
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

3-5-1993

Comprehension of Literate Programs by Novice and Comprehension of Literate Programs by Novice and

Intermediate Programmers Intermediate Programmers

Christopher Forrest Bertholf
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Bertholf, Christopher Forrest, "Comprehension of Literate Programs by Novice and Intermediate
Programmers" (1993). Dissertations and Theses. Paper 4572.
https://doi.org/10.15760/etd.6456

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4572
https://doi.org/10.15760/etd.6456
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Christopher Forrest Bertholf for the Master

of Science in Computer Science presented March 5, 1993.

Title: Comprehension of Uterate Programs by Novice and Intermediate

Programmers.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Jeanne Scholtz, Chair
•:.,

Maria Balogh

;'J ..

ljeatnce Oshika

The studies reported herein compare comprehension of Ut style literate

programs to that of traditional modular programs documented by embedded

comments. Novice and intermediate programmers participated in three

experiments designed to determine the comprehensibility of literate programs

2

written using a language-independent system for abstraction-oriented literate

programming compared with programs written using traditional modular

programming techniques (traditional modular programs). Programs were

written in either the C or FORTRAN programming language. Half of the

subjects in each group received a literate program, while the other half received

a traditional modular program with embedded documentation. Subjects

received a problem specification, input and output specifications, and a

language reference for use in the study. Subjects were asked to perform a

program maintenance task (complete an incomplete program). The

maintenance task was used as a measure of comprehension; it simulates an

actual task in the software engineering industry that requires program

comprehension in order to be completed. The elapsed time to effect a solution

was recorded. The completed programs were judged as correct, functionally

correct with syntax errors, or incorrect; several reconstructive program

comprehension measures were also collected and analyzed_ The clear overall

result was that subjects using the literate programs found a solution (correct or

functionally correct with syntax errors) more often than did subjects using the

traditional modular programs with embedded comments. In fact, none of the

subjects in this study who modified the traditional programs were able to effect

a solution that was totally correct, nor even one that was functionally correct

with syntax errors.

COMPREHENSION OF LITERATE PROGRAMS

BY

NOVICE AND INTERMEDIATE PROGRAMMERS

by

CHRISTOPHER FORREST BERTHOLF

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1993

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Christopher

Forrest Bertholf presented March 5, 1993 .

Jeanne Scholtz, Chair

Maria Balogh

/~'

Leonard Shapiro

BE?atrice Oshika

APPROVED:

Leonard Shapiro, Chair, Department df Computer Science

Roy W. Koth, Vice Provost for Graduate Studies and Research

ACKNOWLEDGEMENTS

The following people were instrumental, in many different ways, in the

compietion of this study.

My thanks to Maria Balogh, for substantial support and encouragement.

Many thanks to Jean Scholtz for inspiration, for being such an excellent

research resource, and for her patience with my passion for perfection. My

appreciation is also extended to Donald Knuth, without whom I would have had

no programming paradigm to refine and test. I would also like to thank Mike

Kephardt, who introduced me to literate programming and gave me a reference

implementation of CWEB, a literate programming preprocessor in the style of

WEAVE and TANGLE that he designed and implemented in 1985. Andy

McKnight, my co-worker and friend, spent countless hours developing a

WordPerfect macro set that allowed Ut to be used with WordPerfect version

5.1, and he also helped me with my pilot studies; I can't thank Andy enough for

all of his help. I would like to thank all of the students in my 'Introduction to

FORTRAN' class, and all of the students at Portland State University who beta­

tested Lit, without whom many of the revisions to the Ut system would never

have been suggested or implemented. I would also like to thank Wes Brenner

for all of the help he gave me with statistical theory; it helped shape the way the

studies were designed and analyzed. My thanks also go to Beatrice Oshika;

iv

her comments in the early stage of writing my thesis helped focus and structure

my thoughts and the organization of the thesis. Many thanks to Leonard

Shapiro for serving on the Thesis Committee and for his insightful and probing

questions about the implications of the research reported in my thesis. My

deepest gratitude is extended to Leslie Hammer, whose careful contemplation

and thoughtful discussions of my studies, help with post-hoc measures, and

inordinate patience were all instrumental in my being able to complete this

thesis. Finally, I would like to thank Heidi Bertholf, my mom, for all of the

support she has provided throughout my college education.

Thank you all. I couldn't have done it without you!

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. viii

LIST OF FIGURES .. x

CHAPTER

INTRODUCTION . 1

The Problem . 3

Requirements Analysis . 5
Program Design . 6
Program Coding . 7
Program Maintenance . 8
Modularity . 11
The Role of Program Documentation 16
Expert Programming Knowledge 19
Program Comprehension 22
Program Testing . 29

II LITERATE PROGRAMMING 34

The Lit System . 36

Differences Between Traditional Programs
and Literate Programs . 41
How Literate Programs Enhance Program
Comprehension . 42
How the Lit System Works 46

Ill EMPIRICAL STUDIES OF PROGRAM COMPREHENSION 54

Experimental Context . 54

vi

General Methodology . 55

Subject Selection . 55
Materials . 56
Procedure . 59
Establishing Time Constraints for the Studies 61
Measures . 61

Research Hypothesis . 64

IV EXPERIMENT ONE . 66

Subjects . 66

Materials . 67

Procedure . 67

Results 68

Analysis of Subject's Subjective Data 70

Discussion . 75

V EXPERIMENT TWO 79

Subjects . 79

Materials . 80

Procedure 80

Results 81

Analysis of Subject's Subjective Data 83

Discussion . 89

VI EXPERIMENT THREE . 92

Subjects . 92

Materials . 93

vii

Procedure . 93

Results 94

Analysis of Subject's Subjective Data 97

Discussion . 1 03

VII CONCLUSIONS . 1 07

General Principles for Assisting Program Comprehension 1 07

VIII DISCUSSION . 11 0

IX FUTURE DIRECTIONS . 115

REFERENCES . 117

APPENDICES

A EXPERIMENT CONSENT FORM . 122

B INTRODUCTION TO THE EXPERIMENT 125

C POST-EXPERIMENT QUESTIONNAIRE 127

D EXAMPLE LITERATE PROGRAM (FROM EXPERIMENT 1) ... 131

E EXAMPLE TRADITIONAL PROGRAM (FROM EXPERIMENT 1) 144

F EXPERIMENT 1 SPECIFICATIONS 149

G EXPERIMENT 3 SPECIFICATIONS 153

H EXPERIMENT 2 SPECIFICATIONS 156

EXAMPLE PROGRAM SOLUTION . 159

J EXAMPLE LITERATE PROGRAM DOCUMENT (FROM
EXPERIMENT ONE) . 161

K WHAT THE LIT SYSTEM DOES FOR THE USER 169

L SPECIFIC FORMATTING RULES USED BY LIT 181

LIST OF TABLES

TABLE PAGE

Group Performance Percentages for Experiment One 69

II Experiment One: Perceptions of Subjects Given Literate
Programs . 71

Ill Experiment One: Perceptions of Subjects Given Literate
Programs Who Found a Solution 72

IV Experiment One: Perceptions of Subjects Given Literate
Programs Who Did Not Find a Solution 73

V Experiment One: Perceptions of Subjects Given Standard
Programs . 7 4

VI Experiment One: Subjects' Evaluation of Experimental
Materials . 7 4

VII Group Performance Percentages for Experiment Two 82

VIII Experiment Two: Perceptions of Subjects Given Literate
Programs . 84

IX Experiment Two: Perceptions of Subjects Given Literate
Programs Who Found a Solution . 85

X Experiment Two: Perceptions of Subjects Given Literate
Programs Who Did Not Find a Solution 86

XI Experiment Two: Perceptions of Subjects Given Standard
Programs . 87

XII Experiment Two: Subjects' Evaluation of Experimental
Materials . 88

XIII Group Performance Percentages for Experiment Three 95

ix

XIV Experiment Three: Perceptions of Subjects Given Literate
Programs .. 97

XV Experiment Three: Perceptions of Subjects Given Literate
Programs Who Found a Solution . 98

XVI Experiment Three: Perceptions of Subjects Given Literate
Programs Who Did Not Find a Solution 99

XVII Experiment Three: Perceptions of Subjects Given Standard
Programs . 1 01

XVIII Experiment Three: Subjects' Evaluation of Experimental
Materials . 1 02

LIST OF FIGURES

FIGURE PAGE

1. Traditional Program Fragment (Written by a Professional
Software Programmer) . 45

2. Traditional Program Fragment 46

3. Literate Program Fragment 47

4. How the Lit System Works 48

5. The Lit System Interface: The Main Menu 52

6. Invoking Lit . 172

7. The Edit Option . 173

8. The Compile Option . 17 4

9. The Format Option . 175

1 0. The View Option . 176

11 . The Print Option . 177

12. The Debug Option . 178

13. The Run Option . 178

14. The Goto Option . 179

15. The Exit Option . 180

CHAPTER I

INTRODUCTION

This study compares comprehension of literate programs with that of

traditional modular programs. Uterate programming {Knuth, 1984} enhances a

computer program by incorporating program text into a comprehensive design

document.

Virtually no research into the efficacy of literate programming as an

alternative programming paradigm has been done since Knuth introduced the

WEB system in 1984. In this respect, the present study is completely new

work. The present goal of this researcher is to identify the elements of the

software engineering process which substantially enhance the comprehensibility

of computer programs. It is hypothesized that by enhancing program

comprehensibility, there are resultant gains in the productivity of computer

programmers, and most importantly, resultant gains in the maintainability of

computer programs.

The approach the researcher has taken with respect to enhancing the

comprehension of computer programs is to emphasize the use of elements in

the design and maintenance processes which have been shown to assist the

programmer with program comprehension. One idea that has been overlooked

for many years is Knuth's literate programming. Knuth's concept has great

2

intuitive appeal, fits in well with a multi-disciplinary approach to automating

portions of the software engineering process, and can be adapted easily to the

incorporation of empirically derived principles of program comprehension. It is

interesting that no conclusive comprehension studies have been done in the

area of literate programming since Knuth introduced it over 8 years ago.

Ultimately, the research focus is a multi-disciplinary approach to software

engineering that utilizes basic and applied research in psychology, software

engineering, and empirical studies of computer programmers to provide a

unified system for Computer Assisted Software Engineering (CASE). The

desired result of the research is to develop a tool-integration framework and an

integrated set of program development and maintenance tools that are

platform, operating system, programming language, and text formatter

independent. The difference between this approach to CASE and the

traditional approach to CASE is the emphasis on using principles that have

been shown (empirically) to assist in program design, coding, testing,

debugging, implementation, and maintenance. This study is the first in a series

of studies that are designed to address each of these areas. In a larger sense,

it is the objective of this study to contribute, through empirical investigation, to

the understanding of one issue (enhancing program comprehension) that

affects programmer productivity. It is my hope that this study can be used to

help provide a basis for doing further work in the areas of software engineering

that are critical to programmer productivity. It is also my hope that the results

of these studies will encourage others to take a first or second look at the

benefits offered by the literate programming paradigm.

3

Outlined below is an introduction to some of the problems of software

engineering, computer programming in general, and a description of a system

called Lit, based on empirical principles, designed to address these problems.

The Lit system was used to create the programs that are the subject of this

study. Three experiments that evaluate the efficacy of the literate programming

paradigm, as it relates to program comprehension, are presented in detail and

discussed. Comprehension is evaluated using several measures: traditional

measures; modified GLOZE tests (Entin, 1984; Taylor, 1953), and constructive

measures that are more indicative of the actual comprehension required of a

programmer to modify a computer program. Subjective measures gathered

from a post-test questionnaire are also reported and analyzed. Finally, the

implications of the three experiments are discussed, and future directions for

related research are proposed.

THE PROBLEM

Software engineering is an extremely complex task. The basic

components of software engineering are analysis, design, coding, testing,

documentation, and maintenance. The phases of design, coding, testing,

maintenance, and documentation, take up the largest percentage of the time

spent in the process. Each of these phases is very complex and time

4

consuming, and requires great attention to detail. In the design phase, the

designer must be able to create an abstract design, often with minimal attention

to the computer language or languages that will be used to implement the task.

At the same time, pragmatic concerns dictate that the design cannot be too

difficult to implement given the constraints of the hardware and software that

are available. Thus, to a certain degree, the designer must take into account

the language, or at least the type of language that will be used to implement

the software. Similarly, the coding phase requires that the programmer(s) be

able to understand both the computer -related concepts and the task

domain-related concepts in order to form a global model of program design

which will be used to implement a programmatic solution. Testing requires that

the problem be specified in such a way that the program can be evaluated for

correctness. Testing is especially frustrating because no matter how well a

program is tested, it is generally impossible to prove the correctness of a

complex program. No matter how much testing is done, the most that can be

hoped for is confidence in the software; in general, testing does not prove

correctness but it does give anecdotal evidence of fitness for a particular

purpose. Testing (by the programmer) does give the programmer an indication

of how well the implemented solution meets the requirements of the software

specification, and assists the programmer in solving algorithmic problems. The

documentation, although time consuming to produce, maintain, and read, is the

only link a new maintenance programmer has with the original design. Without

proper and thorough documentation, the design must be inferred from the

source code and any other documents about the software (which may be

outdated or unavailable).

There is very little assistance available for the processes of analysis,

design, programming, testing, and maintenance of computer software. It is

hypothesized that the entire process can be significantly aided if each of these

processes can be assisted mechanically, and all the information required to

specify, code, and test computer software is included in the program

document, . The idea is to aid the programmer by methodically researching

the processes that underlie the complex task of programming, and to design

tools that enable such processes to occur efficiently, effectively, and

economically. To understand how this can be done, a deeper look at some of

the processes involved in software engineering is warranted.

Requirements Analysis

The requirements analysis is an intensive process. There are two

5

phases of the requirements analysis: user requirements analysis and resource

requirements analysis. User requirements analysis is the portion of the software

engineering cycle where the user driven software specification is designed. The

resource requirements analysis is performed by the software engineers based

on the user requirements analysis. Basically, the resources that are available to

implement a software application must be determined including people, time,

machinery, software, computers, and funding. Project standards and

conventions must be identified and/or developed. A development schedule

must be implemented, including a software development plan and a quality

assurance plan. A configuration management plan must be put in place to

assure administrative control of the design and implementation process. A

requirements document must be drafted, and a functional specification for the

software must be developed. Data flow, data structures, and allocation of

functions in the functional specification to processes in the software is the final

step in the analysis process.

6

Generally, none of this documentation is included in the source code of a

computer program or system of programs. These documents tend to be

external documentation. Often, as a program evolves, these documents no

longer reflect the actual state of the program. The information is out-of-date,

and often multiple addenda or errata, in yet another external document,

describe the actual state of the software.

Program Design

Another process involved in computer programming is program design,

which begins where the functional description leaves off. There is a small

overlap in the analysis and design phases of development, where the data flow,

data structures, and allocation of functions to processes in the software need to

take into consideration certain pragmatic concerns such as the programming

language to be used, the hardware constraints, and algorithmic complexity

constraints. Eventually, a detailed design of the program is developed, usually

in conjunction with a plan for testing the completed programs. There are often

many hierarchical designs, data-flow and control-flow diagrams, data-structure

diagrams and functionality pseudo-code that are created during this phase of

development. None of this information tends to reside in the program source

code; it is usually part of documentation external to the program. Often, this

information is also out-of-date with an evolving program; the information is

up-to-date for the initial implementation but gets out-of-date as the

programmer(s) spend more and more time in the maintenance cycle

performing adaptive and perfective maintenance.

Program Coding

7

The process of program coding is not too difficult if the programmer is

also the analyst and designer. With large software systems, this is usually not

the case; often programmers who were not involved in the software design

perform the coding. In the best case, there are few flaws in design

methodology, and coding fairly accurately reflects the intended design. In the

average case, there are many changes to design methodology, data-structures,

data-flow, and even control-flow. Many of these changes are made by the

programmer, and do not appear in the design document, although they may

appear in an erratum or addendum to the document. As problems are

encountered, they are solved systematically, but very little of the knowledge

used to solve the problems (underlying structures, assumptions, reasons that a

particular coding was chosen from a set of acceptable alternatives, etc.) is

included in the program document. Usually the only reliable description of the

program's functionality and method of implementation is the program source

code; other design documents are incomplete, out-of-date, or simply do not

contain the correct information.

Program Maintenance

After an application has been implemented, the largest portion of the

software engineering cycle is program maintenance (e.g., fixing errors, adding

functionality, optimizing, etc.). It is estimated that between 40 to 75 percent of

the development cycle is devoted to performing maintenance tasks (Zehr,

8

1992). Larger and more complex software application programs take more time

than smaller, less complex software applications. Although pinning down the

exact percentage of time spent performing program maintenance is difficult,

most experts agree that the largest portion of the development process is, in

fact, maintenance, and that the percentage of time spent doing maintenance is

very high. Traditionally, maintenance is broken down into three types:

corrective, perfective, and adaptive (Bendifallah & Scacchi, 1987).

Unfortunately, it is not well understood how programmers' comprehension

strategies adapt to the changes in maintenance requirements, or how much of

each type of maintenance is performed in the software development cycle.

What is known, however, is that many strategies and techniques are used in all

three types of maintenance activities and that program comprehension is one of

the most time consuming portions of the maintenance task. In fact, the major

9

difficulty cited by maintenance programmers is understanding the intent and

style of another programmer's source code (Fjeldstad & Hamlen, 1983). It is

estimated that maintenance programmers spend between 47 and 62 percent of

their time trying to comprehend code (Parikh & Zvegintzov, 1983). A simple

calculation shows the range of time spent by maintenance programmers

attempting to comprehend program code is somewhere between 19 and 47

percent of the software development cycle. Obviously, if this time could be

significantly reduced, the cost of the development cycle would be reduced as

well.

Most large software engineering projects suggest that a program

maintenance manual be developed (Softky, 1983). The problem is that the

document is rarely produced or, if it is produced, it is inadequate for solving

many of the maintenance problems that arise. Often this is due to maintenance

changes in the software over time that do not get added to the documentation

in the program maintenance manual. The program maintenance manual is

usually not revised after product delivery; as the product evolves, the manual

tends to get out of date with the software, and eventually is near useless in

assisting the maintenance programmer with the finding and fixing of software

bugs. This tends to make the maintenance programmer disregard the manual

altogether. If the program maintenance manual were included as a part of the

program source code, it would be easier to keep the manual up to date, easier

10

to use the manual, and would be more likely to be trusted as an aid in problem

diagnosis and repair.

In many instances, the only reliable description of a program is the

source code itself. Thus much of the effort devoted to making programs more

understandable has been in the area of typographic style changes to program

source code. Until recently, empirical studies on the contribution of

typographic style to program understandability have been inconclusive (Love,

1977; Miara, Musselman, Navarro, & Shneiderman, 1983; Shneiderman &

McKay, 1980). The disagreements about the importance of typographic style

prompted Sheil (1981) to note that the existence of both negative and positive

results suggested searching for a set of principles indicative of how and when

formatting techniques could be used to improve program comprehension.

Several researchers have recently explored effects of style in program

formatting. Baecker (1988) developed a framework for .. program visualization",

based on a set of principles drawn from graphics design, for use with high

resolution bitmapped displays. Oman and Cook (1990) identified several

principles of typographic style that are consistent and compatible with the

results of program comprehension studies; they show how a book-style

program format significantly aids program comprehension and reduces

software maintenance effort.

11

Modularity

Another important consideration in the design and implementation of

computer programs is modularity. Over the past 15 years many changes have

taken place in how computer programming is taught. The computer has

become more powerful: address space is larger, the number of instructions that

can be executed per second has increased greatly, and direct-access mass

storage use has increased as the price per unit of storage for such devices

have dropped. Thus, the emphasis on machine efficiency has shifted to human

efficiency. Cryptic, efficient, 'spaghetti code' is no longer the norm; it has been

replaced by modular programs with some (albeit small) attention to human

readability. Unstructured non-modular approaches to programming have been

replaced by modular highly-structured approaches.

as:

Gauthier and Ponto described the philosophy of modular programming

A well defined segmentation of the project effort ensures system
modularity. Each task forms a separate, distinct program module.
At implementation time each module and its inputs and outputs
are well-defined, there is no confusion in the intended interface
with other system modules. At checkout time the integrity of the
module is tested independently; there are few scheduling
problems in synchronizing the completion of several tasks before
checkout can begin. Finally, the system is maintained in modular
fashion; system errors and deficiencies can be traced to specific
system modules, thus limiting the scope of detailed error
searching. (Gauthier & Ponto, 1970; p. 180)

Many claims have been made for highly-structured techniques, including:

shortened program development time, ease of modification and maintenance,

12

lower incidence of 'bugs', ease of testing, and higher reliability. Most of these

claims are in dispute; many have not been evaluated empirically, or the results

of empirical investigation has been inconclusive. Most of the claims are

supported by substantial anecdotal evidence, case histories, and offer a

favorable intuitive appeal. It makes sense, psychologically, to theorize that

limiting the amount of information (cognitive load) the programmer must

consider simultaneously while developing or maintaining a program should yield

improvement in these areas. Because programmers use modularity to try to

limit the amount of information that must be considered simultaneously,

modularity should assist in obtaining these benefits. If all of the task domain

and implementation-specific details are provided explicitly in the program

document, this should increase the benefits obtained by the programmer.

Because inputs and outputs of each module are well defined, inclusion of the

input-output specifications in the program documentation can be used to help

the programmer debug program modules.

Theoretical support for the above ideas comes from complexity theory;

complexity theory says that the chance of survival for a complex system is

increased if the system is composed of a hierarchy of subsystems which are

loosely coupled, but only if each subsystem is internally cohesive. The simpler

the subsystems and the smaller the interactions between them, the easier it is

to understand the system as a whole, and the better its chances are for

longevity and reliability.

13

Application support for the above ideas is embodied in current high-level

languages, macro assemblers, and separate compilation tools. Languages that

allow modules to be developed independently of each other, and provide for

separate recompilation or reassembly of a module without recompilation or

reassembly of the whole system, are thought to be extremely valuable aids to

program developers and maintenance programmers.

Parnas (1972) suggested that modular program design would be most

effective when it was used to implement information hiding. The suggestion

was an intuitive suggestion, based on experience with computer programming,

and was not based on any empirical investigation into the effectiveness of

modular program design. Empirical support for the utility of using modular,

structured program design can be found in a study by Korson and Vaishnavi

(1986). They found that modular programs are faster to modify than

non-modular, but otherwise equivalent, versions of the same program. The

difference is detectable only when one of several conditions hold: (1) modularity

has been used to implement information hiding (as suggested by Parnas

(1972)); (2) existing modules in the program perform generic operations which

can be used to implement modifications; or (3) when a significant

understanding of the existing code is required to make a modification and the

modification to be made is substantial.

Abstraction Capabilities and Program Modularity. Abstraction is the

process of separating program components such that they can be considered

14

independently. Programmers tend to use abstraction as a tool to help focus

the development process of a computer program. It is the process by which

good, clean, program modularity is achieved. The programmer tends to define

an overall algorithm for solving a problem; a good algorithm has many

component parts which can be considered separately from the rest of the

system, as long as the interface with the other program components is well

understood. The interface usually takes the form of well-defined input and

output for the module that allows the internal operations and structure of the

module's local data to be treated separately from the rest of the program

modules' structure and data. If the amount of data passed through the

interface {interface width) is small and the interactions with other modules are

well defined, debugging, testing, and maintenance are thought to be

significantly improved.

