
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-5-1992

Compiling ACE for Distributed-Memory Machines Compiling ACE for Distributed-Memory Machines

Jun Song
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Programming Languages and Compilers Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Song, Jun, "Compiling ACE for Distributed-Memory Machines" (1992). Dissertations and Theses. Paper
4568.
https://doi.org/10.15760/etd.6452

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4568
https://doi.org/10.15760/etd.6452
mailto:pdxscholar@pdx.edu

ANI ABSTRACT OF THE THESIS OF Jun Song for the Master of Science in

Computer Science presented November 5, 1992.

Title: Compiling ACE for Distributed-Memory Machines

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Jingke Li, Ch~ir

Leonard D. Shapiro

Michael A. Driscoll

Distributed-memory machines offer a very high level of performance, flexibility

and scalability. But the memory organization of this kind of machine determines

that processes on different processors must communicate explicitly by sending and

receiving messages. As a result, the programmer faces the enormously difficult task

of detailed planning of algorithm-irrelevant, low-level communication issues. This

level of programming resembles writing assembly programs for a sequential machine.

2

ACE is a message-passing language with abstract communication statements. It

was defined by Dr. Jingke Li at Portland State University. The communication in

ACE is still explicit, but it is abstracted to a higher level. The abstraction can help

balance the needs of ease of programming and high performance.

This thesis discusses how those high-level communication abstractions can be

transformed into low-level communication routines. It presents the design and im­

plementation of a compiler that transforms an ACE program into a C program with

low-level communication routines. The compiler is implemented for the Intel iPSC/2

hypercube multiprocessor machine. Compared to their low-level counterparts, ACE

programs are easier to write and are more understandable. Compared to their high­

level counterparts, more efficient code can be generated since the communication

information is expressed explicitly in ACE and the compiler itself is much less com­

plex. ACE also enables the users to fine tune some critical communication segments.

Some well known parallel algorithms written in ACE are compiled by the compiler

as examples, and experimental results of their performance are included.

COMPILING ACE

FOR DISTRIBUTED-MEMORY MACHINES

by

JUN SONG

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
Ill

COMPUTER SCIENCE

Portland State University
1992

TO THE OFFICE OF GRADUATE STUDIES:

The members of the committee approve the thesis of Jun Song presented

November 5, 1992.

Jingke Li, Chair

u. ;:)napuo / //

¥ichael A. Driscoll

APPROVED:

apiro, Chairman, Deptntment of Computer Science

·e Provost for Graduate Studies and Research

TABLE OF CONTENTS

PAGE

LIST OF TABLES VI

LIST OF FIGURES . vn

CHAPTER

I

II

INTRODUCTION

I.l

I.2

I.3

I.4

ACE

ACE

TARGET MACHINE ..

1.2.1
I.2.2
1.2.3

Machine Architecture
Programming Environment
Message Passing

RELATED WORK ...

ORGANIZATION OF THE THESIS

ILl VIRTUAL PROCESSOR DOMAIN ..

II.2

Il.3

DATA DISTRIBUTION

II.2.1 Alignment ...
II.2.2 Distribution ..

DATA MOVEMENT ..

1

3

4

4

5
5

6

8

9

9

10

10
11

12

Il.4 PARALLEL CONSTRUCT 16

Il.5 COLLECTIVE COMMUNICATION LIBRARY 16

IV

III COMPILATION APPROACH 19

III.l SYNTAX TREE AND SYMBOL TABLE ... 21

III.2 DECLARATION STATEMENT TRANSFORMATION . . . 23

III.3 COMMUNICATION STATEMENT TRANSFORMATION . 27

III.3.1 Local Variable Initialization
III.3.2 Cornrnunication Patterns
III.3.3 Code Structure
Ill.3.4 Data Packing and Unpacking
Ill.3.5 Optional Don1ain Predicate

III.4 PARALLEL LOOP TRANSFORMATION

III.5 INPUT/OUTPUT

Ill.6

III.7

TARGET CODE .

SEQUENTIAL TRANSFORMATION

Ill. 7.1
III.7.2
III.7.3

Data Distribution .
Data Movement . .
Parallel Loops .

IV EXPERIMENT

IV.l CANNON'S ALGORITHM

IV.2

IV.3

GAUSSIAN ELIMINATION

PERFORMANCE ANALYSIS ...

IV.3.1
IV.3.2

Perforn1ance Measurement
Analysis .

V CONCLUSION

V.l RESEARCH SUMMARY

V.2 FUTURE WORK .

27
30
31
34
38

40

41

44

46

47
47
49

51

52

53

56

56
58

62

62

63

REFERENCES . 64

v

APPENDICES

A TARGET CODE FOR CANNON'S ALGORITH11 65

B TARGET CODE FOR GAUSSIAN ELIMINATION 70

LIST OF TABLES

TABLE

I Performance of Cannon's Algorithm ..

II Performance of Gaussian Elimination .

PAGE

59

61

LIST OF FIGURES

FIGURE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Block and Cyclic Distribution. .

Parallelize Matrix Multiply Using forall Loop.

The Evolution of An ACE Program To Target Code.

Symbol Table Entry of A Domain Variable. . .

Symbol Table Entry of A Data Variable.

Example of Declaration. . .

Local Variable Initialization ..

·Four Basic Communication Patterns.

One-to-One Communication ...

One-to-Many Communication ..

Many-to-One Communication

Many-to-Many Communication.

Problem With Packing And Unpacking Row Major.

Usage of input And output

Target Code of input And output.

Sequential Target Code of Different Data Representation. .

Illustration of Cannon's Algorithm.

Cannon's Algorithm In ACE. .

Gaussian Elimination In ACE ..

Speedup of Cannon's Algorithm On iPSC /2.

Speedup of Gaussian Elimination On iPSC /2.

PAGE

12

17

20

22

23

26

29

31

32

34

35

35

38

44

45

49

54

55

57

60

60

CHAPTER I

INTRODUCTION

Distributed-memory multicomputers offer a very high level of performance,

flexibility and scalability. Potentially, a massively parallel machine can out-perform

a sequential machine of the same cost by several orders of magnitude. But faster

hardware does not guarantee that faster, more efficient programs will follow. The

memory organization of distributed-memory machines determines that processes

must communicate explicitly by sending and receiving messages. As a result, the

programmer faces the enormously difficult task of detailed planning of computa.tion.

The successful approach so far has been to program them directly in a message

passing system. This approach requires the user to control explicitly algorithm­

irrelevant, low-level issues in application programs. This level of programming re­

sembles writing assembly programs for a sequential machine.

A distributed-memory machine has a set of identical processors linked by

an interconnecting network. Each processor is tightly coupled to a memory unit

that is physically separate and logically private from the memory units of all other

processor. A global shared-memory does not exist. The fixed numbering of the

nodes, 0, 1, ... , N- 1, together with the unique numbering of the processes within

each processor, establishes globally unique identifiers for processors; hence, a global

name space.

Data sharing among processors is achieved through explicit communication.

Interprocess communication occurs by routing messages through networks such as

2

binary n-cube or mesh. The networks are also extensible to allow for systems with

different numbers of processors.

Writing efficient programs for distributed-memory machines is a great chal­

lenge for a programmer. Many issues that do not arise in programming shared­

memory machines must be addressed in programming distributed-memory machines:

o Data Layout

Since there is no global shared memory on a distributed-memory machine,

large data structures in an application must be partitioned and distributed

over the processors.

o Communication

In order to share a piece of data, explicit message passing must be constructed

and inserted into the user program.

o Parallelism

Parallelism in the application must be made explicit in the user program.

Generally speaking, this involves breaking a computation into a collection

of parallel tasks, which are assigned to different processors and executed in

parallel.

Many research projects focus on building smart compilers that will enable

users to program a distributed-memory machine just like they would do on a shared­

memory machine [4, 5, 9, 14, 16]. In this thesis, we are trying to reach a less am­

bitious goal. Dr. Jingke Li has defined a message-passing language for distributed­

memory machines, ACE [11]. The communication in ACE is still explicit, but it is

abstracted to a higher level. The abstraction can help balance the needs of ease of

programming and high performance. The communication is described as data move-

3

menton a virtual processor domain while data is addressed in global space. ACE

is designed in a way that it can also be used as an intermediate language. It can

act as a middle step of compilations of higher level parallel languages with implicit

communication, such as Fortran 90. This thesis will discuss how those high-level

abstractions of communication can be transformed into low-level communication

routines, and how an ACE program can be compiled to a low-level message passing

program that can be executed on a target machine.

1.1 ACE

ACE is language that is able to address the above points in a program. It is

based on C with abstract communication extensions, hence the name, ACE.

All data arrays that are to be distributed are aligned to virtual processor do­

mains. An ACE program will distribute the data to all node processors according to

how they are aligned to the virtual processor domain. Communication between pro­

cessors can be expressed using a set of high level abstract routines. These abstract

communication routines greatly ease the writing of message-passing programs. Fur­

thermore, they can be used to illustrate some efficient parallel algorithms that are

difficult for conventional languages to address. ACE programs are easier to write

and more understandable than low-level message-passing ones.

For each abstract communication routine, a corresponding routine is written

using the actual message-passing scheme of the target machine. These routines make

up our Collective Communication Library (CCL). The implementation of the CCL

on different target machines will make ACE portable across these machines.

Comparing to its low-level counterpart, ACE programs are easier to write

and understand. The task of initiating and coordinating of detailed message-passing

which is essential to low-level programs is greatly reduced in ACE. The algorithm

4

that might be buried in so many communication-related statements in a low-level

program will be more explicit in an ACE program. The abstraction of ACE makes

debuggin easier, too.

ACE can also be viewed as an intermediate language for compiling other

higher level (implicit data distribution and communication) languages.

1.2 TARGET MACHINE

The target machine under consideration for this research project is Intel's

iPSC/2 [7].

1.2.1 Machine Architecture

The iPSC/2 system is an ensemble of processing nodes, each connected to

the other via message passing on the network. Solutions to problems are computed ·

by solving a portion of the problem on each of the processing nodes. The system

consists of four main functional components:

o The cube

The cube provides the multiprocessor computational power of the iPSC /2

system. Software commands let users "partition" this cube into one or more

subsets of nodes.

o The node

Each iPSC/2 node contains a 32-bit microcomputer with the execution speed

and memory capacity of a typical superminicomputer. Each node is also

equipped with a Direct-Connect routing module for high-speed message pass­

ing within the system's hypercube communication network.

o The system resource manager

5

The system resource manager (SRM) serves as the iPSC/2's connection to

the outside world. It has three main purposes: administrative console for the

system, gateway to other computers and workstations connected by Ethernet

to the system and host for various development tools.

o The network

Although physically implemented as a hypercube, the Direct-Connect com­

munications hardware and operating system software allow users to assume

communications as if every node of the system were directly connected to each

other.

