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The Dallas-Monmouth area, located in the west-central 

Willamette Valley, Oregon, consists of Tertiary marine and 

volcanic bedrock units which are locally overlain by 

alluvium. The occurrence of groundwater with high 
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salinities has forced many rural residents to use public 

water supplies. Lithologic descriptions from driller's 

logs, geochemical (INAA), and x-ray diffraction analyses 

were used to determine alluvial facies distribution, 

geochemical and clay mineral distinctions among the units, 

and possible sediment sources. Driller's log, chemical and 

isotopic analysis, and specific conductance information from 

wells and springs were used to study the hydrogeologic 

characteristics of the aquifers and determine the 

distribution, characteristics, controlling factors, and 

origin of the problem groundwaters. 

Three lithologic units are recognized within the 

alluvium on the basis of grain-size: 1) a lower fine-grained 

unit; 2) a coarse-grained unit; and 3) an upper fine-grained 

unit. As indicated by geochemical data, probable sediment 

sources include: 1) Cascade Range for the recent river 

alluvium; 2) Columbia Basin plutonic or metamorphic rocks 

for the upper fine-grained older alluvium; and 3) Siletz 

River Volcanics from the west for the coarse-grained 

sediment of the older alluvium. 

The Spencer Formation (Ts) is geochemically distinct 

from the Yamhill Formation (Ty) and the undifferentiated 

Eocene-Oligocene sedimentary rock (Toe) with higher Th, Rb, 

K, and La and lower Fe, Sc, and Co concentrations. The clay 

mineralogy of the Ty is predominantly smectite (86%) while 

the Ts contains a more varied clay suite (kaolinite, 39%; 
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smectite, 53%; and illite 8%). The Ty and Toe are 

geochemically similar, but are separated stratigraphically 

by the Ts. The Siletz River Volcanics is distinct from the 

marine sedimentary units with higher Fe, Na, Co, Cr and Sc 

concentrations. The Ty and Toe are geochemically similar to 

volcanic-arc derived sediments while the Ts is similar to 

more chemically-evolved continental crust material. 

Wells that encounter groundwater with high salinities 

(TDS>300 mg/1): 1) obtain water from the marine sedimentary 

bedrock units or the older alluvium; 2) are completed within 

zones of relatively low permeability (specific capacities 

~5 gpm/ft); and 3) are located in relatively low-lying 

topographic settings. The poor quality waters occurring 

under these conditions may be due to the occurrence of 

mineralized, regional flow system waters. Aquifers of low 

permeability are less likely to be flushed with recent 

meteoric water, whereas upland areas and areas with little 

low permeability overburden are likely zones of active 

recharge and flushing with fresh, meteoric water. 

The most saline waters sampled have average isotopic 

values (6D = -6.7 °/00 and 60 = -1.7 °/00 ) very near to SMOW, 

while the other waters sampled have isotopic signatures 

indicative of a local meteoric origin. The Br/Cl ratios of 

most (10 of 14) of the waters sampled are within 20% of 

seawater. A marine connate origin is proposed for these 

waters with varying amounts of dilution with meteoric waters 



and water-rock interaction. The problem waters can be 

classified into three chemically distinct groups: 1) CaC12 

waters, with Ca as the dominant cation; 2) NaCl waters with 

Na as the dominant cation; and 3) Na-Ca-Cl waters with 

nearly equal Na and Ca concentrations. The NaCl and CaC12 

waters may have similar marine connate origins, but have 

undergone different evolutionary histories. The Na-Ca-Cl 

waters may represent a mixing of the NaCl and CaC12 waters. 
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INTRODUCTION 

Groundwater with naturally occurring high 

concentrations of total dissolved solids occurs at several 

localities in the Willamette Valley, Oregon. Piper (1942) 

proposed that salty groundwater is likely to be encountered 

along the eastern foothills of the Coast Range or within the 

sedimentary rocks in the western half of the central lowland 

of the Willamette Valley. In places, the water is not only 

too saline for human consumption but also for stock watering 

and irrigation uses. The lack of fresh groundwater has 

forced many rural residents to obtain potable water from 

public water sources, drill numerous wells in the hope of 

obtaining useable water, or treat the poor quality water and 

repeatedly repair or replace pumps and plumbing. 

The Willamette Valley is a structural and erosional 

basin composed of sedimentary marine and volcanic bedrock 

units overlain by unconsolidated fluvial sediments. The 

hydrogeologic and geochemical characteristics of these units 

may be factors in the distribution of groundwater with high 

total dissolved solids concentrations. 

The purpose of this project is to investigate the 

geology, hydrogeology and groundwater quality of the Dallas­

Monmouth area, Oregon. The project has four objectives: 



1) determine the thickness and distribution of 

lithologic units within the unconsolidated sedimentary 

deposits and determine the geochemistry and clay mineralogy 

of the bedrock and unconsolidated units; 

2) determine the hydrogeologic characteristics of the 

bedrock and unconsolidated sedimentary units, determine 

their relation to groundwater quality, and develop a 

potentiometric surface map; 

2 

3) determine the distribution, chemical and isotopic 

(hydrogen/deuterium and oxygen-18/oxygen-16) composition, 

and temporal variations of the poor quality groundwater; and 

4) propose possible origins of the saline groundwater. 

LOCATION AND GEOGRAPHY OF STUDY AREA 

The study area encompasses approximately 140 square 

miles (360 sq. km) of the west-central Willamette Valley in 

Polk County, Oregon (Figure 1). The area is primarily 

agricultural with some industry and logging and includes the 

towns of Dallas, Monmouth, Independence, Rickreall and Buena 

Vista. The boundaries of the study area were chosen as 

features that were probable constraints of the local 

groundwater flow regime. The boundaries include foothills 

of the Coast Range to the west, topographic highs to the 

north and south, and the Willamette River along the eastern 

margin. The area lies within 44° 45' and 45° 02' north 

latitude and 123° 05' and 123° 30' west longitude. 
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Topography ranges from low relief to gently rolling in the 

eastern portion to mountainous terrain in the west. 

Elevations range from less than 125 feet (38 m) to over 1600 

feet (488 m). 

1 2 J 4 5 Ill 

Figure 1. Location of the study area. 
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The climate is mostly warm and dry in the summer_to 

cool and moist in the winter. Annual precipitation, with 

the majority occurring in the winter months, varies from 

less than 40 inches (1 m) in the valley flat near the 

Willamette River to over 100 inches (2.5 m) in the foothills 

of the Coast Range (Gonthier, 1983). 

Access is provided by a dense network of state, county 

and local roads, except in the Siuslaw National Forest in 

the western portion. Due to the abundant vegetation, 

bedrock exposures are primarily limited to stream banks and 

roadcuts. 

PREVIOUS WORK 

The geology of the Dallas-Monmouth area has been mapped 

and revised numerous times. Mundorff (1939) mapped the 

Salem quadrangle as part of an Oregon State College master's 

thesis. Piper (1942) mapped the Willamette Valley as part 

of a U.S. Geological Survey Water Supply Paper. Baldwin 

(1964) mapped and discussed the geology of the Dallas and 

Valsetz 15 minute quadrangles, which includes much of the 

western portion of the study area. Oil and Gas 

Investigations maps of portions of the Coast Range by Vokes 

and others (1954) and Baldwin and others (1955) cover 

portions of the northern and western study area. Bela 

(1981), Brownfield and Schlicker (1981) and Brownfield 

(1982a, 1982b) revised previous maps, added greater detail 



and produced 7 1/2 minute quadrangle maps covering over 50% 

of the area. Price (1967), Gonthier (1983), Wells and 

others (1983), Walker and Duncan (1989) and Walker and 

MacLeod (1991) produced maps and compilations which also 

included portions or all of the study area. 

5 

In addition to the geologic maps mentioned above, 

several geologic investigations include the study area. The 

Siletz River Volcanics, which forms the basement and is 

exposed west of Dallas, was petrochemically and 

petrographically described by Snavely and Baldwin (1948) and 

Snavely and others (1968). Boggs and others (1973) studied 

the petrographic and paleontologic characteristics of the 

Rickreall Limestone Member of the Yamhill Formation and 

suggested a relationship between its accumulation and 

volcanic activity. Gaston (1974) and McKeel (1984) used 

foraminifera data to determine the age and depositional 

setting of marine bedrock units. Baker (1988) investigated 

the depositional setting and stratigraphy of the Spencer 

Formation in the west-central Willamette Valley, which 

included isopach maps of units within the Yamhill and 

Spencer Formations. Cunderla (1986) petrographically 

separated the Spencer Formation into a lower arkosic 

sandstone member and an upper arkosic to lithic arkosic 

sandstone member. 

Balster and Parsons (1968) studied soils and 

geomorphology of the Willamette Valley and designated a high 
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gravel terrace north of Dallas as the type section for their 

Dolph Geomorphic surface. Glenn's (1965) Ph.D. thesis on 

the late Quaternary sedimentation and geologic history of 

the north Willamette Valley describes the stratigraphy, 

mineralogy and depositional setting of the Willamette Silt 

deposits which he determined may represent over 40 episodic 

flood events. McDowell (1991) summarizes the Quaternary 

geology of the Willamette Valley. 

Master's theses of Graven (1990) and Werner (1990) 

investigated the structure of the southern and northern 

Willamette Valley, respectively. These theses, summarized 

as part of a u. S. Geological Survey open-file report by 

Yeats and others (1991), include a structure contour map of 

the bottom of the unconsolidated sediments, cross-sections, 

a structure contour map of the top of the Spencer Formation 

and previously mapped structure within the project area. 

Niem and Niem (1984), Snavely (1987) and Snavely and Wells 

(1991) summarize the Cenozoic geologic history of western 

Oregon and Washington. 

The groundwater resources and hydrogeologic 

characteristics of portions or all of the study area have 

been investigated in U. S. Geological Survey Water-Supply 

Papers and Oregon Water Resources Department Groundwater 

Reports (Piper, 1942; Price and Johnson, 1965; Price, 1967; 

Gonthier, 1983). These reports contain information 

concerning the hydrogeologic characteristics of specific 
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hydrogeologic units (hydraulic conductivity, yield, specific 

capacity, coefficient of storage and r~charge), water 

levels, hydrographs of water level fluctuations in specific 

wells, water chemistry, well log information from driller's 

reports, and water well and spring locations. Data from 

Gonthier's (1983) report, including well locations, field 

measurements (specific conductance, pH and water levels), 

and water chemistry are an important part of the database 

for this study. The collection of field data for Gonthier's 

report was primarily conducted in 1976. Newton's (1969) 

report on saline water of Oregon, includes locations and 

chemical analyses of saline wells in western Oregon. 



METHODS OF INVESTIGATION 

Literature research was the initial phase of the 

investigation. Hydrogeologic and lithologic information was 

acquired from U. S. Geological Survey Water-Supply Papers 

and Oregon Water Resources Department Ground Water Reports. 

Field work for this study was conducted primarily 

during the summer of 1990 through the summer of 1992. The 

field work included: location and inventory (water level, 

specific conductance, temperature, and pH measurements) of 

water wells and springs, return visits and inventory of 

previously located wells and springs, reconnaissance of the 

surface geology, water sample collection, and collection of 

bedrock and unconsolidated sediment samples from surface 

exposures and drill cuttings from water wells. 

Information from over 300 field-located water wells, 

oil and gas wells, and springs was used for this study 

(Plate 1). Seventy-six water wells and eight springs were 

located by the author for this study. The well and spring 

locations were plotted on 7 1/2 minute quadrangles and 

elevations were determined within ±10 feet (3 m) accuracy. 

Twenty previously located wells (Gonthier, 1983) were 

revisited and inventoried. Several of the wells and springs 

were visited two or more times during the investigation. 
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Where there was access, water levels of the wells were 

measured to an accuracy of 0.05 feet (1.5 em) with the use 

of a 200 (61 m) or 500 (152 m) foot steel tape. The water 

levels were adjusted relative to land surface datum (lsd). 

The time since the well was last pumped was noted in order 

to determine if the water level was under static conditions. 

Field measurements including specific conductance, 

temperature, and pH were made at the water wells and springs 

where possible. Most of the wells were purged by pumping at 

least three bore volumes or until the specific conductance 

and temperature values stabilized. Care was taken to bypass 

water treatment mechanisms such as water softeners or 

filters. For a few of the wells, which didn't have pumps, 

samples were retrieved with a teflon bailer or specific 

conductance and temperature measurements were made by 

lowering a probe down the well. YSI model 32, YSI model 

3000 TLC with a cable reel, and an Orion model 124 

temperature and specific conductance meters and a VWR 

Scientific Cat. No. 34100-674 pH-MV-Temperature meter were 

used in the field. The meters were checked before and after 

use, and sometimes in the field, with specific conductance 

standards ranging from 74 to 12,900 pmhos/cm and pH 

standards of 4, 7, and 10. 

Lithologic descriptions from the driller's logs of 

nearly 300 field-located water wells and oil and gas wells 

were input into a database. With the use of Arc/Info 
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geographic information system (GIS) software and a program 

by Leonard Orzol of the USGS, each well's lithologic units 

and basal unit elevations were graphically depicted in map 

view. From this, elevation designations were made for the 

top of the bedrock and the top and bottom of significant, 

spatially traceable, unconsolidated sedimentary units. 

Structure contour and isopach maps of the bedrock, 

unconsolidated sediments and lithologic units within the 

unconsolidated sediments were hand drawn and digitized. The 

GIS program was also used to construct cross-sections. 

Previous geologic maps (Baldwin and others, 1955; 

Baldwin, 1964; Bela, 1981; Brownfield, 1982a and 1982b; 

Brownfield and Schlicker, 1981; Gonthier, 1983; Yeats and 

others, 1991), with an emphasis on larger scale more recent 

maps, were compiled and digitized. Modifications were made 

as a result of the interpretation of outcrops and driller's 

logs collected for this report (Plate II). 

Surficial bedrock and unconsolidated sediments, drill 

cuttings from water wells, and drill cuttings from oil and 

gas exploration wells archived at the Oregon Department of 

Geology and Mineral Industries were collected for 

instrumental neutron activation analysis (INAA) and x-ray 

diffraction analysis. INAA of 71 samples was conducted to 

determine distribution and trends of major and trace 

elements within and among geologic units. The INAA 

procedures are included in Appendix A. The clay mineral 
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suites of seven outcrop and drill cutting samples from water 

wells were determined with X-ray diffraction analysis. The 

x-ray diffraction analysis was performed by Reka Gabor, 

Research Associate, Department of Geology, Portland State 

University. Percent of mineral compon~nt was determined by 

using the peak-height normalized technique of Chung (1974). 

Specific capacity values were calculated with the use 

of pump test data from the Oregon State Water Resources 

Department (OWRD) and data recorded on driller's logs. 

Static water level measurements by the author, OWRD and USGS 

personnel, and recorded on driller's logs were used to 

construct a potentiometric surface map of the alluvial-fill. 

Samples from wells and springs were collected to 

ascertain the chemical and isotopic characteristics of the 

groundwater and the possible origin of the water with high 

salinities. Analysis of the water samples included: 1) oD 

and o18o; 2) Br-, Cl-, and r·; and 3) major ions. After the 

initial specific conductance values were measured in the 

field, sites were chosen for further investigation. The 

sites chosen for additional analysis had specific 

conductance values ranging from 270 to over 55,000 ~mhos/em. 

Thirteen samples were collected for oxygen and 

deuterium isotopic analysis. A peristaltic pump with teflon 

tubing was used to fill the 100 ml glass sample bottles. 

The bottles were then immediately sealed with a polyseal cap 

to reduce the escape or entrance of gases. Twelve of the 
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samples were analyzed by standard mass spectrometer methods 

at Krueger Enterprises Inc., Geochron Laboratories Division, 

Cambridge Massachusetts. The isotopic data is expressed 

relative to standard mean ocean water (SMOW). For quality 

assurance, one replicate sample was sent to the USGS Water 

Resources Division, National Laboratory in Arvada, Colorado 

and analyzed by mass spectrometer methods. Also used in 

this study was isotopic data from the Luckiamute River 

collected by the USGS Water Resources Division (written 

communication, M. Crumrine, 1992). 

Samples submitted for ionic concentration analysis were 

filtered through a .45 ~m millipore filter with the use of a 

peristaltic pump with teflon tubing and a pancake filter 

system. The specimens were placed in 250 ml nitric acid­

rinsed polyethylene bottles. Samples to be submitted for 

cation concentration analysis were acidified with 1 ml of 

nitric acid per 250 ml of solution. 

Fourteen sites were sampled for Br·, cl·, and r· ionic 

concentrations and were analyzed at the USGS Water Resources 

Division, National Laboratory in Arvada, Colorado. For 

quality assurance, two samples from one site and a sample of 

Pacific Ocean water (collected near the town Neskowin, 

Oregon) were analyzed. The USGS lab used fluorescein, 

thiocyanate, and eerie-arsenious oxide colorimetry methods. 

The lab also measured the specific conductance of the 

samples which were compared to the field measured values. 
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The concentrations of co3, HC03, Al, B, Ca, Fe, Mg, Mn, 

Na, Si, I, F, Cl, Br, N03 , and so4 from two saline spring 

samples were analyzed at Keystone/NEA Environmental 

Resources in Portland, Oregon. Keystone/NEA analytical 

methods included inductively coupled argon plasma {ICP)(EPA 

6010) for the metals and iodide, ion chromatography (EPA 

300.6) for anions other than iodide, and titration for 

carbonate/bicarbonate (ASTM D513 Method C). Acid digestion 

(EPA 3050) was used to keep ions in solution. 

Chemical data from study area wells and springs and 

western Oregon oil and gas wells were input into a version 

of the program WATEQ (Plummer and others, 1976) to determine 

if distinctions among the waters exist with respect to 

degrees of saturation with various mineral species. Output 

from the program also included charge balances to determine 

consistency of the analyses. 

A database was compiled with the following information 

from study area wells: specific conductance, water-bearing 

unit, specific capacity, topographic setting, water level 

depth and elevation, and open interval depth. These 

parameters were then compared to their respective specific 

conductance values to determine if possible relations to 

water quality exists among them. 

The water wells, springs, and sample sites are 

identified, based on their location, according to the 

rectangular system for the subdivision of public lands 
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(Figure 2). The series of alphanumeric characters 

represents the township, range, and section, respectively. 

A series of three lower case letters (a-d) after the section 

number are used to designate the quarter-quarter-quarter 

section subdivision. If more than one well is within the 

same section subdivision, a delimiting number is attached to 

the end. Therefore, 10S/4W-8bbc2 is the second site located 

in township 10 south, range 4 west, and the southwest 1/4 of 

the northwest 1/4 of the northwest 1/4 of section 8. 

RGW R4W R2W R2E 

TSS 

T10S 

T12S 

eWell 10S/4W-8bbc2 

Figure 2. Site location system. Modified from 
Gonthier (1983). 



REGIONAL GEOLOGIC HISTORY 

The Cenozoic era continental margin of western Oregon 

and Washington was marked by underthrusting, transcurrent 

faulting, block rotation, magmatism, and extension during 

oblique convergence between North America and oceanic plates 

(Snavely and Wells, 1991). Concurrently, the Oregon Coast 

Range, Willamette Valley and adjacent continental shelf were 

part of a 400 mile (640-km) long forearc basin (Niem and 

Niem, 1984). Confusing the geologic history, paleomagnetic 

data indicates a greater than 50° clockwise rotation in the 

Coast Range and Klamath blocks about a pivot in northwest 

Oregon or the Klamath Mountains from early to possibly late 

Eocene (Simpson and Cox, 1977; Magill and others, 1981). 

A thick sequence of early to mid-Eocene oceanic basalts 

and associated seamounts and islands, which includes the 

Siletz River Volcanics within the study area, form the 

basement rock of the Oregon and Washington Coast Range 

(Duncan, 1982). These basalts may be the result of in situ 

eruption during a period of continental-margin rifting, 

extension, and rapid, highly oblique, northeast motion of 

the Kula and Farallon plates (Snavely and Wells, 1991). 

During the early to middle Eocene subsidence created a 

deep forearc basin on the Coast Range basaltic crust (Niem 
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and Niem, 1984). In the southern Oregon portion of the 

basin, thick turbidite deposits of sandstone and siltstone 

of the Tyee Formation were derived from an uplifted Klamath 

terrane and Jurassic-Cretaceous arc complexes in Idaho, 

northern Nevada and adjacent areas (Heller and others, 

1985). In the northern Coast Range, locally derived 

basaltic sandstone, lavas and limited impure limestone 

lenses accumulated (Niem and Niem, 1984). Deformation, 

subsidence and marine sedimentation, except around local 

volcanic sources which formed islands and shoals, continued 

throughout most of the Eocene (Snavely and Wagner, 1963). 

During the latest Eocene the forearc basin was separated 

into a number of smaller basins that deepened westward as a 

result of regional uplift marked by a period of head-on 

convergence (Snavely, 1987). 

The Oligocene and early Miocene were marked by 

deformation in Western Oregon and Washington and rapid 

subsidence in the forearc basin. Thick sequences of bathyal 

tuffaceous siltstone and arkosic sandstone were deposited in 

the axial parts of the basin (Snavely, 1987). Volcanic 

activity of the Cascade arc contributed large quantities of 

ash and tuff-breccia to the fore-arc basin (Snavely, 1987). 

Thirty to 34 Ma igneous intrusions into marine sediments of 

the Coast Range represent the final episode of rift-related 

magmatism (Snavely and Wells, 1991). Renewed regional 

underthrusting in the early to mid Miocene caused extensive 



17 

folding and faulting along northeast and northwest trends. 

Uplift resulted and restricted marine deposition to the west 

flank of the Oregon Coast Range and the adjacent continental 

shelf (Snavely and Wells, 1991). 

Basalts of the Columbia River Basalt Group were erupted 

from fissures in eastern Washington, Oregon, and Idaho 

during the Miocene. The Grande Ronde and Wanapum Basalt 

Formations flowed through a 40 mile (60 km) wide gap, the 

Columbia trans-arc lowland, in the western Cascades and into 

the northern Willamette Valley (Beeson and others, 1989). 

Differential uplift, folding, and faulting of the 

Oregon Coast Range and Cascade arc intensified in the late 

Miocene and Pliocene (Niem and Niem, 1984). This resulted 

in the formation of the Willamette Valley, bordered on the 

west by the Coast Range and on the east by the Cascade 

Mountains. The Willamette Valley has since been the 

depocenter of fluvial and lacustrian sediments (McDowell, 

1991). 

Bedrock highs, such as the Eola-Salem Hills and the 

Tualatin Mountains, may have divided the Willamette Basin 

into a series of closed basins during the Miocene (Snavely 

and Wagner, 1963). Through drainage occurred by middle 

Pliocene when the Willamette River became superimposed on 

the Tualatin Mountains and Salem Hills as a result of 

aggradation (Baldwin, 1981). During the Pleistocene, 

incision caused the formation of terraces and pediments 
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(McDowell, 1991). Fluvial and glaciofluvial gravels 

(Cascadian origin) and mudflows formed terraces and fans 

along the eastern margin of the Willamette Valley. Terraces 

and fans from streams draining the unglaciated Coast Range 

occur on the western margin (McDowell, 1991). 

Allison (1953) identified three gravel units in the 

southeastern Willamette Valley and tentatively correlated 

them with glaciations. The oldest and highest gravel was 

termed the Lacomb gravel (pre-Kansan), the next highest was 

the Leffler gravel (Kansan), and the lowest and youngest was 

termed the Linn gravels (Illinoisan or early Wisconsin) 

which underlies much of the valley floor. 

Much of the Willamette Valley floor is underlain by 

horizontally bedded silt and associated deposits up to an 

elevation of 400 feet (122m) (McDowell, 1991). These late 

Pleistocene deposits have been termed the Willamette Silt 

(Treasher, 1942; Allison, 1953) and the Willamette Formation 

by Balster and Parsons (1969). These deposits, which are 

herein termed the Willamette Silt, are the result of glacial 

outburst floods from Lake Missoula in western Montana which 

produced the channeled scablands of Washington, traveled 

down the Columbia River Gorge and into the Willamette Valley 

(Allison, 1935, 1953, 1978; Bretz, 1925). Associated with 

the Willamette Silt are up to boulder size granite, 

granodiorite and other material of extrabasinal origin that 

may have been ice-rafted into place (Allison, 1935). 
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A two phase model of the deposition of the Willamette 

Silt has evolved (Allison 1932, 1935, ~978; Glenn, 1965; 

Schlicker and Deacon, 1967; Roberts, 1984). The first phase 

consists of a thick body of low energy, silt and sand 

deposits probably laid down by multiple floods. The second 

phase consists of a single very large flood resulting in 

erosion and deposition of smaller volumes of coarse-grained, 

high-energy deposits near gaps where the flood waters 

entered the valley and fine-grained, low-energy deposits 

across the valley floor (McDowell, 1991). 

Approximately 13,000 years ago, after the regression of 

the flood waters, drainage networks and the main channel of 

the Willamette River became re-established on the floor of 

the Willamette Valley (McDowell, 1991). In response to 

changing local base level, shifts in the Willamette River's 

position and the piracy and diversions of valley floor 

tributaries occurred about 11,000 years ago (Glenn, 1965). 

Fluvial deposition has been primarily restricted to channels 

and floodplains of major rivers and their tributaries during 

the Holocene (Yeats and others, 1991). 



STRATIGRAPHY 

The study area stratigraphy consists of sedimentary 

marine and volcanic bedrock units which are locally overlain 

by unconsolidated sediment deposits. The stratigraphic 

relationships and characteristics of the individual units 

are discussed in this section. Plate II is a surficial 

geologic map compiled from previous works with some minor 

modifications as a result of findings from this 

investigation. 

BEDROCK GEOLOGIC UNITS 

Stratigraphic Tertiary bedrock correlations for areas 

within western Oregon are illustrated in Figure 3. The 

mineralogy of the individual bedrock units are listed in 

Table I. 

Siletz River Volcanics CTsr) 

The early to mid Eocene Siletz River Volcanics, first 

named by Snavely and Baldwin (1948), is the basement rock in 

the central Oregon Coast Range. Based on K-Ar radiometric 

dating techniques, the age has been determined to be 

50.7±3.1 to 58.1±1.5 Ma (Duncan, 1982). Snavely and others 

(1968) suggested an average thickness of 10,000 feet (3 km), 
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TABLE I 

MINERALOGY OF THE BEDROCK UNITS 

UNIT MINERALOGY .. -I '".~=~ ...•....•.•. ·•••• 
Columbia River Primary: Ca-Na plagioclase, augite, Beaulieu (1971) 
Basalt (Tc~ magnetite, ilmenite 

Secondary: chlorophaeite 
Intrusive Rocks Primary: plagioclase (varied), magnetite, Brownfield (1982), 
(TO olivine, augite, apatite, biotite, quartz Bela (1981), 

Secondary: chlorite, calcite, zeolites, MacLeod (1981) 
nontronitic clay minerals 

Undif. Eocene- No analysis 
Olig.Sed.Rock 
(Toe) 
SpencerFm. Primary: plagioclase (oligoclase to calc- Gandera (1977), 
(Ts) andesine), quartz, K-feldspar (orthoclase, Cunderla (1986), 

with minor microcline and perthite), with AI-AuBby (1980) 
lesser amounts of muscovite, biotite, 
green hornblende, magnetite, pyroxene, 
chert, zircon, sphene, glauconite 
Secondary: smectite, zeolites, calcite, 
quartz, chlorite, K-feldspar, Fa-oxides 

Yamhill Fm. Primary: plagioclase (oligoclase and Baldwin and others, 
(Ty) andesine), hornblende, quartz, glauconite, (1955), AI-

chlorite, limonite, biotite, muscovite AuBby (1980) 
Secondary: calcite, glauconite 

Rickreall Primary: calcite, quartz, augite, mica, Boggs and others, 
Umestone Mbr. feldspar (1973) 

Secondary: heulandite, chert, quartz, 
pyrite mixed laver clays 

I 

TyeeFm. Primary: plagioclase, quartz, biotite, Baldwin (1964) 
(Tt) muscovite, chert 

Secondary: calcite 
Siletz River Primary: plagioclase (mostly labradorite), Baldwin (1964), 
Voles. (Ts~ augite, magnetite, oiMne Snavely and others, 

Secondary: smectite, pyrite, palagonite, (1968), Beaulieu 
thomsonite, calcite, chlorite, natrolite, (1971), Keith and 
analcime, scolecite, mesolite, heulandite, Staples (1985) 
apophyllite, chabazite, mordenite, 
stilbitel lau_mmite1 amethvstine quartz 

lqd 'l•\o\1\f; .t ( 
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with some areas near former volcanic centers possibly over 

20,000 feet (6 km). Baldwin (1964) assumed an average dip 

to the southeast at 15° to 20°. Local variations in the 

strike and dip are ascribed to faulting. The Tsr is exposed 

in the Ellendale basalt quarries west of Dallas. 

Snavely and others (1968) divided the Tsr into two 

units. The predominant lower unit consists of dark greenish 

gray, aphanitic tholeiitic to olivine tholeiitic, 

amygdaloidal, submarine pillow lava and flow breccia. 

Closely packed ellipsoidal pillows make up the majority of 

the lower unit. Massive to columnar jointed basalt sills 

and basalt-filled lava tubes occur in the tuff-breccia 

sequences (Snavely and others, 1968). The thinner, less 

extensive upper unit is comprised of submarine and subaerial 

alkali basalt, associated porphyritic rocks with olivine 

basalt flows and interbedded breccia. In both units, 

secondary minerals have been precipitated in vesicles, 

between breccia clasts, and along fractures in the basalt 

(Table I). 

The Kings Valley Siltstone Member overlies and is 

interbedded with the Siletz River Volcanics (Volkes and 

others, 1954). The member is marine in origin and is 

comprised of brownish gray tuffaceous siltstone with some 

thin, white, tuff laminae and calcareous lenses of medium­

grained basaltic sandstone (Penoyer and Niem, 1975). 
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Tyee Formation (Ttl 

The middle Eocene Tyee Formation doe~ not crop out nor has 

it been detected in the subsurface within the project area. 

It has been mapped in the Kings Valley area to the southwest 

where it unconformably overlies the Siletz River Volcanics. 

Burky and Snavely (1988) estimated an age of 50 to 52.5 Ma 

based on coccoliths. 

The commonly eastward dipping marine strata are 

composed of bluish-gray, fine to medium-grained, 

feldspathic, lithic, or arkosic sandstone and micaceous 

carbonaceous siltstone with minor dacite tuff interbeds near 

the top (Baldwin, 1964, Walker and Duncan, 1989). The 

sediment was deposited in middle bathyal or deeper waters 

and to a lesser extent, inner neritic water depths (McKeel, 

1984). 

Yamhill Formation (Ty) 

The middle to late Eocene Yamhill Formation, first 

named by Baldwin and others (1955), unconformably overlies 

the Siletz River Volcanics within the study area. To the 

south near Falls City, the Yamhill Formation overlies the 

Tyee Formation. 

The eastward dipping Yamhill Formation consists 

predominantly of siltstone and shale with fine-grained 

sandstone and tuffaceous material (Baldwin, 1964). The type 

section, located along Mill Creek near Buell, Oregon, 
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consists of a thinly bedded 500 foot (150 m) basal unit of 

dark-gray shale and siltstone with occasional beds of lime­

cemented sandstone overlain by 500 feet (150 m) of massive 

to thick bedded gray to greenish gray sandstone (Baldwin and 

others, 1955). Approximately 4,000 feet (1200 m) of massive 

to faintly bedded micaceous siltstone and mudstone overlie 

the sandstone. In the west-central Willamette Valley, Baker 

(1988) recognized a tuffaceous mudstone and siltstone unit 

overlain by a sandy to conglomeritic volcaniclastic unit 

(termed the Miller sandstone member) which is overlain by 

faintly bedded micaceous siltstone and mudstone. 

Gaston (1974) and Mckeel (1984) used microfossils to 

determine the environment of deposition. The upper and 

lower mudstone units were deposited in lower to middle 

bathyal marine depths while the prominent Miller sandstone 

member is shallow-marine to non-marine in origin. 

The Rickreall Limestone Member of the Yamhill Formation 

occurs locally at or near the base of the Yamhill Formation 

(Baldwin, 1964). The low grade limestone is bioclastic with 

rounded fragments of basic volcanic rock and minor amounts 

of micrite (Boggs and others, 1973). The limestone 

generally occurs as lenses that grade laterally and 

vertically into fossiliferous sandstone and siltstone. The 

prevalence of the Foraminifera Amphistegina, which are 

generally restricted to shallow water depths in modern 

environments, is indicative of deposition in a shallow 



nearshore environment (Boggs and others, 1973). The 

Rickreall Limestone Member is exposed in the abandoned 

Oregon Portland Cement Company quarry southwest of Dallas 

(8S/6W-12). 

Spencer Formation (Ts) 
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The late Eocene Spencer Formation, first named by 

Turner (1938), comprises approximately one half of the 

exposed Eocene sedimentary rocks within the Dallas-Monmouth 

area. The Ts, similar to all of the marine bedrock strata 

in the Willamette Valley, is usually deeply weathered at the 

surface. The Ts is gently deformed and dips easterly at 

angles of about 15° (Beaulieu, 1971). An angular 

unconformity occurs between the Spencer Formation and the 

underlying Yamhill Formation, the result of a marine 

regression (Graven, 1990). Suggested thicknesses within the 

study area range from nearly 2,500 feet (640 m) near Dallas 

(Yeats and others, 1991), at least 1,500 feet (460 m) near 

Monmouth (Baldwin, 1964), and about 800 feet (240m) in the 

Balston 7 1/2 minute quadrangle (Brownfield, 1982b). 

The Ts has been divided into a lower predominantly 

sandstone member and an upper mudstone and siltstone member. 

The lower member consists of very fine to fine-grained 

arkosic, micaceous and tuffaceous sandstones and siltstones 

with some carbonaceous or glauconitic units (Baker, 1988). 

The upper member is predominantly mudstone, silty mudstone 
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and tuffaceous siltstone (Baker, 1988). 

Mckeel (1984) suggests inner to middle neritic depths 

for most of the lower member and middle bathyal for the 

upper member. A metamorphic and plutonic source for much of 

the lower member and a more proximal volcanic source for the 

upper mudstone member is suggested (Cunderla, 1986: Baker, 

1988). The best exposures of the Spencer Formation within 

the study area are at the Willamette River cut bank south of 

the Buena Vista ferry and a roadcut on Fishback Hill west of 

Monmouth. 

Eocene-Oligocene Sedimentary Rock (Toe) 

A marine sedimentary unit, termed the Eocene-Oligocene 

sedimentary rock by Bela (1981) and the undifferentiated 

Tertiary rocks of Gonthier (1983), is exposed west of the 

Eola Hills in the northern part of the study area. The Toe 

is subdivided into a light-gray to tan, sandy tuffaceous 

siltstone lower unit and a light-brown to gray, fine- to 

coarse-grained tuffaceous sandstone and siltstone upper unit 

(Baldwin and others, 1955; Bela, 1981; Brownfield and 

Schlicker, 1981). The lower unit is approximately 1,000 

feet (300 m) thick and the upper unit is approximately 1,350 

feet (410 m) thick (Brownfield and Schlicker, 1981). Mckeel 

(1984) determined that the sediment was deposited near to 

shore, in shallow shelf to middle bathyal water depths. 
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Intrusive Rocks (Til 

Oligocene mafic dikes, sheets, and laccoliths intrude 

marine sedimentary rocks throughout much of the Coast Range. 

A large population of the intrusions of variable thickness 

occur southwest of the study area in the Falls City 

vicinity. The intrusions are composed of dense basalt, 

diabase, andesite, diorite and gabbro (Baldwin, 1964; Bela, 

1981; Brownfield, 1982a; MacLeod, 1981). The age of these 

igneous intrusions has been determined to be approximately 

30 Ma (Walker and Duncan, 1989). 

Columbia River Basalt Group (Tcr) 

Subaerial basalt flows of the Miocene Columbia River 

Basalt Group are exposed in the Eola Hills in the 

northeastern portion of the study area and in the Salem 

Hills to the east. The basalt has a maximum thickness of 

400 to 500 feet (120 to 150 m) with individual flows of 40 

to 100 feet (12 to 30m) (Bela, 1981). An age of 16 Ma has 

been determined isotopically for this section of the Tcr 

(Beeson and others, 1989). 

The basalt is of the Grande Ronde Basalt formation as 

is the case with most of the flows in the Willamette Valley. 

Included in the Eola Hills are: (1) a basal, reversed 

polarity member, possibly the Grouse Creek Unit; (2) the 

"low Mg" , normal polarity (N2 ) Winter Water Unit; and (3) 

the "high Mg", normal polarity (N2 ) Sentinel Bluffs Unit 
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(Beeson, 1992, personal communication). 

The Tcr consists of weathered to unweathered basaltic 

lava flows and interflow zones. The interflow zones are 

marked by ash, baked soils and flow-top breccia. The flows 

are generally dense, fairly crystalline, dark-gray to black, 

fine-grained to aphanitic, even-textured to slightly 

porphyritic tholeiitic basalt exhibiting massive columnar 

jointing near the base to diced or hackly jointing in the 

entablature (Bela, 1981). Weathered zones are reddish-brown 

to grayish-brown, crumbly to medium-dense basalt. As a 

result of intense weathering, thick, clay-rich lateritic 

soils and local bauxite mantle much of the hilltops and 

slopes. 

UNCONSOLIDATED SEDIMENTS 

Unconsolidated sediments overlie marine and volcanic 

bedrock units over most of the valley floor and some upland 

areas. Figure 4 illustrates the correlations of these units 

throughout the Willamette Valley. 

High Terrace and Alluvial Fan Deposits (Qt) 

The Pleistocene to Holocene high terrace and alluvial 

fan deposits include the higher terrace deposits of Bela 

(1981), the terrace gravels of Baldwin (1964), the terrace 

deposits of Gonthier (1983), and the terrace, pediment, and 

lag gravels of Walker and MacLeod (1991). The unit 
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underlies elevated terraces, and consists of alluvial fans, 

colluvium and slope wash near bedrock foothills. 

The Qt is composed of poorly sorted, light-brown clay, 

silt and sand with some gravel layers weathered to variable 

degrees. The gravels are basaltic in composition and were 

probably derived from the Siletz River Volcanics to the 

west. Thicknesses range from more than 80 feet (24 m) near 

Dallas to thin veneers overlying marine bedrock. Portions 

of the Qt may be equivalent to the Lacomb and Leffler 

gravels of Allison (1953) (McDowell, 1991). 
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The Qt may be locally mantled by the Willamette Silt of 

Allison (1953), the Willamette Silt Formation of Glenn 

(1965), or the Willamette Formation of Balster and Parsons 

(1968) and Roberts (1984) with a possible intervening 

paleosol. These deposits, herein referred to as the 

Willamette Silt, are composed of bedded to massive clay, 

silt and sand found at elevations of up to 400 feet (122 m) 

(McDowell, 1991). Glacial erratics of granite, 

granodiorite, slate, gneiss and other material of non­

Willamette Valley provenance are also associated with the 

Willamette Silt. 

The Qt is exposed north of Dallas near the intersection 

of Dyck and Perrydale roads (7S/5W-15), the type section for 

the Dolph geomorphic surface (Balster and Parsons, 1968) 

(Figure 5). At that location, highly weathered clay, silt, 

sand and gravel directly overlie fine-grained, fossiliferous 

sandstone of the Spencer Formation. Intensely weathered 

gravel, can easily be cut with a shovel near the top of the 

section. 

Older Alluvium (Qoal) 

The Pleistocene to Holocene older alluvium is the most 

extensive of the unconsolidated geologic units in the valley 

flat of the study area. This material includes the middle 

terrace deposits, the lower terrace deposits of tributary 

rivers and streams and the lower terrace deposits of 



alluvial bottomlands of Bela (1981), the older alluvium of 

Gonthier (1983) and Walker and Duncan (1989), and the 

alluvium of Baldwin (1964). The Willamette Silt also 

mantles this unit. 

Figure 5. Weathered Qt gravel overlying Spencer 
Formation sandstone. 

The Qoal is composed of poorly sorted and 
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unconsolidated clay, silt, sand and interbedded gravel. The 

Qoal may be equivalent to the Linn gravels of Allison 

(1953), the Rowland Formation of Balster and Parsons 1969), 

or the Linn Formation of Roberts (1984). In general, the 

upper part of the older alluvium consists of fine-grained 

sediments (clay, silt and fine-grained sand) which overlies 

layers of fine and coarse-grained sediments. The unit is 
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transitional to the high terrace and alluvial fan deposits. 