Abstraction capabilities in a programming system also allow the

programmer to develop the program algorithms and associated documentation

in any order, free of the constraints of the underlying programming language.

This allows the programmer to program in a more natural order, considering

only the details the programmer wishes to concentrate on, and leaving other

details to be expanded and finalized later. Breaking the detailed expression of

the program up in such a way reduces the cognitive load on the programmer.

15

Take for example a programmer who wishes to write a simple language

compiler. The programmer might wish to begin with an algorithm that looks

something like:

Algorithm Compiler

Perform lexical analysis and report syntax errors.
Perform parsing and quadruple generation.
Perform code generation.
Perform optimization.

End Algorithm Compiler

The algorithm accurately describes the process, but not the details of the

different operations. Later, each of the operations can be expanded in detail.

Often such expansions will result in more abstractions, each of which the

programmer may wish to treat separately. The programmer is able to create

freely the basic structures and operations required to perform a task, without

worrying excessively about language and/or implementation-dependent details.

When the author is ready to expand a section, it is defined, the code is written,

and it is inserted into the program. Having an automated program design and

maintenance tool to assist with the abstraction process may assist the

programmer substantially. If the tool also enforces a presentation paradigm

and assists the programmer in documenting and testing the code, it could also

be an invaluable aid for debugging, testing and maintenance.

Abstraction capabilities are a large part of the newest programming

paradigm, object-oriented programming. Object-oriented programming allows

16

the programmer to abstract functionally independent operations and data

structures into what is known as an object. Data encapsulation, and a well-

defined interface between the objects (message passing), are thought to assist

in the design, testing, maintenance, and reusability of the objects. Unfortunately,

in practice, the object-oriented programming paradigm has not been as useful

as its proponents have suggested it should be. Empirical research in the area

of object-oriented programming (Kim, J. & Lerch, F., 1992; Rosson, M. B. &

Alpert, S. R., 1990; Rosson, M.B. & Gold, E., 1989) is only now beginning to

uncover the shortcomings and actual benefits of object-oriented programming.

What is known is that there are no programs that can be written in an object

oriented programming language that cannot be implemented as efficiently and

securely in a traditional high-level programming language. (Early versions of

CFRONT, a language translator for the object-oriented language C++,

produced standard, procedural, C code as output.) The Ut system used to

produce the programs that are the subject of this study can be used with

object-oriented programming languages (such as C++), but I have chosen to

concentrate on standard procedural languages because they are still the most

widely used of all languages.

The Role of Program Documentation

The purpose of program documentation is to explain to a human
reader the way in which a program works, so that it can be
successfully adapted after it goes into service, either to meet the
changing requirements of its users, to improve it in the light of
increased knowledge, or just to remove latent errors and

oversights. The view that documentation is something that is
added to a program after it has been commissioned seems to be
wrong in principle and counterproductive in practice. Instead,
documentation must be regarded as an integral part of the
process of design and coding. A good programming language
will encourage and assist the programmer to write clear self­
documenting code, and even perhaps develop and display a
pleasant style of writing. The readability of programs is
immeasurably more important than their writability. [Emphasis
added] (Hoare, 1973; p. 4)

Hoare (1973) accurately describes what documentation is, and how it

17

should be incorporated into program development. Unfortunately, there are no

programming languages (to date) that possess the qualities that promote the

use of good program documentation. Program documentation has traditionally

been a neglected portion of the design process. Hoare (1973) writes: "The

objective of readability by human beings has sometimes been denied in favor of

readability by a machine; and sometimes even been denied in favor of

abbreviation of writing, achieved by a wealth of default conventions and implicit

assumptions" (Hoare, 1973; p. 11). In practice, documentation for programs

may be inaccurate, out-of-date, or may not be present. One of the reasons for

this is that, in the past, many programmers subscribed to the idea that " ... it is

very unlikely that the output of a computer [language compiler] will ever be

more readable than its input, except in such trivial but important aspects as

improved indentation" (Hoare, 1973; p. 11). I believe that the output of a

language compiler, or programming system, can be measurably more readable

than its input.

18

Currently, there is a trend to provide improved program documentation

as an integral part of any complete programming methodology. Traditional

structured programming methodologies have de-emphasized the role of

program documentation, and emphasized the role of modular style

programming. The emphasis on modular programming rests on the idea that, if

modules are small enough, their meaning and usage can be easily gleaned by

reading the source code.

Traditional modular programming is readable by a compiler (by

definition) but is not required to be comprehensible to the human reader.

Traditional programs tend to be written in as compressed a form as possible,

often without embedded comments of any kind. Often, the emphasis is on

optimized program code, to the extent that the solution, as implemented,

requires in-depth knowledge of the language, the computer and/or operating

system characteristics, and the task domain of the application to even begin to

understand the solution that is present in the source code. In fact, some

languages lend themselves to cryptic expression so well that contests for the

most functional and cryptic programs are held annually (e.g. the annual

Obfuscated C contest). Although the power of expression is important in a

language, it should not become the cornerstone of a language that uses cryptic

syntax. Readability and understandability, the human components of computer

programming, should be emphasized and the use of the cryptic features of the

language should be de-emphasized, except where such usage can be

19

adequately documented; if a cryptic, difficult to understand, advanced concept

or bizarre language feature is used to implement a function in a design, it

should be documented extensively. This not only helps maintainers of the

program, but anyone wishing to port the program to another, possibly

incompatible, operating environment.

Expert Programming Knowledge

Soloway and Ehrlich (1984) showed that expert programmers use two

types of programming knowledge: 1) Programming plans which are generic

program fragments that represent stereotypic action sequences in

programming, and 2} rules of programming discourse that capture the

conventions in programming and govern the composition of the plans into

programs.

This finding is consistent with findings in other domains of experts' ability

to organize and structure knowledge. For example, Chase and Simon (1973),

building on the work of de Groot (1965), showed that Master chess players are

able to remember the board positions of chess pieces better than non-Masters

when the chess board is organized in some meaningful configuration. They also

showed that when the pieces were placed at random on the board in what

amounted to a non-meaningful configuration, the Masters had no statistically

significant advantage over the non-Masters in recalling board positions of chess

pieces. The authors attributed this result to the Masters' higher level of

knowledge about chess. Similar findings in the domain of electronic circuitry

20

(Egan & Schwartz, 1979) are also consistent with psychological theory; people

develop chunks that represent functional units in their respective domains.

These chunks are used to classify and decompose the new problems.

Apparently, experts have and use specific and elaborate plans that novices can

not use because they have not been developed fully. This is consistent with

the notion of schemas as generic knowledge structures that guide the

interpretation, expectations, and inferences that are made in the comprehension

process. Because it is thought that schemas are developed through

experience, it makes sense that novices would not have the same underlying

schemas as experts in most domains.

Shneiderman (1976), Adelson (1981), and McKeithen, Reitman, Rueter,

and Hirtle (1981) have replicated the Chase and Simon (1973) experiments in

the domain of computer programming. All of the experiments have shown that

expert programmers can remember programs better than novices when the

programs have some meaningful structure; but the experts do no better than

the novices when the programs are made up of random lines of code. Again,

the theory is that the expert programmers are better able to use their higher

level knowledge to encode the presented programs into meaningful chunks for

easier recall.

In this researcher's experience, expert programmers tend to be the

programmers who are assigned to new development and intermediate

programmers (e.g., Bachelor of Science in Computer Science) tend to be

21

assigned to maintenance tasks. Because the maintenance programmer usually

is not an expert, program comprehension assistance needs to be provided.

The maintenance programmer does not know the original design or why certain

decisions were made in the design, but it is his/her job to alter in some way the

program's functionality.

Novice and intermediate solutions are usually data-driven or goal-driven

strategies that yield problem decompositions which tend to elaborate to a

solution that is inferior to an expert solution for the same problem {Adelson, B.,

Littman, D., Ehrlich, K., Black, J. & Soloway, E. 1985; Ehrlich, K. & Soloway, E.,

1984;). It is important to minimize the effects of any factor or factors that

promote the usage of the inferior strategies. One can conjecture that to do so

would actually help assure that such practices do not become entrenched in a

programmer's design knowledge, leading to regular use of inferior problem

solving strategies by the maintenance programmer.

How can the expert pass on some of the implicit knowledge from the

original design to the maintenance programmer, such that the maintenance

programmer can see it from an 'expert' point of view? One possible answer is

to teach programmers structured program design, with most of the attention

being given to the development of abstraction skills {Ratcliffe & Siddiqi, 1985).

It is suggested here that the system used for program development,

debugging, and maintenance purposes, should support abstraction oriented

programming. If such systems were utilized in education and industry, it is

22

possible that expert programming knowledge could be transferred to novices

much more easily I and the resultant productivity increase would make up for

any of the up-front costs such as increased development time and additional

educational support. Soloway I Bonar I and Ehrlich (1983) suggest that insight in

this area could be drawn from looking at the cognitive load placed on the

programmer by syntax and semantic demands of programming languages.

further suggest that the cognitive load placed on the programmer by having to

hypothesize about the program's functionality in the absence of proper

documentation is a confounding problem. Programming is an extremely

demanding skill and the comprehension process is only complicated by not

removing as many cognitive hurdles as possible.

Program Comprehension

Obviously, when documentation is not viewed as critically important, the

comprehensibility of most resulting computer programs is not high. In fact,

there have been many experiments that attempt to analyze out how computer

programmers comprehend computer programs (Adelson, 1981 ; Basili & Mills,

1982; Brooks, 1983; Ehrlich & Soloway, 1984; Entin, 1984; Konneman &

Robertson, 1991; Littman, et.al., 1986; Pennington, 1987; Ratcliffe & Siddiqi,

1985; Soloway, et.al. 1983; Soloway & Ehrlich 1984). Program maintenance

tasks involving large and/or complex programs are not simple, even for an

expert. Many of the principles of cognitive psychology, human factors,

typography, and the results of empirical studies of programmers have been

23

successfully applied to several aspects of understanding computer programmer

comprehension strategies. Yet, computer programming remains a highly

difficult, and sometimes daunting process. Many researchers have suggested

the difficulty of programming is due mainly to the inherent problem solving

nature of the task, and to the complexity of the task. Programming styles and

methodologies, programming environments, and the programming languages

used also vary from programmer to programmer. In addition, the amount of

documentation for a program, both in-line and external, as well as the

completeness and style of the documentation, vary from program to program.

One method for improving program comprehension strategies is to

change the programming paradigm. Several alternative programming

paradigms have been suggested (Cunningham & Beck, 1987; Knuth, 1984;

Oman & Cook, 1990a). Unfortunately, the research evaluating most of these

suggestions has not been forthcoming. The few studies that deal specifically

with literate programming systems are: The Uterate Program Browser, (Beck &

Cunningham, 1987) and An Interactive Tool for Uterate Programming, (Brown &

Childs, 1989). The Brown and Childs study evaluated the efficacy of a literate

programming tool. Although a focus of the study was to determine if literate

programs were more comprehensible than traditional programs in a

maintenance task, the study did not directly address the components of literate

programming which can be emphasized to enhance program comprehension.

The Brown and Childs study was inconclusive with respect to determining the

24

comprehensibility of literate versus non-literate programs. The study did find

that the programming environment itself was highly preferred by the subjects in

the study. Efforts such as the WEB system (Knuth, 1984) (and many WEB

variants such as CWEB (Levy, 1987; Thimbleby, 1986) and 'the WEB system for

Modula-2' (Sewell, 1987)) have been attempts to change the programming

paradigm, although the efficacy of these alternate paradigms with regard to

program comprehension and enhanced programmer productivity has not been

evaluated empirically.

Recent studies by Oman and Cook (1990b) have suggested organizing

programs using the book paradigm. In addition. Oman and Cook {1990a)

reported on a study dealing with typographic style as an aid to program

comprehension. The suggested programming paradigms all differ, but in

general, the paradigms tend to agree that computer programmers, and

maintainers of these programs, need a method of formatting and documenting

programs that is consistent with programmer comprehension strategies and

maintenance activities. Most of the research in this area has also recognized the

importance that plans {Adelson, 1981; Soloway & Ehrlich, 1984), program

beacons (Brooks, 1983; Pennington. 1987; Wiedenbeck & Scholtz, 1989). and

chunks (Adelson. 1981) play in the process of reading and understanding

program source code.

There are several models of programmer comprehension strategies to

date. Probably the most well known are the models of Shneiderman and Mayer

25

(1979), Basili and Mills (1982), and Brooks (1983). Both the Shneiderman and

Mayer and the Basili and Mills models are similar in that they focus on

bottom-up processes and reject the idea that a program is understood on a

line by line basis. Both models are driven by the program text and they are

basically inductive.

A model of programmer comprehension strategies proposed by

Koenemann and Robertson (1991) suggests that program comprehension is

understood as a goal-oriented, hypothesis-driven problem-solving process.

Programmers follow a pragmatic as-needed strategy and restrict their

understanding to portions of a program that are judged relevant for

accomplishing a given task, with bottom-up comprehension used only for

directly relevant code and in cases of missing, insufficient, or failing hypotheses.

These comprehension strategies may have been developed because of the

difficulty of understanding a program due to the lack of crucial documentation.

Koenemann and Robertson suggest that both anticipatory and design history

documentation should be included in programs to facilitate program

comprehension by revealing portions of the original design process that cannot

be easily reconstructed from the code itself.

A study by Littman, Pinto, Letovsky, and Soloway (1986) found that both

as-needed and systematic strategies were used in program comprehension.

The systematic strategy identified was employed by programmers using

extensive symbolic execution of the data and control flow between subroutines

26

to gain detailed understanding prior to modifying any code to accomplish a

new task or modify an existing task. The as-needed strategy was first put forth

by Brooks (1893) in his model of .. Beacons .. that guide comprehension.

Brooks' (1983) theory of program comprehension assigns a large portion

of the task to top-down processes. Brooks' model is basically an iterative

process of hypothesizing, verification, and hypothesis modification, that relies

heavily on programmer expectations. The programmer begins by making an

overall hypothesis about the functionality of the program from the program's

name and/or a brief description of the program. The general model the

programmer has formed leads the experienced programmer to expect that

certain structures and operations will appear in the program based on the

programmer's knowledge of the task domain and of computer programming

concepts. These expectations form another more specific hypothesis about the

program's function and implementation.

The programmer attempts to verify these hypotheses by effecting a

search of the program text for the expected key features (beacons) which are

indicative of certain operations or structures. An example of a beacon is the

'swap' where two values are swapped, which is commonly found in several

sorts. A beacon is associated with a task with a high probability, and if it is

found, this strengthens the current hypothesis of the program's function.

Otherwise, if the beacon is not found, this tells the programmer that the code

must be looked at more carefully, possibly using other techniques and

27

knowledge of alternate algorithms. If this deeper search still fails to confirm the

presence of the expected structures and/or operations, the programmer revises

or rejects the current hypothesis and begins the process again.

Related research by Pennington (1987), Wiedenbeck (1986), and

Wiedenbeck and Scholtz (1989) in the area of program beacons has led to the

hypothesis that there are key features in a program which play an important

role in understanding. Each line of a program does not have equal importance;

experienced programmers make use of well known patterns to help in

understanding the program. Obviously, non-expert programmers do not have

the rich set of expectations that expert programmers do; thus, the theory of

Shneiderman and Mayer (1979) may be more accurate with respect to

non-expert programmers, as it does not rely on programmer expectations.

A model of text comprehension by van Dijk and Kintsch (1983) suggests

that a reader makes two distinct representations of the text; a textbase and a

situation model. The textbase includes a hierarchy of representations made up

of a surface memory of the text, a microstructure of the interrelationships

among the text prepositions, and a macrostructure that organizes the text

representation. The situation model is a mental model of what the text is about

referentially (i.e., the task domain). The model has been extended into the

domain of program comprehension by Pennington (1987). The textbase is a

mental representation that focuses on the procedural program relations in

terms of the programming language. The situation model is a mental

28

representation based on the functional relations between the program objects

that is expressed in terms of the language of the domain objects. The textbase

is referred to as the program model, and the situation model is referred to as

the domain model. The textbase (program model) and the situation model

(domain model) must be cross referenced in some meaningful way that relates

the program parts to the domain functions. Pennington (1987) suggests that

the program model is constructed prior to the domain model, and that the

construction of the domain model, especially one connected to the program

model, is essential to good program comprehension.

A study by Oman and Cook (1990b) identified that typographical style in

programs is an aid to programmer comprehension. Several macro-typographic

and micro-typographic principles which made the components and organization

of the program more comprehensible were identified, including: identify the use

and purpose of program components; make the execution control and

information flow apparent; make the program readable and easy to browse

using a variety of access paths into the code (e.g., bottom-up, top-down,

browsing, and focused); make the sections and organization of the modules

obvious; identify the use and purpose of each section; and use spatial cues to

indicate statement groupings and separation.

Additionally, research has shown that it is easier to remember a picture

than it is to remember textual information (Anderson, 1980). In a related finding

by Santa (1977) it was reported that objects such as geometric figures tend to

29

be stored and remembered according to the spatial position in which they were

presented, while words tend to be stored linearly. This suggests that

'stereotypical problem solutions' might be better remembered if presented

graphically and backed up with textual information.

Traditional structured programs do not have the ability to present

graphical information, and thus may be lacking in this crucial area of

comprehension. Cuniff and Taylor (1987) reported that for short program

segments, graphical representation of programs improves novices'

comprehension by two specific measures: time and accuracy. Thus a

comprehensive programming system should allow for a variety of graphical

representations to be imbedded in the text of the program document, including

graphs, diagrams, charts, equations, and pictures. A comprehensive

programming methodology should dramatically enhance the textbase by

logically sectioning it, consistently formatting it, and could assist in linking the

textbase with the situation model through thorough documentation. Graphical

representations are not required, although it is hypothesized that they would

further enhance programmer comprehension.

Program Testing

In addition to comprehending program source code, maintenance

programmers and designers need to test programs as they are implemented

and modified. There are several schools of thought relating to software testing.

Although not the focus of this paper, one method for testing is discussed, as it

30

relates to a complete programming methodology such as that proposed for the

Lit system.

Software testing is another one of the time consuming tasks in the

software development cycle. Good tests are difficult to develop and time

consuming to verify. For example, assume there is a module, call it M, that

computes a function, F, with domain D. The correctness of M can be

determined by testing M with each element of D. But, in most cases, Dis

infinite; thus the approach is effectively infeasible. The approach of the tester is

to find some setS, such that Sis contained in D. The assumption is that if M

produces correct results for all elements in S it will do so for all elements in D

also. Although this assumption may not be true (and in most cases is not true),

it gives the programmer confidence in the design and the programmatic

implementation of the design. The idea then is to find a test set S such that our

confidence in the module is increased if it passes all of the tests specified in S,

even if these tests fail to certify the module as correct.

Testing program modifications requires very good comprehension of the

program; appropriate tests must be designed to exercise the areas of

modification, as well as exercising areas that have not been changed, to insure

that the program modification has not introduced an error in an area of the

program that used to work correctly. Small changes can affect the entire

program, especially with programs that are not modular, or when the modularity

is not based on functional independence and data encapsulation.

31

Many researchers have suggested methods to automate portions of the

software testing process. Hamlet (1977) described a system that assisted in

program testing with the aid of a compiler modified to allow additions of

input-output specifications to the program. The system added a notation to the

syntax of the language that allowed the programmer to specify input-output

pairs in the program code, independent of program details. The notation is

easy to use and was suggested as a method of assisting in the development of

programs that are resistant to the introduction of errors in the maintenance

process. Hamlet also suggested the following as desirable goals of any

scheme which would be used to assist in the derivation of input-output

specifications to be used in a system for program testing: 1) the specification

should be independent of program details; 2) the specifications should be

substantially easier to produce and use than the programming language; and

3) human effort at verifying the specifications should be minimal and should be

automated such that computer time is not prohibitive to perform the checks. If

the specification system does not take into account all three goals, it is

surmised that the specifications: 1) may end up describing the code and can

not be used as an independent certification of the code, 2) may not be used if

they increase the cognitive load on the programmer, and 3) may not be easily

used to verify later modifications to the program. If the specification system

does take all three goals into account, it could be useful not only in testing

programs, but in debugging and maintaining them.

32

Rapps and Weyuker (1985) defined a family of program test data

selection criteria derived from data flow analysis techniques. The proposed

criteria associates each point at which a variable is defined, each point at which

the variable is used. Furthermore, the number of paths selected for testing is

always finite, and is chosen in an intelligent and systematic fashion in order to

assist in finding program errors. The fulfillment of the selection criteria can be

automated; given a program, a test set, and selection criteria, it can be

determined programmatically whether or not the paths that would be traversed

by the test set satisfy the criteria.

If the method outlined by Hamlet is combined with the method outlined

by Rapps and Weyuker, an extremely powerful software testing tool that may

assist in program debugging and maintenance could be the result. The idea is

that a finite collection of tests based on such criteria, automated within the

programming system, may be very useful in testing and debugging, even

though it fails to certify the program as correct. As is noted by Hamlet (1977)

this idea is supported from two divergent directions: (1) Maintenance

programmers tend to test modifications to a program by trying to find data that

will invoke the portions of code that have been changed and test it for

correctness, while other portions of test data are used to verify that unchanged

sections of code continue to work correctly, and (2) computability theory says

that, because a program is finite, a finite number of tests will invoke each

portion of the program that can be invoked; the problem is finding a finite test

33

set which does in fact exercise the program in the specified way. Using criteria

such as that suggested by Rapps and Weyuker helps us to find such a set,

and automating the testing process should assist the programmer in testing the

suitability of the program for the designated purpose. Whether incorporating

this scheme into a programming paradigm would assist in program

comprehension is unknown. However, it may still assist in debugging and

maintenance, even if it cannot be shown to assist in program comprehension.

CHAPTER II

LITERATE PROGRAMMING

Donald Knuth (1984) proposed a programming methodology that called

for significantly improved documentation of programs. What he proposed was

that computer programs should be viewed as .. works of literature .. ; that

computer programs should be written with .. human consumption .. in mind

instead of .. computer consumption .. in mind. Knuth coined the phrase .. Literate

Programming .. to describe this methodology.

Simply put, Literate Programming provides significantly better

documentation of programs (as compared to traditional modular programs) by

embedding the code of the program into the text of a technical design

document. Instead of having separate documentation, design specifications,

maintenance guides, and the coded program including embedded comments,

we could write a single document which contains all of the information

necessary to write the program and the program itself. This document would

include an introduction to the problem, possibly some background material, the

developed algorithm in pseudo code, and the program modules, main

program, and subprograms with comments about future modifications. The

advantage of such a program development method should be obvious; all of

the information about the program is included in one document.

35

Basically, Knuth believed that literate programmers could be regarded as

essayists, whose main concern should be exposition and excellence of style.

As such, computer programmers would carefully choose variable names, and

would write the program in a manner that was comprehensible to the reader.

The concepts would be introduced in an order and manner that is best suited

for human understanding, using a mixture of formal and informal methods that

are natural reinforcements of each other.