!.2.2 Programming Environment

The iPSC/2 system supports FORTRAN, C, and Common LISP languages.

The C language is a general purpose language which features economy of

expression, modern control flow and data structures, and a variety of operators. It

is based on the standard Kernighan and Ritchie definition of the C programming

language. The C compiler is the Green Hills C compiler.

The standard C language is augmented by a library of pre-defined functions

that allow the C programmer to implement the message passing required to build

concurrent applications for the iPSC/2. These functions allow C processes to send

and receive messages, probe for messages of a given type, and to obtain ancillary

information about messages and the iPSC/2 system.

!.2.3 Message Passing

The iPSC/2 is a distributed-memory machine. Nodes communicate with each

other and with the host via message passing. A message may be up to 256 Kbytes

long if data is being passed to or from the host. It may be of unlimited length if it

6

is being passed from node to node. Messages may be of any format or data type.

A sending process may send a message of a particular data type. It is the user's

responsibility to ensure the receiving process expects a message of that type.

A message can be sent from one process and received by one or more processes

on the same node, or on different nodes. From a programming point of view, sending

a message sends a copy of the contents of a buffer from one process to another. The

buffer variable may be of any data type including the C data type "struct", allowing

any amount of data to be sent in one variable.

1.3 RELATED WORK

To program a distributed-memory machine so that the machine architecture

can be well matched and utilized is a difficult task. An obvious approach is to

program each processor of the machine in a sequential language and insert commu­

nication statements in the program for sending and receiving messages. Almost all

of the commercial machines have languages to support this programming model.

For instance, Intel's hypercubes supports C and Fortran with message passing ex­

tensions. However, programming in this fashion is tedious and error-prone. The

programs written this way are usually machine dependent and are not portable

across different machines.

Over the years, researchers have proposed many solutions to this problem.

o Fortran D

Fortran D [2, 3] is a version of Fortran enhanced with data decomposition

specifications. The DECOMPOSITION statement is used to declare a problem

domain for each computation; the ALIGN statement is used to specify how

arrays should be aligned with respect to one another; and the DISTRIBUTE

7

statement is used to map the problem domain to the physical machine. A

Fortran D compiler for the iPSC/860 is under construction [4, 5].

o Fortran 90

Fortran 90 extends Fortran 77 with a set of parallel constructs and intrinsic

functions. The parallel constructs support whole array operations and array

sections, which simplifies the writing of data parallel applications. A proposal

for compiling Fortran 90 programs for distributed-memory machines can be

found in [16].

o Dataparallel C

Dataparallel C [6] is a SIMD extension to the standard C programming lan­

guage. It is derived from the original C* language developed by Thinking

Machine Corporation [15]. The user specifies parallel computations as actions

on a domain. The compiler automatically determines the data distribution

and generates communications.

o Crystal

Crystal [1] is a functional language designed to provide a convenient means

for expressing parallelism and locality. It contains special constructs for rep­

resenting data parallel computations. A Crystal compiler is developed for

distributed-memory machines [9]. A Crystal program is first transformed to a

shared-memory parallel program and then to a message-passing program.

o MetaMP

MetaMP language [13] consists of normal, sequential C and MetaMP direc­

tives which modify the meaning of the sequential for loops to their parallel,

distributed-memory counterparts.

8

Most of the languages mentioned above give their compilers some guidance

of what data arrays are to be distributed and how to distribute them. The major

forms of parallelism are parallel loops over arrays. They are at a relatively high

level as far as communication is concerned. There is no explicit communication in

those languages. The communication is generated by the compiler with respect to

the reference patterns in the source program.

I.4 ORGANIZATION OF THE THESIS

The rest of this thesis is organized as the following: Chapter II introduces the

language ACE, the abstract communication statements and the collective communi­

cation library. Chapter III presents the design and the implementation of the ACE

compiler. Three programming examples are given in Chapter IV, a matrix multi­

ply program, a matrix multiply program using Cannon's algorithm, and a Gaussian

elimination program. Chapter V is a summary of the work has been done and a

brief discussion of future work.

CHAPTER II

ACE

ACE is a message-passing language with high-level abstract communications

[11]. It is based on C with extensions in the following three areas: data distribution,

data movement and parallel loops. We do not intend to describe the language in

its full extent here. We will only introduce major ACE features that are relevant to

this project. Interested readers are encouraged to read [11].

Section ILl discusses the concept of virtual processor domain. How to express

data distribution is discussed in Section II.2. High-level abstract communication

statements and their low-level equivalent are presented in Sections II.3 and II.5.

Section II.4 describes how parallelism is expressed in ACE.

ILl VIRTUAL PROCESSOR DOMAIN

For describing both computations and communications before data distri­

bution, we define an abstract machine with a global addressing space, a virtual

processor domain {or simply domain). A virtual processor domain models a parallel

machine with processors arranged in a multidimensional grid. A one dimensional

domain is specified by

domain D = [1 : n]

where n is the number of virtual processors (VPs) in the domain. A two-dimensional

domain is specified by

domain D = [1 : nt, 1 : n 2].

Both parallelism and communications are expressed explicitly with respect

10

to domains. Parallelism is made explicit through parallel constructs such as forall.

Communications are explicit in forms of data movement over virtual processor do-

mains.

1!.2 DATA DISTRIBUTION

Data distribution information is essential to a message-passing program.

Without information about how data is distributed across the processor network, it

is impossible to specify communication explicitly. In ACE, data distribution is done

in two steps. First, data arrays are aligned to a virtual processor domain using the

align statement. Second, this virtual processor domain is mapped onto a physical

processor network using the distribute statement.

1!.2.1 Alignment

Alignment is the process of aligning a group of data arrays onto a single

virtual processor domain. In ACE, the following four alignments can be specified:

permutation, embedding, replication and collapse. Each alignment is represented by

an alignment declaration statement.

o Permutation

It aligns an array to a domain of the same rank. The corresponding dimen­

sions must have the same size.

align a[i] to [i] : D1 ;

align b[i] [j] to [i, j] : D2 ;

align b[j][i] to [i, j] : D2 ;

o Embedding

It aligns an array to a domain of high rank. The matching dimensions must

have the same size and the other dimensions of the domain must be aligned

with constants.

align a[i] to [i, 0] : D2

align a[i] to [2, i] : D 2

o Replication

11

It replicates an array along a dimension of a domain. The replication dimen­

sion is denoted by a colon (":"). A scalar can also be replicated.

align a[i] to [i, :] : D2

align s to [:] : D1

o Collapse

It aligns an array to a domain of lower rank by collapsing its dimensions. The

collapsed dimensions are denoted by colons.

align a[:] to [:] : D1

align b[i][:] to [i] : D1 The

first statement declares that array a is replicated on all nodes in domain D1 .

11.2.2 Distribution

In ACE, we use the distribute statement to specify the mapping of the

virtual processor domain to the physical processor network. There are two types

of distributions in ACE, block and cyclic. Suppose there are P physical processors

and N elements in a virtual processor domain D. We assume for simplicity that P

divides N evenly. The distributions can be described as follows:

o Block

distribute D over [P];

P.t : P.2 : : P.3 : P.4

(a) Block distribution

IPliP21P31P41PliP21P31P41PliP21P31P41PliP21P31P41
(b) Cyclic distribution

Figure 1. Block and Cyclic Distribution.

12

Divide the domain into contiguous chunks of size N / P, assigning one block to

each processor (Figure 1 (a)).

o Cyclic

distribute D over [P] cyclic;

A round-robin division of the domain, assigning every pth element to the same

processor (Figure 1 (b)). Cyclic distributions are useful for load balancing.

II.3 DATA MOVEMENT

High level data movement in a virtual processor domain is described by

abstract communication statements. We selected a set of basic and common com-

munication routines. They can be used in programs to describe communications

over virtual processor domains. The communication statements are defined with

respect to a single domain. We use the following notation

with (idx: domain) key(a@source -+ {3@dest);

to describe an abstract communication statement on a virtual processor domain.

The clause (idx : domain) specifies the domain; the expression a@source specifies

the source data and its virtual processor; and the expression {3@dest specifies the

destination buffer and its virtual processor.

13

The set of communication statements currently exists in ACE are explained

as follows:

o Copy

with ([i] : D) copy (a[c1]@[c1] -. b[c2]@[c2]);

It copies the value of a[c1] to b[c2].

o Swap

with ([i] : D) swap (a[c1]@[c1] -. b[c2]@[c2]);

It exchanges the values of a[c1] and b[c2].

o Spread

with ([i] : D) spread (a[c1]@[c1] -. b[i]@[i]);

The value of a[c1] is broadcast to all VPs in domain D and stored in b[i].

o Scatter

with ([i]: D) scatter (a[:]@[c1] -. b[i]@[i]);

The elements of data array a on VP c1 is scattered around all VPs in domain

D and stored in b[i].

o Reduce

with ([i] : D) reduce (a[i]@[i] -. b[c2]@[c2], op);

It reduces all elements of array a on all VPs with binary operation op. The

result is stored in b[c2]. op specifies a binary operation such as '+' or '*'.

o Gather

with ([i] : D) gather (a[i]@[i] -. b[:]@[c2]);

This has the opposite effect of scatter. Elements of a on all VPs are collected

to VP c2 , assembled and stored in b. It is roughly equivalent to a reduce with

a concatenation operator.

14

o Search

with ((i) :D) search (a(i)@(i) --+ b(c2]@(c2), loc, op);

This statement conducts a binary search among elements of a on all VPs with

a binary function op. It finds out the value and the location of the winner and

stores them in b[c2] and loc. op is a flag of one of the following values, MIN

(minimum), MAX (maximum), MINABS (minimum of the absolute value)

and MAXABS (maximum of the absolute value).

o Shift

with ([i] : D) shift (a[i]@[i] --+ a[i + c]@[i + c], over flow);

The shift statement shifts elements of a from all VPs to their neighboring

VPs by a constant offset c. over flow specifies what to do at the boundary. It

can either be TRUNC (truncated) or WRAP (wrap-around).

o Reflect

with ([i] :D) reflect (a[i]@[i] --+ a[n- i- 1]@[n- i- 1]);

It flips the elements of a along the bisection of a dimension. The elements at

the first and last VPs are swapped, the elements at the second and the second

to the last VPs are swapped, and so forth. It can be thought as a collection

of concurrent swap statements.

o Transpose

with ([i, j] : D) transpose (a[i] [j]@[i, j] --+ a[j][i]@[j, i]);

The transpose statement is defined only fro a two-dimensional square-shaped

domain. It flips elements of a along one of the two diagonal lines of the domain.

o Skew

with ([i,j]: D) skew (a[i][j]@[i,j] --+ a[i][i + j + c]@[i, i + j + c]);

15

The skew statement is defined only for a two-dimensional domain. The above

statement will skew the matrix a in row direction. The step is c. It corresponds

to a collection of concurrent shift statements, each with a different offset.

