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ABSTRACf 

An Abstract of the thesis of Philip Ho for the Master of Science in Electrical and Com

puter Engineering presented November 5, 1993. 

Title: Investigation of Solution Space of Trees and DAGs for Realization of Combina

tional Logic in AT 6000 series FPGAs. 

Various tree and Directed Acyclic Graph structures have been used for represen

tation and manipulation of switching functions. Among these structures the Binary 

Decision DiagramJilave been the most widely used in logic synthesis. A BDD is a 

binary tree graph that represents the recursive execution of Shannon's expansion. A 

FDD is a directed function graph that represents the recursive execution of Reed Muller 

expansion. 

A family of decision diagrams for representation of Boolean function is intro

duced in this thesis. This family of Kronecker Functional Decision Diagrams (KFDD) 

includes the Binary Decision Diagrams (BDD) and Functional Decision Diagrams 

(FDD) as subsets. Due to this property, KFDDs can provide a more compact represen

tation of the functions than either of the two above-mentioned decision diagrams. 

The new notion of permuted KFDD is introduced to generate a compact circuit in 

FPGAs to represent a switching function. A permuted tree search is a free search 

method which is not limited by the order of variable and the expansion tree as in the 

cases of KFDD, BDD and FDD. 

A family of decision diagrams and the theory developed for them are presented in 



this thesis. The family of permuted Kronecker Functional Decision Diagrams includes 

BODs and FDDs as subsets is incorporated into program RESPER. Due to this pro

perty, permuted KFDD can provide a more compact circuit realization in the multi

level circuit. The circuit obtained can be realized directly with FPGAs like AT 6000 

series from Atmel. This algorithm is implemented on several MCNC benchmarks, the 

results compared with previous programs, TECHMAP and REMIT, are very encourag-

ing. 

The main achievement of this thesis is the creation of the algorithm which applies 

a permuted tree search method combined with Davia Expansion and generates Directed 

Acyclic Graph which is next mapped to a compact circuit realization. 
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CHAPTER I 

INTRODUCTION 

Digital logic designers have the opportunity to design a circuit from Standard 

SSI!MSI devices, Standard LSINLSI devices, Gate array devices, Standard-cell dev

ices, Full-custom devices and Programmable Logic Devices. Among all these, PLDs 

are the most commonly used. It is a digitaliC capable of being programmed to provide 

a variety of different logical functions. Its turn around time is very short, ranging from 

a few minutes to a few hours, which significantly reduces the time of a product to 

market. Because of these, the PLD technology receives a great deal of popularity in the 

electronic industry. 

PLDs were first introduced by Harris in 1970. The type introduced were the Pro

grammable Read-Only Memory, which had a structure of a fixed AND array followed 

by a programmable OR array. This type of AND/OR structures began to dominate the 

PLD technology. About the late 70s and early 80s, the Programmable Array Logic dev

ice (PAL) based on PLD architecture was invented at Monolithic Memories. It consists 

of a programmable AND array followed by a fixed OR array. In 1985, Xilinx intro

duced its Logic Cell Array, now called a Field Programmable Gate Array (FPGA), 

which had a very different achitecture from the AND/OR structure. It consisted of a 

matrix of Configurable Logic Blocks (CLB) surrounded by a ring of Input/Output inter

face Blocks, and an interconnect network for connecting the CLB blocks. Each CLB is 

capable of implementing an arbitrary Boolean function of its input variables. This new 

design style started to create a new wave of the PLD industry. Actellater introduced 



multiplexer-based cell in the basic logic block instead of the Lookup Table approach of 

Xilinx. Recently, Concurrent Logic (now part of Atmel) introduced another kind of 

FPGA structure, which contains an array of small-size cells. Each cell contains the 

most commonly used simple logic and wiring functions. Synthesis for this type of struc

ture/ is the subject of this thesis. 

FPGAs can be used in almost all of the applications that currently use PLDs and 

small scale integration (SSI) logic chips. FPGAs are a completely general medium for 

implementing digital logic. They are particularly suited for implementation of ASICs, 

such as an ffiM PS/2 micro channel interface, a 1 megabit FIFO controller, etc. Ran

dom logic circuitry is usually implemented using PALs. If the speed of the circuit is not 

of_the-'Critical concern, such circuitry can be implemented advantageously with FPGAs 

as well. FPGAs are almost ideally suited for prototyping applications. The low cost of 

implementation and the short time needed to physically realize a given design, provide 

enormous advantages over more traditional approaches to build prototype hardware. A 

whole new class of computers has been made possible with the advent of in-circuit re

programmable FPGAs. These machines consist of a board of such FPGAs, usually with 

the pins of neighboring chips connected. The idea is that a software program can be 

"compiled" into hardware rather than software. This hardware is then implemented by 

programming the board of FPGAs. Algotronix Ltd. sells a small add-on board for ffiM 

PCs that can perform this function. At the research level, the Digital Equipment Cor

poration in Paris[29] has achieved performance ranging from 25 billion operations per 

second up to 264 billion operation per second on applications such as RSA cryptogra

phy, the discrete cosine transform, Ziv-Lempel encoding and 2D convolution. FPGAs 

are also attractive when it is desirable to change the structure of a given machine that is 

already in operation. 

