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ABSTRACT 

Traffic simulation has become an invaluable part of the traffic engineering 

toolbox. However, the majority of driver models are designed to recreate traffic 

performance based on interactions among vehicles. In keeping with this pursuit, most are 

fundamentally built to avoid collisions. This limits the applicability of using these models 

for addressing safety concerns, especially those regarding pedestrian safety performance. 

However, by explicitly including some of the sources of human error, these limitations 

can, in theory, be overcome. While much work has been done toward including these 

human factors in simulation platforms, one key aspect of human behavior has been 

largely ignored: driver distraction. 

This work presents a novel approach to inclusion of driver distraction in a 

microsimulation or agent-based model. Distributions of distraction events and inter-

distraction periods are derived from eye-glance data collected during naturalistic driving 

studies. The developed model of distraction is implemented – along with perception 

errors, visual obstructions, and driver reaction times – in a simulated mid-block 

pedestrian crossing. 

The results of this simulation demonstrate that excluding any of these human 

factors from the implemented driver model significantly alters conflict rates observed in 

the simulation. This finding suggests that inclusion of human factors is important in any 

microsimulation platforms used to analyze pedestrian safety performance. 
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𝜆 = Scale parameter of the Weibull distribution 
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ln⁡(𝑦) = Natural logarithm of some value 𝑦 
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𝜂𝑖  = Instances of a normal distribution with 𝑀 = 0 and 𝑆 = 1 

PDF – Probability Density Function (defined on page 51) 

𝑆 = Standard deviation of some quantity or distribution 

𝜎 = Shape parameter of the lognormal distribution 

𝜃𝑤 = Adjusted scale parameter of the Weibull distribution (𝜃𝑤 = 𝜆𝑘) 

𝑈𝑖 = Instances of a uniform distribution between 0 and 1 

ξ(𝑡) = White noise 

𝑦̂ = Maximum-likelihood estimation of some variable 𝑦 

𝑦𝑠 = Instance of a variable in a three-parameter (“shifted”) distribution 

MACROSCOPIC TRAFFIC MODELS 

𝑛 = Number of vehicles in a section of road 

Φ = Net influx of vehicles along a stretch of road (e.g. from on-ramps and off-ramps) 

𝑞 = Flow rate of vehicles – vehicles passing a stationary point per unit time 
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𝜌 = Macroscopic density of traffic flow – vehicles per unit length of road 

𝑉 = Macroscopic velocity of traffic flow  

often defined as the harmonic mean or space mean speed: 𝑉 =
𝑁

∑ (
1

𝑣𝑛
)𝑁

𝑛=1

  

IDM 

𝑎 = 
𝑑𝑣

𝑑𝑡
 = 𝑣̇ = Acceleration 

𝑎𝐴𝐶𝐶  = Adaptive cruise control acceleration – the incorporation of the Enhanced IDM 

and CAH into a functional car-following model 

𝑎𝐶𝐴𝐻 = Acceleration given by the constant acceleration heuristic 

𝑎𝑓𝑟𝑒𝑒 = Free-flow acceleration of EIDM 

𝑎𝑚𝑎𝑥 = Maximum comfortable acceleration 

𝑏 = Maximum comfortable deceleration (in absolute value) 

𝛿 = Free acceleration exponent – a description of how acceleration changes as the 

desired speed is approached 

𝑙 = Subscript designating a variable applies to the front vehicle of a leader-follower pair 

𝑠 = Netto space headway: the space between the rear bumper of the front vehicle and 

the front bumper of the rear vehicle of a leader-follower pair 

𝑠0 = Jam headway – the space left in front of a vehicle when traffic comes to a standstill 
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𝑠1 = Non-linear headway term 

𝑠∗ = Preferred headway 

𝑇 = Preferred netto time-headway: 𝑇 = 𝑠 𝑣⁄  

𝜏𝑟𝑒𝑎𝑐𝑡 = Driver reaction time 

∆𝑣 = Velocity difference of a leader-follower pair: ∆𝑣 = 𝑣𝑓 − 𝑣𝑙  

𝑣 = Velocity 

𝑣𝑓 = Maximum, or free-flow, velocity 

𝑧 = 
𝑠∗

𝑠
 

YIELDING 

𝑎ℎ𝑦 = Acceleration needed to come to a full stop before the crosswalk – a “hard yield” 

𝑎𝑠𝑦 = Deceleration necessary for all pedestrians to be out of harm’s way by the time a 

vehicle reaches the crosswalk, yet not requiring the vehicle to come to a full stop – 

a “soft yield” 

𝑑𝑠𝑡𝑜𝑝 = Distance from edge of crosswalk at which a vehicle stops 

𝑡ℎ𝑦 = Time to come to a full stop with an acceleration of 𝑎ℎ𝑦 

𝑇𝑠𝑎𝑓𝑒 = Time until a pedestrian will be safely beyond the path of an approaching vehicle 
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𝑇𝑇𝐶 = The time until two moving bodies would collide if each were to continue along its 

current path with its current speed – “time to collision” 

𝑇𝑇𝐶𝑚𝑖𝑛 = The minimum TTC reached during an interaction between two road users 

HUMAN FACTORS 

𝐷𝑖  = Duration of an individual distraction event 

𝑑𝑝𝑒𝑟𝑐 = Distance from a pedestrian at which a driver can perceive that the pedestrian is 

present and intending to cross 

𝜀 = Variation coefficient, representing the relative standard deviation of a perceived 

value from the true value 

𝐼𝐷𝑖  = Duration of an individual inter-distraction period 

𝜆𝐼𝐷 = Arrival rate of distraction events: 𝜆𝐼𝐷 =
1

〈𝐼𝐷𝑖〉
 

𝜔 = Rate of relative angular change: 𝜔 =
𝑑𝜃/𝑑𝑡

𝜃
 

𝜎𝑟 = Standard deviation of relative approach rate: a scaling parameter for errors in 

estimation of relative velocity 

𝜏̃ = Persistence time of perception errors 

𝜏𝐴𝐷𝑅𝑇 = Acceleration/deceleration reaction time 

𝜏𝐵𝑅𝑇 = Brake perception reaction time 



xv | P a g e  

𝜏𝐷𝑅 = Device response time of the braking system 

𝜏𝑀 = Movement time of driver’s foot between accelerator and brake pedal 

𝜏𝑅𝑇 = Total brake reaction time (𝜏𝑅𝑇 = 𝜏𝐵𝑅𝑇 + 𝜏𝑀 + 𝜏𝐷𝑅) 

𝜃 = Apparent optical angle subtended by vehicle ahead 

𝑉𝑠 = Statistical variation coefficient: the relative standard deviation of 𝑠𝑒𝑠𝑡 from the true 

headway 

𝑤𝑠(𝑡) and 𝑤𝑣(𝑡) = Stochastic portions of Weiner processes (for headway and relative 

velocity, respectively) 

𝑤𝑣𝑒ℎ = Vehicle width 

𝑦𝑒𝑠𝑡 = Driver or pedestrian estimate of some quantity 𝑦 

PEDESTRIANS 

𝐴 and 𝐵 = Empirically-derived constants for pedestrian interaction 

𝑐1 and 𝑐2 = Constants describing distribution of pedestrian critical gaps 

𝑑𝑖𝑗 = Scalar distance between pedestrian centers-of-mass: 𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒓𝑗‖ 

𝑑𝑖𝑊 = Scalar distance from pedestrian to barrier 

𝒆0 = Normalized (length = 1) pointing vector towards pedestrian destination 

𝒇𝑖𝑗 = Interaction force vector pointing from pedestrian 𝑗 to pedestrian 𝑖 
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𝒇𝑖𝑊 = Interaction force vector pointing from a barrier toward pedestrian 𝑖 

𝑚 = Pedestrian mass  

𝒏𝑖𝑗 = Normalized pointing vector between interacting pedestrians: 𝒏𝑖𝑗 = (𝒓𝑖 − 𝒓𝑗) 𝑑𝑖𝑗⁄  

𝒏𝑖𝑊 = Normalized pointing vector away from barrier 

𝑝𝑔𝑎𝑝 = Probability of a pedestrian accepting a gap or lag 

𝜋 = Probability of a pedestrian rejecting a gap or lag: 𝜋 = 1 − 𝑝𝑔𝑎𝑝 

𝑟 = Pedestrian radius 

𝒓𝑖 = Vector location of pedestrian 𝑖 

𝑟𝑖𝑗 = Sum of interacting pedestrian radii: 𝑟𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗  

𝜏𝑝𝑒𝑑 = Characteristic time of pedestrian acceleration 

𝑣 = Speed 

𝑣0 = Natural walking speed 
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INTRODUCTION 

MOTIVATION 

There has been a shift in public opinion and city planning toward livable 

communities, wherein walking and public transit are increasingly seen as attractive 

transportation modes. The U.S. Census Bureau’s American Community Survey began 

collecting data on transportation modes in 2005. That year, an estimated 3.3 million 

Americans reported walking as their primary mode of commuting to work. By 2013, that 

number had risen to nearly 4 million. [GAO 2015] This increase in pedestrian volumes is 

accompanied by increased exposure of pedestrians to dangerous encounters with 

motor vehicles. Pedestrians do not have the safety benefits of traveling within a multi-

ton protective metal housing; and, therefore, are more vulnerable than drivers to injury 

or death in the event of a collision. 

5,987 pedestrians were killed in traffic crashes in 2016 – a 9% increase in 

fatalities from 2015 – making 2016 the deadliest year for pedestrians since 1990. 

[NHTSA 2018] While the overall number of traffic fatalities decreased by 17.8% between 

2006 and 2015, the number of pedestrian fatalities increased by more than 12% over 

the same ten-year period. Pedestrians now make up 15% of all road fatalities, the 

highest proportion in the history of FARS data. [NHTSA 2017] 

Given the rarity of pedestrian collisions and considering the ethical concerns of 

case-control experiments, simulation provides an invaluable tool in studying pedestrian 
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safety. The Federal Highway Administration (FHWA) commissioned a report on using 

simulations to study traffic safety in 2001. [Gettman and Head 2003] However, that 

report found that “[s]imulation of pedestrians’ movements, awareness of pedestrians 

by vehicles, and vehicle-pedestrian interactions are not as well developed as vehicle-

vehicle model components in available traffic simulation models… Only a percentage of 

conflict events between pedestrians and vehicles are because of ‘normal’ driving and 

pedestrian behaviors (jaywalking and mid-block pedestrian crossings are not typically 

modeled). Also, sight-distance restrictions and driver distractions play a large part in 

conflict events between pedestrians and vehicles… These elements are not modeled in 

current traffic simulations, but should be an important part of future work in traffic 

simulation modeling.” [emphasis added] This remains an outstanding issue, as even 

recent attempts at comparing the results of traffic conflict studies to microsimulation 

often explicitly exclude pedestrian interactions. [e.g. Ambros, Turek, and Paukrt 2014] 

Incorporating these two factors (mid-block crossings and driver distraction) into a 

simulation is the main focus of this work. 

RESEARCH QUESTIONS 

This work explores the limitations of modeling pedestrian safety without 

inclusion of human factors in the applied driver model. Since the focus is on 

demonstrating the limitations of existing simulation models, a purpose-built agent-

based model of a mid-block pedestrian crossing was developed.  
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The driver model used is an extension of the Human Driver Model (HDM). 

[Treiber et al. 2006] The HDM is, itself, an extension of the Intelligent Driver Model 

[Treiber et al. 2000] to include the human limitations of imperfect perception and 

delayed reaction. In addition to these human factors, the model presented herein 

includes distraction and obstructed lines of sight. It relies on distributions from previous 

research to assign values of various parameters to agents, then allows those agents to 

interact with one-another based on the rules defined. The rate of pedestrian-vehicle 

conflicts (explicitly defined in later sections) is analyzed to quantify the effects of 

excluding the various human factors from simulation.  

OUTLINE 

This work begins with a summary of the results from a review of previous 

research. Broadly, the topics covered are pedestrian safety and traffic conflict analysis, 

modeling of vehicle-pedestrian interactions, and modeling of human factors (specifically 

distraction) in microsimulation. 

The next two sections are concerned with driver and pedestrian models. After 

brief taxonomies of existing models, the details of the models used in this work are 

presented. 

In the following section, agent-based models are discussed. Then, the specifics of 

the simulation environment created are outlined. This includes the details of agent 

calculations and cognition, as well as interactions among agents and classes of agents. 
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The final sections present the results of the developed simulation and 

conclusions drawn from the analysis, with implications for future research.  
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LITERATURE REVIEW 

PEDESTRIAN SAFETY  

On average, in the decade between 2006 and 2015, 4,666 pedestrians died every 

year in traffic crashes. [NHTSA 2017] However, studying the circumstances that lead to 

pedestrian collisions can be difficult. As with many traffic safety issues, ethical and 

practical constraints preclude running controlled experiments in the usual sense. 

Historical data are often the only sources of information available, and police reports 

often lack the detailed information needed to reconstruct an accident in a meaningful 

way. [Schaap 2012] Beyond the fact that not all accidents are reported, the “level of 

reporting is unevenly distributed with regard to type of road users involved. Vulnerable 

road users are, for instance, heavily under-represented in the police accident statistics 

compared to what hospital registrations and other studies show.” [OECD 1998] Crash 

statistics are, therefore, useful in validation but not in model creation. 

Another fundamental limitation to studying pedestrian safety is that, despite the 

high likelihood of injury in the event of a crash, such crashes are rare events – on the 

order of a few per century at a given location.1 It is, therefore, often useful to study 

pedestrian-vehicle conflicts.  

 

                                                      

1 In a study of 2,000 uncontrolled crossing locations in the United States [Zegeer et al 2005], the average 
rate observed was “one pedestrian crash per crosswalk site every 43.7 years.”  
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CONFLICTS 

In traffic conflict analysis, a methodology proposed more than 50 years ago, 2 

[Perkins and Harris 1967] the precise definition of a conflict is an area of active debate. 

[Zheng et al. 2014] A conflict can be qualitatively, yet effectively, defined as “an 

observable situation in which two or more road users approach each other in space and 

time to such an extent that there is a risk of collision if their movements remain 

unchanged." [Amundsen and Hydén 1977] 

Road-user interactions can be 

conceptualized as belonging to a 

portion of the pyramid in Figure 1. The 

volume of a section in this pyramid 

represents, qualitatively, the frequency 

with which each level of interaction occurs. The severity of interactions is inversely 

proportional to how often they occur. It has been demonstrated that “traffic conflicts… 

produce estimates of average accident rates nearly as accurate, and just as precise, as 

those produced from historical accident data.” [Migletz, Glauz, and Bauer 1985] 

A variety of metrics for describing the severity of a conflict have been proposed. 

Perkins and Harris [1967] defined conflicts as events requiring evasive action to avoid a 

                                                      

2 Though the topic was being explored a decade earlier [Forbes 1957] 

FIGURE 1 – SAFETY PYRAMID 
[LAURESHYN 2010, ADAPTED FROM HYDÉN 1987] 



7 | P a g e  

collision. A subsequent study [Campbell and King 1970] was, however, unable to 

demonstrate a correlation between conflicts defined in this manner and collisions 

(though the sample size was admittedly small). In an attempt to further quantify the 

severity of a conflict, Hayward [1971, 1972] proposed the measurement of time-to-

collision (TTC): “the time required for two vehicles to collide if they continue at their 

present speed and on the same path.” Hayward used a value of 1 second to define a 

vehicle-vehicle conflict; yet, “threshold values used appear to be mainly intuitively 

determined instead of based on systematic research.” [van der Horst 1990] 

If the involved parties do not change course, but still avoid collision by only a 

fraction of a second, the TTC value is infinite – despite the fact that a collision very 

nearly occurred. This limitation led Allen, Shin, and Cooper [1978] to define the post-

encroachment time (PET) of a conflict: If encroachment time is defined as the period in 

which a vehicle infringes on the travel path of another vehicle, the PET “is identified as 

the time from the end of encroachment to the time that the through vehicle actually 

arrives at the potential point of collision.” While this method can perform better than 

TTC for vehicle-vehicle conflicts, its applicability is limited since the value is undefined if 

one of the actors comes to a full stop. [Grayson et al. 1984]  

Collisions are decisive events – they either occur or not. Conflicts, on the other 

hand, are more qualitative in nature. In an effort to eliminate any ambiguity around the 

topic, an international study was convened. Researchers from ten countries gathered in 

Malmö, Sweden to observe traffic at three urban intersections with mixed traffic. 
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[Grayson et al. 1984] While recording video of the intersections, the researchers tallied 

interactions they considered as constituting conflicts and compared results. The various 

measures of conflict severity were than tabulated for these interactions. [van der Horst 

1984] Of the 337 conflicts analyzed in detail, 72 (~21%) were conflicts between cars and 

pedestrians. The type of road user involved in the interactions was not found to 

significantly affect the TTC thresholds for researchers deeming them as conflicts – all 

types had median threshold values near 1.5 seconds. [van der Horst 1990] The overall 

mean for the minimum-TTC (𝑇𝑇𝐶𝑚𝑖𝑛) of an interaction deemed a conflict was 1.53 

seconds. The median was 1.52 seconds. 

In a later analysis of the Malmö study, [van der Horst 1990] various extensions of 

the TTC concept were compared in their accuracy for identifying interactions regarded 

as conflicts by observers: 

• Minimum-TTC – 𝑇𝑇𝐶𝑚𝑖𝑛, the lowest TTC value observed during the interaction 

• Minimum-acceleration – the greatest (in absolute value) deceleration observed 

by either road user 

• Minimum-distance – the minimum distance between two road users during the 

course of an interaction 

• Minimum-TTC-distance – the distance between road users at the moment of 

minimum-TTC 

• Minimum-TTCA – the minimum TTC value observed, assuming a constant 

acceleration from the moment of measurement 

• Minimum-TTCA-distance – the distance between road users at the moment of 

minimum-TTCA 
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• TTC-brake – TTC at the onset of braking (defined as the moment deceleration 

exceeds −0.5⁡𝑚/𝑠2) 

• PET – post-encroachment time (defined above) 

Of these, 𝑇𝑇𝐶𝑚𝑖𝑛 was observed to have the strongest correlation to interactions 

deemed as conflicts: “Based on these results, it can be concluded that, first of all, the 

TTC_min measure is an important variable in discriminating between normal and critical 

encounters. Furthermore… a minimum value of 1.5 s appears to be of prime 

importance.” This finding is doubly important, since it has been effectively argued that 

information on TTC is more directly available to a driver than explicit knowledge of 

velocity or distance. [Lee 1976; Janssen, Michon, and Harvey 1976] 

Efforts have been made to automate some of the process of tabulating conflicts. 

[e.g. Ismail, et al. 2014] However, data acquisition and reduction remains costly and 

time-intensive. Further, this approach is, necessarily, reactive in nature: Changes in 

safety can only be quantified after infrastructure changes are made. Moving beyond this 

limitation requires accurate simulation of the pedestrian-vehicle interaction. This 

further necessitates accurate recreation of the human factors that lead to collisions.  

SIMULATION 

Transportation projects are generally enacted from perspectives on the larger 

end of the spectrum. [Batty 2001] Municipalities and regions are concerned with 

allowing people to move between distant locations. This approach is often most 

concerned with macroscopic measurements of traffic flow such as average speeds, 
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densities, and throughputs. While these metrics have correlations with safety 

performance, smaller-scale modeling is required to address the safety of specific sites. 

So-called microscopic models attempt to provide such a detailed view by 

mathematically representing the behaviors of individual road users. These models are 

implemented using agent-based simulations, in which individual actors with pre-defined 

characteristics interact with others in their environment based on explicit rules. This 

approach provides a means of studying the safety of road designs prior to 

implementation in the real world. 

Some existing simulation platforms do take pedestrian conflicts with vehicles 

into account, but the models implemented focus on flow instead of conflicts. They also 

are rather difficult to adapt to specific research questions. [Bazzan and Klügl 2013] Of 

the software systems that model pedestrians at all, only three can accommodate 

detailed modeling. [FHWA 2004] These are VISSIM, PARAMICS, and DRACULA. The 

documentation for these is conspicuously lacking in principles or directions on the use of 

these capabilities. [Kittelson 2016]  

VISSIM is the most capable of accepting user-defined behavior algorithms. 

[Rouphail and Chae 2002] In VISSIM, vehicle-pedestrian interactions are governed by 

“priority” rules, in which given percentages of each user will decide to yield to other 

user types when critical gap measures allow. [Chae 2005] The critical gap assignment to 

pedestrians is constant for each pedestrian population, so the only method of assigning 

distributed values is through initializing multiple user-defined populations. [Chae 2005] 
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Further, the “priority” rules do not seem to be at all combined with the car-following 

models in place.  

When the FHWA’s Surrogate Safety Assessment Model [Gettman et al. 2008] 

was applied to output from VISSIM, analysis found that “the VISSIM model 

underestimated the pedestrian-vehicle conflicts.” [Wu, Essam and Abou-Senna 2016] 

The authors found that the simulation underestimated conflicts by approximately 19%. 

Many studies have attempted to quantify pedestrian risk using logistic regression 

to correlate crash data to various factors such as the local built environment 

[Dumbaugh, Li, and Joh 2013], mutual awareness [Roth, Flohr, and Gavrila 2016], socio-

economic status and travel patterns [Elias and Shiftan 2014], or all of the above 

[Quistberg et al. 2015]. However, few have attempted to recreate these patterns in 

simulation. 

Some pedestrian motion simulations include moving vehicles for pedestrians to 

avoid [e.g. Liu et al. 2017; Li, Qian, and Luo 2012]. However, the modeled vehicles are 

essentially unaware of nearby pedestrians. A simulation of pedestrians and vehicles 

interacting in a shared space has been developed. [Anvari et al. 2015] In it, pedestrians 

and drivers avoid one another based on mutually-repulsive forces and rule-based 

conflict resolutions. Safety considerations were not included in this model. A cellular 

automata-based model for congested pedestrian and vehicle networks has been 

proposed, [Zhang and Chang 2014] but conflicts are resolved using “competition 
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factors” calibrated to agree with observations, and human factors are not considered. 

Cellular automata have also been used to model pedestrian conflicts with vehicles at 

signalized intersections. [Li et al. 2012] Here, again, conflict rules are stripped to the 

essentials and human factors are not considered. 

Two notable exceptions of simulations that address pedestrian-vehicle 

interactions were found. The first [Zheng et al. 2015] is a simulation of jaywalking 

pedestrians and driver reactions to them. This model features detailed modeling of 

pedestrian gap-acceptance and crossing speed. It also explores driver yielding behavior 

in terms of yield rates and decision distances based on instrumented vehicle 

observations.  

The second is SAFEPED – a three-dimensional multi-agent simulation of multi-

modal urban environments. [Waizman, Shoval, and Benenson 2015] It features realistic 

limitations in pedestrian and vehicle movements, as well as visual obstructions between 

agents. It focuses on motion planning and obstacle avoidance based on a robotic 

motion-planning algorithm developed by Fiorini and Schiller [1998]. The SAFEPED model 

incorporates steering and pedestrian evasive action in the simulation and adds parked 

cars to obscure agent vision at crosswalks. It does explicitly include reaction times, but 

these are assumed to be uniformly distributed within a predefined range. In neither 

example are further human factors such as perception errors or distraction considered.  
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DISTRACTION 

In a detailed analysis of vehicle-pedestrian interactions from a naturalistic driving 

study [Habibovic et al. 2013], the authors found three main causation patterns for safety 

critical pedestrian incidents: obstructed line of sight, distraction, and unexpected 

pedestrian behavior. Despite its salience in traffic safety, the published literature 

includes very few methods of simulating distraction. 

 Saifuzzaman and Zhang [2015] undertook a review of the literature on human 

factors in car-following models. The authors concluded that “in our extensive literature 

review we observed very few experiments designed for obtaining human factors critical 

for car-following modelling.” Further, they found that, in microscopic simulation 

software packages, “many human factors which are crucial for describing human car-

following behavior are, by and large, ignored.” 

It should be noted that VISSIM does, in fact, already have much of the 

programmatic architecture needed to implement distraction for safety-critical 

interactions. One of the many parameters available for manipulation is the “sleep” 

parameter (or “temporary lack of attention”). [PTV 2011] This parameter is used to 

lower the capacity of congested links and is ignored in cases that include “emergency 

braking.” Further, no indication is given that this “sleep” state can be used to affect 

interactions with other modes. Quadstone Paramics also features an “awareness” 

parameter. However, this parameter seems to affect the distance at which drivers 

become aware of information from their environment. [Hidas 2005] 
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Some researchers have developed methods of included human factors in driving 

behavior. Cody et al. [2008] explored the impacts of task-specific driver distraction on 

lane-change behavior. Most authors have focused on the effects of human factors on 

car-following models. Bevrani and Chung [2012] extended the Gipps car-following 

model to include reaction time, errors in detecting speed differences, and imperfections 

in drivers’ speed adjustments. Treiber et al. [2006] extended their earlier work on the 

Intelligent Driver Model to include delayed reaction and errors in driver perception of 

distance and relative velocity. Neither of these models, however, include distraction. Xin 

et al. [2008] implemented a driver-specific “scanning interval” (the update interval for 

each agent’s perception of traffic around her) that interacts with driver perception 

limitations to create an effective distracted state. The appropriate range of these values 

was found by calibrating the results to vehicle trajectory data. A model named HUTSIM 

[Archer and Kosonen 2000] uses a similar approach, adding random delays to the 

update frequencies of driver awareness. 

Saifuzzaman et al. [2015] developed a method of incorporating Fuller’s task-

capability interface model [Fuller 2005] into car-following equations. The central 

hypothesis of Fuller’s model is that drivers adjust their behavior to maintain “task 

difficulty homeostasis.” In the car-following model developed by Saifuzzaman et al., this 

is accomplished by varying the drivers’ free-flow speeds, acceleration patterns, and 

following distances based on a representation of the mental effort and perceived risk of 

the current driving environment. Distraction is implicitly involved in the “risk 
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compensatory parameter,” and explicitly added as a “reaction time increment.” Values 

for these parameters were fit using a genetic algorithm to measured trajectory data. 

An interesting approach to the problem is the development of so-called cognitive 

architectures to recreate the human driver from the ground up. A foundational example 

of this is the Adaptive Control of Thought-Rational (ACT-R) model. [Salvucci 2006] ACT-R 

combines the “underlying psychological theories that incorporate basic properties and 

limitation of the human system” with a task analysis of vehicle control to simulate the 

act of driving. Another example is the Queueing Network-Model Human Processor 

developed by Liu, Feyen, and Tsimhoni [2006] for simulating driving while multi-tasking. 

These approaches have great promise in analyzing the effects of engaging in specific 

tasks while driving, but generalization to the full range of human multi-tasking activity is 

not the intended purpose. 

One notable model that explicitly models distraction as an isolated phenomenon 

is the “errorable” car-following model developed by Yang and Peng [2009]. The authors 

present a car-following model that includes explicit representation of reaction times, 

perception errors, and distraction. Without a generative model for distraction, they 

indirectly characterized its duration and prevalence by attributing to it any significant 

deviations between measured car-following trajectory data and the predictions of their 

model. The authors found both distraction events and the periods between them to be 

approximately lognormal. The duration of individual distracted states, 𝐷𝑖, had a mean 

duration and standard deviation of 1.85 seconds and 0.89 seconds, respectively; while 
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the duration of individual inter-distraction periods, 𝐼𝐷𝑖, had a mean and standard 

deviation of 26.62 and 0.75 seconds, respectively. These data stand out in that they 

represent a reproducible model of distraction events; however, they fundamentally rely 

on the accuracy of the car-following model presented instead of empirical data on 

distraction. 