Gonthier (1983) reported thicknesses up to 85 feet (26m), 

but that may have included part of the Qt. 

Yeats and others (1991) report nonmarine, fine-grained 

sediments ("blue clay") throughout much of the Willamette 

River Valley. This unit may underlie or be included in the 

Qoal in some areas. 

Recent River Alluvium (Qall 

The recent river alluvium (Holocene) comprises the 

sediment deposited in the active Willamette River channel 

and floodplain. This unit includes the recent river 

alluvium and the lower terrace deposits of the Willamette 

River of Bela (1981) and the younger alluvium of Gonthier 

(1983). 

The Qal is composed of generally poorly sorted, fresh 

cobbles, gravel, sand, silt and clay. Gonthier (1983) 

reported thicknesses of up to 55 feet (18m). Generally, 5 

to 30 feet (1.5 to 9 m) of silt and very fine sand overlie 

10 to 45 feet (3 to 14 m) of sand and gravel (Gonthier, 

1983). The sand and gravel layers appear to be areally 

extensive and are quarried throughout the Willamette Valley. 

Some driller's logs indicate that fine-grained sediments, 

which may correlate to the non-marine fine-grained sediments 

of Yeats and others (1991), occur under the coarser-grained 

sand and gravel layers. 



RESULTS 

THICKNESS AND DISTRIBUTION OF UNCONSOLIDATED UNITS 

Outcrop and well log information enabled determination 

of the thickness and distribution of lithologic units within 

the deposits of unconsolidated sediment. These lithologic 

units are based on predominant grain-size and are not time 

stratigraphic units. The information is presented in cross­

sections (Plate III) and a series of isopach and contour 

maps (Figures 6 to 11). The driller's logs used to 

construct the cross-sections are included in Appendix B. 

With hydrologic properties in mind, the unconsolidated 

sediment was divided into either predominantly coarse­

grained or fine-grained lithologic units. The coarse­

grained aquifers within the unconsolidated deposits, 

composed primarily of sand and gravel, have much higher 

water producing capabilities than their fine-grained 

counterparts. The distribution, thickness, and upper and 

lower elevational extent of the coarse-grained unit may be 

of benefit to drillers when determining the placement and 

depth of future water wells. 
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Elevation of top of bedrock 

Tertiary marine and volcanic bedrock units crop out 

along much of the northern, western and southern boundaries 

of the study area. However, most of the units at those 

localities are highly weathered and mantled by thick 

regolith. In approximately half of the area, primarily in 

the valley flat below an elevation of 300 feet (91.4 m), the 

bedrock material is overlain by unconsolidated sediment. 

Lithologic descriptions from the driller's logs of 181 

field located water and engineering wells were used to 

determine the elevation of the bedrock beneath the alluvial 

fill (Figure 6). Eighty-seven of the wells penetrated the 

top of the bedrock. Ninety-four of the wells did not 

pe.netrate bedrock, but were used to constrain its maximum 

possible elevation. 

The elevation of the upper bedrock surface gradually 

increases to the north, west and south of the Willamette 

River, which lies on the eastern margin of the study area. 

The elevations are lowest, less than 100 feet (30.5 m), 

under most of the Willamette River floodplain. The 

elevation of the top of the bedrock could be less than 80 

feet (24.4 m) at some locations near the Willamette River 

since the majority of the wells there are shallow and do not 

penetrate bedrock. 
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Thickness of Alluvial Fill 

The majority of the unconsolidated sediment deposits 

occur at elevations of less than 300 feet (91 m). The 

deposits consist of clay, silt, sand, gravel, pebbles and 

cobbles. Individual layers within the unconsolidated 

sediments vary from homogeneous to heterogeneous in grain 

size distribution. 
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One hundred seventy-five wells were used to determine 

the thickness of the unconsolidated material (Figure 7). 

Eighty-two of these wells extended through the alluvial fill 

and penetrated the underlying bedrock. Ninety-three of the 

wells did not fully penetrate the alluvium, but were useful 

in constraining a minimal thickness. 

In general, the unconsolidated material thins 

coincidentally with increasing elevation of the upper 

bedrock surface. The greatest thicknesses, up to and over 

80 feet (24.4 m), occur near the Willamette River between 

Buena Vista and Independence and along a northwest trend 

between Independence and Dallas. The majority of the wells 

with lithologic records in the valley flat and floodplain 

north of Buena Vista are less than 80 feet (24.4 m) deep and 

none of them reportedly encounter bedrock. Therefore, the 

thickness of unconsolidated sediment in that area may 

actually be well over 80 feet (24.4 m) thick, but conclusive 

data are lacking. 
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Thickness of lower fine-grained unit 

A sequence of clay and silt depos~ts, commonly termed 

"blue clay" by drillers, occurs under some of the lowermost 

sand and gravel layers and above the bedrock in the Dallas­

Monmouth area. Most of the lower fine-grained unit appears 

to be less than 20 feet (6 m) thick. Siltstone and 

claystone of the marine bedrock units often weathers to a 

chemically reduced, gray to blue, fine-grained material. 

This causes difficulty in differentiating between the 

weathered bedrock and the lacustrian or alluvially derived 

"blue clay" from descriptions in drillers' logs. It was not 

possible to confidently trace this unit within much of the 

basin fill and therefore, an isopach map was not 

constructed. 

Although the lower fine-grained unit appears to be thin 

or absent over much of the area, a significant thickness may 

underlie the valley flat and the recent Willamette River 

floodplain north of Buena Vista. There, four relatively 

deep wells reportedly penetrate up to 94 feet (28.6 m) of 

blue clay. The close proximity to an exposed ridge of 

Spencer Formation raises the question of whether this is 

weathered marine bedrock or alluvial or lucustrian deposits. 

Cross-section E-E' (Plate III) represents lithologic data 

from wells in this area. 
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Bottom of Coarse-Grained Unit 

Layers of coarse-grained unconsolidated sediment, 

comprise much of the unconsolidated basin fill. This unit 

is predominantly composed of sand and gravel and in some 

cases, pebbles and cobbles. The coarse-grained material is 

poorly to moderately well sorted, moderately to well 

rounded, and chiefly of basaltic and andesitic composition. 

Locally, clay and/or silt occurs as a matrix or as 

interlayers between the coarse-grained layers. 

One hundred forty wells were utilized to determine the 

elevation of the bottom of the lower-most, significant 

coarse-grained sedimentary deposits (Figure 8). For the 

purpose of this study, the coarse-grained deposits were 

determined to be significant if they were greater than 10 

feet (3 m) thick and were laterally traceable among 

neighboring wells or outcrops. Ninety of the wells extended 

through the sand and gravel deposits. Forty-nine of the 

wells did not, but they were utilized in constraining a 

maximum basal elevation. 

Some areas lack coarse-grained material within the 

basin fill sediments. A case in point is the valley flat 

area north of Rickreall Creek in the north central portion 

of the study area. Although up to 40 feet (12.2 m) of 

unconsolidated sedimentary deposits occur there, virtually 

no sand and gravel layers are present. The maximum extent 

of significant coarse-grained material is represented by the 
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thick dashed lines in Figures 8,9, and 10. Drillers have 

reported sand and gravel layers beyond these lines, but they 

are relatively thin and discontinuous. 

Commonly, the coarse-grained unit directly overlies the 

bedrock (cross-sections C-C' and D-D', Plate III). 

Consequently, the basal elevation contours of the unit are 

very similar to those of the upper bedrock surface. 

However, where a fine-grained unit occurs between the 

bedrock and the coarse-grained unit, there is a marked 

difference between the contours. This occurs in and near 

the recent Willamette River floodplain where wells have 

reportedly encountered up to 94 feet (28.6 m) of blue clay 

(cross-sections A-A' and E-E', Plate III). 

Top of Coarse-Grained Unit 

The top of the uppermost significant coarse-grained 

unit was determined with the use of the driller's reports of 

150 wells, all of which penetrated the top of the unit 

(Figure 9). The elevation of the top of the unit is the 

lowest, commonly less than 150 feet (46 m), adjacent to the 

Willamette River. The highest elevations, over 280 feet (85 

m), occur in the upper terrace and fan deposits northeast of 

Dallas. The top of the coarse-grained material slopes 

gently to the east from Dallas to the Willamette River. 
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Thickness of Coarse-Grained Unit 

One hundred sixty-one wells were.~sed to determine the 

thickness of the coarse-grained unconsolidated material 

(Figure 10). Of these wells, 129 extended through the 

entire unit. Thirty-two of the wells did not extend through 

the entire thickness, but were used as a minimal thickness 

constraint. In most cases, the thickness of the coarse­

grained sediment unit is accurately indicated by the 

difference in elevation of the top of the uppermost and the 

bottom of the lowermost significant gravels. Individual 

clay, silt and fine-grained sand layers are locally included 

in the total thickness of the coarse-grained material. 

These fine-grained deposits were only included in the 

coarse-grained unit if they constituted less than 25% of the 

overall thickness of the unit and were bounded on the top 

and bottom by significant coarse-grained material. Cross­

sections B-B' and c-c• (Plate III) represent this situation. 

The sand and gravel deposits are thickest near the 

Willamette River and in an area east and southeast of 

Dallas. Near Dallas, thicknesses exceed 80 feet (24.4 m) 

(cross-section c-c•, Plate III). Although the unit is the 

thickest near Dallas, it includes several interlayers of 

fine-grained sediment up to nearly 20 feet (6.1 m) thick. 

The sand and gravel deposits at and northeast of 

Independence are less than 60 feet (18.3 m) thick, but they 

are coarser-grained and contain less fine-grained material 
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than those near Dallas. Some of the thinnest deposits, less 

than 20 feet (6.1m), occur in the older alluvium in the 

valley flat between Rickreall and Monmouth. Cross-section 

C-C' (Plate III) extends through the thickest coarse-grained 

deposits near Dallas, the relatively thin deposits in the 

central portion of the valley flat, and the moderately thick 

deposits north of Independence. 

Thickness of Upper Fine-Grained Unit 

One hundred fifty-six fully penetrating wells were used 

to determine the thickness of clay and silt overlying the 

coarse-grained deposits or bedrock where the coarse-grained 

material was absent (Figure 11). The upper fine-grained 

deposits are composed of clay, silt and fine-grained sand. 

In the driller's logs, the material is commonly referred to 

as "brown clay". Thicknesses range from 0 to nearly 40 feet 

(12.2 m) with the greatest thicknesses occurring in the 

older alluvium near Independence and Monmouth. The material 

is less than 20 feet (6.1 m) thick, and locally non­

existent, over most of the recent Willamette River 

floodplain. 

It was often difficult to discern between weathered 

marine bedrock and fine-grained alluvial deposits. 

Therefore, confidence in the isopach contours decreases 

beyond the extent of the coarse-grained material. 
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Because of this, the isopach contours rarely go beyond the 

extent of the coarse-grained deposits. However, the fine­

grained unconsolidated material is certain to occur beyond 

the extent of the sand and gravel deposits. 

Geologic Map Modifications 

48 

The surficial geologic map (Plate II) produced in this 

study is primarily a compilation of previously published 

work. However, as a result of the data compiled for this 

study, there have been some modifications. Portions of the 

bedrock-alluvium boundary, particularly in the western half 

of the study area, were shifted slightly on the basis of 

well log information. In most cases, the alluvium was 

extended slightly beyond where it had been mapped before. 

An area northeast of Dallas (7S/5W) was previously 

mapped entirely as terrace deposits (Qt). Surface exposures 

and well log data indicate that the area consists not only 

of weathered sand and gravel, but also of marine bedrock. 

Baldwin (1964) mapped a bedrock exposure at 7S/5W-15bbb as 

Spencer Formation (Ts). Accordingly, the marine bedrock 

unit in this area has been tentatively assigned to the Ts. 

GEOCHEMISTRY OF ALLUVIAL AND BEDROCK UNITS 

The elemental concentrations of 71 samples from oil and 

gas exploration wells, water wells and surface grab samples 

were determined by instrumental neutron activation analysis 
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(INAA). The results are tabulated in Appendix A and sample 

locations are indicated in Figure 12~ 
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Bedrock Units 

Graven (1990) and Werner (1990) used logs (mud, 

lithology, and electric) and biostratigraphic correlations 

(McKeel, 1984, 1985) of petroleum wells to study the 

subsurface stratigraphy of the Willamette Valley. The 

geochemistry of four of these oil and gas exploratory wells 

was investigated with the use of INAA. Table II contains 

the elevations of the contacts between the stratigraphic 

units encountered by these wells as determined by Graven 

(1990) and Werner (1990). Lithologic descriptions of 

samples from the wells are included in Appendix A. 

TABLE II 

STRATIGRAPHIC CONTACT ELEVATIONS 
FOR WELLS W1, W2, W3, AND W4 

RESERVE OIL AND GAS, 
Bruer 1 ( W1) 

elev (ft) 
Toe -226 
Ts -1293 
Ty -4193 
Tsr 

MILLER, 
Bursell 1 ( W3) 

Ts -305 
Ty 

MIRIAN OIL CO., 
Bliven 3 (W2) 

elev. ( ft) 
Ts -269 
Ty 

MILLER, 
Stump 1 (W4) 

Ts 
Ty 

-308 



The author has the greatest confidence in the 

stratigraphic picks for the Reserve Oil and Gas, Bruer 1 

well (W1) because it was the only one of the four wells 

where biostratigraphic constraints were available (McKeel, 

1984). Well Wl encountered the undifferentiated Eocene­

Oligocene sedimentary unit (Toe), the Spencer (Ts) and 

Yamhill (Ty) Formations and the Siletz River Volcanics 

(Tsr). 
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Iron, K, Na, Co, Cr, Rb, Sc, Ta, and Th were useful in 

characterizing the units in well Wl. The geochemical 

distinctions between the units are apparent when these 

elements are plotted versus elevation (Figure 13). The 

Siletz River Volcanics has relatively high Fe, Na, Co, Cr, 

Sc and Ta concentrations in comparison to the marine 

sedimentary units. Samples from the Spencer Formation 

interval have comparably higher concentrations of K and Rb. 

The range of Fe, Co, and Ta concentrations from the sampled 

Yamhill Formation section of the well are distinct from the 

other units. The Fe, K , Rb and Th values of samples from 

the Toe are distinct from those of the underlying Ts. 

Cluster analysis (Davis, 1986) of W1 samples, based on 

Fe, K, Na, Co, Cr, Rb, Sc, Ta and Th concentrations, was 

used to produce the dendrogram in Figure 14. Samples with 

the highest correlation coefficient (r) or similarities are 

clustered together. Correlation coefficients are greater 

than .98 for samples determined to be of the same geologic 
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Figure 14. Dendrogram of well W1 samples based on INAA data. 

unit. The cluster family of the Toe portion (W1-1, 2 and 3) 

have a·high similarity (r>.97) with samples from the Ty (W1-

6, 7, 8 and 9). Spencer Formation samples (W1-4 and 5) have 

a similarity level of .88 with samples from the Toe and Ty 

group. The Tsr samples (W1-10 and 11) and the sedimentary 

bedrock units have a relatively low similarity (r=.67). 

The other petroleum wells (W2, W3 and W4) are thought 

to encounter the .Spencer and Yamhill Formations exclusively 

(Graven, 1990). The elements Fe, K, Co, Rb, Sc, and Th 

sufficiently distinguish the Ts and Ty in W1 and were 

therefore used to delineate the formations in the Mirian Oil 

Co.-Bliven 3 (W2), Miller-Bursell 1 (W3) and Miller-Stump 1 

(W4) exploration wells. The concentrations of the selected 

elements for these wells are listed in Table III. 
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TABLE III 

SELECTED ELEMENTAL CONCENTRATIONS, ELEVATIONS, AND 
GEOLOGIC UNIT DESIGNATIONS OF WERNER (1990) AND GRAVEN 
(1990) OF OIL AND GAS WELLS W1, W2, W3 AND W4 SAMPLES 

Sample Elev. Fe 
% 

W1-4 -583 4.21 2.62 13 120 15 12.7 Ts 
W1-5 -1043 3.75 2.27 11 118 13 7.3 Ts 
W1-6 -1643 5.84 1.35 16 67 22 5.9 Ty 
W1-7 -2343 5.76 1.02 14 51 20 3.4 Ty 
W1-8 -3143 5.27 1.69 15 91 19 7.5 Ty 
W1-9 -3943 5.14 1.81 17 92 18 9.2 Ty 

W2-1 165 4.41 2.18 12 146 15 12.4 Ts 
W2-2 63 4.04 1.94 13 95 14 8.5 Ts 
W2-3 -242 5.17 2.14 18 75 18 11.2 Ts 
W2-4 -540 5.23 1.73 14 89 20 7.3 Ty 
W2-5 -837 5.79 1.34 17 68 22 5.0 Ty 
W2-6 -1137 7.58 1.19 27 45 23 4.5 Ty 
W2-7 -1430 5.84 0.89 18 78 22 4.2 Ty 

W3-1 300 4.34 2.47 14 127 16 14.0 Ts 
W3-2 200 4.86 2.13 12 133 16 12.1 Ts 
W3-3 0 4.97 1.31 12 100 15 8.6 Ts 
W3-4 -200 4.43 2.35 17 144 16 11.1 Ts 
W3-5 -400 6.24 1.76 18 82 21 7.4 Ty 
W3-6 -630 6.27 1.45 18 102 23 6.1 Ty 
W3-7 -765 6.26 1.61 17 70 22 5.5 Ty 

W4-1 100 10.75 2.09 22 108 13 10.0 Ts 
W4-2 0 3.75 1.37 8 59 13 11.0 Ts 
W4-3 -295 4.46 2.65 17 117 16 11.3 Ts 
W4-4 -600 5.62 1.39 15 55 19 7.3 Ty 
W4-5 -895 6.79 1.59 21 64 25 5.4 Ty 
W4-6 -1200 7.02 1.46 25 65 28 3.6 Ty 
W4-7 -1265 6.79 1.40 22 63 26 4.2 T' 



The upper two (W2-1 and 2) and the lower four samples 

(W2-4, 5, 6 and 7) of well W2 group geochemically into the 

Ts and Ty units as Graven (1990) had assigned. However, 

sample W2-3 has some geochemical characteristics of both 

units. The K and Th concentrations more closely match the 

values for the Spencer Formation in well W1, while the Fe, 

Co, Rb and Sc concentrations are more similar to those of 

the Yamhill Formation. The elevation of sample W2-3 is at 
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-249 feet (-76 m) and Graven (1990) picked the Ts-Ty contact 

at -269 feet (-82 m). The cluster dendrogram (Figure 15), 

based on the selected elements, illustrates that W2-3 has a 

greater similarity with W2-4 of the Yamhill Formation than 

with the other Spencer Formation samples • 
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Figure 15. Dendrogram of well W2 samples based on INAA data. 
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Geochemically, samples from wells W3 and W4 generally 

support the unit designations assigned by Graven (1990). In 

both wells, the samples (W3-4 and W4-3) from the basal 

portion of the Spencer Formation, as assigned by Graven 

(1990), have Co concentrations similar to that of the 

Yamhill Formation in well W1. The other elemental 

concentrations of samples W3-4 and W4-3 are within the 

ranges of the Spencer Formation in well W1. For each well, 

the samples are separated into two distinct cluster families 

(Figure 16). The samples within each of these clustered 

families correspond to a common, previously specified 

geologic unit (Ts or Ty). 
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Figure 16. Dendrograms of samples from wells W3 
and W4 based on INAA data. 
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Applying techniques used by Kadri and others (1983) in 

northwestern Oregon, the K, Th, La and Sm concentrations of 

samples from the sedimentary bedrock units were examined as 

possible provenance indicators. The majority of Spencer 

Formation specimens have relatively high Th and K values in 

comparison to the Yamhill Formation and the undifferentiated 

Eocene-Oligocene sedimentary unit (Figure 17). Thorium is 

more concentrated in continental igneous and metamorphic 

terranes than it is in volcanic arc material or oceanic 

areas (Moore, 1972). Taylor (1964) suggests an average Th 

value of 9.6 ppm for continental crust and a granite average 

of 17 ppm. Condie (1976) suggests a 0.18 to 5.5 ppm range 

of Th values for volcanic arc derived material. The Spencer 

Formation samples from this study have an average Th 

concentration of 10.2 ppm. The average Th concentrations 

for the Yamhill Formation and the Toe were 6.03 and 5.62 

ppm, respectively. 

Samples from the Spencer Formation commonly have higher 

La/Sm ratios, indicative of granitic and metamorphic source 

material, than the majority of the samples from the Yamhill 

Formation and the undifferentiated Eocene-Oligocene 

sedimentary unit (Figure 17). The range of Th, La, Sm and K 

concentrations overlap among the sedimentary bedrock units 

as depicted in Figure 17. 
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Two surficial samples of the Rickreall Limestone Member 

of the Yamhill Formation were analyzed (Y-2 and Y-5). The 

limestone occurs in the basal portion of the Yamhill 

Formation, overlying the Siletz River Volcanics (Tsr). The 

limestone specimens have lower K, Cs, Th, La and Fe, and 

higher Cr and Sr concentrations in comparison with other 

samples of the Yamhill Formation. The Th concentrations, 

which range from 0.4 to 2.1 ppm, are well below the average 

for continental crust (Taylor, 1964) and are more similar to 

the average concentration of basalt (2.2 ppm) (Taylor, 

1964). 

Basaltic boulders, previously mapped as Siletz River 

Volcanics (Baldwin, 1964), cap the summit of Mt. Pisgah 

southeast of Dallas (Figure 18). These boulders have been 

tentatively assigned to the Tertiary intrusives (Ti) for 

this study. The Fe, K, Na, Cr, Sc and Sr concentrations of 

two samples from these boulders (Ti) were compared with 

those of the Siletz River Volcanics (Tsr) and the Winter 

Water (Tcrww) and Sentinel Bluffs (Tcrsb) units of the 

Columbia River Basalt Group (CRBG) (Table IV). The cluster 

analysis of these values was used to produce the dendrogram 

in Figure 19. The CRBG units are the most similar to one 

another (r>.99). The next highest similarity (r>.98) is 

that of the Tsr with the CRBG units. 



Figure 18. Basaltic boulders overlying Spencer 
Formation sandstone on the summit of Mt. Pisgah 
(8S/5W-9aab). 
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TABLE IV 

SELECTED ELEMENT CONCENTRATIONS FOR THE SILETZ RIVER 
VOLCANICS (Tsr), MT. PISGAH BOULDERS (Ti), AND BASALT 
OF THE COLUMBIA RIVER BASALT GROUP (Tcrww AND Tcrsb) 

Element Tsr Ti Tcrww* ...•. 
Fe (ppm) 8.10-12.98 7.17-7.67 11.62 
K% 0.40-0.91 0.53 1.76 
Na% 1.97-2.79 2.02-2.03 3.11 
Cr (ppm) 93-239 235-231 17 
Sc (ppm) 26-47 39-41 31 
Sr (ppm) 363-1118 271-605 322 

* Beeson and others (1989) 
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Figure 19. Dendrogram of Siletz River Volcanics 
(Tsr), Columbia River Basalt Group (Tcrww and 
Tcrsb), and Mt. Pisgah basaltic boulder (Ti) based 
on INAA data. 
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Unconsolidated Sediments 

The elemental concentrations of fifteen unconsolidated 

sediment samples from this study were compared to basin-fill 

sediments of the Tualatin Valley (unpublished data, 

Caldwell, 1990) and the Portland basin (Lite, 1992). Lite 

(1992) reported two distinct sources, the Cascade Range and 

the Columbia River Basin, for the sedimentary units within 

his southeast Portland basin study area. Comparably high La 

and Th concentrations, in response to detritus from plutonic 

and metamorphic rocks within the drainage basin, are 

diagnostic of a Columbia River Basin source (Lite, 1992). 

Sediment from a well near the west flank of the Tualatin 

Mountains in the Tualatin Valley was probably derived from a 

granitic or metamorphic Columbia River Basin source 

(unpublished data, Caldwell, 1990). Lite (1992) also 

separated sediments with Cascade Range sources into three 

distinct chemical groups: 1) basalt; 2) basaltic andesite: 

and 3) andesite. 

Silt and clay from the upper portion of the older 

alluvium (W7-1 and Q-4) and blue clay (W6-5) from below the 

sand and gravel layers of the recent river alluvium (Qal) 

have relatively high La concentrations. In a graph of the 

Na versus La concentrations for unconsolidated sediment 

samples within this study area and sediment from the 

Tualatin Valley and Portland basin, samples W7-1, W6-5, and 

Q-4 plot among the Columbia River Basin source sediments of 
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the Tualatin Valley and the Portland basin (Figure 20). 

The relatively high Th concentrations of samples W7-1 

and Q-4 again places them among the Columbia River Basin 

derived sediments of the Tualatin Valley and Portland basin 

on aNa vs. Th graph (Figure 20). A lower Th concentration 

for sample W6-5 places it within the realm of the Cascadian 

derived sediments. The majority of the unconsolidated 

sediments from this study plot within the region dominated 

by sediments determined to be of Cascade Range provenance. 
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Figure 20. Comparison of Na vs La and Na vs Th 
concentrations of unconsolidated sediment samples 
from this study and sediment samples from the 
Portland basin (Lite, 1992)* and the Tualatin 
Valley (Caldwell, 1990)**· 
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In a Na vs. Sc graph, W7-1, Q-4 and W6-5 values again 

lie in the proximity of the Columbia River Basin derived 

sediments (Figure 21). Sand-size and less splits from sand 

and gravel deposits (W7-2 and W7-3) and a lower coarse sand, 

silt and blue clay layer (W7-4) within the Qoal have 

relatively high and closely similar scandium concentrations. 

The Na and Sc concentrations for these samples plot near a 

Portland basin sediment sample determined to be of Cascade 

Range basalt provenance (Lite, 1992). The gravel within 

samples W7-2, W7-3 and W7-4 appeared to be of basaltic 

composition in hand specimen. 
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Figure 21. Comparison of Na vs Sc concentrations 
of unconsolidated sediment samples from this study 
and sediment from the Portland basin (Lite, 1992). 
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Samples from well W7 in the older alluvium (Qoal) 

provide an interesting situation in which differing sediment 

provenance may be present. The upper silt (W7-1) has Th and 

La concentrations that resemble plutonic or metamorphic 

provenance and the lower samples (W7-2, 3 and 4) have Sc 

concentrations near that of sediment from basalt of the 

Cascade Range. The chemical variation of the sediment 

encountered by well W7 is visually apparent by graphing Co, 

Cr, and Fe versus elevation (Figure 22). In all three 

cases, the lower two samples (W7-3 and W7-4) have the 

greatest concentrations. The second highest sample (W7-2) 

has concentrations transitional between those of the 

uppermost sample (W7-1) and the samples W7-3 and W7-4. 

A cluster analysis was performed on the sand-size and 

less fraction of the lower two samples in well W7 (W7-3 and 

W7-4) and basaltic bedrock units in the area. Average Fe, 

K, Na, Cr and Sc concentrations of the Siletz River 

Volcanics (Tsr) and boulders from the summit of Mt. Pisgah 

(Ti) from this study and the Winter Water (Tcrww) and 

Sentinel Bluff (Tcrsb) units of the Columbia River Basalt 

Group (Beeson and others, 1989) were utilized. W7-3, W7-4 

and the Tsr appear to be the most similar as they cluster 

together with a distance coefficient of less than 10 in the 

dendrogram (Figure 23). 

Samples (W7-1 and Q-4) from the upper fine-grained 

section of the older alluvium (Qoal) are the only 
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Figure 23. Dendrogram of Siletz River Volcanics 
(Tsr), Columbia River Basalt Group (Tcrww and 
Tcrsb), Mt. Pisgah basaltic boulder (Ti), and Qoal 
basaltic sand and gravel (W7-3 and W7-4) samples 
based on INAA data. 
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unconsolidated sediment samples in which all of the 

elemental concentrations are within the range of those of 

the Spencer Formation (Ts). Cobalt, however, may be a 

fairly reliable element to use to differentiate the upper­

fine grained Qoal from the Ts. Only one Ts sample (W4-l) 

has a higher Co concentration than samples W7-1 and Q-4. 

W4-1 is unique among the Ts samples with anomalously high 

Cr, Fe, and Co concentrations. 
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All of the elemental concentrations, with the exception 

of Co, determined for the unconsolidated sediment samples 

are within the range of those determined for the 

undifferentiated Eocene-Oligocene sedimentary rock unit 

(Toe). A blue clay sample (W6-5) from below a sand and 

gravel section in the recent river alluvium (Qal) is the 

only unconsolidated sediment sample that has a Co 

concentration within the range of those of the Toe. The 

other unconsolidated sediment samples have Co concentrations 

higher than those of the Toe unit. No geochemical 

distinction between the unconsolidated sedimentary deposits 

and the Yamhill Formation was evident. 

CLAY MINERALOGY 

The clay mineralogy of seven samples from four sites 

was determined by x-ray diffraction. Table V provides brief 

descriptions of the samples and their locations. Splits of 

these samples were also analyzed by INAA. Semi-quantitative 
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analyses of the <2~ clay minerals are represented in Table 

VI. 

TABLE V 

LOCATION AND DESCRIPTION OF CLAY MINERAL ANALYSIS SAMPLES 

SAMPLE LOCATION DESCRIPTION 
S-3 8S/5W- 28dbc Spencer Formation (Ts), weathered outcrop, 

light brown silt 

W5-1 7S/5W-31 dab1 Yamhill Formation (Ty), water well drill cuttings 
from surface to 17 feet below surface, brown clay 

W6-1 8S/4W-16adc Upper fine-grained unit of the recent river 
alluvium (Qal), water well drill cuttings from 
surface to 5 feet below surface, brown topsoil 

W6-2 8S/4W-16adc Upper fine-grained unit of the recent river 
alluvium (Qal), water well drill cuttings from 5 
to 11 feet below surface, brown clay 

WS-5 8S/4W-16adc Lower fine-grained unit below the sand and gravel 
of the recent river alluvium (Qal), water well 
drill cuttings from 37 to 42 feet below surface, 
blue clay 

W7-1 8S/4W-:- 7cca2 Upper fine-grained unit in the older alluvium 
(Qoal), water well drill cuttings from surface.to 
17 feet below surface, brown clay 

W7-4 8S/4W-7cca2 Lower fine-grained unit in the older alluvium 
(Coal), water well drill cuttings from 54 to 
77 feet below surface, blue clay and silt split 
from blue clay, silt and sand 
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TABLE VI 

RELATIVE PERCENT OF CLAY·SUITES 

RELATIVE % OF CLAY MINERALS 
SAMPLE KAOLINITE ILLITE VERMIC~ SMECTITE EXPANDABLE 

. '\ : ULITE MIXED LAYER 
WS-1 --- --- --- 86 14 

W7-1 18 18 26 29 7 

W7-4 14 3 --- 73 10 

W6-1 22 --- 18 41 19 

W6-2 14 --- 26 46 14 

W6-5 --- --- --- 100 ---

S-3 39 8 trace 53 trace 

Smectite and expandable mixed layer (kaolin/smectite) 

are the most abundant clay minerals in all samples. Samples 

W6-S and WS-1 are overwhelmingly dominated by smectite. 

Sample WS-1 is a bedrock sample from the Yamhill Formation 

while W6-S is from a "blue clay" layer in or below the 

recent river alluvium (Qal). 

Sample W7-1, brown clay from the upper section of the 

older alluvium (Qoal), has measurable concentrations of 

kaolinite, illite, vermiculite, smectite, and expandable 

mixed layer clay. The material from which W7-1 was sampled 

is commonly referred to as Willamette Silt. 
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W7-4 is from the lower portion of the Qoal which 

overlies either the Spencer Formation (Ts) or the 

undifferentiated Eocene-Oligocene sedimentary rock unit 

(Toe) in the area of sampling. Kaolinite, illite, smectite, 

and expandable mixed layer clay are noted in both W7-4 and 

S-3, a Spencer Formation sample. The same clay species plus 

chlorite were recognized by Cunderla (1986) in his study of 

the Ts. 

Samples W6-1 and W6-2 are from the upper fine-grained 

layer of the Qal. They have similar concentrations of 

kaolinite, vermiculite, smectite and expandable mixed layer 

clay. 

GROUNDWATER 

Hydrogeology 

Information from 302 water wells (Plate I) comprise the 

database used to examine the hydrogeology of the study area 

(Appendix C). The hydrogeologic characteristics of the 

stratigraphic units including water level, yield, and 

specific capacity, are summarized in Table VII. The 

hydraulic conductivity, storage coefficient, recharge and 

median specific capacity values determined by Gonthier 

(1983) are also included in Table VII. The hydrogeologic 

characteristics are not given in Table VII for the Columbia 

River Basalt Group and the Tertiary Intrusive Rocks because 

of the limited number of wells in these units. 
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TABLE VII 

HYDROGEOLOGIC CHARACTERISTICS OF THE GEOLOGIC/AQUIFER UNITS 

AOUI- WELL STAllC YIELD SPECIFIC HYOR.* STORAGE* RE-* 
FER OEPTH WA~ (QI)fll) CAPACITY CONOUC. COEFFJ- CHARGE 

(ft) LEV8. MEAN MEO. (QI)m/ft} (ft/d) CIENT (In) 
MEAN (ft) no. of LOW HIGH MEAN MEO. MEO.• MEO. 

MEAN I wells 
Qal 48 u~.s 302 7S 3e 1.10 eo1.1 5Q,g 40.0 40.0 170.0 0.2 8-1S 

Coal ee 21.1 7g 30 eo 0.02 175.0 7.3 2.0 
0.59 19.0 .001-0.2 2-5 

Ot 95 12.8 13 8 13 0.04 2.4 0.5 0.3 

Toe 11g 34.8 15 10 20 0,01 2.3 0.5 0.2 

Ts 134 37.g 11 8 . 41 0.01 30.0 us 0.1 0.10 0.3 .00001- 2-S 
.001 

Ty 174 22.1 22 g 33 0.01 1.7 0.3 0.1 

Tsr 171 38.4 18 8 H5 0.01 12.5 1.1 0.1 0.11 0.2 .00001- 2-5 
*From Gonthier (1 gas) .001 

The specific capacity of a well is defined as the 

pumping rate divided by the drawdown in the well (Freeze and 

Cherry, 1979). Most of the pump tests were of short 

duration, generally less than 4 hours, and well efficiency 

is not known. However, specific capacity values offer a 

coarse estimate of relative aquifer capabilities. For 

example, the unconsolidated alluvial units are far more 

productive than the bedrock units. Wells within the recent 

river alluvium (Qal) have the highest mean and median 

specific capacity values and corresponding yields, followed 

by the older alluvium (Qoal) and the high terrace and 

alluvial fan deposits (Qt). The mean and median specific 

capacities are the lowest among the bedrock units. 
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The median specific capacity values calculated for this 

study are similar to those determined by Gonthier (1983). 

Gonthier (1983), however, grouped the Qt and the Qoal units 

together and the marine sedimentary bedrock units together. 

The median specific capacity value for the Qoal unit is over 

six times greater than that of the Qt. The median specific 

capacity values of each of the m~rine bedrock units are 

quite similar to one another. The similar specific capacity 

values of the marine sedimentary bedrock units appear 

reasonable due to their similar grain-size characteristics. 

The specific capacities of each of the aquifer units 

are highly variable. This variability may be due to pump 

test inconsistencies, dissimilarity in the construction of 

the wells, or hydrogeologic characteristic variation within 

each unit. The specific capacities of the older alluvium 

(Qoal) vary the most with a range of .02 to 175 gpm/ft. 

Water Levels 

The average static water level depth, as indicated in 

Table VII, is the shallowest among wells completed in the 

Qt. Static water levels of the Qal and the Qoal are similar 

to one another and are the next closest to land surface. 

The measured static water levels of wells completed in the 

Yamhill Formation approach those of the unconsolidated 

sediment. The mean static water levels of the other bedrock 

units are similar to one another and considerably deeper. 
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The water levels in several of the wells used for this 

study have been repeatedly measured (Appendix C). This has 

allowed analysis of water level fluctuations through time. 

Hydrographs compiled from several years of water-level 

measurements of six Oregon Water Resources Division 

observation wells are included in Appendix D. 

The hydrographs indicate water level fluctuations 

within the unconsolidated and consolidated water bearing 

units. The hydrographs, as well as water-level measurements 

from less consistently measured wells, indicate that the 

highest water levels occur in the winter and spring and the 

lowest in the late summer and early autumn months. Water 

levels from 101 water wells measured during the inferred low 

water-level period, from August through October (1961-1991), 

were used to construct a potentiometric surface map for the 

basin-fill sediments of the Dallas-Monmouth area (Figure 

24). Assuming that rivers and streams are a representation 

of the water table during the late summer months, the 

elevations of the topographic contour-surface drainage 

intersections on USGS 7 1/2 minute quadrangle maps were 

incorporated into the potentiometric surface map. Due to 

the limited number of measured water-levels in the bedrock 

units, the potentiometric surface of the bedrock units was 

not mapped. The direction of groundwater flow was 

interpreted and represented as flow lines (Figure 24). 
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GROUNDWATER QUALITY 

In 1962 the United States Public Health Service (USPHS) 

non-mandatory total dissolved solid (TDS) concentration 

standard for drinking water was set at 500 mg/1 (Hem, 1985). 

In 1981 the American Water Works Association (AWWA) 

suggested a <200 mg/1 TDS water quality goal for potable 

water (Hem, 1985). The TDS of precipitation is generally 

less than 40 mg/1 and seawater is around 34,500 mg/1. A 

widely used scheme for categorizing waters based on TDS, 

commonly referred to as salinity, is as follows (Freeze and 

Cherry, 1979): 

(mg/1) 

Fresh water •••••••••••.•••••••••••••••• 0-1,000 

Brackish water ••••••••••••••••••••••••• 1,000-10,000 

Saline water ••••••••••••••••••••••••••• 10,000-100,000 

Brine water ••••••••••••••••••••••••••• >100,000 

Figure 25 represents the salinity versus specific 

conductance values for waters from the Dallas-Monmouth area 

(Gonthier, 1983), an oil and gas well at 6S/4W-6bd (Price 

and Johnson, 1965), ocean water (Hem, 1985), and springs 

(6S/4W-21cad1 and 7S/6W-2add) from this study. As indicated 

by Figure 25, a linear trend exists between specific 

conductance and dissolved solid concentration, especially at 

the lower concentrations. However, the values for the most 



saline spring (6S/5W-21cadl), the oil and gas well (6S/4W-

6bd), and ocean water plot below the best-fit line 

representing the more dilute waters. 
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Hem (1985) recognizes similar TDS concentration versus 

specific conductance trends, with a slight decrease in slope 

with increased concentrations, in single salt solutions. He 

states that the slope of the straight part of the line and 

the degree to which it flattens with increasing 

concentration varies with different salts. A linear 

relationship does not always exist in natural waters because 

they may contain a variety of ionic and undissociated 

species and the amounts and proportions of each may widely 

vary (Hem, 1985). 

Using Figure 25, the maximum TDS standards for drinking 

water of the AWWA and the USPHS correspond to specific 

conductance values of approximately 300 and 850 ~mhos/em, 

respectively. The conductance for the lower limits of the 

brackish and saline waters correspond to approximately 1750 

and 18,000 ~mhos/em, respectively. In comparison, 

precipitation commonly has values near 50 ~mhos/em and 

seawater is near 50,000 ~mhos/em (Hem, 1985). 

Distribution of poor quality groundwater 

The specific conductance values reported in Gonthier 

(1983) and measurements by the author, were used to 

determine the distribution and relative dissolved 

constituent concentrations of groundwater in the study area. 

Appendix C lists the specific conductance values and dates 

measured for many of the wells and springs. 
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The specific conductance values, adjusted to 25°C, from 

174 water wells and eight springs were.used to construct 

Figure 26. Figure 26 is fundamentally a hazard map for the 

occurrence of poor quality groundwater. The greater 

likelihood of encountering saline water occurs within the 

shaded areas. A value of 500 ~mhos/em, roughly equivalent 

to 300 mg/1 TDS, was used as an approximate break between 

potable water and water for which one should be concerned 

about the TDS concentrations. The patterns in Figure 26 

indicate that the groundwater with the lowest specific 

conductance values occurs in the recent river alluvium of 

the Willamette River floodplain (Qal), in much of the older 

alluvium (Qoal) in the central and eastern valley flat, and 

in the bedrock units along topographic highs. 

