was not significant with 95% 

confidence.  

Table 6: Statistical comparison between OLS, Spatial Lag and GWR models 

Statistics OLS Spatial Lag GWR 
Number of Observations 143 143 143 

Adjusted R² 0.62 0.74 0.83 

AIC 29.85 -5.69 -61.07

Moran's I (residuals) .219*** -0.02 .739***

Significance level: p-value <0.05 *, p-value <0.01 **, p-value <0.001*** 

4.2.4 GWR Model Validation 

Evaluating the performance of the GWR model relies on the estimated 

local R2 values and standardized residuals. The local R2 indicates how well the 

GWR model fits the observed y values, and values range between 0-1. The 

standardized residuals indicate over and under predictions of the regression 

model, as clustering of over or under predictions is evidence for potentially 

missing a key explanatory variable. Values under -2.5 standard deviations and 

above 2.5 standard deviations represent statistically significant residuals (i.e.95% 

confidence level), and are indicative of a misspecified GWR model.  
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Figure 13a shows the local R2 values, in which no values were below 

0.51, meaning the model performed fairly well. The highest performance (i.e. 

darkest red) is clustered in the SE, NE, and SW regions of the city, and the lower 

clustering (i.e. beige) is shown in the central downtown, NE and SW regions of 

the city. Figure 13b indicates the standardized residuals, in which only one 

census tract in the far NE corner of Portland near the Columbia River was under 

-2.5 standard deviations, which indicates the model did not under represent the

relationship between flood density and predictor variables. Additionally, the 

model did not exhibit residuals above 2.5 standard deviations, indicating the 

model did not over represent the relationship between variables, and is not 

misspecified by missing a key explanatory variable.  

Figure 13: GWR model outputs. a) Local R-squared b) Standardized residuals 
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5. Discussion

5.1 TWI and flood report correlation 

Results from testing the correlation between flood report density and TWI 

estimates indicated there was a correlation between the two variables, but not a 

strong correlation. This could be due to the fact that flood reports were not evenly 

spread across the city and instead were clustered in specific regions of the city 

(i.e. central downtown and eastside), while the TWI is a continuous estimate 

across the surface. Additionally, correlations at the 5-acre hexagon scale were all 

positive, while correlations at the census tract scale were positive and negative. 

This could be because testing the correlation at a smaller scale maintains the 

integrity of the TWI estimate since it was originally calculated at a 1-meter 

resolution and attributing that value to the size of a census tract could obscure 

the detail of the TWI data. 

Understanding the results at the 5-acre hexagon scale can be an issue of 

data aggregation as the max TWI and mean flood report density values are 

different estimates, thus comparing a mean TWI value against a mean flood 

report density value is more logical. In interpreting the results at the census tract 

scale, a negative spatial association with max TWI is presumed since associating 

a max TWI value across an entire census tract in relation to the density of flood 

reports is an issue of scale. Associating a percentage of census tracts with TWI 

estimates within two standard deviations is presumed to be more spatially 
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correlated with flood report density since this is a much finer estimate of TWI that 

only considers the most statistically significant (i.e. 95% confidence level) TWI 

estimates.  

5.2 Socio-demographic and building characteristics of flood reports 

Results from performing a GWR to model the relationship between flood 

report density and socio-demographic and building characteristics proved to be 

more successful than a standard OLS or Spatial Lag Regression models. Since 

OLS and spatial regression are both global models, they assume stationary 

spatial process, which we know the density of flood reports and explanatory 

variables are not stationary across space. While global regression models are 

aspatial and location independent, a GWR is a spatial and location dependent 

model, which allows us to examine how spatial relationships vary across space. 
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 In interpreting the spatial patterns of GWR coefficients in relation to socio-

demographic characteristics, it is important to acknowledge the similarity of these 

results to the most recent economic vulnerability assessment study from the City 

of Portland, Bureau of Planning and Sustainability (BPS) that indicates the most 

vulnerable regions of the city based on four risk factors related to race and socio-

economic status used in this analysis (Bates 2013, see Figure 14).  

Figure 14: City of Portland, Bureau of Planning and Sustainability (BPS) Economic Vulnerability 
Assessment Map. Four risk factors are scaled from 0-16, with 0 being the lowest vulnerability and 
16 the highest vulnerability (Bates 2013). 