Although most of the examples given for the abstract communication state­

ments are based on one-dimensional domain, it is also fine to use them on a two­

dimensional domain. For instance, a copy statement

with {[i, j] : D) copy { a[ct][c2]@[c~, c2] -+ b[c3](c4]@[c3, c4]);

copies a[c1][c2] to b[c3][c4] over a two dimensional domain.

However there are more features we can specify in a two dimensional domain.

Let's take a look at the following copy statement,

with {[i, j] : D) copy (a[i][c2]@[i, c2] -+ b[i][c4]@[i, c4]);

Notice the row indices in the source and destination expressions are variables. This

means a concurrent row operation. Within each row, element c2 of a is copied to

element c4 of b. The result is that column c2 of matrix a is copied to column c4 of

matrix b. Similarly, we can specify concurrent column operation.

The data expressions in a communication statement can also be aggregate

array data. For instance,

with ([i] : D) copy (a[cl][:]@[c1] -+ b[c2][:]@[c2]);

Only only one dimension (row) of matrices a and b is distributed over a one dimen­

sional domain D. The above statement will copy row c1 of matrix a to row c2 of

matrix b. The colon notation is borrowed from FORTRAN 90 to indicate a whole

array dimension

16

11.4 PARALLEL CONSTRUCT

Parallel loops are often suggested as an easy method for programmers to

express the parallelism in an algorithm in a structured way. In ACE, we use forall

loop as a parallel construct. It looks something like this:

forall ([i ,j] : D)
statement

forallloops can contain or be contained in other sequential or parallel loops.

The meaning of a parallel loop can be very different depending on how its

semantics are interpreted. A forallloop in ACE is used when there are no depen­

dence relations between iterations; thus the iterations of the loop can be executed

in any order, including in parallel. The forall body can consist of multiple state­

ments. These statements are treated as a whole block. They have to be executed

in the order they are presented, since there can be dependencies inbetween the

statements. But the loop body as a block of a certain iteration has no dependence

relationship with any other iterations.

As an example, Figure 2(a) shows a matrix multiply algorithm. The two

statements used to calculate c [i] [j], initialization and k loop, have to executed in

that order. Otherwise the result will be incorrect. However, there is no dependence

relation between the iterations of i and j loops. They can be executed in any order.

We can use forallloop to express that. Assuming the data arrays are aligned to a

two dimensional domain D, the parallelized algorithm is shown in Figure 2(b).

11.5 COLLECTIVE COMMUNICATION LIBRARY

The low-level communication interface in our model is a library of message­

passing routines, called the collective communication library or CCL [12]. These

communication routines are defined with respect to an abstract processor network

for (i=O;i<n;i++)
for (j=O;j<n;j++) {
c [i] [j] = 0. 0;
for (k=O;k<n;k++)

c[i] [j] += a[i] [j]*b[i] [j];
}

(a)

domain D = [1: n, 1 : n];
fora II ([i, j] : D) {

}

c[i][j] = 0.0;
for (k = 0; k < n; k + +)

c[i][j]+ = a[i][k] * b[k][j];

(b)

Figure 2. Parallelize Matrix Multiply Using forall Loop.

17

(a one-dimensional array or a two-dimensional mesh) and are pre-implemented on

actual target machines.

The CCL routines cover the same spectrum of communication patterns and

scopes of the abstract communication statements. However, the CCL routines rep­

resent communications at a lower level. One major difference between the two levels

is that the input and output data to a CCL routine is represented by two pointers

to two sequential data buffers, regardless of the dimensionality of the original data

structures.

A typical CCL routine has three forms: one for one-dimensional processor

network, one for two-dimensional, and one for concurrent row/ column. They take

the following general form:
ccLxxxld(pinfo, ... , x, xent, elt....size, y, ...)
ccLxxx2d(pinfo, ... , x, rent, cent, elt....size, y, ...)
cci...JOO<rc(pinfo, dim, idx, ... , x, rent, cent, elt....size, y, ...)

where pin f o is a structure containing system, domain, and data distribution related

information, such as the location of the processor in the mesh (my_ node, my_ row

and my_co~; x and y are pointers to input and output data buffers, respectively;

xent is the number of elements and elt....size is the size of an element; rent and cent

18

represent the number of elements is row and in column in a two dimensional array.

A list of CCL routine forms and their functionality can be found in [12].

CHAPTER III

COMPILATION APPROACH

The abstract communication statements need eventually be transformed into

lower level communication statements. Since most of the information is already in

the explicit abstract communication statements, the major challenge is to incorpo­

rate domain decomposition and to manipulate data in the message buffer.

As illustrated in Figure 3, an ACE program can be transformed in two direc­

tions. One is to transform it into a message-passing program that can be compiled

and executed on a distributed-memory machine (i.e. iPSC/2). The other direc­

tion is to transform it into a sequential C program that will run on a conventional

sequential machine.

An ACE program is parsed and a syntax tree is generated. The syntax tree is

traversed once to generate a symbol table. After the symbol table is generated, the

syntax tree is then passed to the transformation. The transformation will generate

a new syntax tree based on the syntax tree it receives. Mainly three parts of the

original program will be changed once the transformation is done. The first part is

the declaration part. The second part is the communication statements. The third

part is the parallel loops. The rest of the program will stay unchanged, and all the

node structures from the original syntax tree are simply copied to the transformed

syntax tree. The three parts of transformation are discussed in detail in the following

sections.

This chapter will discuss the above approaches in more detail. Section III. I

ACE program

,
parser

, ,

sequential transform

sequential syntax tree~

print routine

................ t
1 sequential target code i

syntax tree

parallel transform

1 parallel syntax tree

lr

print routine

~ ,
i parallel target code 1

Figure 3. The Evolution of An ACE Program To Target Code.

20

discusses how a syntax tree and a symbol table is generated. The transformation of

declaration statements, communication statements and parallel loops are discussed

in sections 111.2, 111.3 and 111.4. Section 111.5 is about 1/0 issues. Section 111.6 talks

about code generation. Section III. 7 discusses the issues of how to compile an ACE

program to a sequential C program.

21

III.! SYNTAX TREE AND SYMBOL TABLE

The ACE grammar is based on C grammar [8]. Changes are made to reflect

the extensions added. These extensions can be divided into the following three

categories, data distribution, data movement and parallel loops. The ACE parser is

generated using UNIX tools Lex and Yacc. For every reduction rule in the grammar,

there is a corresponding node structure. The action for each reduction makes a new

node structure which contains pointers to subnodes. The pointer to this new node

is then returned to its upper level node. A syntax tree is returned after an ACE

program has been parsed.

Once the syntax tree has been generated by the parser, it is traversed once

to generate the entries of the symbol table. The symbol table only holds the infor­

mation needed to do the transformation. The information we are- interested in are

those about domain variables and all the data variables that are aligned to domains

{They are the ones being distributed). Domain variable information (name, size,

etc.) is given in domain declarations. The data variables that are aligned are those

declared in alignment declarations.

The symbol table is a linked list of unions called symbol. A symbol can be a

structure of domain variable or a structure of data variable.

A symbol for a domain variable consists of the following fields,

o Identifier

Domain name.

o Range

The range of a domain.

Part (a) of Figure 4 shows a domain declaration and part (b) is its corresponding

22

Identifier: D
domain D = [1 : n, 1 : n]; Range: [1 : n, 1 : n]

(a) (b)

Figure 4. Symbol Table Entry of A Domain Variable.

symbol table entry.

A symbol for a data variable consists of the following fields,

o Identifier

Variable name.

o Type

The type of the data (e.g. hit, float).

o Domain

If the data is aligned, this is the domain that it's aligned to. If it is not aligned,

its value is NULL.

o Alignment

It is an integer array. Each element corresponds to a dimension of the data

array, and its value reflects the alignment of the dimension. If the dimension is

aligned to the first dimension of the domain, the value is 1. If the dimension is

aligned to the second dimension of the domain, the value is 2. If the dimension

is not aligned, the value is -1. (We are assuming that the dimensionality of a

processor domain does not exceed two.)

o Size

It is a list of expressions. Each of them is the corresponding dimension size of

double a[100][N][M];
align a[i][j][:] to [i,j]: D;

(a)

Identifier: a
Type: double
Domain: D
Alignment: 1 2- 1
Size: 100 N M
Dimensionality: 3
Aligned: TRUE

(b)

Figure 5. Symbol Table Entry of A Data Variable.

the data array.

o Dimensionality

It is an integer that indicates the dimensionality of the data array.

o Aligned

23

It is a boolean that indicates whether the data array is aligned (therefore

possibly distributed). Only those data arrays that are distributed need extra

attention in transformation stage.

Part (a) of Figure 5 shows a data variable declaration and its align declaration. Part

(b) shows the corresponding symbol table entry for this variable.

The key to each entry of the symbol table is identifier. Since data variables

can not be aligned to two domains, and domain variables cannot be redeclared, it

is safe to assume that the identifiers in symbol table are unique.

In the mean time, some other important information is also stored. The

shape and the size of the physical processor network is critical for data distribution.

This information is obtained from the distribute statement and is stored in a

global variable for later use.

24

111.2 DECLARATION STATEME.NT TRANSFORMATION

Domain declaration, alignment declaration and distribution declaration in

an ACE program are used to define the virtual domain, data array alignment and

distribution scheme. They hold critical information for distributing data arrays

among node processors. As discussed in the previous section, the information is

already stored in the symbol table. These statements are simply omitted after

transformation.

As far as variable declarations are concerned, if a data variable declared in

the original program is not distributed, nothing needs to be changed, the original

declaration stays the same. If, however, a data array is distributed, it means each

processor node will only have a subset of the whole array. The size of the subarray

is only a fraction of the total size. These variables are redeclared, and t-heir spaces

are reallocated.

Assuming the distribution is block distribution and the total number of nodes

always divide the original array size {so that the data array can be evenly distributed

among the nodes), the size of the portion that is local to the node is the original

array size divided by the number of nodes. In case of a one dimensional processor

network, the local size is represented by '_cnt'. If the processor network is two

dimensional, the local size of the dimension distributed along the row is '_rent',

and the local size of the dimension distributed along the column is '_cent'.

A distributed data array is redeclared. If it is a one dimensional array,

then it is declared as a pointer. If it is a two dimensional array, then it is de­

clared as a pointer to pointers. And so on. The dynamic allocation of these

data arrays are done through some predefined functions. For example, function

alloc_double_2d_array(a, b) will return a pointer to a two dimensional array of

25

type double with dimension sizes a and b. This allocation function has other types

and size combinations like alloc...float_ld_array and so on.

As an example of showing how it looks, Figure 6(b) is a program section that

the compiler will generate if the declaration of the original program is like part (a).