Since Figure 26 is based only on the data available, it 

does not mean that groundwater with high salinities could 

not be encountered within the non-shaded areas. For 

example, since data are only available from shallow wells 

within the Qal, it does not rule out the possibility for the 

occurrence of brackish or saline groundwater at greater 

depths beneath the Willamette River floodplain. 

Since water with high salinities is inappropriate for 

human consumption, there is little reason to complete a well 

that has encountered such water. Therefore, opportunities 

to obtain samples of brackish or saline water are limited. 

The darkened triangles in Figure 26 represent sites that 
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Figure 26. Groundwater salinity hazard map based on specific conductance measurements!. 
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"salt" water was reported by residents or drillers. All of 

these wells have been abandoned or the "salt" water bearing 

zones have been sealed and no specific conductance values 

were obtained. These sites were not used to constrain the 

specific conductance isocons, but they should be taken into 

consideration when evaluating the distribution of poor 

quality groundwater. 

An example of a site where there was a reported 

occurrence of high salinity groundwater that can not be 

confirmed by this study is located at 8S/5W-26dc. There, a 

long-time resident explained the details of a shallow, less 

than 30 feet (9 m) deep, hand-dug well. The well, completed 

in sandstone of the Spencer Formation, was used only for 

stock water. After a period of time, cows began to give 

birth to an unusual number of stillborn calves. Eventually, 

cows started dying at an uncommonly high rate. A taste of 

the well water indicated that the water had "turned salty". 

The well was immediately abandoned and filled in. The 

suggested safe upper TDS concentration limit for beef cattle 

stock water is 10,100 mg/1 (Hem, 1985). Using Figure 25 as 

a reference, a TDS concentration of 10,100 mg/1 would be 

equivalent to a specific conductance of approximately 18,000 

J.lmhos/cm. 

Another example of the reported occurrence of poor 

quality groundwater is located at 7S/5W-5 in the valley flat 

of Salt Creek. At that locale, four shallow wells drilled 
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for members of one family all reportedly encountered "salty" 

groundwater. All of the wells, the deepest being 51 feet 

(15.5 m), were completed in the Yamhill Formation. The 

wells were abandoned and thus no samples were obtainable. 

Residents claim that few wells have encountered potable 

water in this vicinity. 

A series of small springs located near Salt Creek at 

6S/SW-21cad had the highest measured specific conductance 

values which averaged over 57,000 pmhos/cm (Figure 27a). 

Previously unknown to the scientific community, they may be 

among the most saline in western Oregon. The discharge from 

these springs appear to be less than one gpm. As apparent 

in Figure 27a, the local flora's intolerance to the saline 

water is indicated by the lack of vegetation in close 

proximity to the discharge points. There is abundant 

evidence of the use of these waters by wildlife, apparently 

as a source of salt. The springs were flowing at 

approximately the same rate when visited in the months of 

January, February, April and August of 1992 and are probably 

perennial. 

Another series of springs, with average specific 

conductance values near 14,000 pmhos/cm are located along 

Salt Creek at 7S/6W-2add (Figure 27b). These springs, 

discharging at about 5 gpm, are also thought to flow year­

round as they were flowing in January and August of 1992. 



(b) 

Figure 27. Springs with high salinities near Salt 
Creek at 6S/5W-2lcad (a) and 7S/6W-2add (b). 
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Temporal Groundwater Quality Variation 

Many of the wells and springs have had multiple 

specific conductance measurements made at various times 

(Appendix C). This allows for the determination of specific 

conductance variations through time. 

The temporal variation in specific conductance values 

appears to be small. For example, in well 8S/4W-31dda1 the 

measured field values range between 2400 and 2650 ~mhos/em 

over a period of .18 years. The author considers these 

values to be fundamentally the same. The range of values is 

surprisingly small, especially considering that different 

sampling personnel and meters were used. The length of time 

the well was purged could also explain the small variation 

in these values. While sampling the well on one occasion, 

the author noted a variation of values from 2750 ~mhos/em 

after one minute of pumping to 2400 ~mhos/em after the 

values stabilized following 20 minutes of pumping. 

Chemical Analysis 

The water chemistry of 22 wells (Gonthier, 1983) and 

two springs within the study area was examined for this 

investigation. Their respective locations are included in 

Plate I. Table VIII contains the water chemistry for these 

sites as well as ocean water (Hem, 1985) and a 2985 ft (910 

m) deep oil and gas exploration well (6S/4W-6bd) located 

five miles (8 km) north of the study area (Price and 

Johnson, 1965). 
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TABLE VIII 

CHEMICAL ANALYSIS OF SELECTED WATERS 

SITE AQUIFER (mg/1) Spec. 
SI02 AI Fa Mn ca Mg_ Na K HC03 S04 Cl F N p B Aa TDS Con d. pH TiC}_ 
WATER WELLS 
aS/4W-2cac2* Cal 

34 0.03 0.01 20 11 a 1.1 ao 15 8.3 0.1 4.G 0.01 0.007 0.001 181 225 a.2 17 
aS/4W-22abd* Qal 

38 0.21 21 g 8.1 1 78 17 3.7 4.8 O.OG 0.007 154 go 7.3 12 
GS/4W-2dca• Qal 

48 0.07 25 18 8.2 0.7 ga 21 7 0.1 11 O.OG 0.005 0.001 223 2G2 7.7 13 
GS/4W-10bac11• Cal 

52 0.02 0.01 14 a g 1.3 a2 s.g 4.3 0.1 o.88 0.21 0.002 0.001 13G 1G1 a.3 13.5 
GS/4W- 10bacl2* Cal 

43 O.OG 14 1.5 13 1 75 5 3 0.4 144 8.8 
GS/4W-14dbb• Cal 

44 0.01 0.02 23 14 10 O.G go 24 a.7 0.1 G.5 0.21 0.01 211 2a7 7.2 13 
7S/4W-31bc~ Coal 

37 0.17 0.27 21 u 15 0.3 132 2.3 2.G 0.1 O.OG 0.57 O.OOG 0.001 158 223 a.5 12 
7S/4w-32aab• Coal 

27 0.02 0.01 G.a 1.a 230 2.a 213 0.1 250 0.1 0.83 0.07 0.25 830 1180 a.3 13 
7S/4W-34ddc• Coal 

48 o.oe 0.04 1a 11 18 2.a 111 13 5.G 0.2 2.7 0.57 0.007 11a 244 7.g 13.3 
aS/4w-18dtxt- Coal 

24 0.03 0.13 25 12 17 o.g 157 10 7.a 0.2 0.22 0.2 0.01 0.001 178 273 a.1 11 
aS/4W-1Gbdb• Coal 

23 o.a2 0.33 82 28 150 1.5 41a 1.4 180 0.1 u 0.02 o.oa o.oo1 840 1080 a.t 14 
8S/4W-28cd~ Coal 

45 0.03 0.01 33 17 25 2 221 3.a 13 0.2 0.3 0.41 0.007 0.002 251 388 a.7 12 
aS/4W- 33bbb• Coal 

ag 0.52 34 134 38 2.a 2 0.4 288 
8S/4W-8bd- Toa/Ts 

4 1.5 0.4 11500 51 4080 22 14 12 28000 41800 4G700 8.1 
7S/4W -7acc• Tt 

2G o.8 0.3G 44 a.5 250 3.G 288 300 100 0.2 1.1 0.05 0.48 883 13GO a.8 14 
7S/4W-28ccb• Tt 

se 2.2 0.41 25 12 31 3.5 202 2 10 0.3 0.7 0.22 o.o2 o.ooe 248 330 a 14.5 
7Sf5W-2bac:• Tt 

3.2 0.13 0.03 7 1.4 50 1 133 0.7 13 0.3 O.SG 0.02 0.22 0.001 145 254 a.3 14 
aS/4W-31dda1• Tt 

23 3 0.48 eo 20 500 5.4 288 1.8 a1o 0.2 2.7 0.02 1.1 0.001 1580 2700 a.4 14.5 
astsw-21dca• Tt 

7.a 0.04 u 0.3 280 o.a 503 3 75 o.8 0.75 0.27 1.7 801 1170 a.8 13 
7SISW -8bd<J- Ty 

12 0.18 1a 3.5 480 2.5 422 10 500 0.1 2.2 0.07 u 1230 2170 a 18 
7SISW -15acc1• Ty 

18 0.24 0.02 111 5 340 3.5 274 1.3 400 0.3 2.1 0.12 1.a 0.001 G42 1700 7.a 14 
7SISW- 2Sk:act- Ty 

4.7 111 o.se 1200 210 1500 11 3 5200 0.12 0.02 2.a 14800 4.G 14 
aStsW-7bbb• Ty 

22 0.03 0.02 51 0.7 70 0.7 G4 27 120 0.3 o.ea o.oa 0.48 0.001 342 811 7,g 14 
SPRINGS 
8S/5W-21cacJ-- Ooai/Ty 
7.24 0.13 a.3 0.32 G700 4.4 4700 17 <1 28000 2.4 40500 58000 8.a g 

7S/8W-2actcr- Ooai/Ty 
11.2 0.085 0.043 0.011 1800 0.5 840 3.a a.42 4800 1.5 7482 14000 8.2 g,5 

Ocean-
8.4 0.001 0.003 0.002 410 1350 10500 ago 142 2700 1GOOO 1.3 O.S7 O.OG 4.5 0.003 34580 50000 

• Gonthler (1Ge3) 
- Prlca and Johnson (1SI85) 
_. Analyzed by Kayltona/NEA 
-Ham(1Ga5) 
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Samples from waters with the highest salinities, the 

springs (6S/5W-21cadl and 7S/6W-2add) and the oil and gas 

well (6S/4W-6bd), have higher concentrations of Ca relative 

to Na. Most of the samples with relatively low TDS (S251 

mg/1) are also enriched in Ca relative Na. The majority of 

the other samples, with intermediate salinities, have higher 

concentrations of Na relative to Ca. 

Of particular interest is the concentrations of the 

major ions (Na, Ca and Cl) of the oil and gas exploration 

well (6S/4W-6bd) and the two springs (6S/5W-21cadl and 

7S/6W-2add) (Table IX). Also notable is the chemical 

dissimilarity of this well and the springs with that of 

ocean water. The Na, Ca and Cl concentrations of spring 

6S/5W-21cadl and well 6S/4W-6bd are very similar. The 

Na:Ca, Na:Cl and Ca:Cl ratios of the springs are nearly 

identical to one another and closely similar to the well. 

TABLE IX 

Na, Ca, AND Cl CONCENTRATIONS, THEIR RESPECTIVE RATIOS, AND 
SPECIFIC CONDUCTANCE OF STUDY AREA SPRINGS WITH HIGH 
SALINITIES, A LOCAL OIL AND GAS WELL, AND OCEAN WATER 

56000 4700 9700 26000 0.48 0.18 0.37 

7S/6W-2add 14000 840 1800 4800 0.47 0.18 0.38 
WELL (Price and 
Johnson, 1965) 
6S/4W-6bd 49700 4060 11500 26000 0.35 0.16 0.441 
OCEAN 
(Hem, 1985) 50000 10500 410 19000 25.61 0.55 0.02J 

---- - -- -- -- --- ----~-
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Ionic concentrations (ppm), pH and temperature values 

from two springs (6S/5W-21cad1 and 7S/6W-2add) and two water 

wells (7S/5W-29cad and 8S/4W-31dda1) from the study area 

were input into a Fortran version of the program WATEQ 

(Plummer and others, 1976). For comparison, the analyses of 

CaC12 water from the oil and gas exploration well at 6S/4W-

6bd (Price and Johnson, 1965) and NaCl brines from two oil 

and gas exploration wells in the Mist area of northwestern 

Oregon (written communication, Northwest Natural Gas, 1992) 

were also input into WATEQ. 

Output from the WATEQ program includes molalities, 

activities, possible complex ions or molecules, ion ratios, 

log activity ratios, ion activity products, solubility 

products and a list of the state of saturation of the water 

with respect to several mineral phases. The degree of 

saturation of these waters with respect to several mineral 

phases is listed in Appendix E. The program also performs a 

charge balance to determine if the analysis is consistent. 

The WATEQ program calculated charge balance discrepancies of 

up to 4.15% for these analyses. 

The CaC12 waters of the brackish and saline springs 

(6S/5W-21cad1 and 7S/6W-2add) and the oil and gas well at 

6S/4W-6bd and the NaCl waters of the Mist Gas Field are 

saturated with respect to the majority of silica phases 

examined. Together, these waters are undersaturated with 

respect to most Mg and Mn phases. However, distinctions do 
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exist between the two groups. The NaCl waters are 

saturated/supersaturated with respect to a greater number of 

mineral phases than the CaC12 waters. Specifically, the 

NaCl waters are saturated/supersaturated with respect to 

more Na and Ca mineral phases than the CaC12 waters. 

The major ionic components of waters from the domestic 

wells (7S/SW-29cad and 8S/4W-31ddal) are Na and Cl, but 

7S/SW-29cad is much more concentrated and has nearly equal 

Ca-Na concentrations. Both wells are saturated with respect 

to most of the silica phases. Well 7S/5W-29cad was 

saturated with respect to the fewest mineral phases, this 

may be directly attributed to its anomalously high acidity 

(pH= 4.9). 

Water from well 8S/4W-3lddal is unique among the waters 

analyzed in that it is saturated/supersaturated with respect 

to most magnesium and manganese mineral phases. Like the 

NaCl waters of the Mist Gas Field wells, domestic well 

8S/4W-3lddal is saturated/supersaturated with respect to the 

majority of Ca mineral phases. However, unlike the Mist Gas 

Field wells, it is undersaturated with respect to most Na 

phases. 

Bromide, Iodide and Chloride Concentrations 

Chloride, bromide and iodide are among the most 

conservative constituents in natural waters, with chloride 

being the most conservative. However, bromide and iodide 
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concentrations can be affected by the alteration of organic 

matter (Fabrika-Martin and others, 1991). Samples from two 

springs and twelve water wells were analyzed for Br, Cl, and 

I concentrations. Two replicate samples and a sample of 

ocean water from Neskowin Bay, Oregon were analyzed for 

quality assurance. In addition to analyzed samples from 

this report, previously reported concentrations from an oil 

and gas well located at 6S/4W-6bd (Price and Johnson, 1965) 

and seawater (Hem, 1985) are included in Table X. 

The ratios of these halides are often useful in 

determining possible groundwater or contaminant sources. 

The chloride-bromide ratios of the samples analyzed for this 

study are of particular interest. Eleven of the fourteen 

sites sampled have Cl:Br values which are greater than that 

of seawater. Ten of these sites have Cl:Br values within 

20% of that of seawater. All of the Cl:I values are at 

least one order of magnitude less than that of seawater. 

The graphical representation the log Br versus log Cl 

concentrations is a commonly used method in groundwater 

source identification (Whittemore, 1988; Walter and others, 

1990). Data from this study, plotted on a log Br versus log 

Cl graph, represent a relatively tight array for which a 

straight line can be fitted (Figure 28). 

The data were also plotted on a log Cl vs log Br/Cl x 

1000 modified mixing boundaries graph of Whittemore (1988) 

(Figure 29). Whittemore (1988) constructed the graph from 
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TABLE X 

Cl, Br, AND I CONCENTRATIONS, THEIR RESPECTIVE RATIOS, AND 
LAB AND FIELD SPECIFIC CONDUCTANCE VALUES FOR SELECTED AREA 
WELLS AND SPRINGS, A LOCAL OIL AND GAS WELL, AND SEAWATER 

SAMPLELOC. AQUIFER Cl Br r CVBr CVI Br/l SPEC. COND. 

mgJI mgJI mgll' LAB I FIELD 
··-.... ; (UmhcS/cm) 

SPRINGS 

6S/5W-21cad1 Ty 27000 41 659 57400 56000 

6S/5W-21cadt* Ty 26000 56.22 7.1 462 3662 7.9 56000 

7S/6W-2add* Ooai/Ty 4800 14.11 1.9 340 2526 7.4 14000 

WELLS 

6S/4W-6bd*** Toe/Ts 26000 63 14 413 1857 4.5 49700 

7S/4W-21dcc Toe 270 0.86 0.36 314 750 2.4 1610 1580 

7S/4W-30ccb Ts 380 0.53 1.8 717 211 0.3 1430 1430 

7S/5W-1cad Toe/Ts 47 0.1 1.6 470 29 0.1 1200 1210 

7S/5W-5dda Ty 8.5 0.03 0.005 283 1700 6.0 540 550 

7S/5W-6bbc Ty 410 1.7 1.6 241 256 1.1 1710 1610 

7S/5W-31dab2 Ty 47 0.09 0.051 522 922 1.8 400 397 

8S/4W-7cca Coal 15 0.04 0.005 375 3000 8.0 340 335 

8S/4W-11 cad Cal 9.9 0.03 0.002 330 4950 15.0 270 262 

8S/4W-11cad Cal 9.4 0.03 0.001 313 9400 30.0 270 262
1 

8S/4W-19bca OoaVTs 110 0.38 0.34 289 324 1.1 960 946 

8S/4W -30ada Coal 17 0.05 0.083 340 205 0.6 620 610 
8S/4W-31dda1 Ts 570 2.3 1.5 248 380 1.5 2450 2400 

9S/4W-5bda Ts 68 0.29 0.004 234 17000 72.5 700 704 i 

SEAWATER- NESKOWIN BAY, OREGON 
! 

SS/11 W- 25cbc I l1sooo I 53 283 40800 ! 

AVG. SEAWATER** 19000 67 0.06 284 316667 1116.7 50000 J 
* Analyzed at Keystone/NEA ** Hem (1985) *** Price and Johnson (1965) I 

----___ _________j 
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bromide and chloride data of world-wide natural waters. 

Boundaries 1, 2 and 3 represent the maximum extent of 

determined bromide and chloride concentrations in natural 

waters. Values within the precipitation limit boundaries in 

the upper left portion of Figure 29 depict the extent of 

measured Cl and Br concentrations in precipitation, 

globally. The zone between mixing boundaries 1 and 5 

represents the mixing of most fresh waters with formation 

brines and residual evaporite solutions. The area between 

mixing boundaries 2 and 4 characterize the mixing of most 

fresh waters and halite solution brines. The freshwater 

limit line marks the 500 mg/1 concentration of chloride. 

All of the bromide and chloride concentrations for this 

study plot between mixing boundaries 1 and 5 (Figure 29). 

The springs with high salinities (6S/5W-21cad1 and 7S/6W-

2add) and the saline oil and gas well (6S/4W-6bd) values 

plot near that of seawater. Data from six wells with 

chloride concentrations less than 200 mg/1 lie within the 

precipitation limit. All of the waters exceeding the fresh 

water limit fall outside of the zone bounded by mixing 

boundaries 2 and 4. Samples from ten of eleven sites under 

the fresh water limit have bromide and chloride values that 

graphically lie within the area bounded by mixing boundaries 

2 and 4. 



61~-6D Isotopic Concentration 

Water samples from three springs, six wells and one 

surface drainage were analyzed forD/Hand o18;o16 isotopic 

ratios. Table XI contains data from this study, the 

Luckiamute River (collected by the USGS), standard mean 

ocean water (SMOW), and pre-Miocene SMOW (Sheppard, 1986). 

TABLE XI 

6D AND 6180 OF SELECTED WELLS, SPRINGS, AND 
PRE-MIOCENE AND MODERN SEAWATER (SMOW) 

SAMPLE WATER BEARING .· D 0 
LOCATION UNIT .. · (0/00) (0/00) 

SPRINGS 
6S/5W-21cad1 * Ty -8 -1.6 
• • -6 -1.8 
• • -6 -1.6 
7S/6W- 2aad* Qoai/Ty -62 -9.4 
8S/5W-8bca* Ty -66 -9.3 
WATER WELLS 
7S/4W-21 dcc1 * Toe -72 -10.8 
7S/4W-30ccb* Ts -74 -11.1 
7S/5W -1 cad* Toe/Ts -73 -10.6 
8S/4W-11cad* Qal -67 -9.5 
8S/4W-19bca* Qoal -66 -9.7 
8S/4W-31 dda1 * Ts -80 -11.1 
8S/4W-31 dda1 ** • -75.5 -10.71 
SALT CREEK 

' 6S/5W-21 cad4* -62 -9.11 
LUCl<IAMUTE RIVER I 

9S/4W-18ccc** -61 -8.4 
9S/4W-18ccc** -57 -8.6 
STANDARD MEAN OCEAN 0 0 
WATER (SMOW) 
PRE- MIOCENE SMOW*** -7 -1 

* Analyzed by Krueger Enterprises, Inc. 
** Analyzed by USGS NATIONAL LABORATORY 
*** Sheppard (1986) 

92 



93 

The isotopic ratios were plotted in relation to the 

meteoric water line of Craig (1961) (Figure 30). All of the 

values lie on or near the meteoric water line. Most are 

isotopically lighter than -8 (0 I 00 ) 6180 and -55 (0 I 00 ) 60 and 

plot near the meteoric water line except for the values of 

the highly saline springs. Three samples collected from the 

salt spring at 6SI5W-21cad1 cluster between the meteoric 

water line and the value for SMOW and pre-Miocene SMOW. 
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Figure 30. 60 and 618o plot of waters from 
selected study area wells, springs and streams, 
pre-Miocene SMOW, and modern SMOW in comparison to 
the meteoric water line of Craig (1961). 
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Possible Groundwater Quality Relationships 

Aside from determining the areal distribution of 

groundwater with high TDS concentrations, possible 

relationships between water quality and various physical 

factors were investigated. Hydrogeologic aspects, such as 

the water-bearing unit, specific capacity, and the depth to 

and elevation of the static water level, were compared to 

their respective specific conductance values. A possible 

relation between specific conductance and the topographic 

setting and the depth of the open interval was also 

examined. The specific conductance values were from 

Gonthier (1983) or were measured by the author for this 

study. 

The mean, standard deviation, median and range of 

measured specific conductance values for the major water­

bearing units are in Table XII. The average and median 

specific conductance values for the Siletz River Volcanics 

(Tsr), recent river alluvium (Qal) and high terrace and 

alluvial fan deposits (Qt) are among the lowest of the water 

bearing units. The highest mean and median specific 

conductances occur in the marine sedimentary bedrock units 

(Toe, Ts, and Ty) and the older alluvium (Qoal). The 

variations in the specific conductance values are minor 

among waters obtained from the Qal, Qt and Tsr when compared 

to the other units. 



TABLE XII 

SPECIFIC CONDUCTANCE INFORMATION FOR 
EACH OF THE MAJOR WATER BEARING UNITS 

Specific Conductance. (pmhos/cm) 
Aquifer Mean Stand. Me d. Range Sites 

dev. ··.· 

Qal 246.1 55.6 235 160-330 21 
Coal 447.7 257.4 375 160-1300 43 
Qt 162.5 90.1 160 75-375 8 
Toe 744.5 690.2 710 45-3000 19 
Ts 422.6 482.0 390 70-2650 36 
Ty 595.8 935.3 330 130-5500 33 
Tsr ____ 195.0 ~- -~4._6 195 - 50-410 14 

--~----------
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None of the wells in the Qal, Qt, or Tsr produce water 

with measured specific conductance values of 500 pmhos/cm or 

more. However, Gonthier (1983) did report specific 

conductances of up to 10,200 pmhos/cm from wells completed 

in the Tsr to the southwest of the study area. Wells in the 

sedimentary marine bedrock units and the Qoal yield waters 

of both satisfactory and poor quality. With the exception 

of the Toe, the majority of the wells within these units 

provide acceptable quality water with specific conductance 

measurements of less than 500 pmhos/cm. 

One hundred forty-one wells with both specific 

conductance and specific capacity data were used to generate 

Figure 31. The specific conductance values range from less 

than 100 to over 3000 pmhos/cm for wells with specific 
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capacities ranging from nearly zero to approximately 180 

gpm/ft. The greatest range of the measured specific 

conductance values occur at specific capacities of less than 

one gpm/ft. With increasing specific capacity, the range of 

specific conductance values narrow and are generally lower. 
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Figure 31. A plot of specific conductance vs. 
specific capacity for selected wells. 

Only wells with specific capacity values of five gpm/ft 

or less have measured specific conductances greater than 500 

~mhos/em. However, the majority (69%) of these wells also 

yield groundwater of acceptable quality with specific 

conductance values of 500 ~mhos/em or less. Of the wells 

with specific conductances of over 500 ~mhos/em, nearly half 

(47%) have specific capacities of 0.1 gpm/ft or less. 
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One hundred seventy-one wells in the database have both 

specific conductance and static water level information. 

The static water levels range from near surface to almost 

240 feet (73.1 m) below lsd (land surface datum) and have 

associated specific conductance values ranging from 45 to 

5500 ~mhos/em. The depth to water for the well with the 

highest specific conductance value was 3.98 feet (1.21 m). 

All but one of the wells with specific conductance values of 

over 1000 ~mhos/em have static water levels of less than 60 

feet (18.3 m) below lsd. However, the majority (78%) of the 

wells with static water levels of less than 60 feet (18.3 m) 

have specific conductances of 500 ~mhos/em or less. 

The elevations of the static water levels range from 

108.4 to 1110.0 feet (33.0 to 338.3 m). Specific 

conductance values of 1000 ~mhos/em or more occur only at 

static water level elevations below 400 feet (121.9 m). 

However, 71 percent of the wells with similar water level 

elevations of 400 feet (121.9 m) or less have specific 

conductance values of 500 ~mhos/em or less. 

The topographic setting and elevation of 174 wells with 

specific conductance measurements were determined with the 

use of topographic maps. Each well was assigned to one of 

three topographic settings; valley flat, hillside, and at or 

near hilltop. Table XIII represents the mean, standard 

deviation, median and range of specific conductance values 

for each of the topographic settings. 
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TABLE XIII 

TOPOGRAPHIC SETTING OF WELLS 
AND RESPECTIVE SPECIFIC CONDUCTANCE INFORMATION 

Specific Conductance (J.lmhos/cm) 
' 

> 
Topographic Mean Stand. Me d. Range Sites 
Setting 

: 

Dev. .· 
. 

Valley Flat 543.6 674.4 320 45-5500 106 
Hillside 384.1 275.0 305 90-1500 43 
Hilltop 277.3 201.7 230 50-925 25 

Wells located within valley flat settings have the 

highest average and median specific conductance values. The 

wells from that group also have the largest variation in 

specific conductance values as indicated by the standard 

deviation. Wells located at or near hilltops have the 

lowest average and median conductance values. 

The majority (61%) of the wells with specific 

conductance measurements are located in the valley flat. 

Correspondingly, the majority (57%) of wells with specific 

conductances of 500 pmhos/cm or less are found in the valley 

flat. At higher salinities a greater, disproportionate 

percentage of wells occur in the valley flat. Seventy-three 

percent of the wells with specific conductance values of 

over 500 pmhos/cm and 94% of the wells with values of over 

1000 pmhos/cm are found in the valley flat. 
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One hundred sixty-six of the wells have both open 

interval information and measured specific conductance 

values. The depths to the top of the open intervals range 

from 11 to 205 feet (3.4 to 62.5 m) below land surface with 

a specific conductance range of 45 to 5500 pmhos/cm. Only 

wells with open interval depths of less than 100 feet (30.5 

m) had specific conductance values of over 1000 pmhos/cm. 

However, 75 percent of the wells with open interval depths 

of less than 100 feet (30.5 m) obtain good quality water 

with specific conductance values of less than 500 pmhos/cm. 

Several area wells reportedly encountered "salt" water 

at depths greater than 100 feet (30.5 m) and were either 

abandoned or backfilled to obtain useable water at shallower 

depths. A well at 8S/4W-19bca encountered "salt" water in 

hard gray claystone, probably the Spencer Formation, at a 

depth of 120 feet (36.6 m). The well was sealed off with 

cement to a depth of 90 feet (27.4 m) and now obtains water 

from sand and gravel layers in the older alluvium (Qoal). 

However, the problem is not completely resolved for this 

well as recent specific conductance measurements by the 

author range from 931 to 941 pmhos/cm. Table XIV lists 16 

both field located and non-field located wells that, 

according to driller's reports, encountered "salt" water at 

depths greater than 100 feet (30.5 m). No wells reportedly 

encountered fresh water below an occurrence of "salt" water. 



TABLE XIV 

WELLS THAT REPORTEDLY ENCOUNTERED "SALT" WATER 

Well 
Location 
75/4W-7 
75/4W-16 
75/4W-26ccb 
75/5W-6 
75/5W-30 
75/5W-31 
75/5W-35 
75/5W-36 
75/6W-1 
85/4W-19bca 
85/4W-31a 
85/5W-3b 
85/5W-7bbb 
85/5W-8 
85/5W-24 
85/6W-12 

169 
127 
190 
220 
395 
330 
195 
100 
143 
120 
305 
320 
141 
163 
205 
240 

Toe 
Toe Abandoned 
Toe Backfilled to 83 feet 
Ty Abandoned 
Ty Backfilled to 345 feet 
Ty Abandoned 
Ts Abandoned 
Ts Abandoned 
Ty Abando.ned 
Ts Backfilled to 90 feet 
Ts 
Ty Backfilled to 180 feet 
Ty Backfilled to 97 feet 
Ty Backfilled to 146 feet 
Ts Backfilled to 190 feet 
Ty Backfilled to 200 feet 

100 



DISCUSSION 

GEOLOGY 

Similar lithology, interfingering facies, and the 

generally weakly consolidated character of the Tertiary 

marine sedimentary units often frustrate identification of 

units in outcrop and in drill cuttings. Likewise, it is 

oftentimes difficult to distinguish between fine-grained 

alluvium and weathered marine bedrock. The geochemistry of 

trace and selected major elements were used by Kadri (1982) 

and Lite (1992) to differentiate sedimentary units and to 

suggest possible provenances. Instrumental neutron 

activation analysis (INAA) data accompanied by x-ray 

diffraction data and lithologic descriptions from drillers 

logs were used in this study to: 1) determine the extent and 

thickness of various lithologic units within the 

unconsolidated sediment; 2) differentiate units within the 

bedrock and unconsolidated material; 3) differentiate the 

bedrock units from the unconsolidated sediments; and 4) 

determine possible sediment sources for both the bedrock and 

the unconsolidated material. 
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Bedrock 

In the study area, the Spencer Formation (Ts) is 

generally characterized by higher Th, Rb, K, and La and 

lower Fe, Sc, and Co concentrations in comparison with the 

other sedimentary bedrock units. The Ty and Toe units are 

geochemically similar, but are separated stratigraphically 

by the Ts. The Siletz River Volcanics (Tsr) are readily 

distinguished from the sedimentary units by relatively high 

Fe, Na, Co, Cr, and Sc. 

Geochemistry of sediment (INAA) from four oil and gas 

wells support the unit designations of Graven (1990) and 

Werner (1990) for these wells. However, near the Spencer­

Yamhill contact, the units are less geochemically distinct. 

The geochemistry suggests a gradational contact between the 

Ts and Ty. The contact between the Ts and Ty is thought to 

mark a marine regression (Graven, 1990). 

The Spencer and Yamhill Formations may also be 

distinguishable on the basis of clay mineralogy. A sample 

of the Yamhill Formation is composed predominantly of 

smectite (86%) (Table VI), while a sample from the Spencer 

Formation has a more varied clay mineral suite (smectite, 

kaolinite and illite with trace amounts of vermiculite and 

expandable mixed layer clay). 

The geochemistry of the marine bedrock units may be 

useful as provenance indicators. INAA data as well as 

previous lithologic and petrographic work (Baldwin and 



103 

others, 1955; Baker, 1988) suggest differing sediment 

sources during deposition of the Yamhill Formation. Most of 

the Ty samples have elemental concentrations typical of 

volcanic arc-derived sediments. A minority of samples, such 

as a gray claystone sample near the type section along Mill 

Creek, have Th concentrations similar to those of more 

chemically-evolved igneous and metamorphic rocks. 

A change of provenance for the Yamhill Formation may be 

recorded in the Reserve Oil and Gas, Bruer 1 exploration 

well. Thorium concentrations of two samples in the upper 

half of the 3360 foot (1024 m) Ty section are within the 

range found in volcanic arc derived sediments, while two 

samples in the lower half of the section have concentrations 

similar to continental crust (Taylor, 1964). 

The Rickreall Limestone Member of the Yamhill Formation 

is bioclastic with volcanic fragments and limited amounts of 

micrite (Boggs and others, 1973). The volcaniclastic 

component is not only apparent in hand specimens, but also 

geochemically as indicated by Th concentrations near those 

of oceanic crust (Taylor, 1964). The likely source of these 

volcaniclastics is the underlying oceanic basalts of the 

Siletz River Volcanics. 

The Th and La concentrations of nearly all of the 

Spencer Formation samples are indicative of continental 

crust material (Taylor, 1964). However, two of the Ts 

samples have elemental concentrations approaching those 
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found in volcanic arc derived sediments. Baker (1988) and 

Cunderla (1986) suggested a distal plutonic and metamorphic, 

possibly the Idaho batholith, and proximal volcanic sediment 

sources for the Spencer Formation. 

The undifferentiated Eocene-Oligocene sedimentary rock 

unit (Toe) is composed of tuffaceous siltstone and sandstone 

(Baldwin and others, 1955; Bela, 1981; Brownfield and 

Schlicker, 1981). Correspondingly, all of the Toe samples 

have Th concentrations within or slightly higher than the 

range Condie (1976) has suggested for volcanic arc derived 

sediments. The sediment was probably deposited during late 

Eocene-early Oligocene time from a Western Cascade volcanic 

source. 

Basaltic boulders overlying Spencer Formation sandstone 

on the summit of Mt. Pisgah southeast of Dallas had been 

previously mapped as Siletz River Volcanics (Tsr) (Baldwin, 

1964; Gonthier, 1983; Walker and MacLeod, 1991). Samples 

from these boulders are geochemically distinguishable from 

the Tsr as well as Columbia River Basalt (Tcr). Baldwin 

(1964) suggested that the boulders may be the remains of a 

basalt flow (or flows) that interfingered the Spencer 

Formation at the time of deposition. Basalt and diabase 

constitute much of the Coast Range intrusives (Ti), 

accordingly the Mt. Pisgah basalt is tentatively assigned to 

this group. 
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Unconsolidated Sediment 

On the basis of grain-size, the unconsolidated alluvial 

material is separated into the following lithologic units: 

1) a lower fine-grained unit, composed primarily of blue 

clay and silt; 2) a coarse-grained unit, composed primarily 

of sand and gravel; and 3) an upper fine-grained unit 

consisting of tan to brown clay, silt and fine-grained sand. 

The lower fine-grained unit is not laterally extensive, but 

deposits possibly exceeding 94 feet (28.6 m) thick may occur 

beneath the sand and gravel deposits in the valley flat 

north of Buena Vista. It is difficult to determine from 

driller's logs if this material is equivalent to the 

nonmarine fine-grained sediments that overlie bedrock 

throughout much of the Willamette Valley (Yeats and others, 

1991) or is poorly lithified or weathered marine bedrock. 

No samples were available for chemical analysis. 

The greatest thicknesses of the coarse-grained unit, 

exceeding 80 feet (24.4 m), occur in the high terrace and 

alluvial fan deposits (Qt) and the older alluvium (Qoal) 

near Dallas. The deposits are the thinnest to non-existent 

in the Qoal in the central and northern portions of the 

valley flat. The coarsest deposits with the fewest fine­

grained interlayers occur in the recent river alluvium 

(Qal), which are over 40 feet (12.2 m) thick near 

Independence. 
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Thicknesses of the upper fined-grained unit range from 

near 0 in portions of the recent Willamette River floodplain 

to a maximum of nearly 40 feet (12.2 m) overlying older 

alluvium (Qoal) sand and gravel near Independence and 

Monmouth. Because of similarities in grain size between 

this unit and weathered marine bedrock, the thickness 

directly overlying bedrock was rarely determined. 

X-ray diffraction and INAA data were useful in the 

characterization of the unconsolidated sediment. The upper 

fine-grained, coarse-grained, and lower fine-grained units 

of the Qal are geochemically distinct from those of the 

Qoal. Clay analyses also indicate differences among the 

upper fine-grained unit of the Qoal, the upper fine-grained 

unit of the Qoal, the lower fine-grained unit within the 

Qoal, and a blue clay from below sand and gravel of the Qal. 

The use of INAA to distinguish the unconsolidated 

sediment from the marine bedrock units was moderately 

successful. The Spencer Formation is geochemically distinct 

from the unconsolidated sediments, with the possible 

exception of the upper fine-grained unit of the Qoal. The 

similar geochemistry of the upper fine-grained unit of the 

Qoal and the Ts are the likely result of similar provenance 

material type. All but one sample of the unconsolidated 

sediments, a sample of blue clay from beneath the Qal sand 

and gravel section, have Co concentrations higher than those 

of the Toe. No geochemical distinction between the basin-
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fill sediments and the Yamhill Formation was apparent after 

examination of the INAA data. 

The La and Th concentrations of the upper-fine grained 

sediment of the Qoal are similar to Portland basin (Lite, 

1992) and Tualatin Valley (unpublished data, Caldwell, 1990) 

sediments that were proposed to have a continental {plutonic 

or metamorphic) Columbia Basin source. Baldwin (1964) and 

Bela (1981) mapped portions of the study area and suggested 

that the upper brown clay and silt of the Qoal are 

catastrophic flood deposits commonly referred to as 

Willamette Silt. An influx of catastrophic flood deposited 

Columbia Basin sediment could explain the distinct 

geochemistry of the upper fine-grained Qoal. 

A volcanic or Cascadian provenance is likely for the 

unconsolidated Qal sediments. The upper fine-grained and 

coarse-grained Qal units have elemental concentrations 

similar to Portland basin sediments of Cascade Range 

provenance (Lite, 1992). A sample of blue clay from below 

the sand and gravel of the Qal, is composed entirely of 

smectite and is interpreted as a volcanic ash deposit. 

Samples from the coarse-grained unit of the older 

alluvium (Qoal) are geochemically similar to the Siletz 

River Volcanics basalt exposed in the Coast Range to the 

west. It is proposed that much of the Qoal coarse-grained 

unit had a Tsr source from the west and is not a result of 

Willamette River deposition. A Tsr source is supported by 
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the fan-like morphology of the top of the coarse-grained 

unit that slopes eastward from the foothills west of Dallas 

(Figure 9). 

Cross-section C-C' (Plate III) shows the thickest, Tsr 

derived sand and gravels to the west near Dallas, relatively 

thin deposits in the central valley flat, and moderately 

thick deposits in and near the recent Willamette River 

floodplain. Cross-section D-D' (Plate III) represents a 

thickening of the Qoal coarse-grained unit in the direction 

of the Willamette River. Since it is unlikely that the Tsr 

derived sediments would thin and then thicken again going 

eastward away from the source, the Qoal sand and gravel 

adjacent to the Willamette River floodplain may be the 

result of Willamette River deposition. If Willamette Silt 

mantles the Qoal, as indicated by geochemical and lithologic 

data, Willamette River derived Qoal sediments had to have 

been deposited prior to Willamette Silt deposition. An area 

may exist, probably near the eastern margin of the Qoal, in 

which the distal extent of the Tsr-derived coarse-grained 

material interfingers with or is truncated by Willamette 

River deposits. 

INAA of the basin-fill material, may provide insight 

into the evolution of the Willamette Valley. Within this 

study area, sediment with a Cascadian signature occurs 

within the recent floodplain of the Willamette River. The 

fine-grained sediment (Willamette Silt) overlying the sand 
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and gravel deposits of the older alluvium appears to be 

derived from a plutonic or metamorphic provenance and not 

from the surrounding marine bedrock units. The majority of 

the coarse-grained sediments of the Qoal and Qt are probably 

derived from Coast Range basalts and were not deposited by 

the Willamette River. 

HYDROGEOLOGY 

Groundwater is obtained from bedrock and unconsolidated 

alluvial deposits in the project area. The unconsolidated 

sediments are generally more permeable than the bedrock 

units as indicated by higher reported yields and calculated 

specific capacities (see Table VII). 

The coarse-grained sections, primarily sand and gravel, 

are the most significant groundwater sources in the 

unconsolidated sediments. The sand and gravel aquifer of 

the recent river alluvium (Qal), which reaches thickness of 

over 40 feet (12.2 m), is the most productive of the 

unconsolidated sediment units with shallow wells capable of 

producing over 1,000 gpm. Fine-grained deposits, primarily 

clay and silt, are used as a groundwater resource where the 

coarse-grained layers are not present. Adequate yields for 

domestic purposes have been obtained in fine-grained 

sediments in the central valley flat northeast of Rickreall. 