Knuth prototyped and released a programming system called WEB, for

the Pascal language (1984). WEB relies on a tool called TeX to perform

formatting of the source code into sections and subsections. WEB supports

forward referencing macros, and forces a presentation style of the output

document on the user that is consistent from program to program. WEB also

automatically generates a table of contents, and can be coerced into providing

an index as well.

Although Knuth's (1984) WEB system was a wonderful advancement, it

was difficult for the novice user (who did not understand the TeX text

processing language) to use. It also worked only with the programming

language Pascal, and was not designed to present the program based on any

empirically derived principles for fostering program comprehension. The

difficulty of using WEB, the lack of empirically derived design principles, and the

limited manner in which it addressed the full spectrum of problems associated

with computer programming were the major motivations for designing and

36

implementing the Ut system. It was hypothesized that a comprehensive

programming tool that addressed each problem related to programming could

substantially assist computer programmers and maintainers of computer

programs.

THE LIT SYSTEM

This section describes the development of Lit, a system designed to

support the design, coding, testing, debugging, documentation and

maintenance of literate computer programs. The hypothesis underlying Lit was

that an altered programming paradigm, rich in textual and task domain

information, could be an effective aid in improving program comprehension.

The first implementation of Ut was written in FORTRAN as an undergraduate

programming project by this researcher in 1987. The system was a simple and

basic implementation inspired by Knuth's (1984) WEB system. The

presentation paradigm was similar to the format of a technical paper, had very

few features, and was not very extensible. The implementation was extended to

cover the C programming language in 1988. To make the system a more

generalized tool, it was redesigned to be language independent, and

reimplemented in the C programming language. In late 1989, the current Lit

system was implemented as a language-independent abstraction-oriented

system for literate programming.

The 1989 implementation of Ut was designed to be independent of

programming language and text formatter, and a menu driven interface was

37

added to simplify its use. The system was designed to be used by novice,

intermediate, and advanced programmers, and did not require them to have an

underlying knowledge of the text formatting system in use (unlike Knuth's

(1984) WEB system and most WEB variants). A book style presentation

paradigm was adopted, and additional customizable features were added to

the system. As the system became used more often by students of the

Computer Science Department at Portland State University, the suggestions of

users were incorporated to make the interface more intuitive and simpler to use.

Over time, the system evolved to its current state, and has been modified to

use principles that have been identified or put forth as aids in computer

program comprehension (Fjeldstad & Hamlen, 1983; Kernighan & Plaugher,

1978; Ledgard & Tauer, 1987; Miara et.al., 1983; Oman and Cook, 1990). With

the help of a colleague (Andrew J. McKnight), a version for use with

WordPerfect 5.1 was designed and implemented in 1991. The Lit system has

been used to teach an introductory computer programming course and has

been used in several undergraduate programming classes at Portland State

University.

The goal of the Lit system is to give program designers and maintenance

programmers a development and maintenance environment with the following

characteristics (italicized features have not been fully implemented yet).

1) an easily recognized information transfer paradigm that:

38

a) provides explicit high level organizational clues about the

program source code

b) provides low level organizational chunks

c) provides multiple access paths to the source code using

the table of contents and index

d) table of contents for chapters, sections, and subsections

e) variable cross referencing

f) module cross referencing

g) abstraction cross referencing

h) provides formatting and organization that is consistent with

programmer comprehension strategies and textual

comprehension studies

i) can have embedded graphical information in the text of the

program document

j) provides task domain information which is explicitly linked

with the programming constructs used to implement the

functions from the task domain

k) encourages the inclusion of anticipatory documentation

I) encourages the inclusion of design history documentation

2) provides revision control information and capabilities

3) provides abstraction capabilities that allow programming in in an

order independent of that required by the language in use

39

4) programming language independence

5) text formatter independence

6) provides automated testing

a) module testing (local testing)

b) program testing (global testing)

7) provides automated debugging facilities

8) provides reverse engineering capabilities for non-literate programs

that assists in conversion to a literate-style program

9) provides data-flow diagrams

1 0) provides control-flow diagrams

11) provides a flexible, easy-to-use code and documentation browser

12) provides an integrated system through a simple, consistent, and

customizable user interface

The Ut system defines a simple .. language .. or .. command set .. that allows

the programmer to write very modularized programs, and then produces two

documents from the original document: One for human consumption, and one

for computer consumption.

In the Ut system, programs are divided into chapters, sections, and

subsections. Each of these sections may contain abstraction definitions or

references and/or embedded source code. What results is a single document

containing all of the information necessary to understand and specify a

computer program, to both the computer and the human reader.

40

One difference between the type of document Lit produces for computer

consumption and the type of document WEB produces for computer

consumption is the readability of the document. Because it might be desirable

(although it should not be necessary) to view the document produced for

.. computer consumption .. (e.g., a compiler), Lit produces a document for

computer consumption that is not only easily readable, but also has a

one-to-one correspondence with the lines of embedded source code in the

original document file. This is not a consideration of WEB, which produces files

for computer consumption that are in as compressed a form as is possible,

with some simple markers that point the user back to the general area of the

original file from which a statement was generated. This is an important

consideration when a program is under development, since most compilers

generate error messages based on the line number of the offending code in the

source code file.

Another major difference between Lit and WEB is that WEB was

designed to support a single language (Pascal) and a single text formatter

(TeX). Lit, on the other hand, is language independent and text formatter

independent. Currently, Lit supports 22 languages including C, FORTRAN,

Pascal, and COBOL Lit is also designed to support multiple text formatters,

although the current UNIX implementation has only the support routines for

nroff and troff. Future plans call for the support of at least TeX, LaTeX,

41

WordPerfect (a version of which has been prototyped by the researcher and a

colleague at Portland State University), and Waterloo Script.

Differences Between Traditional Programs and Literate Programs

Literate programming is by definition 'very readable'. It incorporates the

design, limitations, future modification possibilities, and the code of the current

implementation in one document. With a little practice, a literate program can

be made to read like a book instead of a program. As for maintainability, the

literate program not only contains the current implementation but also contains

ideas for future modifications, the history of the problem, the algorithm currently

in use, and the motivations of the author of the implementation. In the best

case a description of the known bugs and/or limitations of the algorithm are

also included. Each of these pieces of documentation are invaluable

debugging and maintenance aids which are not usually found in traditional

programs.

It is often very difficult to maintain traditional structured programs,

especially when the program is large and not well documented. Often just

figuring out the intent of the original author and the algorithms used to express

that intent can take several hours or days. Variable names may be meaningless

to a maintenance programmer without a documentation reference on how the

variable is used. As the program increases in complexity and size, variable

names and documentation become more important. Lacking documentation as

most programs do, programmers may use other comprehension clues to assist

42

in determining the program's methodology for solving a particular problem. If

an adaptive maintenance task is required, the programmer must understand

the methodology well enough to modify it. This is obviously not a simple

requirement if the methodology is very complex.

How Literate Programs Enhance Program Comprehension

Using the models of program comprehension reviewed earlier, a

description of how literate programs might actually enhance the comprehension

process, and thus improve program modifiability, is outlined below.

In a literate program, the purpose of the program is explicitly stated in

the introductory section. Furthermore, so is the history of the problem and the

motivations for writing a program to solve the problem. Sections of critical

code are documented with anticipatory documentation. often including stubs

that are null in anticipation of a future modification. The algorithms in use are

documented explicitly in pseudo-code. The program is sectioned like a book,

with meaningful chapter headings, section headings, and subsection headings

that define the logical organization of the program. Spatial cues, point size

changes, and highlighting are used to further aid in program comprehension.

Explicit documentation of execution control and information flow are contained

in the document, as well as a table of contents for the program.

The initial hypothesis stage (determine program function from program

name and/or brief description of the program) should be greatly enhanced by

literate programming methodology. The programmer does not have to

43

hypothesize about the functioning of the program, it is spelled out. Because

perfective, corrective, and adaptive maintenance changes are anticipated and

documented, it facilitates searching the program for the most appropriate place

to make the required modifications. Each logical division of the program has a

separate chapter, section, or subsection used to separate different program

components and to group related program components. Each of these

divisions has a title indicative of its function and content; thus the understanding

of portions of the working hypothesis that are related to the program

subcomponents may also be facilitated by the literate program.

The introductory section serves a purpose not apparent at first: for the

programmer who is unfamiliar with the task domain it may offer some insight

into the task being performed and how it is performed. This would be a definite

advantage over a non-literate program because the programmer can become

somewhat familiar with the task-related concepts and the computer-related

concepts that apply to the problem. This may help the programmer not only in

comprehending the problem but also in remembering specifics about the

implemented solution.

Additionally, structures and operations that can be used to confirm the

working hypothesis about program functionality are directly documented and

immediately available. The hypothesis testing process may be positively altered

in a dramatic way; if the programmer decides to verify the working hypothesis,

44

the search for the expected structures and operations should be made simpler

by the sectioning of the literate program.

In terms of the model of text comprehension put forth by van Dijk and

Kintsch (1983), a literate program offers the programmer unfamiliar with the task

domain a method of becoming informed about the task domain so that a

domain model can be constructed and linked with the program model, forming

a global model of program design. In terms of mental schemas, the literate

program also provides a way for the programmer to chunk the information

related to a particular portion of the task domain into a simple concept (e.g.,

the section name of the portion of the literate program that does the task).

Finally, even if the programmer does not read the documentation, the

literate program might still be more comprehensible. The indentation would

follow a rule, the keywords could be highlighted, and the program would be

logically sectioned, which would enrich the textbase and should make beacons

much more visible than in a traditional modular program.

In summary, a combination of the elements identified in the studies

previously described was used to refine the design of the Lit system. A well

written literate program should assist the maintenance programmer in

developing both the program model and the domain model; the textbase is

significantly enhanced with textual cues that help the programmer chunk the

code, identify beacons, and develop a mental plan. Information about the task

domain and how to relate the task domain to the program model are spelled

45

out in the program documentation, which should assist the programmer in

developing a global model of the program.

The best way to describe the differences between a traditional program

and a literate program is by example. Figures 1 , 2, and 3, are examples of

program fragments that all perform the same task. Figure 1 is an actual code

fragment written by a professional C programmer working on a UNIX platform.

Figure 1. Traditional program fragment (written by a professional
software programmer).

Figure 2 is the routine as it would be re-written for use in a traditional

modular implementation for this study. Figure 3 was re-written as a routine for

a literate program from a functional description for the program from which

Figure 1 was taken.

Figure 1 is actual code, taken from a non-proprietary piece of software,

written by a professional C programmer. Notice the complete lack of

documentation and the compressed cryptic syntax of the program module as

compared to Figure 2.

No .. expert-style .. code was used in the experiments so there would be

no differences in the program source code of the literate programs and the

46

Figure 2. Traditional program fragment.

traditional programs. Clarity of expression required rewriting the code for the

literate program, and thus the traditional program as well; this is done to

eliminate any contaminating effect from source code incompatibilities that might

enhance or hinder comprehension.

Examine the completeness of the documentation in Figure 3, the literate

program fragment; all of the information required to understand the fragment

are documented, including where to look for further information that is not

contained in the literate program.

How the Lit System Works

The Ut system is made up of a user interface and several application

programs that do most of the underlying work. The basis of the system is a

preprocessor that separates a literate programming file into its component

parts: a source code file for computer consumption, and a formattable text file

47

Figure 3. Uterate program fragment.

48

for human consumption (see Figure 4). The Ut system allows most compilers

to generate error messages that have a one-to-one correspondence with the

literate programming file. When forward referencing macros are allowed, the

error messages generated by the compiler (with the exception of the C

compiler) usually cannot be made to have a one-to-one correspondence with

the literate programming file. For this reason, beginning programmers are

discouraged from using forward referencing abstractions, unless the C

programming language is being used.

~r---1\~
~'---,1~
!J

Utdocummnc/8

~
@c::;§

Figure 4. How the Ut system works

From the input document, the Ut system produces two output files:

project-name.src (compilable source code file)

project-name.doc (formattable document file)

where the ".src" suffix is either ".src .. or the filename suffix required by the

compiler for the language selected.

49

The Ut system currently has provisions for handling the following

languages:

BAL, bash, BASIC, C, C++, COBOL, csh, Dbase, efl, FORTRAN,

HyperTalk, ksh, LISP, MASM, MODULA-2, MUMPS, Paradox, Pascal,

PostScript, ratfor, ReXX, SAS, sh, and SmaiiTalk.

and the following text formatters (or word processors):

troff, TeX, Waterloo Script, and WordPerfect

All commands must be preceded by the literate escape character to be

interpreted as Lit language elements. For example, the command to start a

chapter is { Chapter name } but the characters would not be interpreted as a

chapter command unless they were preceded by the literate escape character,

(i.e., @{ Chapter name}).

The Lit system understands the following commands:

{ Chapter name }
[Section name]

- Start a chapter
- Start a section

[[Subsection name]]
< abstraction > =

- Start a subsection
- Define an abstraction

< abstraction > - Reference an abstraction
(- Start a code section

Code section: source code goes here
) - End a code section

The Lit system also accepts some special formatting commands:

A name
B name
D description
F string
H string
I
P name

- Author's name
- Author's institution
- One line terse description of program
- Page footer
- Page header
- Introduction
- Program name

R string
T
u
$string

50

- Revision number
- Date and time
- User defined
-Comment

The default commands shown above can add to the cognitive load of the

programmer, as they introduce yet another notation that must be remembered.

The following alternate selection of English-like commands is also understood

by the Lit system:

chapter: chapter name. -Start a chapter
section: section name. -Start a section
subsection: subsection name. -Start a subsection
abstraction: name. -Define an abstraction
codebegin: - Code section begin

Code section: source code goes here
codeend: -Code section end

and the equivalent special formatting commands:

author: name
business: name
description: ...
footer: string
header: string
intra:
program: name
revision: string
date:
comment: string
$:

- Authors name
- Authors institution
-One line description of program
- Page footer
- Page header
- Introduction
-Program name
- Revision number
- Date and time
-Comment
- User defined

The reference implementation of the Lit system currently runs on the

UNIX operating system. A version has been ported to the VM environment, to

MS-DOS, and one version has been written in WordPerfect••s macro language.

The UNIX version of the system is designed to port directly to any POSIX

51

compliant operating system, but there are very few systems with strict POSIX

compliance, even in the UNIX world. The Lit system interface is currently written

to work from the C shell (csh(1)) and a version that is completely POSIX

compliant is currently being developed.

The standard interface to the Lit system basically presents the user with

a main menu of choices: Edit, Compile, Format, View, Print, Run, Debug, Goto

new project, and Quit (Figure 5). From program design through program

maintenance, the programmer can use the Lit system to produce, execute,

debug, view, modify, and print literate programs. Lit allows the user to specify

the editor, compiler, debugger, or other tools to be accessed by setting

environment variables. If the user does not set the environment variables Lit will

use defaults if possible, and will prompt for any other information that is needed

to set up the user's programming environment. For a complete description of

what the Lit system does for the user at each step, see Appendix K.

The Lit system isolates the user from the name and number of programs

required to effectively use the system (see Appendix K). It was designed to be

used with many already existing programs, so the user could have access to

the tools with which the user is most comfortable. Lit keeps track of the file

names and the required suffixes for the user, as well as launching the

appropriate applications, in the appropriate order, when a simple request like

11Compile11 is entered by the user.

Figure 5. The Lit system interface: the main menu.

Ut allows the user to enter an option from the menu in several ways.

The number preceding the option can be entered, the name of the option, as

presented in the menu, can be entered, or the upper-case or lower-case

equivalent of the name or the first letter of the first word in a menu selection,

can be entered.

Lit also allows the user to suspend the Ut system by pressing

52

< Controi-Z >, and allows the user to restart it, provided it was launched from a

POSIX compliant shell or csh(1) using the command 'fg' (for foreground).

53

The user can also execute any other command from Lit's main menu

prompt by simply typing the command with all relevant parameters and options

and pressing <Return>. In addition, the user may define a file of aliases

(shorthand notations that will invoke a long and/or complex command) for Lit,

which MUST be stored in the file $HOME/.LitAiias.

In any case, Lit isolates the user from dealing directly with the underlying

application programs and their unwieldy parameters and file naming

conventions. The system is customizable, operates as a menu-driven shell with

all of the capabilities and the interaction possibilities of a shell, and minimizes

the addition of any cognitive load on the programmer. The system was

designed in this way for four reasons: 1) it would have taken too long to

reinvent all of the applications, most of which are adequate for performing

portions of the work that the system must do; 2) as each of the applications is

re-engineered to assist programmer comprehension strategies it can be

replaced; 3) expert programmers are not usually willing to give up their favorite

tools; and 4) it would have been difficult to enable the programmer by adding

to their cognitive load as much knowledge as is required to manage all of the

underlying tools that comprise the Lit system.

For an example of literate program output, see Appendix D. For an

example of a literate program, in the raw state (the actual input file containing

the program source code embedded in the design document) see Appendix J.

CHAPTER Ill

EMPIRICAL STUDIES OF LITERATE PROGRAM COMPREHENSION

In order to determine the effectiveness of the literate programming

paradigm, three empirical experiments were performed. Two studies were

performed with novice programmers, and one experiment was performed with

intermediate programmers. In the novice experiments, programming expertise

level was held constant, and familiarity with task domain concepts was varied.

In the intermediate experiment, only performance in the familiar task domain

was investigated. Each of the experiments compared the ability of subjects to

modify an existing program. There were two groups in each experiment: one

group worked with a literate program, the other group worked with a traditional,

but otherwise equivalent, version of the same program. This section outlines

the general methodology used in the three studies, and subsequent sections

look at each of the studies in detail and the overall implications of the findings

of all three studies.

EXPERIMENTAL CONTEXT

Experimental investigation into programmer comprehension strategies is

still somewhat new, although many associated areas have already been

investigated. Most of the experimentation in this area has been .. reconstructive .. ;

55

typically, subjects are asked to memorize and then recall lines of code, or to

modify existing code while thinking aloud. In contrast, the approach employed

here is essentially .. constructive"; Subjects are asked to modify an existing

program, but the modification consists of creating some missing piece of

functionality, and inserting the usage of that functionality into the existing

program. It is constructive in the sense that performance is analyzed in terms

of entirely original program material generated as a result of goal-oriented

hypothesis-driven problem solving processes. This type of measure of

program comprehension was selected because of its relevance to the actual

comprehension that is required of a professional programmer. Recall measures

were also deemed necessary in order to establish a baseline of

comprehension that would be consistent with standard reconstructive

measures; in the event none of the subjects could effect a solution, the

standard comprehension measures could be used exclusively.

GENERAL METHODOLOGY

The general methodology was held constant across all three

experiments.

Subject Selection

Subjects were recruited from a sample of students with backgrounds

appropriate to the classification levels of "novice programmer" or "intermediate

programmer": Novice programmers were classified as having had less than

three computer programming courses and under one year of experience with

computer programming. Intermediate programmers were classified as having

between two and five years of computer programming courses, and under

three years of full-time work experience in a job with the title .. programmer•,

.. programmer/analyst .. , or some similar job title. Subjects were paid $5.00 for

participating in the study.

All subjects were recruited from undergraduate level computer science

courses at Portland State University.

56

In each of the experiments, the subjects were randomly divided into two

groups of equal size; one group received the literate program to modify, the

other group received the traditional, modular (but otherwise equivalent) version

of the program to modify.

Materials

Subjects in each of the studies received several documents (see

Appendices 0, F, G, and H): 1) a program specification, 2) an input/output

specification, 3) a programming language reference, and 4) either a literate

program or a standard modular program.

The program source code was identical for both the standard modular

program and the literate programs, including all in-line source code comments.

The Literate Programs. In the literate programs, the purpose of the

program was explicitly stated in the introductory section. Also stated were the

history of the problem and the motivations for writing a program to solve the

57

problem. Sections of critical code were documented with anticipatory

documentation, including stubs that were null in anticipation of a future

modification. The algorithms in use were documented explicitly in

pseudo-code. The program was written like a book, with meaningful chapter

headings, section headings, and subsection headings that defined the logical

organization of the program. Functional sections of the code were broken out

into separate chapters, sections, and subsections, as dictated by functional

independence.

Both programming implementation details and task domain information

were documented extensively. Each chapter and section always started on a

new page. Embedded code was never split over a page boundary unless it

exceeded one page in length.

Routines were documented fully: The general algorithm was specified; All

assumptions made were specified; Parameters passed and their uses, locally

declared variables and their uses, and global variables used were specified;

Calling procedures and procedures called by the routine were also specified.

A consistent style of indentation and program formatting was used for all

literate programs.

Figure 3 illustrates the type and style of information included in a literate

program. The subsection in the example might be contained in a chapter

entitled "Support Functions" in a section entitled "File status utilities". See

58

Appendix D for an actual literate program as used in this study (the example in

Appendix D was used in Experiment One).

The Traditional Modular Programs. The source code for the traditional

modular programs was identical to the literate programs. All in-line comments

in the traditional program were also included in the literate programs. The in­

line comments tersely described the steps being taken to effect a solution. The

traditional modular programs contained a header describing the name and

function of the program. Each routine had terse style comment that described

its purpose. White space was used to denote functional groupings and

separation based on functional independence.

The traditional programs contained the identical in-line documentation as

the literate programs. In order to minimize any effect of using different source

code in each study, it was determined that it would be best to have the actual

program source code be identical in both versions of the programs. Thus the

program structure, the presentation order of the routines, and the indentation

and coding style were identical for both the traditional programs and the literate

programs. The only differences were the additional documentation and the

programming paradigm specifics.

Page breaks in the listing were made such that a routine was never split

over a page boundary, unless it was too long to fit on a single page.

Figure 2 illustrates the type and style of information included in the

non-literate programs used for this study. Note that the format, indentation,

59

and in-line documentation are identical to that of the literate program. However,

this version is informationally deficient in comparison with Figure 3. Appendix E

contains the traditional modular program used in Experiment One.

Procedure

The experiments were all controlled studies. Subjects were introduced to

the study and informed how the study would be conducted. Subjects were

randomly divided into two groups, one which received the literate program to

modify and the other which received the standard modular program to modify.

Each subject was given a sheet of instructions (see Appendix B) and verbal

instructions. The subjects were instructed to use any of the reference materials

provided, if needed. Subjects were given a time limit to complete the required

modifications to the program. The time limit to complete the modifications had

been established in a prior study. Subjects were notified when only 1 0 minutes

were remaining in which to complete the experiment. After the subject felt the

program was completed, or when time had run out, a follow-up questionnaire

was administered (see Appendix C).

The questionnaire was used to measure whether the subjects had (1)

understood the instructions and (2) understood the purpose and function of the

program. Some additional subjective measures were also collected; subjects

were asked to: (1) indicate if they felt they had identified the problem with the

program, (2) indicate how many subroutines did they think were missing from

the program, (3) describe the function of the missing subroutines, (4) identify

60

which elements of the program were most helpful in solving the problem, (5)

indicate if they felt the solution that was found (if one was found) was accurate,

(6) identify which elements of the program did not contribute to solving the

problem, (7) state the overall function of the program, (8) rate the difficulty of

the problem on a Uchert scale, and (9) rate the accuracy of their solution, (a)

ignoring the possibility of syntax errors, and (b) including the possibility of

having made syntax error(s). When the questionnaire was completed, the

subjects were given the solution to the problem (see Appendix I for an example

solution), given thanks for participating in the study, and asked if they had any

questions regarding the study.