The omission of human factors, including distraction, from simulation platforms 

is due to a dearth of models for quantifying their occurrence in a form suitable to 

simulation. Distraction takes innumerable forms when diverting a driver’s attention 

from the road. There are, therefore, a plethora of approaches for quantifying its 

prevalence. Many studies have been performed that focus exclusively on the 

distractions involved in cell phone use. For a meta-analysis of cell phone distraction to 

drivers, see [Caird et al. 2008].  

While cell phone use represents only one of the many distracting tasks a driver 

may engage in, it provides a starting place for modeling distraction. The average 

increase in reaction time found in the meta-analysis by Caird et al. [2008] was used to 

represent distracted states by Przybyla et al. [2012]. Specifically, during a distracted 

state, reaction times (𝜏𝐵𝑅𝑇) were increased by a random sampling from a normal 

distribution with a mean of 0.36 seconds and standard deviation of 0.42 seconds. The 

prevalence of these distracted states was fit by calculating predicted numbers of crashes 

and fitting these values to observed counts. 
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One of the more extensive studies of the details of driver distraction is a detailed 

simulator study of the durations and effects on performance of twenty-two selected 

distracting activities. [Angell et al. 2006] The report provides a wealth of data on the 

detrimental effects of the selected activities on driving performance, as well as detailed 

analysis on eye glance behavior and “object-and-event” detection. However, it did not 

attempt to quantify the prevalence of these behaviors in every day driving. 

Data from laboratory studies and driving simulators are useful in determining the 

behavior around specific examples of distracting behaviors; however, they cannot 

provide insight into the overall prevalence of such actions in normal driving 

circumstances. If normal driving behavior is to be modeled, naturalistic driving studies 

(NDSs – those that involve passive observation of drivers during normal daily driving) 

provide the most appropriate data for examining distraction. [Hurts, Angell, and Perez 

2011] 

Stutts et al. [2003] performed one such NDS. The authors used a collection of 

inward- and outward-facing cameras to observe 70 drivers for approximately three 

hours each. Videos were manually analyzed with distractions grouped into nine 

categories. The duration and frequency of each of the behaviors involved was tabulated. 

Due to the subjective nature of the behaviors under study, the agreement between 

coders as to when distractions began and ended “only reached about 65% or 70%.” 

Excluding conversing with passengers, the authors found drivers engage in these 

activities 16.1% of the time their vehicles are moving.  
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While no distributions were derived, and no cumulative patterns were presented 

by Stutts et al. [2003], their data were recently used to derive the only example similar 

to this work for providing a data-driven model for driver distraction that is suitable for 

microsimulation. The platform presented in that work [Lindorfer et al. 2018], begins by 

developing a “segregation matrix” for each simulated driver that represents, based on 

observed percentages, whether a particular driver will ever engage in each of the 

distracting behaviors tabulated. From there, each type of distraction is generated with 

Poisson arrival patterns derived from the overall average proportion of time it was 

observed in the NDS. These distraction events are then randomly assigned to drivers 

who are not currently otherwise distracted, and whose segregation matrices show that 

they are susceptible to that type of distraction.  

Time proportions are quoted as aggregated means and standard deviations in 

[Stutts et al. 2003], leaving the authors to assume a log-normal distribution based on 

the observations of Yang and Peng [2009]. The method of moments is used to fit 

distraction duration (𝐷𝑖) distributions because the first two central moments of the 

empirical distribution presented in the data source are insufficient for “more 

sophisticated types of distribution fitting such as e.g. maximum likelihood estimation.” 

[Lindorfer et al. 2018]  

Beyond the above assumptions, the major limitation of this approach is that it is 

based on data that required extensive manual reduction in a method that is not likely to 

be repeated. The data source used in the model developed herein relies on eye-glance 
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analysis from an NDS. [Dingus et al. 2006] The data used were manually coded, but a 

variety of methods have been developed for automatically recognizing distraction based 

on eye movements and driving performance. [e.g. Liang, Lee, and Reyes 2007] 

SUMMARY 

The limitations of using historic crash data for studying pedestrian safety 

necessitated the creation of surrogate safety measures. Among these is the concept of a 

conflict, which occurs when two road users’ current trajectories put them on a collision 

course. While this is somewhat of a subjective concept, it can be quantified using a 

variety of metrics.  

Time-to-collision (TTC) is a promising metric that has received significant 

attention. TTC represents how long in the future a collision would occur between two 

parties, given their current velocities. More specifically, the minimum TTC that occurs 

over the course of an interaction has been shown to be a good surrogate to crash 

statistics for quantifying safety performance. For vehicle-pedestrian interactions, a 

minimum TTC value below 1.5 seconds is generally considered to represent a conflict. 

While also subjective, a further distinction can be made that a minimum TTC below 1.0 

second represents a serious conflict. [Kraay, van der Horst, and Oppe 1986] 

Conflict data is time- and resource-intensive to collect and analyze. It is also only 

available after a project is completed. Therefore, simulation is an essential tool in traffic 

safety analysis. While microscopic and agent-based traffic simulations are numerous for 
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vehicular or pedestrian behavior in isolation, the interaction between the two user 

groups has received less attention. Two notable exceptions are [Zheng et al. 2015] and 

SAFEPED. [Waizman, Shoval, and Benenson 2015] 

Where vehicle-pedestrian interactions are considered, the dearth of explicit 

models and specific empirical data make simplifying assumptions necessary. Among the 

topics generally over-simplified in simulation are the limitations of human drivers. These 

human factors are, however, at the foundation of the breakdowns that make the road a 

dangerous setting. Distraction stands out as a human factor that is largely absent from 

models of driver behavior suitable for use in simulation.  

Yang and Peng [2009] presented the first exception to this gap in the literature. 

Their “errorable” driver model derived a distribution of distraction from observed 

deviations from an applied car-following model. Recently, Lindorfer et al. [2018] 

presented another, based on detailed decomposition of distracting behaviors from a 

prior naturalistic driving study. Both works represent valuable contributions to the field. 

However, both have their limitations. Use of the former has its foundation in the 

assumption that any significant deviations from expected driving behavior are 

attributable to distraction. The latter is based on a single, specialized set of data that is 

unlikely to be repeated. The work presented herein presents another approach, based 

on eye-glance behavior data from a large naturalistic driving study. Data of this type are 

commonly used for a variety of purposes and are relatively easy to collect. These 

features make eye-glance data attractive as a basis for modeling distraction.  
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DRIVER MODELING 

Despite the startling statistics of casualties on the road, collisions are rare events 

at any given location. Modeling is therefore often a necessary tool for analyzing the 

potential for danger. However, after decades of active research, a universally accurate 

and robust model of road user behavior remains an elusive target. This is not surprising, 

as human behavior results from an amalgam of complex internal and interactive 

processes, many of which are still not fully understood. This makes the problem a 

difficult one; but it also means there are many angles from which the task can be 

approached. Traffic models have been developed based on the work of cognitive 

scientists, physicists, psychologists, and computer scientists – each discipline adding to 

our understanding of the patterns we see. 

Fundamentally, driving can be broken down into three levels of control: strategic 

(trip planning), tactical (maneuvering), and operational (basic skills). [Michon 1971] Car-

following and lane-keeping would be tactical, while the actual movement of the pedals 

and steering wheel are operational. These realms generally interact in a top-down 

manner: Decisions at the strategic level set the stage for tactical decisions, which define 

the necessary operational tasks. This hierarchy can break down, however, if 

circumstances in the road environment interrupt decisions made at higher levels. Many 

subtasks can be handled subconsciously, but when the unexpected happens, the driver 

must bring the task involved into conscious control. [Reason et al. 1990] 
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With such a broad and diverse landscape under review, it is perhaps best to 

begin with a fundamental truism and build from there: Road users move in two 

dimensions. Within this constraint, pedestrians generally have the freedom to move in 

any direction they choose, whereas motor vehicles are typically confined to lanes. This 

makes it possible and convenient to decompose vehicular motion on a straight road into 

orthogonal components: longitudinal motion along a lane and transverse motion within 

and between lanes. It is therefore not surprising that driver models predate and far 

outnumber pedestrian models. As mentioned above, driving is a means of getting from 

one place to another, so it is also not surprising that the majority of these driver models 

focus mainly on the longitudinal component.  

Within the confines of this simulation there are no traffic signals or changing 

speed limits, so longitudinal movement is simply a combination of car-following 

behavior and pedestrian yielding. The lateral movement of driver-car units on a straight 

road (under normal circumstances) consists of lane-choice and position within the lane. 

In this model, lane changing is ignored in the interest of simplicity. The added mental 

workload of changing lanes makes this an important area for further research, but the 

complexity is outside the scope of this research. Exact position within the lane would 

have second-order effects on yielding behavior and gap acceptance, but its effect was 

deemed insignificant in the current exploration. Further, while lane-changes far in 

advance of a crosswalk would constitute a form of yielding, no research could be found 

on the prevalence of this behavior. Finally, if a driver deviates from strictly forward 
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movement to avoid a pedestrian at the last moment, that would constitute a conflict. 

The presence of this conflict is all that is being investigated; and its aftermath is, again, 

beyond the scope of the model presented. 

MODELING HUMANS 

Beyond modeling patterns in the physical behavior of drivers, researchers have 

developed theoretical cognitive models to posit potential thought processes behind 

these patterns. In the realm of driver behavior, there are two broad categories of 

cognitive models (though they are not mutually exclusive) [Shinar 2007a]: those 

designed to describe the human actor in terms of cognitive limitations (e.g. Wickens’ 

[1984] “bottleneck” of limited attention and information processing resources) and 

those that attempt to describe the strategies drivers adopt to accomplish their goals. 

While these theories do not attempt to describe the full cognitive capacities of their 

subjects, they present testable frameworks into which the results of cognition can be 

parameterized and, potentially, predicted. “Absent the theories, it is almost impossible 

to specify what new countermeasures might emerge. Thus, what is a standard operating 

procedure for many human factors researchers (using models) might require an act of 

faith from practicing highway engineers who do not normally invoke theories of human 

behavior.” [Kantowitz et al. 2004] 

Among the earliest of these reductionist theories of cognition (wherein complex 

behaviors are broken down into component parts) is the assertion that “the mind is 

made up of certain sub-forces – the perception, the intellect, the emotions, and the 
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will.” [Hammond 1876] This formulation of the mind (referred to as PIEV, after changing 

the word will to volition) is the basis of a later architecture for modeling human practical 

reasoning within software: the belief/desire/intention model (BDI). [Bratman 1987] In 

this model, agents within a software program have a set of knowledge about their 

surroundings – their “beliefs,” and a set of goals they are trying to fulfill – “intentions.” 

This terminology demonstrates the contributions of the approach: agents (and the 

humans they represent) act based on the information they have, even if this differs from 

the ground truth; and their actions are intended to achieve an ultimate goal – as 

opposed to traditional programming, which is instead rigidly task-oriented. Based on its 

beliefs and desires, a software agent performs actions chosen from among a set of 

plans. These are its intentions – the behaviors chosen.  

One fundamental cognitive model is based on the theory that decision makers 

are subconsciously maximizing an equation that balances the outcomes of available 

actions – the so-called expected utility theorem. [Neumann and Morgenstern 1944] An 

early adaptation of this approach, prospect theory, instead considers a weighted utility 

equation of the potential risks and rewards of possible courses of action. [Kahneman 

and Tversky 1979] Another cognitive model asserts that drivers alter their behavior to 

maintain a comfortable level of anxiety while driving. [Taylor 1964] This was later 

adapted to argue that drivers adjust their behavior to stabilize their subjective estimates 

of the probability of a collision – risk homeostasis. [Wilde 1982] More recently, it was 

suggested [Fuller 2005] that what drivers attempt to maintain is a stable level of task 
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difficulty, adjusting their speed and behavior to adapt to more or less challenging 

scenarios: this is the task-capability interface. 

Many attempts have been made to base behavior models on such cognitive 

theories, bridging the gap between the engineering and psychological approaches. The 

Atomic Components of Thought (or “Adaptive Control of Thought-Rational” – ACT-R) 

constitutes a ground-up approach to modeling driver behavior. [Salvucci 2005] It is a 

cognitive architecture model that utilizes theories of the mind to enable exploration of 

how specific secondary tasks are accomplished alongside a main activity such as driving. 

Hamdar, Mahmassani, and Treiber [2014] developed another model that intrinsically 

incorporates driver uncertainty into a prospect utility maximization framework. 

Saifuzzaman, et al. [2015] proposed yet another based on Fuller’s task-capability 

interface. Absil [2008] proposed a behavior model specifically for use in 

microsimulation; however, the author cited the lack of an “accurate enough model of a 

human being for distraction to be properly implemented.” Reichardt [2008] even 

developed a driver model that attempts to recreate driver emotional responses to 

traffic situations, and how these changes affect risk acceptance behavior.  

MACROSCOPIC MODELS 

All longitudinal driver models are essentially derived from the fundamental 

relation of traffic [Wageningen-Kessels et al. 2015], which describes the intrinsic 

relationship between the density (𝜌) of vehicular traffic and the speed (𝑉) of that traffic. 
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This correlation was first presented by Greenshields [1935], who derived a parabolic 

speed-flow relationship. Some of his data are shown in Figure 2.   

From this fundamental relationship 

between density (or, equivalently, 

headway – the space between cars – 𝑠) 

and speed, two general approaches for 

describing traffic can be pursued. First, the 

macroscopic approach aggregates the 

motion of vehicles into average properties 

that describe traffic flow in terms associated with fluid dynamics, typically using partial 

differential equations (PDEs). The mathematics of these macroscopic traffic dynamics 

have been a topic of active research for decades (e.g. the LWR model [Lighthill & 

Whitham 1955; Richards 1956] or gas-kinetic models [Prigogine & Herman 1971]). These 

models explore the relationships among the three essential variables of traffic flow: 

density (𝜌), velocity (𝑉), and flow rate (𝑞 – vehicles passing a point per unit time): 

 𝑞 = 𝑉𝜌 [1] 

Along with the definition of flow (Equation [1]), macroscopic models typically 

include a representation of the conservation of vehicles.3 Put simply, the change in the 

                                                      

3 The derivation here loosely follows that in Chapter 2 of [Kachroo et al 2008] 

FIGURE 2 – 
GREENSHIELDS’ [1935] FUNDAMENTAL DIAGRAM 
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number of vehicles in a road segment between two points, 𝑥1 and 𝑥2, is given by the 

number of cars entering the segment, minus the number leaving the segment, plus the 

net influx of vehicles from on- and off-ramps. We can represent this latter influx over a 

distance, 𝑑𝑥, as Φ(𝑥, 𝑡)dx. Since, under normal circumstances, no vehicles are created 

or destroyed on a road segment, the number of cars within the segment is given by 

 
𝑛 = ∫ 𝜌(𝑥, 𝑡)dx

𝑥2

𝑥1

 [2] 

The change in 𝑛 is then given by 
𝑑𝑛

𝑑𝑡
= 𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 + ∫ Φ(𝑥, 𝑡)𝑑𝑥

𝑥2

𝑥1
. If we allow 𝑥1 

and 𝑥2 to vary with time, this becomes a partial derivative, and the integral form of the 

conservation law becomes 

 𝜕

𝜕𝑡
∫ 𝜌(𝑥, 𝑡)dx
𝑥2

𝑥1

= 𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 +∫ Φ(𝑥, 𝑡)dx
𝑥2

𝑥1

 [3] 

Now, by the fundamental theorem of calculus, 

 
𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 = −∫

𝜕

𝜕𝑥
𝑞(𝑥, 𝑡)dx

𝑥2

𝑥1

 [4] 

Substituting this into Equation [3], we have 

 
∫ [

𝜕

𝜕𝑡
𝜌(𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑞(𝑥, 𝑡) − Φ(𝑥, 𝑡)] dx

𝑥2

𝑥1

= 0 [5] 

Since the only quantity that equals 0 regardless of the endpoints over which it is 

integrated is the 0-function, we can set the quantity within the square brackets to 0; 

and we have the continuity equation: 



28 | P a g e  

 𝜕ρ

𝜕𝑡
+
𝜕q

𝜕𝑥
= Φ [6] 

To constrain a system of three variables, we need three equations. For most 

formulations, the third relationship is an equation for the average speed of traffic. One 

foundational approach, the Lighthill-Whitham model [Lighthill & Whitham 1955], 

assumes the equilibrium velocity to be a function of density: 𝑉(𝑥, 𝑡) = 𝑉𝑒(𝜌(𝑥, 𝑡)). Even 

with such simplifying assumptions, many of the collective, self-organized phenomena of 

instabilities and nonlinear interactions in traffic flow can be examined from this 

perspective; and much progress has been made through this approach toward 

comprehending the behavior of traffic as a whole. 

MICROSCOPIC MODELS 

The alternative approach recognizes that traffic patterns result from countless 

decisions and actions taken by individuals, based on their surroundings as well as their 

personal attributes and current states. While the large number of actors means that 

general characteristics of these patterns can be recreated from a macroscopic 

perspective, the details are obscured. The aim of a microscopic approach, on the other 

hand, is to enable examination of individual interactions in detail. Micro-simulation 

models of traffic number in the hundreds [Brockfeld et al. 2003], each with its own 

strengths and weaknesses. However, broadly speaking, there only a few general 

categories of microscopic modeling.  
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The earliest microscopic models were so-called safe-distance models, such as the 

Pipes [1953] and Gipps [1981] models, which express a driver’s (the follower’s) behavior 

in terms of her speed and the distance to the vehicle ahead (the leader). The General 

Motors family of car-following models generalize many of these “follow-the-leader” 

systems. [Gazis, Herman, and Rothery 1961] Another approach, action-point models 

(first formalized by Wiedemann [1974]), utilize thresholds for psychophysical 

determination (a driver’s ability to perceive changes in the relative motion between 

herself and the car ahead) to define various regimes, each associated with an 

appropriate acceleration response.  

Two newer categories of microscopic models have been developed. The first of 

which is referred to as cellular-automata (CA) models. In these approaches, (first 

introduced by Cremer and Ludwig [1986], but most famously implemented by Nagel and 

Schreckenberg [1992]) as opposed to the forms presented previously, space is 

discretized into cells. Each cell is either occupied by one vehicle or empty, and a list of 

rules determines when each automaton will move, and into which cell. An even newer 

category of models was proposed in the 1990s [Kikuchi & Chakroborty 1992], called 

fuzzy logic models. These models attempt to recreate the vague heuristics of driver 

decisions in a natural language-based format, instead of the deterministic equations of 

other approaches. To accomplish this, logical operators are applied to variables that 

take values between 0 and 1 based on the state variables of the local traffic. 
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The final general category of microscopic conceptualizations of vehicle traffic are 

termed stimulus-response models. In these models, a follower’s acceleration, 𝑎 = ⁡
𝑑𝑣

𝑑𝑡
=

𝑣̇, is determined by her own velocity, 𝑣; her current headway, 𝑠; and the speed of the 

car ahead (or, more explicitly, the difference between her speed and that of the leading 

car), ∆𝑣 = 𝑣𝑓 − 𝑣𝑙 = 𝑠̇. 4 A general form of stimulus-response models, incorporating the 

driver’s reaction time, 𝜏𝑟𝑒𝑎𝑐𝑡,
5 was published very early [Chandler et al. 1958]: 

 𝑎(𝑡) = 𝑓(𝑣(𝑡), 𝑠(𝑡 − 𝜏𝑟𝑒𝑎𝑐𝑡), 𝑠̇(𝑡 − 𝜏𝑟𝑒𝑎𝑐𝑡)) [7] 

The broad array of approaches should not be surprising. Driving is a complex 

behavior, and (so far) no driver model has been able to capture all the behaviors of real 

drivers. To complicate matters more, it has been shown that different models work 

better for different drivers. [Ossen and Hoogendoorn 2010] In other words, not only do 

drivers have responses of different magnitudes to the cars ahead of them, they appear 

to actually be responding to different stimuli. While this fact is troublesome for any 

detailed modeling of traffic flow, car-following behavior is not the primary objective of 

this exploration. 

When 13 of the most prominent models were compared in terms of how well 

they fit the behavior of drivers on a one-lane road, two models tied for the best 

performance: the Nagel and Schreckenberg CA model [1992] and a stimulus-response 

                                                      

4  All variables in the following derivation are applied to the following car, so the subscript is dropped for 
clarity. 

5  This is equivalent to the 𝜏𝐴𝐷𝑅𝑇  of later sections. 
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model called the Intelligent Driver Model. [Treiber et al. 2000] The latter was chosen for 

the current simulation due to its strong performance, ease of implementation, and the 

fact that each of the model’s parameters has a reasonable interpretation and is 

empirically measurable. [Kesting and Treiber 2008a] Further, it is one of the simpler 

developed models in terms of number of parameters. This is a good thing, as a review of 

car-following models found that “complex models likely [do] not produce better 

results.” [Brockfeld et al. 2004] In the words of one of the authors of the IDM, “a model 

for a real system should be as simple as possible, but not simpler.” [Helbing et al. 2002] 

INTELLIGENT DRIVER MODEL 

The Intelligent Driver Model (IDM) is a time-continuous stimulus-response car 

following model. [Treiber et al. 2000] A macroscopic equivalent of the model, developed 

by the authors, [Helbing et al. 2002] is presented in Appendix B. In the original 

formulation of the IDM, the behavior of a single leading vehicle, 𝑙, determines that of 

the following vehicle. A driver’s change in speed, 
𝑑𝑣

𝑑𝑡
= 𝑣̇, at any time 𝑡 + ∆𝑡 is 

determined by the situation at time 𝑡: namely, her speed, 𝑣; the speed of the car ahead 

(or, more explicitly, the difference between her speed and that of the leading car, ∆𝑣 =

𝑣 − 𝑣𝑙); and the current headway, 𝑠,6 by the following equations: 

                                                      

6  Headways and time gaps in the IDM are netto gaps (Italian for net), meaning they measure the distance 
from the front bumper of a following car to the rear bumper of its leader. This is in contrast to brutto 
gaps (Italian for gross), which measure front-bumper to front-bumper distances. 
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𝑣̇ = 𝑎𝑚𝑎𝑥 (1 − (

𝑣

𝑣𝑓
)

𝛿

− (
𝑠∗

𝑠
)
2

)

𝑠∗ = 𝑠0 +max(0, ⁡⁡𝑠1√
𝑣

𝑣𝑓
+ 𝑣𝑇 +

𝑣∆𝑣

2√𝑎𝑚𝑎𝑥𝑏
)

 [8] 

The above equations demonstrate that the IDM is a combination of an open-

road strategy: 𝑣̇ = 𝑎𝑚𝑎𝑥 [1 − (
𝑣

𝑣𝑓
)
𝛿

], and a deceleration strategy 𝑣̇ = −𝑎𝑚𝑎𝑥 (
𝑠∗

𝑠
)
2

 that 

only becomes relevant if the headway is close to the preferred headway, 𝑠∗. 7 While 

these parameters can vary based on a driver’s external situation and internal state, they 

are defined as follows: [Kesting et al. 2009] 

• 𝑣𝑓 – maximum, or free-flow, speed 

• 𝑇 – preferred time-headway (𝑇 = 𝑠
𝑣⁄ ) 

• 𝑠0 – jam headway, the space left in front when traffic comes to a standstill  

• 𝑠1 – non-linear headway term. This parameter is set to 0 in most analyses of the 

model.  

• 𝑎𝑚𝑎𝑥 – maximum comfortable acceleration 

• 𝑏 – maximum comfortable deceleration (in absolute value) 

• 𝛿 – a description of how acceleration changes as the desired speed is 

approached. 𝛿 = 0 yields a linear acceleration curve. 𝛿 → ∞ corresponds to 

always accelerating at 𝑎𝑚𝑎𝑥. A value of 𝛿 close to 4 agrees with empirical data. 

 

                                                      

7  With a large enough ∆𝑣, the equations would possibly produce a safe headway shorter than the jam 
headway. This is avoided with the max() function in the calculation of 𝑠∗. 
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ENHANCED IDM 

In its original formulation, the IDM has unrealistically large decelerations when 

the speed is above the desired free-flow speed. The remedy for this limitation, as 

devised by the authors of the IDM [Treiber and Kesting 2013a, Ch 11], is a piecewise 

acceleration equation, referred to as the Enhanced Intelligent Driver Model (EIDM):  

 

𝑎𝑓𝑟𝑒𝑒(𝑣) =

{
 
 

 
 ⁡⁡⁡⁡⁡⁡⁡𝑎𝑚𝑎𝑥 [1 − (

𝑣

𝑣𝑓
)

𝛿

]⁡⁡⁡⁡⁡⁡⁡⁡

−𝑏 [1 − (
𝑣𝑓

𝑣
)
𝛿∗𝑎𝑚𝑎𝑥 𝑏⁄

]

 

if 𝑣 < 𝑣𝑓 

if 𝑣 ≥ 𝑣𝑓 

[9] 

While there are no changes in speed limit to create such a situation in this 

model, the 𝑎𝑓𝑟𝑒𝑒 term defined above is useful in correcting the next deficiency – the fact 

that gaps in platoons traveling near the desired speed, 𝑣𝑓, become greater than 𝑠∗, and 

the parameter 𝑇 loses its meaning. This can be avoided by distinguishing between the 

cases of 𝑠 ≤ 𝑠∗(𝑣, ∆𝑣) and 𝑠 > 𝑠∗(𝑣, ∆𝑣), while insisting that 𝑣̇ remains continuously 

differentiable at the transition point: 8 

 𝑑𝑣

𝑑𝑡
|
𝑣<𝑣𝑓

= {
𝑎𝑚𝑎𝑥(1 − 𝑧

2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑎𝑓𝑟𝑒𝑒(1 − 𝑧
2𝑎/𝑎𝑓𝑟𝑒𝑒)⁡⁡

 

𝑑𝑣

𝑑𝑡
|
𝑣≥𝑣𝑓

= {
𝑎𝑓𝑟𝑒𝑒 + 𝑎𝑚𝑎𝑥(1 − 𝑧

2)
𝑎𝑓𝑟𝑒𝑒 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

if 𝑧 =
𝑠∗(𝑣,⁡⁡⁡∆𝑣)

𝑠
≥ 1 

otherwise 
 

if 𝑧 ≥ 1 

otherwise 

[10] 

                                                      

8  In the original formulation of the IIDM [Treiber and Kesting 2013a], the cases of Equations [9] and [10] 
were 𝑣 ≤ 𝑣𝑓 and 𝑣 > 𝑣𝑓. This lead to division by 0 in the case of 𝑠 = 𝑠∗. Through correspondence with 

the authors, this issue was resolved by adjusting the ranges to those stated here. 
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CONSTANT ACCELERATION HEURISTIC 

Though less extreme, the IDM also produces overreactions when short headways 

occur between two cars going nearly the same speed. [Kesting, Treiber, and Helbing 

2010] Assume, for example, a driver moves from one lane into another whose vehicles 

are traveling at nearly the same speed. Using the IDM, the sudden drop in headway that 

follows this move would lead the following car to decelerate drastically. Real drivers, on 

the other hand, typically would not. This unrealistic behavior can be avoided by 

enforcing the following rule (subscript 𝑙 represents the lead vehicle): 

 

𝑎𝐶𝐴𝐻 =

{
 
 

 
 𝑣2𝑎̃𝑙

𝑣𝑙
2 − 2𝑠𝑎̃𝑙

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑎̃𝑙 −
(𝑣 − 𝑣𝑙)

2𝛩(𝑣 − 𝑣𝑙)

2𝑠

 

if 𝑣𝑙(𝑣 − 𝑣𝑙) ≤ −2𝑠𝑎̃𝑙 
 
otherwise 

[11] 

Here, 𝑎̃𝑙 = min⁡(𝑎𝑙, 𝑎), represents the effective acceleration, or the lower of the 

pair of vehicles; and 𝛩(𝑥) is the Heaviside step function, which is 0 for negative 

arguments and equal to 1 for positive arguments.9 While Equation [11] eliminates 

excessive decelerations in specific circumstances, it is not a full car-following model. It 

                                                      

9  The Heaviside step function, proposed by Oliver Heaviside [Heaviside 1892] is a useful tool in 
operational calculus; yet it does not necessarily have a meaning when the argument is equal to zero. 
Heaviside considered himself an explorer in the realms of physics, and considered strict mathematical 
rigor as stifling to the pioneering spirit. He preferred "the substitution of simpler and more direct 
processes for the indirect and complicated processes of the highly cultivated mathematician with too 
rigorous proclivities," going on to assert that "complaints of the want of perfection of the ways and 
manners of work of explorers on the part of men who are accustomed to more rigorous methods have 
a considerable element of the ludicrous in them.” [Heaviside 1899] Since the numerator disappears 
when the argument of the function is zero anyway, this limitation is not disqualifying. 