At the beginning of the program, a new variable _pn is introduced. (All vari­

ables that are compiler generated start with an underscore'-'). It is of type struct

Par!nfo. It has the following fields, providing the information of the underlying

processor network.

o num....nodes

The total number of processor nodes in the network.

o my....node

Node id of the current node.

o my_pid

The processor id of the program running on the node.

These values can be obtained from system calls on the target machine. In the case

of iPSC/2, these calls are: numnodes(), mynode() and mypid().

In the case of a two dimensional processor network (mesh), the following

fields are also used,

o row....nodes

The number of nodes in a row. This value is predefined somewhere in the

program.

o col....nodes

The number of nodes in a column. This value is also predefined somewhere in

the program.

double a[lOO][N][M];
align a[i][j][:] to [i,j] : D;
distribute a over [2, 2];

(a)

double *a;
struct Parlnfo _pn;
int _rent;
int _cent;

_pn.num_nodes = numnodes();
_pn.my_node = mynode();
_pn.my_pid = mypid();
_pn.col_nodes = 2;
_pn.row_nodes = 2;
_pn.my_col = _pn.my_node Y.
_pn.col_nodes;
_pn.my_row = _pn.my_node I
_pn.col_nodes;
_rent = 100/_pn.row_nodes;
_cent = N/_pn.col_nodes;

a =
alloc_doubleJ3d_array(_rcnt,_ccnt,M);

(b)

Figure 6. Example of Declaration.

o my_col

26

The column index that the node is in. If a simple block partitioning strategy

is used, it is given by my_col = my...node Y. col...nodes.

o my_row

The row index that the node is in. If a simple block partitioning strategy is

used, it is given by my_row = my...node/ col...nodes.

27

111.3 COMMUNICATION STATEMENT TRANSFORMATION

The communication statements are a very important part of the ACE lan­

guage. Each of the communication statements which occurs in the original program

is transformed into a compound statement. This compound statement consists of a

list of local variable initializations, data packing statements, a call to a Collective

Communication Library (CCL) routine, and data unpacking statements.

III.3.1 Local Variable Initialization

A list of local variables are declared and initialized for a communication

routine. These variables will be used later by the CCL library routine, data packing

and unpacking. Generally speaking, there are five kinds of variables, variables to

represent location information, variables to represent array subscripts, variables to

represent data sizes, variables to represent data buffers and variables to represent

loop indices.

Each of them is discussed in detail using the following communication routine

as an example.

with([i, j] : D) copy(a[lO, 20]@[10, 20] ~ b[30, 40]@[30, 40])

o Location variables

The origin and destination node id's are represented by variables _loci, _loc2

in a one dimensional processor network case. In a two dimensional case, every

node is represented by its row id and column id. Thus the origin and the des­

tination node id's are represented by _iloci, _j loci and _iloc2, _j loc2. The

domain indices in the function call ([10, 20] and [30, 40]) are relative to domain

D. They are not physical node id's. The actual node id is obtained by calling

a predefined function get_node_id. For example, get_node_id(a, &_pn) will

28

return the physical node id domain index a resides on according to the infor­

mation in structure _pn. In a two dimensional processor network, a node is

represented by its row id and column id. Predefined functions get_row_id()

and get_col_id () will return those values.

o Array subscripts

The array subscripts in the above function call are global subscripts. They

are assigned to variable _c 1 and _c2 in a one dimensional case, and to _c 1,

_c2, _c3 and _c4 in a two dimensional case. The reason for this assignment

is that these subscripts can also be complex expressions. The assignment will

simplify later implementation.

Since the data array is now distributed, the global subscripts can no longer be

used to get to the intended array elements. They have to be transformed to lo­

cal subscripts. Variables _cl~ocal and _c2~ocal are used as local subscripts

if it's a one dimensional processor network. Variables _cl_local, _c2~ocal,

_c3~ocal and _c4~ocal are used if it is two dimensional. The local subscript

is the result of global subscript modula the local size of that data dimension.

o Data size variables

The CCL library routine requires the number of bytes of the input data as a

parameter. If the data is a scalar, the size is just the size of its type. If the

communication involves replicated arrays, or if it is a row-wise or column-wise

operation, the input and output data are both vectors, then the _data_size

is _dim_size*_type_size.

o Data variables

Two variables _datal and _data2 are always used by CCL routines as the

int _ilocl, _j locl, _iloc2, _j loc2, _cl, _c2, _c3, _c4,
_cl_local, _c2_local, _c3_local, _c4_local,
_data._size, _dim_size, _type_size, ...k;

double *_datal, *_data2;
_cl = 10;
_c2 = 20;
_c3 = 30;
_c4 = 40;
_ilocl = get__row..nid(_cl, &:_pn);
_jlocl = get_col..nid(_c2, &:_pn);
_iloc2 = get__row_nid(_c3, &:_pn);
_j loc2 = get_col..nid (_c4, &:_pn) ;
_cl_local = _cl Y. __rent;
_c2_local = _c2 Y. _cent;
_c3_local = _c3 Y. __rent;
_c4_local = _c4 Y. _cent;
_dim_size = 1;
_type_size = sizeof(double);
_data_size = _dim_size * _type_size;
_datal = malloc (__ciata_size) ;
_data2 = malloc (__ciata_size) ;

Figure 7. Local Variable Initialization.

29

input and output data buffer. They are declared as pointers to the data type.

Their spaces are allocated with appropriate size.

o Loop indices

Loop index ...k is declared for use in packing and unpacking replicated data

array. For simplicity reasons, it is always declared. Sometimes it is not used.

As an example, Figure 7 shows what local variables are declared and how

they are initialized for the example listed at the beginning of this section.

30

III.3.2 Communication Patterns

Based on the number of nodes involved in sending and receiving the data, the

communication routines can be categorized into the following four communication

patterns,

o One-to-one

Data messages move from one node of the processor array to another node.

Only one node will send the message and one node will receive it. One-to-One

communication routines include copy and swap.

However, swap is a special case. Although there are only two nodes involved

in the communication, both of them will send data and receive data.

o One-to-many

Data messages move from one node to all other nodes in the processor array.

One node will send the message but all nodes will receive it. These types of

routines include spread and scatter.

o Many-to-one

Data messages move from all the nodes in the processor array to one node.

All the nodes will send a message, but only one will receive them. These types

of routines include reduce, search and gather.

o Many-to-many

Data messages move from all the nodes in the processor array to all nodes.

All the nodes are involved in sending and receiving. These types of routines

include shift, reflect, transpose and skew.

.

.

··F········
.......................

.......................
One-to-One

·························
: . :~ :~ :~ : :~ :~ :~ . :~ :" :"
: . :~ :~· :~· :

0 : 0 ; 0 ; 0

~
. 0 0

..

.. . .. ··:·· ··:··
One-to-Many

.........................
:~:

.
Many-to-Many

. : . ; . ; .
··~!····· ··~·· ··~··
.

:
Many-to-One

........................
: fl*: ~ :-. ' .

.&..o:=a ~ ~

=~ ~
....--.....

=~ ... ~

Figure 8. Four Basic Communication Patterns.

31

III.3.3 Code Structure

A communication routine is transformed into a compound statement. It does,

mainly, three things, packing data, calling CCL library routine, and unpacking data.

The origin node, which will send the data, packs all data elements it wants to send

into a single message buffer _dataL The CCL library routine is then called. The

resulting data is stored in buffer _data2 on the destination node. _data2 is unpacked,

and all data elements are assigned to where they should go.

For different communication patterns, the structures of target code are dif-

ferent.

One-to-one communication routines involve two nodes. It may happen that

the two virtual nodes are actually mapped onto one physical node, therefore no

communication is needed. If they are two different nodes, a CCL routine has to

if (predicate) then
if (node_test) then

if (locaLtest) then
locaLassignment()

else
if (origin_test) then

pack_data
end if
ccl_one_to_one_comm()
if (destination.lest) then

unpack_data
end if

end if
end if

end if

Figure 9. One-to-One Communication.

32

be called. The code structure for One-to-one communication routines is shown in

Figure 9.

The meaning of the variables and procedures are explained as follows,

o predicate

This is the predicate expression taken Jrom the communication expression in

the original function call. It is optional. If predicate is empty, the if-then

structure is omitted.

o node_test

This is to see if the node is involved in the communication. If yes, it will do

the more work, otherwise it will skip this part. This test is only needed when

the communication is one-to-one. In other communication patterns, all nodes

are involved.

A node_test for a one dimensional processor network may look like this:

((_pn.my...node == _locl) II (_pn.my...node == _loc2))

o locaLtest

33

This test is to see if the two locations are actually on one physical node. For the

same reason as for node_test, this is only needed in one-to-one communication

pattern. If the test is satisfied, the two locations are on the same node, all it

has to do is some local assignments. No communication is necessary.

A locaLtest for a two dimensional processor network may look like this:

((_ilocl == _iloc2) && (_jlocl == _jloc2))

o locaLassignment

The two data elements are on the same node. A simple assignment statement

will do the job of copying, a couple more will do the job of swapping.

o origin_test, destination_test

Boolean expression which is a test to see if the node is an origin node, or a

destination node.

An origin_test for a one dimensional processor network may look like this:

(loci == pn.my...node) A destination_test for a two dimensional proces­

sor network may look like this:

((_iloc2 == _pn.my_row) && (_jloc2 == _pn.my_col))

o ccLcomm()

This is the corresponding CCL library routine that was discussed in Chapter

2.

o pack_data, unpack_data

if (predicate) then
if (origin_test) then

pack_data
end if
ccLone_to_many_comm()
unpack_data

end if

Figure 10. One-to-Many Communication.

34

These are the code sections that do data packing and unpacking. The input

data has to be packed into a single array buffer that is pointed by _datal

before calling the communication routine. The output data is stored in buffer

_data2. These are discussed in more detail in the following section.

Figure 10 is the code structures for one-to-many communication statements.

Since all nodes will participate at the receiving end, there is no destination_test.

Figure 11 is the code structures for many-to-one communication statements.

All nodes will participate at the sending end, there is no origin_test.

Figure 12 is the code structures for many-to-many communication state­

ments. All nodes will participate at both sending and receiving ends, no destina­

tion_test or origin_test is needed.

III.3.4 Data Packing and Unpacking

Data packing and unpacking is another major issue. The collective commu­

nication routines only take a pointer to the input data and a pointer to the output

data as parameters. If the data to be sent or received is not a scalar value, and

involves more data elements, they have to be properly packed together before the

if (predicate) then
pack_data
cclJnany ..to_one_comm()
if (destination..test) then

unpack_data
end if

end if

Figure 11. Many-to-One Communication.

if (predicate) then
pack_data
cclJnany_to_many _comm()
unpack_data

end if

Figure 12. Many-to-Many Communication.

communication call, and properly unpacked after the call.