The subjects did not have the use of a compiler or any other program

development tool. Because of the variation in programming tools and

programmers' familiarity with different tools, it was determined that the most

unbiased test would be to have all subjects work with only a printed program

listing, specifications, and a language reference. All program modifications

were made on paper.

Program modifications were designed to simulate common maintenance

programming activities. The maintenance task was essentially completing a

program that was not finished by a previous programmer; the task had been

specified in the original program specification, but had not been completed.

61

Establishing Time Constraints for the Studies

Prior to running the experiments, two expert programmers completed the

required modifications to the standard modular programs used in the studies.

The two experts, were a Systems Analyst with ten years of experience, and a

Programmer/Analyst with three years of experience. For each of the programs,

the time it took the expert programmers was averaged, rounded off to the

nearest 5 minutes, and then doubled for use as a time constraint for the

experiment.

A pilot study was conducted using 12 computer science graduate

students. The performance of the graduate students and their comments on

the questionnaire were used to refine the methodology and materials.

Measures

The researcher analyzed all modifications to the programs for

correctness. Several 'correctness' criteria were used: 1) completely correct and

identical to the original solution (with the exception of variable names and

choice of flow control statements), 2) functionally correct alternative solution, 3)

any functionally correct solution with syntax errors. and 4} a functionally

incorrect modification.

Several other recall criteria were used to identify comprehension: 5) Did

the subject find where the missing calls to the missing subroutine(s) should be

placed? 6} When the position for the call was found, was the inserted call

correct for the subject's modification? 7) Was there an attempt to modify the

wrong code? 8) Could the subject describe the intended functionality of the

program? 9) Could the subject describe the intended functionality of the

missing routine?

Criterion 1 was the litmus test for comprehension. If the program was

well comprehended and the motivations and style of the original author were

well understood, the solution of the subject should be close to or identical to

the solution of the original author.

62

Criterion 2 was an expected outcome; no two people program exactly in

the same style, and multiple solutions are a natural outcome for any

hypothesis-driven problem-solving task.

Criterion 3 was used to identify problems that would have been found at

compile time because of a syntax error (or errors), flagged by a compiler, and

when corrected would have resulted in a correct solution. This is a natural

occurrence when programming. Because subjects did not have the ability to

correct these problems due to the paper and pencil orientation of the task, it

was judged that a correct solution could contain syntax errors. Semantic errors

that would not be found by the compiler, and that would result in an executable

program which did not operate correctly, were judged as incorrect (criterion 4).

All programs not meeting criteria 1 , 2, or 3 were judged to fit in category

4-functionally incorrect modification.

Criterion 5 was judged important for the subjects with functionally

incorrect solutions to determine a level of comprehension. If the subject found

63

and inserted the missing calls, but the subroutine created by the subject was

incorrect, this was judged to be a better outcome than if the subroutine was

incorrect or missing, or the calls to the subroutine were incorrect in their

placement and/or usage, or no missing subroutine calls were found or inserted.

Criterion 6 was used as a measure of how well the code was

understood. Just finding the position of the missing call is not as important as

finding the missing call and inserting a call that passes the parameters that

must be used and modified to affect a solution.

Criterion 7 was judged important because if the program was well

understood, the subject should never have modified a section of code that

could not help in effecting a solution.

Criteria 8, 9, and questionnaire measure 2 are standard recall measures

commonly used to evaluate comprehension of computer programs. Recall

measures tend to be weaker measures, but were included in the event that the

more discriminating measures were too discriminating and could not be used to

identify comprehension. It was determined that, although there is much

evidence to support reconstructive measures of comprehension, such

measures be inadequately measuring comprehension that is indicative of that

required to actually perform correct modifications to a computer program. With

this in mind, measures 1 through 7 were developed to measure program

comprehension. Our results do in fact show that the significance of our

findings would have been lessened had we not developed the more stringent

comprehension measures.

Subjects' opinions of which elements of the program were most helpful

in solving the problem are used to identify areas for further study and for

confirmation of the researchers hypothesis about which elements are most

beneficial to the programmer for comprehension.

RESEARCH HYPOTHESIS

64

Does altering the programming paradigm to contain typographic cues,

task domain information, and a book-style presentation paradigm increase

program comprehension. Specifically, will Lit style literate programs be more

comprehendible than traditional modular programs by novice and/or

intermediate programmers. In order to measure program comprehension, the

maintenance code generated by subjects was analyzed. Increased

comprehension of the program should result in a higher percentage of correct

solutions by one group. Subjects given literate programs were compared with

subjects given traditional modular programs on their ability to:

1. Correctly complete the modifications to the program.

2. Produce more functionally correct programs with syntax errors.

3. Find which routines are missing.

4. Describe the function of the missing subroutine(s).

5. Find the correct place to insert any missing calls to the missing

routines.

t

6. Insert correct calls to the missing subroutines or functions.

7. Modify only sections of code that can be used to solve the

problem.

8. Explain the purpose and function of the program.

65

CHAPTER IV

EXPERIMENT ONE

SUBJECTS

For Experiment One, 20 novice subjects were recruited from an

undergraduate course in FORTRAN programming for non-computer science

majors. Many of the subjects had no prior experience with computers, and

only one had prior experience with computer programming before completing

the introductory FORTRAN programming course. The subjects were all familiar

with the FORTRAN programming language, standard modular programming,

and had been instructed and allowed to use both standard UNIX programming

tools and the Lit system for eight weeks prior to the experiments. Subjects

were familiarized with both traditional printed listings and Lit style literate

program listings.

The subjects were randomly divided into two groups of equal size; one

group received the literate program, the other group received the traditional

modular program.

Experiment One involved programming in a task domain that none of the

subjects were familiar with (economic forecasting using Leontief modeling);

67

MATERIALS

The program the subjects worked with in Experiment One (unfamiliar

task domain) was designed and written by the researcher and involved Leontief

modeling. The portion of the program that was missing was a subroutine that

created a matrix (the technology matrix) from the initial input matrix by

subtracting the input matrix from its identity matrix. The call to the routine that

created the technology matrix was also missing from the program. (See

Appendix D for a xero-reduced copy of the actual program used for this

experiment).

PROCEDURE

Experiment One was a controlled study. Each subject was given a sheet

of instructions (see Appendix F) and the following verbal instructions.

You have been given the task of maintaining a computer program.
The original author completed the analysis and design of the
program, but did not have time to complete the coding. Your job
is to determine what functional units of code have been left out
and to create them and indicate where in the program they would
be inserted. The code that is missing is one or more subroutines
or functions, and the calls to those routines or functions. You
must also insert the calls to the routines you create in the
appropriate place or places in the program for the solution to be
considered correct.

The subjects were given either the literate or traditional modular program

to modify and were instructed to use any of the reference materials provided, if

needed. A time limit of 50 minutes to complete the modifications had been

68

established in a previous pilot study. Subjects were notified when only 1 0

minutes were remaining in which to complete the experiment. After completing

the program modifications or running out of time, subjects filled out a

questionnaire (see Appendix C).

RESULTS

Results were analyzed using nonparametric one-way analysis of variance.

Analysis of variance of group performance in the unfamiliar task domain (Table

I) showed that a significantly greater percentage of the subjects in the literate

program group found a solution that was either completely correct or

functionally correct with syntax errors; none of the traditional modular program

group found a solution (.E(1, 19) = 13.50, Q < .0017, eta2 = .43). Of the

subjects that found a solution, one third found a completely correct solution,

and two thirds found a functionally correct solution with syntax errors. The latter

finding was also significant (.E(1, 19) = 6.00, Q < .024, eta2 = .25). Table I also

shows that all of the subjects in the traditional modular program group

attempted to modify a section or sections of code that did not require a

modification to solve the problem. None of the subjects in the literate program

group modified incorrect code. This finding was significant (.E(1, 19) = 9999, Q

< .0001, eta2=1.0). The differences between which groups found where to

insert the missing calls to the missing subroutines were significant (E(1, 19) =

9999, Q < .0001, eta2=1.0). Finally, there were significant differences in which

69

groups were able to insert the call correctly (E{1, 19) = 13.5, Q < .0017, eta2 =

.43).

TABLE I

GROUP PERFORMANCE PERCENTAGES FOR EXPERIMENT ONE

Comprehension Criteria Literate Traditional
Program Program
Group Group

Performance Performance

Completely Correct 20% 0%

Functionally Correct 40% 0%

Incorrect 40% 100%

Found Missing Call 100% 0%

Inserted Call Correctly 60% 0%

Did not Modify Wrong Code 100% 0%

Described Program's Intended 100% 0%
Functionality Correctly

Number of Missing Subroutines 80% 10%
Identified Correctly

Accurately Described Function of 60% 0%
Missing Routines

Equally impressive were the results of the analysis of the reconstructive

measurements. Table I also shows the groups' ability to accurately describe

the program's function. This finding was significant (E{1, 19) = 9999, Q < .0001,

eta2= 1.0). Additionally, the subjects in the literate program group significantly

outperformed the subjects in the traditional modular program group in

identifying the number of missing subroutines (E{1, 16) = 56.47, Q < .0001, eta2

= .79) and in accurately describing their intended functionality (E{1,15) =

70

47.25, Q < .0001, eta2 = .77). Three subjects did not provide an answer to the

question of how many subroutines were missing, and four did not provide an

answer describing the function of the missing subroutine. The missing values

were excluded from the analysis, as is reflected by the reported F values.

Analysis of Subjects' Subjective Data

The questionnaire was analyzed in order to gauge the subjects'

perception of which elements of the program were aids in solving the problem,

and which elements of the program were caused difficulty in solving the

problem. Overall, 70 percent of the subjects in the literate program group

found that the program documentation helped with problem solving. This

indicates that even in the traditional program group, the documentation was

perceived as helpful. Since the traditional programs were written with much

more documentation than would typically be in-line, this suggests that the

additional documentation may have been helpful. All of the elements of the

literate program {documentation, code style, table of contents, and program

format) were perceived as helpful in problem solving by at least 20 percent of

the subjects in the literate program group. It was determined that the

perceptions of subjects who found a solution might be more indicative of which

elements were most helpful. Conversely, it was also determined that the

perceptions of subjects who could not find a solution might be indicative of

which elements hindered problem solving. Or, it might give an indication of

71

which subjects were able to use the additional information, and which subjects

were possibly confused by it, or just unable to utilize it.

TABLE II

EXPERIMENT ONE: PERCEPTIONS OF SUBJECTS GIVEN
LITERATE PROGRAMS

Program element Helped with problem solving Hindered problem solving

Documentation 70% 30%

Code Style 40% 0%

Table of Contents 30% 0%

Input Specifications 30% 0%

Problem Description 20% 50%

Indentation 20% 0%

Program Format 20% 0%

Output Specifications 20% 0%

Of the subjects who found a solution (N = 6) and answered the questions

pertaining to the factors that contributed most to solving the problem, Table Ill

documents which elements they perceived as helpful in solving the problem.

Overwhelmingly, the most helpful factors were program documentation and

code style. Only one subject who found a solution indicated the table of

contents was helpful. This may be because it was not needed to find the

solution by the others, or the subjects who found a solution were unaware of

how much it helped them because of their familiarity with such usage to find

areas of interest in books, and its value was not perceived as important. It

could also be that the table of contents was not seen as helpful in relation to

the help the documentation provided (although the table of contents is a

portion of that documentation).

TABLE Ill

EXPERIMENT ONE: PERCEPTIONS OF SUBJECTS GIVEN LITERATE
PROGRAMS WHO FOUND A SOLUTION

Program element Helped with problem solving Hindered problem solving

Documentation 83% 33%

Code Style 50% 0%

Table of Contents 16% 0%

Input Specifications 33% 0%

Problem Description 16% 50%

Indentation 16% 0%

Program Format 16% 0%

Output Specifications 16% 0%

Table IV describes the pe·rceptions of the subjects who did not find a

72

solution (N=4) that were given literate programs. Note that 50 percent of these

subjects indicated that the table of contents was helpful to problem solving, and

none indicated it hindered problem solving. Documentation was also perceived

as helpful to 50 percent of the subjects (two subjects) in this group. One

subject in this group indicated that documentation hindered problem solving.

For subjects given the traditional programs (see Table V), the factors

perceived as a hinderance to problem solving were documentation (33

percent), input specifications (44 percent), and the problem description (66

percent). The difficulty with the problem description can most easily be

attributed to the subjects' unfamiliarity with the task domain and the language

used in the problem description. This was an expected result. The problems

TABLE IV

EXPERIMENT ONE: PERCEPTIONS OF SUBJECTS GIVEN LITERATE
PROGRAMS WHO DID NOT FIND A SOLUTION

Program element Helped with problem solving Hindered problem solving

Documentation 50% 25%

Code Style 25% 0%

Table of Contents 50% 0%

Input Specifications 25% 0%

Problem Description 25% 50%

Indentation 25% 0%

Program Format 25% 0%

Output Specifications 25% 0%

73

with the input specifications are difficult to analyze, since over 71 percent of the

subjects in the experiment indicated that the input specifications were .. easy to

understand... Finally, the problem with documentation may be that there wasn't

enough of it, or more accurately, it was informationally inadequate to assist the

subjects in forming a global model of program design. Thus program

modifications could not be made, and the documentation was perceived as a

hinderance.

Overall perceptions (N = 18) for both groups of experiment instructions,

problem description, input specifications, and output specifications rated as

11easy to understand" or "not easy to understand .. are presented in Table VI.

TABLE V

EXPERIMENT ONE: PERCEPTIONS OF SUBJECTS GIVEN
STANDARD PROGRAMS

Program element Helped with problem solving Hindered problem solving

Documentation 11% 33%

Code Style 11% 22%

Table of Contents N/A N/A

Input Specifications 44% 44%

Problem Description 22% 66%

Indentation 11% 11%

Program Format 22% 22%

Output Specifications 33% 22%

TABLE VI

EXPERIMENT ONE: SUBJECTS' EVALUATIONS OF
EXPERIMENTAL MATERIALS

Experiment material Easy to understand Not easy to understand

Instructions 76% 24%

Problem Description 35% 65%

Input Specification 71% 29%

Output Specification * 69% 31%

* indicates N= 16 for this variable

74

Many (65 percent) of the subjects found the problem description difficult

to understand. This is most likely due to the fact that subjects were not familiar

with the task domain (economic modelling) and the terminology used to

75

describe the required processing was not familiar to the subjects. It was

expected that for problems in unfamiliar task domains the problem description

would be rated as difficult to understand, and that the perception of the level of

difficulty of the problem would be high. The perceptions of the subjects in

Experiment One indicate this hypothesis is accurate; the perceived level of

difficulty (obtained by finding the mean of the difficulty scale ranging from 1

(very difficult) to 5 (very easy) for all subjects) was 2.05, indicating that subjects

perceived the level of difficulty of the problem as more difficult than easy.

It was also expected that the perception of difficulty for the literate

program group would be perceived as less difficult than the perceptions of the

traditional program group. The literate program group rated the level of

difficulty as much less difficult than did the traditional program group. Group

means indicated that the perception difference was 1. 78 levels of difficulty more

difficult for the traditional program group (1.22) than it was for the literate

program group (3.0). No tests for significance were performed.

DISCUSSION

The results of this study indicate that the Ut style of formatting code and

documenting code are superior to traditional methods in assisting with program

comprehension. Results indicate that comprehension is improved by at least

two measures: ability to effect a solution (indicative of high comprehension due

to successful application of the learned concepts); and ability to correctly recall

76

and describe the purpose of the program, the missing portions of the program,

and several specifics about the program as written (modified CLOZE (Entin,

1984; Taylor, 1953) measures of comprehension).

It is also interesting to note that this experiment measured performance

in an unfamiliar task domain. As has been noted, the development of a domain

model and the ability to link the domain model with the program model to form

the global model of the program is essential to program comprehension.

Apparently, the literate program allowed more subjects to form a global model

and make the required modifications; the subjects with the non-literate

programs apparently could not develop a global model and thus were unable

to make the required modifications. This is impressive, in that both groups

overwhelmingly rated the problem description as difficult to understand, and as

a hinderance to problem solving. Yet, the literate program group was able to

overcome these difficulties and 60 percent found a solution. This indicates that

the literate program did in fact contain features which assisted the programmer

in understanding both the domain model and the program model, and assisted

in linking up these two models into a global model of program design. Even

more impressive is that the global model formed by 60 percent of the subjects

allowed them to make the required modifications to the program in a short time

period.

The post-experiment questionnaire had some supporting anecdotal

commentary. Subject one, who found a solution to the problem, wrote:

[The] existence of the general algorithm made it possible to write
the code without having any idea of what the Leontief [modeling]
program is trying to do here.

In response to the question ·what contributed most to the difficulty of

modifying the program ... Subject five, who also found a solution, wrote: .. Not

being familiar with what we are trying to accomplish ...

77

Subject one indicates that the presence of the algorithm made it possible

to write the code without understanding the task domain concepts. This is

consistent with the idea that the task domain concepts do not have to be fully

understood to be programmed if there is some documentation that can link up

the task domain concepts with computer related concepts. Apparently. the

presence of the general algorithm in the documentation did exactly that for this

particular subject. This may also be true for the other subjects who found a

solution (such as subject five, whose comment appears above), although they

may not have realized it or reported it on the post-experiment questionnaire.

Of the subjects given traditional programs who did not find a solution,

this theme is also present in the post-experiment questionnaire comments.

Subject 13 wrote:

I had to read through the [documentation for the] model several
times to figure out exactly what did what. [The] documentation
was clear - to a degree - the algorithms to be used were unclear.

Subject 19 commented:

... I just don't understand the problem well enough. If you don't
understand the problem, you need more clarification explanations.

And subject 14 made the comment:

I couldn't make sense of what the input variables were supposed
to do in the missing subroutines. I was not sure of how the matrix
operations were supposed to be performed in the missing
subroutines.

The comments from some of the subjects with the traditional programs

point out that those subjects realized the need for more informationally

78

complete documentation. Specifically, these three subjects each requested one

element that is present in the literate programs: documentation on which

algorithm to use, documentation on what each variable was used for, and

documentation that clarified the task with explanations (task domain

information).

In summary, Experiment one supports the hypothesis that programs

should be written in a different format. The Ut style programming format is one

such possibility which has been shown to be significantly more comprehendible

than the format of the traditional programs used in this study. In addition, the

subjective evaluation of many of the subjects supports the ideas on which

literate programming is based, and anecdotal commentary by the subjects

points directly to some of the flaws of the traditional programs, and some of the

strengths of the literate programs suggested by the research hypothesis.

CHAPTER V

EXPERIMENT TWO

SUBJECTS

For Experiment Two, 21 novice subjects were recruited from an

undergraduate course in FORTRAN programming for non-computer science

majors. Many of the subjects had no prior experience with computers, and

only one had prior experience with computer programming before completing

the introductory FORTRAN programming course. The subjects were all familiar

with the FORTRAN programming language, standard modular programming,

and had been instructed and allowed to use both standard UNIX programming

tools and the Ut system for eight weeks prior to the experiments. Subjects

were familiarized with both traditional printed listings and Lit style literate

program listings.

The subjects were randomly divided into two groups of equal size; one

group received the literate program, the other group received the traditional

modular program.

The difference between Experiment One and Experiment Two was that

Experiment Two involved programming in a task domain that all of the subjects

80

were familiar with (calculating letter grades from weighted test and assignment

scores).

MATERIALS

The program the subjects worked with in Experiment Two (familiar task

domain) was designed and written by the researcher and involved the problem

of preparing a grade report from a file of students' weighted test and

assignment scores. Omitted from the program was a routine that computed

the average grade and then called a routine that assigned the student a letter

grade. Also omitted was the call to the missing routine. The routines could

either be called from the mainline of the program, or one routine could be

called from the mainline and then that routine could call the other missing

routine.

PROCEDURE

Experiment Two was a controlled study. Each subject was given a sheet of

instructions (see Appendix G) and the following verbal instructions.

You have been given the task of maintaining a computer
program. The original author completed the analysis and
design of the program, but did not have time to complete the
coding. Your job is to determine what functional units of code
have been left out and to create them and indicate where in
the program they would be inserted. The code that is missing
is one or more subroutines or functions, and the calls to those
routines or functions. You must also insert the calls to the

routines you create in the appropriate place or places in the
program for the solution to be considered correct.

81

The subjects were given either the literate or traditional modular program

to modify and were instructed to use any of the reference materials provided, if

needed. A time limit of 50 minutes to complete the modifications had been

established in a previous pilot study. Subjects were notified when only 1 0

minutes were remaining. After completing the program modifications or running

out of time, subjects filled out a questionnaire (see Appendix C).

RESULTS

Results were analyzed using one-way nonparametric analysis of variance.

Analysis of variance of group performance in the familiar task domain (Table

VII) showed that 64 percent of the literate program group found either a

completely correct solution or a functionally correct solution with syntax errors

and none of the traditional modular program group found a solution. This

finding was significant {E(1, 19) = 15.83, Q < .0008, eta2 = .45). A functionally

correct solution (equal to the proposed solution of the experimenters) with

syntax errors was found by 36 percent of the subjects in the literate program

group. This finding was significant (E(1 ,20) = 5.17, Q < .035, eta2 = .23). Also

significant was that 29 percent of the literate program group found a

functionally correct alternative solution with syntax errors (E(1 ,20) = 7.54, Q <

.013, eta2 = .28). A completely correct solution equal to the solution proposed

82

by the experimenters was found by 18 percent of the subjects in the literate

program group, which was not significant. Results also showed that group

TABLE VII

GROUP PERFORMANCE PERCENTAGES FOR EXPERIMENT TWO

Comprehension Criteria Literate Traditional
I

Program Program
I

Group Group I

Performance Performance

Completely Correct 18% 0%

Functionally Correct 46% 0%

Incorrect 34% 100%

Found Missing Call 100% 50%

Inserted Call Correctly 64% 0%

Did not Modify Wrong Code 91% 50%

Described Problem Correctly 100% 90%

Number of Missing Subroutines 100% 63%
Identified Correctly

Accurately Described Function of 91% 40%
Missing Routines

differences were significant with regard to attempts at modifying a section or

sections of code that did not require a modification to solve the problem

(E(1 ,20) = 4.89, Q < .04, eta2 = .20). Also significant were the group

differences related to finding where to insert the missing calls to the missing

subroutines (E(1 ,20) = 6.03, Q < .019, eta2 = .26). In addition, analysis

showed that the ability to insert the call correctly (see Table VII) was

significantly different between the literate program group and the traditional

program group (E(1 ,20) = 15.83, Q < .0008, eta2 = .45).

83

The reconstructive measures were not as dramatically different as those

in Experiment One. There was no significant group difference in ability to

describe the overall functionality of the program; all of the subjects in the literate

program group accurately described the program, and 90 percent of the

subjects in the traditional modular program group accurately described the

program. This may be due to the subjects familiarity with the task domain. The

subjects in the literate program group significantly outperformed the subjects in

the traditional modular program group (see Table VII) in identifying the number

of missing subroutines (E(1, 18} = 5.91, Q < .027, eta2 = .25} and accurately

describing their intended functionality (E(1,19) = 7.79, Q < .012, eta2 = .77).

Analysis of Subjects' Subjective Data

The questionnaire was analyzed in order to gauge the subjects'

perception of which elements of the program were aids in solving the problem,

and which elements of the program caused difficulty in solving the problem.