35 | P a g e  

should therefore only be applied when the IDM produces unrealistically high values of 

deceleration. To enforce this, the resulting acceleration (𝑎𝐴𝐶𝐶, since it was derived by 

the authors as a model for an adaptive cruise control system) that is used in the 

simulation is defined by: 

 

𝑎𝐴𝐶𝐶 = {

𝑎𝐼𝐷𝑀⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

(1 − 𝑐)𝑎𝐼𝐷𝑀 + 𝑐 [𝑎𝐶𝐴𝐻 + 𝑏 tanh (
𝑎𝐼𝐷𝑀 − 𝑎𝐶𝐴𝐻

𝑏
)⁡] 

if 𝑎𝐼𝐷𝑀 ≥ 𝑎𝐶𝐴𝐻 
 

otherwise 
[12] 

Here, 𝑐 is a so-called “coolness” factor to define the quantity of the correction. 

𝑐 = 0 would revert to the IDM acceleration. The authors assign a value of 𝑐 = 0.99, 

which will be used in the simulation. 

PARAMETER VALUES 

For those drivers who are best modeled by the IDM (a la Ossen and 

Hoogendoorn 2010), the appropriate values of these parameters vary widely between 

countries and regions, among drivers within a region, and even within individual drivers 

over time (e.g. “frustration effects”). [Treiber and Helbing 2003] There have been many 

attempts at calibrating them for small groups of drivers, using a variety of methods. 

Some of these results are presented in Table 1. Methods that rely on integrated 

measures such as travel time can average out crucial details such as oscillations; while 

those based on repeated microscopic measurements like headways are heavily 

influenced by inter- and intra-driver variability. [Treiber and Kesting 2010] However, the 

behavior of the IDM is rather robust to changes in the distributions of driver 

parameters. Deviations between observed and simulated behavior have been shown to 



36 | P a g e  

remain low even when using parameters averaged over several drivers. [Kesting 2008] 

Further, sensitivity analysis of the parameters of the IDM [Ciuffo et al. 2014] shows that 

varying drivers’ preferred time headway, 𝑇, can cover the full variability in vehicle 

speeds or positions in a car-following situation. In fact, the authors assert that 𝑇 “is the 

only parameter that in any case needs calibration.” 

 

Treiber 
and 

Kesting 
2013b 

Ciuffo 
et al. 
2014 

Schakel 
et al. 
2012 

Punzo and 
Simonelli 2005 

Kovács et 
al. 201610 

Kesting 
2008 

Kim and 
Mahmassani 

2011 

parameter    M S   M S 

𝑣𝑓  

(𝑚/𝑠) 
16.111 20.58 34.412 28.362 203.987 

15.3 
(fixed) 

57 85.72 26.55 

𝑇(𝑠) 1.2 0.54 1.2 0.69 0.046 0.86 1.29 1.266 0.507 

𝑠0(𝑚) 1.53 2.0 3 (fixed) 0.743 0.13 
2.0 

(arbitrary) 
2.22 2.172 1.152 

𝑎𝑚𝑎𝑥  
(𝑚/𝑠2) 

1.39 2.83 1.25 2.568 0.619 
1.62 

(det’d by 
𝑠0 choice) 

1.25 1.406 1.012 

𝑏(𝑚/𝑠2) 0.65 2.92 2.09 1.694 0.493 2 (fixed) 1.57 2.225 1.849 

TABLE 1 – EMPIRICAL IDM VALUES 

For the simulation, the values reported by Kim and Mahmassani [2011] will be 

used to define driver behavior. This study was performed using data collected on a 500-

                                                      

10  The authors measured these parameters for drivers at urban intersections. 
11 These data come from observations on an urban road, so free-flow speed is constrained by legal limits. 

The posted speed limit is not given in the publication, but German roads have a default speed limit of 
50 km/s (≈13.9 m/s) in built-up areas. 

12 Data for this study were collected on the A20 freeway near Rotterdam, for which the speed limit is 120 
kph (≈33.3 m/s). 
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meter stretch of California’s Interstate-80 as part of the Next Generation SIMulation 

project. [NGSIM 2006] It included 465 follower-leader pairs traveling along a six-lane 

interstate. While the parameters quoted in Table 1 describe the distribution of the raw 

population, Kim and Mahmassani [2011] observed a distribution in values closer to 

lognormal for several of the variables. They do not quote the scale parameter and shape 

parameter for the distributions derived, but we can approximate the values they would 

have found by inverting the equations derived by Finney [1941] for estimating the mean 

and standard deviation of a lognormal distribution. For a transformed set of data, 𝑥 =

ln⁡(𝑦), that has a mean, 𝜇, and standard deviation, 𝜎, the parent population, 𝑦, would 

have mean, 𝑀, and standard deviation, 𝑆, given by: 

 
𝑀 = 𝑒𝜇+

𝜎2

2 ⁡⁡⁡⁡; ⁡⁡⁡⁡𝑆2 = 𝑒2(𝜇+𝜎
2) − 𝑒2𝜇+𝜎

2
 [13] 

We can invert these13 to give estimates for the shape and scale parameters of 

the transformed data set: 

𝜇 = 2 ln(𝑀) −
1

2
ln(𝑆2 +𝑀2) 

𝜎2 = ln(𝑆2 +𝑀2) − 2 ln(𝑀) 

Estimates derived using these equations are presented in Table 2. Also presented 

in Table 2 are the extremes of the values allowed in the simulation. Since values are 

                                                      

13 Following the methods of [Ginos 2009] 
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derived using distributions that are asymptotic to the x-axis, the occasional unrealistic 

value is generated. To avoid this, maxima and minima were assigned (based on 

reasonable real-world values); and any generated values outside these ranges are 

explicitly set to the relevant extreme value. 

parameter 𝑀 𝑆 distribution 𝜇 𝜎 max min 

𝑇(𝑠) 1.266 0.507 normal   3.294 
(𝑀 + 4𝑆) 

0.252  
(𝑀 − 2𝑆) 

𝑠0(𝑚) 2.172 1.152 lognormal 0.6517 0.4979 
4.476 

(𝑀 + 2𝑆) 
0.444  

(𝑀 − 1.5𝑆) 

𝑎𝑚𝑎𝑥 ⁡(𝑚/𝑠
2) 1.406 1.012 lognormal 0.132 0.6461 

5.454 
(𝑀 + 4𝑆) 

0.394  
(𝑀 − 𝑆) 

𝑏(𝑚/𝑠2) 2.225 1.849 lognormal 0.5372 0.7246 7.414 
0.376  
(𝑀 − 𝑆) 

TABLE 2 – IDM PARAMETERS USED IN SIMULATION [ADAPTED FROM KIM AND MAHMASSANI 2011] 

Returning to Table 1, the unrealistically-large desired speeds (𝑣𝑓) of 57 m/s (≈211 

kph) and 85.7 m/s (≈308 kph) from Kesting [2008] and Kim and Mahmassani [2011], 

respectively, can be interpreted as resulting from data being fit from observations of 

bound traffic. Since most drivers did not experience free-flow conditions, the fitting 

results cannot produce realistic values for this parameter. [Kesting 2008] A more 

realistic value is needed. However, the appropriate distribution requires some 

consideration.  

                                                      

14 This value is equal to the maximum deceleration physically possible by the average car on a dry road. 
[Greibe 2007] It is also quite close to the value AASHTO gives for emergency decelerations (4.5 m/s2) 
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Urban free-flow speeds (𝑣𝑓) vary greatly,15 and are influenced by a litany of 

factors. For example, the Highway Capacity Manual’s regression model for predicting 

free-flow speeds has nine inputs. [Moses and Mtoi 2013] Of these variables, the only 

one included in this simulation is the posted speed limit (PSL). While this is a significant 

simplification, it has been demonstrated [Fitzpatrick et al. 2001] that the PSL is the most 

significant factor affecting free-flow speeds.16 In a study of 104 sites around the United 

States, Fitzpatrick et al. [2003] found that a linear relationship between quantiles of 

driver free-flow speeds and the PSL described the data reasonably well. The equations 

found, as well as the resulting speeds for the median, 85th percentile, and 95th percentile 

are presented in Table 3  

 Q50 Q85 Q95 Quantile 

 3.336 + 0.966 ∗ PSL 7.675 + 0.98 ∗ PSL 10.196 + 0.993 ∗ PSL Linear fit 

speed limit 0.911 0.901 0.879 Adjusted R2 

25 27.5 32.2 35.0  

30 32.3 37.1 40.0  

35 37.1 42.0 45.0  

40 42.0 46.9 49.9  

45 46.8 51.8 54.9  

50 51.6 56.7 59.8  

55 56.5 61.6 64.8  

TABLE 3 – LINEAR REGRESSION OF SPEED QUANTILES TO POSTED SPEED LIMIT (PSL) 
[FROM FITZPATRICK ET AL. 2003] 

                                                      

15 This is further complicated by the fact that, for researchers attempting to characterize free-flow 
behavior, the definition of a vehicle in free-flow conditions is not a settled matter. [Vogel 2002] 

16 The correlation found in [Fitzpatrick et al 2001] is between 85th percentile speeds and posted speed 
limit. Since the generally accepted method for determining speed limits is heavily influenced by 85th 
percentile speeds, the causal relationship here is questionable; however, this distinction does not 
reduce the applicability of the finding. 
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If we assume a Gaussian distribution for 𝑣𝑓, one standard deviation above the 

mean would represent approximately the 84th percentile, and two standard deviations 

above the mean would be approximately the 98th percentile. Based on the data in Table 3 

a Gaussian distribution with a mean value 2mph (≈3.22kph) greater than the PSL17 and a 

standard deviation of 4.5mph (≈7.24kph) would fit the data rather well. These are then 

the parameters used to define the distribution of 𝑣𝑓  in the simulation. As with the 

parameters derived from Kim and Mahmassani [2011], the use of a Gaussian 

distribution allows for unrealistic values of 𝑣𝑓 from the tails of the distribution. To avoid 

this, any generated values more than 4 standard deviations greater or less than the 

mean will be fixed to 𝑀 + 4𝑆 or 𝑀 − 4𝑆, respectively. 

MODELING HUMAN FACTORS  

The task of driving involves three main categories of actors: drivers, their 

vehicles, and the surrounding environment (including e.g. the road, weather, and 

foreign objects). An influential model in the field of error management [Reason 1990] 

argues that errors occur when weaknesses in system-level safeguards coincide with 

natural human errors. This model (referred to as the Swiss-cheese model) posits that 

each of the defenses that a system employs against the natural variation in human 

behavior has weaknesses or holes in it. These defensive barriers stand between human 

                                                      

17 The data collected in [Fitzpatrick et al 2003] present the median, not the mean. However, for speed 
distributions, the difference between these two values tends to be very small. [Berry and Belmont 
1951] 
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actors and any undesired consequences of those actions. In the metaphor from which 

this model derives its name, each of these safeguards is a slice of Swiss cheese with 

holes that are constantly in flux with changing circumstances. Sometimes, all the holes 

line up; and if a person makes a mistake under these circumstances, their error can lead 

to an undesired outcome – here, a crash. 

Due to decades of research and improvements in road and vehicle design, many 

of the latent conditions that make traffic crashes more likely have been removed. 

Analysis of crash data suggests [Treat et al. 1979] that, in the vast majority of collisions, 

human error is to blame. By some estimates, driver error is responsible for as much as 

94% of traffic crashes. [Singh 2015] This study makes no effort to examine the system-

level factors that allow crashes to occur. It instead attempts to isolate some of the 

driver behaviors that can lead to such crashes.  

The aberrant driver behaviors that can lead to a crash can be categorized as 

violations or errors. [Reason et al. 1990] Violations, according to Reason, are “deliberate 

(though not necessarily reprehensible) deviations from those practices believed 

necessary to maintain the safe operation of a potentially hazardous system;” while 

errors are “the failure of planned actions to achieve their intended consequences.” 

Significant efforts have been made toward defining and quantifying the 

categories and effects of driver error; however, “universally accepted taxonomies of 

driver error and error causing conditions are yet to emerge, and most are beset by a 
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lack of validation evidence.” [AustRoads 2011] Most of the literature on errors is based 

on one of two frameworks: accident reports and analysis (along the lines of Hendricks et 

al. [2001]) or self-reported driver questionnaires (such as the Driver Behavior 

Questionnaire of Reason et al. [1990]). These exhibit a strong selection bias in that they 

only include errors that caused crashes (and only those crashes that were reported18).  

The authors of the AustRoads report [2011] divide driver errors into three 

general categories: recognition/perception (e.g. distraction), decision (e.g. misjudged 

velocity), and performance (e.g. loss of control). They also include data on the relative 

frequencies of these categories. However, many of the paper's included errors are not 

necessarily dangerous and/or are outside the realm of this simulation. While this 

categorization is useful in modeling the effects of driver failure, the authors lament the 

dearth of research into “exactly what error causing failures exist across road transport 

systems, how they influence driver behaviour and which failures lead to what driving 

errors.” [AustRoads 2011] 

The main drawback of using the Intelligent Driver Model [Treiber et al. 2000] (or 

any traditional car-following model) for the purposes of this analysis is that it is 

deterministic and, by design, accident-free. This limitation of car-following models can 

be overcome for some circumstances by inclusion of random noise. [e.g. Jost and Kai 

                                                      

18 In Oregon, reporting a crash is only mandated if damages exceed $1500, or the crash causes injury or 
death. 
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2003] However, this is at best an imprecise approach to modeling the limitations of a 

human actor. 

Human drivers are not perfect – they can be distracted, have finite reaction 

times and less-than-perfect perception of distance and relative velocity. One of the 

goals of this research is a comparison of the relative effects that these underlying 

limitations have on the driver failures that affect pedestrian safety. Inclusion of these 

human factors builds on the work of Treiber et al. [2006] and their Human Driver Model 

(HDM). Along with the delayed reactions and perception errors of the HDM, visual 

obstruction and a novel approach to modeling distraction is included. 

DELAYED REACTION 

Humans do not react instantaneously to stimuli. The brain must first recognize 

the input and decide on an appropriate response – this can be termed the mental 

processing time (𝜏𝐵𝑅𝑇). Second, during the movement time (𝜏𝑀), the body executes the 

selected course of action. Finally, the physical device being used takes time to perform 

the action – the device response time (𝜏𝐷𝑅). [Green 2000] 

While the effects of finite driver reaction times on the flow of traffic have been 

considered for decades [e.g. Chandler et al. 1958, Newell 1961], the quantification of 

the phenomenon is not a settled matter. Driver reactions to stimuli can vary based on 

many factors, both endogenous (e.g. driver age, gender, urgency, expectancy, and 

cognitive load [Green 2000]) and exogenous (e.g. headway [Kim and Zhang 2011], traffic 
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mix [Siuhi and Kaseko 2016], or even the color of the object eliciting the reaction [Lee, 

Lee, and Boyle 2009]). From among the diverse domain of driver reactions, two specific 

realms of reaction time can be easily delineated: delay in the acceleration and 

deceleration behavior of car-following, and delayed braking responses. [Mehmood and 

Easa 2009] 

ACCELERATION/DECELERATION REACTION TIME 

Acceleration/deceleration reaction times – ADRT, defined as delays in changes to 

vehicle speed effected through movement of the gas pedal – are shorter than braking 

reaction times (BRTs). This makes sense, as the behavior is a constant feedback loop of 

reaction to expected changes and requires very small movements. Finite ADRT values 

(𝜏𝐴𝐷𝑅𝑇 > 0) are a realistic way of introducing instability into simulated traffic flows. 

[Kesting and Treiber 2008b] Interestingly, while non-zero ADRT adds instability to traffic 

flow on small scales, distributed values can improve large-scale platoon stability (when 

compared to simulations with the reaction times of all drivers being equal). [Treiber, 

Kesting, and Helbing 2007]  

Since ADRT manifests in an essentially continuous manner, studies seeking to 

quantify it rely on genetic algorithms [e.g. Hamdar, Mahmassani, and Treiber 2013] or 

comparison of simulation to empirical behavior through statistical software. [e.g. Siuhi 

and Kaseko 2016] Since the actual acceleration is all that is measured in these studies, 

𝜏𝐴𝐷𝑅𝑇 implicitly includes any movement or device response delays. 
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Unfortunately, of the few studies that report values for 𝜏𝐴𝐷𝑅𝑇, none were found 

that sought to describe a distribution. Siuhi and Kaseko [2016] found acceleration 

reaction times to be 0.1 seconds slower, on average, than deceleration reaction times 

(0.8s and 0.7s, respectively). This makes sense, since deceleration is often a safety-

critical behavior; however, this complexity was not included in this simulation, since the 

flow of traffic is only indirectly related to driver yielding behavior.  

The values chosen instead come from Hamdar, Mahmassani, and Treiber [2013], 

who found a mean (𝑀𝐴𝐷) of 0.658857 seconds, with a standard deviation (𝑆𝐴𝐷) of 

0.726583 seconds. The lognormal distribution was chosen for modeling 𝜏𝐴𝐷𝑅𝑇 in this 

simulation since it is commonly observed in random processes that feature low average 

values, large variances, and are exclusively positive. [Limpert et al. 2001] However, the 

lognormal distribution allows for values approaching 0. Since humans have non-zero 

reaction times, a shifted (or three-parameter) lognormal distribution was used. The 

probability density of the three-parameter lognormal function can be expressed as 

𝑓(𝑥|𝜇, 𝜎, 𝛾) =
1

(𝑥 − 𝛾)𝜎√2𝜋
exp [−

(ln(𝑥 − 𝛾) − 𝜇)2

2𝜎2
] 

Here, 𝛾 is the shift parameter, which gives moves the minimum value away from 

0. In a study seeking to decompose driver reaction times into their constituent parts 

[Lister 1950], an irreducible minimum perception time of 0.25 seconds was found. 

Therefore, 𝛾𝐴𝐷 in this simulation equals 0.25 seconds. The mean, 𝑀, and standard 
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deviation, 𝑆, of a set of values that fit the three-parameter lognormal distribution are 

given by: 

𝑀 = 𝛾 + 𝑒𝜇+
𝜎2

2  

𝑆2 = 𝑒2𝜇+𝜎
2
(𝑒𝜎

2
− 1) 

Rearranging and plugging in the values from Hamdar, et al. [2013]:  

𝜇𝐴𝐷 =
1

2
ln

[
 
 
 (𝑀𝐴𝐷 − 𝛾𝐴𝐷)

2

1 + (
𝑆𝐴𝐷

𝑀𝐴𝐷 − 𝛾𝐴𝐷
)
2

]
 
 
 
≈ − 1.60692 

𝜎𝐴𝐷
2 = ln [1 + (

𝑆𝐴𝐷
𝑀𝐴𝐷 − 𝛾𝐴𝐷

)
2

] ≈ 1.42506 

To implement this in the simulation, a number, 𝜂𝑖, is generated from a normal 

distribution for each driver using Java’s built-in random number generator. Since this 

gives values from a Gaussian with mean of 0 and standard deviation of 1, the produced 

number is multiplied by 𝜎𝐴𝐷 and added to 𝜇𝐴𝐷. Euler’s number, 𝑒, is raised to the result; 

and this is added to 𝛾𝐴𝐷.19  

 𝜏𝐴𝐷𝑅𝑇 = 𝛾𝐴𝐷 + 𝑒
𝜇𝐴𝐷+𝜂𝑖𝜎𝐴𝐷 [14] 

                                                      

19 The lognormal distribution is asymptotic to 0 as the independent variable approaches infinity. 
Therefore, applying it here can lead to unrealistically large reaction times in rare cases. In both the 
datasets collected in [Hamdar, Mahmassani, and Treiber 2013], the histograms of reaction times 
derived using the authors’ genetic algorithm have empty bins for values above 2.5 seconds (with a few 
outliers at values greater than this, up to 3.2 seconds). Since 2.5 seconds is already a value of ADRT that 
produces unrealistic behavior (speeds in excess of 2x the desired maximum), any values above this are 
set to 2.5 seconds. 
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This delay in driver reaction is implemented by means of a delay-differential 

equation.20 [Bellman and Cooke 1963] At each time step of the model, the acceleration 

given by the IDM is calculated and stored. This is then recalled by each agent after her 

native reaction time, τ𝐴𝐷𝑅𝑇, has passed. If 𝑡 − 𝜏ADRT falls between two stored 

accelerations, linear interpolation is used to split the difference. 

BRAKE REACTION TIME 

The literature is replete with studies quantifying driver brake reaction times 

(𝜏BRT) in various situations. In a review of 30 such studies, Green [2000] delineated 

some of the results. In his review, he found mean total brake reaction times (𝜏RT – the 

sum of perception-reaction time – 𝜏BRT, movement time – 𝜏𝑀, and device response 

time – 𝜏𝐷𝑅) of 0.7 to 0.75 seconds, 1.25 seconds, and 1.5 seconds for expected events, 

unexpected but common events, and surprise events, respectively. In an exploration of 

the effects of cognitive load on driver reaction times to pedestrian incursions, Lee et al. 

[2009] found a mean 𝜏BRT of 1.35 seconds in the baseline of driving without a secondary 

task. Another group [Laberge et al. 2004] found a mean 𝜏BRT of 1.31 seconds while 

exploring the effect of distracting conversations on driver reactions to pedestrian 

encroachment.21 

                                                      

20 Originally referred to as “differential-difference equations.” 
21 This is the mean of the values the authors found for their “easy” and “difficult” driving situations. 
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All the studies listed above, while useful in quantifying mean or median values, 

do not attempt to describe the observed distribution of reaction times. To simulate 

distributions in delayed reaction, a function must be chosen to fit the data. A few 

assumptions are required to choose an appropriate function: the function should be 

strictly positive, the survivor function22 should be monotonically decreasing, and the 

function should allow for asymmetry about the mean, as stated by Green [2000] 

“[reaction time] data are almost always skewed toward longer values.” This last 

criterion means that, the median observed reaction time is often lower than the mean 

(one of the few studies to report both values [Chang, Messer, and Santiago 1985] found 

mean values averaged approximately 0.2 seconds higher than median values). The 

simplest distribution that fits these requirements is the Weibull distribution.23 Further, it 

has been observed that the standard deviation of reaction time distributions increases 

linearly with the mean. [Wagenmakers and Brown 2007] The Weibull distribution fits 

this criterion as well. 24 The cumulative distribution function (CDF – the probability that a 

random value chosen from the distribution will be less than or equal to a threshold, 𝑡) 

for the Weibull function is defined for all values of 𝑡 ≥ 0 as: 

                                                      

22 If the cumulative distribution function, 𝐶𝐷𝐹(𝑡) ≡ 𝐹(𝑡), is the probability that a variable will take a 
value less than or equal to 𝑡, then the survivor function, 𝑆(𝑡) = 1 − 𝐹(𝑡), is the probability that the 
value will be greater than 𝑡. 

23 The empirical mean and standard deviation values used to derive the ADRT distribution in the previous 
section could not be simultaneously fit by a shifted Weibull, given the chosen shift parameter – 
therefore, the three-parameter lognormal distribution was used instead. 

24 This relationship is in terms of changes to the scale parameter, 𝜆. 
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𝐹(𝑡) = ⁡1 − 𝑒−(

𝑡
𝜆⁄ )
𝑘

, 𝑓(𝑡) = 𝐹′(𝑡) = ⁡
𝑘

𝜆𝑘
𝑡𝑘−1𝑒−(

𝑡
𝜆⁄ )
𝑘

 [15] 

where 𝜆 is the scale parameter, and 𝑘 is the shape parameter. Haque and Washington 

[2014] observed driver perception reaction times (𝜏BRT) to pedestrians approaching 

marked crosswalks (from the time the pedestrian was in view and started moving 

towards the crosswalk to the moment the driver released pressure on the accelerator) 

and fit the observed data to a Weibull distribution, finding average baseline values for 𝜆 

and 𝑘 of 1.47 and 3.043, respectively.25  

It should be noted that the authors include distraction in their measurements of 

reaction time. The numbers discussed here are from the baseline case (no distracting 

activities). Since the experiment was performed in a driving simulator, it is assumed 

these values represent the performance of a driver free from distraction. There is no 

way to ensure a subject is free from internal distractions, but it is not unreasonable to 

assume participants in a driving simulator experiment are focused on their task. 

The Weibull distribution produces values approaching 0 seconds; which, due to 

the physical and cognitive processes involved, are impossible. Early research attempted 

to quantify the magnitudes of these constraints, and to establish an irreducible 

minimum brake reaction time. Two quality examples of such projects [Johansson and 

                                                      

25 NB: a different parameterization of the Weibull distribution is used in this source, and the equation 
given for the survival function within it has a typo – in the source’s parameterization, the Weibull 

survivor function is 𝑒−(𝜆𝑡)
𝑃
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Rumar 1971; Lister 1950] found a value of 0.4 seconds. A third [Schweitzer et al. 1995] 

found minimum values ranging from 0.38 to 0.42 seconds, depending on drivers’ level of 

preparedness for an emergency braking procedure. This also matches the minimum BRT 

found by Mehmood and Easa [2009]. Lister decomposed this value into a mental 

processing time of 0.25 seconds, and a movement time (𝜏𝑀) of 0.15 seconds. The values 

measured by Haque and Washington [2014] should include this mental processing time 

(𝜏𝐵𝑅𝑇), but not the movement time. The shifted, or three-parameter, Weibull function 

can be applied to produce a distribution that does not violate this constraint. Defining 

the Weibull shift parameter, 𝛾𝑤, and (for convenience) an adjusted scale parameter, 

𝜃𝑤 = 𝜆𝑘, this can be represented – similar to Equation [15] – by 

𝐹(𝑡) = ⁡1 − 𝑒−(𝑡−𝛾𝑤)
𝑘𝑠/𝜃𝑤,𝑠 , 𝑓(𝑡) = 𝐹′(𝑡) =

𝑘𝑠
𝜃𝑤,𝑠

(𝑡 − 𝛾𝑤)
𝑘𝑠−1𝑒−(𝑡−𝛾𝑤)

𝑘𝑠/𝜃𝑤,𝑠  [16] 

The Weibull distribution is quite flexible. With a given shift parameter, 

appropriate shape and scale parameters can be found to produce a set of points that 

would be fit by the un-shifted distribution found by Haque and Washington [2014]. This 

is accomplished iteratively: 

Step 1) Ranges of possible values for the shifted shape and scale parameters, 𝑘𝑠 and 

𝜆𝑠, are chosen. 