Although sand and gravel deposits of the older alluvium 

(Qoal) are much thicker, exceeding 80 feet (24.4 m) near 
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Dallas, they are generally less productive than the coarse­

grained Qal aquifer. Most of these wells have reported 

yields of less than 100 gpm. This may be explained by the 

overall finer grain size and the presence of clay and silt 

interlayers. However, near Independence, the sand and 

gravel aquifer of the Qoal is approximately 40 feet (12.2 m) 

thick, with several wells yielding over 400 gpm. This 

portion of the Qoal may be hydraulically connected with the 

adjacent Qal sand and gravel aquifer to the east. 

The terrace and alluvial fan deposits (Qt) are the 

least productive groundwater resource of the unconsolidated 

sediments. Where sand and gravel deposits are present, they 

are oftentimes highly weathered, discontinuous, and less 

than 20 feet (6.1m) thick. Most of the Qt, such as the area 

on the west flank of the Eola Hills, lacks gravel and is 

rarely utilized as an aquifer. 

Basalt flows of the Columbia River Basalt Group (Tcr) 

are an important regional hydrogeologic unit over much of 

the northern Willamette Valley. Substantial quantities of 

groundwater are obtained from fractured, brecciated and 

interflow zones. The Tcr is used for small-scale public 

supply and domestic purposes in the Eola Hills in the 

northeast portion of the study area. 

Very few data are available concerning the 

hydrogeologic characteristics of the Tertiary intrusive 

rocks (Ti). No wells are known to penetrate the Ti within 



the study area. Similar intrusive rocks in the northern 

Oregon Coast Range have yielded little water to wells 

(Penoyer and Niem, 1975; Frank, 1974; Frank and Collins, 

1978). 
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The marine bedrock units including the Eocene-Oligocene 

undifferentiated sedimentary rocks (Toe), the Spencer (Ts), 

Yamhill (Ty) and Tyee (Tt) Formations, and the Kings Valley 

Siltstone Member of the Siletz River Volcanics are widely 

used for domestic purposes. The marine units have similar 

lithologies and subsequently, similar hydrogeologic 

characteristics. The permeability of these units are 

relatively low, but because of the large saturated 

thickness, a deep uncased well allows enough water to enter 

the well bore to meet domestic needs. 

Basalt of the Siletz River Volcanics (Tsr) is used 

primarily as a domestic groundwater supply source in the 

western portion of the study area. The hydrogeologic 

characteristics of the Tsr basalt are very similar to the 

other bedrock units with low yields and specific capacities. 

Gonthier (1983) estimated annual groundwater recharge 

due to precipitation for the aquifers in the Dallas-Monmouth 

area (see Table VII). The sand and gravel aquifer of the 

Qal has the highest annual recharge of 8 to 15 inches (20 to 

38 em). Since there is little or no fine-grained, low 

permeability material overlying the Qal sand and gravel, 

much of the precipitation that falls on the surface directly 
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infiltrates into the underlying sand and gravel aquifer. 

The estimated annual recharge of 2 to 5 inches (5 to 13 em) 

for the Qoal and Qt aquifers is lower due to the occurrence 

of an extensive fine-grained, relatively impermeable unit 

that overlies most of the sand and gravel deposits. 

Gonthier (1983) estimated recharge rates of 2 to 5 

inches/year (5 to 13 em/year) for the low permeability 

bedrock units. 

Groundwater flow occurs primarily through the pores or 

interstices between the particles that compose the 

unconsolidated sediment aquifers. In addition to 

groundwater movement through porous media, significant flow 

may occur in fractures and joints in the bedrock units. 

Interflow zones between lava flows are also major pathways 

for fluid migration. 

The Siletz River Volcanics (Tsr) is highly fractured 

due to extensive folding and faulting. Keith and Staples 

(1985) suggest that the abundant zeolite minerals that line 

the fractures in the Tsr may be the result of cold (=10°C) 

meteoric water-basalt interactions over a long period of 

time or low-temperature (60-70°C) basalt-seawater 

interaction. The presence of these zeolites within 

fractures and joints may actually inhibit modern groundwater 

movement within this unit. Fluid flow within fractures in 

the marine sedimentary bedrock is also indicated by the 

occurrence of secondary minerals lining fractures. 
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Secondary mineralization, which appears to be Fe or Mn 

oxides, occurs in a series of fractures within sandstone of 

the Spencer Formation on the west bank of the Willamette 

River north of the Buena Vista ferry {Figure 32). 

Figure 32. Secondary mineralization within 
fractures of Spencer Formation sandstone {9S/4W-
23bdd). 

A significant range in discharge and subsequent 

specific capacity values is evident for each of the bedrock 

and alluvial aquifer units. Since facies changes occur 

within the bedrock and alluvial units, grain-size, degree of 

sorting, and the thickness of the aquifer material is 

variable. These variations directly influence the hydraulic 

characteristics of the respective units. The degree of 
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weathering and the occurrence of paleosols would also 

influence the hydrogeologic characteristics of the unit. In 

the case of the bedrock units, the occurrence, orientation, 

and continuity of fractures, joints and interflow zones may 

also be responsible for the range of discharge and specific 

capacity values. 

Wells penetrating the same aquifer material with 

identical hydraulic properties may have significantly 

different specific capacity values as a result of differing 

well construction and pump test methods. Several factors 

can influence the accuracy of pump test data including the 

duration, method of discharge and water level measurement, 

the degree in which the aquifer was stressed, and different 

personnel performing the pump test. The construction of the 

well, including the length of the open interval and whether 

the open interval is uncased, screened, perforated casing, 

or open ended casing influences the effectiveness of the 

well to remove water from the adjacent aquifer. Therefore, 

the water level and yield of the well bore may not be wholly 

representative of the aquifer. 

The hydrographs for wells in both bedrock and alluvial 

units indicate annual water level fluctuations can be 

correlated to normal precipitation cycles (Appendix D). The 

highest water levels occur in the winter and spring months 

which correlates to the normal periods in which the majority 

of the local precipitation occurs. The hydrographs, along 
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with water levels from less consistently measured wells, 

indicate a recharge-discharge equilibrium with no apparent 

water level declination over the past several years. 

A potentiometric surface map, based on August to 

October water level measurements over the past several 

years, was generated for the basin-fill sediments (Figure 

24). The groundwater flow, inferred from the potentiometric 

surface map, is in the direction of the Willamette River 

which forms the eastern boundary of the study area. The 

potentiometric surface roughly mirrors topography with an 

inferred down slope flow direction. The potentiometric 

surface contours generally V-upstream at their intersection 

with the tributaries to the Willamette River. This is an 

indication that the streams are discharge areas in relation 

to the local groundwater flow system. 

The potentiometric surface contours V-downstream with 

respect to the Willamette River. If this is truly the case, 

the Willamette River is acting as a recharge area to the 

local flow system. This is contradictory to the conclusion 

that the Willamette River is acting as a discharge area as 

indicated by the inferred flow direction towards the 

Willamette River for the majority of the area (Figure 24). 

River levels of the Willamette River may fluctuate 

several feet during the year. The potentiometric surface 

was constructed with late summer water levels which 

correlates to a period of low flow in the Willamette River. 
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If the river surface elevation represented on the USGS 7 1/2 

minute quadrangle maps was determined ~rom a period of high 

flow, the intersections of the potentiometric contours with 

the Willamette River represented in Figure 24 are not valid. 

If the river elevations were only approximately two feet (.6 

m) lower than they are represented on the topographic maps, 

it would alter the potentiometric contours to be indicative 

of a gaining rather than a losing stream. A way to clear up 

this problem would be to measure the relative elevations of 

the Willamette River and the static water levels in wells 

adjacent to the river to determine if the gradient is 

towards or away from the river. 

The potentiometric surface gradient of the Qal in the 

floodplain of the Willamette River is commonly less than 

that of the Qoal. The steeper Qoal gradient suggests that 

it is less permeable than the Qal. This is supported by the 

lower average specific capacity values observed in wells 

completed in the Qoal. 

GROUNDWATER QUALITY 

The following discussion will provide inference based 

on the available data for conditions in which groundwater 

with high salinities occurs in the study area. Of the 

factors examined, groundwater with relatively high 

salinities occurs almost exclusively under the following 

conditions; 1) sedimentary marine bedrock and older alluvium 
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water-bearing units, 2) specific capacities of less than 5 

gpm/ft (an indication of low permeability), and 3) valley 

flat or relatively flat lying topographic settings. The 

groundwater quality is highly variable under these 

conditions individually, but when all of these conditions 

occur together, the likelihood of encountering saline water 

is high. 

Groundwater with relatively high measured specific 

conductance (>500 pmhos/cm) was only found to occur in the 

sedimentary marine bedrock units (Toe, Ts and Ty) and the 

older alluvium (Qoal). Within these units, only wells 

completed in zones of low hydraulic conductivity or 

transmissivity, as inferred from specific capacities of less 

than 5 gpm/ft, produced the relatively poor quality water. 

Although poor quality water occurs only in wells of 

relatively low specific capacity in the marine sedimentary 

bedrock and Qoal units, the majority of the wells under 

these conditions produce acceptable quality water. However, 

where these conditions occur and the wells are located in a 

valley flat or relatively low lying area, a high percentage 

of the wells produce low quality water. Thus, the 

topographic setting of the wells appears to be extremely 

important from a groundwater quality standpoint. 

None of the wells obtaining water from the Siletz River 

Volcanics (Tsr) had measured specific conductance values of 

>500 pmhos/cm within the study area. Gonthier (1983), 
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however, reported several problem wells to the south near 

Kings Valley and Adair Village. These wells also 

predominantly occur in relatively flat lying areas and have 

specific capacity values of less than 5 gpm/ft. In general, 

the conditions in which groundwater with relatively high 

salinities exist within the study area, also exist in 

Gonthier's study area. Gonthier's (1983) report includes 

most of this study area, but is over twice as large and 

extends to the south and southwest. 

As groundwater moves along its flow paths in the 

saturated zone, increases of total dissolved solids and most 

of the major ions normally occur (Freeze and Cherry, 1979). 

Active flushing with meteoric water exists in areas of 

recharge, while increasingly older, more sluggish water 

occurs with depth. Therefore, shallow groundwater in 

recharge areas is lower in TDS than the water deeper in the 

same system and water in shallow zones in discharge areas. 

The author suggests that the model illustrated in 

Figure 33 may represent the fundamental basis of the 

distribution of fresh and poor quality water within the 

study area. Figure 33 represents a topographically driven 

groundwater flow system in which cross-formational discharge 

is taking place (Domenico and Schwartz, 1990). The zones of 

fresh water occur as a result of local recharge and more 

highly mineralized waters occur with distance from the 

outcrop or recharge areas. As indicated by the salinity 
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hazard map (Figure 26) generated from specific conductance 

values, primarily satisfactory quality groundwater (~500 

pmhos/cm specific conductance) occurs within topographically 

high areas. These areas are likely areas of active recharge 

and subsequent flushing with fresh meteoric water. 

Discharge 

+ 
+ 

+ + + + 
Basement 

--~ Flow due to gravity 

+ 
+ 

Recharge 

High-TDS 
meteoric 

water 

(;\~:/) Sand 

Figure 33. Topographically driven groundwater flow 
with cross-formational discharge (modified from 
Domenico and Schwartz, 1990). 

Wells located on hillsides were found to commonly 

produce acceptable quality water. However, some wells north 

of -Rickreall and west of Monmouth, do produce water with 

slight salinity problems on hillsides. The moderate slopes 

may contain waters of local to intermediate flow zones with 

slightly increased TDS concentrations. 

The valley flat regions, especially near streams, are 

plausible zones of discharge and, depending on the flow path 
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length and residence time, variably high salinities. 

Supportive of this is the occurrence of the brackish and 

saline springs in the northwest portion of the study area. 

These springs are obviously areas of discharge, and possibly 

the surficial emanation of older, deeper waters from the 

regional flow system. 

Although the recent river alluvium (Qal) is located in 

the valley flat topographic setting, the water encountered 

there is of acceptable quality. Impervious overburden is 

generally lacking, unlike the Qoal, thus allowing for a 

large proportion of precipitation and run-off from nearby 

sources to directly infiltrate the system and therefore 

flush it with fresh, meteoric water. The waters encountered 

in shallow wells may actually be from a local flow system 

which overwhelmingly dilute the mineralized waters from the 

regional flow regime discharging into the area. 

Similarly, the high terrace and alluvial fan deposits 

(Qt) are also a source of favorable quality groundwater. 

The Qt deposits are located in uplands or in areas of 

moderate slope and are plausible areas of recharge and 

active flushing with meteoric water. The average static 

water levels of the Qt are the shallowest of the water­

bearing units. This may be indicative of a perched 

condition in which a lens of fresh water is trapped in the 

sand and gravel above relatively impermeable bedrock. 

Wells completed in the sedimentary marine bedrock and 
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Qoal units have a large variability in specific capacity 

values which indicates a variation in the permeability 

within these units. Wells with low specific capacities may 

be obtaining water from zones of low permeability. In 

comparison with highly permeable material, waters within the 

zones of low permeability are likely to have higher TDS 

concentrations. With increased residence time, the waters 

have a greater chance to interact with the aquifer material 

and pick up dissolved constituents. Material of low 

permeability, in particular the marine sedimentary bedrock, 

may contain water trapped in the unit at the time of 

sediment deposition (connate water) that has not been 

completely flushed with recent meteoric water. 

The Siletz River Volcanics (Tsr) is only exposed in 

upland areas in the study area. As a result, the exposed 

Tsr is plausibly an area of active recharge. Water with 

high salinities in the Tsr to the south of the study area 

(Gonthier, 1983), may be the result of encountering older 

waters from a regional flow regime at depth or near areas of 

regional discharge in the flat-lying areas. 

The depth at which water with high salinities is found 

is highly variable. Although all of the wells with measured 

specific conductances of greater than 500 pmhos/cm have open 

interval depths of less than 100 feet (30.5 m), drillers 

reported several other wells that encountered "salt" water 

at much greater depths. 
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Theoretically, from the examination of the basin 

groundwater flow model (Figures 33), wells at progressively 

greater distances from the areas of recharge and discharge 

encounter waters of the same flow path at progressively 

greater depths. Supporting evidence of this may occur along 

Soap Creek. There, Gonthier (1983) noticed a situation in 

which a shallow well near the stream was highly saline. 

Wells progressively deeper and farther from the stream had 

decreasing salinities. The author suggests that the wells 

deeper and farther from the stream were obtaining water of a 

slightly younger age and shorter flow path. With increased 

depth, it is hypothesized that the same wells would 

encounter the same saline water as that of the shallow well 

near the stream. 

The isotopic composition (oxygen-18 and deuterium) of 

all the waters analyzed, with the exception of the saline 

springs at 6S/5W-21cad, were fairly similar to one another. 

The oD and o18o values from these samples plot on or near 

the meteoric water line of Craig (1961). It is suggested 

that the main component of these waters is relatively recent 

meteoric water. 

The isotopic values of saline springs at 6S/5W-21cad, 

by far the most saline of the waters encountered, are 

dramatically distinct from the other waters sampled. A non­

recent meteoric source for these waters is proposed. 

Located less than 50 feet (15.2 m) from Salt Creek, these 



springs may represent the discharge of older, mineralized 

waters of a regional flow system. 
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It is also proposed that other waters with high 

salinities, such as the brackish springs (7S/6w-2add) near 

Salt Creek, contain a proportion of older, mineralized 

waters or waters from an intermediate flow path. In these 

cases, the isotopic signature of the older waters may be 

masked by significant dilution with recent meteoric waters. 

The saline springs at 6S/5W-21cad and saline water from 

a 2,985 feet (910 m) deep oil and gas well (6S/4W-6bd) are 

chemically similar. The relative proportions of the major 

ions of these waters are also quite similar to the brackish 

springs at 7S/6W-2add. These waters are chemically distinct 

from other waters sampled in the area with Ca rather than Na 

as the major cationic species. The highly mineralized 

waters of the oil and gas well, which at one time flowed at 

5 gpm (Price and Johnson, 1965), may represent old, deep 

waters of a regional flow system within the sedimentary 

basin. The chemical similarities of the springs and the oil 

and gas well may indicate that at least portions of these 

waters are from the same source or flow system. 

If the springs with high salinities are indeed the 

surface emanation of waters from a regional flow system, the 

conditions which brought these waters to the surface is of 

interest. The springs may be a result of gravitational flow 

and cross-formational discharge to the surface. 
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However, the springs may also be the result of upward 

flow along fracture or fault zones to the surface. This 

situation is thought to occur in the Rumsey Hills area, 

southwestern Sacramento Valley, California (Unruh and 

others, 1992). There, perennial saline springs, which are 

isotopically distinct from area meteoric waters, emerge 

along thrust faults and are thought to represent non­

meteoric formation waters which have had significant 

residence time in the subsurface. 

Figure 34 shows the locations of the CaC12-rich 

brackish and saline springs discovered during this study, a 

CaC12-rich saline water producing oil and gas well, and an 

unverified saline spring reported by local residents. 

Although there are no faults mapped within the immediate 

vicinity, an argument can be made for the upward flow of 

mineralized waters along a structural pathway. The relative 

locations of these sites occur along a northeast trend. 

Northeast-striking faults have been mapped displacing 

Columbia River Basalt and material equivalent to the 

undifferentiated Eocene-Oligocene sedimentary unit (Toe) to 

the northeast and the Siletz River Volcanics and Yamhill 

Formation to the west and southwest (Walker and Macleod, 

1991). 
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Figure 34. The location of CaC12 springs, a CaC12 
water bearing oil and gas well, and an unverified 
saline spring. 

ORIGIN 

The origin of groundwater with high salinities has been 

a topic of ongoing study and debate for decades. Excellent 

reviews of this subject are provided by Kharaka (1986) and 

Hanor (1983). Commonly proposed origins for groundwater 

with high salinities include; dissolution of halite, connate 
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marine water, incorporation of subaerially evaporated 

seawater (bitterns), membrane filtration, and a combination 

of several sources (Hanor, 1983; Kharaka 1986; and Drever 

1988). The problem waters within the study area, over 300 

mg/1 TDS, can be separated into three groups: 1) water with 

Na as the dominant cation, herein referred to as NaCl 

waters; 2) water with Ca as the dominant cation, herein 

referred to as Cacl2 waters; and 3) the least common water 

with nearly equal Na and Ca concentrations, herein referred 

to as Na-Ca-Cl waters. The following section will discuss 

the possible sources and evolution of the NaCl and CaC12 

waters and possible relations between these groups. 

The dissolution of evaporites does not appear to be a 

likely source of salinity in the study area. Firstly, there 

are no reported evaporites within the Willamette Valley. In 

addition, none of the waters sampled had both Na and Cl 

concentrations proportionally greater than that of seawater, 

as would be expected with halite dissolution (Drever, 1988). 

The Br/Cl ratio of evaporating seawater remains fixed 

until saturation with respect to halite is reached. As 

halite precipitates, Br preferentially remains in solution 

and the Br/Cl ratio of the water increases. In contrast, a 

brine formed by simple dissolution of NaCl will have a Br/Cl 

ratio lower than that of seawater because halite has a low 

Br/Cl ratio (Hanor, 1983). 

The majority of the waters sampled (10 of 14) have 
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Br/Cl ratios similar to seawater. The Br and Cl 

concentrations of all of the sampled waters plot within the 

region of mixing of freshwaters, formation brines (which 

includes marine connate water), and residual evaporite 

solutions (Figure 29) (Whittemore, 1988). 

The Br and Cl concentrations in Figure 35 plot along a 

linear trend, adequately defined by the seawater dilution­

evaporation trajectory of Carpenter (1978). The trajectory 

line has been extended to include much lower concentrations 

than the line defined by Carpenter (1978). The author is 

unsure of whether this projection to low concentrations is 

valid. Figure 35 could be interpreted as a mixing line 

between two separate sources, seawater and fresh or meteoric 

water. Points above the seawater dilution-evaporation 

trajectory line generally indicate solution of halite and 

samples that plot below the line result from mixing of 

bittern and meteoric waters (Kharaka, 1986). Therefore, the 

Br and Cl concentrations point to a seawater source rather 

than halite dissolution or the incorporation of bittern 

connate water. This method has been used in the Illinois 

Basin and in the foothill suture zone, Sierra Nevada Range, 

California to distinguish the role of seawater as a source 

for the salinity in groundwaters (Walter and others, 1990; 

Mack and Ferrell, 1979). 

The variation of the Br/Cl ratios seen in this study 

(Table X) may be explained, at least in part, by interaction 
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Figure 35. Log Cl vs log Br concentrations of 
study area waters with a modified version of the 
seawater evaporation-dilution trajectory of 
Carpenter (1978). 
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with organic material. Alteration of organic matter within 

sedimentary rocks during diagenesis may cause a release of 

Br with larger amounts of Iodine to pore waters (Fabryka­

Martin and others, 1991). This organic influence is 

consistent with all of the waters analyzed from this study 

in which Iodine is greatly enriched relative to Br in 

comparison with seawater. The alteration of unevenly 

distributed organic matter throughout an aquifer could 

produce small local differences in the halogen ratios of the 

pore waters. 
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Clayton (1966), using isotopic data, was the first to 

show that the waters from many petroleum well fields were 

predominantly of local meteoric origin. As indicated in 

Figure 30, most of the groundwaters sampled have 618o-6D 

signatures similar, but isotopically lighter than the local 

streams. It is suggested that the streams are closely 

representative of recent, local precipitation. Isotopic 

values of precipitation are likely to be variable through 

time and even among different storm events. It is suggested 

that the isotopic values of the majority of the groundwater 

samples, although highly variable in chemical composition, 

are within the range of local meteoric water and have a 

strong, relatively recent, local meteoric water component. 

Isotopic data have been used to determine a connate 

seawater origin component for many fluids in sedimentary 

basins (Hitchon and Friedman, 1969; Peters, 1993; Kharaka 

and others, 1973). The proximity of the isotopic values of 

a CaC12 spring (6S/5W-21cad1) to SMOW and even more closely 

to Pre-Miocene (Pre-glacial) SMOW (Sheppard, 1986) are 

consistent with a connate seawater origin. These waters may 

represent seawater trapped in the Eocene marine sediments or 

the early Eocene basalts and associated sediments of the 

Siletz River Volcanics with little mixing with recent 

meteoric water. 

The similar chemical compositions of the two most 

saline waters suggests a common source or at least a common 
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chemical evolution for waters expelled at these sites. 

However, the isotopic data for the saline (6S/5W-21cad1) and 

brackish springs (7S/6W-2add) are quite different. The 

brackish springs have isotopic compositions interpreted to 

be very similar to local, recent meteoric water. It is 

suggested that the same original saline source water is 

present in both cases, but with varying degrees of dilution 

with meteoric waters. 

The waters with the greatest TDS concentrations within 

the study area are within the CaC12 group. Sodium is 

commonly the dominant cation in sedimentary basin pore 

fluids, but increasing relative proportions of Ca are often 

associated with increasing TDS (Kharaka, 1986). Several 

processes may dramatically change the chemical composition 

of meteoric or formation waters. Processes that may be 

responsible for increased Ca concentrations include; 

dolomitization, ionic exchange, albitization of plagioclase, 

membrane filtration, and interaction with basalt. 

High concentrations of Ca in sedimentary basin pore 

fluids may be explained by the dolomitization of limestone 

(Graf and others, 1966; Carpenter, 1978). In this reaction, 

Mg is reacted with limestone to release an equivalent amount 

of Ca to solution. The Rickreall Limestone Member of the 

Yamhill Formation occurs in the area. Since the deposits 

are of limited thickness and extent and are limestone rather 

than dolomite, a large-scale dolomitization source of pore 
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fluid Ca is not likely. 

Changes in fluid composition and temperature will both 

cause redistribution of ions between solution and exchange 

sites on clay minerals and oxides (Drever, 1988). Under 

most dilute conditions, Ca and Mg exchange with sorbed Na as 

groundwater moves through clayey material (Domenico and 

Schwartz, 1990). Under more concentrated conditions, such 

as in ocean water, the dominant exchangeable cation is 

sodium, which may displace Ca into solution (Drever, 1988). 

Another possible source of Ca may be the albitization 

of plagioclase (Land and Milliken, 1981; Boles, 1982; and 

Middleton, 1972). In this process, original feldspars are 

altered to Na-plagioclase (albite) and Ca is released into 

solution during the action of sodium-rich pore waters. The 

albitization reaction can be described as: 

CaA12si2o8 (anorthite) + 2Na + + 4H4Si04 = 

2NaA1Si3o8 (albite) + ca2+ + 8H2o 

Interstitial marine connate water is a plausible source of 

Na needed for the reaction. 

The differential permeability of clay and shale, which 

are abundant in the study area, may be a factor in the 

behavior and composition of groundwater. Because shales 

contain tightly-packed charged particles of clay, they 

permit the flow of neutral water molecules but retard the 

passage of dissolved ions (Freeze and Cherry, 1979; Hanor, 

1983). This process, known as osmosis, occurs if two 
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aqueous solutions of different concentrations are separated 

by a selectively permeable membrane which results in the 

tendency for water molecules to migrate through the membrane 

from the more dilute solution into the more concentrated 

solution (Hem, 1985). 

If the differences in hydraulic head across the shale 

membrane are sufficient, water molecules can be forced to 

flow in the opposite direction of osmosis. This process is 

known as reverse osmosis, membrane filtration, reverse 

chemical osmosis or hyperfiltration (Haner, 1983). As flow 

continues, the salty fluids become saltier and the less 

salty fluids become fresher. Possible origins of pressure 

gradients needed to drive reverse osmosis include; uplifted 

recharge areas relative to the basin interior, rapid 

deposition of fine-grained sediments, and post-depositional 

tectonic compression (Bredehoeft and others, 1963; Graf, 

1982). 

The chemical composition of water that has flowed 

through a geological membrane (effluent water) will be lower 

in total dissolved solids and have a different chemical 

composition from the original input solution or that of the 

solution remaining in the aquifer on the input side of the 

membrane (hyperfiltrated water). The membrane effluent 

characteristics include the following chemical markers; 

lower TDS, Ca/Na and Br/Cl ratios and higher B/Cl, HC03/Cl 

and F/Cl ratio (Kharaka 1986). In comparison to one 



another, the CaC12 waters from this study have 

characteristics more similar to waters. held back on the 

influent side of a membrane, while the NaCl waters have 

characteristics of membrane effluent. 
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CaC12 brines have been found to be produced by basalt­

seawater interaction (Hardie, 1983; Mottl and Holland, 1978; 

Drever, 1988). Basalts exposed to seawater at relatively 

low temperatures undergo alteration that results in the 

uptake of potassium by the basalt and loss of calcium, 

silica, and usually magnesium from the basalt. The basalt 

may take up magnesium, rather than release it, if the 

circulation of seawater is restricted so that the pH rises 

as a result of alteration reactions (Drever, 1988). 

Modern rift zone hydrothermal brines, such as those 

found in the Reykjanes, Iceland geothermal system, are 

typically CaC12 brines (Hardie, 1983). These brines are 

thought to be the result of high temperature interactions of 

basalt with seawater. Mottl and Holland (1978) conducted 

experiments in which fresh mid-ocean ridge basalt was 

reacted with seawater. The reactions resulted in removal of 

Mg and Na from seawater, balanced largely by leaching of Ca 

from basalt. The resulting brines closely matched those 

from the basalt-seawater geothermal system at Reykjanes, 

Iceland. The zeolites found in the Siletz River Volcanics 

may be evidence of hydrothermal basalt-seawater interaction 

(Keith and Staples, 1985). 
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The relatively low concentrations of sulfate found in 

the most saline of the waters in this study may be the 

result of bacterial reduction (Drever, 1988 and Kharaka 

1986). Reducing conditions are prevalent in deeper waters. 

Under these conditions, bacteria use the oxygen in sulfate 

to oxidize organic matter, producing sulfide species. High 

to moderate temperature basalt-seawater interaction could 

also remove sulfate from solution, resulting in the 

formation of pyrite or anhydrite (Drever, 1988). 

If the CaC12 and NaCl waters have a unified or common 

origin, the differences in chemical composition may be 

explained, at least in part, by membrane filtration. The 

CaC12 waters may represent waters held back on the influent 

side of the membrane while the NaCl waters represent the 

effluent waters. Hypothetically, the CaC12 waters could be 

tapped by wells on the influent side of the membrane or they 

could have bypassed the membrane through fractures. 

If the NaCl and CaC12 waters are derived from different 

sources, the NaCl waters are readily accounted for by the 

release of marine connate water possibly due to flushing by 

modern meteoric water. The CaC12 waters could be generated 

near the time of eruption of the Siletz River Volcanics 

(Tsr) by moderately high temperature reactions between hot 

basalt and seawater. The CaC12 waters could also be 

generated by lower-temperature albitization reactions of the 

plagioclase in the Tsr or the Eocene sedimentary rocks. 



These CaC12 waters may be issuing along deep seated 

structures and are forced to the surface by tectonic 

processes active in the Cascadia subduction zone. 
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Figure 36a is a plot of Na versus Ca concentrations of 

the problem waters (>300 mg/1 TDS) from this study, western 

Oregon groundwaters with salinities of greater than 10,000 

ppm (Newton, 1969), saline waters from Mist Gas field wells 

(written communication, Northwest Natural Gas, 1992), 

seawater (Hem, 1985), and average inland precipitation (Hem, 

1985). Nearly all of the waters plot on two well-defined 

trends, especially at Ca and Na concentrations of greater 

than 2000 mg/1. The same data is plotted in Figure 36b, 

only with inferred dilution trajectories of the CaC12 and 

NaCl waters with freshwater. An estimated 50/50 mixing line 

between the NaCl and CaCl waters is also included in Figure 

36b. 

The author favors the hypothesis that the NaCl and 

CaC12 waters within the study area, and quite possibly 

extending throughout western Oregon, are two distinct groups 

of waters with different evolutionary histories. The NaCl 

waters, which closely approximate a linear trend between 

precipitation and seawater, may simply be marine connate 

seawaters with varying degrees of meteoric water dilution. 

Although waters from the Cacl2 group may have also 

originated as seawater, they appear to have undergone a more 

complex evolutionary history. The Na-Ca-Cl waters with 
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relative Na and Ca concentrations intermediate between the 

CaC12 and NaCl groups, which occur at Na and Ca 

concentrations of less than 2,000 mg/1 in Figure 36, may be 

the result of mixing between the two groups. 
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Figure 36. Plots of Na vs Ca concentrations of 
seawater, average inland precipitation, study area 
problem waters, and saline waters of western 
Oregon (a and b), with estimated freshwater 
dilution trajectories and a 50/50 CaC12-NaCl water 
mixing trajectory (b). 



SUMMARY AND CONCLUSIONS 

Unconsolidated alluvial sediments, consisting of clay, 

silt, sand and gravel, reach thicknesses of over 80 feet 

(24.4 m) within the study area. A lower fine-grained, a 

coarse-grained, and an upper fine-grained lithologic unit 

are recognized within the unconsolidated sediments. The 

lower fine-grained unit, commonly termed "blue clay" in 

driller's reports, is not areally extensive, but significant 

thicknesses (>80 feet (24.4 m)) may exist in the valley flat 

north of Buena Vista. The coarse-grained unit, composed 

primarily of sand and gravel, reaches thicknesses of over 80 

feet near Dallas within the high terrace and alluvial fan 

deposits (Qt) and older alluvium (Qoal), is relatively thin 

in the central portion of the valley flat and is coarser­

grained and over 40 feet (12.2 m) thick in the recent river 

alluvium (Qal) near Independence. The upper fine-grained 

unit, composed primarily of brown clay and silt, is the 

thickest, nearly 40 feet (12.2 m) within the Qoal and is 

thinner to non-existent within the Qal. 

The geochemical (INAA) similarity of the coarse-grained 

lithologic unit of the Qoal and Siletz River Volcanics (Tsr) 

basalt, together with the fan-like morphology of the upper 

surface of the coarse-grained unit, indicate a Tsr source of 
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these sediments from the west. The geochemically distinct 

upper fine-grained sediments of the Qoal, which are 

geochemically similar to Columbia Basin source sediments 

within the Portland basin, are probable catastrophic flood 

deposits (Willamette Silt). The Qal sediments are likely to 

be of Cascade Range provenance as they are geochemically 

similar to sediments of that provenance in the Portland 

basin. A blue clay sample from the coarse-grained unit of 

the Qal is composed entirely of smectite and is interpreted 

as volcanic ash. 

Basalt of the Tsr is geochemically distinguishable from 

the marine sedimentary bedrock units with higher Fe, Na, Co, 

Cr and Sc concentrations. The Spencer Formation (Ts) is 

distinguished from the Yamhill Formation (Ty) and the 

undifferentiated Eocene-Oligocene sedimentary rock unit 

(Toe) by higher Th, Rb, K, and La and lower Fe, Sc, and Co 

concentrations. Samples from the Ty and Ts also differ on 

the basis of clay mineralogy, with the predominant smectite 

composition of the Ty and clays of a more varied suite for 

the Ts. The Ty and the Toe are geochemically similar, but 

stratigraphically separated by the Ts. 

Yamhill Formation and Toe samples have geochemical 

characteristics mostly typical of volcanic arc-derived 

sediments, while a minority had Th concentrations more 

similar to those of more chemically-evolved igneous and 

metamorphic rocks. Due to chemical similarities, the 
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volcanic component of the Rickreall Lim~stone Member of the 

Ty appears to have been supplied by the underlying Tsr. 

Elemental concentrations, particular Th and La, of the Ts 

samples are indicative of continental crust material, 

although two samples have concentrations approaching those 

of volcanic arc-derived sediments. 

The alluvial sediments, with the exception of the 

upper-fine grained Qoal sedimentary unit, are geochemically 

distinct from the Spencer Formation samples. A geochemical 

distinction between the unconsolidated sediments and the Toe 

and Ty is not as apparent. Cobalt may be a delimiter with 

respect to the Toe, but there was no apparent distinction 

between the unconsolidated sediments and the Ty. 

Unconsolidated sediments, particularly those of the 

coarse-grained lithologic unit, are the most productive 

groundwater aquifers within the study area. The marine 

sedimentary and volcanic bedrock units are the least 

productive and have similar hydrologic characteristics 

resulting from similar lithologies and related porosity and 

permeability. A potentiometric surface map of August 

through October water levels of wells within the 

unconsolidated sediments shows a predominant flow direction 

towards the Willamette River with discharge to local 

streams. 

Groundwaters with measured TDS concentrations of up to 

40,500 mg/1 occur in the study area. Water with salinities 
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of 300 mg/1 or greater have been found to occur only in the 

older alluvium (Qoal) of the unconsolidated sediments, the 

undifferentiated Eocene-Oligocene sedimentary rock unit 

(Toe), and the Spencer (Ts) and Yamhill Formations (Ty). 

Although acceptable quality water also occurs in these 

units, wells completed in zones of low permeability 

(<5gpm/ft specific capacity) and located in valley flat or 

low-lying topographic settings are most likely to encounter 

water with high salinities. 

The majority of the Br/Cl ratios of the sampled waters 

are near that of seawater. Isotopic data from the majority 

of the waters sampled are interpreted as that of local 

meteoric origin with 60 ranges from -57 to 80°/00 and 6180 

ranges from -8.4 to -11.1 °/00 • The most saline waters 

sampled (40,500 mg/1 TDS) have isotopic values very near 

SMOW and pre-Miocene SMOW with 60 ranges of -6 to -8 °/00 , 

and 618 ranges of -1.6 to -1.8 °/00 • Although there is an 

understanding that water-rock interactions could cause 

significant isotopic shifts, these saline waters, although 

chemically distinct from seawater, are interpreted as marine 

connate seawater with little dilution with recent meteoric 

waters. 

It is suggested that the salinity problem in the area 

may be the result of original seawater trapped in sediments 

during deposition with subsequent dilution with meteoric 

waters and significant water-rock interaction. The 
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occurrence of poor quality waters within relatively 

impermeable units in low-lying areas may be the result of 

regional flow system waters discharging to these areas with 

little flushing with recent meteoric water. The occurrence 

of relatively fresh water near upland highs and in material 

of high permeability may be the result of recent flushing 

with meteoric water. The similar specific conductance 

values of common wells, measured in 1976 (Gonthier, 1983) 

and during this study, are indicative of little temporal 

variation in salinity during this time period. 

Groundwaters with high salinities can be divided into 

three groups: 1) NaCl waters with Na as the dominant cation; 

2) CaC12 waters with Ca as the dominant cation; and 3) Na­

Ca-Cl with nearly equal amounts of Na and Ca. Processes 

that may occur in the area to alter the relative Ca-Na 

concentrations within the groundwaters include: membrane 

filtration, albitization, high and low temperature basalt­

seawater interaction, and cation exchange. Although all of 

these waters may have a marine connate source, distinct 

evolutionary histories for the CaC12 and NaCl waters are 

favored. 
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INAA METHODS 

Drill cuttings and samples from surface exposures were 
selected for instrumental neutron activation analysis 
(INAA). In each case, care was taken to obtain a 
representative sample of the material available. Oil and 
gas well drill cuttings were acquired from the archive 
collection at the Oregon Department of Geology and Mineral 
Industries. Samples from water wells were collected by the 
author and water well drillers. Fresh or non-weathered 
outcrop specimens were chosen for analysis where possible a 
notations were made where only weathered material was 
available. 

Foreign matter such as modern plant material, metal and 
sample bag fibers was removed in the preliminary phases of 
sample preparation. Samples containing gravel were sieved 
with a no. 30 sieve and the medium sand size and smaller 
grain-sizes were retained for analysis. Oxidized or 
weathered material was removed and discarded when possible. 
The harder samples, such as the limestones and basalts, were 
first crushed with a chipmunk jaw crusher. All of the 
samples were then crushed by hand with a hardened steel 
mortar and pestle. The mortar and pestle were cleaned with 
ethanol and compressed air between samples. A small amount 
of the next sample was then crushed and discarded to reduce 
the chance of cross contamination between samples. 

An approximate 1 gram split from each sample was placed 
into a clean 0.5 dram polyvial and weighed to 0.0001 gram 
precision with a Mettler H10T balance. To reduce the effect 
of varying geometries with respect to the gamma ray 
detector, the volume was similar in each vial. The 
polyvials were then heat sealed and placed in 2 dram 
polyvials for irradiation. 

Two sets of samples were independently irradiated at 
the Reed Reactor Facility, Reed College, Portland, Oregon 
and at the Oregon State University Reactor, Corvallis, 
Oregon. The

1
famples were subjected to a constant neutral 

flux of 2x10 at 250 kw for one hour. The samples were 
counted with the high-purity Germanium Coaxial Photon 
Detector System, GE&G ORTEC at three different periods after 
irradiation; 4 to 5 days, 13 to 16 days, and 92 to 111 days. 

Peak analysis error computation were obtained with use 
of the EG&G ORTEC 92X Spectrum Master program package. 
Elemental concentrations and errors were calculated with 
comparison to four reference materials; the National Bureau 
of Standards Coal Fly Ash Standard Reference Material 1633a, 
the National Bureau of Standards Bituminous Coal Standard 
Reference Material 1632b, Geological Survey of Japan 
rhyolite reference sample JR-1, and the U.S.G.S. granite 
reference material G-2. 