The results are presented in Tables VIII through XII.

Of the subjects given the literate programs to modify, 82 percent found

the documentation helpful, 64 percent found the problem description helpful, 18

percent found the code style and indentation helpful, and 27 percent found the

table of contents helpful. The factors that hindered problem solving most were

the input and output specifications and the program format (see Table VIII).

84

The differences between Experiment One and Experiment Two are most

obvious in the perception of the problem description. As expected, the

problem description was perceived as helpful, probably due to the fact that the

subjects were familiar with the task domain. As can be seen from the data in

Table VII, less than two subjects in the literate program group found any one

element of the literate program hindered problem solving.

Of the subjects who found a solution (N = 7) and answered the questions

pertaining to what contributed most to solving the problem, Table IX documents

which elements were perceived as helpful in solving the problem. Notice that

the only element that more than one subject had trouble with was the input

specification, which was external to the program. Not more than one subject

perceived any other program element as hindering problem solving.

TABLE VIII

EXPERIMENT TWO: PERCEPTIONS OF SUBJECTS GIVEN
LITERATE PROGRAMS

Program element Helped with problem solving Hindered problem solving

Documentation 82% 9%

Code Style 18% 9%

Table of Contents 27% 0%

Input Specifications 27% 18%

Problem Description 64% 9%

Indentation 18% 0%

Program Format 27% 18%

Output Specifications 18% 18%

85

Table X describes the perceptions of the subjects given literate programs

who did not find a solution (N=4) . Only one subject in this group indicated

that the program format hindered problem solving, and only one subject in this

group indicated that the output specifications hindered problem solving. All of

the rest of the subjects in this group indicated that one or more elements were

helpful, and none of the subjects in this group indicated that documentation,

code style, the table of contents, the input specifications, problem description,

TABLE IX

EXPERIMENT TWO: PERCEPTIONS OF SUBJECTS GIVEN
LITERATE PROGRAMS WHO FOUND SOLUTIONS

Program element Helped with problem solving Hindered problem solving

Documentation 86% 14%

Code Style 14% 14%

Table of Contents 29% 0%

Input Specifications 0% 29%

Problem Description 43% 14%

Indentation 0% 0%

Program Format 14% 14%

Output Specifications 0% 14%

or indentation hindered problem solving. Indentation, program format, and

output specifications were indicated as helpful by 50 percent of the subjects in

this group. Documentation and output specifications were rated as helpful by

75 percent of the group. Code style was rated as helpful by 25 percent of the

86

subjects, and the problem description was rated as helpful by all of these

subjects.

Table XI clearly shows that, even for the standard program group (none

of whom found a solution), the only factor perceived as a hinderance by more

subjects than found the same factor helpful was. the output specification.

TABLE X

EXPERIMENT lWO: PERCEPTIONS OF SUBJECTS GIVEN LITERATE
PROGRAMS WHO DID NOT FIND SOLUTIONS

~-

Program element Helped with problem solving Hindered problem solving

Documentation 75% 0%

Code Style 25% 0%

Table of Contents 25% 0%

Input Specifications 75% 0%

Problem Description 100% 0%

Indentation 50% 0%

Program Format 50% 25%

Output Specifications 50% 25%

Program format was perceived both as helpful and as a hinderance by 11

percent of the subjects in this group. All other factors were perceived as

helpful by at least twice as many subjects as perceived the same factor as a

hinderance; the biggest difference being that documentation was perceived as

helpful by 4 times as many subjects than perceived documentation as a

hinderance. Overall, the subjects tend to indicate that the traditional program

did not present any large barriers to problem solving. In fact, Table XI shows

87

that the program was perceived as having documentation that could assist in

problem solving by 44 percent of the subjects in this group. This was not an

expected result. Perhaps the program documentation in the traditional program

was explicit enough to give the impression that it was helpful. However, since

none of these subjects found a solution, it is not at all clear what was the

contribution of the documentation.

TABLE XI

EXPERIMENT TWO: PERCEPTIONS OF SUBJECTS GIVEN
STANDARD PROGRAMS

--

Program element Helped with problem solving Hindered problem solving

Documentation 44% 11%

Code Style 33% 11%

Table of Contents N/A N/A

Input Specifications 22% 11%

Problem Description 44% 22%

Indentation 0% 0%

Program Format 11% 11%

Output Specifications 11% 22%

Overall perceptions of experiment instructions, problem description, input

specifications, and output specifications rated as .. easy to understand .. or .. not

easy to understand .. are presented in Table XII. Only 18 of the subjects

answered the questions pertaining to their ability to understand the

experimental materials.

88

TABLE XII

EXPERIMENT TWO: SUBJECTS' EVALUATIONS OF
EXPERIMENTAL MATERIALS

Experiment material Easy to understand Not easy to understand

Instructions 94% 6%

Problem Description 100% 0%

Input Specification 78% 22%

Output Specification 78% 22%

Unlike Experiment One, all of the subjects in Experiment Two who

answered the questions pertaining to their abilities to understand the

experimental materials found the problem description easy to understand. This

is most likely due to the fact that subjects were familiar with the task domain

and the terminology used to describe the required processing was familiar to

the subjects. It was expected that for problems in familiar task domains the

problem description would be rated as easy to understand, and that the

perception of the level of difficulty of the problem would be low. The

perceptions of the subjects in Experiment Two indicate this is true; the

perceived level of difficulty (obtained by finding the mean of the difficulty scale

which ranged from 1 (very difficult) to 5 (very easy) for all subjects) was 2.90,

indicating that subjects perceived the level of difficulty of the problem as

between difficult and easy.

It was also expected that the perception of difficulty for the literate

program group would be perceived as less difficult than the perceptions of the

89

traditional program group. The literate program group rated the level of

difficulty as much less difficult than did the traditional program group. Group

means indicated that the perception difference was 1.63 levels of difficulty more

difficult for the traditional program group {2.0) than it was for the literate

program group {3.63). No tests for significance were performed.

DISCUSSION

The results of Experiment Two indicate that the Lit style of formatting

code and documenting code are superior to traditional methods in assisting

with program comprehension. Results also indicate that program

comprehension is improved by at least two measures: ability to effect a solution

{indicative of high comprehension due to successful application of the learned

concepts); and ability to correctly recall and describe the purpose of the

program, the missing portions of the program, and several specifics about the

program as written (modified GLOZE (Entin, 1984; Taylor, 1953) measures of

comprehension).

As in Experiment One, comments from subjects tend to support the

research hypothesis, and suggest that the features of the literate programs that

are different (documentation, code style, program format, etc.) are in fact the

ones that are perceived as helpful to problem solving when present, and as a

hinderance to problem solving when not present or when what is present is

informationally inadequate. Subject two commented:

The main help [in solving the problem] was in the documentation,
especially the algorithm. This made it extremely easy to locate the
missing [subroutine] call and [the missing] subroutine.

Subject five also indicated that the algorithm contributed most to solving the

problem. Subject ten wrote:

It just takes time (a very short time) to get the use of the Lit
program style I think I learned a lot in a very short time. It all
came together at once. Everything was very logical and
understandable.

Subject nine commented (emphasis added):

Reading the general problem [description] and then [the]
algorithms helps first. Then I look [to see] if all the code of the
main [driver] seems to match the algorithm. Next I check calls to
sub[routine]s. I sure wouldn't want to try this interpreting code
alone. The first time through [the program] I didn't catch the
[missing] subroutine, but I hit [the] index and caught it [the]
second time through [the program].

Finally, a comment from subject 11, who worked with a traditional program: "I

can't think of one thing that I found helpful [for modifying the program]."

Thus, as in Experiment One, subjective commentary by the subjects

90

supports the research hypothesis and gives a strong indication of the elements

that were perceived as helpful by the subjects.

Finally, another result deserves commentary. The percentage of subjects

who found a solution in Experiment Two (64 percent) was roughly equivalent to

the percentage of subjects who found a solution in Experiment One (60

percent). This was not an expected result. It was expected that the

percentage of subjects finding a solution in Experiment Two would be much

greater (although perhaps not significantly) than for Experiment One, due to the

91

subjects familiarity with the task domain. However, this was not the case. This

suggests that the literate programming paradigm may be just as effective in

assisting with program comprehension for programs in unfamiliar task domains

as it is for programs in familiar task domains. Intuitively, one would assume

that the performance of the subjects would be worse as their subjective

evaluation of the problem's difficulty increased. Yet, the percentage of novice

subjects finding a solution remained roughly the same in both experiments,

even though the mean level of difficulty was perceived as much higher in

Experiment One than it was in Experiment Two. This suggests that the Ut style

of formatting and documenting code may boost the comprehensibility of

programs in unfamiliar task domains to that of programs in familiar task

domains. Although this is not a part of the major research hypothesis, an in­

depth look in the literature at knowledge of task-content and knowledge of task­

process as it relates to perceptions of task-complexity and ability to perform a

task could shed some light on this counter -intuitive result.

CHAPTER VI

EXPERIMENT THREE

SUBJECTS

For Experiment Three, 36 intermediate subjects were recruited from an

undergraduate computer science course for computer science majors. All of the

subjects had extensive prior experience with computers and computer

programming. All subjects had just completed a three month course on

algorithmic languages and compiler design. Subjects were familiar with

recursive descent parsing algorithms, the C programming language, and

standard modular programming techniques. Subjects were not familiar with Lit

style programs and were given no special instructions on how to read or

understand them.

The subjects were randomly divided into two groups of equal size; one

group received the literate program, the other group received the traditional

modular program.

Experiment Three involved programming in a task domain all of the

subjects were very familiar with (recursive descent parsing).

93

MATERIALS

The program the subjects worked with in Experiment Three (familiar task

domain) was designed and written by the researcher and involved recursive

descent numeric expression evaluation. Omitted from the program was a

routine that handled the unary minus operator. Also omitted was the call to the

missing routine.

PROCEDURE

Experiment Three was a controlled study. Each subject was given a

sheet of instructions and the following verbal instructions.

You have been given the task of maintaining a computer program.
The original author completed the analysis and design of the
program, but did not have time to complete the coding. Your job
is to determine what functional units of code have been left out
and to create them and indicate where in the program they would
be inserted. The code that is missing is one or more subroutines
or functions, and the calls to those routines or functions. You
must also insert the calls to the routines you create in the
appropriate place or places in the program for the solution to be
considered correct.

The subjects were given either the literate or traditional modular program

to modify and were instructed to use any of the reference materials provided, if

needed. A time limit of 60 minutes to complete the modifications had been

established in a previous pilot study. Subjects were notified when only 1 0

94

minutes were remaining. After completing the program modifications or running

out of time, subjects filled out a questionnaire.

RESULTS

Results were analyzed using one-way nonparametric analysis of variance.

Analysis of variance of group performance (Table XIII) showed that 39 percent

of the literate program group found either a completely correct solution or a

functionally correct solution with syntax errors and none of the traditional

modular program group found a solution. The finding was significant (.E(1 ,35) =

1 0.82, Q < .0023, eta2 = .24). Also significant was that 33 percent of the literate

program group found a functionally correct alternative solution with syntax

errors (.E(1 ,35) = 8.50, Q < .0062, eta2 = .20). Results (see Table XIII) also

showed that group differences were significant with regard to attempts at

modifying a section or sections of code that did not require a modification to

solve the problem (.E(1 ,35) = 39.36, Q < .0001, eta2 = .54): only 6 percent of

the subjects in the literate program group attempted to modify a section of

code that did not require a modification, but 78 percent of the subjects in the

traditional program group made such modifications. Also significant were the

group differences related to finding where to insert the missing calls to the

missing subroutines (.E(1 ,35) = 39.36, Q < .0001, eta2 = .54). In addition,

analysis showed that the ability to insert the call correctly (see Table XIII) was

significantly better for the literate program group than it was for the traditional

program group (E(1 ,35) = 10.82, Q < .0023, eta2 = .24).

TABLE XIII

GROUP PERFORMANCE PERCENTAGES FOR EXPERIMENT THREE

Comprehension Criteria Literate Traditional
Program Program
Group Group

Performance Performance

Completely Correct 0% 0%

Functionally Correct 39% 0%

Incorrect 61% 100%

Found Missing Call 78% 6%

Inserted Call Correctly 39% 0%

Did not Modify Wrong Code 94% 22%

Described Problem Correctly 100% 88%

Number of Missing Subroutines 88% 64%
Identified Correctly

Accurately Described Function 73% 27%
of Missing Routines

95

The reconstructive measures were not as dramatically different as those

in Experiment One. There was no significant group difference in ability to

describe the overall functionality of the program; all of the subjects in the literate

program group accurately described the program, and 88 percent of the

subjects in the traditional modular program group accurately described the

program. This finding is most likely due to the subjects' familiarity with the task

domain. The subjects in the literate program group did not significantly

96

outperform the subjects in the traditional modular program group in identifying

the number of missing subroutines. However, as shown in Table XIII, subjects

in the literate program group significantly outperformed the subjects in the

traditional program group in accurately describing the intended functionality of

the missing subroutine (.E(1 ,29) = 7.80, Q < .0093, eta2 = .22). Finally,

subjects in the literate program group also outperformed subjects in the

traditional program group in the mean time required to complete the

modifications (.E(1 ,35) = 5.39, Q < .027, eta2 = .14); the mean time for the

literate program group was 45.83 minutes, while the mean time for the

traditional program group was 54.28 minutes. Timing information would be

more meaningful if subjects had been given an unlimited amount of time to

solve the problem, and the mean time to find a solution was calculated.

However, it would also have made it impossible to gather the accuracy statistics

if all subjects were allowed to find a solution before terminating the experiment.

In any case, the subjects in the literate program group did in fact perform better

in the time dimension, and comprehension was measurable not only by

accuracy, but also by time, for this experiment. Time was measured and

calculated without any log transformation on the times, which may have skewed

the result to show a significant difference existed when it did not. No efforts

were made to check for this; time is not the measure of comprehension being

used for this experiment.

97

Analysis of Subjects' Subjective Data

The questionnaire was analyzed in order to gauge the subjects'

perception of which elements of the program were aids in solving the problem,

and which elements of the program caused difficulty in solving the problem.

The results are presented in Tables XIV through XVIII. All factors were

perceived as more of a help than a hinderance for the entire literate program

group. The most helpful factors were documentation (82 percent), problem

description (41 percent), input specifications (36 percent), code style, program

format, and output specifications (24 percent), and the table of contents (18

percent). Only one subject indicated that the code style was a hinderance.

TABLE XIV

EXPERIMENT THREE: PERCEPTIONS OF SUBJECTS GIVEN
LITERATE PROGRAMS

F; ogram element Helped with problem solving Hindered problem solving

Documentation 82% 12%

Code Style 24% 5%

Table of Contents 18% 5%

Input Specifications 36% 23%

Problem Description 41% 11%

Indentation 5% 5%

Program Format 24% 5%

Output Specifications 24% 11%

98

This subject was unable to find a solution, perhaps due to the non-traditional

format of the source code, as it differs distinctly from the Kernighan and Ritchie

(1988) style of C program coding with which the subject was familiar.

Of the subjects who found a solution (N = 7) and answered the questions

pertaining to what contributed most to solving the problem, Table XV describes

which elements were perceived as helpful in solving the problem or hindered

problem solving. Documentation was perceived as helpful by all of the subjects

who found a solution. Code style was also perceived as helpful by 42 percent

of the subjects in this group, and was not perceived as a hinderance by any

subjects in this group. The input specifications were perceived as a hinderance

TABLE XV

EXPERIMENT THREE: PERCEPTIONS OF SUBJECTS GIVEN
LITERATE PROGRAMS WHO FOUND A SOLUTION

Program element Helped with problem solving Hindered problem solving

Documentation 100% 0%

Code Style 42% 0%

Table of Contents 0% 14%

Input Specifications 29% 57%

Problem Description 42% 14%

Indentation 14% 14%

Program Format 14% 14%

Output Specifications 29% 14%

99

by more subjects (57 percent) than perceived it as helpful (29 percent). The

table of contents was not perceived as helpful, and one subject from this group

found it to be a hinderance in problem solving.

Table XVI describes perceptions of the subjects given literate programs

who did not find a solution (N = 11). One subject in this group did not

respond to any of the subjective questions thus the N for this group decreased

by one to N = 1 0. Note that all of the factors were indicated as a help by as

TABLE XVI

EXPERIMENT THREE: PERCEPTIONS OF SUBJECTS GIVEN LITERATE
PROGRAMS WHO DID NOT FIND A SOLUTION

Program element Helped with problem solving Hindered problem solving

Documentation 70% 20%

Code Style 10% 10%

Table of Contents 30% 0%

Input Specifications 40% 0%

Problem Description 40% 10%

Indentation 0% 0%

Program Format 30% 0%

Output Specifications 20% 10%

many subjects or more subjects than indicated the same factor was a

hinderance. Over 70 percent of the subjects in this group indicated the

documentation was helpful, 30 percent indicated the table of contents was

helpful, and 30 percent indicated the program format was helpful. 20 percent

100

of the subjects in this group indicated that the documentation was a hinderance

to problem solving.

Of the subjects given the traditional programs, 50 percent indicated that

documentation was a hinderance to problem solving. Because they did not

have the augmented documentation of the literate program, this result is not

surprising. The Lit style program documentation was rated as helpful by all

subjects that found a solution. This suggests that not only is the

documentation helpful, but the format and presentation of the documentation

plays an important role in its perceived usefulness. Because all in-line

documentation was identical, the only difference between the Lit style programs

and the traditional modular programs is the additional documentation;

specifically, the content, organization, and format, and presentation paradigm.

Table XVII also shows that the problem description and the output specification

were also indicated as hindrances by more subjects than indicated that those

factors were helpful. Code style was indicated as helpful by 39 percent of the

subjects, and the program format indicated as helpful by 28 percent of the

subjects. This result is not surprising considering that the subjects had to gain

comprehension from the source code, and the program format and the

consistent code style would be the two most important aids to comprehension

that are in the traditional modular programs. Although code style was indicated

as helpful, indentation was perceived as helpful by only 33 percent of these

subjects. This result is unexplainable since indentation is a major portion of a

consistent code style. Subjects could have been thinking of some other

element of coding style {naming conventions, use of white space, etc.).

TABLE XVII

EXPERIMENT THREE: PERCEPTIONS OF SUBJECTS GIVEN
STANDARD PROGRAMS

Program element Helped with problem solving Hindered problem solving

Documentation 16% 50%

Code Style 39% 28%

Table of Contents 0% 0%

Input Specifications 22% 22%

Problem Description 22% 33%

Indentation 33% 0%

Program Format 28% 11%

Output Specifications 11% 17%

Overall perceptions (N=34) of experiment instructions, problem

description, input specifications, and output specifications rated as .. easy to

understand .. or .. not easy to understand .. are presented in Table XVIII.

101

As shown in Table XVIII, the input and output specification were rated as

easy to understand by an overwhelming majority of the subjects, yet some

subjects still found them as hindrances to problem solving. This result is

unexplainable; it may be that the input and output specifications were easy to

understand, but were perceived as incomplete, or difficult to implement,

although the problem did not require the subjects to do anything with the input

or output portions of the program. Unlike Experiment One, 85 percent of the

102

subjects in Experiment Three found the problem description easy to

understand. This is most likely due to the fact that subjects were familiar with

the task domain and the terminology used to describe the required processing

was familiar to the subjects. It was expected that for problems in familiar task

I
I

I

TABLE XVIII

EXPERIMENT THREE: SUBJECTS' EVALUATIONS OF
EXPERIMENTAL MATERIALS

Experiment material Easy to understand Not easy to understand

Instructions 97% 3%

Problem Description 85% 15%

Input Specification 91% 9%

Output Specification * 88% 12%

*indicates N=33 for this variable

domains the problem description would be rated as easy to understand, and

that the perception of the level of difficulty of the problem would be low. The

perceptions of the subjects in Experiment Three indicate this is true; the

perceived level of difficulty (obtained by finding the mean of the difficulty scale

ranging from 1 (very difficult) to 5 (very easy} for all subjects) was 2.80,

indicating that subjects perceived the level of difficulty of the problem as

between difficult and easy.

It was also expected that the perception of difficulty for the literate

program group would be perceived as less difficult than the perceptions of the

traditional program group. The literate program group rated the level of

103

difficulty as much less difficult than did the traditional program group. Group

means indicated that the perception difference was 1.19 levels of difficulty more

difficult for the traditional program group (2.22) than it was for the literate

program group (3.41). No tests for significance were performed.

DISCUSSION

The results of Experiment Three also indicate that the Lit style literate

programs are a more natural form for formatting and documenting code which

are superior to traditional methods in assisting with program comprehension.

Results also indicate that program comprehension is improved by at least three

measures: ability to effect a solution (indicative of high comprehension due to

successful application of the learned concepts); ability to correctly recall and

describe the purpose of the program, the missing portions of the program, and

several specifics about the program as written (modified CLOZE (Entin, 1984;

Taylor, 1953) measures of comprehension); and amount of time required to

effect a solution.

The percentage of intermediate subjects finding a solution was much

lower than it was in Experiments One and Two. This is probably due to the

complexity of the material (recursive descent parsing is not a simple concept,

per -se) and the small amount of time allotted for the experiment. Several

subjects noted on the post-experiment questionnaire that there was not enough

time to complete the experiment. Another possibility is that, at this point in their

104

familiarity with computer programming, the novel presentation paradigm,

indentation, and augmented documentation were so much different from what

the intermediate subjects tend to think of as a program, that it took time to

adapt to the literate programs and to be able to utilize the information

contained therein.

The results are encouraging. Intermediate subjects given literate

programs also significantly outperformed intermediate subjects given standard

programs. In addition, the comments of several subjects that were given the

traditional programs underscore the need for an altered paradigm that can

assist in program comprehension. The type of problem (recursive descent

parsing) requires either explicit documentation of data flow and control flow, or

the ability to do extensive symbolic computation and a time consuming code-

walkthrough of the algorithm, in order to find the problem. The literate

programs had the documentation, and the subjects with the traditional

programs were forced to take the second, more time consuming, avenue of

program maintenance. For example, subject 28 wrote:

The depth of the calling [sequence] where the missing procedure
should have been [contributed most to the difficulty of modifying
the program]. (I had to trace the program[s recursive calls]
several levels deep.)

Subject 31 commented:

I am not sure that I finished doing the modifications or not
because too many functions [had] to [be] chase [d] through, so it
was hard to keep track.

And subject 34 suggested that the problem could not be solved unless the

subject could run it and observe the run time behavior to determine the

problem with the program.

105

In summary, Experiment Three supports the hypothesis that programs

should be written in a different format. The Ut style programming format is one

such possibility which has now been shown to be significantly more

comprehendible than the format of the traditional programs used in this study.

Because none of the subjects had prior experience with Ut style literate

programs, the results of this study are very encouraging. In Experiments One

and Two subjects had familiarity with both traditional modular programming and

literate programming using the Ut system. In experiment three, subjects had no

experience only with Lit style programs, yet a large percentage of them were

able to effectively utilize the programs' comprehension aids for problem solving.