Step 2) For each, a shifted Weibull distribution is generated. 

Step 3) The un-shifted parameters, 𝑘 and 𝜆, with the maximum likelihood of 

producing this data set from an un-shifted Weibull distribution are calculated. 
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The values of 𝑘𝑠 and 𝜆𝑠 that produce values of 𝑘 and 𝜆 closest to the values 

reported in Haque and Washington [2014] are chosen and used in the simulation. The 

methods of the maximum likelihood calculation are presented here. 

For each point, the probability density function (PDF, the derivative of the CDF: 

𝑓(𝑥) = 𝐹′(𝑥)) calculates the probability of measuring the given value. Thus, the product 

of all such probabilities is the likelihood of the data series arising from the distribution 

defined by the given parameters. We can write the density function of the un-shifted 

Weibull distribution as 𝑓(𝑥) =
𝑘

𝜃
𝑥𝑘−1𝑒−𝑥

𝑘/𝜃, then the Likelihood function is [this 

derivation follows Cohen 1965] 

 
𝐿(𝑋|𝑘, 𝜃) =∏

𝑘

𝜃
𝑥𝑖
𝑘−1𝑒−𝑥𝑖

𝑘/𝜃

𝑛

𝑖=1

 [17] 

To find the maximum of an equation in two variables, we take the gradient and 

find where it is equal to 0. The variables can be isolated into partial derivatives, and 

each equation is set to zero separately: 
𝜕𝐿

𝜕𝜃
= 0, and 

𝜕𝐿

𝜕𝑘
= 0. In practice, it is often easier 

to take the natural logarithm of each side before taking these derivatives since the 

products can be decomposed into summations. The logarithmic function is defined on 
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the domain of the data and monotonically increasing, so this log-likelihood function will 

have maxima26 in the same locations as Equation [17]. Thus, the log-likelihood is  

ℒ(𝑋|𝑘, 𝜃) = ln(𝐿(𝑋|𝑘, 𝜃)) = 𝑛 ln (
𝑘

𝜃
) + (𝑘 − 1)∑ln𝑥𝑖

𝑛

𝑖=1

−
1

𝜃
∑𝑥𝑖

𝑘

𝑛

𝑖=1

 

Taking the partial derivatives and setting each equal to 0: 

 𝜕

𝜕𝜃
ℒ(𝑋|𝑘, 𝜃) = −𝑛+

1

𝜃
∑𝑥𝑖

𝑘

𝑛

𝑖=1

= 0⁡ ⟹ ⁡𝜃 =
1

𝑛
∑𝑥𝑖

𝑘

𝑛

𝑖=1

 [18] 

 𝜕

𝜕𝑘
ℒ(𝑋|𝑘, 𝜃) =

𝑛

𝑘
+∑ ln 𝑥𝑖

𝑛

𝑖=1

−
1

𝜃
∑𝑥𝑖

𝑘

𝑛

𝑖=1

ln 𝑥𝑖 = 0 [19] 

Substituting Equation [18] into Equation [19], we have  

 ∑ 𝑥𝑖
𝑘𝑛

𝑖=1 ln 𝑥𝑖
∑ 𝑥𝑖

𝑘𝑛
𝑖=1

−
1

𝑘
=
1

𝑛
∑ln𝑥𝑖

𝑛

𝑖=1

 [20] 

For a set of points generated from each combination of shifted parameters (𝑘𝑠 

and 𝜆𝑠), Equation [20] is solved iteratively for 𝑘. Plugging these results into Equation 

[18] for 𝜃 = 𝜆𝑘, and comparing to the empirical values, we find 𝜆𝑠 = 1.20 and 𝑘𝑠 =

2.435. 

                                                      

26 Explicitly, this only finds local extrema. Proving that the locations derived are maxima requires finding 
the Hessian (the second derivative matrix) and proving that it is negative-definite. For a proof that this 
is the case here, see [Scholz 1996]. 
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With this and 𝛾𝑤 = 0.25𝑠, we 

have a shifted Weibull distribution 

that produces data that would be fit 

by the un-shifted Weibull parameters 

found by Haque and Washington. In 

Figure 3, data generated by an 

unshifted-Weibull having the values 

found by Haque and Washington 

[2014] are shown in comparison to those generated using the shifted parameters 

derived above. The mean and standard deviations of the two distributions are within a 

few hundredths of a second, yet the shifted distribution has a minimum value of 0.266s. 

To generate braking reaction time (BRT) values that fit the shifted Weibull 

distribution, we simply invert the distribution function, 𝐹(𝑡), in Equation [16], and insert 

instances of a uniform distribution, 𝑈𝑖, bounded on [0,1): 

 𝜏BRT =⁡𝛾𝑤 + 𝜆𝑠[−ln(1 − 𝑈𝑖)]
1/𝑘𝑠⁡ [21] 

Since 𝜏BRT is only the perception reaction time, the movement time (𝜏𝑀 – kept 

at a constant 0.15s [Lister 1950] for simplicity) and the device response time (𝜏𝐷𝑅) must 

be added. For 𝜏𝐷𝑅, vehicles in the simulation are considered to have four-wheel disk 

brakes actuated by hydraulic cylinders. In a study of the performance of such braking 

systems [Grover et al. 2008], the authors found that vehicles in a hard-braking event 

achieve nearly the maximum deceleration approximately 0.2 seconds after the driver’s 

FIGURE 3 – SHIFTED WEIBULL FITTING 
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initial application of the brake pedal.27 Thus, a combined movement and device 

response time of 0.35s is added to the 𝜏BRT derived from the three-parameter Weibull 

distribution to give the total reaction time 𝜏RT. 

The delay-differential equations used in implementing ADRT cannot be applied 

directly to BRT, as the accelerations affected by the latter are calculated at each 

timestep to bring the vehicle to a stop at a specific location based on current speed and 

distance from that location. Using values calculated at some prior time will cause every 

driver to overshoot her stopping point. Therefore, an approach based on an adaptation 

to an iterated coupled map was enacted.28 The calculated value for deceleration is 

stored at each time step. When a time, 𝑡, is reached for which the value stored at time 

𝑡 − τ𝑅𝑇 is lower than the current car-following acceleration, the driver begins to yield; 

however, the yielding deceleration is calculated based on current values of location and 

velocity. 

IMPERFECT PERCEPTION 

Perceived headway and velocity relative to a leading vehicle are subject to driver 

estimation errors.29 To model these errors, the acceleration equation takes the same 

form; but estimated values (𝑠𝑒𝑠𝑡 and 𝑣𝑙
𝑒𝑠𝑡) replace the true values of the gap to the 

                                                      

27 The study found vehicles reach maximum deceleration at approximately 0.26s after initial pedal 
application, but have exceeded 90% of that value within 0.2s 

28 For an exploration of how this differs from a delay-differential equation, and the resulting effects on 
traffic stability, see [Kesting and Treiber 2008b] 

29 This section adapted from [Treiber and Kesting 2013a: pp 210-213] 
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vehicle ahead and of the leading vehicle’s speed. It is assumed the speedometer 

provides a consistent (even if not entirely accurate) value for the driver’s own speed. “In 

most driving situations, the relative estimation error for the gap, or, equivalently, the 

error of the logarithm of the gap, turns out to be essentially constant,” allowing us to 

write  

 ln(𝑠𝑒𝑠𝑡) − ln(𝑠) = 𝑉𝑠𝑤𝑠(𝑡) [22] 

𝑉𝑠, the statistical variation coefficient, represents the relative standard deviation 

of 𝑠𝑒𝑠𝑡 from the true headway. Following Treiber and Kesting [2013a], its value is set to 

0.1, and the error is assumed to have no bias. The evolution of driver error in time is 

modeled here as a Wiener process, represented by the stochastic variable 𝑤𝑠. The 

explicit derivation and evolution of this term will be discussed below. 

Drivers estimate the speed of the vehicle ahead relative to their own based on 

the change in apparent optical angle subtended by the vehicle. [Lee 1976] By the small 

angle approximation, a vehicle at distance 𝑠, of width 𝑤𝑣𝑒ℎ is seen as 𝜃 ≈ 𝑤𝑣𝑒ℎ 𝑠⁄ . 

“Based on experiments we assume the error of the rate of relative angular change to be 

constant” [Treiber and Kesting 2013a] 

 

ω =
𝑑𝜃 𝑑𝑡⁄

𝜃
=

𝑤𝑣𝑒ℎ
𝑠2

∆𝑣

𝑤𝑣𝑒ℎ 𝑠⁄
=
∆𝑣

𝑠
=

1

𝑇𝑇𝐶
 [23] 

Uncertainty in estimation of 𝛥𝑣 is proportional to distance (therefore time to 

collision, 𝑇𝑇𝐶 =
𝑠

|𝛥𝑣|
, has constant uncertainty). 
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“Assuming a constant standard deviation, 𝜎𝑟, of the relative approach rate (on 

the order of 𝜎𝑟 = 0.01𝑠
−1) we obtain” 

 
𝑣𝑙
𝑒𝑠𝑡 − 𝑣𝑙 = −(∆𝑣𝑒𝑠𝑡 − ∆𝑣) = −𝑠 (

1

𝑇𝑇𝐶𝑒𝑠𝑡
−

1

𝑇𝑇𝐶
) = −𝑠𝜎𝑟𝑤𝑙(𝑡) [24] 

𝑤𝑙 describes a stochastic variable analogous to the 𝑤𝑠 used in calculating the 

evolution of estimated errors for headway. Every driver has her own independent set of 

{𝑤𝑠(𝑡), 𝑤𝑙(𝑡)}, which are all independent from each other. The same approach is used 

to implement the same class of errors for drivers yielding to pedestrians and pedestrians 

yielding to drivers. Further, each pedestrian has two sets of these stochastic variables, 

{𝑤𝑠,𝑙(𝑡), 𝑤𝑙,𝑙(𝑡)} and {𝑤𝑠,𝑟(𝑡),𝑤𝑙,𝑟(𝑡)}, for vehicles approaching from the left and right, 

respectively.  

To generate stochastic variables within the model, a stochastic process must be 

defined. In the following, it is assumed that 𝑤𝑠(𝑡) and 𝑤𝑙(𝑡) are instances of a 

stationary (having no general drift velocity) process, 𝑤(𝑡). This process can be defined 

by (i) its time-dependent distribution function, and (ii) its autocorrelation function – 

which describes the correlation between the process at two times as a function of the 

time elapsed between measurements. Driver perception errors are assumed, following 

[Treiber and Kesting 2013a], to follow a standard Gaussian distribution:  

 𝑤(𝑡)⁡~⁡𝑁(0,1) ⁡⁡→ ⁡⁡⁡⁡⁡⁡ 〈𝑤(𝑡)〉 = 0, 〈𝑤2(𝑡)〉 = 1 [25] 

Ignoring distraction for the moment, errors in a driver’s perception are assumed 

to be “memoryless” – meaning future probability densities can be determined based 
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only upon knowledge of the current state of the system. This is a loose definition of a 

Markov process. They do, however, exhibit a certain persistence: If, for example, a driver 

underestimates a distance at one moment, she is likely to continue to do so in the next 

moment. Mathematically, this means that, unlike white noise, the errors at two times 

are positively correlated for a specified persistence time, 𝜏̃, of “a few seconds up to one 

minute.” [Treiber and Kesting 2013a] (A persistence time of 20 seconds was chosen for 

the simulation.) This can be described by the following autocorrelation function: 

 
〈𝑤(𝑡)𝑤(𝑡′)〉 = exp(−

|𝑡 − 𝑡′|

𝜏̃
) [26] 

WIENER PROCESS 

An ordinary differential equation with a noise term is the basic, heuristic 

definition of a Langevin equation: 
𝑑𝑥

𝑑𝑡
= 𝑎(𝑥, 𝑡) + 𝑏(𝑥, 𝑡)ξ(𝑡). 30 A more mathematical 

definition of “noise” is a “rapidly varying, highly irregular function,” such that for 𝑡 ≠ 𝑡′, 

ξ(t) and ξ(𝑡′) are statistically independent. Also required is that 〈ξ(t)〉 = 0 so any non-

zero mean is contained within 𝑎(𝑥, 𝑡); therefore,  

〈ξ(t)ξ(𝑡′)〉 = 𝛿(𝑡 − t′). 

                                                      

30 This derivation based on Ch 4 of [Gardiner 1983]  
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This is Dirac’s 𝛿-function, 𝛿(𝑥), which is equal to 0 for all 𝑥 ≠ 0.31 𝜉(t) then 

represents standard, idealized white noise. With this definition, it is now possible to 

specify a stochastic differential equation that satisfies the above conditions: 

 
𝑑𝑤

𝑑𝑡
= −

𝑤

𝜏̃
+ √

2

𝜏̃
ξ(t) [27] 

This equation, describing what is known as a Wiener process, represents the 

solution to the Fokker-Planck equation in one variable, 𝑤(𝑡), with a drift coefficient of 

zero (essentially an Ornstein-Uhlenbeck process that has decayed to a stationary state), 

and a diffusion coefficient of 1. 

The formal solution is then  

 

𝑤(𝑡) = √
2

𝜏̃
∫ 𝑒−(𝑡−𝑡

′) 𝜏̃⁄ ξ(𝑡′)𝑑𝑡′
𝑡

−∞

 [28] 

To implement this in a model, an update scheme must be derived. The exact 

update scheme for an Ornstein-Uhlenbeck process of this form is:32 

 𝑤𝑖 = 𝑒
−∆𝑡/𝜏̃𝑤𝑖−1 +√1 − 𝑒−2∆𝑡/𝜏̃𝜂𝑖  [29] 

Treiber and Kesting use an approximation (which is implemented in this model): 

                                                      

31 Formally, the 𝛿-function only makes sense within an integral, mapping a function to a number: 

∫ 𝛿(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞
= 𝑓(0). 

32 For a derivation, see [Gillespie 1996] 



59 | P a g e  

 

𝑤𝑖 = 𝑒
−∆𝑡/𝜏̃𝑤𝑖−1 +√

2∆𝑡

𝜏̃
𝜂𝑖  [30] 

Here, 𝜂𝑖  are instances of a computer-generated independent, identically-

distributed random number from a normal distribution with an expectation value of 0 

and unit variance. The approximation is accurate when ∆𝑡 ≪ 𝜏̃. 

DISTRACTION 

Implicitly assumed in all the above models is that the actors involved not only 

receive the relevant information about the world around them, but that the information 

is processed (either consciously or subconsciously) and acted upon. However, as 

discussed above, the driver’s attention resources are limited; so, this is not always the 

case. Distraction can come in many forms and defining it explicitly – even within the 

confines of the driving activity – is a debated topic in the literature. For our purposes, 

the following definition will suffice: “Driver distraction is a diversion of attention away 

from activities critical for safe driving towards a competing activity.” [Lee et al. 2008] 

Distraction while driving is dangerous: In Treat’s study of accident causations [Treat et 

al. 1979], “improper lookout” and “inattention” were the two leading causes of 

accidents for which a definite cause could be determined. In 2014, of the 32,675 [FARS 

2014] traffic fatalities in the United States, 3,179 (nearly 10%) were explicitly recorded 

by police as caused by some form of distraction. [Distraction.gov] 

In the overwhelming majority of instances, however, becoming distracted has no 

serious consequences for a driver. This “latent distraction” does not manifest as 
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deterioration in observable measures of driving performance, but in readiness to react 

to new (possibly safety-critical) developments. [Schaap et al. 2013] Quantifying the 

occurrence of distraction is, therefore, a difficult concept. One promising approach is to 

relate attention to visual allocation (where the driver’s eyes are looking). A relatively 

early attempt at doing so [Wierwille & Tijerina 1998] combined mentions of driver pre-

crash distractions in crash narratives from police reports with independent calculations 

of the frequency and duration of visual allocation to in-car distractions. Despite the 

vague data, the authors found significant correlation (R = 0.982)33 between accidents 

citing a specific distracting activity and the exposure level of the activity (exposure = 

average-single-glance-duration × average-number-of-glances × frequency-of-use). The 

authors of an analysis of the 100-Car Naturalistic Driving Study [Dingus et al. 2006] 

(which is discussed below) found that, in their dataset, “almost 80 percent of all crashes 

and 65 percent of all near-crashes involved the driver looking away from the forward 

roadway just prior to the onset of the conflict.”  

In another analysis of the 100-Car NDS [Liang et al. 2012], the authors compared 

a variety of algorithms based on different combinations of recent glance histories, 

adjacent short glances, and the locations of off-road glances. They concluded that none 

of these complications added predictive power to simple measures of instantaneous 

                                                      

33 This value does not include crashes that referenced looking at the speedometer, which was a significant 
outlier. 
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glance duration. Despite the limitations, the time drivers spend with their eyes not on 

the road is a reasonable proxy for distraction, and at least gives a lower bound. Many 

studies have been done on visual attention under controlled conditions; however, 

recent developments in sensor technology, as well as image and data analysis, have 

made large-scale studies of driving possible outside the artificial limits of explicit 

experiments. These naturalistic driving studies (NDSs) provide a wealth of insights into 

typical driver behavior. 

Two large-scale NDSs have been performed in recent years. The 100-car NDS 

recorded extensive data on the behaviors of 241 drivers over nearly 43,000 hours of 

driving. [Dingus et al. 2006] This served as a pilot project for the NDS portion of the 

second Strategic Highway Research Program (SHRP2), which included more than 3,000 

drivers over more than 1 million hours of driving. [Victor et al. 2015] Included in both 

data collections were video records of drivers’ faces, from which the direction in which 

their eyes are pointing (glance data) can be extracted.  

As part of a study on how visual attention influences crash risk, [Bärgman et al. 

2015] glance behavior was extracted from 223 20-second video segments taken from 

the SHRP2 dataset. In this dataset, the authors found that drivers were not looking at 
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the forward roadway34 21.17% of the time.35 

In another study, 4,083 6-second observation 

windows from the 100-car NDS were 

analyzed to find how the duration of off-road 

glances is distributed. [Rootzén & Zholud 

2016] The authors focused on glances longer 

than 2 seconds, but they graciously published 

their extracted glance data with the analysis.  

From these data, after removing periods with no glances away from the road or 

glances truncated by the observation window, 1740 observations remain. The fit-

performance of a few distributions to these measurements was checked visually using 

built-in R methods. Figure 4 shows that, based on this preliminary analysis, the lognormal 

distribution appears to be the best fit. This is not surprising since, as observed in the 

section on reaction times, lognormal distributions are common in random processes that 

                                                      

34 The authors defined “looking at the forward roadway” based on the definition given in [Victor 2005]: 
fixations falling within a circular area 16 degrees in diameter, centered on the road center point. The 
road center point was defined as the most frequent gaze angle from the driver’s baseline driving data. 

35 It should be noted that each of these time periods was selected as a baseline measurement to be 
compared to the behavior of the same driver (on the same day) in a time period that ended with a crash 
or near-crash event. Since each of the drivers selected for the baseline data was involved in a crash or 
near-crash later the same day, there is a selection bias toward drivers potentially more prone to 
distraction. In fact, matched baselines (chosen using a similar set of criteria) exhibited slightly higher 
percentages of time with eyes off the road than random baselines in another study of the SHRP2 data 
[Victor et al 2015, figure 6.7]; however, a literature review did not yield any summary data of random 
baseline glance behavior from the SHRP2 data. 

FIGURE 4 – 
PRELIMINARY GLANCE DISTRIBUTION FITTING 
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feature low average values, large variances, and are exclusively positive. [Limpert et al. 

2001] The PDF of the lognormal distribution is: 

𝑓(𝑋𝑖|𝜇, 𝜎
2) =

1

𝑋𝑖√2𝜋𝜎2
exp [−

(ln(𝑋𝑖) − 𝜇)
2

2𝜎2
] 

Here, 𝜇 is the scale parameter, and 𝜎 is the shape parameter. To fit this 

distribution to the data, as with the Weibull distribution used for reaction time, the 

maximum likelihood method can be used.36  

The likelihood function of the lognormal distribution, given a set of 𝑋 =

{𝑋1, 𝑋2, … , 𝑋𝑛}, is equal to the product of the probability densities of each 𝑋-value: 

 
𝐿(𝜇, 𝜎2|𝑋) ⁡⁡⁡⁡= ⁡⁡⁡⁡∏[𝑓(𝑋𝑖|𝜇, 𝜎

2)]

𝑛

𝑖=1

⁡⁡⁡⁡

= ⁡⁡⁡⁡(2𝜋𝜎2)−𝑛/2 [∏𝑋𝑖
−1

𝑛

𝑖=1

] exp⁡[∑
−(ln(𝑋𝑖) − 𝜇)

2

2𝜎2

𝑛

𝑖=1

] 

[31] 

As in the analysis of delayed reaction, we now take the logarithm of this 

likelihood equation. The gradient of the resulting log-likelihood equation is found, and 

each equation is separately set to zero: 
𝜕𝐿

𝜕𝜇
= 0, and 

𝜕𝐿

𝜕𝜎2
= 0.37 Solving the resulting 

equations for 𝜇 and 𝜎2 gives the maximum likelihood estimators, 𝜇̂ and 𝜎̂2: 

                                                      

36 This derivation follows that in [Ginos 2009] 
37 For proof that the resulting extremum is, indeed, the maximum – i.e. that the Hessian (the second 

derivative matrix) is negative-definite – see [Ginos 2009]. 
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𝜇̂ =

1

𝑛
∑ln(𝑋𝑖)

𝑛

𝑖=1

≈ −0.455 [32] 

 
𝜎̂2 =

1

𝑛
∑(ln(𝑋𝑖) − 𝜇̂)

2

𝑛

𝑖=1

≈ 0.373 [33] 

From these formulas, the relationship between the lognormal distribution and 

the normal distribution is obvious: If 𝑋 fits a lognormal distribution, the natural 

logarithm of 𝑋, 𝑙𝑛(𝑋), is normally distributed; and the scale parameter, 𝜇, can be 

interpreted as the mean of 𝑙𝑛(𝑋), while the shape parameter, 𝜎, is related to the 

standard deviation of 𝑙𝑛(𝑋). Conversely, if 𝑌 fits a normal distribution, then 𝑋 = 𝑒𝑌 will 

be lognormally distributed. Therefore, if we generate a normally-distributed random 

variable, 𝜂𝑖, with mean 𝜇̂ and standard deviation 𝜎̂, then raise Euler’s number (𝑒) to the 

power of the numbers generated, the resulting values, 𝐷𝑖, will have a distribution that 

approximates that of the observed durations of distraction: 

 𝐷𝑖 = 𝑒
𝜂𝑖𝜎̂+𝜇̂ [34] 

As a check, the cumulative distribution function (CDF) of 1000 numbers created 

by this method is compared to the CDF of the SHRP2 data in Figure 5.38 In practice, the 

minimum duration of a distraction event in the model will be one tick of the model 

clock. 

                                                      

38 The stepping behavior in the CDF of the SHRP2 data [Rootzén & Zholud 2016] is an artifact of the 0.1-
second precision in with which it was made available. 
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Each period of distraction, 𝐷𝑖, and the 

subsequent inter-distraction period, 𝐼𝐷𝑖, are 

modeled here as independent samples from 

identical distributions (iid).39 Assume a system 

can be in state 𝐴 or 𝐵. If the time between a 

transition into state 𝐴 and the subsequent 

transition out of it, 𝑌𝐴, is independent of 

previous transition times – and likewise for each 𝑌𝐵 – and the distribution of these dwell 

times is known, then the process can be modeled as an alternating renewal process. 40 If 

the expectation value of the distribution of 𝑌𝐴 is 𝑀𝐴 and the expectation of 𝑌𝐵 is 𝑀𝐵, 

then the long-run proportion of time spent in state 𝐴 is given by 

 
𝑃𝐴 =

𝑀𝐴
𝑀𝐴 +𝑀𝐵

 [35] 

Rearranging Equation [35], and applying it to the distraction intervals from the 

NDS discussed above, we have: 

 1

𝜆𝐼𝐷
=
𝑀𝑋(1 − 𝑃𝐷)

𝑃𝐷
 [36] 

                                                      

39 This assumption is not quite realistic. In fact, we have every reason to assume that a person looking 
away from the road at a secondary task will look back at it soon thereafter if the task remains 
incomplete. While this poses a limitation for modeling a given individual’s long-term distraction 
behavior, safety-critical situations are immediate results of individual errors. Since the topic of interest 
is the crash risk of the population, the overall statistical behavior should not be affected; and, as 
discussed in [Liang et al 2012], instantaneous, memoryless glance behavior is the best predictor for 
crash risk. 

40 For more information on renewal processes, and a derivation of Equation [35], see e.g. [Cox 1967] 

FIGURE 5 – GLANCE CDF FITTING 
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Here, 𝑃𝐷 represents the proportion of time drivers spend with their eyes off the 

road; 𝑀𝑋 is the arithmetic mean of the 𝑋𝑖 observations;41 and 𝜆𝐼𝐷 =
1

𝑀𝐼𝐷
 is defined (in 

anticipation of the distribution that will be used to model it) as the arrival rate of 

distraction events, given an average inter-distraction interval of 𝑀𝐼𝐷. Combining our 

analysis of the glance data from Rootzén & Zholud [2016] with the total proportion of 

time drivers look away from the road from Bärgman et al. [2015], the resulting  arrival 

rate is 𝜆𝐼𝐷 ≈ 0.352⁡𝑠𝑒𝑐
−1 – or, a little less than three seconds between each glance 

away from the road. 

The arrival of distraction events will be modeled as a Poisson process. Therefore, 

the probability of an inter-arrival time equal to 𝑍, 𝜋𝐼𝐷(𝑍), will follow the exponential 

distribution: 

𝜋𝐼𝐷(𝑍) = 𝜆𝐼𝐷𝑒
−𝜆𝐼𝐷𝑍 

To generate intervals with this distribution within the model, we invert the equation: 

 
𝑍 = −

ln⁡(𝜋𝐼𝐷/𝜆𝐼𝐷⁡)

𝜆𝐼𝐷
 [37] 

Generating 𝜋𝐼𝐷 as instances of a uniformly-distributed random variable, 𝑈𝑖, will 

then give us values of 𝑍 that fit the exponential distribution – with one caveat: the result 

must be positive, so the quantity within the natural logarithm must be less than one.42 

                                                      

41 This is not equal to 𝑒𝜇̂, as one might expect. 𝑒𝜇̂ is, in fact, the geometric mean. 
42 ln(1) = 0. While this is physically possible (There is nothing ensuring the driver checks the road 

between attending to distractions.), this behavior would have been recorded in the NDS as a single 
distraction event. To avoid this, we insist that the quantity within the logarithm is strictly less than 1. 
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We therefore insist 𝜋𝐼𝐷 < 𝜆𝐼𝐷. Since the random input, 𝜋𝐼𝐷 < 1, this is accomplished by 

linearly scaling it as 𝜋𝐼𝐷 ∗ 𝜆𝐼𝐷.43 

 
𝐼𝐷𝑖 = −

ln⁡(𝑈𝑖)

𝜆𝐼𝐷
 [38] 

To scale the measured distraction intervals (that fit the distribution defined by 

Equations [32] and [33]) into units of the model, we have to pass from measured 

quantities, 𝑋𝑖, into model units, 𝑋𝑖
′. To do so, the quantities must pass through the 

logarithmic function; therefore, so must the scaling parameters. If we have a value of 𝑐 

seconds, and our model uses a granularity of 𝑑 seconds per tick, then ln (
𝑐

𝑑
) = ln(𝑐) −

ln(𝑑). Therefore, 𝑀̂′ = 𝑀̂ − ln(𝑑). Substituting this value into the equation for variance 

(Equation [33]), and applying similar logic, gives an interesting result: Looking at the 

quantity within the parentheses, ln(𝑋𝑖) − ln(𝑑) − 𝑀̂
′ = ln(𝑋𝑖) − ln(𝑑) − 𝑀̂ + ln(𝑑) =

ln(𝑋𝑖) − 𝑀̂. This is the same value as the original. Thus, while 𝑀̂ is scaled by the 

transition into model units, 𝑆̂ remains unchanged. Similar logic applies to the generation 

of stop distances from the crosswalk and to IDM parameters observed to follow a 

lognormal distribution. 