Sample ID. 
Wl 

W2 

W3 

W4 

ws 
W6 
W7 

Ql-Q3 
Q4 
Vl,V2 
El 
E2 
E3,E4 

Sl 
S2,S3,S5 

S4 
S6 

Yl 
Y2 

Y3 
Y4 
Y5 

SR1-SR3 
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INAA SAMPLE! LOCATIONS 

T.R.S. 
6S/4W-31a 

8S/5W-10ddb 

8S/5W-14bdb 

8S/5W-26bcd 

7S/5w-3ldab2 
8S/4W-16dac 
8S/4W-7ccd 

8S/4w-34dcc 
8S/4w-28cda 
8S/5w-9aab 
7S/4W-3ccc 
7S/4W-5cbc 
7S/4W-4aab 

8S/5W-16acc 
8S/5W-28dbc 

9S/4W-23bcc 
7S/5W-15bba 

6S/6W-21acb 
8S/6W-12bbd 

7S/5W-19cac 
7S/5W-9cbb 
8S/6W-12bcd 

8S/5W-25cad 

Comments 
Oil and gas exploration well, 
Reserve Oil and Gas Co., Bruer 1 
Oil and gas exploration well, 
Mirian Oil Co., Bliven 3 
Oil and gas exploration well, 
Miller, Bursell 1 
Oil and gas exploration well, 
Miller, Stump 1 
Butch Meyer water well 
Setnicker Farms irrigation well 
Willamette Pollen Co. 
irrigation well 
Valley Concrete gravel pit 
Outcrop in ditch 
Summit of Mt. Pisgah 
Tile trench at Brunker Winery 
Road cut on west side of 99W 
Road cut on west side of 
Oak Grove road. 
Road cut south of Bursell road 
Fishback hill road cut on 
Monmouth Highway 
Cut bank of Willamette River 
Intersection of Dyck and 
Perrydale roads 
Cut bank of Mill Creek 
Former Portland Cement 
Limestone Quarry 
From 6' deep pit 
Highway 22 road cut 
Former Portland Cement 
Limestone Quarry 
Ellendale Quarry 



Sample ID. 
W1-1 
W1-2 
W1-3 
W1-4 
W1-5 

W1-6 
W1-7 
W1-8 

W1-9 

W1-10 

W1-11 

W2-1 
W2-2 
W2-3 
W2-4 
W2-5 
W2-6 
W2-7 
W3-1 
W3-2 
W3-3 
W3-4 
W3-5 

· W3-6 
W3-7 
W4-1 
W4-2 
W4-3 
W4-4 
W4-5 
W4-6 
W4-7 
W5-1 
W5-2 
W5-3 
W5-4 
W5-5 
W5-6 
W6-1 
W6-2 
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INAA SAMPLE DESCRIPTIONS 

Elevation (ft) 
327 
237 
-183 
-583 
-1043 

-1643 
-2343 
-3143 

-3943 

-4843 

-5192 

165 to 120 
63 to 43 
-242 to -249 
-540 to -553 
-837 to -845 
-1137 to -1160 
-1430 to -1453 
300 to 295 
200 to 195 
0 to -5 
-200 to -205 
-400 to -405 
-630 to -635 
-765 to -770 
100 to 95 
0 to -5 
-295 to -300 
-600 to -605 
-895 to -900 
-1200 to -1205 
-1265 to -1270 
538 to 521 
521 to 516 
516 to 511 
511 to 468 
468 to 440 
440 to 416 
150 to 145 
145 to 139 

Stratigraphic Unit/Description 
Toe, light gray siltstone 
Toe, light gray siltstone 
Toe, " " " 
Ts, light gray siltstone 
Ts, light gray siltstone and 
fine sandstone 
Ty, Gray shale 
Ty, light blue silty shale 
Ty, light brown to gray 
silty shale 
Ty, light brown to gray 
silty shale 
Tsr, volcanic clastics, 
containing olivine, chlorite, 
ferrous iron compounds, 
siltstone, quartz and ash 
Tsr, basalt with secondary 
mineralization 
Ts, gray siltstone or claystone 
Ts, " " " " 
Ts, " " " " 
Ty, gray claystone 
Ty, " " 
Ty, " " 
Ty, " " 
Ts, gray siltstone or claystone 
Ts, " " fl " 

Ts, " " " " 
Ts, gray siltstone or claystone 
Ty, " " " " 
Ty, " " " " 
Ty, " " " " 
Ts, blue shale 
Ts, blue shale 
Ts, blue shale 
Ty, gray sandy 
Ty, gray sandy 
Ty, gray sandy 
Ty, gray sandy 
Ty, brown clay 

shale 
shale 
shale 
shale 

Ty, brown claystone 
Ty, blue claystone 
Ty, gray claystone 
Ty, blue clay 
Ty, gray claystone 
Qal, brown topsoil 
Qal, brown clay 



W6-3 

W6-4 

W6-5 
W7-1 
W7-2 

W7-3 

W7-4 

Q1 
Q2 

Q3 

Q4 

V1 
V2 
E1 

E2 
E3 
E4 
S1 

S2 

S3 
S4 

S5 

S6 

Y1 
Y2 

Y3 

Y4 

Y5 

SR1 
SR2 

SR3 

139 to 138 

138 to 113 

113 to 108 
202 to 185 
185 to 174 

171 to 160 

148 to 125 

150 to 148 
148 to 146 

140 

170 

830 
830 
300 

200 
460 
480 
600 

680 

700 
160 

640 

280 

340 
500 

600 

240 

500 

520 
500 

530 

Qal, clay and silt split from 
brown silty clay with small 
gravel 
Qal, clay and silt split from 
predominately sand and gravel 
Qal, blue clay 
Qoal, brown clay 
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Qoal, clay and silt split from 
predominately sand and gravel 
Qoal, clay and silt split from 
blue clay, sand and gravel 
Qoal, clay and silt split from 
blue clay and sand 
Qal, light brown sand and silt 
Qal, clay and silt split from 
predominately sand and gravel 
Qal, clay and silt split from 
predominately sand and gravel 
Qoal, light brown silt and very 
fine sand 
Ti, angular basalt boulder 
Ti, angular basalt boulder 
Toe, light brown to tan 
tuffaceous siltstone 
Toe, " 
Toe, " 
Toe, " 

" " " 

Ts, weathered light brown 
siltstone 
Ts, light brown siltstone and 
sandstone 
Ts, weathered, light brown, silt 
Ts, light brown sandstone, 
highly fractured with iron 
staining 
Ts, gray siltstone or fine 
sandstone, plant fossils 
Ts, dark brown siltstone and 
sandstone, fossiliferrous 
Ty, gray claystone 
Ty, Rickreall Limestone member, 
fossiliferrous 
Ty, weathered, reddish brown 
clay and silt 
Ty, light brown, weathered clay 
and silt 
Ty, Rickreall Limestone member, 
massive 
Tsr, dense basalt 
Tsr, basalt with secondary 
mineral veins of calcite 
Tsr, serpentized basalt with 



STD1 

STD2 

STD3 

STD4 

zeolites 
Standard, rhyolite, JR-1 GSJ 
reference sample 
Standard, coal fly ash, 
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National Bureau of Standards, 
standard reference material 1633 
Standard, G-2, USGS reference 
material 
Standard, bituminous coal, 
National Bureau of Standards, 
standard reference material 
1632b 



ELEMENTAL CONCENTRATIONS 

SAMPLE Na Enor K Enor Rb Enor ca Enor Ba Enor Sr Enor Fe Enor Co Enor 

"' "' 1m!!! 1m!!! 1m!!! 1m!!! "' ~m 
Reeerve 011 end Gas Co., Bruer 1, ~ration well 

W1-1 1.2. 0.22 1.52 s.eo eo US.28 • 7.r11 e64 8.37 •. 50 0.78 11 1.n 
W1-2 1 . .e 0.21 1.81 7.89 ~ 20.15 • 8.32 550 G.87 ..sa 20.10 •. 78 O.SG 13 2.02 
W1-3 1.01 0.1G 1.18 8.57 58 27.GG 2 8.78 2111 2.85 ~ 20.00 •. 88 0.87 11 2.29 
W1-• 1.57 0.20 2.82 •. Sl3 120 11.38 8 7.98 1«l0 • .21 210 37.15 ... 21 o.a.. 13 2.15 
W1-5 1.Q2 0.1G 2.27 7.Sl3 118 15.22 .. 5.88 12 .. 5 3.82 S58 20.82 3.75 0.85 11 1.~ 
W1-8 1.87 0.20 1.35 11.13 87 23.50 3 8.37 7 .. 1 7.1 .. ..ag. 28.7 .. 5.8<t 0.78 18 1 ... 7 
W1-7 UM 0.29 1.02 G.33 51 31.51 2 8.10 5Q2 8.11 3<t3 28.tn 5.78 0.75 1" 2.0. 
W1-8 1 ... 7 0.29 1.~ 7.81 G1 18."2 887 8.1G 2eD 32.81 5.27 0.72 15 1.GO 
W1-G 1.50 0.23 1.81 8.05 In 13.70 7 ... 55 808 8.08 S32 2 ... SIO 5.1 .. 0.815 17 2.o48 
W1-10 2.N 0.18 O.G1 15.25 2 18.17 gog 7.00 383 2G.01 8.10 0.82 .. 7 1.00 
W1-11 2.71 0.1 .. 0.«) 2G ... 5 liJ.18 0.57 58 1.08 

Milian 011 Co., eJq:>lor.-lon well 
W2-1 1.23 0.22 2.18 5.N 1<t& 13.5G 5 3.G!5 8o48 8.58 «ll 20.2G ..... 1 0.85 12 2.1 .. 
W2-2 2.02 0.18 1.~ 5.58 G5 1G.15 .. ... 88 7"2 7.30 .. 2G 1G.18 ... a.. 0.88 13 1.S. 
W2-3 1.37 0.21 2.1 .. ...25 75 32.3G 8 3 ... 1 801 7.S. 328 28.8G 5.17 0.82 18 1.75 
W2-· 1.!53 0.20 1.75 7.71 eg 28.7 .. 5 8.0. 57 .. SG.18 5.29 O.Q2 1 .. 2.01 
W2-5 1 JiiC) 0.17 1.3-t G.o45 88 22.03 3 11.58 825 10.12 31 .. 32.55 5.N 0.7 .. 17 1.o48 
W2-8 1.75 0.21 1.1G 8.1 .. 3 7.78 532 10.12 .. 28 2 ... 31 7.58 0.71 27 1.98 
W2-7 1.158 0.20 o.s 1 .. .00 78 20.03 3 10.Ge 571 11.23 18G .. G.<t3 5.8<t 0.~ 18 1.3-t 

Miller, Burull 1 , eJq:>lonltlon well 
W3-1 1.05 0.28 2 ... 7 ... !SQ 127 10.12 7 3.17 D<t8 6.85 302 32.G5 ... s.. 0.92 1 .. 1.51 
W3-2 1.22 0.27 2.13 ... G1 133 13.7G 8 3.32 M7 7.29 271 33.87 ... 88 o.a. 12 2 ... 7 
W3-3 1.Q8 0.20 1.31 12.0. 100 23.33 .. 5.01 &40 7.ts7 270 33.38 ... 87 O.N 12 2.38 ws-• 1.o48 0.29 2.35 5.1 .. 1 .... 15.28 8 3.10 735 8.87 281 31.28 ... ..s 0.88 17 1.78 
W3-5 1.88 0.21 1.78 G.78 82 1G ... 7 5 5 ..... 83<t 10.18 233 <te.OO 8.2 .. 0.85 18 1.78 
W3-8 1.0. 0.22 1 . ..S 11 . ..S 102 25.05 .. 7.22 572 10 ... 2 308 32.51 8.27 0.85 18 1.88 
W3-7 1.89 0.21 1.81 11.2G 70 22.28 3 5.S. 378 25.10 8.28 0.70 17 1.8<t 

Miller, StLJ11) 1 , eJq:>loratlon well 
w•-1 1.0. 0.3-t 2.(lg 7.GO 108 1 ... 52 5 3.82 875 9.09 233 39.01 10.75 0.51 22 1.82 
w•-2 1.2G 0.30 1.37 11.Ge 3 8 ... 1 636 8.Q2 372 23.13 3.75 o.ge 8 2.05 
w•-3 1 . ..S 0.28 2.85 6.35 117 18.Q8 7 8.87 7o45 8.13 251 .. 2.37 ... ..e 0.80 17 1.89 
w•-• 1.eo 0.18 1.3G ... Qe 55 28.08 .. 8.CI 853 8.31 5.82 0.72 15 1.8G 
w•-s 2.25 0.29 1.!SQ 13.05 ~ 30.78 3 10.88 70S 10.20 533 20.7 .. 8.N 0.70 21 1.eo 
w•-8 2.57 0.21 1.<t& 13.03 85 35.33 7.02 0.77 25 1.81 
w•-7 2 ..... 0.29 1 . ..0 18.88 2 8.G!5 880 G.S<t 383 30 .• 1 8.N 0.72 22 1.98 

BWch Mftver, water well 
W5-1 0.12 1.8G G.n 8.33 5 17.01 .s6 10.57 7."2 0.70 31 1.81 
W5-2 o.os ... G!5 ... a. 18.02 3 23.31 ..sg 11.82 8.82 0.70 8 5.28 
W5-3 0.~ 0.58 1.<t& 1 ... 88 81 27.50 3 11.Ge 7.1G 0.70 20 2.3-t 
ws-• O.Q2 0.!53 1 ... 7 13.88 55 18.3-t 3 1G.75 <t81 12.3G 5.80 o.89 18 2.55 
W5-5 om 0.51 2.1 .. 10 . ..S M 20.78 5 13.37 497 10.31 238 ..S.87 8.es 0.71 20 1.78 
ws-8 o.eo 0.51 2.15 10 ... 2 88 20.52 5 10.Ge sag 8.72 8.13 0.~ 18 2 ... 7 

..... 
Enor • "' cumulative related to data procealng U1 

CD 



SAMPl£ Cr Error Hf Error Ta Error Sc Error 
I;!~ I;!~ ~ ~ 

Reeerve 011 ..xt Gas Co., Bruer 1, exploration well 
W1-1 01 5.01 8 ... N 2.1 8.Ge 18 0.82 
W1_;,2 104 ... <IG 8 5.20 3.0 , ... 50 10 0.58 
W1-3 78 3.Ge 5 7.58 2.8 7.S.. 15 0.80 
W1-" 77 3.22 7 3.32 3.0 4.81 15 0.70 
W1-5 55 7.15 5 ... 83 2.5 13 . ..e 13 0.71 
w1-8 78 5.157 5 6.28 ... o 8.s.. 22 0.54 
Wt-7 55 7.12 5 5.31 ... 3 0.52 20 0.88 
W1-8 87 ... 83 5 5.11 ... 3 5.88 10 0.58 
W1-0 00 ... 83 5 5.2 .. 3.8 1 ... 38 18 0.07 
W1-10 23G 2.g5 5 7.12 28 0.51 
W1-11 233 2.27 8 6.04 7.8 5.157 28 o.81 

~lllrlan 011 Co., elCJ)Iorellon well 
W2-1 83 3.04 8 3.38 ... 7 4.52 15 0.78 
W2-2 ee 5.10 7 3.11 3.7 15.58 1 .. 0.70 
W2-3 83 3.29 7 4.21 ... 1 6.38 18 O.!SG 
W2-.. 79 3.88 5 4 ... 1 ... o 18.27 20 0.157 
W2-5 70 8.97 5 ... 84 22 0.82 
W2-8 82 .. 0.58 .. 5.19 ... 7 3.g5 23 0.50 
W2-7 83 7.7 .. 5 6.28 3.0 8.7 .. 22 0.54 

Mill•. BurHII1, elCJ)Ion!ltlon well 
W3-1 70 3.63 7 3.98 2.7 4.50 18 0.46 
W3-2 eo ... 12 6 4.84 2.5 6.54 18 0.73 
W3-3 ..e ... 91 9 2 . ..S 3.1 3 . .-s 15 0.82 
W3-4 88 3 . .-s 7 4.00 2.4 4.84 18 0.81 
W3-5 83 5.1 .. 5 5.29 2 ... 13.11 21 0.80 
W3-8 70 3.87 5 5.32 2 ... 16.85 23 0.35 
W3-7 73 5.N 5 7.05 2.5 7.88 22 0.37 

Mill«'. 9ti.Jn'1) 1. eJCPioratlon well 
w .. -1 goo 0.57 8 4.87 1.8 6.84 13 0.58 
W4-2 37 9.18 9 2.89 1.7 12.01 13 o.ee 
W4-3 82 3.20 7 ... 07 2.0 12.87 18 0.75 
W4-4 82 2.97 8 5.05 2.8 6.04 19 0.63 
W4-5 CS8 8.91 8 5.82 25 0.54 
W4-8 53 11.41 5 6.70 4.7 7.30 28 0.49 
w .. -7 52 15.&4 8 5.97 5.0 20.07 28 0.53 

a.ch Mever. wet• well 
8 W5-1 78 8.05 6.00 3.9 7.84 30 0.82 

W5-2 37 8.81 5 8.19 ... 1 18.S.. 30 0.80 
W5-3 &4 7.!5G 5 6.13 2 .. 0.77 
W5-4 87 4.84 5 6.30 2.8 16.79 21 0.73 
W5-5 77 5.Qr3 8 5.85 2.8 8 . ..e 24 0.70 
W5-8 88 5.28 15 6.44 20 0.82 

Th Error u Error 

~ ~ 

5.5 3.75 
8.0 3.7 .. 8 2 ... cse 
5.7 3.38 

12.7 Ul8 7 18.14 
7.3 2.81 
5.0 3.80 
3 ... 6.51 
7.5 2.80 5 10 ... 0 
9.2 2.35 8 21.17 
3.3 8.83 
2 ... 12.2 .. 

12 ... 1.7 .. 4 13.84 
8.5 2 ..... 

11.2 2.15 .. 13.76 
7.3 3.19 
5.0 4.28 
4.5 5.02 
... .2 4.73 

14.0 1 .5<t .. 11.76 
12.1 2.05 
8.8 2.3G 

11.1 1.9G 
7 ... 3.19 8 36.39 
8.1 3.78 5 25.65 
5.5 4.08 8 22.98 

10.0 2.31 4 14.43 
11.0 1.90 4 14.84 
11.3 2.12 5 21.23 
7.3 3.05 
5.4 4.24 
3.6 6.19 
... 2 5.37 7 40.36 

5.2 4.27 2 26.52 
3.2 6.S.. 
5.0 4.85 1 .. 7.71 
4.4 4.35 
5.2 3.U2 
6.3 3 . .-s 2 s.-.95 

w Error 
I;!~ 

2 20.12 .. 23.82 

3 s.. . ..e 

6 10.08 

2 33.50 

5 16.18 
5 14.27 

2 35.87 
2 <t8.73 

5 11.02 

1 36.96 
2 43.88 

2 39.17 

Ga 
I;!~ 

20 
22 
33 
28 
21 
28 
27 
35 
27 
38 
37 

19 
29 
s.. 
39 
32 
38 
s.. 

32 
28 

39 
37 
31 

56 
44 
41 
25 

53 
.. 7 
.. 9 

Error 

17.&4 
28.43 
22.88 
28.20 
38.45 
10.50 
21.57 
18.81 
26.80 
28.00 
19.28 

31.17 
27.5<t 
21.01 
27.01 
25.17 
23.39 
26.43 

21.59 
23.CS8 

23.08 
22.40 
22.30 

16.30 
21.29 
22.61 
20.53 

15.36 
16.33 
19.23 

~ 

U1 
\0 



SAMPLE Sb Error As Error Br Error 

B!!!! ~~ ~ 

ReMifVe 011 and Gas Co., Bruer 1, exploration well 
W1-1 1.8 19.87 1-4 5.1i1G 2 31.07 
W1-2 2.2 28.81 17 5.83 
W1-3 2.9 2-4.85 15 8.77 5 19.0-4 
W1--4 3.2 18.75 1-4 8.00 3 28.05 
W1-5 2.-4 -47.35 12 11.-49 
W1-8 1.7 25.83 1G 5.Q2 8 27.08 
W1-7 1.7 27.02 18 5.88 
W1-8 2.8 18.2-4 us 5.81 4 26.88 
W1-G 2.5 13.-49 17 5.78 
W1-10 7 27.10 
W1-11 

Mlrlan 011 Co., elq)loralion well 
W2-1 1.-4 18.34 18 8.G1 8 34.28 
W2-2 1.5 -45.49 7 15.G5 
W2-3 2.3 17.84 14 7.Ge 
W2--4 -4.8 24.80 18 5.94 
W2-5 2.8 38-SK> 12 8.73 
W2-8 -4.2 33.7-4 15 8.51 
W2-7 2.2 35.8-4 1-4 8.-48 

Miller, Bursell1, elq)loratlon well 
W3-1 1.8 14.12 13 7.-42 
W3-2 1.7 20.-40 21 -4.Q2 
W3-3 2.5 21.22 g 11.22 
W3--4 2.0 18.55 5 13.78 
W3-5 2.-4 -43.83 21 5.49 5 48.37 
W3-8 2.0 24.73 21 5.02 
W:S-7 2.-4 28.33 21 5.-43 

Miller, Sturr() 1, eJCploralton well 
W-4-1 3.G 8.07 23 4.1-4 5 23.60 
W4-2 2.-4 20.-44 11 14.91 
W4-3 1.0 19.22 11 11.82 
W-4--4 3.1 39.16 18 5.78 
W-4-5 1.8 38.08 11 9.Q2 
W4-8 12 11.09 
W4-7 12 10.88 

Butch Meyer, waler well 
WS-1 0.7 22.15 13 6.87 8 28.6G 
WS-2 0.-4 -40.05 10 9.-40 
WS-3 0.9 19.~ 15 8.23 8 23.28 
W5--4 1.1 34.59 1-4 7.95 
W5-5 0.8 28.58 HS 5.62 
ws-8 o.8 25.91 1-4 6.84 

Zr Error Zn Error La 
~m ~~ ~ 

2-43 o40.3G 110 25.-42 23 
180 35.7-4 11-4 2-4.72 23 
2-41 21.58 177 1-4.-45 23 
180 32.0-4 1-42 17.G8 -41 
18-4 -42.G8 eg 2808 27 

117 25.-41 2-4 
170 32.57 126 23.08 20 

158 18.-47 2-4 
13G 28.Q8 33 
1"18 22.53 22 

-413 38.07 U!O 22.-41 2-4 

325 21.05 ge 28.2-4 41 
182 28.37 82 31.18 33 
210 25.GO 115 24.-43 41 
224 22.75 111 26.53 32 
353 3Q.80 121 28.27 23 

130 25.3Q 22 
321 27.75 11-4 27.02 23 

231 23.31 10-4 25.4G 48 
280 38.88 112 25.85 38 
237 21.57 110 23.29 42 
25-4 21.08 123 1G.22 o40 
11i1G 28.5-4 118 28.0G 26 
215 35.35 132 23.02 23 
221 2G.38 11G 25.81 25 

230 34.37 515 -4.7-4 34 
322 25.59 ge 2-4.65 -44 
387 27.45 108 24.G2 41 
262 25.97 107 25.88 28 
173 -43.-47 138 21.35 23 

12G 26.18 18 
131 25.-45 23 

479 48.11 154 32.68 2-4 
412 27.37 118 -42.8-4 31 
621 35.10 140 32.35 28 
885 -47.51 124 33.67 26 
3C53 38.-40 141 31.G7 24 

130 32.0-4 21 

Error Ce 
~m 

2.83 ~ 

2.88 eo 
3.81 5-4 
2.00 G2 
3.81 58 
3.51 87 
3.51 -45 
3.70 -45 
3.2Q 63 
5.58 ...., 
-4.33 ...., 

1.81 75 
2.77 87 
1.93 100 
3.62 e.. 
3.17 -43 
-4.02 eo 
3.-47 3C5 

1.50 109 
1.89 gs 

1.83 gg 
2.11 108 
4.31 6Q 

5.-48 88 
2.Q8 60 

2.18 55 
2.00 ge 
2.-48 83 
3.09 57 
-4.58 55 
-4.-42 -47 
-4.57 58 

2.18 44 
1.49 23 
2.08 5-4 
2.47 52 
3.52 52 
3.00 3Q 

Error 

23.-47 
19.77 
22.82 
13.88 
19.Q8 
20.83 
27.2-4 
31.8Q 

8.81 
30.77 
38.52 

17.30 
1G.28 
1-4.07 
23.-40 
38.82 
25.5-4 
37.20 

12.52 
14.92 
14.77 
13.Ge 
19.82 
23.18 
2-4.73 

28.08 
15.25 
17.19 
25.25 
26.21 
30.-44 
2-4.83 

9.35 
19.57 
7.59 
7.79 
8.2-4 
9.33 

Nd 

~~ 

3C5 

3-4 

35 

38 

28 

.... 

Error 

17.11 

-43.83 

2G.70 

17.02 

24.02 

28.72 

~ 

0\ 
0 



SAMPLE 

W1-1 
W1-2 
W1-3 
W1-4 
W1-5 
W1-6 
W1-7 
W1-8 
W1-9 
W1-10 
W1-11 

W2-1 
W2-2 
W2-3 
W2-4 
W2-5 
W2-6 
W2-7 

W3-1 
W3-2 
W3-3 
W3-4 
W3-5 
W3-6 
W3-7 

W4-1 
W4-2 
W4-3 
W4-4 
W4-5 
W4-6 
W4-7 

W5-1 
W5-2 
W5-3 
W5-4 
W5-5 

ws-6 

Sm Error Eu Error Gd Error Tb Error Tm Error Yb Error Lu 
ppm ppm ppm ppm ppm ppm ppm 

Reserve 011 and Gas co .. Bruer 1. exploration well 
15.1 1.19 1 5.88 
15.2 1.06 1 7.24 
~1 

~0 

~0 

~4 

~7 

~7 

~1 

~7 

~9 

1.74 
0.86 
1.15 
1.12 
1.73 
1.11 
0.99 
1.45 
1.49 

Mlrlan 011 Co., exploration well 
7.4 0.77 
6.1 1.21 
7.9 0.7!5 
6.3 1.12 
5.3 1.84 
5.3 
15.1 

1.75 
1.58 

Miller, Bursell 1, exploration well 
8.3 0.70 
7.0 0.84 
su 0.73 
7.0 1.10 
5.4 1.10 
5.0 1.17 
15.7 1.04 

Miller, Stump 1, exploration well 
8.2 0.93 
8.8 0.69 
7.6 0.82 
15.9 1.37 
15.15 1.55 
15.0 2.30 
15.15 1.24 

Butch Meyer, water well 
6.3 0.83 
G.4 0.72 
7.3 0.82 
6.3 1.12 
15.7 1.11 
4.8 1.08 

1 
2 

2 
2 
2 

2 
1 
2 
2 
2 
2 
2 

2 

2 
2 
2 
2 
2 

1 
2 
2 
1 
2 
2 
2 

2 
3 
2 
2 
2 

7.03 
5.37 
6.48 
7.23 
8.17 
7.29 
8.08 
8.25 
5.46 

5.45 
6.18 
5.!57 
6.71 
8.!53 
7.2!5 
5.99 

!5.98 
5.29 
4.3!5 
5.45 
6.30 
5.!57 
6.58 

5.44 
5.47 
6.89 
5.79 
5.1!5 
7.80 
8.17 

8.19 
4.75 
2.71 
3.58 
4.10 
5.31 

1 
2 
4 
2 
1 
2 
3 
8 

3 
2 
3 
3 
2 
2 

3 
3 
2 
3 
3 
1 
2 

2 
3 
2 
2 

7 

27.39 
31.40 
18.97 
10.70 
18.02 
29.70 
17.93 
15.71 
27.34 
28.11 
35.17 

12.47 
17.31 
13.28 
19.88 
19.89 
25.29 
29.36 

11.38 
13.64 
18.70 
12.94 
18.84 
27.92 
21.22 

16.08 
14.00 
15.81 
19.03 
36.25 

37.37 

29.22 

0.7 
0.8 

1.0 
0.7 

o.6 
0.7 
0.8 
0.9 
0.9 

0.8 
1.1 
0.9 
0.8 

0.8 

1.1 
0.9 
1 ... 

0.9 
0.8 
0.8 

0.8 
1.1 
1.0 
0.7 
0.9 
0.7 
0.8 

1.0 
1.3 
1.0 

0.8 

9.02 
8.18 

6.08 
8.08 

10.88 
8.27 
9.04 
9.89 
8.28 

7.38 
6.82 
7.93 

10.88 

8.98 

5.58 
7.09 
5.00 
6.33 
8.88 
9.24 

9 ... 1 
5.40 
6.75 
8.86 
8.69 
9.8!5 
8.52 

8.72 
8.01 
9.31 

10.16 

0.49 
0.5 .. 
0.50 
0.51 
0.48 
0.35 
0 ... 3 
0.53 
0.32 
0.58 
0.74 

0.65 
0.47 
0.88 
0.48 
0.45 
o.68 
0.52 

0.73 
0.54 
1.06 
0.55 
0.54 
0.48 
0.54 

0.41 
0.66 
0.58 
0.6 .. 
0.!55 
0.43 
0.45 

0.60 
0.51 
0.65 
0.41 
0.73 
o ... o 

28.40 
25.87 
26.39 
26.83 
26.03 
37.31 
29.80 
23.87 
44.2 .. 
25.12 
20.46 

22.08 
28.13 
22.74 
32.82 
33.54 
21.7 .. 
25.97 

19.02 
26.28 
13.07 
24.50 
23.99 
28.15 
26.42 

3 ... 91 
20.28 
23.83 
20.76 
26.59 
31.13 
32.38 

30.55 
40.92 
29.52 
43.48 
25.38 
41.08 

2.6 
2.7 
2.8 
3.0 
2.2 
2.1 
2.3 
2.1 
2.3 
2.2 
2.2 

3.1 
2.8 
3.8 
2.8 
2.5 
2.7 
2.7 

3 ... 
2.8 
4.7 
2.7 
2.5 
2.1 
3.1 

2.7 
3.7 
3.1 
2.4 
2.6 
2.7 
2.6 

2.8 
4.4 
3.1 
2.8 
2.6 
1.7 

12.35 
15.33 
11.83 
12.!54 
12 ... 9 
13.11 
115 ... 8 
16.30 
12.20 
18.39 
19.98 

12.24 
11.32 
10.05 
12.52 
14.09 
18.15 
15.58 

11.34 
1 1 ... 9 

9.02 
12.51 
13.00 
17.91 
12.83 

13.40 
10.04 
12.57 
12.73 
115.9 .. 
14.47 
14.19 

14.53 
8.93 

12.81 
15.37 
14.53 
14.80 

0.35 
0.37 
0.3!5 
0.38 
0.28 
0.30 
0.30 
0.27 
0.31 
0.28 
0.32 

0.38 
0.30 
0.45 
0.37 
0.32 
0.37 
0.32 

0.4 .. 
0.38 
0.82 
0.38 
0.3 .. 
0.27 
0.29 

0.37 
0.45 
0.39 
0.31 
0.31 
0.42 
0.31 

0.44 
0.8 .. 
0.51 
0.40 
o ... o 
0.31 

Error 

6.97 
7.2 .. 
8.01 

12.94 
7.09 
8.83 
8.53 
9.14 
8.08 
9.94 

10.11 

6.91 
13.07 
11.26 
7.84 
8.52 
8.38 

13.83 

6.37 
7.98 
9.41 

13.11 
9.10 

10.05 
8.83 

9.81 
11.34 
6.90 
8.!50 

10.03 
9.87 

1!5.83 

7.09 
9.34 
8.27 
7.!52 
7.19 
8.59 ...... 

0\ 
...... 



SAMPLE Na Error K Error Rb Error Cs Error Ba Error Sr Error Fe Error Co Error 
% % ~~ ~ ~m ~ % ~ 

Setnlcker Ferms, water well 
we-1 U13 o.s 1.31 15.30 ee 24.!52 4 9.N 665 8.42 368 30.!52 8.85 0.72 26 2.00 
we-2 1.81 0.33 o.go 24.10 4 13.83 673 7.S 4Ge 44.18 8.57 0.76 28 1.SIG 
we-s 1.91 0.33 1.()g 21.22 3 13.02 55S 18.51 8.32 0.78 26 1.G4 
we-4 3.01 0.25 1.48 31.81 70 18.03 3 9.SIG 838 7.38 sse 30.15 4.82 0.85 16 2.84 
we-5 O.SIB 0.48 1.24 12.50 4 18.33 777 8.og 5.20 O.N 11 3.72 

Wlllamelte Pollen Co., Willer well 
W7-1 1.19 0.48 2.18 11.21 117 15.28 7 4.55 84G 5.ee 672 32.13 5.24 0.84 20 1.77 
W7-2 1.47 o.38 1.08 0.00 75 22.20 5 10.77 828 8.71 3N 2G.3e 8.2G 0.82 3e 1.e5 
W7-3 1.37 0.38 1.31 H5.1Q 5«5 31.61 2 21.40 10.77 0.52 68 1.20 
W7-4 0.89 0.51 1.08 25.81 eo 2G.87 5 1G.71 egg 8.72 272 48.51 10.85 o.eo 55 1.07 

Alluvium, aurflclal deposits 
Q-1 2.48 0.27 1.38 19.43 ee 22.48 2 15.15 878 6.84 735 14.67 6.23 0.80 27 1.Q6 
Q-2 2.SIG 0.27 2.02 15.5e 74 21.79 e 4.47 728 6.13 4.2G 0.91 us 2.00 
a-s 2.81 0.27 1.42 23.73 49 20.15 3 17.00 636 7.18 490 18.83 5.85 0.70 25 1.84 
Q-4 1.31 0.37 2.05 13.77 Q2 8.SIG 5 9.91 835 6.44 242 se.ee 3.SI8 O.Q2 17 2.58 

Tertiary 11'1tn.81ves, slrllclal uposur• 
V-1 2.00 0.25 271 37.77 7.17 0.51 46 1.80 
V-2 2.02 0.38 7.87 o.ee 4G 1.28 

Undlf. Eocene-Oligocene Sed. Rock, soo. eJCP. 
E-1 0.47 0.82 1.24 10.87 3 15.0G 382 12.10 4.31 0.87 8 4.27 
E-2 1.08 0.40 1.55 10.70 74 20.75 4 10.91 576 40.49 4.39 O.G<t 11 3.57 
E-3 O.G<t 0.40 1.5e 17.43 ee 16.37 3 10.31 828 7.70 1107 8.45 3.24 1.08 4 5.11 
E-4 0.35 0.73 1.01 11.78 6 25.57 4 8.32 478 11.08 4.56 0.91 4 5.22 

Spencer Formllllon, surficial e~ 
S-1 1.25 0.34 2.32 7.9Q 92 8.71 3 13.44 651 5.89 219 33.55 2.28 1.38 6 3.64 
S-2 1.S 0.31 2.75 8.40 109 9.Ge 6 4.47 789 5.5Q 253 29.85 3.58 1.00 14 2.00 
8-3 1.20 0.41 2.72 7.30 116 8.89 6 4.47 778 6.04 238 38.G4 2.50 1.47 11 3.52 
S-4 o.ee 0.45 2.22 8.34 125 11.01 8 8.5Q 758 6.88 1SIG 47.13 2.73 1.20 14 2.G2 
S-5 o.as 0.2G 1.57 5.91 91 12.81 4 5.22 550 6.97 2g() 21.!52 3.SIG O.SIG g 2.50 
8-6 0.84 0.35 1.00 9.99 3 11.66 484 9.99 5.18 0.83 10 3.80 

Yamtill Formallon, aurflclal exp0SU'81 
Y-1 0.82 0.32 2.13 8.12 95 14.22 15 2.32 628 8.31 197 42.43 4.53 0.84 3G 1.e5 
Y-3 0.05 2.22 0.87 8.16 66 14.75 8 12.53 6.;Q 0.71 8 5.45 
Y-4 0.16 1.2o4 O.Ge 9.80 .. 13.00 656 11.12 5.48 0.91 42 1.l59 

Rickreall Limestone Member 
Y-2 0.82 0.42 0.77 14.87 736 13.5«5 4.48 0.91 28 1.31 
Y-5 o.og 1.78 0.00 0.00 28 24.87 2.10 1.86 13 2.08 

sueu River VolcaniCs, Ellendale Cuany 
SR-1 2.30 0.25 0.70 30.88 o49 o49.19 12.Q8 0.53 81 1.29 
SR-2 1.97 0.27 0.77 0.00 40 o49.G8 326 39.66 10.12 0.80 43 1.53 
SR-3 2.84 0.22 0.75 0.00 1118 15.71 11.38 0.54 o42 1.51 

........ 
0\ 
tv 



SAMPLE Cr Error Hf Error Ta Error Sc Error Th Error u Error w Error Ga Error 
~ ~ eQ!!! ~ 

Betnlcker Farms, water well 
~ p_em ~12m P.e!!! 