The only coefficient that had an entirely negative correlation with flood 

reports was the percentage of the population age 25+ without a BA. This is not 
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surprising in comparison to previous studies that have concluded that lower 

education levels contribute to a lower socio-economic status, thus higher social 

vulnerability when a natural hazard occurs due to a lack of knowledge, 

preparedness and support before and after a natural hazard occurs (Grineski et 

al. 2012, Rasch 2017, Romero-Lankao et al. 2014). Results from percent of 

households with children age 18 and under indicate that households in the NE 

quadrant of the city report flooding more often, while households further east do 

not report flooding as often. This could be indicative of high vulnerability of 

households further east since age (i.e. youth and elderly) has shown to elicit a 

lower response rate when a natural hazard occurs (Grineski et al. 2012, Rasch 

2017, Romero-Lankao et al. 2014). 

In interpreting the spatial patterns of GWR coefficients in terms of building 

characteristics, the age of infrastructure and density of buildings showed the 

most relationship with flood report density. The strongest relationship between 

the mean age of commercial buildings and flood report density was found within 

the CSS region, which is made up of older buildings, and where the highest 

concentration of commercial business resides in the city. Results from the mean 

age of SFR buildings were also not surprising since the clustering of positive 

coefficients were within SE regions of the city that do not have as high of a 

density of new MFR buildings as central regions of the city that are being 

developed more rapidly.  
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It should be acknowledged that predictor variables were chosen based on 

a 5% significance level, which could create for potential variables being left out of 

the model. For instance, had a 10% significance level been used, this could 

account for additional relationships with flood report density that are more 

indicative of a practical significance, instead of a statistical significance. For 

example, this study expected communities of color to be negatively correlated 

with flood report density since most communities of color live east of the central 

city, and most flood reports were generated in the central city. Had this study 

increased the significance level (i.e. 90% confidence level) when initially running 

the OLS model, this variable could have been represented in relation to flood 

report density.  

6. Conclusions

This portion of the study aimed to address if citizen-observed flooding 

reports are correlated with known topographic characteristics (i.e. TWI) that 

contribute to surface flooding over space, and furthermore, what are the socio-

demographic and building characteristics associated with flooding reports.  

While this research found significant correlations between flood reports 

and a TWI at both the 5-acre and census tract scale, the correlation at a 5-acre 

hexagon scale showed only positive correlations, while the census tract scale 

had both positive and negative correlations. Flood reports and TWI were 



65 

positively correlated within central regions of the city, and negatively correlated 

within SW, upper NE and far eastern regions of the city.  

This research found a GWR to model the relationship between flood report 

density and socio-demographic and building characteristics more adequately 

than an OLS or Spatial Regression model. Results indicated the percentage of 

the population age 25+ without a BA had a significantly negative correlation with 

flood reports across space, while mean age of SFR buildings had a significantly 

positive relationship in places with flood reports across space. Percent of 

households with population age 18 and under, and mean age of commercial 

buildings both had significantly negative and positive relationships with flood 

reports over space.  

While results from the GWR model are helpful for understanding the 

relation between flood reports and socio-demographic and building 

characteristics, it is important to acknowledge the limitations of using 

participatory spatial data for flood risk analyses. As previously mentioned, 

participatory spatial data is completely reliant on how well the data was collected 

and processed, but more importantly, it is completely reliant on citizens who wish 

to participate or have the resources and knowledge to participate. Therefore, 

there could be potential barriers for certain communities to make a flooding 

complaint to the city. 

As previously mentioned, studies have alluded to the fact that low-income 

and minority communities do not have the proper knowledge and support to 
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assess a flooding event before and after it occurs (Douglas et al. 2012, Elliot & 

Pais 2006, Romero-Lankao et al. 2014). While results from this analysis are not 

entirely in line with these conclusions, it is still important to recognize the 

differences in socio-economic status amongst communities in Portland that could 

have contributed to more affluent communities reporting flooding more often. 

While flood reports are not necessarily spatially comprehensive, the highest 

density of reports were generated in central regions of the city where those of a 

lower social vulnerability reside (see Figures 7 and 14).  