When vehicles within the simulation are “distracted,” they do not update 

external information (e.g. headway, speed differential with other cars, or the presence 

                                                      

43 A second caveat arises from the implementation of the model in Java. Java’s Random.nextDouble() 
method returns uniformly-distributed random values on the interval [0,1). Since ln(0) → −∞⁡, a small 
value must be added to the result to avoid errors. The value added is 10−15. This creates a maximum 
period without distraction of more than 10 minutes – an arbitrary, but not-unrealistic restraint. 
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of crossing pedestrians). They do however remain aware of their own speed relative to 

their desired maximum velocity. This is accomplished by fixing the values of 𝑧 in 

Equation [10] and 𝑎𝐶𝐴𝐻 in Equation [11] at the pre-distraction levels and ignoring 

pedestrians. 

DRIVER YIELDING 

When not distracted, if drivers see a pedestrian intending to cross they can, and 

often do, choose to yield. In fact, in many States drivers are legally required to stop for a 

pedestrian who has indicated they intend to cross. While attempts have been made to 

model this behavior [e.g. Schroeder and Rouphail 2011], many factors come into play 

that are beyond the scope of this exploration. Signage, crosswalk design and 

treatments, and social norms are just a few of the factors that have significant influence 

on driver yielding behavior. For a review of some of the research on how treatments 

from around the world affect pedestrian safety, see [Campbell et al. 2004].  

When a driver yields to a crossing pedestrian, her vehicle can block drivers 

behind her in adjacent lanes from being able to see any pedestrian in the crosswalk. 

Therefore, the distance from the edge of the crosswalk at which the vehicle comes to 

rest (𝑑𝑠𝑡𝑜𝑝 – the 𝑥 in Equation [39]) has a direct effect on pedestrian safety. (This 

scenario, referred to as a multiple threat [Snyder 1972], will be discussed in the Model 

Implementation section on Visual Obstructions.) 
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In Oregon, it is recommended that drivers come to a stop 30 feet (9m) from the 

crosswalk, but this is not legally required. The MUTCD recommends 20 – 50 ft (6.1 – 15 

m). Many complex factors have been shown to correlate with 𝑑𝑠𝑡𝑜𝑝 including behavior 

of nearby vehicles, immediate history of the driving trip, pedestrian behavior, and 

vehicle type, among others. [Figliozzi and Tipagornwong 2016] Advance warning signs 

and pavement markings have been shown to increase yielding rates and result in a 

qualitative increase in yielding distances [Pulugurtha et al. 2012, Berger 1975], yet a 

literature review produced few studies that quantify the distribution of baseline or post-

treatment behavior.  

Due to the wide array of infrastructure treatments available, and the complexity 

of the behaviors involved, the model developed herein will be concerned with 

unsignalized mid-block crossings, marked only with lines on the road surface. The effect 

of these treatments is to give drivers advanced warning that pedestrians may be 

entering the roadway ahead. This enhanced situational awareness is intended to 

increase the probability that a driver’s attention will be on the task at hand. 

𝑑𝑠𝑡𝑜𝑝 has been measured for crossings that do not include a stop-bar. [Houten, 

Malenfant, and McCusker 2001] However, implementing these distances led to 

unrealistically high numbers of conflicts from visual obstruction in the simulation. 

Therefore, stop-bars were added 9 meters from the side of the crosswalk nearest 

approaching drivers. This is the only crosswalk treatment included in the simulation. 
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Even in the absence of safety treatments, driver yielding is influenced by a 

variety of factors. For example, drivers are more likely to yield if they perceive a 

pedestrian as disabled [Pancer et al. 1979] or in need of assistance [Malamuth, Shayne, 

and Pogue 1978]. The probability of drivers yielding is also significantly increased when 

pedestrians make their intention to cross known: Pedestrians standing just off the curb 

are yielded to significantly more often than those standing at the curb edge. [Harrell 

1993] When drivers are traveling at high speeds, on the other hand, they are less likely 

to yield to pedestrians. [Bertulis and Dulaski 2014] 

Motorist yielding behavior has seen significant research, and a variety of models 

are available based on driver characteristics. [e.g. Sun et al. 2002] In the model 

implemented for this study, however, a simplified approach is taken. Drivers do not 

yield unless a pedestrian has decided the gap available is sufficient to cross safely. The 

details of pedestrians’ decision-making processes are presented in the Pedestrian 

Modeling section. In short, each pedestrian has a statistically-assigned minimum time-

gap between approaching cars within each lane, and only crosses when traffic allows. If 

a pedestrian has entered the roadway, drivers (after their calculated reaction time, 

assuming they are not distracted) yield accordingly. When the distance to the nearest 

vehicle is small and a pedestrian’s criteria to begin crossing are met, however, 

pedestrians signal their intention to cross and wait for the approaching cars to yield. 

This recognition of mutual awareness is assumed to be absolute, and the form it takes is 
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not addressed. Specifics of this are given in the Model Implementation section. For more 

detailed analysis of this interaction, see [e.g. Matúš 2014 or Zhuang and Wu 2014]. 

Whether a driver is yielding to a waiting (or already crossing) pedestrian, the 

attendant deceleration is predicated on the driver seeing the pedestrian. When and 

where this perception occurs is crucial to safe crossings. This is the basis of the American 

Association of State Highway and Transportation Officials (AASHTO) minimum stopping 

sight distance requirements: Drivers need room to stop. Ignoring infrastructure 

limitations such as hills or turns, the question arises of how far away a driver can see a 

pedestrian. Assuming a visual acuity capable of discerning objects subtending 1 minute 

of arc-angle (normal, “20/20 vision”), a 5’ tall pedestrian can be seen from more than 

5km away. [Shinar 2007b] Visual capacity is, therefore, not the limiting factor. 

PERCEPTION OF PEDESTRIANS 

The distance at which drivers perceive pedestrians, 𝑑𝑝𝑒𝑟𝑐, is a topic that has seen 

significant amounts of research [Kwan and Mapstone 2004]; however, the vast majority 

of such studies focus on night-time sight distances. [Langham and Moberly 2003] Those 

performed in daylight conditions seem to exclusively focus on the relative benefits of 

different colors and forms of fluorescent safety garments. Most of these studies limit 

their measurements to rural roads; however, one [Sayer and Buonarosa 2008] explored 

the difference in detection distance between “medium” complexity (urban) and “low” 

complexity (rural) scenes. The authors found average detection distances of 195m and 

266m, respectively. Compounding the fact that pedestrians in the study wore high 
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visibility garments, participants in the study were explicitly instructed to look for 

pedestrians, making driver expectancy unrealistically high. This is a significant caveat. In 

a study aimed at differentiating attention conspicuity (“the capacity of an object to 

attract attention”) from search conspicuity (“the property of an object that enables it to 

be quickly and reliably located by search”), researchers found drivers three times more 

likely to notice something if told to look for it. [Cole and Hughes 1984] 

In an attempt to remediate this increased expectancy, Helman and Palmer 

[2010] measured pedestrian perception distances for English drivers who were asked to 

simply narrate anything related to the driving task that caught their eye in the outside 

environment. The authors recorded detection distances of drivers navigating a closed 

track for mannequins wearing full-body, two-tone fluorescent safety attire with retro-

reflective trim in two scenarios. For the first scenario, in which mannequins were placed 

next to a brightly-colored Highways Agency vehicle with a flashing amber light bar on 

top, perception distances ranged from 110m and 150m. For the second, which featured 

mannequins placed adjacent to a large road-work vehicle with flashing lights, detection 

distances ranged from 106m to 141m. Since these values apply to pedestrians wearing 

full-body fluorescent clothing, this can be considered an upper bound for normal 

pedestrian detection. A value for 𝑑𝑝𝑒𝑟𝑐 of 100m is used in the simulation for the 

distance at which an attentive driver can become aware of a pedestrian intending to 

cross. 
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YIELDING KINEMATICS 

As a driver in the real world approaches a crosswalk, she subconsciously 

calculates the time until the crosswalk would be reached traveling at her current speed. 

Based on this calculation, in relation to the observed behaviors of the pedestrians 

present, it may be necessary for her to decelerate to avoid a collision. If she does decide 

to yield, the required braking pressure is also calculated subconsciously, based on her 

experience as a driver. Implementing this in simulation, however, requires calculation of 

the necessary accelerations. If we assume a constant acceleration, 𝑎, a body currently 

located at the point 𝑥0 and traveling with speed 𝑣0 will travel in time 𝑡 to a point, 𝑥, 

given by the kinematic equation: 

 
x =

1

2
𝑎𝑡2 + 𝑣0𝑡 + 𝑥0 [39] 

If the body is to come to rest at the end of time 𝑡 (a hard yield), then 

 𝑎ℎ𝑦 = −
𝑣0

𝑡⁄  [40] 

Solving for 𝑡 and substituting into Equation [39], we can solve for the acceleration 

needed to come to rest at a given location, 𝑥: 

 
𝑎ℎ𝑦 =

−𝑣0
2

2(𝑥 − 𝑥0)
 [41] 

By plugging this back into Equation [4040], we have an equation for the time to execute 

such a yield: 

 
𝑡ℎ𝑦 =

2(𝑥 − 𝑥0)

𝑣0
 [42] 
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If this acceleration is less than that given by the car following equation, the driver uses 

the yielding acceleration instead and allows the pedestrian to cross.  

If the time until a given pedestrian will be out of harm’s way, 𝑇𝑠𝑎𝑓𝑒, is greater 

than 𝑡ℎ𝑦, then a hard yield is necessary. Otherwise, the driver need not come to a 

complete stop to allow the pedestrian to cross out of danger,44 and a soft yield is 

sufficient. If we solve Equation [39] for 𝑡, and set this equal to the time it will take the 

pedestrian to be clear, 𝑇𝑠𝑎𝑓𝑒, we can find the acceleration needed: 

 −𝑣0
2 +√𝑣0

2 − 2𝑎(𝑥 − 𝑥0)

𝑎
= 𝑇𝑠𝑎𝑓𝑒 ⁡⁡⁡⁡⁡⟹⁡⁡⁡⁡⁡ 𝑎𝑠𝑦 =

−2[𝑣0𝑇𝑠𝑎𝑓𝑒 − (𝑥 − 𝑥0)]

𝑇𝑠𝑎𝑓𝑒
2  [43] 

Here, and at every step in the simulation, decelerations are limited to values that 

are physically achievable by average drivers of passenger vehicles on dry roads: -7.4 

m/s2. [Greibe 2007] As mentioned in the section on Human Factors, while the decision 

to yield to a pedestrian is delayed based on the driver reaction time, the acceleration 

values are calculated based on current location and velocity. 

SUMMARY  

Driver behavior represents a broad collection of intricate, interconnected 

subsystems. This diversity means that a broad variety of approaches can be taken in 

modeling that behavior. The driver model implemented in the simulation presented in 

                                                      

44 In Oregon, this means a driver may not enter the crosswalk until a crossing pedestrian has exited the 
driver’s lane and is at least half way across the adjacent lane. 
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this work is a microscopic model, limited to car-following behavior and yielding to 

pedestrians. This is a significant simplification. However, the interplay of driver’s mental 

workload during lane-changes and the act of yielding to pedestrians is a topic that 

would benefit from additional research. Also lacking in the literature is quantification of 

the prevalence of lane-changes as a form of yielding to crossing pedestrians. 

The car-following model implemented in this work is based on a collection of 

extensions to the Intelligent Driver Model (IDM). [Treiber et al. 2000] Namely, it 

combines the stabilizing edge-cases of the Enhanced IDM [Kesting, Treiber, and Helbing 

2010] with the limitations of human drivers described by the Human Driver Model 

(HDM). [Treiber, Kesting, and Helbing 2006] The HDM incorporates finite reaction times 

and imperfect perceptions of distance and velocity into the IDM. The parameter values 

used for these models are taken from empirical data presented in previous research. 

The main contribution of this work is development and implementation of a 

novel approach to modeling driver distraction. Driver distraction is a significant causal 

factor in many traffic crashes, and its general exclusion from modeling efforts is a glaring 

limitation of current simulations that aim to model traffic safety. The distributions 

calculated combine measurements of eye-glance behavior from two studies: The overall 

time drivers spend looking at the road ahead comes from an analysis of data collected 

during the SHRP2 project. [Bärgman et al. 2015] Data from the 100-Car Naturalistic 

Driving Study [Rootzén & Zholud 2016] were then used to derive the distribution of 

durations for those times drivers look away from the road to attend to another task. 
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Admittedly, although the sample of glance durations is numerically large (1,740 

periods of observation), each sample is only 6 seconds long. This represents slightly less 

than 3 hours of data in total, randomly sampled from the 241 participants (including 

primary and secondary drivers) in the study. However, the use of eye-glance data has 

become widespread in driving research in recent years. Similar analysis to that 

presented here, performed on a larger sample of data, is recommended to enhance the 

generality of the resulting model of distraction. 

To test how significant the decision of whether to include distraction is when using 

a simulation to model safety, the developed model was applied to drivers approaching a 

simulated pedestrian crosswalk. To minimize externalities, no crossing treatments were 

included. Driver yielding behavior is also significantly simplified. Drivers do not yield until 

a pedestrian has indicated his intention to cross the street. There is a significant gap in 

the published literature regarding how far away drivers are able to recognize the presence 

of pedestrians at the roadside during daylight hours.   
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PEDESTRIAN MODELING 

As with driver modeling, diverse approaches have been taken in modeling 

pedestrian behavior. These various perspectives have much in common with their 

counterparts in driver modeling. However, since pedestrians are not typically confined 

to lanes, modelling their behavior can be more complex than doing the same for drivers. 

As it turns out, this freedom of movement only holds in low pedestrian densities. In 

dense crowds, pedestrian behavior is “surprisingly predictable,” [Helbing, et al. 2001] 

even fitting its own fundamental diagram. 

One approach to modeling pedestrian movements uses regression models (e.g. 

[Weidmann 1993]) to empirically derive relations among flow variables, enabling 

prediction of behavior in situations comparable to those from which the relations were 

derived. Macroscopic models that utilize theories from the study of fluid dynamics and 

granular flow (e.g. [Piccoli & Tosin 2011]) are more widely applicable, since they are 

explanatory instead of descriptive. Macroscopic models can also help predict demand, 

informing decisions regarding the capacity needs of new infrastructure. [Ronald et al. 

2007]  

Queuing models (e.g. [Løvås 1994]) define travel times along links and add 

random wait times at bottlenecks to recreate delays. Cellular automata approaches (e.g. 

[Burstedde et al. 2001]) parallel those in driver modeling by discretizing space into cells 

and defining rules for the occupation of those cells by virtual pedestrians. Discrete 
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choice models (proposed in [Gipps 1987]) define a finite number of pathways through 

an area, among which pedestrians decide based on subjective rational choices.  

As with driver modeling, treating each actor as an individual can provide greater 

insight into the dynamics of a crowd. Legion is a commercially-available software system 

(based on [Still 2000]) that simulates pedestrians with senses and decision-making 

capacities using a proprietary least effort algorithm. STREETS [Schelhorn et al. 1999] is 

another agent-based model that utilizes demand models and the SWARM simulation 

platform [Swarm 1999] to provide detailed modeling of pedestrian behavior, including 

socio-economic and psychophysical phenomena.  

The diversity of personal behavior patterns in pedestrians, like that of drivers, is 

a complex topic. These patterns have strong influences on crash statistics. For example, 

in 2016 more than 2.2 times as many male pedestrians were killed by vehicles than 

female. [FARS 2016] By fitting behavior models to data collected from diverse samples 

of the population, these variations should be inherently captured by the model without 

explicit designation of the population characteristics that correlate with the observed 

behaviors. While this is generally a reasonable assumption, models based on this 

approach will not include populations that exhibit extreme values such as the elderly, 

handicapped, or intoxicated – since these were not present in the samples used to 

derive the distributions applied.  
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In general, the act of walking to a destination can be broken down into the three 

functional levels of control that Michon defined for driver behavior [Michon 1979]. This 

hierarchical model is discussed further in the section on Driver Modeling, but it 

describes behavior as a generally top-down system of decisions and actions in three 

realms: strategic (e.g. choice of departure time and activity pattern), tactical (e.g. 

activity scheduling and route choice), and operational (walking behavior). [Hoogendorn 

and Bovy 2004] Once pedestrians have a destination in mind, their behavior can be 

modeled in a straightforward manner. Within this simulation, it is assumed that 

pedestrians have already made the decision to walk, as well as where to walk to, and 

that these decisions have led them to cross the simulated road – leaving only the 

operational level to be explicitly recreated. 

One approach for modeling the operational level of pedestrian movement is 

through minimizing a cost function through calculus of variations. [Hoogendoorn 2001] 

In such a model, deviations from the planned route, large accelerations or 

decelerations, and proximity to other pedestrians or obstacles incur costs that are to be 

avoided. Another approach to modeling this facet of pedestrian behavior is a category 

that can be termed generalized force models. 

GENERALIZED FORCE MODEL  

This style of behavior modeling adds together the various socio-psychological 

and physical forces that determine the behavior of individual actors. The model chosen 

[Helbing et al. 2000] includes a goal-oriented motive force, and interactive forces among 
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pedestrians and with barriers. At each time step in the simulation, the forces acting on a 

pedestrian are totaled to define the instantaneous acceleration. 

Each pedestrian, 𝑖, has mass 𝑚𝑖 and a natural walking speed, 𝑣𝑖
0. A constant 

mass of 80kg is used in the simulation. Average walking speed of pedestrians can vary, 

but a value of 1.4 m/s (~5 km/hr) was chosen based on the data available. [Zębala 2012; 

Akçelik 2001] with a standard deviation of 0.26 m/s. [Still 2000] 

The direction toward a pedestrian’s destination is represented by the normalized 

vector 𝒆𝑖
0; and his speed, 𝑣𝑖, changes over a characteristic time, 𝜏𝑝𝑒𝑑,𝑖. The characteristic 

time is set to 0.5s. Interactions with other pedestrians, 𝑗, or walls (here, taking the form 

of the curb when yielding and the edges of the pedestrian box or the edges of vehicles 

stopped within the crosswalk), 𝑊, are interaction forces 𝒇𝑖𝑗 ⁡and 𝒇𝑖𝑊, respectively. 

Pedestrian acceleration can then be calculated with the following expression: 

 
𝑚𝑖

𝑑𝒗𝑖
𝑑𝑡

= 𝑚𝑖

𝑣𝑖
0(𝑡)𝒆𝑖

0(𝑡) − 𝒗𝑖(𝑡)

𝜏𝑝𝑒𝑑,𝑖
+∑⁡𝒇𝑖𝑗

𝑗≠𝑖

+∑⁡𝒇𝑖𝑊
𝑊

 [44] 

The pedestrian interaction terms, are given by 𝒇𝑖𝑗 = 𝐴𝑖𝒏𝑖𝑗𝑒
(𝑟𝑖𝑗−𝑑𝑖𝑗) 𝐵𝑖⁄  where 𝐴𝑖  

and 𝐵𝑖 are constants chosen to fit observations; 𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒓𝑗‖ represents the distance 

between pedestrians’ centers of mass; 𝒏𝑖𝑗 = (𝒓𝑖 − 𝒓𝑗) 𝑑𝑖𝑗⁄  is the normalized pointing 

vector from pedestrian 𝑗 to 𝑖; and 𝑟𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗 ⁡ is the sum of the pedestrians’ radii. All 

constants used in the model are given in Table 4. Observational data [Rouphail et al. 

1998] suggest pedestrians tend to maintain a buffer zone of approximately 0.75m2 while 
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walking. Since detailed modeling of pedestrian flow is not the focus of this exploration, 

it is assumed that this area is circular, yielding a radius, 𝑟, of approximately 0.87m; 

though this is known to be much smaller in Asian cultures than North American or 

European. [Tanaboriboon et al. 1986] It is important to note that pedestrians only feel 

forces from other pedestrians in front of them – since real walkers cannot see behind 

them. 

𝑚 (𝑘𝑔) 𝑣0 (𝑚/𝑠) 𝜏𝑝𝑒𝑑 (𝑠) 𝐴 (𝑘𝑔 ∙ 𝑚/𝑠2) 𝐵 (𝑚) 𝑟 (𝑚) 

constant mean st. dev. constant constant constant constant 

80 1.4 0.26 0.5 2000 0.08 0.87 

TABLE 4 – PEDESTRIAN PARAMETERS 

Barrier interactions are similarly represented by 𝒇𝑖𝑊 = 𝐴𝑖𝑒
(𝑟𝑖−𝑑𝑖𝑊) 𝐵𝑖⁄ 𝒏𝑖𝑊. A 

pedestrian is over the curb if the distance from his center of mass to the curb, 𝑑𝑖𝑊, is 

smaller than his radius, 𝑟𝑖. The same formulation is used to keep pedestrians within the 

crosswalk on the road. While this does not allow the model to capture aberrant 

pedestrian behavior such as jay-walking, that behavior is outside the purview of this 

exploration. 

Barring interactions with barriers or other pedestrians, Equation [44] is an 

ordinary differential equation for pedestrian velocity. For simplicity, we will consider the 

scalar form of the equation, which (assuming 𝑣(0) = 0, and 𝑦(0) = 0) differentiates to: 

 𝑣(𝑡) = 𝑣0(1 − 𝑒−𝑡/𝜏𝑝𝑒𝑑⁡)⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡𝑦(𝑡) = 𝑣0 (𝑡 − 𝜏𝑝𝑒𝑑(1 − 𝑒
−𝑡/𝜏𝑝𝑒𝑑)) [45] 
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From this, the exponential quality of pedestrian acceleration is obvious. When a 

pedestrian is deciding when to cross a road, his crossing time factors into the decision. 

(Details of this decision are deferred to the next section.) Calculating this, therefore, 

requires calculating Equation [45]. For simplicity, however, the location 𝑦(𝑡) can be 

approximated for sufficiently large values of 𝑡 by:  

 𝑦(𝑡) ≈ 𝑣0(𝑡 − 𝜏𝑝𝑒𝑑) [46] 

Using values of 𝑣0 = 1.4
𝑚

𝑠
 and 

𝜏𝑝𝑒𝑑 = 0.5𝑠, Figure 6 shows that by the time 

the pedestrian has moved 2 meters, the 

approximation is indistinguishable from the 

exact solution. Therefore, the approximation 

of Equation [46] is valid for any lane beyond 

that closest to the curb. This approximation 

is used by pedestrians when calculating if a gap is sufficient to allow safe crossing, and 

by drivers when deciding on an appropriate yielding deceleration. 

For a detailed literature review and analysis of walking behavior, including 

variations with age, gender, physical ability, culture, temperature,45 travel purpose, and 

many others, see [Daamen 2004]. 

                                                      

45 Weidmann [1993] found that average walking speed can vary by nearly 20% between 0°C and 25°C 
(quoted in [Daamen 2004]) 

FIGURE 6 – PEDESTRIAN POSITION 
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PEDESTRIAN GAP ACCEPTANCE 

As discussed above, pedestrian movement is amenable to decomposition into 

the three levels of control Michon used to describe driving behavior. [Michon 1979] 

Having arrived at the side of a road (based on strategic-level route-choice), the tactical 

level comes into play; and a pedestrian must decide when to step out and begin 

crossing. For this discussion, we will define a gap as the time-headway between two 

successive cars. Since the quantity of interest for a pedestrian just arriving at the side of 

a road is the time until the nearest car reaches the crosswalk (and not the time-

headway to the next car, which has already passed), we will define this period as a lag. 

If the nearest approaching vehicle is multiple lanes away, it will take a finite 

amount of time before the pedestrian reaches the driver’s lane. Thus, the pedestrian 

may anticipate this fact and move his attention to the gap behind this nearest vehicle. If 

this latter gap is deemed sufficient for the pedestrian to cross at a comfortable speed, 

he may not wait for the vehicle to clear the crosswalk before beginning to cross. [Brewer 

et al. 2006] This phenomenon is referred to as a pedestrian accepting a rolling gap. In 

this model it is assumed that drivers will only yield if the pedestrian’s current velocity 

will carry him into the driver’s lane, or an adjacent lane, by the time the vehicle reaches 

the crosswalk. 

There are a variety of approaches to modeling pedestrian gap acceptance. For 

example, Hacohen, Shvalb, and Shoval [2018] developed a pedestrian crossing decision 

algorithm in which pedestrians generate a mental risk map of their crossing path with 
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reference to approaching cars. Another group [Yannis, Papadimitriou, and Theofilatos 

2013] calculated a binary logit model that incorporates characteristics of both the 

approaching vehicles and the pedestrian based on observational data. In the interest of 

simplicity, the model chosen is one that provides an explicit distribution for the behavior 

of the study population as a whole. 

The study referred to is that by Brewer et al. [2006], in which the authors 

derived a distribution for acceptable gaps and lags from video observation of more than 

600 crossings at 42 sites. The authors’ data suggest that the probability of a pedestrian 

accepting a lag of 𝑦 seconds is given by:  

 
𝜋𝐺 = (1 −

𝑒𝛽
′(𝑦)

1 + 𝑒𝛽
′(𝑦)

) ∗ 100% [47] 

Logistic regression was used to specify 𝛽′(𝑦) = 6.2064 − 0.9420𝑦 for the 

combination of all sites. 

To generate pedestrians that fit this distribution, we need only invert Equation 

[47]. Setting 𝑐1 = 6.2064 and 𝑐2 = 0.9420, we have 

 
𝑦 =

1

𝑐2
[𝑐1 − ln (

1

𝜋𝐺
− 1)] [48] 

If we then generate 𝜋𝐺  as instances of a uniformly distributed random number in 

the range (0,1), the values given to the pedestrians will fit the stated distribution. There 

is one caveat: to avoid negative values for a pedestrian’s critical gap, the numbers 

created must be greater than a minimum, 𝜋𝐺,𝑚𝑖𝑛 = (1 + 𝑒6.2064)−1. The value is 
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therefore linearly scaled as 𝜋𝐺(1 − 𝜋𝐺,𝑚𝑖𝑛) + 𝜋𝐺,𝑚𝑖𝑛. To check this formula, Figure 7 

shows the cumulative distribution function of acceptable gaps for 150 calculations of 

the above formula, compared to the explicit equation for 𝜋𝐺 . 