35

Generally speaking, the data that are passed to the communication routines

can be divided into three groups, those that only deal with scalar values, those that

deal with replicated array elements and those that deal with row-wise or column­

wise operations. They all have to be packed into a single data buffer to passed to a

CCL routine, and unpacked after the call is completed.

The strategies used for different groups of data are described below.

Scalar. In the following statement, we are dealing with data that are of scalar

36

values.

with([i] : D) copy(a[lO]@[lO] ~ b[20]@[20]);

Data packing (unpacking) is simply an assignment statement that assigns the the

array element to _datal (_data2),

*-datal = a[10];

b[10] = *-data2;

Since _datal and _data2 are always defined as pointers, dereferencing is needed.

Replicated Array. In the following statement, data array expressions contain

[:],which means that dimension is replicated on every processor.

with((i] : D) copy(a[10][:]@[10] --+ b[20][:]@[20]);

The copy statement is copying the 11th row of array a on virtual processor 10 to

the 21st row of array bon virtual processor 20. The task of packing is to put all the

elements in buffer _datal,

for(...k = O;...k < n;...k+ +)
_datal[k] = a[10][..k];

Unpacking is similar, it will assign buffer _data2 to the 21st row of array b.

Concurrent Row/Column Operation. In the following statement, data arrays

a and bare distributed across a two dimensional processor domain.

with([i,j]: D) copy(a[10][j]@[lO,j] --+ b[20][j]@[20,j]);

In order to copy the 11th row of a to the 21st row of b, a concurrent column operation

is needed. Every column of the virtual processor domain will copy its 11th element

of array a to 21st element of array b.

Data packing looks like the following,

for(j = O;j < _ccnt;j + +)
_datal[j] = a[lO][j];

37

It will put all wanted elements that are local into buffer _dataL Unpacking is

similar.

Combination of the Above. In the following statement, data array a is col­

lected from all the nodes. It is then assigned to array c on processor 1.

with([i] : D) gather(a[i][:]@[i] ~ c[:][:]@[1]);

This is a combination of replacated and distributed dimensions. In this

case, we always process (pack or unpack) the replicated dimension(s) first, then the

distributed dimension(s). Otherwise we may get a wrong answer.

Suppose the array a is of size 4 x 4 and is distributed as in Figure 13(a).

The first two columns are on physical processor 0 and the other two are on physical

processor 1. After packing, _datal's on processor 0 and 1 are:

PO : _datal ~ 0, 1, 4, 5, 8, 9, 12, 13
P1 :_datal~ 2, 3, 6, 7, 10, 11, 14, 15

The CCL gather routine appends these two together and return the result as _data2.

_data2-+ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15

Unpack this with row major we get the array in Figure 13(b).

have:

That is obviously a wrong answer.

However, if we pack the replicated dimension first (in this case, column) we

PO : _datal ~ 0, 4, 8, 12, 1, 5, 9, 13
P1 :_datal~ 2, 6, 10, 14, 3, 7, 11,15

38

PO Pl
.......................
0 1 2 3 0 ; 1 ; 4 ; 5 0 ; 1 ; 2 ; 3
........
4 5 6 7 8 ; 9 ; 12; 13 4 ; 5 ; 6 ; 7
........
8 9 10 11 2 ; 3 ; 6 ; 7 8 ; 9 : 10 : 11

..
12: 13 14 15 10 : 11 : 14 : 15 12 ; 13 : 14 : 15

(a) (b) (c)

Figure 13. Problem With Packing And Unpacking Row Major.

After gather the resultant buffer is:

_data2---+ 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15

Unpack the replicated dimension first, we get the matrix in Figure 13(c). That is

the correct result.

Swap is a little different from others. Usually datal is assigned a value at

data packing time. It is then passed to the communication routine as an input data.

The result from the communication is stored in data2. data2 is then assigned to its

destination. Data packing (or unpacking) for swap involves both datal and data2.

datal and data2 both have valid input data going into the communication routine

and valid output data out of it.

III.3.5 Optional Domain Predicate

There may or may not be a domain predicate that appears in a communica­

tion statement. Three different cases may arise regarding domain predicate. Let's

take a look at them, using the spread statement as an example: Three cases need

to be considered,

39

o No domain predicate in a communication statement,

with([i, j] : D) spread(a@[c~, c2] -t ,B@[i, j]);

The communication statement, in this case, spread, is always executed in the

whole domain.

o Domain predicate exists in a communication statement. The variables refer­

enced in the predicate are not domain index variables.

with([i,j]: D :count> 0) spread(a@[c1 , c2]-+ fJ@[i,j]);

Here, the predicate, count > 0 dose not reference domain indices i or j. This

spread operation is either executed in the whole domain (when count> 0) or

not executed at all (when count <= 0).

o Domain predicate in the statement references domain indices.

with([i,j]: D: i > k) spread(a@[c1 , c2]-+ /1@[i,j]);

It means to spread a on node [ct, c2] to a sub-domain of D where i > k (all

the rows that are greater than k).

To realize that, the spread operation is performed on every node as normal.

But when it comes to data unpacking, only those fJ's on nodes that satisfy the

predicate i > k will have their values assigned, others will stay the same.

Things are a little different for reduce and search. The predicate has to be

checked at data packing time. The approach taken is to replace the values on

those VPs that don't qualify with a value that will not affect the outcome.

For instance, if the operation is reduce and the operator is '+', then replace

with a value of 0, if the operator is '*', then replace with a value of 1. If the

40

operation is to search for the maximum value, then the smallest number will

be supplied to replace those that don't qualify, and so forth.

111.4 PARALLEL LOOP TRANSFORMATION

Parallel loops appear in ACE in the form of:

fora II ([i , j] : D)
statement

It means for all i, j in the range of domain D, execute the statement in parallel. If

there are n processors, the statement will be executed in parallel on all n processors.

Since domain D is distributed across the processors, each processor is responsible

for executing the statement on a subset of domain D. This is achieved by applying

a regular for loop to statement on every processor.

The information of domain D is stored in the symbol table in an earlier

stage. In order to generate for loops out of a forall loop, we need to extract

range and distribute information of D from the symbol table. We assume that the

way to distribute a domain is always block distribution. The current version of the

compiler has only implemented block distribution scheme. Here we make another

assumption that the ranges of a domain always start with 1. So the upper bound

of a range represents the size of it. The subset that is to distributed on a processor

is upper _bound I pn.num_nodes, in a one dimensional case. This is the for loop

upper bound. In a two dimensional case, two nested for loops are generated. The

outer loop is for row index (first dimension in the range) and the inner loop is for

column index (second dimension in the range). The for loop upper bounds are

upper _bound! I pn.row_nodes and upper _bound2 I pn.coLnodes respectively.

The array indices that are referenced in statement may cause some problem.

If an index variable is a left hand side value of an assignment, like in the following

array initialization statement.

fora II [i, j] : D
a[i][j]=i*n+j;

41

i and jon the left hand side are global values, not local values. These indices should

be replaced by their global values. In the above case, i and j are replaced with gi

and gj, with
gi = i + (n/num_rows) * pn.my_row;
gj = j + (n/num_cols) * pn.my_col;

If an index variable is simply referenced as an array subscript as in a(i](j], (either on

right hand side or left hand side) nothing needs to be changed. However if an index

variable is assigned a new value inside the loop, or an array subscript is a linear or

more complicated form of index variable (e.g. a[3 * i][i + j]). The transformation is

not a trivial problem. It is not dealt with in this project.

The optional domain predicate in a forallloop is treated in a similar way

as those in communication statements.

111.5 INPUT/OUTPUT

Input/output has always been a difficult part of a parallel language design,

since 1/0 has not been well studied.

In this section, a simple approach to this problem is presented. The 1/0

functions discussed here will do more than reading and writing. After the data

array is read in, it is distributed to all the nodes. Before the final result can be

written out, it first collects subsections of the result from all the nodes. As far as

the target machine, iPSC/2, is concerned, all the nodes in the cube are able to do

1/0. All of them can read in data from a file or standard input, and write data to

a file or standard output. We will always use node 0 in the cube to perform 1/0.

Before computation starts, node 0 will read in data arrays and distribute them to

42

all other nodes according to how they are aligned to the processor domain. After

computation, all subsections of the result array that reside on different nodes are

collected to node 0 and then printed out to the screen in its whole form.

The two functions we implemented are called input an output. They act

just like function calls. The arguments supplied to the function are the names of

data arrays that need to be read in or written out. The first parameter specifies

the input stream. If it's 'stdin', then the program will read in data from standard

input. Otherwise, it is a file name, and the program will read in data from this file.

The ACE compiler will translate the input and output functions into a list of

statements that will accomplish the goal. For every array name, a list of somewhat

similar statements are generated. The information needed (e.g. the dimensionality

and type of array, how it is distributed) is obtained from the symbol table.

A pre-defined function input_xarray does the actual input and distribution.

(x could be i, f or d for data types integer, float and double.) Inside this

function, the whole array is read in on node 0. Node 0 then distributes the array to

all other nodes in the cube. After the function call, the subsection of the original

array is stored in a temporary buffer on each node. The local arrays get their values

from these temporary buffers.

In the target code, input1array may look like this:

input_iarray(pn,buf,rcnt,ccnt,dist)

The parameters are explained as follows:

o pn

Type: struct Par!nfo *
Holds information of the underlying processor network.

43

o buf

Type: int *

For input routine: has values of a subarray after the call.

For output routine: has values of a subarray before the call. The type of buf

varies according to the actual function call. It is float * if the function is

input..farray, or double* if the function is input_darray.

o rent

Type: int

Indicates number of rows in the subarray. rent has the value of 1 if the

subarray is one dimensional.

o cent

Type: int

Indicates number of columns in the subarray.

o dist

Type: int

This is a flag indicating how the array is distributed. It can be one of the

following four values:

1 : A one dimensional array distributed across a one dimensional processor

network.

2 : A two dimensional array distributed across a two dimensional processor

network.

3 : A two dimensional array distributed row-wise across a one dimensional

processor network.

#define n 16
dom spatial D = [1 : n, 1 : n];

main()
{

}

double a(n][n];
int b[n][n], i;
align a[i][:], b[:][i] over [i]:D;

input(a);

output(b);

Figure 14. Usage of input And output.

44

4 : A two dimensional array distributed column-wise across a one dimen-

sional processor network.

The same format is used for output_xarray routines. Things are pretty much just

the opposite inside the routines. The subsections provided by buf on each node is

collected to node 0 and printed out to the screen.

As an example, Figure 14 shows how input and output functions are used

in the context of an ACE program. Figure 15 gives the program that the compiler

will compile to.

111.6 TARGET CODE

The transformed syntax tree is printed out in C form by a print routine. The

program can be compiled and run on the iPSC/2 machine.