Because no additional instruction in the use of literate programs was given to

the subjects, this suggests that the Ut presentation paradigm is a more natural

form for information transfer which is superior to that of traditional modular

program listings. In addition, the subjective evaluation of many of the subjects

supports the ideas on which literate programming is based, and anecdotal

commentary by the subjects points directly to some of the flaws of the

traditional programs, and some of the strengths of the literate programs

suggested by the research hypothesis.

106

For future research with intermediate programmers, it would be

interesting to see if the percentage of subjects finding a solution to a problem

in an unfamiliar task domain would be about the same as the percentage that

found a solution in this experiment. Such a finding would be consistent with the

finding in the novice experiments (Experiment One and Experiment Two), and

could suggest new research questions for exploration; in particular, can the

inclusion of certain types of documentation ameliorate or extinguish the

maintenance problems associated with lack of task domain familiarity (see the

discussion section of Experiment Two for more suggestions).

CHAPTER VII

CONCLUSIONS

The results of all three experiments indicated that Lit style literate

programs greatly enhance computer program comprehension. This study

emphasized the use of typographic style, program organization, and

documentation that have been empirically shown to assist in program

comprehension, and demonstrates through empirical studies that application of

these concepts in an automated system for program design and maintenance

significantly impacts program comprehension in a positive manner.

GENERAL PRINCIPLES FOR ASSISTING PROGRAM COMPREHENSION

The Lit style literate programming format shows that the use of the

following principles, when incorporated into a program presentation paradigm,

significantly aid computer program comprehension.

(1) Macro typographic principles including:

a) Make obvious the components and organization of the program

b) Identifying the purpose and use of each program component

c) Make the program easy to browse and readable by using a

familiar information-transfer paradigm (i.e., a book)

d) Identify and document the control flow of the program

108

e) Identify and document the data flow of the program

f) Provide cues to enable non-linear code searches (e.g., Table of

Contents, Index, cross reference listings, etc.)

(2) Micro-typographic principles including:

a) Make obvious the logical sections of program modules using

highlighting.

b) Use spatial cues and white space to indicate statement groupings

and separation.

c) Use point size changes, white space, and highlighting to make the

control flow and information flow within and between modules

obvious.

d) Use point size changes, white space, and highlighting to indicate

separations in program sections.

e) Identify the use and purpose of each section.

f) Use consistent indentation for language constructs.

(3) Documentation principles including:

a) Explicitly document the usage of variables.

b) Explicitly document module declaration and usage.

c) Explicitly document all subroutine and function calls made by

every routine.

d) In each module, explicitly document which subroutines and

functions call the module.

109

e) Explicitly document the algorithms in use.

f) Explicitly document control and information flow within and

between modules.

g) Include design history documentation.

h) Include anticipatory documentation.

i) Explicitly document any obscure language features that are being

used to implement the program.

j) Include ample task domain information, examples, and

documentation that explicitly links the domain model to the

program model, so that programmers with little or no familiarity

with the task domain can perform program maintenance.

k) Allow for inclusion of graphical documentation such as equations,

pictures, tables, and charts; this type of information should be

included where a written description can't fully convey the

concepts, layout, usage, or relationships without excess verbiage.

For more specific information on the document formatting conventions

used by Ut, see Appendix L.

CHAPTER VIII

DISCUSSION

The results indicate that program comprehension is improved based on

at least two measures: ability to effect a solution (indicative of high

comprehension due to successful application of the learned concepts); and

ability to correctly recall and describe the purpose of the program, the missing

portions of the program, and several specifics about the program as written

(modified CLOZE (Entin, 1984; Taylor, 1953) measures of comprehension).

Although not explicitly part of the research hypothesis, use of Lit style programs

also reduced the time needed for program comprehension in Experiment 3.

The most encouraging facet of these experiments is that significant results were

obtained when the statistical power to detect such effects was quite low due to

the sample sizes.

It is also interesting to note that the largest difference between the

groups given the literate programs and the groups given standard modular

programs was in the group working with an unfamiliar task domain. As has

been noted, the development of a domain model and the ability to link the

domain model with the program model to form the global model of the program

is essential to program comprehension. Apparently, the literate program

allowed more subjects to form a global model and make the required

111

modifications; the subjects with the non-literate programs apparently could not

develop a global model and thus were unable to make the required

modifications. This is impressive, in that both groups overwhelmingly rated the

problem description as difficult to understand, and as a hinderance to problem

solving. Yet, the literate program group was able to overcome these difficulties

and 60 percent found a solution. This indicates that the literate program did, in

fact, contain features which assisted the programmer in understanding both the

domain model and the program model, and assisted in linking up these two

models into a global model of program design. Even more impressive is that

the global model formed by 60 percent of the subjects who were given literate

programs allowed them to make the required modifications to the program in a

very short time period.

Additionally, the subjective evaluation of many of the subjects supports

the ideas on which literate programming is based; that understanding the task

domain and the programming domain and the link between the two facilitates

comprehension. Anecdotal commentary by the subjects points directly to some

of the flaws of the traditional programs, and some of the strengths of the literate

programs suggested by the research hypothesis.

The implications for the use of Ut style literate programming are

wide-ranging: The time that is currently devoted to program maintenance

activities may be substantially reduced; Program development and debugging

activities would be assisted by the Lit programming paradigm; And,

112

programmers modifying programs that model unfamiliar task domains may be

substantially enabled if the program being modified is written as a literate

program. Companies could require less familiarity with the task domain on the

part of their programmers. Educators could present students with more

complex programs than the usual simple examples used for teaching. These

examples could be more complex programmatically and algorithmically. The

choice of the task domain would not have to be limited to the simple examples

of scientific problems currently used in most curricula. Non-computer scientists

could understand (and maybe even modify) applications for their own use, or

for the purposes of verifying methodology and application for a particular

purpose, or just to satisfy curiosity. Most importantly, the results of this study

suggest that maintenance programmers can be significantly enabled by Ut style

literate programs. This will have a direct impact on programmer productivity; it

should increase significantly. Ute rate programs are easier to comprehend and

thus easier to maintain. Since maintenance is the largest percentage of the

software development cycle, reducing the time spent in the maintenance

portion of the development cycle should significantly decrease the overall

expense of the cycle, and thus improve the profit margin of software for

software developers.

Improving the way programs are written using expository writing as the

model for development of computer programs may drastically change the way

programs are written and read; changes that will help remove some of the

113

mysticism that surrounds programmers and programming. Writing programs

which are viewed as expository technical writing describing a solution to a

problem is preferable to writing them such that only the original programmer

can hope to make sense of the program, and then only if he/she has been

working on it steadily.

On the down side, it does take more time to produce a literate program.

Much of this may be due to the demanding housekeeping tasks required of the

programmer, such as keeping the documentation and code synchronized. In

addition, there are very few programming tools which are designed to facilitate

program comprehension. I suggest that many comprehension problems could

be overcome if tools, designed using empirically derived principles for

facilitating program comprehension, were developed and integrated in the

standard environments of computer programmers. For example, a language

intelligent (not just sensitive) editor could automatically highlight and indent

control structures consistently, create a table of contents, cross reference

guides, and an index as the programmer types in the code. This could be

integrated into a programming environment that would allow the programmer to

program in a way which is best for them (e.g., allowing focused, browsing,

top-down, and bottom-up searches of code within the editor, etc.). Many

programming systems do address some of these issues, but I believe the main

reason programming is still such a difficult task is the lack of adequate

programmer productivity and support tools, and reliance on an outdated and

114

informationally deficient programming paradigm which does not assist

programmer comprehension strategies. Systems like Lit can have a profound

effect on program comprehension, and thus on programmer productivity.

Automating the formatting and presentation of computer programs would allow

programmers to concentrate on programming. -Unlike past approaches to

improving the presentation paradigm, the Ut approach would not add to the

cognitive load of the programmer the language independent typographic style

principles that must be used to produce program listings that assist with

program comprehension.

CHAPTER IX

FUTURE DIRECTIONS

There are many questions related to program comprehension that are

not addressed by the current studies. It is my hope to address the question of

how to incorporate information delivery technologies with literate programming

such that entire programming systems are aids in program comprehension.

envision the incorporation of Ut style literate programming into a CASE

framework in which individual tools cooperate through an object messaging

system to provide the programmer with a comprehensive programming

environment that assists in the design, coding, testing, documenting, and

maintenance of computer programs.

As additional empirically derived principles related to information­

presentation and content are identified, it will become more important to

address programming as a system of complex, interrelated activities all of which

must be enabled through the use of technology.

For example, how should a flexible code browser be designed? Should

the program document contain all of the textual, graphical, and other

information for a program? Or, should programs be viewed as hypertext

documents with links to graphical and other pieces of information that can be

browsed on demand? Should literate programming systems use an object

116

database model to store and retrieve program fragments using browsers that

allow the programmer to control the presentation of information on an as

needed basis? These questions, and many other like them, must be addressed

before programmer productivity can be significantly increased.

Finally, not all of the typographical style elements identified by Oman and

Cook (1990b) are currently implemented in the Ut system; more will be added

as it is determined which elements aid in program comprehension, and which

elements or combinations of elements may detract from program

comprehension of Ut style programs due to information overload.

All of the above questions present serious challenges to the

experimenter. It is my hope to investigate each of the ideas in future studies,

and to modify the Lit system to incorporate each of the elements that are found

to enhance programmer comprehension strategies; hopefully, the end result will

be a system that assists in most program development and maintenance

activities.

REFERENCES

Adelson, B. (1981). Problem Solving and the Development of Abstract
Categories in Programming Languages. Memory and Cognition, 9,
422-433.

Adelson, B., Uttman, D., Ehrlich, K., Black, J., & Soloway, E. (1985). Novice­
Expert Differences in Software Design. In Human-Computer Interaction,
B. Shackel (Ed.). 473-478.

Anderson, J. R. (1980). Cognitive Psychology and its Implications. New York;
W. H. Freeman.

Basili, V. and Mills, H. (1982). Understanding and Documenting Programs. IEEE
Transactions on Software Engineering, 270-283.

Beck, K and Cunningham, W. (1987). The Uterate Program Browser. Tektronix
Technical Reports CR-86-52.

Bendifallah, S. & Scacchi, W. (1987). Understanding software maintenance
work. IEEE Transactions on Software Engineering, March, 311-323.

Bertholf, C. (1989). Ut: A Language Independent System for Abstraction
Oriented Uterate Programming. Academic Computing SeNices Technical
Documents, Portland State University.

Brooks, R. (1983). Towards a Theory of the Comprehension of Computer
Programs. International Journal of Man-Machine Studies, 18, 543-554.

Chase, W. & Simon, H. (1973). Perception in chess. Cognitive Psychology, 4.
55-81.

Cunningham, W. and Beck, K. (1987). Scroll Controller Explained. Tektronix
Technical Reports CR-86-51.

DeGroot, A. (1965). Thought and Choice in Chess. Mouten: Paris, France.

Egan, D. & Schwartz, B. (1979). Chunking in recall of symbolic drawings.
Memory and Cognition, 7. 149-158.

118

Entin, E. B. (1984). Using the GLOZE Procedure to Assess Program Reading
Comprehension. Papers of the ACM SIGCSE Technical Symposium on
Computer Science Education, 15. Philadelphia: ACM Press. 44-50.

Ehrlich, K. Soloway, S. (1984). An Empirical Investigation of the Tacit Plan
Knowledge in Programming. In Human Factors and Computer Systems,
J.C. Thomas and M.L. Schneider (Eds.) Norwood, NJ: Ablex. 113-133.

Fjeldstad, R. K. and Hamlen, W. T. (1983). Applications program maintenance
study: Report to our respondents. Tutorial on Software Maintenance, G.
Parikh & N. Zvegintzov (Eds.), 13-27. IEEE/CS Press, Silver Spring, Md.

Gauthier, R. & Ponto, S. (1970). Designing Systems Programs, Prentice-Hall,
Englewood Cliffs, N.J.

Hamlet, D. (1977). Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering, 3(4). 279-290.

Hoare, C. (1973) Hints on Programming Language Design. Invited address at
ACM SIGACT/SIGPLAN Symposium on Programming Language Design.

Kernighan, B. W. & Plauger, P.J. (1974). The Elements of Programming Style.
McGraww-Hill, New York, NY.

Kim, J. & Lerch, F. (1992). Toward a Model of Cognitive Process in Logical
Design: Comparing Object-Oriented and Traditional Functional
Decomposition in Software Methodologies, in P. Bauersfeld, J. Bennet
and G. Lynch (Eds.), Proceedings of CHI'92: Human Factors in
Computing Systems. Monterey, CA. 489-498.

Knuth, D. (1984). Literate Programming. The Computer Journal, 27(2),
97-112.

Koenemann, J. and Robertson, S. P. (1991). Expert Problem Solving Strategies
for Program Comprehension. Proceeding of CHI'91: Human Factors in
Computing Systems. 125-130.

Korson, T. & Vaishnavi, V. K. (1986). An empirical study of the effects of
modularity on program modifiability. In E. Soloway & S. Lyengar (Eds.):
Empirical Studies of Programmers. First Workshop. 168-186.

Ledgard, H. & Tauer, _J. (1987). Professional software, Volume II, Programming
Practice. Addison-Wesley: Reading, Mass.

119

Levi, S. (1987). WEB adapted to C, another approach. TUGboat, 8(1), 12-14.

Uttman, D., Pinto, J., Letovsky, S., and Soloway, E. (1986). Mental Models and
Software Maintenance. In E. Soloway & S. Iyengar (Eds.): Empirical
Studies of Programmers. First Workshop. 80-98.

Love, T. (1977). An experimental investigation of the effect of program structure
on program understanding. ACM SIGPLAN Notice 12(3). 105-113.

McKeithen, K., Reitman, J., Rueter, H., and Hurtle, S. (1981). Knowledge
organization and skill differences in computer programmers. Cognitive
Psychology, 13. 307-325.

Miara, R. J., Musselman, J. A., Navarro, J. A. & Shneiderman, B. (1983).
Program indentation and comprehension. Communications of the ACM,
26(11). 861-867.

Oman, P and Cook, C. (1990a). The Book Paradigm for Improved Maintenance.
IEEE Software 7(1). 39-45.

Oman, P. and Cook, C. (1990b). Typographic Style is More than Cosmetic.
Communications of the ACM, 33(5), 506-519.

Parikh, G. & Zvegintzov, N. (1983). The world of software maintenance. In
Tutorial on Software Maintenance, G. Parikh & N. Zvegintzov, Eds. 1-3.
IEEE/CS Press, Silver Spring, Md.

Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM, 5(12). 1 053-1 058.

Pennington, N. (1987). Comprehension Strategies in Programming. Empirical
Studies of Programmers. Second Workshop. Norwood, NJ: Ablex.
100-113.

Rapps, S. & Weyuker, E. J. (1985). Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, 11(4). 367-375.

Ratcliffe, B. & Siddiqi, J. (1985). An Empirical Investigation Into Problem
Decomposition Strategies Used in Program Design. International Journal
of Man-Machine Studies, 22(1). 77-90.

Rosson, M. B. & Alpert, S.R. (1990). The Cognitive Consequences of Object­
Oriented Design. Human Computer Interaction, 345-380.

120

Rosson, M. B. & Gold, E. (1989). Problem-Solution Mapping in Object-Oriented
Design. In Object-Oriented Programming: Systems, Languages and
Applications: OOPS LA '89 Conference Proceedings, N. Meyrowitz {Ed),
7-10.

Santa, J. L. (1977). Spatial Transformations of Words and Pictures. Journal of
Experimental Psychology: Human Learning and Memory, ???, 418-427.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.
International Journal of Computing and Information Science, 5(2).
123-143.

Shneiderman, B. and Mayer, R. (1979). Syntactic/Semantic Interactions in
Programmer behavior: A Model and Experimental Results. International
Journal of Computer and Information Sciences, B. 219-233.

Shneiderman, B. & McKay, D. (1980). Experimental Investigations of Computer
Program Debugging and Modification. Software Psychology. Winthrop
Publishers, Cambridge Mass. 72-7 4.

Sewell, E. W. (1987). How to MANGLE your software: the WEB System for
Modula-2. TUGboat, 8(2). 118-122.

Sheil, B. A. (1981). The psychological study of programming. Computing
Surveys, 13(1). 1 01-120.

Softky, S. (1983). The ABC's of Developing Software. Menlo Park, Ca: ABC
Press.

Soloway, E., Bonar, J., Ehrlich, K. (1983). Cognitive Strategies and Looping
Constructs: An Empirical Study. Communications of the ACM, 26(11).
853-860.

Soloway, E. and Ehrlich, K. (1984). Empirical Studies of Programming
Knowledge. IEEE Transactions of Software Engineering, 1 0(5), 595-609.

Taylor, W. (1953) Cloze Procedure: A New Tool for Measuring Readability.
Journalism Quarterly, 30, 415-433.

Thimbleby, H. (1986). Experiences of 'Uterate Programming' Using cweb.
Computing Journal, 29(3), 201-211.

Van Dijk, T. and Kintsch, W. (1983). Strategies of Discourse Comprehension.
New York; Academic Press.

121

Wiedenbeck, S. (1986). Processes in Computer Program Comprehension. In E.
Soloway & S. Lyengar (Eds.): Empirical Studies of Programmers. First
Workshop. 48-57. Norwood, NJ: Ablex.

Wiedenbeck, S. and Scholtz, J. (1989). Beacons: A Knowledge Structure in
Program Comprehension. In G. Salvendy & M. Smith (Eds.): Designing
and Using Human-Computer Interfaces and Knowledge Based Systems.
Amsterdam: Elsevier. 82-87.

Zehr, W. (1992). CASE Technology: The Shift Towards Immediate Gratification.
Invited Presentation at OACIS '92: Oregon Advanced Computing
Conference.

W~O.:I 1N3SNOO lN3WI~3dX3

V XION3ddV

Consent to Participate in an Experimental Study

Title of Proposed Study: Program Comprehension of Literate
Programs by Novice, Intermediate and
Expert Programmers

Investigator: Christopher F. Bertholf

Invitation to Participate:
You are invited to participate in this research study because you
are enrolled in an undergraduate computer science course and you
fit into one of the following catagories:
1. You are a novice programmer in an introductory programming

class
2. You are an intermediate or expert programmer with 2 or more

years of computer programming experience.

Purpose of the Study:
This research investigates program comprehension of Literate
Programs as compared with comprehension of traditional structured
programs.

Explanation of Procedures:
You will be asked to read a program and determine what functions or
subroutines are missing, and where the calls to those routines
should go in the main program. You will also be asked to generate
the missing function or subroutine, and insert the missing call(s)
in the main driver of the program. Your name will not be associated
in any way with the testing materials; it is completely anonymous.
After completion of the test, data will be compiled from your and
other tests, a statistical analysis will be performed, and the data
will be used for a Masters Thesis in Computer Science.

You will be paid $5.00 for your participation in the study. The
study will not exceed one hour in length.

Potential Risks and Discomforts:
The methods used in this experiment present no danger to you or any
other persons.

Potential Benefits:
You will receive $5.00 for participating in this study. In
addition, it is hoped that the results of this study will aid in
providing programmers with a programming paradigm which results in
more readable, more maintainable, and more understandable computer
programs.

Assurance of confidentiality:
There will be absolutely no data which connects you to the testing
materials. The study is completely anonymous in this respect.

123

Withdraw! from the Study:
Participation is voluntary. Your decision whether or not to
participate will not affect your present or future relationship
with Portland State University. If you decide to participate, you
are free to withdraw your consent and to discontinue participation
at any time.

Offer to Answer Questions:
If you have any questions, please do not hesitate to ask. If you
think of questions later, please feel free to contact the
investigator below.

If you have any additional questions concerning the rights of
research subjects, you may contact the Human Subjects Research
Review Committee, Office of Grants and Contracts, 303 Cramer Hall,
PSU. Telephone: (503) 725-3417.

YOU ARE VOLUNTARILY MAKING A DECISION WHETHER OR NOT TO
PARTICIPATE. YOUR SIGNATURE INDICATES THAT YOU HAVE DECIDED TO
PARTICIPATE HAVING READ THE INFORMATION PROVIDED ABOVE. YOU WILL BE
GIVEN A COPY OF THIS CONSENT FORM TO KEEP.

Signature of Subject

Signature of Investigator

Investigator: Chris F. Bertholf
725-3367

Date

Date

(503) 725-4052 or (503}

124

1N3Wil:l3dX3 3Hl 01 NOI!OnaOl:llNI

8 XION3ddV

Introduction

The following experiment is designed to measure program comprehension of Uterate
programs versus programs written with a standard structured programming methodology.

Please follow the instructions below EXACTLY. You will be asked to fill out a report at the
end of the experiment.

Instructions

You have been handed a computer program. The program is not finished. One or more
lines of code are missing from the main program. Additionally. one or more subroutines
or functions are missing from the program. Your job is to complete the program. To do
this, you must determine what subroutines or functions are missing, and which lines of
code from the main program are missing. You must then write the missing subroutine(s)
and/or function(s) and insert the routines and the missing calls to the routines in the
appropriate place in the unfinished program.

With each program you have also been given a problem description that spells out what
the program is supposed to do, the input required, and the output specifications.

A programming language reference is available, should you need it to complete this
experiment. It is attached to this packet following the program.

There is a 60 minute time limit to complete the modifications to each program. If you have
not completed the modifications when the time limit is up, do not worry, this is an
expected result for some of the programs.

When you finish, the experimenter will record the elapsed time it took you to effect a
solution. You will be asked to answer some questions about the program and the
experiment. If you finish prior to the time limit, be sure to have the experimenter note the
time it took you to complete the program modifications.

126

3HIVNNOilS3nO lN3WIH3dX3-lSOd

~ XION3ddV

QUESTIONAIRE

Questions about the program and the experiment:

Did you use the language reference? --------

Briefly describe what the program is supposed to do?

How many subroutine{s} or function(s} did you feel were missing? ____ _

Briefly describe the purpose of the subroutine{s} and/or functions(s}
that were missing?

On a scale from 1 to 5, 1 being totally incorrect, 5 being totally correct,
rate the correctness of the modifications you made to the main program. Do
not ignore the possibility of syntax errors.

Totally incorrect
1 2 3 4

Totally correct
5

On a scale from 1 to 5, 1 being totally incorrect, 5 being totally correct,
rate the logical correctness of the subroutine(s} and/or functions you wrote.
Ignore the possibility of syntax errors.

Totally incorrect
1 2 3 4

Totally correct
5

In your opinion, how difficult was it to make the modifications?

very difficult somewhat difficult difficult somewhat easy very easy

Please circle the features of the program that contributed most to the
difficulty of modifying the program.

Documentation
Code style
Index or Table of Contents
Input specifications

Other (indicate}

Problem description
Indentation
Program format
Output specifications

128

Please circle the features of the program that contributed most to the
ease of modifying the program.

Documentation
Code style
Index or Table of Contents
Input specifications

Other (indicate)

Problem description
Indentation
Program format
Output specifications

Were the instructions clear and easy to understand?
(Yes/No) ___ _
If NO, How could the instructions have been improved?

Was the program problem description easy to understand?
(Yes/No) ___ _
If NO, How could the problem description have been improved?

Were the program input specifications easy to understand?
(Yes/No) ___ _
If NO, How could the input specifications have been improved?

Were the program output specifications easy to understand?
(Yes/No) ___ _
If NO, How could the output specifications have been improved?