It has been demonstrated that these values are not constant in time for 

individual pedestrians: As wait times increase, the minimum gaps pedestrians are willing 

to accept tend to shrink, leading to increased conflicts. [Cheng, Wang, and Li 2013] The 

data acquired by Brewer et al. [2006], however, relate to the size of gaps that were 

accepted by pedestrians, not to individual pedestrians’ behavior in time. Applying values 

derived from the resulting distribution does not reproduce the time-dependency of 

pedestrian gap preferences for individual agents in the model, but it innately recreates 

realistic crossing behavior. While it has been demonstrated [e.g. Crompton 1979] that 

FIGURE 7 – GENERATED PEDESTRIAN GAP ACCEPTANCE 
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pedestrians are willing to increase their crossing speed after excessive wait times, this 

behavior was not included in the model. 

It has been shown that drivers are more likely to yield to a group of pedestrians 

than to a single pedestrian. [Schroeder and Rouphail 2011] While this behavior is not 

explicitly included in this model, as more pedestrians accumulate at the road’s edge, the 

odds increase that one of the waiting pedestrians will have a relatively small value for 

his acceptable gap. If the gap is short enough, a pedestrian beginning to cross will cause 

drivers to yield, enabling other pedestrians to cross simultaneously.  

SUMMARY 

Due to the greater freedom of movement, pedestrian modeling is arguably more 

complex than driver modeling. At the level of behavior modeled in this work, however, 

the mechanics are reasonably well understood. Modeled pedestrian motion is based on 

the Social Forces Model. [Helbing et al. 2000] Pedestrians are given the same errors in 

their perception of distance and velocity as in that of drivers. They do not, however, 

exhibit delayed reactions or distraction. Their decisions to cross are based on applying 

the gap-acceptance distribution found in [Brewer et al. 2006] to each lane of the road. 

Pedestrian behavior is significantly simplified in a few ways. First, while such 

behavior has been repeatedly demonstrated in observational studies, pedestrians in the 

model do not alter either their walking speed or the length of gaps in traffic that they 

deem acceptable based on their waiting time. Second, once a simulated pedestrian 
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begins crossing, he is effectively no longer aware of approaching vehicles. This will 

significantly increase the number of serious conflicts and collisions produced by the 

model, since real pedestrians are (when not distracted) fully capable of altering their 

trajectory to avoid being run over. This could take the form of aborting a decision to 

cross or increasing their speed to make sure they are out of harm’s way when vehicles 

arrive.  
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AGENT-BASED MODELING 

The prospect of using computers to simulate complex processes dates to the 

earliest days of computing. [Metropolis and Ulam 1949] These early methods allowed 

for huge numbers of iterations through processes that combined deterministic and 

stochastic steps (the latter modeled by comparing the values of pseudo-random 

numbers to thresholds) to derive cumulative statistics of the end-state of the overall 

process. These focused on simple, numerical phenomena that were nevertheless 

intractable through either analytic solutions or by approximation to a continuum (e.g. 

the three-body problem of physics [Kalos 1962]). However, the applicability of these 

tools to transportation was quickly recognized. [Mathewson et al. 1955]  

New sources of data and exponential increases in computational power have 

made feasible the explicit consideration of every action taken by road users. This new 

capacity is revolutionizing the control, modeling, and design of transportation systems 

worldwide. This approach can be applied to study the effects of individual drivers’ 

decisions, to explore changes to infrastructure or control strategies in various scenarios, 

examine atmospheric emissions, test new communication forms, or extrapolate current 

conditions to aid in managing abnormal events or avoiding gridlocks. One promising 

new platform for this kind of research is the use of agents.  

 While there is little consensus on terminology, multi-agent systems can be 

regarded as a subset of agent-based computing. [Niazi & Hussain 2011] This is a multi-

disciplinary field of research endeavors that defines rules for the internal behavior and 
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interaction of individual entities within a controlled, simulated environment. The use of 

such a CompuTerrarium [Epstein & Axtell 1996] allows observation of the effects that 

arise from changes to those rules. For a detailed inquiry in pursuit of defining and 

delineating the various facets of agent-based computing, see [Jennings 1999].  

Arising from object-oriented programming [Dahl & Nygaard 1968], agent-based 

computing has deep roots in the field of artificial intelligence [Shoham 1993] but has 

been applied extensively in fields as diverse as ecology [Grimm et al. 2005], economics 

[Tesfatsion (ed.) 2006], and sociology [Axelrod 2005]. Using agent-based architectures is 

ideal for scenarios that feature distributed, localized decision making – as opposed to 

dynamics dominated by centralized control or strict physical laws, which are more 

amenable to strictly equation-based approaches. [Parunak et al. 1998]  

The inherently localized perspectives of agents and the intrinsic ability to 

explicitly incorporate heterogeneity within such models makes transportation a natural 

application for the paradigm. It can be applied to all levels and scales of transportation 

modeling: from the decade-long scopes of travel demand models, to the choices of 

which route a driver will take on her daily commute, to the split-second decision of 

when to apply the brakes to avoid a collision. The breadth and scope of such models is 

also only limited by the researchers’ imaginations (assuming the requisite time and 

computing power is available). Balmer, Nagel, and Raney [2004] demonstrated a 

platform capable of multi-day simulations of regions with tens of millions of agents that 

adapt throughout the course of the test run. At the other end of the spectrum, there is 



90 | P a g e  

almost no limit to the level of detail in psychological, perceptual, social, and physical 

behavior that can be included in a model. 

Heterogeneity of behavior is not limited to that among drivers, either. Intra-

driver variability can also be incorporated. Kesting, Treiber, and Helbing [2009] 

demonstrated an agent-based incorporation of the frustration drivers feel after 

spending time in congestion. Reichardt [2008] developed a “cognitive appraisal model 

of emotion” in which driver emotions vary based on environmental events, and these 

determine risk acceptance in driving behavior. For an overview of the various 

applications of agent-based computing in transportation, from multi-modal control and 

management to simulation, see [Chen and Cheng 2010]. In the context of this 

exploration, the platform allows for populations within a simulation to actualize 

behavior patterns based on internal variables that are derived from empirical 

distributions. By fitting these values to observed distributions, agent-based modeling 

enables the recreation of behaviors otherwise described by more subjective or 

categorical, ad hoc characteristics such as pedestrian “aggressiveness” or vehicle 

platooning. [e.g. Schroeder and Rouphail 2011] 

REPAST SIMPHONY 

Agent-based microsimulation has been broadly applied in traffic modeling since 

its inception. There are a multitude of applications and a commensurate number of 

open-source and commercially-available platforms. The number of distinct approaches 

makes an exhaustive review impossible, so only a few examples are presented here. 
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Some simulations focus on network-scale models: TRansportation ANalysis and 

SIMulation System (TRANSIMS) is a development of the US Department of 

Transportation that uses travel demand models and link travel times. [Hope 2010] The 

Multi-Agent Transportation Simulation (MATSim) is an open-source model that uses 

queuing models instead of explicit car-following. [Horni et al. (eds.) 2016] VISSIM (a 

German acronym, the expansion of which translates to “traffic in cities – simulation 

model”) [PTVGroup.com], along with the host of transportation simulation platforms in 

the PTV family, is an industry standard. While many of the details of its underlying 

mechanics are trade secrets, its driver model is based on the Wiedemann psycho-

physical model; [1974] and its pedestrian modeling is based on the same social force 

model [Helbing et al. 2000] used in this simulation. 

While many commercially- or publicly-available platforms have modular 

components that can be adapted for specific applications, the interactions among these 

modules are constrained. For specific applications that are not easily explored through 

such mature systems, there are a variety of agent-based computing platforms available 

for building one’s own simulation. The selection from among these is generally one of 

choice in terms of the user interface, platform features, and the underlying 

programming languages supported. [Railsback et al. 2006] For an extensive list of 

simulation platforms available, see [Tesfatsion & Judd 2016]  

One of the more popular platforms is NetLogo [Wilenski & Rand 2015], originally 

developed by Uri Wilenski at the Center for Connected Learning and Computer-Based 
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Modeling of Northwestern University. It was designed to be accessible to those without 

programming backgrounds and has a simple yet powerful interface. Swarm [Swarm 

1999] is another powerful platform for simulating multi-agent systems that has been 

used effectively in modeling pedestrian movements. [Schelhorn et al. 1999]  

For this study, the REcursive Porous Agent Simulation Toolkit (Repast) [Collier 

2001] Simphony 2.5 framework (an Eclipse-based Integrated Development 

Environment, “IDE”) was chosen. Repast originated as a Java implementation of Swarm, 

developed at the Social Science Research Computing department of the University of 

Chicago, but has diverged into a stand-alone platform. [Railsback et al. 2006] This 

platform was chosen for its extensive documentation, speed, currency of 

implementation (2.5.0 was released in October 2017), and the quality of its IDE. 

[Getchell 2008] In a comparison of Java-sourced agent-based simulation platforms 

[Tobias & Hofmann 2004], Repast scored highest in a broad assessment of a variety of 

features. 

MODEL IMPLEMENTATION 

ROAD ENVIRONMENT 

The model developed in the above sections is applied to passenger vehicles 

approaching an uncontrolled mid-block crossing with no specific treatments beyond a 



93 | P a g e  

demarcated crosswalk. The modeled road has four lanes, each 3.3 meters (11 feet)46 

wide and is 1.5km long. A diagram of the crossing is shown in Figure 8 – Modeled Crosswalk 

(drawn to scale). This length allows ample room before the pedestrian crossing for 

traffic to stabilize from any edge effects arising from the stochastic generation of 

vehicles.47 The simulation of this road is spatially quantized to square cells of 0.5m. The 

space quantization is arbitrary, and its only effect is in the smallest values that the 

model can define. Java’s double primitive class can hold positive values down to 2−1074. 

Since this is many orders of magnitude smaller than the Planck length, choice of this 

parameter within reason will have no appreciable effects on any physical system being 

modeled. Distributions for all variables used in the simulations are given in Appendix A. 

 
FIGURE 8 – MODELED CROSSWALK 

  

                                                      

46 The standard recommended lane width for arterials is 10 to 12 feet. [AASHTO 2001] 
47 Vehicles generated by the Poisson process used may be placed nearly on top of one another. To 

facilitate stabilization, the physical limitations on emergency deceleration are disregarded within 150m 
of either end of the road. 
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SCHEDULER 

The simulation is structured into a schedule of events. At every tick of the 

simulation clock, an explicit pattern of actions is taken. This is shown diagrammatically 

in Figure 9. Time within the simulation is quantized to 0.1 seconds per tick. This time 

scale can have significant effects if chosen to be too large, but it has been demonstrated 

that simulations of the IDM with a time step of 0.1 seconds accurately recreate time-

continuous behavior, and do not differ significantly from simulations using time steps as 

low as 0.01 seconds. [Kesting and Treiber 2008b] Each simulation iteration was run for 

50 hours of simulated time, or 1,800,000 ticks. Increasing the duration of each iteration 

of the simulation allows more time for the stochasticity in the model to average out. 

However, the real-world time required to run each iteration increases proportionately. 

A duration of 50 hours was chosen somewhat arbitrarily as a compromise between 

these two trends. Using this duration, averaging over five runs was sufficient to produce 

consistent means for any set of input parameters. 

 
FIGURE 9 – SIMULATION SCHEDULE 
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The first action taken with every tick is the creation of new agents. Vehicle and 

pedestrian arrivals are modeled using independent Poisson probability mass functions. 

With an average number of events per interval, λ, the probability of observing k events 

in any interval is given by 

 
𝑃(𝑘) =

𝜆𝑘𝑒−𝜆

𝑘!
 

𝑃(1) = 𝜆𝑒−𝜆⁡,⁡⁡⁡⁡⁡𝑃(2) =
𝜆2e−𝜆

2
⁡⁡,⁡⁡⁡… 

[49] 

The model has four of these processes running simultaneously: one for each 

direction of both pedestrians and vehicles.48 If the result of a uniform random number 

generator (bounded by 0 and 1) for a given direction of vehicles is below 𝑃(2), a car is 

created in both lanes. If it is above this, but below 𝑃(1), one car is created and placed in 

a random lane. No higher terms are calculated. While this is an unrealistic simplification, 

the effects are negligible. According to the NCHRP, [Zegeer et al. 2008] the maximum 

expected flow rate for any functional area classification is 1900 vehicles/hour/lane. With 

this rate, the combined contribution of all higher terms of the Poisson probability 

function over the course of a 50-hour simulation is fewer than 85 vehicles – a deviation 

of approximately 0.02%. With a maximum typical flow rate of 400 pedestrians/hour 

from the same source, the number of pedestrians not added is less than one per 50-

hour simulation. 

                                                      

48 Therefore, in practice, the value of 𝜆 passed to each generation process is half the overall value of the 
system. 
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After the creation of new agents, those already within the simulation observe 

their environment and calculate the acceleration they will take. Once all agents (drivers 

and pedestrians) have completed these calculations, they move based on the newly 

calculated velocities. Any agent that moves beyond the edges of the simulated world is 

then removed from the environment. Agent cognition is a series of functional modules. 

DRIVERS 

Drivers are created at the edge of the simulated road with parameters 

determined by appropriate distributions. Their accelerations are not limited to realistic 

values while they are within 10% of the road length of their starting edge. This is to 

avoid undesirable behavior when the Poisson arrival pattern creates cars that physically 

overlap. They also do not become distracted if their distance from either edge of the 

simulated road is within 7% of the road length. This is to avoid piling up at either end of 

the road. Inside these boundaries, the calculation proceeds for each individual as 

described in the following sections. 

CALCULATION 

The first step in driver calculation is determination of the distracted state. 

Drivers are created giving their full attention to the driving task. They then calculate the 

ultimate duration of this inter-distraction period based on the global Poisson arrival rate 

of distraction events. The time since the beginning of this period is tracked, and when 

the duration is exceeded the driver enters a distracted state. The duration of this state is 

calculated from the global lognormal distribution of distraction events, and the time 
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since the distraction began is tracked. When this period ends, the driver again becomes 

aware of her surroundings, and the cycle begins anew. Details of the acceleration 

patterns in distracted and normal states, as well as derivations of the distributions for 

these states, are given in the Driver Modeling section. 

When not distracted, the EIDM acceleration is calculated for the current position 

and speed relative to the nearest leading vehicle (using values that include errors in 

speed and distance, as described in the section on Modeling Human Factors). This 

acceleration is stored for later actualization, as described in the Delayed Reaction 

section on ADRT. The acceleration calculated at the appropriate previous point in time is 

passed to the next steps. 

Next, yielding behavior is calculated. If a crossing pedestrian is within the 

perception limit of a driver, and the driver’s view of the pedestrian is not obstructed by 

any vehicles ahead of it or traveling in the opposite direction (details of this visual 

obstruction are discussed below), the behavior of the pedestrian is observed. These 

steps are repeated for all pedestrians that have signaled their intent to cross or have 

already begun crossing. 

If a pedestrian has indicated an intent to cross and will be within a conflict 

distance (defined here as the pedestrian being within the driver’s lane or one of the 

adjacent lanes) when the driver would cross the crosswalk at her current speed, the 

driver will decide to yield if doing so is possible at a comfortable deceleration. This value 
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of “comfortable deceleration,” 𝑏𝑦𝑖𝑒𝑙𝑑, is set at a constant 3m/s2 based on data from 

Bella and Silvestri [2016]. If the pedestrian has already begun crossing, and their paths 

bring the two agents within a conflict distance then, also, the driver will yield the right of 

way. However, if the pedestrian’s current speed will take him outside the vehicle’s 

adjacent lane by the time the vehicle enters the crosswalk, no change in velocity is 

required. The details of this deceleration behavior and where the car will attempt to 

come to a stop are given in the section on Yielding Kinematics. 

The deceleration calculated for yielding is delayed, as described in the Delayed 

Reaction section on BRT. It bears repeating that, while the decision to yield is delayed, 

the deceleration passed from this module is based on the current position and velocity. 

If the delayed acceleration were used, drivers would consistently collide with 

pedestrians to whom they were attempting to yield.  

If the driver is not currently distracted, the deceleration value calculated in the 

yielding module is compared to the output of the EIDM acceleration calculation. The 

lower of these two is added to the current velocity to determine how far the vehicle will 

move in the impending tick. It should be noted that the yielding state decided upon is 

stored as an enumerated value along with the calculated acceleration: −1 = 𝑛𝑜⁡𝑦𝑖𝑒𝑙𝑑,

0 = 𝑠𝑜𝑓𝑡⁡𝑦𝑖𝑒𝑙𝑑, 1 = ℎ𝑎𝑟𝑑⁡𝑦𝑖𝑒𝑙𝑑. This value cannot be reduced while the pedestrian in 

question is still crossing. This is to ensure that, after coming to a stop, the driver will not 

decide that a collision is no longer imminent and begin to accelerate again based on the 

car-following module. 
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If the vehicle ahead of a driver has come to a stop without enough room for the 

driver to fit behind it without blocking the crosswalk, or said lead vehicle is decelerating 

in a manner that will result in such a situation, the driver will attempt to stop prior to 

the crosswalk. 

The final step for each driver agent is observation of any potential conflicts. To 

record these, time to collision (TTC) is calculated for all crossing pedestrians. Any TTC 

below the threshold for a conflict (1.5 seconds) is added to a running log. This log is the 

output of all simulation runs. 

PEDESTRIANS 

Pedestrians are created using Poisson processes that are equivalent to, but 

independent from, those used to generate automobiles. They are generated at the top 

and bottom of the world, 750m from either end of the road. The point of creation is 4m 

from the road’s edge. The calculation patterns discussed below are enacted by each 

pedestrian agent at each tick of the schedule clock. 

CALCULATION 

The models and distributions discussed in this section are explained in detail in 

the section on Pedestrian Modeling. Pedestrian distraction, though a significant issue, 

[Mwakalonge, Siuhi, and White 2015] is not included in the model. The fundamental 

mechanics of pedestrian motion are based on the Social Forces Model. [Helbing et al. 

2000] Each pedestrian feels a motive force toward a point on the opposite side of the 
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road. This attractor point is shifted a meter off-center to add a small transverse force, 

avoiding the potential artifact of exactly balanced forces impeding pedestrian 

movement. The shift of this point is enacted such that pedestrians pass those going the 

opposite direction to their own right. 

Until a pedestrian has made the decision to cross the street, a barrier force from 

the curb is acting upon him. This force stops the pedestrian at the road’s edge, where all 

pedestrians gather within a 4x4m box – also enforced via a barrier force. In addition, 

each pedestrian is acted upon by a repulsive force from any other pedestrians ahead of 

him. If multiple pedestrians are waiting to cross, this produces a small crowd of people 

instead of a two-dimensional line waiting at the curb. 

From the time of their creation, pedestrians begin observing any approaching 

vehicles. While vehicles can block the line of sight between a pedestrian and other 

approaching cars (discussed in greater detail in the next section), pedestrians remain 

aware of any approaching vehicles they have seen at any time in the past. (The same is 

not true of drivers, who react only to pedestrians they can currently see.)  

At each step, for each lane, the arrival time of the nearest approaching vehicle 

that the pedestrian is aware of is calculated (including perception errors). Using this, 

and knowledge of his own acceleration and gap-acceptance behavior, the pedestrian 

decides if he has enough time to cross in front of each vehicle. If the answer is yes, the 

pedestrian is said to be accepting a lag. If not, and the vehicle will have passed by the 
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time the pedestrian is within one lane of the vehicle’s lane, the pedestrian calculates the 

arrival time of the vehicle behind the nearest one. If there is sufficient time for the 

pedestrian to cross between the two, the pedestrian still decides he can cross this lane 

safely – this is referred to as accepting a gap. If the situation in all four lanes is deemed 

as safe, then the pedestrian will signify intention to cross. 

If a vehicle is close enough when this decision is made (within 18m – a somewhat 

arbitrary distance equal to twice the recommended stopping distance for yielding 

vehicles), the pedestrian will wait to be acknowledged by the nearby vehicle before 

crossing in front of it. Further details on this decision-making process are presented in 

the section on Pedestrian gap acceptance. 

When a pedestrian has decided to begin crossing, the barrier force of the curb is 

removed, and he begins walking toward his attractor point on the opposite side of the 

road. The repulsive forces from pedestrians in front of him are still felt, so pedestrians 

navigate around each other while crossing in opposite directions. This interaction is not 

enforced for pedestrians still waiting to cross from the other direction. Otherwise, the 

combined force of a waiting group would prevent any lone pedestrians from achieving 

the safety of the opposite curb. 

If any vehicles have come to a stop in a pedestrian’s path along the crosswalk 

(that aren’t currently yielding to him), a second attractor point is temporarily added to 

the forces acting on the pedestrian when he comes within a lane’s width from the 
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vehicle’s side. This point is located a half-meter behind the rear corner of the vehicle. If 

the driver of the vehicle stopped on the crosswalk has indicated to the pedestrian that 

she intends to yield to him, this point is assigned to a half-meter ahead of the front 

corner of the vehicle. Once past the vehicle, this second attractor point is removed. This, 

in combination with a barrier force at the edges of vehicles keeps pedestrians from 

walking through (or, in effect, climbing over) vehicles in their paths. 

VISUAL OBSTRUCTIONS 

In addition to the human factors described in the Driver Modeling section, when 

a vehicle is close to the crosswalk, another limitation to driver perception of crossing 

pedestrians becomes relevant: automobiles are mostly opaque. If a vehicle is slowing or 

stopped to allow a pedestrian to cross, its presence obstructs the line of sight of any 

vehicles in adjacent lanes behind it. Likewise, if a vehicle has recently traversed the 

crosswalk but is still in its vicinity, drivers traveling in the opposite direction may not see 

pedestrians crossing behind it. The drivers of these other vehicles will not be aware that 

they should be yielding, resulting in the potential for conflicts. The former scenario is 

referred to as a multiple threat, [Snyder 1972] and a diagrammatic example is shown in 

Figure 10 (pedestrian not drawn to scale). In a nationwide study of pedestrian crashes, 

[Zegeer et al. 2005] 17.6% of the crashes in marked crosswalks were classified as 

resulting from multiple-threat events. The stochastic nature of these events makes 

simulation the ideal approach for modeling them. 
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FIGURE 10 – MULTIPLE THREAT 

The dimensions for vehicles in the simulation are taken from Edmunds data on 

new car dimensions. [Woodyard 2007] For simplicity, each vehicle is identically modeled 

using the average values for “large sedans” between the years 1990 and 2007: 5.28m 

long, 1.89m wide, and 1.46m tall. This is shown in Figure 11 (drawn to scale). 

Pedestrians are assumed to be the average of American male and female heights: 1.4m, 

with 0.11m from the top of the head to their eyes.  

 
FIGURE 11 – MODELED VEHICLE AND PEDESTRIAN 
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This puts their eyes at 1.29m above the ground. For simplicity, drivers are 

assumed to be seated with their eyes at the same height. Both drivers and pedestrians 

can see over the hood of the vehicles, so only the rear 2/3 of each vehicle is assumed to 

obstruct the view of drivers and pedestrians around it. The vantage point from which a 

driver’s vision is calculated lies halfway between the front and rear bumpers of her 

vehicle, and 1/3 of its width (0.63m) from the left side. 

CONFLICTS 

Conflicts are recorded by each driver agent after all other calculations are made. 

The time travel time to the longitudinal location of each crossing pedestrian is 

calculated based on the driver’s newly-calculated velocity. If, at that point in the future, 

any crossing pedestrian’s current velocity will have brought him within his radius of the 

transverse location of the vehicle, that is considered a time to collision (TTC). While it 

could be argued that a near-miss would still be considered a “conflict” for a pedestrian, 

this original conception of TTC is used to enable comparison of the output to other 

studies. 

Any such conflict with a TTC of 1.5 seconds or less is recorded in a log, which 

forms the output of a simulation run. Included in this log are state variables of the 

pedestrian and driver involved (time since the driver was distracted, the pedestrian’s 

critical gap, the driver’s BRT, etc.) as well as a description of their relative motion 

(current driver speed, acceleration, and longitudinal distance from the pedestrian). Also 

included, for differentiation between collisions and near misses, is the lateral distance 
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between the pedestrian and the side of the vehicle. If a collision occurs, this last variable 

is 0m. 

In the analysis of these data, a TTC of 1.5 seconds or less is considered a conflict, 

and a TTC of 1 second or less is considered a serious conflict. This is in keeping with the 

Dutch Objective Conflict Technique for Operation and Research. [Kraay, van der Horst, 

and Oppe 1986] 

 FACE VALIDATION 

Validation describes checking whether a model, as implemented, gives a 

“reasonably accurate representation of the real world.” This is in contrast to verification 

which refers to the “process that determines whether the programming implementation 

of the abstract or conceptual model is correct.” [Xiang, Kennedy, and Madey 2005] By 

adding breakpoints to relevant points in the code, any portion of the model can be 

observed to qualitatively verify that it behaves as expected. Also, the modeling platform 

used, Repast Simphony, features an integrated visualization of the model being run. This 

makes it straightforward to continually check the face validity of the model’s 

performance. However, face validity is only a subjective measure of performance. 

FUNDAMENTAL DIAGRAM 

Data on the macroscopic behavior of traffic in the simulation can be used to 

make a more quantitative assessment of the model (though comparison of this to 

empirical data is still done qualitatively). The performance of the driver model can be 
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checked by generating a fundamental diagram of the simulated traffic flow.49 While the 

introduction of driver errors, delays, and heterogeneity in behavioral parameters 

creates density waves in the simulation’s flow of traffic, the congested states needed to 

fill out the fundamental diagram were absent. Without bottlenecks or lane changes 

(which would further complicate pedestrian-vehicle interactions in ways that have not 

received significant research), no disturbances were able to grow into large-scale 

breakdown of flow. It has been demonstrated, however, that inhomogeneities in the 

road can effectively reproduce the disturbances of lane-changes on the collective 

dynamics of congested traffic. [Treiber, Hennecke and Helbing 2000]  

If the location chosen to measure these quantities is upstream of the crosswalk 

and beyond the limit of drivers’ ability to perceive pedestrians, density waves created 

from drivers yielding to pedestrians will be added to those produced by the introduction 

of driver errors, delays, and heterogeneity. This enables a demonstration that the driver 

model, as implemented, recreates realistic traffic flow. 

To calculate the relevant values, two imaginary lines are placed along the road at 

𝑥1 and 𝑥2 (a distance 𝑑𝑥 = 5𝑚) apart. For each vehicle, 𝑖, the time, 𝑡𝑖,1, at which the 

vehicle crosses 𝑥1 is recorded. Then, the time, 𝑡𝑖,2, when the vehicle crosses 𝑥2 is 

recorded, and the difference, 𝑑𝑡𝑖 = 𝑡𝑖,2 − 𝑡𝑖,1, is calculated. The number of vehicles, 𝑛, 

                                                      

49 For detailed definitions of the quantities discussed, see the Driver Modeling section on Macroscopic 
Models. 
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passing 𝑥2 in a time period, ∆𝑡 (set to 120 seconds), is counted; and the time, 𝑑𝑡𝑖, that 

each took to cross the distance 𝑑𝑥 is recorded. The flux is then given by: 

 𝑞 = ⁡𝑛 ∆𝑡⁄  [50] 

The concentration or density of the road, the average number of vehicles per unit 

length, is calculated as: 

 
𝜌 =

∑𝑑𝑡𝑖
∆𝑡 ∗ 𝑑𝑥

; [51] 

and the velocity of the flow is calculated as the harmonic mean speed:50 

 
𝑉 = (

1

𝑛
∑

1

𝑑𝑥 𝑑𝑡𝑖⁄
)
−1

 [52] 

By measuring these quantities, the fundamental diagram can be created. The 

results are shown in Figure 12. These measurements are not taken until after a warm-up 

period equal to twice the length of the simulated road, divided by the speed limit of the 

simulation instance. For example, with a posted speed limit of 20 kph, this is nine 

minutes. For a speed limit of 70 kph, this is approximately 2.6 minutes. 