WS-1 83 7.88 6 5.&4 3.1 18.33 23 0.70 5.1 3.gg 
W6-2 Sit 2.82 5 5.07 3.6 23.81 2<4 0.83 <4.2 <4.73 3 27.70 
WS-3 G1 3.87 5 5.86 3.G 20.1<4 22 0.73 <4.0 <4.82 55 21.37 
W6-<4 5G 3.<4Q 5 <4.GO 2.G 18.<43 16 0.80 5.2 3.83 5 3G.80 55 26.62 
W6-5 5G 3.88 6 <4.015 <4.3 1<4.28 18 0.7G 5.G 3.3<4 

Wlllameae Pollen Co., water well 
W7-1 5G 3.73 7 3.88 3.5 <4.<42 18 0.87 11.9 1.75 ... 35,01 37 23.63 
W7-2 gg <4.85 6 5.20 3.8 5.38 31 0.62 6.<4 3.410 18 10.73 -4& 18.02 
W7-3 1'73 1.7G 5 6.09 3.7 16.92 33 0.76 2.9 8.7G 71 13.GCS 
W7-<4 161 3.88 7 5.38 3.8 5.83 32 0.83 <4.3 5.58 63 10.80 

Alluvium, suflclal deposits 
Q-1 92 5.32 5 5.71 2.5 23.85 20 0.80 3.9 <4.92 sg 20.63 
Q-2 35 0.20 0 ....... , 1.8 6.<45 13 1.07 6.7 3.30 6 3G.<45 
Q-3 7G 3.09 5 5.2<4 2.2 7.05 19 0.73 3.8 .... ee ... <43.GCS 3 «.SG 39 20.5<4 
Q-<4 5G 3.G1 " 3.09 2.<4 "·""' 15 0.88 10.7 1.G3 25 28.3<4 

Tertlaly lntrualvea, surficial e)IJ)OSUI'es 
V-1 231 1.88 3 8.37 2.3 17.72 ... , 0.62 1.8 27.55 6G 20.66 
V-2 225 2.27 2 G.27 39 0.71 O.G 23.80 62 21.21 

Uncif. Eocene-Oligocene Sed. Rock, surf. elCp. 
E-1 80 <4.15 7 "·""' 3.0 7.12 24 0.70 5.7 3.<4G 39 18.5; 
E-2 7<4 3.04 5 5.015 2.5 16.28 1G 0.72 <4.2 5.00 3 17.3<4 
E-3 51 <4.05 8 <4.10 2.1 7.08 18 O.GS 5.1 3.3<4 3 17.91 27 21.25 
E-<4 62 10.30 7 3.58 3.0 18.82 27· o.n 7.2 .... n 3 12.<47 <40 17.51 

Spencer Formation, surficial elCpos~Xes 
S-1 63 3.1G 5 3.76 1.7 5.71 13 0.87 7.2 2.2<4 3 14.67 
S-2 58 3.30 0 3.83 1.8 5.04 12 1.07 9.9 1.95 32 23.16 
S-3 78 2.82 7 2.87 2.1 <4.75 10 0.81 13.8 1.57 4 11.04 
S-<4 75 2.&4 8 3.<47 2.5 4.67 17 0.96 14.2 1.<44 4 9.eg 2 47.62 20 27.07 
S-5 37 <4.52 ... 4.80 1 ... 7.7G 7 1.39 5.8 2.57 H~ 23.38 
s-o 39 5.315 ... 5.83 2.6 16.70 10 0.81 3.2 5.36 16 20.89 

Yamhill Formation, surficial ellposures 
Y-1 08 7.23 6 4.98 3.3 6.52 21 0.82 10.0 2.19 ... 2<4.13 58 21.71 
Y-3 SIS 5.08 5 6.43 3.2 9.23 27 0.05 8.3 3.20 29 16.07 
Y-<4 7<4 3.G3 5 0.00 3.7 G.SO 31 0.01 5.<4 <4.75 2 <45.09 39 13.69 

Rickreall Limestone Member 
Y-2 1&4 2.28 3 9.35 16 0.78 2.1 12.13 2 49.23 2 45.17 27 19.91 
Y-5 87 2.85 1 18.97 17 1.10 0.<4 27.21 1 37.36 15 31.85 

SiletZ River VolcMics, Ellendale Cuany 
SR-1 120 <4.7G 0 7.03 7.4 14.72 47 0.57 1.5 16.5<4 M 10.<48 
SR-2 tillS 8.21 5 8.20 6.<4 18.78 35 o.e.. 1.1 20.52 
SR-3 124 2.5G 7 3.eg 7.9 5.58 37 0.53 2.8 9.91 5<4 19.82 

......... 
0\ 
w 



SAMPLE Sb Error As Error Br Error Zr Error Zn Error La Error Ce Error Nd Error 
~ ~ ~m ~em ~ ~ ~em ~ 

Setnlcker Farms, water well 
W0-1 1.2 18.50 11 12.71 14 10.07 13lil 31.55 30 2.82 55 7.65 
WCS-2 2.8 31.~ 10 13.51 209 40.20 165 23.97 25 2.64 47 10.03 
W8-s 4.3 28,eg 11 8.25 340 24.52 154 22.go 25 3.ge 48 8.28 
W8-4 2.8 23.78 11 18,01 309 19.~ 95 38.34 25 4.28 42 8.14 
W0-5 1.4 27,Gg 2 37.98 442 30.34 105 37.01 43 1.52 78 4.Sil5 .... 13.45 

Wlllemette Pollen Co., water well 
W7-1 1.2 18.60 9 11.00 4 17.80 352 37.07 142 26.11 49 1.78 86 4.89 42 25.g3 
W7-2 0.7 34.43 8 14&.64 522 34.154& 1g& 28.15 32 2.51 64 8.29 
W7-3 0.5 49.64 9 15.83 215 45.30 1g:z 28.83 23 4&.20 54& 9.65 
W7-4 e 15.eg 1n 30.77 27 2.24 ~ 9.57 

Alluvium, surficial deposits 
Q-1 2.2 32.03 7 19.78 9 42,3g 2eo 31.20 116 36.86 24 3.53 45 9.39 
Q-2 1.8 32.76 9 22.58 2eo 35.64 122 23.10 27 3.n 83 5.57 24 20.50 
Q-3 2.4 39.57 9 19.17 7 27.91 128 26.60 21 6.4&3 4&1 10.07 27 41.51 
a--a 0.9 27.48 9 13.18 345 18.28 g:z 39.58 4&7 1.64 78 5.4&6 40 14&.56 

Tertlluy ll1tn.Bives, surflclalelCPOsur• 
V-1 25 129 4&3.70 10 10.68 19 5.34 
V-2 39 127 45.28 9 6.70 18 7.50 

Undlf. Eooene-Oiigocene Sed. Rock, surf. •lCP· 
E-1 0.9 16.81 8 10.18 284 23.86 132 34.67 29 1.92 4&9 8.19 54& 37.93 
E-2 1.9 25.31 7 12.12 311 4&1.02 107 39.17 18 2.76 34 12.10 16 42.85 
E-3 o.8 34.62 7 18.70 298 39.4&9 110 34.07 29 2.4&5 -&7 7.76 
E-4 o.8 26.78 3 19.01 141 35.66 15 3.08 21 19.9CS 

Spencer Formation, surficial 8lCPOSun!lll 
S-1 1.7 36.75 8 10.72 192 -&5.28 93 27.82 32 2.28 58 5.64 54& 32.06 
S-2 2.2 18.29 18 7.18 110 23.10 39 1.90 75 5.57 35 33.33 
S-3 2.2 22.19 9 13.79 2153 25.61 118 32.61 58 1.31 106 4&.18 5 12.52 
S-4 9 7.81 252 22.97 138 27.60 54& 1.31 117 3.96 53 11.61 
S-5 1.3 30.43 7 9.91 231 22.33 153 38.31 25 3.39 41 7.57 21 4&1.47 
s-8 9 8.75 96 38.70 33 1,g& 58 7.25 

Yamhill Formation, surficial exposures 
Y-1 1.7 15.go 16 6.09 171 34.87 161 25.95 34 1.97 65 18.98 
Y-3 0.8 17.08 15 4&.38 8 11.95 282 38.40 108 44.85 27 1.39 43 11.45 
Y-4 o.8 25.21 13 5.48 5 27.59 171 32.28 37 1.35 58 9.30 

Rickreall Limestone Member 
Y-2 10 6.70 289 27.19 88 29.91 12 4.21 35 33.73 
Y-5 0.2 33.81 4 9.68 10 2.37 360 22.77 

Siletz River Volcanics, Ellendale Quarry 
SR-1 35 238 27.52 21 4&.153 53 11.42 
SR-2 40 1153 33.92 15 5.15 35 1-&.26 
SR-3 2 49.65 525 39.54& 183 33.40 34 2.78 75 7.20 51 13.26 

~ 

0'\ 
~ 



SAMPLE 

W&-1 
WIS-2 
WIS-3 
WIS-4 
WIS-15 

W7-1 
W7-2 
W7-3 
W7-4 

Q-1 
Q-2 
0-3 
0-4 

V-1 
V-2 

E-1 
E-2 
E-3 
E-4 

S-1 
S-2 
S-3 
S-4 
S-!5 
8-8 

Y-1 
Y-3 
Y-4 

Y-2 
Y-!5 

SR-1 
SR-2 
SR-3 

Sm Error Eu Error Gd Error Tb Error Tm Error Yb Error Lu 
PPm PPm _ppm_____ ppm ppm DDm ppm 

Setnlcker F•ms. water well 
7.1 0.93 
8.2 1.01 
8.0 
!5.2 
8.8 

1.29 
1.28 
0.77 

Wlllamette Pollen Co., water well 

2 
2 
2 
2 
2 

8.8 0.77 1 
7.4 0.9!5 2 
8.8 1.04 2 
8.0 0.89 3 

AlluVIum, surficial deposita 
!5.3 1.!50 
5.8 1.24 
!5.0 1.31 
8.2 0.93 

2 
2 
2 
2 

Tertiary Intrusives, surficial exposures 
4.1 1.89 2 
4.0 2.37 3 

4.11 
3.32 
8.41 
2.82 
5.84 

7.04 
8.13 
3.59 
8.88 

9.47 
4.70 
4.85 
3.25 

10.22 
10.30 

Undlf. Eocene-Oligocene Sed. Rock, surf. exp. 
6.1 0.83 2 7.88 
2.7 
!5.4 
1.8 

1.79 
0.83 
2.40 

1 
2 

Spencer Formation. surficial exposures 
!5.5 0.95 1 
8.4 1.03 2 
9.3 0.70 2 
9.9 
4.0 
8.0 

0.!59 
1.55 
0.87 

2 
1 
2 

Yamhill Formation, surficial exposures 
5.8 0.94 4 
8.3 0.76 1 
7.8 0.84 2 

Rickreall Umestone Member 
s.o 1.35 
1.8 1.81 

Siletz River Volcanics, Ellendale Quarry 

11.47 
4.26 

18.59 

4.26 
4.70 
2.90 
6.81 
4.99 
3.56 

1.87 
8.59 
3.43 

8.29 
11.20 

8.4 1.52 3 2.58 
8.2 1.89 2 6.17 

11.3 0.88 3 2.41 

4 
8 

5 

9 
7 

7 

4 

7 

7 

49.27 
28.82 

29.08 

18.31 
26.17 

26.85 

32.30 

29.43 

49.21 

28.92 

0.8 

0.8 
1.3 

1.2 
1.0 

1.2 

0.8 

0.7 
1.0 

0.5 

0.8 

0.6 

0.8 
0.9 
1.3 

0.6 
0.8 

0.2 

1.0 
1.8 

10.15 

8.80 
!5.82 

6.30 
8.57 

8.20 

9.36 

11.31 
7.05 

18.74 

8.47 

9.93 

8.08 
7.37 
5.64 

30.88 
8.09 

20.70 

9.64 
8.36 

0.47 
0.53 
0.54 
0.52 
0.76 

0.71 
0.73 
0.89 
0.86 

0.57 
0.37 
0.38 
0.89 

0.21 

0.54 
0.39 
0.30 
0.32 

0.46 
0.71 
0.78 
0.79 
0.40 
0.53 

0.23 

0.50 

0.20 

0.83 
0.87 
0.97 

40.57 
31.08 
31.48 
30.28 
23.30 

25.65 
27.59 
22.59 
24.53 

28.47 
34.64 
41.44 
24.80 

47.22 

30.16 
36.95 
46.19 
44.00 

29.16 
21.96 
23.02 
23.40 
33.72 
31.03 

41.45 

42.03 

27.43 
29.18 
22.15 

3.0 
2.6 
2.8 
2.8 
4.1 

3.8 
2.9 
2.8 
3.5 

2.3 
2.9 
2.1 
3.5 

2.2 
2.0 

2.9 
1.7 
1.9 

2.2 
2.9 
3.8 
3.8 
1.7 
3.1 

2.4 
2.9 
2.6 

1.2 
0.9 

3.8 
2.9 
4.5 

13.89 
13.87 
15.43 
10.27 
11.18 

11.88 
14.32 
16.85 
12.80 

16.16 
9.57 

14.07 
10.29 

13.12 
13.43 

12.48 
16.92 
13.10 

11.87 
10.32 
9.28 
7.90 

13.56 
9.70 

10.94 
14.90 
14.13 

22.05 
17.68 

13.29 
11.52 
10.68 

0.55 
0.46 
0.44 
0.39 
0.62 

0.52 
0.45 
0.48 
0.80 

0.34 
0.46 
0.37 
0.59 

0.33 
0.40 

0.43 
0.28 
0.28 
0.29 

0.36 
0.44 
0.63 
0.55 
0.25 
0.48 

0.31 
0.41 
0.42 

0.16 
0.12 

0.71 
0.45 
0.70 

Error 

5.97 
7.37 
&.7!5 

10.29 
5.41 

11.37 
6.74 
7.65 
6.49 

8.20 
18.14 
8.12 
9.08 

6.26 
7.95 

17.37 
9.47 
9.65 

24.69 

6.67 
11.58 
8.67 

14.11 
7.82 

11.07 

8.80 
8.42 
8.24 

16.77 
15.79 

7.26 
7.41 
6.07 

~ 

0\ 
U1 



t.£ASI.J=IE> AKJ PUBUSt-EO ELEMENTAL CONCENTRATIONS FOR STANDARDS 

SAMPLE Na Error K Error Rb Error 

" " ~ 
Fll"'t lrredlalon 

Rtwvollte, JR-1, GSJ referw10e san'l)le 
810-1 2.80 0.12 3.57 4.~ 22G 3.35 

Coal fly ash, NBS, SAM 1833 
810-2 0.17 0.82 1.80 2.78 154 g,gs 

Granite, G-2, USGS reference ml!llertal 
810-3 3.11 0.13 3.1irl 3.88 183 5.18 

BltUTII,_. coal, NBS, SAM 1832b 
810-4 0.54 1.14 

Second Irradiation 

Rhyolite, JR-1, GSJ referw1081181Tl)le 
810-1 2.8G o.og 3.42 3.33 233 3.11 

Coal fly ash, NBS, SAM 1633 
810-2 0.18 0.83 2.00 4.21 138 12.41 

Granite, G-2, USGS reference materiel 
810-3 3.15 o.og 3.78 4.34 188 4.54 

BltUTII~ coal, NBS, SAM 1832b 
810-4 0.05 0.83 0.08 12.31 g 38.34 

Enor • % cumulallve related to dala processing 

Cs Error Ba Error Sr 
~ eem ~ 

1g 0.81 137 22.~ gg 

12 3.21 1814 3.82 8S3 

2 7.03 1818 2.28 467 

1 13.77 

1g 1.08 216 21.85 

11 2.S 1808 3.47 8tS7 

2 13.24 1790 1.1i18 48) 

1 28.73 85 18.95 

Error Fe Error 

" 
45.42 8.18 2.23 

12.47 g,2g 0.!51 

10.43 1.1irl 1.53 

8.17 1.83 

0.88 3.23 

14.Qg g,78 0.47 

10.07 2.05 1.07 

0.57 1.g1 

Co 
eem 

1 

48 

5 

2 

1 

48 

5 

2 

Enor 

7.8S 

0.80 

2.44 

4.01 

11.07 

1.08 

2.N 

g,eg 

~ 
0\ 
0\ 



SAMPLE Cr Enor Hf Enor Ta Enor 

~ ~ ~ 
First lrradletlon 

Rhyolite, JR-1, GSJ ntference Nfll)le 
STD-1 2 47.38 s 3.21 us S.-42 

Coal fly ash, 1\138, SAM 1 e33 
STD-2 174 1.72 9 4.S3 5.8 3.50 

Granite, G-2, USGS reference material 
STD-3 7 17.!WS 9 2.22 1.2 4.&4 

Bltl.ml~ coal, NBS, SAM 1632b 
STD-4 13 11.08 1 20.78 0.3 27.02 

Second Irradiation 

Rhyolite, JR-1, GSJ ntfera1Ce 88f1'1lle 
STD-1 3 33.33 s 2.73 1.9 3.23 

Coal fly ash, NBS. SAM 1 e33 
STD-2 198 1.-43 7 3.32 8.2 7.09 

Granite, G-2, USGS reference material 
STD-3 8 13 ..... 9 3.3-4 1.3 15.09 

Bltl.ml~ coal, NBS, SAM 1632b 
STD-4 11 18.38 1 15.60 

Sc Enor Th Enor 
QQffi !212m 

s 0.88 25.2 0.71 

39 0.32 23.9 1.11 

4 1.07 2-4.9 0.78 

2 1.01 1.4 5.35 

5 1.09 2-4.8 0.70 

39 0.38 25.1 0.95 

4 1.3-4 25.6 0.72 

2 2.01 1.3 5.30 

u Enor w 
QQ!!! 12Qm 

9 5.65 2 

11 3.4S 3 

9 -4.29 

10 3.10 .. 
6 22.37 .. 
1 25 ..... 

Error Ga 
I2Q!!! 

28.95 13 

1-4.72 58 

27 

5 

13 

141.08 58 

38.28 32 

2 

Enor 

38.5Q 

5.65 

25.80 

25.15 

29.07 

6.70 

23.6-4 

23.21 

......... 
m 
-....1 



SAMPLE Sb Error "" Error Br Error Zr 

1212!!! 12~ &;!Q!!! 1212!!! 
Firat lrradlaaon 

Rhyolite, JR-1, GSJ refera'lee UIT1)1e 

STD-1 2.5 15.0G HS 5.26 8 2o4.015 130 

Coal fly ash, NBS, SAM 1833 
STD-2 8.8 1.GG 1o48 0.55 3 18.8G 2«> 

Granite, G-2, USGS reference material 
STD-3 18 2o48 

Bltwnlnus coal, NBS, SAM 1e32b 
STD-o4 O.o4 HUIG 15 17 1.21 

Second Irradiation 

Rhyolite, JR-1, GSJ 18fera'lee S8fl'1)1e 
STD-1 2.Q 1o4.70 18 3 1Q.81 Q7 

Coal fly ash, NBS, SAM 1633 
STD-2 7.8 1.72 1o45 0.55 .. 17.8G 387 

Granite, G-2, USGS refera'lee material 
STD-3 13 358 

Bltwnlnus coal, NBS, SAM 1632b 
STD-o4 0.2 16.11 8 17 1.23 

Error Zn Error La 
1212!!! 1212!!! 

21.27 33 32.37 21 

27.01 240 12.35 ee 

13.eo4 75 11.50 g7 

22 30.50 15 

31.35 sg 3G.71 22 

21.58 261 15.06 SIM 

27.30 75 18.85 10o4 

5 

Error Ce 
!212m 

2.87 52 

0.59 1SIM 

0.83 153 

3.17 15 

2.75 so 

0.50 164 

0.64 163 

2.36 11 

Error 

1o4.0G 

7.83 

5.59 

30.8G 

5.09 

2.5o4 

1.75 

37.5G 

Net 
e~ 

27 

Q1 

60 

28 

Error 

o41.20 

22.8G 

8.42 

33.76 

........ 
0\ 
CX) 



SAMPLE Sm Error Eu Error Gd 

&:!&:!m &:!&:!m &:!&:!m 
First Irradiation 

Rhyolite, JR -1, GSJ reference sample 
STD-1 5.8 0.84 0.5 1).37 5 

Coal fly ash, NBS, SRM 1833 
STD-2 17.7 0.28 4 3.11) e 

Granite, G-2, USGS reference material 
STD-3 7.8 0.80 1 3.13 5 

Bltumlnus coal, NBS, SRM 1&32b 
STD-4 0.1) 1.80 0.3 13.51 0.3 

Second Irradiation 

Rhyolite, JR -1, GSJ reference sample 
STD-1 &.1 o.e8 o.e 12.21) 5 

Coal fly ash, NBS, SRM 1&33 
ST0-2 11).1 0.2& 4 1.68 13 

Granite, G-2, USGS reference material 
ST0-3 7.1) 0.54 1 5.17 5 

Bltumlnus coal, NBS, SRM 1632b 
ST0-4 0.8 1.28 0.2 12.85 

Error Tb Error Tm Error 
&:!&:!m &:!&:!m 

4.38 1.1 4.53 0.73 12.86 

7.37 2.3 3.1& 1.24 13.20 

3.1)0 0.7 11.21) 

44.03 0.2 15.02 0.16 33.67 

20.57 1.1 6.78 0.73 17.36 

15.1)6 2.5 3.11 1.34 15.11) 

22.30 0.8 12.16 

Yb Error 

&:!&:!m 

4.& 8.40 

7.0 7.52 

1.7 21.46 

0.5 20.43 

4.6 5.73 

7.4 6.40 

1.4 24.36 

0.5 17.15 

Lu 

~&:!m 

0.53 

0.84 

0.15 

0.05 

o.e8 

1.13 

0.17 

0.07 

Error 

5.1)4 

11.07 

11.&2 

17.67 

3.82 

5.41 

12.18 

13.70 

~ 
m 
\0 
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,... ...... Thlcknen Depth Mill«..,• Thick,... Depth 
(feet) (fleg l!!!O C1!eg 

7S/4W -1~. HIWT'f Fat Allltude 211 ft. Drilled bV J. A. Sneed and Sol'll, 
1Ge5. Ceelng8-lndiamto20ft; ~aled 

7SISW-2bac. George Bey«lt. Altltudl228 ft. Drftled by Art Clnton, 
1SI5CI. Calng 12-ln diem to 20 It perforated 14-20 ft 

Topeol---------------------------· 2 
Clay, y.low--- ---------------------- 18 
Clayttol'll, 'lilY lwd--------------------· 151 

2 Topsol---------------------------· 
18 Clay. brown-------------------------

189 Shalt, blue-------------------------· 

1 
1g 
20 

1 
20 
40 

7S/4W-21dcc1. Holll Blce. Altitude 175ft. Drilled by Art CUnton. 1SMS2. 
Casing 8-ln diem to 56 It perforaled 25-45 ft 

7S/5W-5dda. Donald Hoekm. Altitude 510ft. Drllltd by Robnon Wei 
DriUing, 1!1;1. Casing 10-ln dlam to~ It unperforaled 

Clay, gntf'f-------------------------­
Ciay, MndV brown---------------------· 
Clay, blue--------------------------

S~Oni.~W-----------------------

5 
20 
45 
20 

5 Clay, brown and claytt0n1-- ---------------
25 Claytton~. t~av-----------------------
70 
go 

28 
112 

28 
140 

7SISW-ebbc. W. F. Anderson. Altitude 240ft. Orilltd by Eola WeD OrHIIng, 
1m. Calng 8-ln dlam to 22 It unparforated 

7S/4W -2eccb. Virgl Myn. Altitude 1 eD ft. DrUied by M•lon West, 1;70. 
Cnlng 8-ln dilm to 45 It perfor*d 43-45 ft 

BrownCIIy------------------------- 40 40 
Black Nnd and smalep'wel wllh cemented ~~~~clay--- 8 48 
Blue-gray ctayaon1 wllh tt*' ,., ... or white rock----- 144 1;o 

s~-----------------------------· 
Clay, brown-------------------------
Clay and grawi----------------------­
Ciayttonl, t~av-----------------------

10 
3 

144 

7SISW-ebdd. Darrel Sexton. Altitude 217ft. Orllltd by Robinson Eola 
71/4W-30ccb. Hubert Grlmtbo. Altitude 215ft. DrUitd bV WIAamette Drilling. DrHiing, 1g14. Cuing 8-ln diem to 1 g ft; unperforated 
1;ee, Cuing 8-ln diem togs It pertoraled 82-;5 ft 

Topeol---------------------------· 
Clay, brown------------------------­
Clay, gntf'f-------------------------­
Clay, brown------------------------­
Shllt.~ay-------------------------· 

3 
32 
20 
10 
30 

TopsoR---------------------------· 
3 Clay, brown-------------------------

35 Clay, grey--------------------------55 Claytton~, t~av-----------------------
es 
gs 

2 
8 

10 
27 

7SISW-15Mc1. DonSchelltnb«g. Altltude272ft. DriRedbyJ.A. 
Sneed and SOI'II, 1!HIG. Casing 8-ln dlam to 21 It unperforMed 

7S/4W-31bcd. Dallal Equipment Co. Altitude 213ft. Drilled by Munllchl« 
DrBng, 1071. Casing 8-ln dllm to 28ft; perforatlld 22-27ft 

s~-----------------------------· 
s•-clay, yelow----------------- -----· 
Grliwland sand, coer.------------------· 
Clay.~w-------------------------

2 
4 22 
g 

2 
8 

28 
37 

TopsoR---------------------------· 
Clay, yellow-------------------------

"Baad. weathered toft"------------------­
Clay, gray-------------------------­
Ciayttonl--------------------------

1 
2 
g 

10 
107 

1 
11 
14 

158 

2 
10 
20 
47 

1 
3 

12 22 
129 

7S/4W-31ccd. Paul Wedel Altitude 175ft. DrHitd bV MIII«-Roblnlon and 
West, 1W. Casing 10-ln clam to 40 It perforaled 28-29, 32-34 ft 

7S/5W-27dcc. Ed Simi. Allltude 2;o ft. DrAitd by Eola Wei Orlllng. 1g7a. 
Casing 8-ln diem to 87 It perforated 83-88 ft 

Clay, brown------------------------- 15 
Clay, gray wlthtmal flaYel----------------- 20 

Cl~n1. fillY----------------------- 84 
Claytton1, brown---------------------- 2 

Clayaon~. dirk t~av--------------------· 14 
Clayaone,lghtgrt/f'/--------------------· 5 

7S/4W -32ub. Garfield Ro1h. Allltude 200 ft. Drilled bV Roblnton Eola 
Dr~. 1;73. Casln a-In dlam to 1g It unparforaled 

Clay, brown-------------------------

15 
35 
gg 

101 
115 
120 

g 

Clay, brown-------------------------
Clay, brown and flaYel----- --------------
Clay, gray--------------------------
Sand, cone and pea flaYel----- -----------
Sand, gray andclay--------------------­
Grawl. cemented---------------------­
Sand.~-------------------------­

Clay, gray-------------------------­
Grawl. cemented---------------------­
Sand and pea grawl----.;..---------------· 
Claytton1--------------------------

14 
30 
20 
3 
g 

11 
3 
2 

15 
3 

Clay, brown and t~evei-------------------

g 
7 

87 
27 

18 7SISW-20cad. M«lt Bllikofw. Allltude 370ft. Drllltd by Roblnton 
Shllt.~-------------------------· 88 Eola Dr~. 1G74. Calng 8-ln clam to 1U It unparforaled 

~OI'II.~W----------------------· 110 

7S/4W -34ddc. Rlclnel Wal« Ann. Allltude 172 ft. Drilled by Robinson 
Eola~,1W1. CMing12-lndllmto41 It tcreenedtom40-57ft 

~-----------------------------· 1 1 Clay, brown------------------------- 30 31 
Grliwl with clay binder------------------- 10 41 
Sand and~awl----------------------- 20.5 81.5 
Clayaon~. t.dt~ay--------------------· 3.5 es 

SoH-----------------------------· 
Broken rock ..:1 clay-------------------­
Clay, orqe- -----------------------­
Ciayltonl,flay-----------------------

1 
5 
3 

29 

14 
44 
84 
87 
78 
87 
go 
~ 

107 
110 

>110 

1 
8 
g 

38 

171 



Mat.W. Thlc:kne• Depth Mater.,_ Thlcknew Depth 
(fftt) (fftt) <tHO (fet1) 

7S/5W-31dab2. Butch Meyer. Altitude 540ft. OrUitd by P. Dlcker~on, 1ggo. 8S/4W-2eac2. Gr.en Villi F•m•. Altitude 150ft. Orlled by Roblnlon 
Cemg 10-ln dllm to 2Gft; lnlr 4-ln diem to 215ft; perforat.d 30-215 II Eoie OriiUng, 1;75. C11ing 8-ln diem to 4Gft; unperforllted 

T~l---------------------------· 
Cley, brown------------------------­
Ciayltone, brown---------------------­
Ciayltone, blue----------------------­
Clay, blue--------------------------
~.~-------------------------­
aayttone.~ay-----------------------

Ciay, ~-------------------------­
Ciaymne, ~ay-----------------------

2 
17 
5 

15 
33 
28 
24 
18 
73 

2 
10 
24 
30 
72 

100 
124 
142 
215 

7S/5W-34bbd. Jerry Reew1. Altitude 205ft. Drilled by Marton West, 1071. 
Ca•lng 8-ln diem to 57 tt: perforlled 48-54 11 

aay,brown-------------------------
Ciay, brown and wawi-------------------
Ciay, •nctv brown---------------------· 
Sand and grawl, black and cemented wllh blue clay---· 
Clay, blue-------------------------­
Grawl. cemented brown------------------· 
Clliyltone, blue-gray--------------------

5 
2 
0 

25 
5 

12 
2 

5 
7 

18 
41 
48 
58 
eo 

7S/5W-35cab. Sand S\'lp Gof Cowie. Altitude 245ft. OrHitd by Robinlon 
wea Drilling. 1988. C..lng 8-ln to eo II: 11n1r 8-ln dllm 55-75; perfarm.d 
25-35, 45-75 II 

T~l---------------------------· 
Clay and gra'lll----------------------­
~~.cemented----------------------

Grawl.tm .. and looM clay----------------· 
Gra~.~N~----------------------

Ciay, looM and gra~---------- ---------· 
Grawi.~-----------------------­
Ciay, looM and~-------------------· 
al!yltone.~-----------------------· 

8 
8 
8 

15 
10 
7 
5 
5 

13 

8 
12 
20 
35 
45 
52 
57 
82 
75 

7SieW-12add. Bob GrHn. Altitude 820ft. Drilled by Dlcke11on Well OrlRing, 
1SI83. Callng 8-ln clam toes tt: Wlperforlted 

T~l---------------------------· 2 2 
Clay, brown------------------------- 15 17 
Clay, yellow------------------------- 41 58 
Clayltone, way----------------------- 27 85 
SandMone,gray----------------------- ~ 1~ 

Clayttone, way----------------------- 11 148 
S~one-------------------------- 28 1~ 
aaystone-------------------------- 4 180 
Sandltone-------------------------- 31 211 

~---------------------------- 1~ age BasaltwlhlandMOM-------------------- 130 ~ 

8S/4W-2c.c1. GrMn VIa F•mt. Altitude 150ft. Orlled by Roblnlon Eole 
Orang, 1075. Callng 12-ln diem to 52ft; perforlted 35-48 II 

Clay and gra~-- --------------------­
Grawl.lmall and medium-----------------· 
Sand-----------------------------
Grawl.lmall and medium-----------------· 
Sand----------------------------­
S~.gray-------------------------· 

20 
0 
2 

17 

4 

20 
20 
31 
48 
40 
53 

Grawland clay----------------------- 20 
Gra~. 1mal to medlun----- -------- -----· 0 

Sand----------------------------- 2 
Gra~. peagrawlto medium---------------- 15 

8S/4W-3dba. Cherta1 Evana. Altitude 150ft. Drilled by J. A. SnHd and 
Sona, 1Sie0. Calng 8-ln diem to 45ft; perforat~ 33-45 II 

ToptON---------------------------· 
Clay, blue-------------------------­
S~ye~w-------------------------­

Clay. yellow------------------------­
Grawl, cemeNed---------------------­
Gra~---------------------------­

Gra~.cemented---------------------­Sand, line--------------------------

s~. blue-------------------------· 

8 
15 
10 
2 
7 
3 
7 

20 
20 
31 
48 

8 
23 
33 
35 
42 
45 
~ 

8S/4W -3bcc. Bruce Delee. Allllude 1M ft. DrAitd by Roblnlon Eoie Drlllng. 
1 ;73. C11lng 8-ln diem to 30ft; unperforlted 

Clay, brown------------------------­
Clay, blue--------------------------
Clay. brown and grewi-------------------
Gra~and land----------------------­
Grawl. madfum----------------------­
Sandltone.way-----------------------
Clayltone, 101'1-----------------------· 

20 
8 
3 
5 
7 
8 
2 

8S/4W -4cdd. Lu Peter10n. Altitude 1 n ft. Drlltd by Todd'• Drilling, 
1;71. Celing 8-ln clam to 31ft; Wlperforated 

r~a---------------------------· 
Clay, brown and yallow------------- ------
Gra~.undy-----------------------­
Clayltone.~-----------------------

Gra~.~~ad--------------------· 
Clayltone, ~ t.d--------------------· 
Clay, blue ha-d-----------------------· 

2 
8 

10 
10 
2 

37 
2 

20 
28 
20 
34 
41 
47 
40 

2 
10 
20 
30 
41 
78 
80 

8S/4W-ebac. Walter Boyer. Allllude 222ft. Drlhd byJ. A. Sneed and Sona, 
1&. Celing 8-ln diem to 42 tt: unperforlted 

ToptOR----- ---------------- ------· 
Clay, yellow------------------------­
Graw~cemented---------------------­

s~.gray-------------------------· 

Sandltone.~---------------------­

Shale, gray ~andy---------------------­
Sandltone.~---------------------­
Shale, gray-------------------------· 

2 
18 
23 
se 
1 

17 
1 
5 

2 
18 
41 
07 
08 

115 
118 
121 

8S/4W-eeac1. Katherine Herr•L Allllude 222ft. Drlled by J. A. Sneed and 
Sona, 11155. Celing 8-ln diem to 47.5 ft; 1.11pefforlled 

Topeol---------------------------· 
Clay, gray-------------------------­
~-cemented---------------------­
Shale, blue-------------------------· 
~wi.~Ned---------------------­
S~.blue-------------------------· 

Shale, blue diced----------------------

2 
25 
7 
3 

10 
2 
1 

2 
27 
34 
37 
47 
40 
50 

172 



Ma.W. Thlcknea Depth Mlllerllile Thiele,... Depth 
(f!d ffMO ffMO ffMg 

8S/4W -7cca2. Wlllamella Polen. Allluda 205ft. Drilled by Eole Wal 
Drilling. 1GI!O. Cuing 1o-1n diem to 75 tt: perforlled 55-75ft 

Clay, brown-------------------------
Clay, brown and ~.wi-------------------
Ciey. blul-gr•n--------------- -------
Clay. blue-grey wllh leywtof peagriMIInd gray unci-· 

22 
12 
21 
25 

22 
34 
55 
80 

8S/4W -7ccd. WlllerMttl Pollen. Alltude 202 ft. OrHied by Dlck•ton Wal 
Drllng. 1;o1. Cuing e-1n din to G2tt; pertorated e:s-7eft 

Topeol---------------------------· 1.5 1.5 
Clay, brown------------------------- 17 1!1.5 
Clay. gray with medium ~11¥11--------------- 12.5 31 
Clay, u~ blue----------------------· 3 34 
Grllwl. cemented Ingrey clay---------------· 11 45 
Cley,gray-------------------------- 12 57 
Clay, blue-grey wllh pea gr~~Yellnd fine unci------- 33 go 
Clay, u~ blue-~ey------------------- 5 gs 

8S/4W-Gcdb. Hugh Rogers. Allftude 1S ft. Drilled by Mllllr-Rotnon and 
WMt 1Gea. Cuing 8-ln din to 37.5 ft; perforattd 27-35 ft 

Clay, brown------------------------- 14 14 
Clay, blue-------------------------- 13 27 
Grawl, smallooea--------------------- 1 2!1 
Clayltona. grey----------------------- 3 31 
Clay. brown and smal ~11¥11---------------- 4 35 
Clayltona.~ey----------------------- 155 1~ 

8S/4W-11ctld. John I~ Inc. Altitude 150ft. Orlledby Floyd Slppe, 
108G. Callng 8-ln diem to 38 tt: perforlled 30-40 ft 

Sol-----------------------------· 2.5 
Clay, brown------------------------- 3.5 
Clay, u~ brown---------------------· 5 
Clay, brown and ~11¥11------------------- 8 
Sind. dirty InC! gr11¥el-------------------- 3 
Grawl.looae------------------------· 8 
Sand InC! griM! wlthlome brown clay----------- 4 
Grllwl.looae------------------------· 2 
Sind wlhtomegriMI------------------- 3 
GriiYel. looea------------------------· 2.5 
Clay InC! gr11¥e1----------------------- 8.5 

8S/4W -18dac. S.tnlcker Fermt. Aftltude 150 It Or.d by Michael 
Waldroop, 1SI81. Calng 12-ln diem 1o 42 It; perforltld 20.5-37ft 

Topsoil, brown-----------------------· 
Clay. brown wlh tome unci----------------· 
Oey,brown-------------------------
Oey. tilly brown wllh 101M emal ~1M I---------­
GraYel, emal-medUn wllh tina-co .. brown unci--­
Oey, wlh pilcll ofcleyltonl----------------

4 
8 
1 

25 
5 

8S/4W-18dbd. Tel LeBec. Altitude 187ft. Drilled by Art Olneon, 1GS7. 
Cuing 1 0-ln diem to 33 tt; perfomld 23-33 ft 

2.5 
e 

11 
10 
22 
30 
34 
38 
30 

41.5 
so 

1 
5 

11 
12 
37 
42 

3 

8S/4W-10bca. Willey Japeon. Aftltude 102ft. Otlled by Floyd Slppe, 
1088. Callng 8-ln diem to 5!1 It: perforaled 33-35. 40-41 ni51-53 ft 

Soil with grawl--- -------- ------------· 
Clay. brown-------------------------
Clay, brown ellly---- ------------------­
Clay. green-------------------------
Clay, green with smai!J'IMI- ---------------
Grawl, email------------------------· 
Clay, dark IJ'IIn with IJ'IMI----------------· 
Grawland ~-n c'-Y-- -----------------­
Clay. green with a small amount of gr.wl---------· 
Clay, green and IJ'8y-------------------­
Ciey. gray with lind and IJ'IMIIaams-------- --­
Claystone, IJ'8y with soma griMiuams----------
Cleystona,IJ'ey-----------------------
Cieystona. ha-d grey--------------------

2 
13 
8 

11 
1 
3 
3 
1 
8 
3 
3 
3 

30 
25 

8S{4W-10bdb. Loran Reynolde. Altitude 184ft. Orlllad by Art Clinton. 
19G4. Calng 8-ln diem to 55 It; perforated and gravel pecked 28-47 ft 

TopsoR---------------------------· 2 
Clay, brown------------------------- 18 
Clay. blue-------------------------- 15 
Clay. blue, and medium gr.wl--------------- 7 
GraYel. blue------------------------- 4 
Clay. u~. blue---------------------- 11 

8S/4W-20bdd. Ear1 Renninger. Aftltude 182ft. Orined by Todd'e Drilling. 
1074. Calng 8-ln diem to 32.5 It: perforlled 27-30 ft 

2 
5 
7 
3 

2 
15 
21 
32 
33 
37 
40 
41 
47 
so 
53 
5!1 
gs 

120 

2 
18 
33 
40 
44 
55 

2 
7 

14 
17 
27 
32 

Topsol---------------------------· 
Clay, brown------------------------­
Sill brown--------------------------
5111. ~~~brown---------------------­
Clay. blue, toft-sticky-------------------· 
Grawl. mediumflna--------------------­
Sandstona, ha-d brown-------------------

10 
5 

0.5 32.5 

8S/4W-21 bdc. BoiH C.cada. Aftltude 1S ft. Orlhd by Art Clnton, 11150. 
Casing 8-ln dlam to 71 It; perforltld 41 -71 ft 

Topeoll---------------------------· 
Clay, brown------------------------­
Sand and griM!-----------------------

SN*,blue-------------------------· 

3 
23 
45 
14 

8S{4W-21dba. Pacific POWII' and Light Co. Altitude 154ft. Drilled by Art 
Clinton. 1GS7. Casing 1 !l-In diem to SOft; perforated 20-45 ft 

SoH. alluvial------------------------- 5 
Oey,brown------------------------- 5 

Sand----------------------------- 5 
Grew~ looea--- ---------------- -----· 15 
GraYelanct land----------------------- 20 

8S/4W-28cdb. City of Mor111'10tah. Altitude 173ft. Drilled by Art 
Clinton. 1oea. Cuing 12-1n diem toes tt: parfora1ed 47-es ft 

3 
2!1 
71 
&5 

5 
10 
15 
30 
so 

~.n----------------------------· 
Oey.yeltow-------------------------

3 
18 
us 
23 

21 Topsol---------------------------· 2 
32 
32 
8 

2 
34 
ee 
72 

Grawl---------------------------­
s~.blue-------------------------· 

37 Clay. gray--------------------------
80 eo .. unci and medium gr.wi--------------

Ciay,blut-----------------~--------

173 
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(feeft lfeeft IJMO ltltft 

8S/4W-2ecdc1. City of Monmo~h. Altitude 173 ft. Drilled by Art Clinton. 
111e&. C•lng 12-ln to 1111 It perforlded 45-85 It 

8SI5W-21dca. Alton Falc. Altitude 395ft. Drilled bV Robln10n Eola 
Drilling, 1G7e. Caling 11-ln dlam to 51 It; unperforatld 

Topeoll---------------------------· 2 
Clay, grt~y-------------------------- 21 
Sand, co ... and medium !78WI-------------- 32 

c~.~-------------------------- 11 

8S/4W-30ada. Uoyd Crabb. Altltude1111 ft. Drilled bV Todd's Drilling, 
1 SIS. Caelng 8-ln diem to 47 It perforated 311-45 It 

Topsoil---------------------------· 
Clay, brown silly----------------------· 
Clay, blue soft-----------------------­
Sand, fine brown-----...;----------------· 
Clay, blue--------------------------

G~~---------------------------­
Clay, ~---------------------------
Clay, brown------------------------­
Clay, blue sandy----------------------· 

5 
15 
4 
4 

11 
II 

25 
5 
5 

8S/4W-31bac. Allen Henry. Altitude 1G1 ft. Drilled bV Todd's Dr~. 
1G73. Caelng 8-ln dlam to 43 It perforated 22-42 It 

TopeoH---------------------------· 
Clay, brown------------------------­
Clay, tilly brown----------------------· 
Clay, Nndy ~----------------------· 
Clay, blue--------------------------
Sand, fine and~ clay------------------· 
Clay, blue-------------------------­
Claystone, blue twd--------------------· 

2 
7 

12 
5 
4 
7 
II 

37 

8S/4W-31dda1. Daniel McClean. Altitude 200ft. Drilled bV Art Clinton, 
1111111. C81ing8-ln dlam to 122 It perlorlded G'2-118ft 

Topeol---------------------------· 
Clay, brown------------------------­
S~. blue-------------------------· 
~~--------------------------

8S/4W-33bbb. CllyofMonmoUh. Altitude 175ft. DrllledtJVM 
Clinton, 1G70. CaMd 12-ln dlam to CIO It perfor-.d 28-58 It 

Topeol~--------------------------· 

Clay, brown------------------------­
Clay, blue-------------------------­
Grawl, medium----------------------­
Clay, blue------------------------­
~,_~ -ge-------------------------

3 
23 
74 
22 

3 
23 
II 

18 
5 
5 

8SISW-7bbb. Paul Ollllf. Altitude 405ft. Drilled by J. A. Sneed and 
sons. 1m. C811ng8-lndlamto40ft: unperforlted 

Topeol---------------------------· 1.5 
Clay, yellow------------------------- 5.5 
"Bald, weathered'--------------------- 18 
Clayetone,g:ay "'m--------------------- 100 
Sandltone,lgttgray-------------------- 18 

2 
34 
1111 
72 

Sol-----------------------------· 
Clay, brown------------------------­
Clay, gray-------------------------­
Clayllone, gray----------------------­
Sand~one.!1ay----------------------­

"Oid land' and wood--------------------· 
Clayllone and Nndltone, gray---------------

1 
g 

311 
24 

1&4 
g 

57 

1 
10 
4e 
70 

234 
243 
300 

5 
20 
24 
28 
3G 
45 
70 
75 
80 

85/SW -24adb. Harry Brown. Altitude 195 ft. Drilled bV J. A. Sneed and Sone 
111114. C•lng 8-ln dlam to 47 It unperforated 