If you DID NOT COMPLETE the modifications:

Explain why it was difficult to complete the modifications:

129

==========Filled out by the experimenter===============

Elapsed time to complete the experiment after reading the instructions:

Other notes:

130

(~ lN3WI~3dX3 WO~.:I)
rl'fv~so~d 31 VH3lll 3ldWVX3

a XIGN3ddV

132

Chris F. Bertholf

Portland State University

LeontiefModeling

Leontieflnput/Output Analysis of Multiple Industry Model

Revision: 1.0

1 December 1991

Introduction

One interesting application of matrices is the Lcontief Input-Output model, named for Wassily Leontief. The
model Leontief developed is useful for predicting the effects to the economy of of price changes or shifts in govern­
ment spending.

Leontief's work divided the economy into 500 sectors, wich was later reduced to a more manageable 42
departments of production. We can examine the worlcing of the model with a very simplified view of the economy.

nus program attempts to show a working three industry Leontief Input/Output model based on the mining,
manufacturing, and energy industry. The model uses several subroutines from the LINPACK Scientific Subroutine
Library for solving linear systems of equations.

133

-2-

[1.0.0] Three Industry Leontief Model

Suppose we consider a simple economy as being based on three commodities: the mining industry, the manu­
facturing industry, and the energy industry. Suppose further that production of one dollars worth of mining requires
$0.40 units from mining, $0.40 units from manufacturing, $0.20 units from energy; Production of one dollars worth
of manufactming requires $0.20 units from mining, $0.40 untis from manufacturing, and $0.20 units from energy.
Production of one dollars worth of energy requires $0.10 units from mining, $0.20 units from manufacturing, and
$0.40 units from energy. The following table summarizes this information:

_________________ ou~uts ________________ __

Inputs:

mining:
manufacturing:
energy:

mining

$0.40
$0.10
$0.20

energy manufacturing

$0.40
$0.20
$0.40

$0.20
$0.40
$0.20

Note that the sums of the columns need not add up to 1.00. This is because not all commodities or industries
are represented in this model In particular it is customary to omit labor from these models.

From the preceeding table we can fomi a matrix A called the technology matrix, (or the Leontief matrix):

[

0.4 0.4 0.2]
A= 0.1 0.2 0.4

0.2 0.4 0.2

For this simplified model of the economy, not all infoonation is contained in the Leontief matrix. In particular
each industry has a gross production, the gross production can be represented as a column matrix X:

X=[;:]
Where .x1 is the gross production from mining, .x2 is the gross production from manufacturing, and .x3 is the

gross production from energy. Those units of gross production not used by these industries are called surpluses. and
may be considered as being available for consumers. If we place the surpluses in a column matrix D, then the sur­
plus can be represented by the equation

x-Ax=D
which is equivalent to:

{1- A)x= D

where I is an identity matrix. This matrix equation is called the technology equation.

Note: An Identity matrix is a matrix in which every element is zero (0) except the elements on the diagonal,
which have the value one (1).

If we call the matrix formed by (I - A) the Technology Matrix, and we represent this quantity with T . we
can rewrite the equation as:

134

-3-

Tx=D

To find a solution to the system of equations there are several methods. The most straight-forward method is
to do gaussian elimination to solve the equation:

Tx=D

Not only is this the most straight-forward solution, but compared to the other obvious solution (compute
inverse of Technology matrix and multiply by D) it is far less expensive in terms of computational time.

Because the gaussian elimination problem has been solved by many programmers, we will use a library rou­
tine to do the factoring (decomposition) of the technology mattix (T), and another routine to solve the equation:

LUx=D

Where L is the lower triangular matrix and U is the upper triangular matrix found during decomposition of the
Technology Matrix (T). Because the matrix may be singular, or very close to singular (to the working precision of
the machine) we make sure that it is not before we solve the equation. nus is done by checking the return value of
the call to the routine that will do the decomposition on the technology matrix. If the value returned causes some
wonder as to whether or not the mattix may be singular to the working precision, or if the return value indicates that
there may be a divide by a zero pivot. we will ask the user if they would like us to check for singularity by estimat­
ing the condition number of the technology matrix. If the condition number is ok then we will go ahead and solve
the above equation, if not we exit the program.

The subroutine we need are part of the LINPACK Subroutine Library for Genreal Matrices. The routines we
will be using are SGECO (estimate the condition number of the matrix while decomposing it) and SGESL to solve
a system of linear equations decomposed into an LUx = D format.

For a description of the subroutines themselves, the user is refened to chapter one the Linpack User manual:
General Matrices.

135

-4-

[2.0.0] The main driver

The main driver simply defines the variables required to generate and solve the model; The Leontief matrix is
defined and initialized. the solution matrix (which contains the desired surplus production values) is defined and
intialized. and the technology matrix is then formed from the Leontief matrix.

Once the technology matrix has been formed (by calling the TecMat routine) the Linpack subroutine SGECO
is called to do the LU factorization of the technology matrix. If SGECO returns a non-zero value in the info variable.
there is a possibility that the matrix is singular to the working precision of the machine. or that there is a possibility
of a divide by zero (0) if SGESL is used to solve the system of equations. If the Info variable is not smaller then the
working precision of the computer. the Linpack routine SGESL is called to solve the system of equations. and the
results are printed on the terminal screen.

When Info is returned as non-zero. the user is asked if they wish to test for singularity. If the Matrix is singular
to the working precision of the machine. the user is told and the program aborts. If the test for singularity fails (i.e .•
the matrix is not singular) then the program continues and the SGESL routine is called to solve the system of equa­
tions.

General algorithm:

Calls:

Initialize Leontief Matrix
Initialize Production matrix
Transfonn Leontief matrix into Technology matrix
Call SGECO to factor the Mattix
If Tecnology matirix may be singular

Warn the user
Test for singularity
If the Thchnology matrix is singular

Tell the user
Abort the program

Endif
Endif
Call SGESL to solve the system of equations
Print the resulting solution

TecMat - routine to form the technology matrix
ReadAR - routine to read an array
PmWm -routine that prints the singular matrix warning message
PmSol - routine to print the solution

Library routines used
FROM THE UNPACK UBRARY
SGECO - Factor a matrix and estimate its condition number
SGESL - Solve a system of linear equations

Called by:
Operating system

136

Variables:
Mat - The technology matrix
Prod - The solution matrix
Info - Holds estimate of singularity

-5-

IPvt - LINPACK uses this to store pivot information
Work -Work array for LINPACK
LDM -The leading dimension of Mat
Dim -The Dimension of Work. Prod. and IPVf

Program Leontief
c
C This program tests several subroutines that were written to
C solve variable sized Leontief Inputft)utput economy models.
c
C Define the variables:
c

Real Mat(3.3). Prod(3). IPVf(3). Work (3). Info
Integer LDM. Dim
Character Real

C Initialize LDM and N to be 3. Also init REAL to be 'F'
Data LDM {3/. Dim {3/. RealfF I

C Read the Leontief matrix. product surplus array. and
C form the technology matrix

Call ReadAR(Mat.Dim.Dim)
Call ReadAR(Prod.l.Dim)

C Use UNPACK subroutine SGECO to do LU factorization of Mat
call SGECO (Mat.LDM.Dim.Ipvt.lnfo)

C Check for singularity and exit if singular
If (lnfo.NE.O.) Call Prn Wm(lnfo)

C Use UNPACK subroutine SGESL to compute [A]x = b
Call SGESL (Mat.LDM.Dim.Ipvt.Prod.O)

C Print the results
Call PmRes(Prod.Dim)

Stop
End

137

-6-

[3.0.0] Support Routines

The following routines are used to support the main driver. This chapter is divided into sections that are used
to manipulate data, read data, or write results out to the user.

The support routines consist of:

TecMat­
Read.AR­
PmWrn

PmRes-

routine to form the technology matrix
routine to read an array

routine to print a warning message and exit
if necessary
routine to print the results

All othec support routines are called from the UNPACK Scientific
Subroutine Library.

138

-7-

[3.1.0] Matrix manipulation routines

The following routine manipulates the Leontief matrix into a form that can be used to solve the system of
equations.

[3.1.1] TecMat: Form a Technology Matrix from a Leontief Matrix

The Leontief matrix is subtracted form the Identity matrix. which results in the Technology matrix.

An Identity matrix is a matrix in which all elements of the matrix are zero (0) except the elements on the diag­
onal, which have the value one (1).

It would be inefficient to generate an identity matrix and then call a subroutine to do matrix subtraction.
Instead. we can simulate the subttaction of a matrix from its identity matrix by realizing that the characteristics of an
identity matrix can be simulated using two do loops. When the looping variables used for each loop are equal, the
value of a corresponding element in an identity matrix indexed by those variables would be a one (1). When the
looping variables are not equal, the values of a corresponding element in an identity matrix indexed by these vari­
ables would be zero (0). This suggests that, given the dimensions of any square matrix, the following algorithm
would solve the problem of subttacting any it from its identity matrix.

General algorithm:

For Row index in [1 -· NDim] do
For Column index in [1 -· NDim] do

If (Row Index • Column index) (the diagonal elements)
Mattix element= 1 - Mattix Element

Else
Mattix element= 0 - Mattix element

Endif
EndDo

EndDo

Calls: None
Called by: The Main Driver

Arguments:
LeoMat - The Leontief Mattix to be subttacted from the identity matrix
RCDim - The row and column dimension of the Leontief matrix

Local Variables:
Rowldx -Row index
CoUdx - Column index

139

-8-

[3.2.0] Input routines

The following routines are used to read infonnation from the user. Information is assumed to be entered from
the terminal. On systems with input redirection (DOS, UNIX, Minix, OS/2, Xenix, etc.), the information can be
stored in a file and redirected to the program as input.

[3.2.1] Rea dAr: Read a two dimensional array of unknown size

1bis routine reads a two dimensional array with unknown Row and Column size. Reading is done using an
implied do loop, which is based on the column size of the array. Unfonnatted input is used to give the user flexibility
of input fonnat. The only requirement is that data values for a row of data be consecutive and be seperated by at
least one space.

The information to be read is assumed to be REAL data.

General algorithm:

For Row index in [1 •.• Row dimension] Do
Read a row of the matrix

Calls: None
Called by: The Main Driver

Arguments:
InArray - Array variable to read infonnation into
Rows - Numbec of rows in the array
Cols - Number of columns in the array

Local Variables:
Rowldx -Row index
Colldx - Column index

c

Subroutine ReadAR(Array,Rows,Cols)
Integer Rows, Cots, Rowldx, Colldx
Real Array(Rows,Cols)

C Given the numbers of rows and columns in any two dimensional
C array, read the array into the mattix row by row. Assume the
C input file is in no specific format.
c

Do 10 Rowldx = I .Rows
10 Read(*,*) (Array(Rowldx,Colldx), Colldx = l,Cols)

Return
End

140

-9-

[3.3.0] Output Routines

1be following routines are used to print warning messages or to print the results of the calculations perfonned
by the program.

[3.3.1] PrnRes: Print the results of the calculations

PmRes prints the resulting Product array when the solution has been found.

General algorithm:

For each element in the array
Write the element number and its value

Calls: None
Called by: The Main Driver

Arguments:
Prod - The product array
Dim. - The dimension of the product array

Local variables:
Index - The index into the array

c

Subroutine PmRes(Prod.Dim)
lntegec Dim, Index
Real Prod(Dim)

C Given the result array from solving the system of equations that
C make up the Leontief model and its dimension, print the results
C out for the usee.
c

Do 10 Index= I ,Dim
10 Print 20, Index, Prod(I)
20 FORMAT {lx,'X(' ,12,')' ,3x,'=' ,3x.f10.4)

Return
End

141

-10-

[3.3.2] PrnWrn: Warn User and Exit If Matrix is Singular

This routine warns the user that the array might be singular, checks the condition number passed to the rou­
tine, and if it is smaller than machine accuracy (i.e., the condition number + 1 is indistinguishable from the condition
number) the program is aborted.

General algorithm:

Print the warning message
If Check for singularity is true

inform user of singularity
exit program

Endif

Calls: None
CaUed by: The Main Driver

Arguments:
Info - Condition number estimate of the array (from SGECO)

c

Subroutine PmWm(lnfo)
Real Info

C Print a warning message to the user indicating the system of
C equations may not be solvable. Then test to see if the
C decomposition routine returned a condition number that
C indicates the matrix may be singular to the working precision
C of the machine. If it is, tell the user and abort the program.
c
C Print warning message
c

c

Print •, 'Matrix may be singular to working precision'
Print •, 'or there is a possibility of a divide by zero'
Print •, 'dming the calculation of the resulL'
Print •, 'Checking for singularity ... '

C Check condition number estimate and exit if matrix is singular
c

if (lnfo.EQ.InfO+ 1) Then
Print •, 'Matrix is singular to working precision: aborting.'
Print•
Print •, 'Execution completed, no results generated.'
Stop

Endif

Return
End

142

[1.0.0] Three Industry Leontief Model
[2.0.0] The main driver • • • • •
[3.0.0] Support Routines • • . . .
[3.1.0] Matrix manipulation routines .

-11-

Table of Contents

[3.1.1] TecMat: Fonn a Thchnology Matrix from a Leontief Matrix
[3.2.0] Input routines • • • • • • . • . .
[3.2.1] ReadAr: Read a two dimensional array of unknown size
[3.3.0] Output Routines . • • . • • • • . . • •
[3.3.1] PmRes: Print the results of the calculations
[3.3.2] PmWm: Warn User and Exit If Matrix is Singular

2
4
6
7
7
8
8
9
9

10

143

(~ lN3WI~3dX3 WO~:J)
WV1:190~d 1VNOI110V1:11 31dWVX3

3 XION3ddV

Leontief Modelling Page: 1

Program Leontief
c
C This program tests several subroutines that were written to
C solve variable sized Leontief Input/Output economy models.
c
C Define the variables:
c

Real Mat(3,3), Prod(3), IPVT(3), Work (3), Info
Integer LDM, Dim
Character Real

c Initialize LDM and N to be 3. Also init REAL to be 'F'
Data LDM /3/, Dim /3/, Realf'F'/

C Read the Leontief matrix, product surplus array, and
C form the technology matrix

Call ReadAR(Mat,Dim,Dim)
Call ReadAR(Prod,l,Dim)

c Use LINPACK subroutine SGECO to do LU factorization of Mat
Call SGECO (Mat,LDM,Dim,Ipvt,Info)

c Check for singularity and exit if singular
If (Info.NE.O.) Call PrnWrn(Info)

c Use LINPACK subroutine SGESL to compute [A)x
Call SGESL (Mat,LDM,Dim,Ipvt,Prod,O)

c Print the results
Call PrnRes(Prod,Dim)

Stop
End

D

145

Leontief Modelling Page: 2

c

Subroutine ReadAR(Array,Rows,Cols)
Integer Rows, Cols, Rowidx, Colidx
Real Array(Rows,Cols)

c Given the numbers of rows and columns in any two dimensional
c array, read the array into the matrix row by row. Assume the
C input file is in no specific format.
c

Do 10 Rowidx = 1,Rows
10 Read(*,*) (Array(Rowidx,Colidx), Colidx

Return
End

1,Cols)

146

Leontief Modelling Page: 3

Subroutine PrnRes(Prod,Dim)
Integer Dim, Index
Real Prod(Dim)

c
c Given the result array from solving the system of equations that
c make up the Leontief model and its dimension, print the results
C out for the user.
c

Do 10 Index = 1,Dim
10 Print 20, Index, Prod(!)
20 FORMAT (1x,'X(',I2,') ',3x,'=',3x,f10.4}

Return
End

147

Leontief Modelling Page: 4

c

Subroutine PrnWrn(Info)
Real Info

C Print a warning message to the user indicating the system of
C equations may not be solvable. Then test to see if the
C decomposition routine returned a condition number that
c indicates the matrix may be singular to the working precision
c of the machine. If it is, tell the user and abort the program.
c

c
c Print warning message
c

c

Print *, 'Matrix may be singular to working precision'
Print *, 'or there is a possibility of a divide by zero'
Print *, 'during the calculation of the result. 1

Print*, 'Checking for singularity ... 1

C Check condition number estimate and exit if matrix is singular
c

If (Info.EQ.Info+l) Then
Print*, 'Matrix is singular to working precision: aborting.'
Print *
Print*, 'Execution completed, no results generated.'
Stop

End if

Return
End

148

SNOilV~I:II~3dS ~ lN3WU:I3dX3

:1 XION3ddV

Program Specifications

You are to write a program which solves a multiple industry Leontief Input/Output model.
The program will be tested with a three industry model, and should have a main program
that tests this capability.

Write the subroutines such that they will work for any size model. Write the main program
in such a way that changing the model size requires changing values in a minimum of
places.

The FULL Leontief model originally had the economy divided into over 500 sectors, but
has since been reduced to a more manageable 42 departments of production.

The program subroutines should handle variable sized models up to
42 X 42.

If the system of equations is a poor model, the possibility exists that the system will be
singular, and thus not solvable. Test for this possibility and abort the program if the
system of equations is singular to machine precision.

The system of equations can be solved using the formula:

x - Ax = D or Tx = D.

Where x is the gross production array, A is the Leontief Matrix, and D is the desired
surplus production, and Tis the technology matrix of A (see below how to form the
Technology matrix of A).

The most straight forward method is to use the second equation above using the
technology matrix and then use gaussian elimination to solve the system of equations.

Use the following equations to form the technology matrix from the Leontief matrix that
is read in.

T = 1-A

where I is the identity matrix of A.

Use the UNPACK subroutine library to solve the system of equations that make up the
model. The Routines SGECO and SGESL should be used to factor and solve the system
of equations (respectively).

150

Required processing

1. Read the data values for the Leontief matrix.

2. Read the data values for the gross production array.

3. If possible, solve the resulting system of linear equations (as described in the
program specification) and print the results. Otherwise, print a meaningful error
message and exit.

151

Input and Output Requirements

1. The program will read all data from the keyboard.

2. The program will write all data to the terminal.

Input consists of:

1. Data for a square matrix (the Leontief input/output model values).
2. A one row matrix with as many columns as the model has rows (the gross

production array).

Make no assumptions about the format of the input data other than the
assumption that the user will always supply the data values seperated by at least
one space, the values will be consecutive columns of a single row, and there will
always be enough data to fill both arrays.

A graphic description of what the input might look like follows.

The Leontief matrix could look like:

or

value
value
value

value
value
value

value
value
value

value value value value value value value value value

The Gross Production matrix could look like:

or

value
value
value

value value value

For a system with 3 inputs and three outputs. ALL DATA IS REAL.

Output consists of either:

1. The solution to the model.

OR

2. An error message indicating that the technology matrix is singular to the
working precision of the machine.

152

SNOilV~I.:II~3dS £ lN3WII:I3dX3

9 XIGN3ddV

INSTRUCTIONS

You are to write a program that acts like a limited
desk calculator.

Use the c programming language. K&R style is expected.
DO NOT USE ANSI-C.

The calculator will allow for 26 variables to be
assigned values. The variable names are:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y, and z

For simplicity, you can assume the user always enters
the variable name in lower case. Variables are used in
expressions, and are the only thing allowed on the left hand
side of the assignment operator.

The operations the calculator will perform are

OPERATOR ACTION EXAMPLE

assignment X = 3, y = (3 +SAy- 4A(x I 2))
+ add 2 + 3, 3 + X

subtract 3 - 2, a - 3

* multiply 3 * 5.3, X * -y
exponentiate 3A31 4A(x*y)

() subexpression X = (y * (5 + X) I (zA(rfa)))

Additionally, operands may be signed (e.g., -5, -X, -(x*y))

The precedence of the operators is as follows:

assignment operator
sign operator
subexpression
exponentiate operator
multiply and divide operators
add and subtract operators

Precedence classes with two operators (such as add and
subtract) are evaluated from left to right (i.e., they have
equal precedence, and the left to right rule is used as a
secondary precedence rule in these cases).

Use a recursive descent parser/evaluator to implement
the program. There should be one procedure for each of the
operators in the precedence table above.

154

INPUT:

The user will enter a mathematical expression to be
evaluated. Numbers entered can be either integer or real.
All integer numbers are immediately converted to their real
equivalent for use in the calculations.

The user can enter as many expressions as they like,
one per line. Each expression must be terminated with a $
by the program after the user enters it. Use the dollar sign
as the base case on which to de-recurse and form the solu­
tion.

When EOF is reached, terminate the program.

OUTPUT:

The output to the user will always be the floating
point approximation of the answer to the expression entered,
or an error message indicating what was wrong with the
expression.

When finished evaluating an expression, print the
results of the calculation and then print out all variables
whose values are not equal to 0.0 (to remind the users which
variables have been set to a value othen than 0.0).

If a calculation was performed, it may in fact be cor­
rect. Always print the results of the calculation, and when
an error has occured, print the message:

The Results MAY BE INCORRECT

on the same line as the line that printed the answer. The
answer to a calculation should be printed as:

Ex:

The answer is <answer (not including the angle brackets)>

The answer is 125.76894

ERROR HANDLING:

The program should be able to detect at least:

Unablanced parenthesis
Syntax error

[e.g.,
[e.g.,

x = (y"'(z-5)
X = * 5)

You may also want to check that an expression is pre­
sent, and if not warn the user.

155

SNOilV01:1103dS ~ lN3WU:I3dX3

H XION3ddV

Program Specifications

You are to write a program which does the end of tenn grading for a class. Each student has 7 test or
assignment scores. which are wieght.ed unevenly. The program should compute the final grade for the stu­
dent based on the sum of the weighted test scores.

For each student compute or save the following data:

The numeric total grade (e.g. 96.1. or 78.6. or 85.0. etc.)
The letter grade:

A = 89.5 and above
B = 79.5- 89.4
c = 69.5- 79.4
D = 59.5- 69.4
F = 59.4 and lower

The swdents highest grade
The swdents lowest grade

For the entire class compute or save the following data:

The lowest grade in the class
The highest grade in the class
The average grade

The weights of the test or assignment scores are as follows:

Assignment 1 weight= .05
Assignment 2 weight= ;05
Assignment 3 weight= .10
Midtenn weight= .30
Assignment 4 weight= .10
Assignment 5 weight= .10
Fmal weight= .30

157

Input and Output Specifications

Input:

Input consists of one line per student fonnatted as follows:

Student name (First, Last)
Grades 1 -7

FORMAT=A40
FORMAT= 7(F5.1,1X) (decimal in data)

1be fonnat of the assignments and tests is as follows. The first three numbers on the input line are
student assignments 1 through 3 (respectively). The fourth number is the midtenn, followed by assign­
ments 4 and 5, and finally the last number is the final examination score.