Comparing the resulting shape to the shape of empirically observed traffic flow 

gives some validation of the implemented model. For this purpose, data collected on a 

freeway in Georgia by Wang et al. [2009] are presented in Figure 13. Congested portions 

of the fundamental diagram are only filled in when the model is run at low speeds, so 

                                                      

50 The harmonic average is chosen because the arithmetic mean is biased towards faster vehicles: Since 
the measurement points are stationary, more fast cars would pass in a given amount of time, skewing 

the results. The harmonic mean, on the other hand, inherently weights each measurement by 
1

𝑣
. 

[Knoop, Hoogendoorn, and Zuylen 2009] 
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the data in Figure 12 are taken from simulations run with a speed limit of 20kph and an 

average flow of 300 vehicles/lane/hr. The granularity in the data (the visible lines of data 

points) is due to the process of counting passing cars. Only whole cars can be counted, 

so the possible values of flux are quantized accordingly. 

         
FIGURE 12 – SIMULATED FUNDAMENTAL DIAGRAM 

FIGURE 13 – EMPIRICAL FUNDAMENTAL DIAGRAM [WANG ET AL. 2009] 
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RESULTS 

SIGNIFICANCE OF INCLUDING HUMAN FACTORS 

The above model was built to address a primary question: To what extent does 

inclusion of human factors affect the results when using simulations to answer 

questions related to pedestrian safety? To simplify this stage of the analysis, a single set 

of agent volumes was chosen. The developed model was run for a pedestrian volume of 

400 PPH (pedestrians per hour – 200 per hour from each side of the road) and 800 VPH 

(vehicles per hour – 400 per hour in each direction). These illustrative rates were chosen 

as a compromise: Higher rates create higher conflict counts, and therefore more robust 

results. However, higher rates require more computational time. Also, if the rates are 

too high, agent generation exceeds the capacity of the road and the generation rates 

stop being directly related to how many vehicles move through the crosswalk.  

The speed limit was set in increments of 10 kilometers per hour (kph) from 20 to 

70kph. Below this speed range, this combination of vehicle and pedestrian rates was 

higher than the capacity of the intersection. No higher speeds were analyzed since, as 

recommended in one of the benchmark studies on the topic, [Zegeer et al. 2005], 

unsignalized crosswalks should not be used on roads with speed limits above 40 mi/hr 

(~64.4kph). Many of the included combinations of speed and volume (pedestrian and 

vehicle) are well beyond where the Manual on Uniform Traffic Control Devices [FHWA 

2009] warrants a pedestrian signal. However, since these warrants are in place to 
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minimize vehicle-pedestrian conflicts, observation of conflicts will be most informative 

beyond their bounds. 

In the tables and figures that follow: minimum 𝑇𝑇𝐶⁡ ≤ ⁡1.5𝑠 is a conflict; 

minimum 𝑇𝑇𝐶⁡ ≤ ⁡1.0𝑠 is a serious conflict; and minimum 𝑇𝑇𝐶⁡ = ⁡0 is a collision. These 

will be collectively referred to as safety-critical interactions. (Minimum TTC is defined in 

detail in the Literature Review section on Conflicts.) Each data point in these figures 

represents the average hourly rate of these interactions over 250 hours of simulated 

time (five 50-hour simulations for each combination of speed and human factors). 50-

hour runs were chosen somewhat subjectively based on their producing similar outputs 

from run to run. In shorter simulations, the stochastic nature of the model produces 

larger discrepancies between runs based on the same input parameters. 50 hours was 

chosen as a balance between avoiding this behavior and computational time. 

At these rates of agent creation, the average rates of safety-critical interactions 

are approximately linear with respect to posted speed limit, PSL, so linear regression 

was used to fit the observed interactions to a linear model: 

 𝑦 = 𝛽0 + 𝛽1 × 𝑃𝑆𝐿 [53] 

In testing this linear regression, the null hypothesis is that the coefficients, 𝛽0 

and 𝛽1, are zero. The alternative hypothesis is that the relationship in Equation [53] 

exists. Thus, if the derived p-value of the fit is less than a given level of significance, the 

null hypothesis is rejected, and the regression is valid. The coefficient of determination, 

𝑅2, is the ratio of the amount of variability in the data explained by the regression 
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model to the actual amount of variability in the data. For each case, the derived values 

are included in a table. For reference, the distributions of all model parameters used in 

the simulations are given in Appendix A. 

BASELINE 

 
FIGURE 14 – SIMULATION RESULTS: BASELINE 

 Value p-value Adjusted R2 

𝛽0 Conflicts 0.0412952 0.0318 
0.07555 

𝛽1 Conflicts 0.0006971 0.0770 

𝛽0 Serious Conflicts 0.0068952 0.48871 
0.2191 

𝛽1 Serious Conflicts 0.0006171 0.00531 

𝛽0 Collisions -0.0121143 0.0186 
0.4401 

𝛽1 Collisions 0.0004914 3.87e-05 

TABLE 5 – LINEAR REGRESSION: BASELINE MODEL  

Without human factors, no trends are apparent, aside from serious conflicts and 

collisions being slightly more likely at high speeds. The only source of conflicts without 

driver errors are pedestrians accepting unsafe gaps. These result from the continuous 

distribution from which each pedestrian’s critical gap is derived. Despite pedestrian 

distraction not being explicitly modeled in the simulation, this tail of the gap acceptance 

distribution may represent pedestrians that are unaware of their surroundings. 
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FULL MODEL 

 
FIGURE 15 – SIMULATION RESULTS: FULL MODEL 

 Value p-value Adjusted R2 

𝛽0 Conflicts -1.3777 4.21e-09 
0.9799 

𝛽1 Conflicts 0.1287 < 2e-16 

𝛽0 Serious Conflicts -1.26815 2.05e-09 
0.9685 

𝛽1 Serious Conflicts 0.09079 < 2e-16 

𝛽0 Collisions -0.95745 6.68e-09 
0.9339 

𝛽1 Collisions 0.04929 < 2e-16 

TABLE 6 – LINEAR REGRESSION: FULL MODEL  

All linear fits in the full model are significant, and the adjusted-R2 values suggest 

a linear fit is sufficient to describe the variance in the response curve.  

HUMAN FACTORS ANALYSIS 

Each human factor in the driver model (estimation errors, distraction, visual 

obstruction, and finite reaction times) was analyzed in isolation from two directions. 

First, the output of the model with only that factor included was compared to the 

output with no human factors included, the baseline. Next, comparison was made 

between the output with all human factors included, the full model, and the output with 

all except the one factor under exploration. 
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To demonstrate that the difference between including or excluding a single 

human factor is statistically significant, two-way Analysis of Variance (ANOVA) 

techniques were employed. For the results of these tests to be valid, three criteria must 

be met. First, all observations must be independent of one another: Each run of the 

simulation was initiated with a randomly-selected random seed, so each data point is 

entirely isolated from the next. Second, the residuals about the fitted means must be 

normally distributed. To test this, the residuals of the ANOVA test were analyzed using 

the Shapiro-Wilk test. 

In the Shapiro-Wilk test, the null hypothesis is that the values examined are 

normally distributed. Therefore, if the derived p-value is greater than a chosen level of 

significance, the null hypothesis is not rejected, and normality can be assumed. A 

significance of 0.05 was chosen for this test. The p-value of this test is given in the table 

for each factor’s analysis. A corrolarial deduction can be made from this observation: if 

the residuals about the mean of each parameter set are normal, then the conditional 

distributions are also normal.  

At low speeds, however, the number of collisions is close to zero. Since this puts 

a hard floor on the output values, the residuals for these situations are skewed away 

from zero, violating the normality assumption. Where this is the case, the ANOVA is run 

twice: once with the full range, and once using only speeds for which the normality 

criterion is satisfied. 
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The final criterion for the results of an ANOVA test to be trustworthy is that 

variances of the test, relative to the calculated means of each variable, are equal. This is 

referred to as homoscedasticity. Since the variance in the conflicts is related to the 

mean (and this has been shown above to vary linearly with the speed), this criterion is 

violated. However, as demonstrated by Quensel [1947], violation of this criterion will 

only have an effect if the sample sizes of each group are significantly different. To avoid 

this, five runs of each combination were used in the following analysis. 

The null hypothesis for ANOVA is that the two sample sets being compared come 

from the same distribution. Thus, if the p-value calculated is below the chosen level of 

significance, the null hypothesis can be rejected. The analysis of each human factor 

discussed below includes results of both the linear regression performed and ANOVA. 

Since the relationship to speed is shown from the linear regression analysis, only the 

results relative to inclusion of the human factor (1 degree of freedom) are reported. 

ESTIMATION ERRORS 

Pedestrians and drivers are prone to imperfect perception of the distance and 

relative velocity of others on the road. When this human factor is included, the values of 

∆𝑣 and 𝑠 in the Enhanced IDM (Equations [8] - [12]) are replaced with the driver 

estimates of these values: ∆𝑣𝑒𝑠𝑡 and 𝑠𝑒𝑠𝑡, respectively. These values are calculated in 

Equations [22] and [24] and vary with each time-step based on an approximated Weiner 

process (Equation [30]). This is essentially a “random walk,” and can be thought of as 

noise with inertia. 
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FIGURE 16 – SIMULATION RESULTS: ESTIMATION ERRORS VS. BASELINE 

 Value p-value Adjusted R2 

𝛽0 Conflicts 0.027962 0.133004 
0.3394 

𝛽1 Conflicts 0.001497 0.000434 

𝛽0 Serious Conflicts 0.01173 0.307 
0.09929 

𝛽1 Serious Conflicts 0.00048 0.050 

𝛽0 Collisions -0.0106286 0.15051 
0.2627 

𝛽1 Collisions 0.0005029 0.00223 

TABLE 7 – LINEAR REGRESSION: ESTIMATION ERRORS ONLY 

The output of regression analysis on the effects of including only driver 

estimation errors shows that speed significantly affects the number of safety-critical 

interactions. However, the linear model does not account for much of the variability in 

the data (low R2). In fact, the effect is barely distinguishable from the stochasticity of the 

simulation. As would be expected, the intercepts are not statistically different from 0.  

 S-W p-value F value p-value 

Conflicts 0.3094 5.974 0.0182 

Serious Conflicts 0.4355 0.065 0.80058 

Collisions 5.757e-05 0.486 0.489 

Collisions (SL ≥ 30kph) 0.06313 0.063 0.803 

TABLE 8 – ANOVA: ESTIMATION ERRORS VS. BASELINE 
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Including estimation errors in isolation makes no significant difference to the 

rate of serious conflicts or collisions, and doing so has only a marginally-significant effect 

on conflicts. 

 
FIGURE 17 – SIMULATION RESULTS: ESTIMATION ERRORS VS. FULL MODEL 

 Value p-value Adjusted R2 

𝛽0 Conflicts -1.1368 5.14e-06 
0.9646 

𝛽1 Conflicts 0.1182 < 2e-16 

𝛽0 Serious Conflicts -1.13638 1.24e-06 
0.9444 

𝛽1 Serious Conflicts 0.08537 < 2e-16 

𝛽0 Collisions -0.9214 1.11e-09 
0.9404 

𝛽1 Collisions 0.0459 < 2e-16 

TABLE 9 – LINEAR REGRESSION: FULL MODEL EXCLUDING ESTIMATION ERRORS 

 S-W p-value F value p-value 

Conflicts 0.3264 7.707 0.00782 

Serious Conflicts 0.4261 3.147 0.0824 

Collisions 0.7566 9.825 0.00293 

TABLE 10 – ANOVA: ESTIMATION ERRORS VS. FULL MODEL 

When the other human factors are included, however, this approximation of the 

limitations of human visual ability makes a small but significant difference in conflicts 

and collisions. 
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VISUAL OBSTRUCTION 

Drivers and pedestrians cannot see through cars. This was modeled by excluding 

any road users from an agent’s decision-making processes if the former are within a 

visual angle obstructed by intervening vehicles. For the baseline, all nearby road users 

are included in behavioral decisions, regardless of line of sight restrictions. 

 
FIGURE 18 – SIMULATION RESULTS: VISUAL OBSTRUCTION VS. BASELINE 

 Value p-value Adjusted R2 

𝛽0 Conflicts -0.38731 0.000435 
0.6876 

𝛽1 Conflicts 0.01625 9.1e-09 

𝛽0 Serious Conflicts -0.14480 3.22e-05 
0.7314 

𝛽1 Serious Conflicts 0.00544 1.07e-09 

𝛽0 Collisions -0.0226286 0.00538 
0.5291 

𝛽1 Collisions 0.0009029 3.18e-06 

TABLE 11 – LINEAR REGRESSION: VISUAL OBSTRUCTION ONLY  

While the linear regression for all safety-critical interactions is significant, the 

linear regressions do not describe a great deal of the variation. Visual obstructions delay 

the information that a pedestrian is crossing into the path of an oncoming vehicle. This 

translates to a decrease in the distance available for the driver to come to a stop. Since 

the necessary acceleration for stopping within a given distance is related to the square 
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of the velocity (Equation [41]), and this acceleration is limited to realistic values in the 

model, a quadratic relationship may be a better fit. 

 S-W p-value F value p-value 

Conflicts 0.5498 409.0 <2e-16 

Serious Conflicts 0.1182 165.59 <2e-16 

Collisions 0.0006965 13.091 0.000712 

Collisions (SL ≥ 50 kph) 0.3578 24.0 5.37e-05 

TABLE 12 – ANOVA: VISUAL OBSTRUCTION VS. BASELINE 

Including visual obstructions as the only human factor in the model makes a 

significant difference in all safety-critical interactions, though only at high speeds. 

 
FIGURE 19 – SIMULATION RESULTS: VISUAL OBSTRUCTION VS. FULL MODEL 

 Value p-value Adjusted R2 

𝛽0 Conflicts -0.24110 0.00487 
0.8631 

𝛽1 Conflicts 0.02222 7.92e-14 

𝛽0 Serious Conflicts -0.23177 0.000861 
0.8503 

𝛽1 Serious Conflicts 0.01662 2.79e-13 

𝛽0 Collisions -0.151924 0.000769 
0.7666 

𝛽1 Collisions 0.008206 1.47e-10 

TABLE 13 – LINEAR REGRESSION: FULL MODEL EXCLUDING VISUAL OBSTRUCTION 
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 S-W p-value F value p-value 

Conflicts 0.9607 4277.9 <2e-16 

Serious Conflicts 0.8427 4353.8 <2e-16 

Collisions 0.04618 1467.0 <2e-16 

Collisions (SL ≥ 30 kph) 0.1706 1421.7 <2e-16 

TABLE 14 – ANOVA: VISUAL OBSTRUCTION VS. FULL MODEL 

When excluded from the full driver model, however, the influence of obstruction 

is unquestionably significant. The model predicts a rate of safety-critical interactions an 

order of magnitude lower when obstruction is excluded. 

REACTION TIME 

Human actors do not react instantaneously to information from their 

environment. This limitation was modeled by delaying drivers’ decisions to yield to 

crossing pedestrians based on empirical distributions of brake reaction times. For the 

baseline, the output of calculations for yielding decelerations (Equations [41] and [43]) is 

applied immediately for yielding vehicles. When brake reaction times (BRTs) are 

incorporated in the model, however, these outputs are delayed (by means of an iterated 

coupled map, as described in the Driver Modeling section on Modeling Human Factors) 

until after a time, 𝜏𝑅𝑇. This total reaction time is equal to the driver-specific perception 

reaction time (𝜏𝐵𝑅𝑇 – given by Equation [21]) plus the movement time (𝜏𝑀) and device 

response time (𝜏𝐷𝑅). (The latter two, combined, add a constant 0.35 seconds.) In both 

cases, acceleration/deceleration reaction times (ADRT – given by Equation [14]) are still 

applied by means of a delay-differential equation. The effects of ADRT on pedestrian 

safety are indirect. This was done to avoid confounding these effects with those of BRT. 
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FIGURE 20 – SIMULATION RESULTS: REACTION TIMES VS. BASELINE 

 Value p-value Adjusted R2 

𝛽0 Conflicts -0.06194 0.0884 
0.8738 

𝛽1 Conflicts 0.01035 2.54e-14 

𝛽0 Serious Conflicts -0.135771 0.000334 
0.874 

𝛽1 Serious Conflicts 0.009817 2.48e-14 

𝛽0 Collisions -0.128648 4.19e-05 
0.8149 

𝛽1 Collisions 0.006251 5.57e-12 

TABLE 15 – LINEAR REGRESSION: REACTION TIMES ONLY  

While the linear component of the rates of safety-critical interactions with 

respect to speed limit is significant, the magnitude of these effects for reaction times 

included in isolation is small relative to the stochasticity of the simulation. The linear fit 

does not account for a great deal of the variation. 

 S-W p-value F value p-value 

Conflicts 0.06101 665.79 < 2e-16 

Serious Conflicts 0.482 862.75 < 2e-16 

Collisions 0.0004721 389.75 < 2e-16 

Collisions  

(30kph ≤ SL ≤ 60kph) 
0.08049 108.97 1.95e-12 

TABLE 16 – ANOVA: REACTION TIMES VS. BASELINE 
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Even when reaction times are the only human factor included in the simulation, 

their influence is significant in all severities of safety-critical interactions. However, 

when reaction times are included in isolation, outliers in the rate of collisions can be 

produced at high speeds that violate the normality assumption of ANOVA. This is an 

artifact of assigning individual drivers’ reaction times from the derived distribution. If 

the number of outliers generated becomes significant (without the other human factors 

present to drive up the mean and mask the effect) the results can be skewed. This 

occurred for collisions when the posted speed limit of the simulation reached 70 kph. To 

prevent this from invalidating the ANOVA, simulations at this speed were also excluded 

in the analysis that excluded low speeds for the reasons discussed in the introduction to 

this Human Factors Analysis section. 

 
FIGURE 21 – SIMULATION RESULTS: REACTION TIMES VS. FULL MODEL 

 Value p-value Adjusted R2 

𝛽0 Conflicts -0.67105 4.84e-05 
0.7818 

𝛽1 Conflicts 0.02977 5.66e-11 

𝛽0 Serious Conflicts -0.30990 0.000542 
0.6998 

𝛽1 Serious Conflicts 0.01366 5.17e-09 

𝛽0 Collisions -0.104648 0.00612 
0.5294 

𝛽1 Collisions 0.004251 3.15e-06 

TABLE 17 – LINEAR REGRESSION: FULL MODEL EXCLUDING REACTION TIMES 
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 S-W p-value F value p-value 

Conflicts 0.538 4495.4 <2e-16 

Serious Conflicts 0.3557 5878.5 <2e-16 

Collisions 0.01265 1868.7 <2e-16 

Collisions (SL ≥ 30kph) 0.3171 1370.1 <2e-16 

TABLE 18 – ANOVA: REACTION TIMES VS. FULL MODEL 

The decrease in conflicts, serious conflicts, and crashes from excluding finite 

reaction times from the otherwise-complete model is significant; and this effect is 

readily evident at all speeds. 

DISTRACTION 

There are nearly infinite objects and ideas competing for a driver’s attention. 

Despite the vigilance necessary to remain aware of the ever-changing road around 

them, drivers will often divert their attention to secondary tasks. This behavior was 

modeled using an alternating renewal process. The durations of distracted periods are 

generated by Equation [34], and inter-distraction intervals are generated using Equation 

[38]. 

During distracted periods, drivers are not aware of actions by other road users. 

This means they do not yield to pedestrians or adjust the measurements used in their 

car-following behavior (𝑧 in Equation [10] and 𝑎𝐶𝐴𝐻 in Equation [11]) from pre-

distraction values. For the baseline, this distracted state is never entered. 
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FIGURE 22 – SIMULATION RESULTS: DISTRACTION VS. BASELINE 

 Value p-value Adjusted R2 

𝛽0 Conflicts 0.043695 0.04573 
0.296 

𝛽1 Conflicts 0.001577 0.00111 

𝛽0 Serious Conflicts 0.00480 0.81039 
0.2547 

𝛽1 Serious Conflicts 0.00136 0.00262 

𝛽0 Collisions -0.032648 0.00223 
0.6368 

𝛽1 Collisions 0.001451 7.74e-08 

TABLE 19 – LINEAR REGRESSION: DISTRACTION ONLY  

The effects of distraction, in isolation, are barely distinguishable from noise. 

While the relationship to speed is significantly linear, the derived linear model is 

insufficient to describe the variation in safety-critical interactions. 

 S-W p-value F value p-value 

Conflicts 0.4486 19.600 5.49e-05 

Serious Conflicts 0.5067 19.991 4.75e-05 

Collisions 0.1076 56.390 1.22e-09 

TABLE 20 – ANOVA: DISTRACTION VS. BASELINE 

Using a driver model that includes distraction alone produces significantly 

different results than without; however, the resulting increases are small. 
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FIGURE 23 – SIMULATION RESULTS: DISTRACTION VS. FULL MODEL 

 Value p-value Adjusted R2 

𝛽0 Conflicts -1.1258 3.47e-05 
0.9442 

𝛽1 Conflicts 0.1055 < 2e-16 

𝛽0 Serious Conflicts -1.02099 1.24e-06 
0.9376 

𝛽1 Serious Conflicts 0.07213 < 2e-16 

𝛽0 Collisions -0.75383 6.24e-09 
0.9284 

𝛽1 Collisions 0.03706 < 2e-16 

TABLE 21 – LINEAR REGRESSION: FULL MODEL EXCLUDING DISTRACTION 

 S-W p-value F value p-value 

Conflicts 0.992 92.953 8.26e-13 

Serious Conflicts 0.9965 134.982 1.49e-15 

Collisions 0.4473 105.915 9.80e-14 

TABLE 22 – ANOVA: DISTRACTION VS. FULL MODEL 

The linear models for safety-critical interactions are significantly different 

between the full model and the model excluding distraction. To explore the magnitude 

of this difference, the predictions of the two models were compared. In each of the 

following tables, the last row shows the relative underestimation between the linear 

model from excluding distraction. For example, for 20kph, the full model predicts 1.196 

conflicts per hour. Excluding distraction brings this down to 0.984 conflicts per hour – a 

difference of 0.212 conflicts per hour, or approximately 17.7% of the original 1.196. 
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Speed (kph) 20 30 40 50 60 70 

Full Model 1.196 2.483 3.77 5.057 6.344 7.631 

Excluding 

Distraction 
0.984 2.039 3.094 4.149 5.204 6.259 

Relative 

Difference 
17.7% 17.9% 17.9% 18% 18% 18% 

TABLE 23 – PREDICTED CONFLICTS FROM LINEAR MODELS 

Speed (kph) 20 30 40 50 60 70 

Full Model 0.548 1.456 2.363 3.271 4.179 5.087 

Excluding 

Distraction 
0.422 1.143 1.864 2.586 3.307 4.028 

Relative 

Difference 
23.0% 21.5% 21.1% 21.0% 20.9% 20.8% 

TABLE 24 – PREDICTED SERIOUS CONFLICTS FROM LINEAR MODELS 

Speed (kph) 20 30 40 50 60 70 

Full Model 0.028 0.521 1.014 1.507 2.0 2.493 

Excluding 

Distraction 
051 0.358 0.729 1.099 1.47 1.84 

Relative 

Difference 
100% 31.3% 28.2% 27.1% 26.5% 26.2% 

TABLE 25 – PREDICTED COLLISIONS FROM LINEAR MODELS 

These data show the underestimation of conflicts and collisions that result from 

excluding distraction from the driver model. The predicted collisions and serious 

conflicts are rather high, especially at low speeds. There are two significant reasons for 

this. First, the linear fits of these distributions are heavily influenced by the higher 

speeds. The relatively low R2 values quantify this behavior, and a piece-wise linear fit 

would be more appropriate. More fundamentally, however, the pedestrian model used 

                                                      

51 The linear model actually predicts negative collisions (-0.013) at this speed. 
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in the simulation is overly simplistic. This limitation is discussed in more detail in the 

Summary subsection below. 

SUMMARY  

As demonstrated by the results of the Shapiro-Wilks tests, the results of the 

simulation (the generated rates of safety-critical interactions) are normally distributed 

for each combination of model parameters. Each of the human factors analyzed, with 

the exception of visual obstruction, has a small impact on simulated safety-critical 

interactions when included in isolation. However, using an incomplete combination of 

any three of the four significantly underestimates the resulting safety-critical 

interactions of all severities. 

It should be noted that the produced rates of serious conflicts and collisions are 

artificially inflated by the simplicity of the models implemented. First, drivers are 

incapable of lateral evasive actions. The only method available to the simulated drivers 

for avoiding a collision is braking. Furthermore, once a simulated pedestrian has decided 

to cross, no more information about oncoming vehicles is processed. This behavior 

lends itself to a much greater ratio of severe interactions to simple conflicts. While the 

linear models produce ratios of as many as 300 pedestrian collisions per 1000 conflicts, 

real values are closer to .4 to 6.4 per 1000. [Davis, Sanderson, and Davuluri 2002] 
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OTHER AGENT RATES 

Since the agent generation rates used in the initial analysis above are somewhat 

arbitrary, the responses of the rates of safety-critical interactions to changes in agent 

volumes were explored. To avoid the edge effects of congestion at low speeds (the 

linear behavior in the produced rates discussed above seems to break down below 

30kph for many parameter sets), a second linear fit was performed using only the 

results for speeds greater than or equal to 30kph. This analysis was performed for the 

original rates of pedestrian and vehicle generation, as well as a few other illustrative 

combinations. Those results are presented here. Each features the full model with all 

four human factors. 