Besides the CCL library and the 1/0 routines, another two sets of utility

routines are also pre-written to make the compilation easier and the target code

#define n 16

main()
{

}

struct Parinfo _pn;
double **a;
int **b;

_pn.num_nodes = numnodes();
_pn.my_node = mynode();
_pn.my_pid = mypid();
_cnt = n/_pn.num_nodes;
a= alloc_2d_array(_cnt,n);
b = alloc_2d_array(n,_cnt);

{

}

{

}

int _i,_j;
double * _buf;

_buf = malloc(_cnt*n*sizeof(double));
input_darray(l_pn,_buf,_cnt,n,3);
for (_i=O;_i<_cnt;_i++)

for (_j=O;_j<n;_j++)
a[_i][_j] = _buf[_i*n+_j];

int _i,_j;
int *_buf;

buf = malloc(n*_cnt*sizeof(int));
output_iarray(l_pn,_buf,n,_cnt,4);

Figure 15. Target Code of input And output.

45

46

more readable.

o get..xnid

It returns the node id of a node that define its location in a processor network.

This set of routines include get..nid, get_row..nid and get_col..nid. Given

the index of a virtual processor, they will return the actual physical node index

that the virtual processor is assigned to.

o allocJype~d_array

This is a set of routines that dynamically allocate storage space for different

type and size of data arrays. Here, type is the data type, it can be int,float

or double; n is the dimensionality of the array, it can be 1,2 or 3.

111.7 SEQUENTIAL TRANSFORMATION

An ACE program can also be compiled into a sequential C program that

can be executed on a conventional sequential machine. The programmer doesn't

have to write another program for sequential machines. It is also useful to help the

programmer to check the correctness of an ACE algorithm without using a parallel

machine.

The compilation to a sequential program is relatively trivial compared to the

compilation to a parallel one. The focus, like the parallel version, is on the three

extension parts, data distribution, data movement and parallel loops. This section

discusses what needs to be done to these extensions in order to get a sequential

program.

47

III. 7.1 Data Distribution

Domain declaration, alignment declaration and distribution declaration state­

ments in ACE are means for programmers to present information that are related to

data distribution. On a sequential machine, we have a shared-memory environment.

All data are stored in a global memory space. There is no need to distribute data.

Therefore the information for data distribution can be ignored.

Domain, align and distribute statements are simply deleted from the syn­

tax tree. However, there is one piece of information in these statements will be

used later. That is the size of each dimension of a virtual processor domain. The

lower and upper boundaries of the domain are needed to transform communication

statements and parallel (forall) loops since they are defined on the domain. The

information is stored in the symbol table.

III. 7.2 Data Movement

In the sequential version, all data is stored in a global memory space. All

processes are able to access them. The virtual processor domain that all communica­

tion statements are based upon becomes a single global domain. No communication

will be needed even if a data reference is across the virtual processor domain.

Generally speaking, a communication statement can be replaced by an assign­

ment statement. There are several variations for different communication pattern.

They are discussed as following:

Communication Patterns. Different communication patterns will generate

different loop bodies in sequential form.

o One-to-one

The two statements that belong to this category are copy and swap. The

transformation is pretty straight forward. A copy will result in a single as-

48

signment statement, while a swap statement will result in three assignment

statements and a temporary variable.

o One-to-many

This category has two statements, spread and scatter. Their sequential code

segments consist of a for loop that iterates upon the domain.

o Many-to-one

Reduce, search and tt gather statements belong to this category. Since they

involve all VPs, a for loop is needed. For reduce, the destination expression

should be appropriately initialized before reduction can take place. If the

operator is'+', then the initial value is 0; if the operator is'*', then the initial

value is 1; and so forth.

o Many-to-many

In this category, the source and the destination expressions of a communication

statement are usually different parts of a same data array. If this is actually

the case, extra buffering is needed so that the old values and the new values

of a data array are not confused. If the communication statement is shift,

then its boundary condition has to be taken into acount.

Different Array Representations. The format of source and destination data,

either it's a scalar, an aggregate array data or a row/column operation can make

some difference, too.

o Scalar

Nothing special needs to be done in this case.

o Aggregate array

For every communication statement, if there is aggregate array involved, an-

with ([i, j] : D) copy(a[c1][c2] -. b[c3][c4]); b [c3] [c4] = a [cl] [c2]

(a) Scalar

with ([i,j]
b[c3][c4][:]);

for (k=O; k<n; k++) _.
b [c3] [c4] [k] = D) copy(a[c1][c2][:]

a [cl] [c2] [k];

(b) Aggregate array

for (i=O; i<n; i++)
b [i] [c4] = a [i] [c2];

with ([i,j]: D) copy(a[i][c2] -. b[i][c4]);

(c) Concurrent row operation

Figure 16. Sequential Target Code of Different Data Representation.

49

other for loop is needed to take care of the elements in this dimension (the

dimension represented by (:]). The ':'s are replaced by loop index 'k'. The

lower and upper bounds of the loop are those of that dimension.

o Concurrent row/ column operation

This case is similar to the previous one.

For each of the above, an example is shown in Figure 16 to demonstrate the

basic ideas.

III. 7.3 Parallel Loops

The forallloop used to express parallelism in parallel version does not have

any meaning other than an iteration. Since the body statements of a forallloop

are not supposed to have any data dependence relations inbetween the iterations,

when executed sequentially, they can be executed in any order we like. To follow

the C programming convention, we transform a forall loop into a for loop with

its upper and lower bounds being those of virtual domain that the forall loop

50

operates on. The loop header is transformed from a forall loop to a for loop.

Upper and lower bounds of the for loop is obtained from the domain information in

the symbol table. If the domain is two dimensional, the first dimension will always

be the outer loop. Again, all manipulation is done to the abstract syntax tree and

the final result is printed out to a file inC form.

CHAPTER IV

EXPERIMENT

The current version of the compiler has implemented most features of ACE

described in previous chapters, except the following: (1) it does not support cyclic

distributions, (2) the size of the physical processor network always divides the size

of the virtual processor domain, and (3) it doesn't provide extensive error checking

or give out any error messages.

To use the ACE compiler, first store the ACE program in a file, preferably

with a suffix * . ac. Then pass the file name to the compiler as a command line

argument. There are two options that can be specified at the command line, -p and

-s. The default is to generate code for a parallel machine. This specifies whether the

user wants to generate target code for a parallel machine or a sequential machine.

The target code file has suffix *-par. cor *-seq. c accordingly. For instance,

Y. ace -p test.ac

will generate target file 'test_par. c' that can be executed on the iPSC/2.

Y. ace -s test.ac

will generate target file 'test_seq. c' that can be executed on a sequential machine.

At the same time, a file 'test. sym' is generated which contains the symbol table

information of the transformation.

This chapter shows a couple examples of well known parallel algorithms writ­

ten in ACE. The examples illustrate how one can use ACE to express data distri­

bution ,data movement and parallel constructs. In some cases, it can express a

52

parallel algorithm that is very hard for a sequential language to express. Readers

will find ACE programs are usually shorter, cleaner and more understandable than

their low-level message-passing counterparts.

The two examples given in this chapter are, a matrix multiply using Cannon's

algorithm and a Gaussian elimination algorithm. The last section in this chapter

shows some pedormance figures and analysis of the examples.

IV.l CANNON'S ALGORITHM

Cannon's algorithm is an efficient parallel matrix multiplication algorithm.

It multiplies two n X n matrices A, B and stores the result in a third matrix C on

n2 virtual processors. The algorithm can be described as two steps, initialization

and computation.

1. Initialization

The two input matrices are assumed to have been distributed over an n x n

processor network. One matrix A is skewed row-wise and the other matrix B

is skewed column-wise.

2. Computation

The algorithm steps through n iterations. In each iteration, three steps are

taken:

(a) every processor pedorms a local multiplication and an addition.

(b) array A is shifted to the left one step.

(c) array B is shifted upwards one step.

The algorithm is illustrated in Figure 17. Let's look at c11 , During the first

iteration, c11 = cu + au * bu = a11 * bu. During the second iteration, A and

53

B are shifted. The elements a 12 and b21 are on the same virtual processor as c11 •

en = en + a12 * b21 = an * bn + a12 * b21· .•• In the end en has the value of

au* bu + a12 * b21 + a13 * b31 + a14 * b4t·

Without using explicit communication statements, Cannon's algorithm is dif­

ficult to describe. The closest sequential algorithm can get is probably the following:

for (i=O;i<n;i++)

for (j=O;j<n;j++)

for (k=O;k<n;k++)

c[i][j] += a[i][(i+j+k)Y.n]*b[(i+j+k)Y.n][j];

The abstract communication statements presented in ACE are perfect for

describing Cannon's algorithm. Figure 18 shows the code in ACE for Cannon's

algorithm. The matrices are distributed across a two dimensional processor net­

work. After matrices A and B got their initial values, A is skewed row-wise by one

step, and B is skewed column-wise by one step. They are accomplished by calling

communication statement skew. In the computation stage, shifting of A and B is

accomplished by shift statement.

The target code for this program is listed in Appendix A.

IV.2 GAUSSIAN ELIMINATION

Gaussian elimination is an algorithm used to reduce a matrix to one whose

components of the diagonal and above remain nontrivial. (An upper triangular rna-

trix.)

a13 ~ l [a~1
I I I

b~ l [au a12 a14 a12 at3 at4

a23 b2 0 I I I bl a21 a22 a24

b3 ===} 0
a22 a23 a24 2

a33 0 I I bl a31 a32 a34 a33 a34 3

b4 0 0 0 I bl a41 a42 a43 a44 a44 4

(1) Initialization:

........................
: an : a12 : a13 : a14
: a22 : a23 : a24 : a21
: a33 : a34 : a31 : a32
························
: a44 : a41 : a42 : a43

A

(2) Computation:

bn : b22 : b33 : b44

b21 : b32 : b43 : b14

b31 : b42 : b13 : b24

b41 : b12 : b23 : b34

B

compute Cii: cn = cn +an* bn,

~

..... ···········
a12 a13 : a14 an

.........................
:a23:a24:a21:a22:

a34 a31 a32 a33
a41 a42 a43 a44

A
(shifted left by 1)

l b21 l b32 l b43 l b14 l

I :~~- -~;;_ :~;~_ -~;:
~ bn ~ ~2 ; b33 ~ b44 ~

B
(shifted up by 1)

Cn : Ct2: Ct3: Ct4

c21 : c22 : c23 : c24

C31 : C32 : C33 : C34

C41 : C42 : C43 : C44

c

.
Ctt C12 Ct3 C14

·························
: c21 : c22 : c23 : c24 : ·························
l C31 l C32 j C33 j C34 ~
·························
~ C41 ~ C42 ~ C43 ~ C44 ~
·························

c

Figure 17. Illustration of Cannon's Algorithm.