Graphically, an input line looks like:

Students name Asgn1 Asgn2 Asgn3 Mdum Asgn4 Asgn5 Final

Output:

Headings which describe the entries in the colums below the heading

For each student (all infonnation on one line):
Student name (Fust. Last) FORMAT= A40.3X
Total numeric grade FORMAT= F5.1,5X
Letter grade FORMAT= 'Grade: ',lA
Highest grade FORMAT= 'Highest grade: '.F5.1,5X
Lowest grade FORMAT= 'Lowest grade: '.FS.l

Summary report (one per line after all sbldent information):
Lowest grade in the class FORMAT= /fLowest grade: ',F5.1
Highest grade in the class FORMAT= 'Highest grade: ',FS.l
1be class average FORMAT= 'Class average: ',FS.l

158

NOilnlOS WV1:190~d 3ldWVX3

I XION3ddV

Program Solution

The solution to the problem required writing the following routine:

Subroutine TecMat(LeoMat,RCDim)
Xnteger RCDim, Rowidx, Colidx
Real LeoMat(RCDim,RCDim)

c
c Given the dimensions of a square two dimensional Leontief
c matrix form a technology matrix by subtracting the Leontief
c Matrix from its identity matrix.
c
C Form the Technology matrix {I - A)
c

Do 20 Rowidx = 1,RCDim
Do 10 ColXdx = 1,RCDim

Xf (RowXdx.EQ.ColXdx) Then
LeoMat(RowXdx,ColXdx) = 1 - LeoMat(RowXdx,Colidx)

Else
LeoMat(RowXdx,colXdx) = o - LeoMat(RowXdx,colXdx)

End if
10 continue
20 Continue

Return
End

The call to the routine should have been placed in the main
driver of the program, directly following the two calls to
the routine that read the input arrays (ReadAr). It should
have been coded as:

Call TecMat(Mat,Dim)

160

(~ lN3~1H3dX3 ~01::1:0
1N3~n~oa ~V1:190Hd 31V1:13lll 3ld~VX3

r XION3ddV

aA Chris F. Bertholf
Q8 Portland State University
iP LeontiefModeling
aD Leontief Input/Output Analysis of Multiple Industry Model
iR 1.0
QT
QI Introduction
.PP
One interesting application of matrices is the Leontief Input-Output model,
named for Wassily Leontief. The model Leontief developed is useful for
predicting the effects to the economy of price changes or shifts in
government spending •

• PP
Leontief•s work divided the economy into 500 sectors, which was later reduced to
a more manageable 42 departments of production. We can examine the working of
the model with a very simplified view of the economy •

• PP
This program attempts to show a working three industry Leontief Input/Output
model based on the mining, manufacturing, and energy industry. The model
uses several subroutines from the LINPACK Scientific Subroutine Library
for solving linear systems of equations.

Q{ Three Industry Leontief Model }
Suppose we consider a simple economy as being based on three commodities:
the mining industry, the manufacturing industry, and the energy industry.
Suppose further that production of one dollars worth of mining requires
$0.40 units from mining, $0.40 units from manufacturing, $0.20 units from
energy; Production of one dollars worth of manufacturing requires $0.20 units
from mining, $0.40 units from manufacturing, and $0.20 units from energy.
Production of one dollars worth of energy requires $0.10 units from mining,
$0.20 units from manufacturing, and $0.40 units from energy. The following
table summarizes this information:
.nf

.outputs __
Inputs: mining energy manufacturing

-
mining: $0.40 $0.40 $0.20
manufacturing: $0.10 $0.20 $0.40
energy: $0.20 $0.40 $0.20

.PP
Note that the sums of the columns need not add up to 1.00. This is because not
all commodities or industries are represented in this model. In particular
it is customary to omit labor from these models •

• PP
From the preceding table we can form a matrix \fBA\fR called the technology
matrix, Cor the Leontief matrix):

.EQ
delim SS
.EN
.ce
${A= left [matrix { ccol {0.4 above 0.1 above 0.2} ccol {0.4 above 0.2 above 0.4}
ccol {0.2 above 0.4 above 0.2} } right l }$

.PP
For this simplified model of the economy, not all information is contained in
the Leontief matrix. In particular each industry has a gross production, the
gross production can be represented as a column matrix \fBX\fR:
.nf

.ce
S{X = left [matrix < ccol < x sub 1 above x sub 2 above x sub 3 } } right] }$

.PP
Where Sx sub 1$ is the gross production from mining, Sx sub 2S is the gross
production from manufacturing, and Sx sub 3$ is the gross production from

162

energy. Those units of gross production not used by these industries are
called surpluses, and may be considered as being available for consumers.
If we place the surpluses in a column matrix \fBD\fR, then the surplus
can be represented by the equation

.ce
\fBx\fR - \fBAx\fR = \fBD\fR
.nf
which is equivalent to:
.ce
(\fBI\fR - \fBA\fR)\fBx\fR = \fBD\fR

.fi
where I is an identity matrix. This matrix equation is called the technology
equation •

• PP
Note: An Identity matrix is a matrix in which every element is zero (0)
except the elements on the diagonal, which have the value one (1) •
• EQ
delim off
.EN

.PP
If we call the matrix formed by \fB (I - A) \fR the Technology Matrix, and we
represent this quantity with \fB T \fR. we can rewrite the equation as:
.nf

.ce
\fBTx\fR = \fBD\fR

.PP
To find a solution to the system of equations there are several methods.
The most straight-forward method is to do Gaussian elimination to solve
the equation:

.ce
\fBTx\fR = \fBD\fR

.PP
Not only is this the most straight-forward solution, but compared to the
other obvious solution (compute inverse of Technology matrix and multiply by
\fBD\fR) it is far less expensive in terms of computational time •

• PP
Because the gaussian elimination problem has been solved by many programmers,
we will use a library routine to do the factoring (decomposition) of the
technology matrix (\fBT\fR), and another routine to solve the equation:

.ce
\fBLUx\fR = \fBD\fR

.PP
Where \fBL\fR is the lower triangular matrix and \fBU\fR is the upper triangular
matrix found during decomposition of the Technology Matrix (\fBT\fR). Because
the matrix may be singular, or very close to singular (to the working precision
of the machine) we make sure that it is not before we solve the equation. This
is done by checking the return value of the call to the routine that will do the
decomposition on the technology matrix. If the value returned causes some wonder
as to whether or not the matrix may be singular to the working precision, or if
the return value indicates that there may be a divide by a zero pivot, we will
ask the user if they would like us to check for singularity by estimating the
condition number of the technology matrix. If the condition number is ok then
we will go ahead and solve the above equation, if not we exit the program •

• PP
The subroutine we need are part of the LINPACK Subroutine Library for
General Matrices. The routines we will be using are \fBSGECO\fR (estimate the
condition number of the matrix while decomposing it) and \fBSGESL\fR to solve
a system of linear equations decomposed into an \fBLUx\fR = \fBD\fR format •

• PP

163

For a description of the subroutines themselves, the user is referred to chapter
one the Linpack User manual: General Matrices.

Q{ The main driver }
The main driver simply defines the variables required to generate and
solve the model; The Leontief matrix is defined and initialized, the
solution matrix (which contains the desired surplus production values) is
defined and initialized, and the technology matrix is then formed from the
Leontief matrix •

• PP
Once the technology matrix has been formed (by calling the TecMat routine)
the Linpack subroutine SGECO is called to do the LU factorization of
the technology matrix. If SGECO returns a non-zero value in the info
variable, there is a possibility that the matrix is singular to the
working precision of the machine, or that there is a possibility of
a divide by zero (0) if SGESL is used to solve the system of equations.
If the Info variable is not smaller then the working precision of the
computer, the Linpack routine SGESL is called to solve the system of
equations, and the results are printed on the terminal screen •

• PP
When Info is returned as non-zero, the user is asked if they wish to test
for singularity. If the Matrix is singular to the working precision of the
machine, the user is told and the program aborts. If the test for singularity
fails (i.e., the matrix is not singular) then the program continues and the
SGESL routine is called to solve the system of equations •

• nf
\fBGeneral algorithm:\fR

Initialize Leontief Matrix
Initialize Production matrix
Transform Leontief matrix into Technology matrix
Call SGECO to factor the Matrix
If Technology matirix may be singular

Warn the user
Test for singularity
If the Technology matrix is singular

Tell the user
Abort the program

Endif
Endif
Call SGESL to solve the system of equations
Print the resulting solution

\fBCalls:\fR
TecMat - routine to form the technology matrix
ReadAR - routine to read an array
Prnwrn - routine that prints the singular matrix warning message
PrnSol - routine to print the solution

\fBLibrary routines used\fR
FROM THE LINPACK LIBRARY
SGECO - Factor a matrix and estimate its condition number
SGESL - Solve a system of linear equations

\fBCalled by:\fR
Operating system
-~
\fBVariables:\fR
Mat - The technology matrix
Prod - The solution matrix
Info - Holds estimate of singularity
IPvt - LINPACK uses this to store pivot information
Work - Work array for LINPACK
LDM - The leading dimension of Mat
Dim - The Dimension of Work, Prod, and IPVT

i(
Program Leontief

164

c
C This program tests several subroutines that were written to
C solve variable sized Leontief Input/Output economy models.
c
C Define the variables:
c

Real Mat(3,3), Prod(3), IPVT(3), Work (3), Info
Integer LDM, Dim
Character Real

C Initialize LDM and N to be 3. Also init REAL to be 'f'
Data LDM /3/, Dim /3/, Real/'f'/

C Read the Leontief matrix, product surplus array, and
C form the technology matrix

Call ReadAR(Mat,Dim,Dim)
Call ReadAR(Prod,1,Dim)

c Use LINPACK subroutine SGECO to do LU factorization of Mat
call SGECO (Mat,LDM,Dim,Ipvt,Info)

C Check for singularity and exit if singular
If (Info.NE.O.) Call PrnWrn(Info)

C Use LINPACK subroutine SGESL to compute [A]x = b
Call SGESL (Mat,LDM,Dim,Ipvt,Prod,O)

C Print the results
Call PrnResCProd,Dim)

a>

Stop
End

a< Support Routines }
The following routines are used to support the main driver. This
chapter is divided into sections that are used to manipulate data,
read data, or write results out to the user •

• nf
The support routines consist of:

TecMat -
ReadAR -
PrnWrn

PrnRes -

routine to form the technology matrix
routine to read an array
routine to print a warning message and exit
if necessary
routine to print the results

All other support routines are called from the LINPACK Scientific
Subroutine Library.

Q[Matrix manipulation routines l
The following routine manipulates the Leontief matrix into a form
that can be used to solve the system of equations.

a[[TecMat: Form a Technology Matrix from a Leontief Matrix ll
The Leontief matrix is subtracted form the Identity matrix, which results in
the Technology matrix •

• PP
An Identity matrix is a matrix in which all elements of the matrix
are zero (0) except the elements on the diagonal, which have the value
one (1) •

• PP
It would be inefficient to generate an identity matrix and then call
a subroutine to do matrix subtraction. Instead, we can simulate the
subtraction of a matrix from its identity matrix by realizing that
the characteristics of an identity matrix can be simulated using two
do loops. When the looping variables used for each loop are equal, the
value of a corresponding element in an identity matrix indexed by those
variables would be a one (1). When the looping variables are not equal, the
values of a corresponding element in an identity matrix indexed by these

165

variables would be zero (0). This suggests that, given the dimensions of
any square matrix, the following algorithm would solve the problem of
subtracting any it from its identity matrix •

• nf
\fBGeneral algorithm:\fR

For Row index in [1 ••• NDintl do
For Column index in [1 ••• NDintl do

If (Row Index = Column index) (the diagonal elements)
Matrix element = 1 - Matrix Element

Else
Matrix element = 0 - Matrix element

Endif
E~o

E~o

\fBCalls:\fR None
\fBCalled by:\fR The Main Driver

\fBArguments:\fR
LeoMat - The Leontief Matrix to be subtracted from the identity matrix
RCDim - The row and column dimension of the Leontief matrix

\fBLocal Variables:\fR
Rowidx - Row index
Coli dx - Column index

il(

c

Subroutine TecMat(LeoMat,RCDim)
Integer RCDim, Rowldx, Colidx
Real LeoMat(RCDim,RCDim)

C Given the dimensions of a square two dimensional Leontief matrix
C form a technology matrix by subtracting the Leontief Matrix from
c its identity matrix.
c
c Form the Technology matrix (I - A)
c

Do 20 Rowidx = 1,RCDim
Do 10 Colidx = 1,RCDim

If (Rowldx.EQ.Colldx) Then
LeoMat(Rowidx,Colidx) = 1 - LeoMat(Rowidx,Colidx)

Else
LeoMat(Rowidx,Colldx) = 0 - LeoMat(Rowidx,Colidx)

Endif
10 Continue
20 Continue

&n
Return
End

il[Input routines l
The following routines are used to read information from the user. Information
is assumed to be entered from the terminal. On systems with input redirection
(DOS, UNIX, Minix, OS/2, Xenix, etc.), the information can be stored in a file
and redirected to the program as input.

Q[[ReadAr: Read a two dimensional array of unknown size ll
This routine reads a two dimensional array with unknown Row and Column s ze.
Reading is done using an implied do loop, which is based on the columns ze
of the array. Unformatted input is used to give the user flexibility of nput
format. The only requirement is that data values for a row of data be
consecutive and be seperated by at least one space •

• PP
The information to be read is assumed to be REAL data •

• nf
\fBGeneral algorithm:\fR

For Row index in [1 ••• Row dimension] Do

166

Read a row of the matrix

\fBCalls:\fR None
\fBCalled by:\fR The Main Driver

\fBArguments:\fR
InArray - Array variable to read information into
Rows - Number of rows in the array
Cots - Number of columns in the array

\fBLocal Variables:\fR
Rowldx - Row index
Colldx - Column index

iil(

c

Subroutine ReadARCArray,Rows,Cols)
Integer Rows, Cots, Rowldx, Colldx
Real Array(Rows,Cols)

C Given the numbers of rows and columns in any two dimensional
c array, read the array into the matrix row by row. Assume the
C input file is in no specific format.
c

iil)

Do 10 Rowldx = 1,Rows
10 Read (*,*) (Array(Rowldx,Colldx), Colldx = 1,Cols)

Return
End

iil[OUtput Routines l
The following routines are used to print warning messages or to print
the results of the calculations performed by the program.

iil[[PrnRes: Print the results of the calculations ll
PrnRes prints the resulting Product array when the solution has been found •
• nf

\fBGeneral algorithm:\fR

For each element in the array
Write the element number and its value

\fBCalls:\fR None
\fBCalled by:\fR The Main Driver

\fBArguments:\fR
Prod - The product array
Dim - The dimension of the product array

\fBLocal variables:\fR
Index - The index into the array

ii)(

c

Subroutine PrnRes(Prod,Dim)
Integer Dim, Index
Real ProdCDim>

C Given the result array from solving the system of equations that
C make up the Leontief model and its dimension, print the results
C out for the user.
c

Do 10 Index = 1,Dim
10 Print 20, Index, Prod(l)
20 FORMAT (1x, 1X(1 ,12, 1) 1 ,3x,•=•,3x,f10.4)

Return
End

iil)
.bp
iil[[PrnYrn: Warn User and Exit If Matrix is Singular ll
This routine warns the user that the array might be singular, checks the
condition number passed to the routine, and if it is smaller than machine

167

accuracy (i.e., the condition number+ 1 is indistinguishable from the
condition number) the program is aborted •
• nf

General algorithm:\fR

Print the warning message
If Check for singularity is true

inform user of singularity
exit program

Endif

\fBCalls:\fR None
\fBCalled by:\fR The Main Driver

\fBArgunents:\fR
Info - Condition number estimate of the array (from SGECO)

ill(

c

Subroutine PrnWrn(lnfo)
Real Info

C Print a warning message to the user indicating the system of
C equations may not be solvable. Then test to see if the
C decomposition routine returned a condition number that
C indicates the matrix may be singular to the working precision
C of the machine. If it is, tell the user and abort the program.
c
C Print warning message
c

c

Print *, 'Matrix may be singular to working precision•
Print*, •or there is a possibility of a divide by zero•
Print*, 'during the calculation of the result.•
Print*, 'Checking for singularity ••• •

C Check condition number estimate and exit if matrix is singular
c

Q)

if (lnfo.EQ.Info+1) Then
Print*, 'Matrix is singular to working precision: aborting.•
Print *
Print*, 'Execution completed, no results generated.'
Stop

Endif

Return
End

168

~3Sn 3Hl ~0.:1 S300 W31SAS 111 3HllVHM

)f XION3ddV

170

The number of commands and the required parameters for each

command that are needed to effectively edit, format, view, print, debug, provide

revision control, and run a literate program is large. The idea behind the Ut

system is to enable the programmer in the programming and maintenance task.

Adding several more complex layers to the programming paradigm would

probably defat this purpose; all of the commands and parameters would just

add to the cognitive load of the programmer. Although the same commands

are used over and over, with the same options (usually), there is no need for

the programmer to be burdened with this extra level of detail. For example, the

commands required to write, debug, format, view, run, and print a small literate

program might be:

co -1 project -name. lit
vi project-name.lit
lit -IC -ftroff project -name
mv project-name.src project-name.c
gee -g -c-o project-name.exec project-name.c >& \

project -name. compile-errors
vi project-name.compile-errors
vi project-name.lit
lit -IC -ftroff project -name
mv project-name.src project-name.c
gee -g -c-o project-name.exec project-name.c >& \

project -name. compile-errors
project-name.exec and some associated parameters
dbx project-name.exec
vi project-name.lit
lit -IC -ftroff project-name
mv project-name.src project-name.c
gee -g -c-o project-name.exec project-name.c >& \

project-name. compile-errors
project-name.exec and some associated parameters
groff -me -mlit -Tascii -geqn -gtbl -gpic project-name.doc \

> project -name. nr
less -ewqd project-name.nr
groff -me -mlit -Tps -geqn -gtbl -gpic project-name.doc \

I lpr -Ppostscript1
ci project -name.lit ; rm core project -name. bkp

171

Obviously, this is a lot of information to remember, the commands have

the possibility of being mistyped, and the commands are quite repetitious. The

Lit system will prompt the user when it is invoked, or when a project change is

requested, for the relevant information about which compiler to use, etc. The

relevant information can also be stored in the user's environment, in which case

Ut will only prompt for information that the user has not explicitly defined.

Armed with the knowledge of which editor, compiler, libraries, formatter, viewer,

and debugger to use, the Lit system significantly reduces the amount of this

information which must be remembered by the programmer, and allows the

programmer to perform operations in a more natural manner independent of

the details of which underlying applications are needed to perform the indicated

actions. For example, the sequence of instructions described above would have

the following equivalent instructions in the Lit system.

Lit project -name
Edit
Compile
errors
Edit
Compile
Run
Debug
Edit
Compile
Run
Format
View
Print
Exit

172

Note that most of the commands (such as Compile) could have been

entered by the user as a simple number (1 =Edit, 2=Compile, etc.). Also note

the use of the command .. errors .. ; it is a predefined alias that allows the user to

edit the error file, when one exists. Figures 6 - 15 below outline the operations

that are performed by Lit from system invocation, with each menu selection,

and when the system is exited.

When the user invokes Lit (e.g., Lit project-name) Lit performs the

following actions (see Figure 6):

1. Check out the project from the revision control system.
2. Select a programming environment (e.g., C and associated

libraries).
3. Invoke the programming interface at top level menu.

E)
D

II o..t~- II
D

II w::::: II
D

II c.n--11
Figure 6. Invoking Lit.

173

When the user selects the Edit Option from the main menu, the following

actions are performed (see Figure 7):

1. Create a backup copy of the project file.
2. Edit the project file.
3. When finished editing the project file, return to main menu.

8
D

II:-..::: II
D

11·-lk II

D
8

Figure 7. The Edit option.

174

If the Compile option is selected, the following actions are performed by

Ut (see Figure 8):

1. Preprocess the literate program file (see Figure 4).
2. Compile the program file.
3. If there were compile-time errors, inform the user about the name

of the error message file.
4. If the~e were no compile-time errors, link the executable file.
5. Return to the main menu.

e
[]

11=--=11
D

Figure 8. The Compile option.

If the user selects Format from the menu, Ut performs the following

actions (see Figure 9):

1. Preprocess the literate program file (see Figure 4).
2. Format the document for printing or for viewing with code

browser.
3. Return to the main menu.

8
D

11=-....: II
D

11--11
D

g
Figure 9. The Format option.

175

176

If the user selects the View option from the main menu, Lit performs the

following actions (see Figure 1 0):

1. If the document is not formatted, format it for viewing.
2. View the document with the code browser.
3. Return to the main menu.

9
D

<@>~11--11
~tf

11-:=11

8
Figure 1 0. The View option.

177

If the user selects the Print option from the main menu, Lit performs the

following actions (see Figure 11):

1. If the document is not formatted, format it for printing.
2. Send document to appropriate print spooler.
3. Return to the main menu.

Figure 11 . The Print option.

178

If the user selects Debug from the main menu, Lit invokes the debugger.

When the user has finished, the main menu is redisplayed {see Figure 12). If

the user selects the Run option, Lit allows the user to enter the required

command line parameters, and then executes the linked object file (see Figure

13).

S)
D

II~~~ II
D

E)
Figure 12. The Debug option.

g
D

11.=...~1
D

11--11
D

8
Figure 13. The Run option.

179

If the user wishes to work on a project different from the current project,

the Goto option is selected. The Goto option (see Figure 14) performs the

following actions:·

1. Check the current project in to the revision control system.
2. Get the name of the next project to open.
3. Perform the startup routine (see Figure 6).
4. Return to the main menu.

s
[]

II::= II
n

lla.~-11
n

II oa-...-11
.[L

8
Figure 14. The Goto option.

180

Finally, when the user selects the Exit option, Lit performs the following

actions (see Figure 15):

1. Check the project file in to the revision control system.
2. Remove any temporary files and/or core dump files.
3. Return control to the invoking process.

8
D

II== II
D c=
D

8
Figure 15. The Exit option.

111 AB 03Sn S3ln~ E>NiilV~~O:I ~1:11~3dS

1 XION3ddV

182

The following list describes several of the specific document formatting

conventions used by the Lit system. All conventions used by Lit have some

empirically derived principle associated with them. Lit conventions were derived

from the literature on textual comprehension, reading comprehension, and

guidelines for documentation from General Electric and other producers of

documentation (e.g., IBM). Lit users were asked for input over a period of two

years about the format of the documentation, and their observations were used

to make modification to it. The results of that process produced the following

documentation conventions.

1) Line length of 6.5 inches on 8.5" x 11" paper (1 inch margins).

2) All text is fully justified between the margins.

3) Point size for program name (on title page): 19; always centered.

4) Point size for terse description on title page: 9; always centered

and bold faced.

5) Use a font with well pronounced serifs (Lit uses Times-Roman).

6) Point size for entire text body (documentation and code) 8, 9, or

1 0. Ut defaults to 9.

7) Point size for chapter headings: 16; always starts on a new page

and is centered and placed at the top of the page margin.

8) Point size for section headings: 14; always starts on a new page

and is centered and placed at the top of the page margin.

9) Point size for subsection headings: 12; always left justified.

183

1 0) If possible, Lit keeps code sections from being split over a page

boundary.

11) When (sub)sections are used to separate modules, the module

name is placed in the (sub)section title. (e.g., module-name():

title).

12) Table of contents lists chapters, sections, and subsections by

page and is located at the end of the document.

13) Page numbers on every page except title page and introduction;

Lit uses page numbers centered 1 inch from the top of the page.

14) All chapter, section, and subsection headings include their

chapter, section, and subsection number, enclosed in square

brackets, in the heading.

	Comprehension of Literate Programs by Novice and Intermediate Programmers
	Let us know how access to this document benefits you.
	Recommended Citation

	Bertholf_Christopher_Forrest-1993
	Bertholf_Christopher_Forrest-1993_02