In relating these findings to core environmental justice (EJ) theories, it is 

important to acknowledge that participation in an individual’s own justice is a part 

of the process that creates EJ justices or injustices (Schlosberg 2004). 

Schlosberg (2004) examined the importance of focusing on the processes that 

create unequal distribution of injustices through an individual’s own participation 

and social recognition within society. If low-income and minority communities are 

not encouraged to directly participate in their own justice, they will not feel 

empowered to do so, which leads to a lack of motivation and resilience of these 

communities over time. Furthermore, previous research has shown that 

incorporating the opinion of marginalized communities directly into an analysis 

creates for more realistic equitable decisions (Chakraborty et al. 2016). 

There are clearly inherent biases embedded within this dataset that are 

problematic for city flood risk management and planning. While the city does not 

rely solely on citizen-inputted data for flood risk assessment, citizen-inputted data 
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is still the only ground-truth perspective of where localized pluvial flooding 

occurs, thus it will continue to be incorporated in flood risk analyses along with 

predictive modeling. This creates a repetitive cycle of flood risk being analyzed 

through data that might not be representative of all communities affected by 

flooding.  

Additionally, the city relies on flood risk maps to determine areas of 

prioritization for upgrading stormwater systems and stormwater green 

infrastructure (SGI). While most flooding does occur in the downtown and central 

regions of the city, there is still substantial flooding that occurs within the outer 

eastern regions of the city due to flatter topography and older sewer systems in 

place. Since these regions are not within the most densely populated and high-

traffic areas of the city, they do not receive the same level of attention. This can 

create spatial injustices of SGI and overall, access to greenspace in the city over 

time, as previous studies which examined the inequalities associated with green 

space in urban environments have shown (Agyeman et al. 2002, Heynen et al. 

2006). Therefore, it is important for the city to recognize the spatial patterns 

between vulnerability and future stormwater system planning.  
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Overall Concluding Thoughts 

The objective of this research was to examine the spatial characteristics of 

pluvial flooding, and the validity of using participatory spatial data to evaluate 

urban flood risk in Portland, OR from 2010-2017. This research aimed to explore 

how future stormwater management and flood risk planning can better address 

the physical and social dimensions of flood vulnerability through the biophysical 

processes and socioeconomic characteristics that exist amongst communities in 

Portland. 

Both chapters addressed the caveats of using participatory spatial data 

within flood risk analyses, as issues of reliability and credibility need to be 

considered when drawing conclusions from participatory data. In terms of data 

collection and processing, it is important to acknowledge the inherent problems 

and biases this process introduces, thus data processing should attempt to 

minimize human error as much as possible by further standardizing how the data 

gets inputted and translated. This study encourages the city to improve their web 

application for reporting flooding, as users would be able to directly place a point 

of flooding on a map, and answer a series of questions that allow only certain 

options as a response. This would alleviate a lot of translation issues and 

potential language barriers between city practitioners and citizens reporting 

flooding.  

While findings from this analysis help to understand the correlation 

between citizen-observed flooding reports with predictive modeling and socio-
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demographic and building characteristics, it is important to not draw absolute 

conclusions from participatory spatial data since the data is reliant on who can 

participate. Therefore, it is important for city governments to establish trust and a 

common language with residents of all communities and encourage participation 

in city planning by offering classes and resources to share information about 

local efforts. If city practitioners cannot directly communicate or find barriers to 

communicate with marginalized communities, they should partner with local 

social justice organizations to find a common language that can be understood 

by both parties. This could be done through survey methods or focus groups to 

understand the potential barriers and discomforts marginalized communities 

might face in participating in citywide flood reporting. Additionally, city 

practitioners should be encouraged to include the perspective of marginalized 

communities directly into their risk analysis from the very beginning, which will 

alleviate issues of equity coming into question after an analysis has already been 

completed. 
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Appendix. 39 HYDRA Rain Gages  
 

Station Name Station 
Number 

Location Period of 
Record 

Source  

Portland Fire Bureau 1 55 SW Ash St. 01/01/2010-
2/22/2017 

USGS 

Skyline School 2 11536 NW Skyline 
Blvd. 