 Value p-value Adjusted R2 

𝛽0 Conflicts -1.8608 5.49e-09 
0.9425 

𝛽1 Conflicts 0.1372 < 2e-16 

𝛽0 Serious Conflicts -1.8196 7.66e-11 
0.9776 

𝛽1 Serious Conflicts 0.1005 < 2e-16 

𝛽0 Collisions -1.41920 6.24e-11 
0.9598 

𝛽1 Collisions 0.05744 < 2e-16 

TABLE 26 – LINEAR REGRESSION: FULL MODEL – PPH=400, VPH=800 (SPEED ≥ 30KPH) 

 Value p-value Adjusted R2 

𝛽0 Conflicts -1.566 1.59e-06 
0.9561 

𝛽1 Conflicts 0.1078 < 2e-16 

𝛽0 Serious Conflicts -1.3064 1.71e-08 
0.9625 

𝛽1 Serious Conflicts 0.07408 < 2e-16 

𝛽0 Collisions -0.9052 7.31e-10 
0.9542 

𝛽1 Collisions 0.03892 < 2e-16 

TABLE 27 – LINEAR REGRESSION: FULL MODEL – PPH=300, VPH=800 (SPEED ≥ 30KPH) 
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 Value p-value Adjusted R2 

𝛽0 Conflicts -0.9076 4.02e-07 
0.9698 

𝛽1 Conflicts 0.0694 < 2e-16 

𝛽0 Serious Conflicts -0.80640 1.06e-06 
0.9461 

𝛽1 Serious Conflicts 0.04856 2.68e-16 

𝛽0 Collisions -0.66960 3.31e-10 
0.9524 

𝛽1 Collisions 0.02704 < 2e-16 

TABLE 28 – LINEAR REGRESSION: FULL MODEL – PPH=200, VPH=800 (SPEED ≥ 30KPH) 

 Value p-value Adjusted R2 

𝛽0 Conflicts -0.79480 0.000203 
0.9623 

𝛽1 Conflicts 0.08588 < 2e-16 

𝛽0 Serious Conflicts -0.9120 1.33e-06 
0.9565 

𝛽1 Serious Conflicts 0.0624 < 2e-16 

𝛽0 Collisions -0.7604 2.73e-09 
0.9497 

𝛽1 Collisions 0.0334 < 2e-16 

TABLE 29 – LINEAR REGRESSION: FULL MODEL – PPH=400, VPH=600 (SPEED ≥ 30KPH) 

 Value p-value Adjusted R2 

𝛽0 Conflicts 0.22040 0.00941 
0.9565 

𝛽1 Conflicts 0.03444 < 2e-16 

𝛽0 Serious Conflicts -0.15200 0.0311 
0.949 

𝛽1 Serious Conflicts 0.02696 <2e-16 

𝛽0 Collisions -0.34120 0.000118 
0.8486 

𝛽1 Collisions 0.01652 4.05e-11 

TABLE 30 – LINEAR REGRESSION: FULL MODEL – PPH=400, VPH=400 (SPEED ≥ 30KPH) 

 Value p-value Adjusted R2 

𝛽0 Conflicts 0.24840 2.23e-05 
0.5612 

𝛽1 Conflicts 0.00508 9.91e-06 

𝛽0 Serious Conflicts 0.15520 0.000223 
0.4913 

𝛽1 Serious Conflicts 0.00336 5.73e-05 

𝛽0 Collisions 0.0444 0.0216 
0.6208 

𝛽1 Collisions 0.0022 1.78e-06 

TABLE 31 – LINEAR REGRESSION: FULL MODEL – PPH=400, VPH=200 (SPEED ≥ 30KPH) 
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These data demonstrate that the results for other flow rates are also significantly 

linear (𝑝 < .05). Further, the 𝑅2 values suggest that the linear fit is sufficient to describe 

the behavior in all cases except that in Table 31]. At low vehicular volumes, while there 

is a significant linear aspect with respect to changes in PSL, the stochasticity of the 

model introduces variations on the same order of magnitude as the linear trend. 

Presented below are comparisons of the predicted rates of safety-critical 

interactions at each speed. The top row in each of the following tables shows the linear 

predictions for the rate combination used in the initial analysis (excluding the values for 

PSL of 20kph, since the linear behavior often broke down at these low speeds). The 

remaining lines show the predicted rates of safety-critical interactions for the other 

examined agent generation rates. Also presented is the proportion of the initial fitted 

rates at that speed. For example, in Table 32 the results show approximately 2.26 

conflicts per hour for 400 PPH and 800 VPH traveling at 30kph. When the pedestrian 

rate is halved to 200 PPH, the linear fit predicts approximately 1.17 conflicts per hour for 

the same speed limit, or 52.1% of the original. 
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Agent Rates 30 40 50 60 70  

PPH = 400 
VPH = 800 

2.2552 3.6272 4.9992 6.3712 7.7432 100% 

PPH = 300 
VPH = 800 

1.668 2.746 3.824 4.902 5.98  

74 75.7 76.5 76.9 77.2 %  

PPH = 200 
VPH = 800 

1.1744 1.8684 2.5624 3.2564 3.9504  

52.1 51.1 51.3 51.1 51 % 

PPH = 400 
VPH = 600 

1.7816 2.6404 3.4992 4.358 5.2168  

79 72.8 70 68.4 67.4 % 

PPH = 400 
VPH = 400 

1.2536 1.598 1.9424 2.2868 2.6312  

55.6 44.1 38.9 35.9 34 %  

PPH = 400 
VPH = 200 

0.4008 0.4516 0.5024 0.5532 0.604  

17.8 12.5 10 8.7 7.8 % 

TABLE 32 – PREDICTED CONFLICTS FROM LINEAR MODELS AT VARIOUS AGENT RATES 

Agent Rates 30 40 50 60 70  

PPH = 400 
VPH = 800 

1.1954 2.2004 3.2054 4.2104 5.2154 100% 

PPH = 300 
VPH = 800 

0.916 1.6568 2.3976 3.1384 3.8792  

76.6 75.3 74.8 74.5 74.4 %  

PPH = 200 
VPH = 800 

0.6504 1.136 1.6216 2.1072 2.5928  

54.4 51.6 50.6 50 49.7 % 

PPH = 400 
VPH = 600 

0.96 1.584 2.208 2.832 3.456  

80.3 72 68.9 67.3 66.3 % 

PPH = 400 
VPH = 400 

0.6568 0.9264 1.196 1.4656 1.7352  

54.9 42.1 37.3 34.8 33.3 %  

PPH = 400 
VPH = 200 

0.256 0.2896 0.3232 0.3568 0.3904  

21.4 13.2 10.1 8.5 7.5 % 

TABLE 33 – PREDICTED SERIOUS CONFLICTS FROM LINEAR MODELS AT VARIOUS AGENT RATES   
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Agent Rates 30 40 50 60 70  

PPH = 400 
VPH = 800 

0.304 0.8784 1.4528 2.0272 2.6016 100% 

PPH = 300 
VPH = 800 

0.2624 0.6516 1.0408 1.43 1.8192  

86.3 74.2 71.6 70.5 69.9 %  

PPH = 200 
VPH = 800 

0.1416 0.412 0.6824 0.9528 1.2232  

46.6 46.9 47 47 47 % 

PPH = 400 
VPH = 600 

0.2416 0.5756 0.9096 1.2436 1.5776  

79.5 65.5 62.6 61.3 60.6 % 

PPH = 400 
VPH = 400 

0.1544 0.3196 0.4848 0.65 0.8152  

50.8 36.3 33.4 32.1 31.3 %  

PPH = 400 
VPH = 200 

0.1104 0.1324 0.1544 0.1764 0.1984  

36.3 15.1 10.6 8.7 7.6 % 

TABLE 34 – PREDICTED COLLISIONS FROM LINEAR MODELS AT VARIOUS AGENT RATES 

These results show an approximately linear response in all severities of safety-

critical interactions at all speeds to changes in pedestrian volumes, 𝑞𝑝 (given a constant 

vehicular flow rate, 𝑞𝑣). This implies that the results can simply be scaled linearly for 

changes in pedestrian volumes. (This linear trend is considerably weaker for collision 

rates, but – as discussed previously – these rates are of limited applicability due to their 

being inflated by the limitations of the simulation model.) Defining 𝑌 as the rate of an 

individual severity of safety-critical interaction, and 𝑌0 as the rate of those interactions 

at 400 PPH, we have 

 𝑌 =
𝑞𝑝

400
∗ 𝑌0 [54] 
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Changes in vehicular volumes, on the other hand, do not produce a uniform, 

linear response curve in the rates of safety-critical interactions across all speeds. 

However, for a given PSL, changes in vehicular volumes do have an approximately linear 

effect on rates of safety-critical interactions. This is shown in the following figures. 

 
FIGURE 24 – LINEAR RESPONSE OF CONFLICT RATES TO CHANGES IN VEHICLE VOLUMES 

 
FIGURE 25 – LINEAR RESPONSE OF SERIOUS CONFLICT RATES TO CHANGES IN VEHICLE VOLUMES 
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FIGURE 26 – LINEAR RESPONSE OF COLLISION RATES TO CHANGES IN VEHICLE VOLUMES 

For a given PSL, the rates of safety-critical interactions with changing vehicular 

volumes, 𝑞𝑣, are substantially linear. Defining the rates of the various severities of these 

interactions, 𝑌, this relationship can be represented by the following equation: 

 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑞𝑣 [55] 

Here, 𝑌 is in units of safety-critical interactions per hour, and 𝑞𝑣 is in vehicles per hour. 

While there may be a small quadratic component to the curves (noticeable in the figures 

above at high speeds), the linear component dominates. The results of these linear fits 

are given in Table 35  
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 30kph 40kph 50kph 60kph 70kph 

𝛽0 Conflicts -0.1 -0.563 -1.026 -1.489 -1.952 

𝛽1 Conflicts 0.003046 0.005285 0.007524 0.009763 0.012 

Adjusted R2 

Conflicts 
0.9686 0.9983 0.9997 0.9978 0.9958 

𝛽0 Serious Conflicts -0.0133 -0.3474 -0.6815 -1.0156 -1.3497 

𝛽1 Serious Conflicts 0.001561 0.003195 0.004829 0.006464 0.008098 

Adjusted R2  

Serious Conflicts 
0.9791 0.9998 0.9984 0.9962 0.9945 

𝛽0 Collisions 0.0356 -0.147 -0.3296 -0.5122 -0.6948 

𝛽1 Collisions 0.000334 0.001247 0.00216 0.003073 0.003986 

Adjusted R2 

Collisions 
0.9791 0.9839 0.982 0.981 0.9804 

TABLE 35 – LINEAR FITS OF RESPONSE CURVES TO CHANGES IN VEHICLE VOLUMES 

The coefficients of these linear fits (𝛽0 and 𝛽1) are, themselves, linearly related 

to PSL. These linear fits are exact (𝑅2 = 1), since the data that led to the coefficients in 

Table 35 were produced from linear fits to the raw simulation output. 

 ϕ0,0 + ϕ1,0 ∙ 𝑃𝑆𝐿 = 𝛽0
ϕ0,1 + ϕ1,1 ∙ 𝑃𝑆𝐿 = 𝛽1

 [56] 

 ϕ0,0 ϕ1,0 ϕ0,1 ϕ1,1 

Conflicts 1.289 -0.0463 -0.0036694 0.0002239 

Serious Conflicts 0.989 -0.03341 -0.0033421 0.0001634 

Collisions 0.5834 -0.01826 -0.0024050 0.0000913 

TABLE 36 – PARAMETERS DESCRIBING HOW LINEAR FITS TO VPH CHANGE WITH PSL 

Combining Equations [55] and [56], we have an equation for predicting rates of 

safety-critical interactions at the initial rate of 400 pedestrians per hour: 

𝑌 = ϕ0,0 + ϕ1,0 ∙ 𝑃𝑆𝐿 + (ϕ0,1 + ϕ1,1 ∙ 𝑃𝑆𝐿)𝑞𝑣 



135 | P a g e  

Combining this result with that for changes in pedestrian flows, Equation [54], we have 

the final predictive equation for safety-critical interactions: 

 𝑌 =
𝑞𝑝

400
[ϕ0,0 + ϕ1,0 ∙ 𝑃𝑆𝐿 + (ϕ0,1 + ϕ1,1 ∙ 𝑃𝑆𝐿)𝑞𝑣] [57] 

To use Equation [57], 𝑞𝑝 is in units of PPH; 𝑃𝑆𝐿 is in kph; and 𝑞𝑣 is in VPH. The results 

are returned in safety-critical interactions per hour. For most combinations of 

parameters, Equation [57] is accurate to within 10% of the simulation results. 

PERCEPTION DISTANCE 

Arguably the most arbitrary parameter chosen in the development of the 

simulation model is that of the maximum distance at which a driver can perceive a 

pedestrian intending to cross or crossing. The value used in the above analyses for this 

𝑑𝑝𝑒𝑟𝑐, 100m, is essentially an upper-bound since it is based on driver observation of 

safety workers wearing full-body fluorescent safety attire and standing next to 

conspicuous equipment. [Helman and Palmer 2010] The literature on the topic is sparse, 

and this was the only study found that hadn’t explicitly instructed drivers to look out for 

pedestrians. The simulation results for lower values of this perception distance are 

presented below, along with the original results (𝑑𝑝𝑒𝑟𝑐 = 100𝑚) for reference. 
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FIGURE 27A – MODEL RESULTS, PERCEPTION DISTANCE = 100M 

 
FIGURE 27B – MODEL RESULTS, PERCEPTION DISTANCE = 80M 

 
FIGURE 27C – MODEL RESULTS, PERCEPTION DISTANCE = 60M 

From these data, it is obvious that the linear behavior for the rates of safety-

critical interactions with changes in speed breaks down for lower perception distances. 

When the value of this parameter is low enough, an approximately quadratic behavior 

seems to dominate the results. This pattern arises when even attentive drivers simply 

do not have enough space in which to stop. To demonstrate this, heatmaps were 



137 | P a g e  

generated to visualize the locations of both driver decisions to yield and the incidence of 

emergency braking (defined here as yield decelerations equal to the minimum allowed: 

-7.4 m/s). The full human factors model is used in the simulations run to generate these 

graphs, so the decision points plotted have taken distraction and BRT into account. The 

x-axis shows meters from the end of the road. The center of the crosswalk is located at 

750m. 

 
FIGURE 28A – HEATMAP: PSL = 50KPH, PERCEPTION DISTANCE = 100M 

 
FIGURE 28B – HEATMAP: PSL = 50KPH, PERCEPTION DISTANCE = 60M 
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FIGURE 29A – HEATMAP: PSL = 70KPH, PERCEPTION DISTANCE = 100M 

 
FIGURE 29B – HEATMAP: PSL = 70KPH, PERCEPTION DISTANCE = 60M 

When the perception distance is 100m (Figure 28a andFigure 29a ), the vast 

majority of driver decisions to yield happen before emergency braking is required, even 

at high speeds. When this value is lowered to 60m, however, (Figures Figure 28b and 

Figure 29b ) higher speeds mean a higher percentage of drivers recognize too late that a 

yield is necessary, leading to higher rates of conflicts and collisions. 

Counter-intuitively, at still higher speeds the rates of safety-critical interactions 

reach maxima and begin to decrease. For a given flow rate, increasing speeds have two 
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effects. First, a higher percentage of vehicles are unable to yield in time to avoid a 

conflict. On the other hand, vehicular densities steadily decrease. When the former 

effect reaches a maximum of all approaching vehicles being involved in safety-critical 

encounters, the latter takes over and conflicts steadily decrease. This can be seen more 

clearly by running the simulation with unrealistically high speeds, as shown in Figure 30. 

 
FIGURE 30 – SIMULATION RESULTS EXTENDED TO HIGH PSL, PERCEPTION DISTANCE = 60M 

Doing the same for the original perception distance value of 100m shows that, 

while higher speeds are required, the same phenomenon occurs: 

 
FIGURE 31 – SIMULATION RESULTS EXTENDED TO HIGH PSL, PERCEPTION DISTANCE = 100M 
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If a model such as this is to be used for predicting pedestrian safety, the most 

important parameter for calibration is this value of perception distance, 𝑑𝑝𝑒𝑟𝑐. There is a 

need for both more empirical evidence on this value and further exploration of the 

patterns hinted at above. 
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CONCLUSIONS 

The work presented herein developed a data-driven approach to including 

distraction in a microsimulation driver model. Microscopic simulation of traffic is an 

essential tool for studying road safety. However, no currently-available simulation 

platforms explicitly include driver distraction. An agent-based model of a mid-block 

pedestrian crossing was constructed to analyze the effects of excluding distraction or 

other human factors from the models underlying microscopic traffic safety simulations. 

Four human factors were analyzed: distraction, finite reaction times, visual 

obstruction, and errors in estimation of distance and relative velocity. The safety 

performance of driver models incorporating various combinations of these factors were 

analyzed. This safety performance was quantified using traffic conflict analysis, based on 

minimum time-to-collision. 

Each human factor was included in the model in isolation, and the resulting 

conflict rates were compared to a baseline of no human factors. Next, each was 

excluded in isolation, and these results were compared to the full driver model that 

incorporated all four. Each of these combinations was run for a range of speeds. 

None of the human factors in isolation generated more than a single conflict per 

hour, even at 70kph. However, exclusion from the full model was statistically significant 

for all four. While previous research comparing simulations to empirical data is scant, it 

has been shown that commercially available traffic simulation software platforms tend 
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to under-predict vehicle-pedestrian conflicts, as well as vehicle-vehicle conflicts away 

from intersections. The possibility of this being partially remedied through the explicit 

inclusion of driver distraction should be explored further in future research. 

These analyses of including or excluding individual human factors were all 

performed on simulation results featuring pedestrian and vehicle arrival rates of 400 

PPH and 800 VPH, respectively. (These are combined rates for both travel directions, 

e.g. 400 PPH represents 200 pedestrians per hour from each side of the road.) The rates 

of safety-critical interactions were approximately linear for a given set of agent arrival 

rates. This linear relationship was used to derive Equation [57] for predicting the rates of 

safety-critical interactions for reasonable agent arrival rates and any posted speed limit 

between 30kph and 70kph. For most rate combinations, this equation is accurate to 

within 10% of the safety-critical interactions generated by the simulation. It should be 

noted that, due to the simplicity of the pedestrian model and the driver yielding model 

utilized, these predictions break down for sever congestion.  

While the conflict rates produced by the simulation are reasonable, the ratios of 

these to the more serious interactions are unrealistic. A substantial portion of this is the 

result of the simulated model not providing any means of evasive action beyond driver 

braking. Further, incorporation of a pedestrian model that allows pedestrians to change 

speed or return to the curb as the situation unfolds would be necessary for the rates of 

serious conflicts or collisions to be more realistic. 
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The foundation of Equation [57] rests in the observation that, for a given 

combination of vehicle and pedestrian arrival rates, the rates of safety-critical 

interactions are linearly related to the posted speed limit. However, this relationship 

breaks down when the distance at which drivers are able to perceive waiting or crossing 

pedestrians decreases significantly below 100m. Further research is needed to 

empirically quantify this parameter; and any applications of the presented model should 

first attempt to calibrate this value. 

It should also be noted that the eye-glance dataset used for development of the 

distribution of distraction events is based on less than three hours of combined 

recordings. A more substantial set of data that explores how this distribution changes 

based on external factors (scene complexity, time of day, etc.) would make the derived 

model more robust. Fortunately, these eye-glance behavior data are now typical in 

traffic studies, and the form of the data employed requires limited manual coding. 

The limitations of human drivers have received increased attention over recent 

years with the introduction of driver assistance systems that are approaching full 

automation. Automated vehicles have the potential of removing driver distraction as a 

factor in transportation safety. Until that day comes, however, it is important that our 

tools for evaluating and predicting road safety incorporate this fundamentally human 

factor.  
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APPENDIX 

APPENDIX A – VARIABLE VALUES USED IN SIMULATIONS 

   Parameters 

   Constant Normal Lognormal Weibull 

Variable Name Units 𝑀 𝑆 𝛾 𝜇 𝜎 𝛾 𝜆 𝑘 

𝐴 
Pedestrian repulsive interaction 

force constant 
𝑘𝑔 ∙ 𝑚/𝑠2 2000 - - - - - - - - 

𝑎𝑚𝑎𝑥 
IDM maximum comfortable 

acceleration 
𝑚/𝑠2 - - - - 0.132 0.6461 - - - 

𝐵 
Pedestrian repulsive interaction 

space constant 
𝑚 0.08 - - - - - - - - 

𝑏 
IDM maximum comfortable 

deceleration 
𝑚/𝑠2 - - - - 0.5372 0.7246 - - - 

𝑏𝑦𝑖𝑒𝑙𝑑 
Comfortable yielding 

deceleration 
𝑚/𝑠2 3 - - - - - - - - 

𝑐1 
Pedestrian gap acceptance 

constant 
- 6.2064 - - - - - - - - 

𝑐2 
Pedestrian gap acceptance 

constant 
- 0.942 - - - - - - - - 

𝐷𝑖  Duration of distraction event 𝑠 - - - - -0.455 0.6107 - - - 

𝑑𝑠𝑡𝑜𝑝 
Stopping distance from 

crosswalk 
𝑚 9 - - - - - - - - 

𝛿 IDM free acceleration exponent - 4 - - - - - - - - 

𝜆𝐼𝐷 Arrival rate of distraction events 𝑠−1 0.352 - - - - - - - - 

𝑚𝑖 Pedestrian mass 𝑘𝑔 80 - - - - - - - - 

TABLE 37 – VARIABLE DISTRIBUTIONS USED IN SIMULATIONS 
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   Parameters 

   Constant Normal Lognormal Weibull 

Variable Name Units 𝑀 𝑆 𝛾 𝜇 𝜎 𝛾 𝜆 𝑘 

𝑟 Pedestrian radius 𝑚 0.87 - - - - - - - - 

𝑠0 IDM jam headway 𝑚 - - - - 0.6517 0.4979 - - - 

𝜎𝑟 
Standard deviation of relative 

approach rate 
𝑠−1 0.01 - - - - - - - - 

𝑇 IDM time-headway 𝑠 - 1.266 0.507 - - - - - - 

∆𝑡 Simulation time-step 𝑠 0.1 - - - - - - - - 

𝜏̃ 
Persistence time of perception 

errors 
𝑠 20 - - - - - - - - 

𝜏𝐴𝐷𝑅𝑇 
Acceleration/deceleration 

reaction time 
𝑠 - - - 0.25 -0.60692 1.19376 - - - 

𝜏BRT Brake perception reaction time 𝑠 - - - - - - 0.25 1.20 2.435 

𝜏𝐷𝑅 Braking device response time 𝑠 0.2 - - - - - - - - 

𝜏𝑀 Braking movement time 𝑠 0.15 - - - - - - - - 

𝜏𝑝𝑒𝑑 
Characteristic time of pedestrian 

acceleration 
𝑠 0.5 - - - - - - - - 

𝑣𝑖
0 Pedestrian natural walking speed 𝑚/𝑠 - 1.4 0.26 - - - - - - 

𝑣𝑓 IDM free-flow speed 𝑘𝑚/ℎ𝑟 - PSL + 3.22 7.24 - - - - - - 

𝑉𝑠 
Variation coefficient of distance 

perception errors 
- 0.1 - - - - - - - - 

TABLE 37 (CONTINUED) – VARIABLE DISTRIBUTIONS USED IN SIMULATIONS
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APPENDIX B – MACROSCOPIC EQUIVALENT TO IDM 

The authors of the IDM have developed a macroscopic equivalent that can be 

classified as a modified gas-kinetic model. [Helbing et al. 2002] This model still utilizes 

Equations [1] and [6], but instead of the equilibrium velocity equation of the Lighthill-

Whitham model, it uses a dynamic velocity equation of a form similar to other 

macroscopic models: 

 𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
+
1

𝜌

𝜕𝑃

𝜕𝑥
=

1

𝜏𝑚𝑎𝑐𝑟𝑜
(𝑉𝑒 − 𝑉) [58] 

Here, using terminology from fluid dynamics, the second term is a transport 

term, the third is a pressure term, and the right-hand side is a relaxation term. This 

model differs from others in that it takes into account the finite space occupied by 

vehicles (as opposed to assuming point-like particles), and the equilibrium velocity on 

the right-hand side is dynamic and non-localized (allowing drivers to react to the traffic 

situation ahead of them): 

 𝑉𝑒 = 𝑉𝑓 − 𝜏𝑚𝑎𝑐𝑟𝑜[1 − 𝑝(𝜌
′)]𝜒(𝜌′)𝜌′ℬ(∆𝑉, 𝑆) [59] 

In this equation, the quantity subtracted from the free-flow speed on the right-

hand side is a braking term, describing the interaction with vehicles ahead. A prime 

indicates that the variable is taken at the interaction point, 𝑥′ = 𝑥 + 𝑠𝑚𝑎𝑐𝑟𝑜. For 

simplicity, the safe headway, 𝑠𝑚𝑎𝑐𝑟𝑜, is assumed to vary linearly with velocity: 

 
𝑠𝑚𝑎𝑐𝑟𝑜 = 𝛾 (

1

𝜌𝑚𝑎𝑥
+ 𝑇𝑎𝑣𝑔𝑉) 

[60] 
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Here, 𝜌𝑚𝑎𝑥  is the density at a standstill, and 𝛾 is an anticipation factor for future 

velocity changes. (Since the location of the next car is the minimum distance ahead that 

can affect driver behavior, 𝛾 ≥ 1.  However, it is typically quite small.) 

In Equations [58] and [59], 𝜏𝑚𝑎𝑐𝑟𝑜 represents the acceleration time, or relaxation 

term52 (as can be seen by substituting Equation [59] into Equation [58] if we ignore the 

braking interaction and set the spatial derivatives to 0: 
𝜕𝑉

𝜕𝑡
=

1

𝜏𝑚𝑎𝑐𝑟𝑜
(𝑉𝑓 − 𝑉).) [Helbing 

and Treiber 1998] The second term on the right side of Equation [59] is an adaptation of 

the Enskog theory of particle interactions within a dense gas, [Silva et al. 2008] 

incorporating methods from granular flow. [Lun et al. 1984] It includes the density-

dependent probability that a vehicle will overtake its leader,53⁡ 𝑝(𝜌); and a pair 

correlation function, 𝜒(𝑥) = 1 [1 −⁄ 𝜌(𝑥, 𝑡)𝑠𝑚𝑎𝑐𝑟𝑜]. Together, these define the effective 

cross-section for the passing interaction: 

 
[1 − 𝑝(𝜌)]𝜒(𝜌) =

𝑣𝑓𝑇𝑎𝑣𝑔
2

𝜏𝑚𝑎𝑐𝑟𝑜𝛼(𝜌𝑚𝑎𝑥)

𝜌

(1 − 𝜌 𝜌𝑚𝑎𝑥⁄ )2
 [61] 

𝛼 is a structure factor that, based on empirical data, relates the squared average 

velocity at a point in the road to the velocity variance, 𝜑, at that point: 𝜑 = 𝛼(𝜌)𝑉2. 

[Phillips 1978] 𝜑 is higher in dense traffic than free-flowing traffic.54 

                                                      

52 The value is density dependent: 𝜏𝑚𝑎𝑐𝑟𝑜(𝜌) ≈ 8𝑠 (0.97𝑒−𝜌/(16⁡𝑘𝑚
−1) + 0.03)⁄  [Helbing & Treiber 1998] 

53 𝑝(𝜌) ≈ 𝑒−𝜌 (16⁡𝑘𝑚−1)⁄  
54 The data can be approximated by a Fermi function. For a detailed analysis and derivation of this and the 

macroscopic theory it is part of, see [Helbing 1996] 
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The final portion of equation [59] is a Boltzmann factor, ℬ(∆𝑉, 𝑆). For vehicle 

interactions, this can be written: [Shvetsov and Helbing 1999] 

 ℬ(∆𝑉, 𝑆) = 𝑆{∆𝑉𝑁(∆𝑉) + [1 + (∆𝑉)2]𝐸(∆𝑉)} [62] 

where 

 
𝑁(𝑤) =

𝑒−𝑦
2 2⁄

√2𝜋
 [63] 

is the normal distribution and 𝐸(𝑦) = ∫ 𝑁(𝑧)𝑑𝑧
𝑦

−∞
, the Gaussian error function, 

depends on the effective dimensionless velocity difference, ∆𝑉 between the velocities at 

𝑥 and 𝑥′: ∆𝑉 =
𝑉−𝑉′

√𝑆
. Here, 𝑆 (≠ 𝑠) is the difference in velocity variance, 𝜑, between the 

point in question and the interaction point: 𝑆 = ⁡𝜑 − 𝜑′. 

Returning to equation [58], the pressure relation must be defined. Ignoring 

differences in the average velocity of adjacent lanes, this is simply 𝑃 = 𝜌〈⁡𝜑𝑖〉, where 

〈⁡𝜑𝑖〉 is the weighted average velocity variance across all 𝐼 lanes:  

 
〈⁡𝜑𝑖〉 =∑

𝜌𝑖
𝐼𝜌
𝜑𝑖

𝐼

𝑖=1

 [64] 
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