TopeoH---------------------------· 
Clay, yellow------------------------­
Clay, blue-------------------------­
Conglomera-----------------------­
Clayllone, gray twd--------------- -----· 
Cleyetone, whte twd--------------------

2 
21 
11 
11 
30 
10 

2 
23 
34 
45 
75 
e5 

8SI5W-211bcd. John Stump. Altitude 215ft. Drilled by J. T. Miller, 1G80. 
Caelng 12-ln to 130 It an oil and g• exploration well 

2 Shale. blue-------------------------· 
g Sand----------------------------· 

21 Shale, blue and grt~y Nncl-----------------· 
28 Sand and sandy g:ay ehale-----------------
30 Shale. Iandy !1ay----------------------
37 Sand and gray Nndy ehale-----------------
43 Shale, blue Nndy----------------------
80 Sand and gray Nndy shale----------------­

Shall, gray Nndy and hard ~ shale-----------

130 13D 
311 175 

133 308 
140 448 
170 1118 
1Q'2 810 
102 G12 
33) 1244 
258 1502 

GS/3W -7adc. Alluvtal Farms. Altitude 170 ft. Drilled by Wllarnette OriRing, 
1G81. Caelng 10-ln dlam to 4G It perforltlld 2G-44 It 

3 
211 TopeoR--------------------------- • 

100 Clay, brown-------------------------
122 Sand, brownanci~~-------------------

3 

Ciay,brown-------------------------

GS/4W-2dca. Robert Fltte. Altitude 15G ft. Drilled by Todd's 
Drilling, 1G74. Casing 12-ln dlam to 50 It perforated 3G-4CI It 

211 Topeon---------------------------· 
32 Sill brown, with clay--------------------· 
50 G~~. rnedlumco ... -------------------
55 Clay,red---------------------------
80 c~. blue--------------------------

4 
10 
31 
8 

2 
18 
32 
8 
2 

GS/4W-4bcd. Kenneth Nellon. Altitude 1811 ft. DrDied by Roblnlon Wei 
DrUIIng. 1 G71. Caelng 12 -In dlam to 411 It perforated 30-311 It 

1.5 Clay, brown-------------------------
7 Sand, brown-------------------------

23 Gra~. small and browruand---------------· 
123 Clay, blue with brownelrHkl----------------
141 

20 
7 
g 

12 

4 
14 
45 
53 

2 
18 
50 
58 
CIO 

20 
27 
311 
4e 

GS/4W-5bda. Ben Magill. Altitude 245ft. Drilled bV Robnon Drtllng. 1011. 
Casing 11-ln dlam to 04 It perlor*d 111-G:! It 

S~-----------------------------· 1 
Clay, brown------------------------- 17 18 
Clay,orange------------------------· 28 4e 
Clay, brown------------------------- 10 58 
Clay,grrt-------------------------- 8 e2 
c~. ~ with !tin layn of small grawland sand----. 33 gs 

174 
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OS/4W -Ouc. Ctwlle Bowman. Altitude 187ft. Drilled by Wlllerntttt 
Drilling. 1SI&I. CUing 1o-1n dlam to 12411: perfor*d -48-55 ft 

T~l---------------------------· 

Clay. brown-----------.,-------------­
CII!y, gn~y-------------------------­
~.~-------------------------­
Cll!y.~-------------------------

S~~-------------------------­
Sand, bl.:k and wood-------------------· 
Sand. bl.:k a w.vei-------------------
CII!y. blue and und--------------------­
Ciay.~andund-------------------­

Cll!y.~-------------------------­

CII!y, ;r.en-- -----------------------· 
Clay. grwy-------------------------­
Sancl,bl.:k------------------------­
Clay, ~-------------------------· 

2 
e 
4 
3 
5 

10 
10 
7 
e 
2 

10 
5 

10 
34 
10 

Depth 

~ 

2 
a 

12 
15 
20 
30 
40 
47 
53 
55 
es 
70 
eo 

114 
124 

9S/4W-Sibeb. IMry Smllh. Allltude 197ft. Drilled by Paul Oicknon. 19&4. 
Ceslng e-ln din to 35 It liner 4-ln dlam 'D-140 ft; perforated 35-140fl. 
grawl PIICktd 1-140ft 

Topsol---------------------------· 

Clay, brown------------------------­
Sand~one.~~---------------------­

Clay,blue-------------------------­
S~~.~w----------------------­

Claystone. way----------------------­
Sandat~.~w----------------------­

Claystone. blut----------------------­
Sandat~.~w----------------------­

Clay. blue-------------------------­
Sand,blue-------------------------­
Clay, blue--------------------------

3 
17 
8 

21 
2 

1e 
2 

22 
24 
e 

17 
2 

OS/4w-10bed1. Lucldamute Wet• Coop. Altltude1e8 II. Drilled by 
Todd't Drilling, 1SMID. Cetlng 10-ln dlam to 5Q It perforated 22-48 ft 

T~l---------------------------· 

Cl-v. ~-------------------------­
Clay, brown------------------------­
Clay.~------------------------­

Grew!, medium----------------------­
Clay, blue--------------------------

2 
3 
8 
5 

32 
25 

OS/4W-10bad2. Lucklamute Watlr Coop. Altitude U171l Orllltd by 
Todd's Drilling, 1874. CUing 12-ln dlam to o4e It perfarlttd 35-45 ft 

Topsol---------------------------· 

Clay, ~-------------------------­
Clay, brown------------------------­
Clay,~--------------------------

Grawl. mtdlumco ... ------------------­
o-v,blue--------------------------

2 
2 
0 
5 

27 
10 

OS/4W -10bbb. Charles Bowm., Allftude 1110 ft. OrHied by Wlnamette 
Orlllng, 1Sie5. CUing 12-1n dlam to 13211: perforated so-eo ft 

T~l----------------------------

0-v.~-------------------------­

Sand, bl.:k and w.vel-------------------

a-v.~:~~ut-------------------------­
Clay,gr~~y--------------------------

S~.wi!Y-------------------------· 

2 
33 
23 
32 
40 
32 

3 
20 
28 
40 
51 
e7 
eo 
01 

115 
121 
138 
140 

2 
5 

13 
18 
50 
75 

2 
2 

13 
18 
45 
55 

2 
35 
sa 
go 

130 
182 

Mat• .... Thlckneet 

.{!m 

OS/4W -11 acd. WJwich F«ma Inc. Altitude 115211. Orlltd by Mi~Nel 
Waldroop, 1GGO. C•lng 12-ln dlam to 40 It perfor*<l24-43 II 

Clay, brown sandy---------------------· e 
Clay. brown with some und--- ------------- e 
Cl-v. brown sandy---------------------- 5 
Sand, br~ftne-medlum-----------------
Grave~ emd-medlum with ftne-co«M t:rown und- -- 11 
Sand, brown and grawi--- ---------------- 0 
Gravel, smd-l«ge with brown und---- -------- 5 
Clay, bG-------------------------- e 

OS/4W-11bbd. Robert Flltt. Altitude 170 II. Drilled by Todd's Drilling. 
1875. CMing e-ln dlam to 50 It perforlted 35-48 II 

Topsoil-----------------------~---- 2 

Clay, brown------------------------- 10 
Clay, undy br~---------------------· e 
Grawl with und---------------------- · 30 
0-v.blue-------------------------- 7 

Depth 

~ 

e 
12 
17 
18 
20 
38 
43 
40 

2 
12 
18 
48 
55 

9S/4W-12acd. Gerald Morlan. Altitude 18711. Drilled by Act Drilling, 10153. 
Cetlng 12-ln dlam to 3IJ II; perforated 33-38 II 

~ay----------------------------­

Loam, sandy------------------------· 
Clay. sandy-------------------------
Gravel, sand and clay-------------------- · 
Gra~ "rrllerrurf'----------------------

4 
4 

10 
2 

HI 

OS/4w-14dbb. Cecil Hultman. Altitude 1e8 II. Drilled by Art Cftnton. 
111e2. CMing 12-ln dlam to 3811: perforated 23-34 II 

Wlnamette sol-----------------------­
Clay, brown sandy---------------------· 
Clay and medium w.vel---- -------- ------· 
Gravel, large-------------------------

2 
8 

12 
14 

4 
8 

18 
20 
38 

2 
10 
22 
38 

175 





EXPLANATION 

Well number: See page 7 for description. Specific Capacity (SPEC. CAP.): Pumping rele diVIded 
Aquifer: Wtil.er bearing unit co..-ribl41ng to well. by drawdown during pump test, reported values 
Elevallon (ELV): Elevallon of land surface e1 well, oto have been assigned <.1. 

determined from 1 :2 .. ,000 scale topographic maps. Weier Level: Depths to wtll.er In teet, depths reported In 
Depth otwell (OPT): Depth of completed well In teet. decimal tractions were likely measured others were 
Diameter (DIA): Diameter otwell bore In lnchas. reported by owneB or drillers. F denotes a flowing well. 
Open Interval: Top and bottom ot open 1..-ervaJ In teet. Specific Conductance: Field measureme..-s. 
Yield: Discharge In gallons per minLte during pump test. Use (U): Use ot wlller: H. domestic; N, Industrial; c. commercial; 
Drawdown (DO): The lowering of the water level (In teet) s. stock welertng; I, Irrigation; P, public supply; 

as a result ot pumping. E. engineering; F, tire: G. oil and gas: U, unused. 
P~..mplng Period (PP): Length of pump teat In hours. Remarks (REM): B, Br analysis; C, Cl analysis; I, Iodide analysis; 
Method ot discharge meaaureme..- (M): B, bailer; 00, oxygen-deuterium analysis: CA. chemical analysis: 

P, pump; A, air; R, repor1ed. Salty, reported occurrence ot salt weler; 

~ ;.. ,. ... HYD, hydrograph; Filled, back-filled. ...,.. 
• ~ •-j,• '11 )'f 

WELL OWNER YEAR AQUI- ELV OPT DIA OPEN DEPTH YIELD DO ppM SPEC. WATER DATE SPECFIC DATE u REM. 
NUMBER COM- FER ft ft In INTERVAL CASED gpm ft h CAP. LEVEL MEAS. CONDUC. MEAS. 

PLETED TOP BOT ft gpmJft ft YYYYMMDD #Jmhos/cm YYYYMMDD 
ft ft 

08S/05W-
~ 33ACC DESCHLER, TIM 1989 Ty 4n 120 8 .. 2 117 120 100 58 3 A 1.7 42.00 19891019 H 

30.05 19910523 • 

07S/04W-
03CCC KLIMCZAK, STAN 1987 Toe 250 200 100 200 200 1 .. 1 A 17.00 19870813 H 

t 03CDA BRUNKER, GRANT 1990 Toe 405 71 39 71 39 75 52 
" A 

1.4 24.23 19901101, 147 19911101 H 
, 04DBA ERICKSON,K 1987 Toe 450 1 .. 7 39 1 .. 7 1 .. 7 40 24 1 B 1.7 39.n 19901111 53 19901111 H 

OSBBB COVILLE, MERTON 1988 Toe 248 72 40 71 40 12 40 1 B 0.3 43.27 19760721 eoo 19760721 H 
05DAA ELLIS, VERTA 19e7 Toe <tee 248 37 248 37 1 231 1 A <.1 23.93 19760722 45 19760722 H 
oeDDB LEPPIN, ARTHUR 1958 Toe 248 89 17 89 17 3 73 B <.1 27.83 19760721 710 19760721 S H'VO 
07ACC LOWERY, JERRY 1973 Toe 1915 22.58 19760721 1100 19760721 HCA 
08DOB BOATWRIGHT, M 1973 Toe 202 120 25 120 25 7 915 1 B 0.1 21.93 19760722 430 19760722 H 

"1 ·'•10AAD JENSEN, KELTON 1978 Toe «5115 2 .. 15 205 2415 245 20 2 A 183.98 19910120 223 19910120 H 
10BBB GRIMSBO, DON 1957 Toe 2215 78 81 78 ·81 10.00 19570000 H SALTY 
115AAA FARM,NILA 19157 Tcr S<tl5 110 89 110 89 26 90 2 B 0.3 10.00 19570813 H 
115080 BISHOP, ARTHUR 1958 Toe 3115 81 39 40 .. 1 19 30 2 B 0.6 29.00 19580721 H 

41 «51 
18ABD ARMS.R 1965 Toe 2115 118 26 118 26 8.3 60 1 p 0.1 50.65 19760722 3000 19760722 H 
19CCD FAST, HARRY 1965 Ts 211 189 8 20 189 20 1 130 1 p <.1 34.00 19651012 u 
21DCC1 BICE, HOLLIS 19459 Toe 1715 78 12 32 36 .. 7 30 27 1 B 1.1 37.77 19760722 1100 19760722 U B,C,I,OD 
21DCC2 BICE, HOLLIS 19e2 Toe 1715 go 8 25 .. 15 515 215 11 2 B 2.3 14.00 19e20811 1661 19910Q19 H 

515 go 16.69 19910919 1580 19911130 
23DCC HEINRICHS, JOHN 19e3 Toe 305 180 8 172 180 172 20 120 2 B 0.2 58.00 19e31010 H 
28AAS RALSTON, DOUG 1979 Toe 400 258 6 38 2158 38 10 100 1 A 0.1 154.00 19790913 791 19910120 H 
28CAB SUNDBORG,E 1959 Toe 210 130 8 20 130 20 9 78 2 B 0.2 32.00 19621008 210 19761005 H 

~ 2ecAC WADE, GUY 19e9 Toe 240 86 8 66 ee 86 15 50 2 A 0.3 39.26 19910Q17 18«5 19910Q17 H 
2ecce MYERS, VRGIL 1970 Toe 189 83 6 43 415 415 e 30 1 A 0.2 15.154 19760723 320 19760723 HCA 

415 83 
2eDCC KENNEDY, DAVID 19715 Qoal 170 815 8 50 78 79 415 4 1 B 11.3 45.00 197150731 H 

79 815 ~ 
2«5DCD WHITEMAN, EDDIE 1986 Qoal 150 .. 2 10 29 40 "2 300 11 5 p 27.3 20.00 196e0811 u ...... 

...... 



WELL 
NUMBER 

2tDOB 

27CCB 
2SOCA 
28DCD 
28DDC 
2SDDB1 
250082 

30CAC 

~ 30CCB 

3CDAD 

31BAB 

31BAC 
31BCD 
32AAB 
33AAB 

33ADD 
3EBD 

S«:CC1 

34CCC2 
34CCD 

34DDC 

35ABB 
35BAC 
35CBB 
35CBC 

3!DBD 

seBDB 

MBDD 

078/0SN-

OWtER 

CONVERSE, GRACE 

SPLANE, ELZA 
SAVAGE., BEN 
STINNETT,B 
BEYERS. LYLE 
SMULL, PAUL 
BRAMAN,W 

RICKREALL 
FARM SUPPLY 
GRIMSBO, HUBERT 

POLK COUNTY 
COOP 
NORMAN, RICHARD 

SHIER, ROBERT 
DALLAS EQUIP. 
ROTH, GARFIELD 
BEYERS, LYLE 

STEELE, RAYMOND 
FREEBORN, CLYDE 

VANDEROFF, DAVE 

VANDEROFF, DAVE 
WEDEL, PAUL 

RICKREALL WATER 
ASSOCIATION 

MUELLER, THOMAS 
MUELLER. MRSE 
BROWN. WALTER 
RICKREALL WATER 
ASSOCIATION 
BROWN.W 

GREENVILLA 
FARMS 
KENNEDY, DAVID 

01CAD DRISCOLL, C 
02BAC BEYERLE, GEORGE 

0!5BDB HOEKSmE, FRANK 

YEAR 
COM­
PLETED 

1SI82 

1Qe2 
1965 
1958 
1Qe0 
1Qe2 
1958 

11ilee 

1;66 

1SI68 

196g 

196g 

1971 
1973 
1Qe7 

1975 
1970 

1989 

1975 
1Qe7 

1971 

1973 
1Qe7 
1Qe0 
1973 

11ilee 

1957 

1Q&4 

AOUI- ELY 
FER ft 

Qoal 160 

Qoal 160 
Toe 170 
Toe 18!5 
Toe 171 
Toe 175 
Toe 175 

Qoal 209 

Ta 215 

Ta 1G4 

Qoal 210 

Qoal 211 
Qoal 213 

Ta 200 
Toe 112 

Ta 171 
Qoal 171 

Qoal 175 

Toe 175 
Qoal 178 

Qoal 172 

Qoal 172 
Qoal 178 
Qoal 175 
Qoal 1tle 

QaJ 138 

QaJ 135 

QaJ 1 .. 1 

1970 Ta 2.110 
228 1957 Qoal 

1Qe0 Ty 220 

OPT DIA 
ft In 

85 8 

97 8 
1!19 8 
e:z 8 

111 8 
eo 8 
..a 8 

50 10 

GS 8 

100 8 

85 8 

51 8 
28 8 

110 8 
11e 8 

100 8 
50 8 

100 8 

130 8 
120 10 

85 12 

81 8 
79 10 
se 8 
eo 12 

..a 12 

39 10 

"3 12 

«> 12 

45 12 

OPEN DEPTH YIELD DO PP M 
INTERVAL CASED gpm ft h 
TOP BOT ft 

ft ft 
45 715 e.. 2!50 <te .. p 

81 97 
.. 7 1!19 
<te 82 
151 111 
33 57 
28 33 
45 <te 
18 35 
35 50 
82 95 

21 79 
80 100 
22 28 
28 85 
31 .. , 
22 27 
19 110 
20 59 
eo 178 
32 100 
39 .. 5 
45 50 
23 27 
32 100 
<te 130 
28 2Q 

32 3-t 
..a 120 
..a 54 
54 57 
57 85 
eo 81 
57 78 

..a 52 
52 eo 
19 38 

21 
35 
22 
3-t 

, .. 
20 

35 
39 
31 
"3 

20 
..a 

81 
.. 7 
<te 
51 
eo 
..a 

35 

95 

80 

so 

51 
28 
19 
eo 

32 
o45 

32 

<te 
«> 

.. 1 

80 
79 
58 
eo 

«> 

35 

3-t 

20 

o45 

10 70 
15 50 
3 .. 5 

10 80 
2 

2.5 so 

50 10 

1.5 7 

B 
B 
B 

1 B 
B 
B 

B 

2 B 

115 88 1.5 B 

70 58 1 B 

15 17 1 B 
..a .. 2 B 

7 85 B 
1.7 154 1 p 

20 go 2 B 
8 23 2 B 

s.s eo 1 e 

.. 5 30 1 B 
11 go 1 B 

125 33 2 .. p 

SO 5 .. B 
300 18 1 p 

SO 3.5 1 B 
110 15 ..a p 

..00 15. 1 p 

500 5 0.5 p 

510 ,.. 2 p 

0.1 12 B 

5 p 

SPEC. 
CAP. 

gprnlft 

15 ... 

0.1 
0.3 
0.1 
0.1 

0.1 

5.0 

0.2 

0.2 

1.2 

0.9 
10.0 
0.1 
<.1 

0.2 
o ... 

0.1 

1.5 
0.1 

3.8 

6.0 
18.8 
8.8 
7.3 

25.9 

100.0 

38 ... 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u REM. 
MEAS. CONDUC. MEAS. 

YYYYMMDD prnhoa/an YYYYMMDD 

29.00 19820108 
35.go 19910917 
, ... 00 1 Qe2071 0 
1 0.00 1Qe30227 
15.00 1 gseogog 
17 ... 7 19760723 
11.00 19620-t18 
18.00 19581010 

5.00 19680119 
8.88 19780722 

20.00 11ilee1208 
19.37 19911203 
8.88 19760722 

7.00 1geg()81 .. 

5.58 19780723 
8.70 197810015 

89.80 19780722 
11 ... 1 19780723 

20.25 197810015 
20.85 197610015 

15.00 19690623 

22.00 197501015 
12.05 19761005 

27.00 19710-t27 

39.00 19730202 
.. 5."3 1 9761 005 
-40.00 19800928 
36 ... 0 19761012 

10.32 19781013 
11."3 19911202 
15.00 19570122 

18.87 19761013 

1 ."3 1 97eo..27 

7.00 19600827 

H 
H 
H 

1090 19760723 u 
H 
H 

275 19780722 u 
255 199011015 

1-t30 19911203 H B,C,I,OO 

275 19780722 N 
255 1gg()11015 

u 

280 19780723 H 
230 19781109 C CA 
980 19780722 8 CA 
370 19760723 H 

H 
H 

1300 19781005 H 

I 
u 

285 19781012 P CA 

H 
I 

236 19781005 H 
320 19781012 p 

232 19910912 

1210 199111SO H B,C.I,OO 
2!50 1 97eo..27 U CA 

H SALlY, 
FIUEO 

........ 
-..J 
CX) 



WELL C>WfoER YEAR AQUI- ELV OPT CIA OPEN DEPTH YIELD 00 PPM SPEC. WATER DATE SPEOFIC DATE u FEM. 
NUIVSER COM- FER It It In INTERVAL CASED gpm It h ClAP. LJ:VEL t.EAS. OONDUC. t.EAS. 

PlETED TCP BOT It gpmJft It YVVVMMJD ,.moatan YVVYMM:o 
It It 

..... • oeDDA HOEKSTFE, DON 1GG1 Ty 510 1«> 6 2G 1«> 2G 30 81 1 A 0.5 89.00 1SI911015 516 1GG11020 H B,C,I 
88.47 1;91202 5!50 1GG11202 

oeBBC ANJERSON,W 1~ Ty 2«> 1158 6 22 158 22 1 128 1 A <.1 12.00 U~N0731 1611 1GG11130 H B,C,I 
5.38 1;911130 

oeeoo SEXTON, DARREL 1974 Ty 217 47 6 19 47 19 s 92. 1 B 0.1 19.N 197eo428 1180 19760428 HCA 
07CAB JOHNSON, Jl.OY 1973 T• 555 242 6 54 242 54 2.5 197 1 A <.1 15.07 19780!505 220 197tQ505 H 

• 0'7DAD MNAHAN, GIRl 19QO Ty 540 175 8 6 175 175 20 80 4 B o.s 80.00 19901214 H 
07DDA SCHERUNG,A 1~ Ty 450 29C3 6 19 29C3 29C3 1 1 A 80.00 19790611 H 
07DDD SCHERUNG,A 1~ Ty soo 113 6 11 113 113 8 1 A 10.00 19790613 258 1991110G H 
oeBCC t£VNER,C 1965 Ty 275 183 6 20 183 20 4 150 1 p <.1' 11.00 19550521 480 197eo430 H 

\ ,~ oeDDA Setft:)CK, ALLEN 19QO Ty 420 119 6 5Q 119 5Q 30 1 A 37.80 1SI911002 225 1GG11002 H 
oeooo WVNIA, QJFF~ 1973 Ty 480 218 6 5Q 218 5Q 22 130 1 A 0.2 88.89 197fn504 u 
OQ8CC HOEKSTFE, t£NRY 1980 Ty 218 315 12 16 315 18 3.3 p 2.49 197801504 130 19780150G H 
ClliiCCB WVNIA,QJ~ 1975 Ty 380 118 6 80 112 81 30 80 1 A 0.5 55.75 19780504 u 

5 11 .. 
10BCC WALL, FRANK 196!5 Ta 300 1«> 8 20 1-40 20 1 20.00 19651115 H 
10C/IC HARRS,VERN 1987 Ta 305 143 6 158 143 158 4 104 1 A <.1 11.87 197tQ505 130 19760505 H 
10C80 SIMPSON,W 1980 Ta 315 55 10 12 55 12 3.3 p 4.47 197eo428 130 19760428 u 
13ACA 19!55 Toe 2..S 100 6 37 ..s ..s 5 p 19.78 19780429 810 19780429 s 

..s 100 
14CBD HAINSWORTH, C 1968 Ta 190 114 6 21 114 21 1 37.00 19680829 H 
1SAAC SCH:U£NBERG, D 19S Toe 272 12G 6 21 12G 21 o.s &4 1 A <.1 ... 95 19780429 1100 197eo429 UCA 
1!iDCS VANWIN<EL. C 1971 OVT• 290 173 8 27 «< 47 8 150 1 A 0.1 1 ... 00 19710«>1 H 

47 173 
1SXC WIEBE, HNI=fV 191SS Qt 290 815 6 27 92 38 8 50 1 B 0.2 5.~ 19780429 90 19780429 H 

38 815 
1MAB TRUSSELL, DON 1981 Ty 280 311 8 19 311 19 1.5 1 A 4.00 19810922 H 
1eABB FRIESEN, EOWNU> 1989 Ty 310 131 6 24 131 24 6 91 1 A 0.1 -40.00 19891102 H 
1ec::oD KOLSKI, JOHN 1973 Ty 348 176 6 2G 176 2G 15.5 1«1 1 A 0.1 13.-45 19760430 u 

4'·1eDCB DAVIS, TOM 19QO Ty 3liiO 198 6 28 198 28 28 1 A 66.00 1Q900814 H 
1eDCC DAU<E, GERALD 19S Ty 335 132 6 «> 132 «> 120 90 1 A 1.3 30.54 19760430 265 19760430 H 
1eoDB SIMPSON, ROSS 1974 Ty 302 2«> 10 20 240 20 200 171 1 A 1.2 9.G2 19780504 330 19760504 u 

"'17ADB JOHNSON, RICK 1985 T.- 420 150 27 150 27 50 4 1 p 12.5F 19910913 410 19910913 H 
17BCD AI ME, GEORGE 1970 T• eeo 117 C) 117 C) 8 62 1 A 0.1 21.41 197eo506 150 197eo506 H 
17CDD SIEROSLAWSKI, E 1972 Ty 720 178 41 178 41 80 eg 1 A <.1 94.20 197eo506 310 197eo508 H 
18MB DOMASOiOFSKY, J 19N T• 610 815 315 815 .... 30 A 2 ... 00 19790719 H 
18ASB FRESH, LAARY 1972 T• 738 202 85 202 85 9 120 1 8 0.1 70.30 19760505 140 197eo505 H 
18ADA MU£R, ROBERT 1972 T.- 675 71 40 71 40 50 23 1 A 2.2 40.32 197eo505 205 197eoso5 H 
18ADB STULL, W 1989 Tar 706 370 .... 370 .... 2 389 1 A <.1 2.05 197eoso5 u 
19/ltCA llllRUH, EOWNU> 1971 Ty 614 250 110 230 10 3 200 1 B <.1 158.76 197eo508 580 19760506 H 

250 
1Sii8DC DUNMIRE, ERNEST 1973 Ty 622 157 26 157 26 18 137 1 A 0.1 26.N 19780507 375 197tJ0507 H 

,; 19CBB PORTER. RICI-WU 1974 Ty 570 135 s 135 s 30 100 1 A 0.3 54.18 19911014 sse 19911014 H 
19CCA SEYMOU1, LYLE 19S Ty 602 323 31 323 31 3 250 1 A <.1 235.23 19780SlQ G25 197trl507 H 
19COB SEYMOU1, LYLE 1971 Ty eo3 554 27 554 27 14 A 300 19780507 H ,,9CDC LUCHAU, JOHN 1990 Ty 580 238 25 238 25 10 1 A 43.00 1Q000920 H 
20MA OIO<ERSON, PAI.A... 1971 Ty 412 100 80 100 80 32 1 8 22.24 19780506 330 19780!505 H 
20COC TRAI~.w 1974 Ty 430 218 19 218 19 2 155 1 A <.1 110.40 197trl507 1500 19780507 H 
21BCD DIOCERSON, PAI.A... 1975 Ty 922 110 21 110 21 ..s 30 1 B 1.5 27.41 19760430 u 
22AAC VOGEL. LEE 19S Qt 295 50 35 41 .... 5 92 1 B 0.2 12.00 1geg(X313 75 19760518 H .... 50 
22808 DUliN, Al.J.EN 1988 Ta 305 191 27 191 27 0.5 186 1 A <.1 27.87 19760518 530 19780518 H ...... 
25AAC FLEMNG,H 1lilel!l Ta 2015 36 23 32 315 15 21 1 B 0.7 5.158 19760519 265 19780519 I 

'-1 
\0 



WELL OWNER YEAR AQUI- ELY OPT DIA OPEN DEPTH YIELD DO ppM SPEC. WATER DATE SPECIFIC DATE u REM. 
NUMBER COM- FER It It In INTERVAL CASED gpm It h CAP. LEVEL MEAS. CONDUC. MEAS. 

PLETED TOP BOT It gpmJit It YYYYMMDO Jimho~cm YVVYMMDD 
It It 

2SDAD LARSEN, RUSSELL 11i188 Ta 205 •7 e 22 .. .7 22 20 1 B 1.1 13.0Q Hl7eo51G 235 1Weo51G H 
2ecoe COOK. LELNI) tWO Qt 270 as e 33 53 s. 2.5 70 1 A <.1 14.75 1Wooeo5 H 

s. as 
2eCOC LESTER, LARRY 1G74 Qt 2e5 120 e 113 125 113 10 20 2 B 0.5 12.58 1G7eo51G 205 1G76051G I 
27CAC RUGGLES, CLARK tWS Qt 922 78 e 33 3G 41 20 eg 1 A 0.3 10.88 1Weo51G 170 1G76051G H ., 78 
27CCO FRINK, CHARLES 1G81 Qt 310 119 e S8 113 113 10 1 A 10.00 1G81052e H 
27COA GAINS, CLYDE tGeQ Qt 315 51 e 21 33 42 17 33 2 B 0.5 12.83 1SieQ0721 H 

42 51 
270CC SIMS, ED 1W8 Qt 2GO 110 e 83 ee 87 38 15 1 B 2 .• 15.00 1G780718 H 

ee 110 
2GCAD BlllKOFER, M 1G7• Ty 370 se e 20 S8 20 s A 3.GB 197eo520 5500 197eo520 UCA 

( 31DAB1 HUTCHINSON, W 1ggc) Ty 4GO 2eo e 40 240 2eo 3 2 A 30.00 1G900718 398 1Sjg11014 H 
t 31DAB2 MEYER, BUTCH tggc) Ty 540 215 e 30 215 29 3.5 180 1 B <.1 35.00 1ggc)12Cle :Me 19910Q19 H B,C 

4 215 n.eo 19911200 3W 1Sjg1120S 
(, 31DB8 BROWN, DENNIS 19GO Ty 570 1G8 e 3G 1G8 39 14 1 A 65.00 1G900418 232 1Sjg2101. H 

31DBC FREISEN, ALTON 1W1 Ty 595 1G1 8 40 191 40 2.5 165 1 A <.1 28.08 19760811 265 1WCS0811 H 
32CBA TEAL, ORVAL 1W1 Qt 380 80 8 40 eo 40 5 eo 2 B 0.1 22.00 19710730 H 
~ KROEKER, MARTIN 19eG Qt 270 58 8 25 52 52 25 115 1 B 1.8 4.51 19760520 375 1G7eo520 H 

52 58 
seeo REEVES, JERRY 1W1 Qt 295 eo 8 48 s. 57 14 25 1 B 0.8 8.97 19760520 teo 197eo520 H 

57 eo 
3-4DBC DALLAS ASSEMBLY 1980 Qt 275 213 10 go 213 231 18 2 A 30.00 19801101 

OF GOO 
35BAB AN:>ERSON,W 1W1 Qt 2eo 71 8 s. 71 71 e 59 1 A 0.1 12.99 19760519 110 19760519 H 
35BBB SHARP, T 1973 Qt 278 95 8 63 95 63 8 77 1 B 0.1 7.27 19760520 115 19780520 

~ 3&::AB SAN:> STRIP 1G88 Qoal 245 75 8 25 35 eo 40 5 B 8.0 15.00 1G881031 220 1Sig10Q13 
GOLF COURSE 8 45 58 75 , •. 32 19910Q13 

55 75 

078/08W-
12AAD WOODRUM,W 1970 Ty 450 272 55 272 55 19 G5 1 A 0.2 97.30 19760505 240 197605015 H 
12ADD GREEN, BOB 1G81 Tyrrar 820 528 65 528 65 8 1 A 420.00 1983080Q H 
12Cro DHABOLT,J 1970 Tar 1115 •5 25 45 25 8.3 33 1 B 0.3 4.G5 19760511 235 19760511 H 
13AAC BELlZ,OAVD 1970 Tar 925 402 so 402 50 5 310 2 A <.1 107.10 19760511 1G5 19760511 H 
13ABC>t KING, LEROY tWO Tar 857 ge e. ge e. 45 so 2 A 0.9 37.15 19760511 280 19760511 H 
13ABD2 JONES,C 1974 Tar 855 teo eo teo 80 50 138 1 A 0.4 32.87 19760511 280 1G760511 H 
13CCC1 BRIGGS, HARRY 1978 Ty ego 10C3 31 10C3 31 14 48 1 A 0.3 53.21 19760520 200 19760520 u 
tc:>BC MERRYMAN, LARRY 1SieG Tar ggo 181 21 181 24 1 141 1 A <.1 43.00 19760513 180 19760513 H 
t«X>C WILSON, NORMAN 1G58 Tar 800 teo 21 teo 21 2 143 B <.1 25.89 19760512 180 1G760512 H 
2eDC TERRY, HOWARD 1W2 Ty 778 118 23 118 23 8 eo 1 A 0.1 28.71 19760513 265 1Weo513 H 
24CAC WYSCAVER, ELDON 197. Ty 758 181 23 181 23 2 143 1 A <.1 8.22 19760512 2eo 1W60512 H 

ti;24COB TOMPKINS, KEN 1ggc) Ty 780 210 24 210 210 5 155 1 p <.1 5.00 19900607 H 
24COC JOHNSON,F 1983 Tar 881 130 28 48 87 30 82 2 B 0.5 40.00 19830728 120 19760512 H 

87 130 
2!5ACA HUDSON, ROBERT 1970 Ty 830 82 8 40 eo 40 20 37 2 B 0.5 25.71 197eo512 185 19760512 H 
2SCBD BOWMAN, THOMAS tggc) Ty 540 340 8 1 1 A H 
seccA HAYES, ROBERT 1973 Tar 8Q2 118 8 31 118 31 7.5 82 1 A 0.1 .5.48 19760514 H 
38CCO PARSONS, TOM 1W4 Tar 880 271 8 s. 271 s. 3 229 1 R <.1 35.58 19760514 105 19760514 H 
38DBD SPENGLER, MIKE 1W3 Tar &42 182 8 58 182 58 e tt5 1 A 0.1 38.00 19760514 so 19760514 H 

"""" (X) 

0 



WELL 
NUMBER 

08S/04W-

OWNER 

02BBA SETNIKER, FRANK 
02CAC1 GREEN VILLA 

FARMS 
t; 02CAC2 GREEN VILLA 

FARMS 
03AAC MULLER, T 

11 03ABD1 MULLER, T 

03AB02 
OC£)BA 

<MACA 
oecc 
o«:cc 
O<iiCOO 
040AS 
040AC 
O«)BA 

oeBAC1 
oeBAC2 
oeBBD 
oecAC1 
oecAC2 

07ASA 

07CCA1 

I 07CCA2 

07CCD 
08BBC 

OQAAA1 
OQAAA2 

OQAAB1 
OQAAB2 
OQMC 
~1 

OSWD2 
OGCOB 

OQCOC 

OQCOO 

MULLER, LEO 
EVANS.CHAS 

KNAUPP, DAVID 
DALKE. BRUCE 
RAIBLEY, LEE 
PETERSON, LOUIS 
PETERSON, JOHN 
WATTENBERGER, D 
PETERSON, GROVE 

BOYER, WAL TEA 
BOYER, WAL TEA 
KESTER. W 
HERRERA,K 
KOPPENSTEIN, C 

HANSON,D 

OAKES, ROO 

WILLAM. POLLEN 

WILLAM. POLLEN 
ROGERS, JOE 

DUNCAN,W 
BISBEE, DONALD 

EDMONDS, EARL 
KNAUPP, DAVID 
GEISBRECHT, E 
HARDMAN. GLEN 
EDIGER, DONALD 
ROGERS, HUGH 

ROGERS, HUGH 

ALDERSON,W 

YEAR ACU- ELV 
COM- FER ft 
PLETED 

1Sie1 
1{175 

1Sil75 

11i168 
1Sie2 

1{175 
1ge() 

1963 
11i173 
1968 
11i171 
11i175 
1~ 

11i171 

11~5Sil 

1955 
1gsQ 

Uil55 
1geg 

11i172 

1Sil73 

1ge() 

11i191 
1geg 

1Sielil 
1Sie5 

11i173 
11i168 
1{172 
11i170 
11i170 
1Silee 

11i)63 

1Sie5 

Cal 
Cal 

Cal 

Coal 
Coal 

Coal 
Cal 

Coal 
Coal 
Coal 
Coal 
Coal 

Ta 
Coal 

Ta 
Ta 
Ta 
Ta 

Coal 

Coal 

Coal 

Coal 

Coal 
Coal 

Coal 
Coal 

T1 
Coal 
Coal 
Cal 
Ta 

Coal 

Coal 

Coal 

144 
1S) 

1S) 

1&4 
15 

169 
1S) 

171 
186 
186 
1n 
171 
182 
Hl8 

222 
225 
22"' 
222 
222 

208 

201 

20!5 

202 
201 

165 
165 

187 
187 
165 
185 
185 
15 

H!l8 

187 

OPT DIA OPEN 
ft In INTERVAL 

45 12 
53 12 

48 e 

..a 8 
eo 12 

51 8 
52 8 

so 10 

"'" 8 51 8 
80 8 
85 8 
85 8 
eo e 

121 8 
1"'1 8 
75 12 
80 e 
58 8 

..a 8 

77 8 

80 10 

lil5 8 
73 e 

"'5 8 
45 12 

~ 8 
so 12 
55 8 
48 8 
s.. e 

190 8 

85 8 

51 8 

TOP BOT 
ft ft 

33 
35 
52 

27 
38 

"'2 
33 
45 
38 
3G 
35 
31 
38 
37 
31 
..a 
"'2 
28 
38 
48 
25 
so 
22 
31 
83 
78 
55 
75 

83 
22 
58 
88 
37 
s.. 

"'2 
35 
s.. 

-42 
27 
38 
28 
-42 
28 
...... 

-43 
..a 
53 

45 
58 

45 
42 
52 
47 
o4Sil 
45 
80 
85 
85 
37 
80 

121 
141 
75 
80 
45 
58 
31 
40 
73 
n 
75 
80 

78 
..a 
&4 
73 
~ 

~ 

~ 
...... 
53 

5-4 
35 

190 
38 
85 
~ 
51 

DEPTH YIELD DO 
CASED gpm ft 

ppM 
h 

ft 

-45 
52 

..e 

48 

eo 

51 
-45 

50 
3lil 
51 
31 
38 
37 
..a 

"'2 
28 
38 
..a 
50 

32 

78 

75 

82 
88 

<45 
.... 

<42 
<45 
55 
..e 
<42 
38 

<42 

...... 

&40 11 
1700 10 

30 

eo 10 
400 28 

50 2 
70 1Sil 

18 13 
12 38 
20 1Sil 

7 72 
10 41 
30 30 

" 82 

8 100 
8 132 

Sil.2 
5 85 
5 ..a 

3 5 

25 22 

..a 52 

7 p 
p 

B 

B 
8 P 

B 
B 

2 B 
1 B 
1 B 
2 B 
2 B 
2 B 
2 B 

B 
B 
B 
B 

2 B 

2 B 

1 B 

B 

38 60 2 B 
3 50 2 B 

35 6 1 B 
70 19 p 

30 4 1 B 
80 23 3.5 p 

100 2Sil 1 B 
2220 1B 
2520 1B 

<4 180 1 B 

8.7 -42 2 B 

35 8 1 B 

SPEC. 
CAP. 

gpmJit 

58.2 
170.0 

30.0 

6.0 
1-4.3 

25.0 
3.7 

1.<4 
0.3 
1.1 
0.1 
0.2 
1.0 
0.2 

0.1 
0.1 

0.1 
0.1 

o.e 

1.1 

<.1 

0.8 
0.1 

5.8 
3.7 

7.5 
3.5 
3.5 
1.1 
1.3 
<.1 

0.2 

.. ... 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u REM. 
MEAS. CONDUC. MEAS. 