54

Together with backsubstitution, it can be used to solve linear equations. If there are

n equations with n unknowns Xi, i = O .. n-1. order all equations with all coefficients

of the same unknown Xi in the same column i. For each successively smaller sub-

matrix, scale all rows except top row by respective scale factor, so that left-most

coefficient yields zero after subtracting. The resulting matrix is an upper triangle

matrix. To compensate for limited precision on real machines, pivoting (rows and

columns) or partial pivoting (rows) is often used.

In our example, the initial matrix is distributed row-wise across a one di-

#include< stdio.h >
#include "eel. h"

#define n 8

domain D = [1 : n, 1 : n];

main()
{

}

int a[n][n], b[n][n], c[n][n];
int i, j, k;
align a[i][j], b[i][j], c[i][j] to [i,j]: D;
distribute D over [2, 2];

input (a, b, c);

with ([i,j]: D) skew(a[i][j] -t a[i][i + j + 1]);
with ([i,j] :D) skew(b[i][j] -t b[i + j + 1][j]);

for (k = 0; k < n; k + +) {
fora II ([i, j] : D)

}

c[i][j]+ = a[i][j] * b[i][j];
with ([i, j] : D)

shift (a[i][j] -t a[i][j- 1], WRAP);
with ([i, j] : D)

shift (b[i][j] -t b[i- 1][j], WRAP);

Figure 18. Cannon's Algorithm In ACE.

55

mensional domain. Every row resides on a different virtual processor. Gaussian

elimination with partial pivoting can be expressed using ACE as in Figure 19. The

algorithm works as follows: For each successively smaller sub-matrix (sequential

loop k), do the following:

56

1. Find the largest element (absolute value) in the current column. The commu­

nication statement search will do exactly that. The pivot element is found

and its index is stored in pidx.

2. Interchange the current row with the pivot row using swap.

3. Broadcast the current row to all other virtual processors. spread does that

and the current row is stored in pivot_row on every VP for computation.

4. For every row below the current row, scale the pivot row by a factor factor,

so that left-most element yields zero after subtracting.

The target code for this program is listed in Appendix B.

IV.3 PERFORMANCE ANALYSIS

A brief analysis of the performance of the above two programs is given in

this section.

IV .3.1 Performance Measurement

The performance of each compiler-generated program is measured by two

related parameters: elapsed time and speedup.

o Elapsed Time

To measure the total elapsed time of a node program, timing statements are

inserted into the program generated by the compiler. The initialization and

output segments of the program are not timed.

o Speedup

Speedup is defined as the ratio of the parallel execution time to the sequential

#include < stdio. h >
#include "ccl.h"

#define n 8

domain D = [1 : n];

main()
{

}

double a[n][n + 1], pivot_row[n + 1], fac;
int i, j, k, pidx;
align a[i][:] to [i] : D;
distribute D over [4];

input(a);

for (k = 0; k < n - 1; k + +) {
with ([i] : D : i > k)

}

search(a[i][k]@[i] -+ pivot_row[k]@[k], pidx, MAX);
with ([i] : D)

swap (a [k][:]@ [k] -+ a [pidx][:]@ [pidx]);
with ([i] : D : i > k)

spread(a[k][:]@[pidx] -+ pivot_row[:]@[i]);
fora II ([i] : D : i > k) {

}

fac = a[i][k]/pivoLrow[k];
for (j = k; j < n + 1; j + +)

a[i][j]- = pivot_row[j] * fac;

Figure 19. Gaussian Elimination In ACE.

57

execution time. It shows how an application program scales with the size of a

parallel machine.

58

Let T1 denote the elapsed time of a program running on a single processor,

and Tk be that on k processors. The speedup is computed as

IV .3.2 Analysis

S = Tt
Tk.

Both target programs have been compiled and executed on iPSC /2 success­

fully. Timing results for different matrix sizes are collected. The corresponding

speedups are calculated.

Table I(a) shows the elapsed times of the Cannon's algorithm. Since a matrix

multiply algorithm is of 0(n3) complexity, every time n is doubled, the elapsed time

will increase by eight times. This is clearly shown by each column of this table. The

timing results are not optimal. Some more extensive testing has shown that in each

case, a little more than half of the total elapsed time is spent on communication.

Looking at the ACE program, we can see that skew is called twice to initialize the

matrices. shift is called twice in each of the n iterations. In order to obtain good

performance, the CCL library should be our point of focus for future research.

The timing results for Gaussian elimination in Table II (a) are more accept­

able. This is because the communications involved, search,spread and swap, are

more efficient than shift.

Part (b) of Tables I and II show the speedups of different matrix sizes. Their

graphical representations are given in Figures 20 and 21. The numbers and the

graphs show that the speedup is a lot better when the matrix size is large than when

the matrix size is small. In the case of Cannon's algorithm, when the matrix size is

32, the speedup on 16 processors is 5.62; but when the matrix size is 128, the speedup

jumps to 9.38, almost doubled. Similarly, in the case of Gaussian elimination, when

59

the matrix size is 32, we are actually experiencing a "speed-down"; but when the

matrix size is 256, the speedup is 8.66.

With the increase of the number of the processors, each of them spends rel-

atively more time communicating with each other. When the matrix size is small,

each processor doesn't have much computation to do. The overhead of the commu-

nication is not compensated. When the matrix size is large, more time is spent on

computation on each processor and the communication overhead becomes less of a

factor.

TABLE I

PERFORMANCE OF CANNON'S ALGORITHM

Matrix Elapsed Time (sec.)
Size P= 1 P=2 P=4 P=8 p = 16

32x32 3.26 2.03 1.30 0.81 0.58
64x64 25.58 15.44 9.28 5.23 3.09

128x128 205.67 123.29 72.41 39.56 21.92
-- --- -- -- ---

Matrix
Size

32x32
64x64

128x128

(a) Elapsed time on iPSC/2.

~- ---- speedup- ----- ---- -- 1

P = 1 1 P = 2 1 P = 4 1 P = 8 1 P = 16
1 1.61 2.51 4.02 5.62
1 1.66 2.76 4.89 8.28
1 1.67 2.84 5.20 9.38

-------------- -----

(b) Speedup on iPSC /2.

60

Speedup

E> 32 X 32
e e 64 X 64

10 <" ~ 128 X 128

8

6

4

2

1 2 4 8 16 Processor

Figure 20. Speedup of Cannon's Algorithm On iPSC/2.

Speedup - e 32 X 32

• 64 X 64
10 ~ ~ ~ 128 X 128

<1 256 X 256
I

8

6

4

2

1 2 4 8 16 Processor

Figure 21. Speedup of Gaussian Elimination On iPSC /2.

TABLE II

PERFORMANCE OF GAUSSIAN ELIMINATION

Matrix
Size

32x32
64x64

128x128
256x256
--~---

Matrix
Size

32x32
64x64

128x128
256x256

Elapsed Time (sec.)
P= 1 P=2 P=4 P=8 p = 16 J

0.40 0.36 0.33 0.35 0.41
2.80 1.97 1.36 1.11 1.06 I

21.12 13.66 8.03 5.08 3.74 .
164.15 103.45 56.85 31.52 18.96

L___.__---~- --- -----~ --- -- ---

(a) Elapsed time on iPSC /2.

I Speedup I
P = 1 1 P = 2 1 P = 4 1 P = 8 1 P = 16

1 1.13 1.21 1.14 0.98
1 1.42 2.06 2.52 2.64
1 1.55 2.63 4.16 5.65
1 1.59 2.89 5.21 8.66

- --

(b) Speedup on iPSC /2.

61

CHAPTER V

CONCLUSION

The difficulty in programming distributed-memory machines is largely due to

the need to explicitly manage data distribution and communication. Our research

takes a modest approach to solving this problem. The message-passing language,

ACE, introduced in this thesis gives the user a high-level representation of interpro­

cessor communications. A set of abstract communication routines are defined based

on data movement patterns. ACE is capable of describing actual parallel algorithms

on message-passing machines, and it is portable across a class of machines.

V.l RESEARCH SUMMARY

The main effort of this thesis is to show the advantages ACE language has

over other its high-level or low-level counterparts. The thesis presented a design and

implementation of an ACE compiler. Two well known parallel algorithms, namely

Cannon's algorithm and Gaussian elimination, were programed in ACE, and they

were compiled using the ACE compiler. The target programs were executed on an

iPSC/2 multicomputer. Performance results were gathered and a brief analysis was

given.

These examples show that ACE is very suitable for describing parallel al­

gorithms. The ACE programs are easier to write and more understandable than

programs using low-level message-passing primitives.

63

V.2 FUTURE WORK

The ACE compiler can be made more efficient and robust In many ways.

The following are a few suggestions for future work.

o More Communication Routines

At present, there are 12 abstract communication routines defined in ACE.

(Refer to [11]) The corresponding low-level routines are also implemented on

iPSC /2. In order to make ACE more powerful, more abstract communication

routines are desirable. Matrix operation like linear transformation is one of

them.

o More Distribution Schemes

The current version of the compiler only supports block distribution. The

data arrays can only be distributed across the processor network by blocks.

Furthermore, the array dimension size has to be a multiple of the number of

processors in that dimension. It will be feasible to have the compiler be able

to handle cyclic distribution and uneven distribution and any combination of

these.

o forall Loop Index Study

As discussed in 111.4, any reference of a loop index variable inside a for all

loop has to be transformed. In this version, only very simple references are

transformed. A more sophisticated transformation strategy has to be employed

so that the forallloop can express more complicated computation.

REFERENCES

[1] M. Chen. A parallel language and its compilation to multiprocessor ma­
chines. In The Proceedings of the 13th Annual Symposium on Principles
of Programming Languages, January, 1986.

[2] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng,
and M. Wu. Fortran D language specification. Technical Report TR90-
141, Dept. of Computer Science, Rice University, December 1990.

[3] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An
overview of the Fortran D programming system. Technical Report TR90-
154, Dept. of Computer Science, Rice University, March 1991.

[4] S. Hiranandani, ~. Kennedy, and C. Tseng. Compiler support for
machine-indenpendent parallel programming in Fortran D. In J. Saltz
and P. Mehrotra, editors, Compilers and Runtime Software for Scalable
Multiprocessors. Elsevier,1991.

[5] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for
Fortran D on MIMD distributed-memory machines. Technical Report
TR90-156, Dept. of Computer Science, Rice University, April 1991.

[6] P. Hatcher and M. Quinn, Data-Parallel Programming. The MIT Press,
1992.

[7] iPSC/2 Users' Guide. Intel Scientific Computers, Beaverton, OR, 1988

[8] B.W. Kernighan, D.M. Ritchie. The C programming language Prentice
Hall, Englewood Cliffs, NJ, 1988.

[9] J. Li. Compiling Crystal for distributed-memory machines. PhD Disser­
tation, Dept. of Computer Science, Yale University, December 1991.

[10] J. Li. The Data Alignment Phase in Compiling Programs for Distributed­
Memory Machines. Journal of Parallel and Distributed Computing,
13:213-221, 1991.