01/01/2010-
2/22/2017 

USGS 

Sylvania PCC 4 SS Bldg., 12000 SW 
49th Ave. 

01/01/2010-
2/22/2017 

USGS 

Mt. Tabor 
Maintenance Yard 

6 6437 SE Division St. 01/01/2010-
2/22/2017 

USGS 

Hayden Island 7 1740 N Jantzen 
Beach Ctr. 

01/01/2010-
2/22/2017 

USGS 

Collins View 10 9806 SW Boones 
Ferry Rd. 

01/01/2010-
2/22/2017 

USGS 

Fernwood School  12 3255 NE Hancock St. 01/01/2010-
2/22/2017 

USGS 

Kelly School 14 9030 SE Cooper St. 01/01/2010-
2/22/2017 

USGS 

Gresham Fire Dept. 20 1333 NW Eastman 
Pkwy. 

01/01/2010-
2/22/2017 

USGS 

Vernon School  41 2044 NE Killingsworth 
St. 

01/01/2010-
2/22/2017 

USGS 

Open Meadows 
School  

48 7602 N Emerald Ave. 01/01/2010-
2/22/2017 

USGS 

Bonny Slope School 58 10351 NW Thompson 
Rd. 

01/01/2010-
2/22/2017 

USGS 

Harney 64 2033 SE Harney St. 01/01/2010-
2/22/2017 

USGS 

Shipyard  82 8900 N Sever Road 01/01/2010-
2/22/2017 

USGS 

Columbia IPS  107 5001 N Columbia 
Blvd. 

01/01/2010-
2/22/2017 

USGS 

Airport Way #2 111 14614 NE Airport 
Way 

01/01/2010-
2/22/2017 

USGS 

Mallory  115 8030 NE Mallory Ave. 01/01/2010-
2/22/2017 

USGS 

Albina 117 2920 N Larrabee Ave. 01/01/2010-
2/22/2017 

USGS 

Yeon  121 3395 NW Yeon St. 01/01/2010-
2/22/2017 

USGS 

Simmons  139 16001 N Simmons 
Rd. 

01/01/2010-
2/22/2017 

USGS 

Pleasant Valley 
School  

145 17625 SE Foster Rd. 01/01/2010-
2/22/2017 

USGS 

Beaumont School 152 4043 NE Fremont 
Ave. 

01/01/2010-
2/22/2017 

USGS 

Post Office 159 7660 NE Airport Way 01/01/2010-
2/22/2017 

USGS 
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WPCL  160 6543 N Burlington 
Ave. 

01/01/2010-
2/22/2017 

USGS 

Sylvan School  161 1849 SW 58th Ave. 01/01/2010-
2/22/2017 

USGS 

Eco Roof  164 SW 12th and Clay 01/01/2010-
2/22/2017 

USGS 

Sunnyside School 171 3421 SE Salmon St. 01/01/2010-
2/22/2017 

USGS 

Maplewood 
Elementary School  

172 7452 SW 52nd Ave. 01/01/2010-
2/22/2017 

USGS 

Metro Learning 
Center  

173 2033 NW Glisan St. 01/01/2010-
2/22/2017 

USGS 

Arleta School 174 5109 SE 66th Ave. 01/01/2010-
2/22/2017 

USGS 

Glencoe School 175 825 SE 51st Ave. 01/01/2010-
2/22/2017 

USGS 

Multnomah  181 501 SE Hawthorne 
Blvd. 

01/01/2010-
2/22/2017 

USGS 

Children's Museum 192 4015 SW Canyon Rd. 01/01/2010-
2/22/2017 

USGS 

Astor Elementary 
School 

193 5601 N Yale St. 01/01/2010-
2/22/2017 

USGS 

Swan Island  204 Near Willamette River 01/01/2010-
2/22/2017 

USGS 

Madison 213 2735 NE 82nd Ave. 01/01/2010-
2/22/2017 

USGS 

OPB 214 SW Macadam Ave. 01/01/2010-
2/22/2017 

USGS 

Park SE Yard  217 5669 SE 136th Ave. 01/01/2010-
2/22/2017 

USGS 

Walmart Eco Roof  220 1123 N Hayden 
Meadows Dr. 

01/01/2010-
2/22/2017 

USGS 
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