YYYVMMDD ~mhos,lcm YYYVMMDD 

20.10 19760Sii2Sil 
2-4.00 19750731 

2 ... 00 11i1750923 
29.28 11i1910912 
20.00 1968061"' 
26.00 1962041"' 
S...7Sil 11i1910913 
30.00 19751004 
21.00 1ge()Q21Sil 

22.00 19830802 
11.00 11i1730825 
20.00 19661012 
12.08 1W6092Sil 
24.00 11i1750918 
25.&4 11i1760930 
18.00 19710823 

12.00 19591019 
14.00 195501i109 
15.71 19761008 
18.30 19781008 
1<4.00 19C590701 

5.00 19720705 

38.00 19730827 

18.00 19800709 
15.{17 11i1910917 
7.83 19911202 

30.00 19911025 
12.00 11i16Sii()Sil()g 

25.3<4 19760930 
22.00 19651022 
21.80 199109U~ 

28.00 19730731 
30.00 19680515 
1Sii.OO 19720715 
23.25 11i1700813 
23.00 19700815 
25.00 11i188()g28 

24.00 1 Sile30304 

23.90 1 lil760930 

215 11i1910912 

2-48 19781013 N CA 

320 1 {1780929 H 
I H)'[) 

H 
H 

<480 11i1780930 s 
H 

440 19761005 H 
330 11i1780929 H 

H 
810 19780930 H 

H 

H 
H 
H 
H 
H 

H 

H 

5-40 19910917 I B,C,I 
335 11i1911202 

I 
u 

320 11i1760930 H 
H 

H 
I 
I 

320 19760930 H 
260 11i17C50SX30 H 

s 

H 

<480 1 97eolil30 H ....... 
CX) 

....... 



WELL 
NUMBER 

OliDBA 

(. 10ADC 

, 11CAD 

~ 11DBB1 

) 110882 
1eBBB 

1eBCC 

1eADC 

UDAC 
1MCD 

ii 18DBA 

1eDBD1 

•' 18DBD2 

1GBCA 

1GBDB 
2<BDD 
20C:001 
20C:002 
218M 
21BDC 

21DBA 
I 22MA 

1 22ABD 

F22BAB 

2MBC 

2eBM 
4 28COA 

28COB 

28COC1 

OWNER 

GREEN VILLA 
FARMS 
MADJIK FARMS 

HAAS, JOHN 

HASS,JOHN 

JOHN I HAAS INC 
GREEN VILLA 
FARMS 
GREEN VILLA 
FARMS 
GREEN VILLA 
FARMS 
SETNICKER FARMS 
ROBERTS, HERB 

ROBERTS, HERB 

LEBECK. TED 

FOX, CARIE 

JEPSON, WESLEY 

REYNOLDS. LOREN 
RENNINGER, EARL 
MELANDY, PAT 
ODOT. 
RIDENOUR,L 
BOISE CASCADE 

PACIFIC POWER 
SETNIKER, FRANK 

SETNIKER, FRANK 

SETNIKER, FRANK 

VALLEY CONCRETE 
AND GRAVEL 
ODOT. 
WEBBER, JOHN 
CITY OF 
MONMOUTH 

CITY OF 
MONMOUTH 

YEAR 
COM­
PLETED 

1Qe2 

1ggc) 

1U88 

1SIG1 

1~ 
1geg 

UJ73 

11~73 

1S91 
UJ72 

1SJ72 

Ul57 

1SJ78 

1U88 

1~ 

1974 
1981 
1982 
nms 
1~ 

1957 
1960 

1Qe0 

1gs& 

1972 

1SJ79 
1990 
1988 

1988 

AOUI- ELV 
FER ft 

Coal 1eD 

Clll 150 

Clll 150 

Clll 14!5 

Cal 145 
Clll 148 

Clll 151 

Clll 155 

Cal 150 
Qoel 191 

Coal 

Coal 

Coal 

Coal 

Coal 
Qoel 

Qoel 

Coal 
Coal 
Coal 

Cal 
Cal 

Cal 

Cal 

Cal 

Coal 
Cal 

Coal 

Coal 

188 

187 

185 

192 

184 
182 
183 
182 
1eD 
1S 

154 
141 

155 

150 

1152 

151 
188 
173 

173 

OPT DIA 
ft In 

ag 8 

38 12 

48 8 

3G 8 

37 
34 12 

41 18 

38 8 

42 12 
32 8 

58 8 

eo 10 

40 8 

90 8 

55 8 
33 8 
38 8 
eo 
eo 8 
85 8 

50 18 
28 17 

12 

83 12 

49 10 

83 
eo 12 
72 10 

72 10 

OPEN 
INTERVAL 
TOP BOT 

ft ft 
45 ag 

19 35 

38 41 
41 46 
24 36 

18 30 

21 41 

18 38 

21 37 
24 29 

28 .... 
23 
33 
30 
34 
33 
40 
51 
28 
27 
28 

42 
41 
71 
20 

20 
eo 
3G 

eo 
47 
86 
.. 5 
88 

38 
58 

33 
eo 
34 
40 
55 
41 
53 
47 
30 
34 

50 
71 
85 
45 

83 
.. 7 

88 
72 
85 
72 

DEPTH '\'IELD DO 
CASED gpm ft 

ppM 
h 

ft 

4!5 18 50 

38 85 

38 .. 7 5 

3G 88 2 

425 0.7 
34 500 7 

21 400 23 

18 800 20 

42 75 7 
31 18 15. 

8 

8 

8 

1 8 

.. p 
2 p 

5 p 

4 p 

1 8 
2 8 

.... 40 12 3 8 

33 

34 

58 

55 
33 
38 

51 
71 

50 

eo 

47 

eo 
88 

88 

140 21 2 p 

10 3 8 

2 88 1 8 

15 31 1 8 
25 10 2 8 

50 18 

1200 14 25 p 
350 R 

500 

50 

40 2 
270 22 

185 12 

R 

2 8 

1 8 
p 

p 

SPEC. 
CAP. 

gpm/l't 

0.3 

eo1.1 
71 ... 

17 ... 

40.0 

10.7 
1.2 

3.3 

8.7 

<.1 

0.5 
2.5 

50.0 

85.7 

50.0 

20.0 
12.3 

13.7 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u REM. 
MEAS. CONDUC. MEAS. 

YYVYMMDD 1-fmhoS/cm YYVYMMDD 

27.00 

, ... co 
28.24 
17.00 
21.75 
15.00 
20.42 
22.50 
1 ... 00 

1Qe2()g()8 

19901205 
19910911 
1U880104 
1S910911 
1SI910318 
1S910911 
19910715 
1989091 .. 

16.87 19761013 
16.90 19Q008()6 
15.58 197151013 

11.00 1S911018 
8.00 19720204 

6.00 19720306 
14.58 19761006 
12.91 19900807 
13.25 1S900911 
13.30 19781109 

14.34 1S910911 

17.00 19680829 
23.90 1SI911019 
21.8G 1SIG11202 
15.90 19761015 
10.00 1SJ740821 
10.90 19781015 
9.00 19820408 

27.00 19750527 
27.00 19590703 

18.00 19570714 
10.81 19761007 
14.17 19910911 
29.97 19900807 
25.01 1SI910911 
18.43 19761007 
20.07 19910911 
21.50 19720512 

1 ... 00 19790424 
39.00 19900f505 
37.50 19680329 

38.00 1;680018 

241 
282 

1S910911 
1SIG11202 

295 19761109 

2t30 1SIG10911 

931 19911019 
948 1SIG11202 

850 19761015 
410 19781015 
375 1SJ761015 

225 19761007 

H 

I 
H 

H 

B,C,I,OD 

CA 

BCI,OD 
SALTY 
AT DEPTH 

HCA 
H 
R 
E 
I 
N 

u 
I 

224 19761007 I CA 
294 1 gQ()()8()g 

I 
I 
N 

E 
272 1SI911019 H 
400 1W61109 P CA 

p ...... 
(X) 

t-V 



WELL 
NUMBER 

28CDC2 

28C[)CS 

• 2ac::oc4 

2eDBB 
2SiiBCA 
2iB)C 

2SiiCAA 
2QCCA 

2SIDBB 
30M[) 

30ABD 
J 30ADA 

3(1)88 

31BAC 
31BOB 

31DDA1 

-!' 31DDA2 

32BBA 
32CCD 
32D<D 
33BBB 

33CCC 

,.. 330AB 

088/0SN-

OWNER 

CITY OF 
MONMOUTH 

CITY OF 
MONMOUTH 

CITY OF 
MONMOUTH 

ODOT. 
PEBLEY, CLAY 
DUGGER,J 
HUMPHREY,C 
CLARIE, JEROME 

RICHARDS, MATT 
GORNICK,P 

SACRE,A 
CRABB, LLOYD 

PLAVINE, DANE 

1-ENRY, ALLEN 
PESANO, JAMES 

MCI...EAN, DANIEL 

MCI...EAN, DANIEL 

MULL,GWANE 
GIWAM.MAX 
LAMERS, BILL 
CITY OF 
MONMOUTH 

CASCADE 
FARM SERVICE 
CITY OF 
MONMOUTH 

01CCD1 WARKENTIN, H 
01CC02 WARKENTIN, H 

02ADA 
: 02CBB 

02DCD 
: 03ACA 

o«:AC 

OS)[)C 

GIESBRECHT, M 
SCHAECHER. DON 
CLEN)ENIN, Ct-ET 
TRPPLET. 
D~Y 

ALBRECHT, H 

FORSBERG, NORM 

YEAR AQUI- ELY OPT DIA OPEN DEPTH YIElD DO PP M 
COM- FER ft ft In INl&tVAL. . CASED gpm ft h 
PLElED TOP BOT ft 

ft ft 
11i1S Qoal 174 152 12 41 eo e2 170 12 4 P 

1saeG Qoal 174 152 12 40 80 

Ui178 Qoal 173 es- 51 152 

1984 QaJ 146 157 
1Sil81 Qoal 182 50 8 

415 8 
81 10 
eo 15 

1 gee Qoal 177 
11i1&4 Qoal 175 
1saeG Qoal 171 

1tiil89 
1Sil72 

1959 
11i1S 

1975 

1973 
1957 

1Silee 

1959 

1967 
Ui164 
19715 
1Sil70 

1tiil89 

1Sil90 

Qoal 
Qoal 

Qoal 
Qoal 

Ts 

Qoal 

Qoal 

Ts 

Ts 

Ts 
Qoal 

Ts 
Qoal 

Qoal 

QaJ 

1970 Qoal 
1973 Qoal 

1979 Qoal 
1Sil90 Qoal 
1970 Ts 
1Sil90 Ts 

Ui170 Ts 

1QCSQ Ty 

175 
181 

185 
181 

187 

191 
190 

200 

203 

1CS8 
11i1G 
185 
175 

182 

155 

81 15 
es 15 

eo 8 
eo 15 

83 15 

80 8 
55 15 

122 8 

132 12 

73 8 
57 8 

100 4 
eo 12 

10 15 

50 15 

223 55 6 
223 64 8 

235 55 8 
50 125 6 

313 216 15 
270 100 6 

407 131 8 

515 110 6 

37 45 
32 42 
47 59 
37 40 
42 80 
59 81 
3Q 40 
51 53 
83 65 
40 52 
42 45 
47 80 

22 37 
40 83 
22 42 
19 25 
40 55 
92 1115 

118 122 

40 
72 132 
32 70 
47 55 
40 100 
28 58 

50 

26 
3Q 

70 

38 
50 

51 53 
54 59 
80 64 
48 56 
29 125 
80 2115 
20 100 

20 39 
40 131 
33 110 

152 

51 

49 
415 
61 
42 

59 
83 

58 
47 

40 

43 
40 

122 

72 

73 
57 

100 
80 

70 

3Q 

55 
60 

55 
125 
80 

100 

40 

33 

280 14 Sil.5 p 

230 10 24 p 

10 215 
20 18 
40 12 
1.5 74 

80 
30 20 

10 44 
40 12 

10 51 

5 64 
30 15 

8 90 

4.2 

2 48 
15 31 
2 94 

153 15. 

15 18 

1 B 
1 B 
1 B 
2 B 

1 A 
2 B 

1 B 
2 B 

2 B 

B 
B 

1 B 

B 

1 B 
2 B 
2 B 

p 

B 

90 6.6 7 p 

50 20 
50 15 

10 40 
15 60 
9 119 

10 75 

12 110 

g 70 

2 B 
2 B 

4 B 
1 p 
2 A 
1 B 

A 

1 B 

SPEC. 
CAP. 

gprnJft 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u REM. 
MEAS. CONDUC. MEAS. 

YYYVMMDD prnt'Y>a/cm YYYVMMDD 

14.2 

20.0 

23.0 

0.4 
1.1 
3.3 
<.1 

1.5 

0.2 
3.3 

0.2 

0.1 
5.0 

0.1 

<.1 
0.5 
<.1 
Sil.8 

0.8 

13.15 

39.00 1 QIS90925 

38.00 1 Sil891 0115 

38.58 1 SI900803 

20.00 19801121 
14.30 197151014 
41.eo 1Sil761014 
15.30 1Sil761014 

24.00 19890618 
13.90 197151013 

6.00 19591005 
16.50 Hil761013 
25.79 19900808 
28.02 11i1910917 
12.00 19751014 

17.00 19761013 
19.70 Hl7151013 

30.30 19761008 
39.70 11i1911019 

94.60 Hil7151 008 
108.73 1!jlg11012 

19.80 19761014 
11.80 1Sil761008 
12.60 Hil761008 
35.00 19701015 

34.20 1Sil761007 

23.01 1 gg()()8()3 

2.5 8.02 19780810 
3.3 8.-46 1Sil780810 

0.3 5.00 19790719 
0.3 7.00 19900808 
0.1 136.85 19780810 
0.1 15.00 1 Sil900327 

0.1 39.57 19780813 

0.1 30.00 1Sil890707 

p 

p 

p 

E 
H 

320 19761014 H 
350 19761014 c 

1100 1Sil7151014 H 

H 
800 1Sil761013 H 

H 
625 19761013 H B,C,I 
564 19900808 
1510 11i1911202 

u 

510 19761013 H 
680 1Sil781013 H 

2650 19761008 S B,C,I,OO,CA 
2801 11jJg11019 
2400 11i1911201 

483 1Sil761008 H 
430 11jJg11012 
875 19761014 s 
580 1 Sil7151 008 H 
390 1Sil761008 H 

P CA 

580 19761007 N 

425 1Sil7eo810 
u 

H 
H 

540 1Sil7eo810 H 
H 

520 1Sil7eo813 H 

480 19780811 
....... 
(X) 

w 



WELL 
NUMBER 

oecoc 
07888 

07BCD 
oeeec 
OliiOC8 
1CSAB 
11ASD 

11ACD 

12DCC 

13ADC 
14AAC1 
1-4AAC2 
1SADB 

1!5CCB 
1e.ACC 
21DCA 
210CB 

22BDB 
23BDC 
24ADB 
2MCA 
2eBCD 
2eDOO 
33M[) 

08S/OIIN-

OWNER 

DICKEY, JAMES 
OLLFF,PAUL 

HANSEN, TOM 
PATZL.AFF, IRVIN 
BRANDT, VICTOR 
FLEMING, JERRY 
CLENOENIN, CHET 

NALL,FRANK 

HASSLER, EARL 

CASTLE, FLOYD 
CARMia-iAEL, C 
HILL, WAllACE 
SEVIER, ROBERT 

EWS,DEAN 
GORMAN, KENNETH 
FAL..K,ALTON 
HUXFORD, GAFN 

ROSS, NORMAN 
ZIMMERDAHL, R 
BROWN. HARRY 
KIRSHNER, ROGER 
MILLER, JOHN 
BORK, ELMER 
KEGGIN, BILL 

01BCD KENYON,R. 

12AAB WILUAMS, FRED 

r»S//f,M-
07ADC ALLlMAA- FARMS 

~-
01BDD SCHMDT NURSERY 

01C80 
• 02Aa) 

020C'A 

OOBAD 
ooccc 

HADLEY, DOUGL.AS 
FinS, ROBERT 

WIGRICH FARMS 

KRAUGER, FRANK 
BOWMAN, OiAALES 

YEM 
COM­
PLElB> 

1973 
1Q72 

197 .. 
1987 
1970 
1~ 

1973 

1973 

1975 

19152 
1972 
19ee 
1QIS5 

1971 
197 .. 
1970 
197 .. 

1973 
1Q69 
19&4 
1971 
1ge() 

1981 
1975 

AOUI- ELV 
FER ft 

Ty 515 
Ty <to& 

Ty 
Ty 
Ta 
Ta 
Ta 

Ta 

Qoal 

Qoal 
Qoal 
Qoal 

Ta 

Ta 
Ta 
Ta 
Ta 

Ta 
Ta 
Ta 

Qoal 
TS/Ty 

Ta 
Ta 

72 .. 
"35 
855 
580 
3115 

.. 18 

212 

201 
25G 
282 
2g() 

5UI 
1535 
395 
505 

.. 22 
303 
195 
25" 
215 
285 
885 

OPT DIA 
ft In 

1151 15 
97 8 

1e11 15 
gg 8 

100 8 
200 8 
311 15 

251 8 

57 8 

59 15 
89 8 
12 8 

175 8 

2"" 15 
85 15 

300 8 
185 .. 
185 15 
go 15 
82 8 
85 15 
eo 8 

1502 12 
12 15 

258 5 
15 

OPEN 
INlERVAL 
TOP BOT 

ft ft 
38 1151 
<40 97 

52 
<40 
78 
11 
<40 
eo 
58 
81 
39 
55 
58 

.. 2 
57 
gg 
..e 
33 
51 

120 

20 
70 
.. 7 
73 

130 
52 
39 

1151 
gg 

100 
200 
59 

311 
80 

251 
.. 2 
57 
59 

82 
97 

175 
2 .... 

85 
300 
185 

go 
82 
85 
78 

70 
258 

1972 Ty 895 1ae 15 ~ 39 

1973 Ty 

1981 Qal 

1987 Qal 

1975 Qal 

1987 Qal 

197.. Qal 

19815 Qal 

1957 Qoal 

.. 1315 175 
1715 18& 

585 1s.. 15 2"' 1s.. 

170 

1153 

181 
157 

15G 

1..S 
178 

o49 10 

~ 12 

37 12 
.... 12 

eo 12 

o47 12 
rn 12 

29 .... 

28 33 

25 35 
23 ..s 

39 "'9 
50 eo 
35 .. 5 
30 151 
81 97 

DEPTH YIELD DO 
CASED gpm ft 

PPM SPEC. 
h CAP. 

ft gpmJft 

..a 15 129 A 0.1 
<40 11 88 A 0.1 

52 
<40 
78 

200 
eo 

81 

55 

59 
ae 
72 
gg 

..e 
33 
51 

185 
33 
20 
70 
.. 7 
80 

130 
72 
39 
20 

50 71 1 A 
2.5 75 1 p 
11 38 1 B 
9 1 A 
o4 298 1 A 

5 2315 1.5 A 

20 39 2 B 

25 20 1 B 
10 59 1 B 
15 o42 1 B 
3 158 1 B 

"' 183 1 B 
30 2 B 
12 210 1 B 

o4 95 B 

20 2 B 
..S 157 A 
35 B 
30 35 2 B 

17 1 A 
1 1..0 A 

0.7 
<.1 
0.3 

<.1 

<.1 

0.5 

1.3 
0.2 
O.o4 
<.1 

<.1 
30.0 

0.1 
<.1 

20.0 
0.7 

0.9 

<.1 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u 
MEAS. CONDUC. MEAS. 

YYVYMMDO IJrrl:v:J~om YYYYMMDD 

280 19780812 H 

REM. 

315.33 1 97eoe12 
18 . ..S 19780728 1510 197eo728 H CA. SALlY 

AT DEPTH 
99.78 19780813 
23.715 197eoe13 
59.98 197eoe13 
1 ... 00 198«)301 
11.23 197eoe1o 

20.09 197eoe1o 

115.19 19780810 

15.&4 umso811 
22.00 19720128 
32.85 1 97tl0811 

100.28 197eoe12 

5<4.98 19780812 
153.156 197tl0812 
93.30 197eoeo5 

105.00 19780805 

77.00 197eo806 
..a.oo 1976080e 
22.10 197eo806 
23.80 1 97eoeoe 

23.00 19810924 
109.00 1975110o4 

210 19780813 H 
u 

210 19780813 H 
2..S 1 9920229 H 

u 

70 19780810 H 

o400 19780810 H 

1100 19780811 H 
280 1 97eo811 H 
185 197eo811 H 
780 19780812 H 

270 19780812 u 
3<40 19780812 H 
950 197eo805 H CA 
o470 197eo805 H 

305 19780808 u 
350 197eoeo6 H 
500 19780808 H 
255 1 97808015 H 

G 
o458 1990ClQ00 H 
850 1 97eo&Oo4 H 

<40 
176 

7 1..S 1 A 0.1 100.55 19780727 265 1 Sil7eo726 H 

2 .. 75 91 1 A 0.8 153.27 19780728 

.. 9 600 5 2 p 120.0 2 ... 00 19810829 

~ 30 o4 1 B 

37 50 B 
..S 20 1 B 

50 50 2 B 

o47 300 .. .. p 
151 1000 p 

7.5 

50.0 
20.0 

50.0 

75.0 

20.90 19780923 
21.~ 19760923 
14.<40 19780923 
8.00 19870011 

15.71 19910913 
1o4.00 H~7..0100 

11.<40 19780924 
23.20 1 978()g00 

335 1 97eo728 H 

329 19910913 F 

11i15 197eoQ2S 

317 1Sil7eoQ23 I CA 

220 1 97801J2o4 u 
u .... 

00 
.c::. 



WELL 
NUMBER 

OODB01 

000802 
oeco 
04CBD 
0<4COA 

04CDC 

05AAA 
• OSBDA 

07ACC 
OQAAC 
OGBAB 
1<SAD1 

? 1<SAD2 

~ 1CBBB 

10080 

f.' 11ACO 

11ADB 

11880 
11CAB 

11COB 
11CDD 

11DAC 

<If 12ACO 

13BCB 
14ACC 

1o4CDC 
1<4088 

• 15AAB 
1MBA 

22CDD 

; 22DDC 
23ABB1 

0\NPER 

SMITH, ARTHUR 

SMITH, ARTHUR 
NELSON, KENNETH 
OLSEN, H. 
BOWMAN, CHARLES 

BOWMAN, CHARLES 

MAGILL, FU. TON 
MAGILL, BEN 
RDENOUR,G 
BOWMAN, CHARLES 
SMITH, LARRY 
LUCKIAMUTE 
WATER COOP 
LUCKIAMUTE 
WATER COOP 

BOWMAN, CHARLES 

LUCKIAMUTE 
WATER COOP 

WIGRICH FARMS 

FITTS, ROBERT 

FITTS, ROBERT 
COBINE, DONALD 

MURPHY, PAUL 
WESSEMAN,C 

SCHMDT NURSERY 

MORLON, GERALD 

SPINAS,DON 
HULTMAN, CECIL 

LARWOOD, JAMES 
HULTMAN, CECIL 
LUBBERS, RICH 
YOUNG, PAUL 

PRATHER, LELAND 

JOHNSON, REED 
WELLS, PERRY 

VEAR 
COM­
PLETED 

1SJ7<4 

1972 
1971 
1gj58 
1Ge7 

1987 

1961 
1991 
1970 
1964 
198<4 
1Sie9 

197<4 

1Sie5 

1978 

1gg() 

1SJ7<4 

1975 
1984 

1985 
1SJ73 

1957 

1983 

1970 
1961 

197<4 
1962 
1gg() 
1975 

1Sie9 

1979 
1SJ71 

AQUI- ELV 
FER ft 

Qoal 171 

Coal 175 
Coal 188 
Coal 198 
Coal 197 

Ts 212 

Coal 186 
Ts 2<45 
Ts 272 

Coal 187 
Ts 1W 
aat use 

Qat 1C57 

Oofl! 180 

Coal 173 

Qat 182 

Qat 163 

Qat 1.70 
Qat 15Q 

Qat 172 
Qat 170 

Qat 167 

Cal 167 

Cal 171 
Cal 1e9 

Cal 182 
Cal 188 
0a1 1n 
Cal 173 

Ts 361 

Ts 295 
Qat 192 

OPT DIA 
ft In 

Hso e 

52 8 
48 12 
55 8 
93 8 

80 8 

75 8 
95 e 

1..0 e 
12<4 10 
1..0 e 
75 10 

55 12 

182 12 

<42 12 

<49 12 

80 e 

55 e 
37 12 

<42 e 
70 e 

48 12 

38 12 

<40 e 
<40 12 

58 e 
36 12 
58 12 
8<4 10 

uu e 

"' 2<45 e 
so e 

OPEN 
INTERVAL 
TOP BOT 

ft ft 
53 55 
se 150 
S8 <42 
so 36 
<45 53 
31 <45 
85 70 
72 78 
so 35 
50 55 
8<4 89 
59 75 
89 93 

120 1<40 
48 55 
35 1<40 
22 <49 
<49 75 
35 <45 
48 55 
50 eo 

132 182 
25 35 

2<4 <43 
<43 <49 
39 <49 
50 eo 
35 48 
2<4 3<4 
35 37 
32 <40 
35 50 
55 70 
27 37 
37 48 

33 38 

32 38 
27 38 
38 <40 
<40 48 
23 3<4 
<49 57 
<42 57 
59 8<4 
91 110 

152 190 
97 2<45 
<45 48 

DEPTH YIELD DO PP M 
CASED gpm ft h 

ft 

eo ...o "' 2 8 

<47 
48 
55 
80 

80 

<40 "' 
80 2<4 
30 15 
so 55 

10 80 

1 8 
3 p 
2 8 
2 p 

2 p 

75 
9<4 

120 
12<4 
1..0 

8 3<4 
20 39 
30 30 

225 <47 
7.5 119 

970 ... , 

1 8 
1.5 p 

2 8 
3 p 
1 p 

59 p 

48 50 2 8 

132 350 51 8 p 

<42 350 2 2<4 p 

<43 65 8 

50 50 2 8 

50 50 28 
35 600 12 2 p 

<42 50 818 
55 <40 5 1 8 

37 150 R 

38 550 3.5 2.5 p 

40 25 <4 1 8 
38 640 p 

50 50 0 2 8 
36 700 
58 150 1 p 
59 50 0 2 8 

80 5 118 1 A 
HU 
97 <4 161 1 A 
50 <40 28 

SPEC. 
~. 

gpmJft 

10.0 

10.0 
3.3 
2.0 
0.9 

0.2 

0.2 
0.5 
1.0 
<4.8 
0.1 

23.7 

so.o 

6.9 

175.0 

65.0 

50.0 

50.0 
50.0 

6.3 
8.0 

157.0 

6.3 

50.0 

50.0 

<.1 

<.1 
40.0 

WATER 
LEVEL 

ft 

DATE SPECIFIC DATE u REM. 
MEAS. CONDUC. MEAS. 

YVYYMMDD llmhoS/an YYYYMMDD 

20.00 1 WeoG2<4 

22.00 19720717 
13.10 1978092<4 
15.00 19880729 
18.50 1 SJ780900 

7.00 19870305 

26.00 19811008 
29.00 19910817 
26.1 0 1 SJ76091 0 
20.00 198<40<428 

8.00 19840910 
1 ... so 19780930 

25.50 197eo930 
19.52 1990080e 
35.00 19850729 
27.13 19910919 
16.36 1990()8()& 

10.50 1 gg()1227 
17.70 19910913 
1<4.00 1SJ7<40103 

15.00 19751209 
15.96 19780923 

16.00 19650223 
23.00 1973090<4 

16.00 
20.00 
19.01 
2t.eo 
22.25 
22.36 
23.SO 
18.<40 

19570425 
19900926 
19910917 
19761001 
1 gg()()8()3 

19910913 
197eo923 
19780922 

21.00 1974051<4 
1 9.90 19760922 
19.01 19910919 
1 <4.90 19780929 

72.00 197eo929 

91.76 19911027 
36.40 1 Weo922 

180 197eoG2<4 H 

H 
380 197eoG2<4 I 

H 
290 1 97eo930 u 

u 

380 19761008 H 
70<4 19911201 H 8,C,I 
230 1 SJ78091 0 H 

u 
H 

171 19780930 P CA 

182 1SJ760930 P CA 
209 1 gg()()8()6 

284 199008()6 p 

288 19910913 

H 
U HYD 

273 19911019 H 
H 

327 19910917 

160 197eo923 H 
235 1 97eo922 I 

230 1SJ780922 

170 1 SJ76()92g 

90 19780929 H 

1W 19911027 H 
330 1SJ780922 H 

CA 

~ 
(X) 

Ul 



WELL OWNER YEAR AQUI- ELV OPT OIA OPEN DEPTH YIELD DO PPM SPEC. WATER DATE SPECIFIC DATE u REM. 
NUMBER COM- FER ft ft In INTERVAL CASED gpm ft h CAP. LEVEL MEAS. CONDUC. MEAS. 

PLETED TOP BOT ft gpmlft ft YYYVMWX> 1Jmhoa/cm YYYYMMDD 
ft ft 

• 23ABB2 WELLS, NINA 1gg() Cal 188 53 12 27 45 53 120 1Q p 8.3 21.50 1gg()1110 
25.33 11i191(lg13 

2SBBC GODFREY, RAY 1Q67 Ta 235 157 6 57 138 156 5 140 1 A <.1 10.80 1Q76(lg2g go 1Q76(lg2g H 
156 157 

OQS/(Y5W-
02ABD BOWMAN, CHARLES 1geg Ta 370 323 6 24 323 24 4 2Qe 2 A <.1 10.70 1976(lg01 215 1Q76(lg01 u 
12AID THOMAS, WILLARD 1~ Ta 350 120 8 80 100 100 10 70 B 0.1 6Q.Qts 1Q76(lg01 u 

SPRING OWNER SOURCE ELEV EST. SPECIFIC DATE 

NUMBER YIELD CONDUC. VISITED 

(g~m} f!mhos[cm@25C YYYYMMDD 

06S/5W- 21 CAD 1 BUSH, RICK aoai/Ty 170 <1 56316 1 'H~20206 
56850 1QQ20418 

5Q600 1QQ20802 

06S/05W- 21 CAD2 BUSH, RICK Qoai/Ty 170 <1 53Q88 1Q920104 

56210 1QQ20206 

5Q700 1QQ20802 

06S/05W- 21 CAD3 BUSH, RICK Qoai/Ty 170 <1 58300 1Q920802 

07S/05W-17ADC B&D TIMBER Tar 360 5-10 258 19Q10Q13 

07S/06W- 02ADD LUCERO, RICHARD Ty/Tar 350 -5 16302 19920105 

12551 1QQ20106 

13340 1Q920106 

12876 1QQ20106 

08S/05W- 08BCA Ty 460 ? 6_3 1QQ20106 

08S/05W- OQADB FLEMMING. JERRY Ta 780 -2 113 1QQ2022Q 

~ 
08S/06W -12AAB Ty 480 -to 115 1QQ20215 (X) 

0\ 



a XION3ddV 



10 

u 

20 

~ 
~:as 

f,. 
II 
l!u 
I 

u 

to ltU ltlO ltl5 IMO IM5 

" 
u 

20 

» 

~ 
~20 

fn 
II . §u 

u 

to 

» 

6S/4W-17aac, 270 feet (82.3 m) deep in 
Eocene-Oligocene undifferentiated sedimentary 
rock (Toe) or Spencer Formation (Ts). 
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7S/4W-6ddb, 89 feet (27.1 m) deep in Eocene­
Oligocene undifferentiated sedimentary rock 
(Toe). 
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8S/4W-3abd, 60 feet (18.3 m) deep in older 
alluvium (Qoal). 
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8S/6W-25ddd, 52 feet (15.8 m) deep in Yamhill 
Formation ( Ty) • 

189 



10 

u 

~ 
!!14 

r~~ 
il . i II 

zo 

22 

24 

~ 
!: 10 

~12 
il 
.. I< 

~ 

u 

II 

20 

ltU 1910 ltlS 

9S/4W-8ccc, 120 feet (36.6 m) deep in Spencer 
Formation (Ts). 

INS 

IUS U70 UH IHO INS 

9S/4W-11cab, 37 feet (11.3 m) deep in recent 
river alluvium (Qal). 
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6S/SW-2lcad 

supersaturated 
lo_g_ IAP/X1' > +1 
annite 
boehmite 
diaspore 
goethite 
hematite 
illite 
kaolinite 
k-mica 
laumontite 
magnetite 
Montmoril-AB 
Montmoril-BF 
Montmoril-Ca 

Ca-Cl S~ing Spec_._ ~~d. ~?1 1 00_9_ pmhoa/cmu ~ 
greatly 

near equilibrium !undersaturated }undersaturated 
-1 < log ~./X~~ "+1 _,..10 < j.~ IA_!/X1' :<---=l _log_ IAP/X1' < -10 
adularia 
albite 
AlOH3a 
chalcedony 
halloysite 
MnHP04 
pyrophyllite 
quartz 
Si glass 
Si gel 

alunite 
analcime 
anhydrite 
anorthite 
aragonite 
brucite 
calcite 
clinoenstatite 
diopside 
dolomite 
FeOH3a 
greenalite 
gypsum 
halite 
hydroxlapatite 
maghemite 
magnesite 
mirabilite 
MnC12,4w 
MnOH2 
nahcolite 
phillipsite 
prehnite 
rhodochrosite 
siderite 
thenardite 
vivianite 
wiarakite 

chlorite 
chrysotile 
clinoptilolite 
erionite 
forsterite 
hausmannite 
huntite 
hydromagnesite 
manganite 
MnC12,1w 
Mn2S04,3 
Mn3P04,2 
MnC12 
MnC12,2w 
Mn0H3 
MnS04 
mordenite 
phlogopite 
pryolusite 
rhodonite 
sepiolite 
talc 
tephroite 
tremolite 
trona 
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7a/6w-2add ca-cl Spring Spec. Cond. 14,000 pmhoa/am 
greatly 

supersaturated near equilibrium undersaturated undersaturated 
log IAP/lt'l' > +1 -1 < log IAP/K'l' < +1 -10 < log IAP/lt'l' < -1 log IAP/lt'l' < -10 
boehmite ALOH3a adularia brucite 
fluorapatite chalcedony albite chlorite 
kaolinite goethite alunite chrysotile 
mont-ca halloysite analcime clinoptilolite 
mont-BF hematite anhydrite diopside 

illite annite erionite 
K-mica anorthite forsterite 
laumontite aragonite greenalite 
montmor-BA calcite hausmanite 
pyrophyllite clinoenstatite huntite 
quartz diaspore hydromagnesite 
Si gel dolomite manganite 
Si glass FeOH3a Mn2S04,3 

fluorite Mn3P04,2 
gypsum MnCl2 
halite MnC12,1w 
hydroxlapatite MnC12,2w 
maghemite MnC12,4w 
magnesite MnOH2 
magnetite MnOH3 
mirabilite MnS04 
MnHP04 mordenite 
Nahcolite phlogopite 

I 

phillipsite pyrolusite 
prehnite rhodonite 
rhodochrosite sepiolite 
siderite talc 
wairakite tephroite 

thenardite 
tremolite 
trona 
vivianite 
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6a/4w-6bd Ca-Cl Former Oil and Gaa Well Spec. Cond. 49 1 700 pmhoa/cm 
greatly 

supersaturated near equilibrium undersaturated undersaturated 
loq IAP/ltT > +1 -1 < loq IAP/kT < +1 -10 < loq IAP/XT < -1 loq IAP/XT < -10 
goethite chalcedony anhydrite chrysotile 
hematite quartz aragonite forsterite 
magnetite Si glass brucite greenalite 

calcite hausmanite 
clinoenstatite huntitite 
diopside hydromag 
dolomite manganite 
FeOH3a Mn2S04,3 
gypsum MnC12 
halite MnC12,lw 
maghemite MnC12,2w 
magnesite Mn0H3 
mirabilite MnS04 
MnC12,4w pyrolusite 
MnOH2 rhodonite 
Nahcol sepiolite 
rhodochrosite talc 
Si gel tephroite 
siderite tremolite 
thenardite trona 
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7a/5w-29cad Na-Cl Water Wall Spec. Cond. 5500 pmhoa/cm 
... greatly 

supersaturated near equilibrium undersaturated undersaturated 
loq IAP/XT> +1 -1 < log IAP/XT < +1 -10 < loq IAP/KT < -1 loq IAP/XT < -10 

chalcedony aragonite brucite 
goethite calcite chrysolite 
quartz clinoanstatita diopside 
Si glass dolomite forsterite 

FeOH3a greenalite 
halite hausmanite 
hematite huntitite 
magnesite hydromagnesite 
magnetite hydroxlapatite 
MnCL2,4w maghemite 
MnHP04 manganite 
nahcolite Mn3P04,2 
rhodochrosite MnCL2 
Si gel MnCL2,lw 
siderite MnCL2,2w 
vivianite MnOH2 

MnOH3 
pyrolusite 
rhodonite 
sepiolite 

I 

talc 
tephroite 
tremolite 
trona 
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8s/4w-3lddal Na-Cl Water Wall Spec. Cond. 2650 pmhos/am 
greatly 

supersaturated near equilibrium undersaturated undersaturated I 

loq IAP/ltT > +1 -l < log IAP/KT < +1 -10 < log IAP/KT < -1 loq IAP/KT < -10 i 
dolomite aragonite anhydrite hausmanite 
FaOB3a calcite brucite hematite 
fluorapatite chalcedony clinoenstatita Mn2S04,3 
goethite chrysotile fluorite Mn3P04,2 
greenalite diopside forsterita MnC12 
maghemita hydroxlapatita gypsum MnC12,1w 
magnetite magnesite halite MnC12,4w 
siderite MnHP04 huntite MnC12,4w 
talc quartz hydromagnesite MnOH3 
tramolita rhodochrosite mirabilite MnS04 

sepiolite nahcolite pyrolusite 
Si gel thenardita trona 
Si glass MnOH2 
vivianite manganite 

tephroite 
rhodonite 
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Bruer Pool Na-Cl Mist Gas Field Wall Spec. Cond. 45,000 pmhoalCil, "·:: 

greatly ,, 

supersaturated near equilibrium undersaturated undersaturated 
loq IAP/XT > +1 -1 < log IAP/XT < +l •10 < loq IAP/KT < -1 log IAP/rl!, < •10' 
annite adularia alunite clinoptilolite 
boehmite albite analcime erionite 
diaspore AlOH3A anhydrite forsterite 
goethite aragonite anorthite hausmannite 
hematite calcite barite hydromagnesite I 

illite chalcedony brucite manganite 
kaolinite flourite chlorite Mn2S04,3 
R-mica halloysite chryosotile MnC12 
laumonite quartz clinoenstatite MnC12,1W 
magnetite Si glass diopside MnC12,2W 
montmoril-AB Si gel dolomite MnOH3 
montmoril-BF FeOH3A MnS04 
montmoril-CA greenalite mordenite 
phillipsite gypsum pyrolustite 
pyrophyllite halite rhodonite 

huntite tephroite 
maghemite trona 
magnesite 
mirabilite 
MnC12,4W 
Mn0H2 
nahcolite 
phlogopite 
prehnite 
rhodochrosite 
sepiolite 
siderite 
talc 
thenardite . 
thremolite 
wairakite 
witherite 
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Longview Fibre Na-Cl Mist Gaa Field Well Spec. Cond. 45,000 pmhoa/cm 
greatly · 

supersaturated near equilibrium undersaturated undersaturated 
log IAP/'I..T > +1 -1 < log IAP/!T < +1 -10 < log IAP/KT < -1 log IAP/XT< -10 
adularia Al0H3A alunite clinoptilolite 
albite analcime anhydrite erionite 
annite anorthite brucite hausmannite 
boehmite aragonite crysotile hydromagnesite 
diaspore barite clinoenstatite Mn2S04,3 
goethite calcite diopside MnCl2 
greenalite chalcedony dolomite MnCl2, lW 
halloysite chlorite FeOH3A MnC12,2W 
hematite flourite forsterite MnOH2 
illite maghemite gypsum MnS04 I 

I 

kaolinite prehnite halite mordenite I 

!-mica quartz huntite pyrolusite 
laumonite siderite magnesite rhondonite 
magnetite Si glass manganite trona 
montmoril-AB Si gel mirabilite 
montmoril-BF wairakite MnC12,4W 
montmoril-Ca MnOH2 
phillipsite Nahcolite 

phlogopite 
pyrophyllite 
rhodochrosite 
sepiolite 
talc 
tephrite 
thenardite 
tremolite 
witherite 
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