65

[11] J. Li. Program distributed-memory machines with high-level communica­
tion abstractions. Technical Report, Dept. of Computer Science, Portland
State University, September 1992.

[12] J. Li. A manual for CCL Routines. Technical Report, Dept. of Computer
Science, Portland State University, October 1992.

(13] S. Otto. MetaMP: a higher level abstraction for message-passing pro­
gramming. Dept. of Computer Science and Engineering, Oregon Gradu­
ate Institute, January 1991.

[14] M.J. Quinn, P.J. Hatcher, and J. Van Rosendale. Compiler C* programs
for a hypercube multicomputer. In Proceedings of the ACM/SIGPLAN
symposium on Parallel Programming: Experience with Applications, Lan­
guages and Systems, New Haven, CT, July 1988.

[15] J. Rose and G. Steele Jr. C*: An extended C language for data parallel
programming. In L. Kartashev and S. Kartashev, editors, Proceedings
of the Second International Conference on Supercomputing, Santa Clara,
CA, May 1987.

[16] M. Wu and G. Fox. Compiling Fortran 90 programs for distributed­
memory MIMD parallel computers. Technical Report CRPC-TR91126,
Center for Research on Parallel Computation, Syracuse University, Jan­
uary 1991.

WHiliiHOD1V S,NONNVO 'HOd aaoo iliaD'HVili

V XIQNaddV

#include <stdio.h>
#include "ccl.h"
#define n 8

main(){
float **a, **b, **c;
inti, j, k;
struct Parlnfo _pn;
int _rent, _cent;
_pn.num_nodes=numnodes();
_pn.my_ncde=mynode();
_pn.my_pid=mypid();
_pn.num_cols=2;
_pn.num_rows=2;
_pn.my_col=_pn.my_nodeY._pn.num_cols;
_pn.my_row=_pn.my_node/_pn.num_cols;
_rcnt=(n)/_pn.num_rows;
_ccnt=(n)/_pn.num_cols;
a=alloc_float_2d_array(_rcnt, _cent);
b=alloc_float_2d_array(_rcnt, _cent);
c=alloc_float_2d_array(_rcnt, -~cnt);
{

}

{

int _i,_j;
float *_a;
float *_b;
float *_c;
_a=malloc(sizeof(float)•_rcnt•_ccnt);
input_farray(~_pn, _a, _rent, _cent, 2);
for (_i=O;_i<_rcnt;++_i)

for (_j=O;_j<_ccnt;++_j)
a[_i][_j]=_a[_i*_ccnt+_j];

_b=malloc(sizeof(float)*_rcnt•_ccnt);
input_farray(t_pn, _b, _rent, _cent, 2);
for (_i=O;_i<_rcnt;++_i)

for (_j=O;_j<_ccnt;++_j)
b[_i][_j]=_b[_i*_ccnt+_j];

_c=malloc(sizeof(float)•_rcnt•_ccnt);
input_farray(t_pn, _c, _rent, _cent, 2);
for (_i=O;_i<_rcnt;++_i)

for (_j=O;_j<_ccnt;++_j)
c[_i][_j]=_c[_i*_ccnt+_j];

int _offset, _data_size, _dim_size, _type_size, _k;

67

}

{

}

float •_data1, •_data2;
_offset=-1 ;
_dim_size=1;
_type_size=sizeof(float);
_data_size=_rcnt•_ccnt•_type_size•_dim_size;
_data1=malloc(_data_size);
_data2=malloc(_data_size);
for (i=O;i<_rcnt;++i)
{

}

for (j=O;j<_ccnt;++j)
_data1[(i•_ccnt+j)]=a[i][j];

ccl_skewrc(t_pn, ROW, _data1, _rent, _cent, _type_size•_dim_size,
_data2, _offset);

for (i=O;i<_rcnt;++i)
{

}

for (j=O;j<_ccnt;++j)
a[i][j]=_data2[(i•_ccnt+j)];

int _offset, _data_size, _dim_size, _type_size, _k;
float •_data1, •_data2;
_offset=-1 ;
_dim_size=1;
_type_size=sizeof(float);
_data_size=_rcnt•_ccnt•_type_size•_dim_size;
_data1=malloc(_data_size);
_data2=malloc(_data_size);
for (j=O;j<_ccnt;++j)
{

}

for (i=O;i<_rcnt;++i)
_data1[(i•_ccnt+j)]=b[i][j];

ccl_skevrc(t_pn, COL, _data1, _rent, _cent, _type_size•_dim_size,
_data2, _offset);

for (j=O;j<_ccnt;++j)
{

}

for (i=O;i<_rcnt;++i)
b[i][j]=_data2[(i•_ccnt+j)];

for (k=O ;k<n;k++)
{

68

}

for (i=O;i<_rcnt;++i)
for (j=O;j<_ccnt;++j)

{

}

{

}

c[i] [j]+=a[i] [j]•b[i] [j];

int _roff, _coff, _ovf, _data_size, _dim_size, _type_size, _k;
float •_data!, •_data2;
_coff=-1 ;
_roff=O ;
_ovf=WRAP;
_dim_size=1;
_type_size=sizeof(float);
_data_size=_rcnt•_ccnt•_type_size•_dim_size;
_data1=malloc(_data_size);
_data2=malloc(_data_size);
for (i=O;i<_rcnt;++i)

for (j=O;j<_ccnt;++j)
_datat[(i•_ccnt+j)]=a[i][j];

cl_shift2d(a_pn, _data!, _rent, _cent, _type_size•_dim_size,
_data2, _roff, _coff, _ovf);

for (i=O;i<_rcnt;++i)
for (j=O;j<_ccnt;++j)

a[i][j]=_data2[(i•_ccnt+j)];

int _roff, _coff, _ovf, _data_size, _dim_size, _type_size, _k;
float •_data!, •_data2;
_coff=O ;
_roff=-1 ;
_ovf=WRAP;
_dim_size=1;
_type_size=sizeof(float);
_data_size=_rcnt•_ccnt•_type_size•_dim_size;
_datat=malloc(_data_size);
_data2=malloc(_data_size);
for (i=O;i<_rcnt;++i)

for (j=O;j<_ccnt;++j)
_data1[(i•_ccnt+j)]=b[i][j];

ccl_shift2d(a_pn, _data!, _rent, _cent, _type_size*_dim_size,
_data2, _roff, _coff, _ovf);

for (i=O;i<_rcnt;++i)
for (j=O;j<_ccnt;++j)

b[i][j]=_data2[(i•_ccnt+j)];

69

{

OL

NOLLVNIWI1~ NVISSilVD 'HO~ ~QOO ~~D'HV~

H XIQN~ddV

#include <stdio.h>
#include <sys/types.h>
#include "ccl.h"
#define n 4

main(){
double ••a, pivot_rov[n+l], fac;
int i, j, k, pidx;
struct Parlnfo _pn;
int _cnt;

_pn.num_nodes=numnodes();
_pn.my_node=mynode();
_pn.my_pid=mypid();
_cnt=n/_pn.num_nodes;
a=alloc_double_2d_array(_cnt, n+l);

for (k=O ;k<n-1 ;k++)
{

{

72

int _loc2, _c2, _c2_local, _data_size, _dim_size, _type_size, •_index, _k;
double *_datal, *_data2;

}

{

_c2=k;
_loc2=get_node_id(_c2,_cnt, t_pn);
_c2_local=_c2%_cnt;
_dim_size=l;
_type_size=sizeof(double);
_data_size=_dim_size•_type_size•_cnt;
_datal=malloc(_data_size);
_data2=malloc(_data_size);
_index=malloc(_data_size);
for (i=O;i<_cnt;++i)

if ((i+_cnt•_pn.my_node)>k)
_datal[i]=a[i][k];

else
_datal[i]=-999999;

ccl_searchld(t_pn, _loc2, _datal, _cnt, _type_size•_dim_size,
_data2, _index, DOUBLE, MAX);

{

}

pivot_rov[k]=•_data2;
pidx=•_index;

}

{

int _loci, _loc2, _ci, _c2, _ci_local, _c2_local,
_data_size, _dim_size, _type_size, _k;

double *_datai, •_data2, _temp;
_ci=k;
_c2=pidx;
_loci=get_node_id(_ci,_cnt, t_pn);
_loc2=get_node_id(_c2,_cnt, t_pn);
_ci_local=_ciY._cnt;
_c2_local=_c2Y._cnt;
it ((_pn.my_node==_loci)ll(_pn.my_node==_loc2))
{

if (_loci==_loc2)
for (_k=O;_k<n+i ;++_k)
{

}

_temp=a[_ci_local][_k];
a[_ci_local][_k]=a[_c2_local][_k];
a[_c2_local][_k]=_temp;

else
{

_dim_size=n+i ;
_type_size=sizeof(double);
_data_size=_dim_size•_type_size;
_data1=malloc(_data_size);
_data2=malloc(_data_size);
it (_pn.my_node==_loc1)

for (_k=O;_k<n+i ;++_k)
_datai[_k]=a[_ci_local][_k];

it (_pn.my_node==_loc2)
for (_k=O;_k<n+i ;++_k)

_data2[_k]=a[_c2_local][_k];

73

ccl_swapid(t_pn, _loc1, _loc2, _data1, _data_size, _data2);
if (_pn.my_node==_loci)

tor (_k=O;_k<n+1 ;++_k)
a[_ci_local][_k]=_data1[_k];

if (_pn.my_node==_loc2)
tor (_k=O;_k<n+i ;++_k)

a[_c2_local][_k]=_data2[_k];
}

}

int _loci, _c1, _c1_local, _data_size, _dim_size, _type_size, _k;
double *_data1, •_data2;

}

}

_c1=k;
_locl=get_node_id(_cl,_cnt, t_pn);
_c1_1ocal=_c1Y._cnt;
_dim_size=n+l ;
_type_size=sizeof(double);
_data_size=_dim_size•_type_size;
_datal=malloc(_data_size);
_data2=malloc(_data_size);
if (_pn.my_node==_locl)

for (_k=O;_k<n+l ;++_k)
_data1[_k]=a[_c1_1ocal][_k];

ccl_spreadld(t_pn, _locl, _datal, _data_size, _data2);
for (_k=O;_k<n+l ;++_k)

for (i=O;i<_cnt;++i)
if ((i+_cnt•_pn.my_node)>k)

pivot_row[_k]=_data2[_k];

for (i=O;i<_cnt;++i)

}

if ((i+_cnt*_pn.my_node)>k)
{

}

_ fac=a[i] [k] /pivot_row[k];
for (j=k;j<n+l ;j++)

a[i][j]-=pivot_row[j]•fac;

74

	Compiling ACE for Distributed-Memory Machines
	Let us know how access to this document benefits you.
	Recommended Citation

	Song_Jun-1992
	Song_Jun-1992_2