Since there have been a tremendous efforts to develop different types of digital 
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ICs, sophisticated logic design tools are required to allow for their fast prototyping. 

Most of the well-known logic design tools like ESPRESS0[26] and PALMINI[27] con-

centrated on fast two level AND/OR logic minimization. However, multi-level circuits 

have a smaller and often faster realizations for most logic functions, synthesis tools 

started to emerge for minimization of the circuit area in multi-level realization. Syn-
" 

thesis tools like MISIT[28] are now the cores in the industrial Computer Aided logic 

design systems. 

The logic synthesis methods deve~oped for FPGAs have been based on algebraic 

decomposition (factorization) methods[25]. However, it is known that logic synthesis 

methods based on Boolean decomposition methods can produce better results[24]. 

Moreover, those core CAD tools have been based on the "unate paradigm". The "unate 

paradigm" is the assumption that most of the logic functions occuring in logic design 

are unate or nearly unate. The meaning of "unate" or "nearly unate" for logic minimi-

zation purposes is, that the circuit realization of a nearly unate function with AND and 

OR gates. is smaller in terms of the numbers of gates than that of a circuit using the 

~ND and EXOR gates. On the other hand, the meaning of "linear" or "nearly linear" 

for logic minimization purposes is that the circuit realization of a nearly linear function 

with AND and EXOR gates is smaller in terms of the numbers of gates than that of a 

circuit using the AND and OR gates. Arithmetic function like counters, adders, multi-

pliers, signal processing functions and error correcting logic belong to the class of 

nearly linear functions. Thus those functions will have a smaller circuit realization if 

the EfCOR gate is incorporated into the design. 

The synthesis incorporating the EXOR gate has been neglected because the 

EXOR gate was perceived to be slower and having a larger circuit area. However, 

those upcoming FPGAs from Xilinx, Actel, and Atmel allow the implementation of the 

EXOR gate without any speed or circuit size penalty in comparison to the AND and OR 
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gates. Since the Atmel cells can realize the set of functions used in Functional Decision 

Diagrams and Reed Muller trees, these expansions can be easily applied to this type of 

FPGAs. The basic cell of the AT 6000 series can be programmed to one-bit multiplexer 

and the three-input AND/EXOR cell. This suggests using these cells for a tree-like 

expansions such as GRM trees and RM trees. Papers [6], [3], and [7] use EXOR gates 

to minimize the multi-level circuits. 

The initial phase of many logic synthesis systems, such as MIS IT and BOLD[30], 

restructures the original network to reduce a cost function that is calculated directly 

from the network itself. The intention is to improve the final circuit by reducing the 

complexity of the network. In this phase, the method does not consider the type of ele

ment that will be used for the final circuit. After the initial phase which produces the 

optimized network, the technology mapping stage transforms this network into the final 

circuit. This is done by selecting pieces of the network that can be implemented by one 

of the available circuit elements and specifying how these elements are to be intercon

nected. The circuit is optimized to reduce a cost function that typically incorporates 

measures of both the area and delay. 

This thesis introduces an algorithm to produce a more compact circuit realization 

as a multi-level circuit. To accomplish this goal, a Functional Decision Diagram which 

combines permuted tree search method with Davio Expansion using Directed Acyclic 

Graph is introduced. The obtained decision diagram is mapped into AT 6000 FPGA 

series resources. This algorithm is implemented in RESPER and the results are very 

encouraging. First, this thesis will look into the architecture of the AT 6000 FPGA 

series. It then introduces the family of multi-level expansions in Chapter 5. In Chapter 

6, the full description of RESPER and step-by-step circuit realization with one of the 

MCNC benchmarks are given. Directed Acyclic Graph with negated edges is intro

duced in Chapter 6. Chapter 7 compares the results with several algorithms [3, 18] 
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based on Davio Expansion which tend to map into Atmel FPGAs. Since not much 

research had been done related to mapping ESOP function and the internal operation of 

RESPER can accept ESOP function with some modification, a paper design will be 

presented using the algorithm from this thesis in chapter 8. 
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CHAPTER II 

FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

Gate Arrays are an important branch of custom VLSI (Very Large Scale Integra

tion). By 1990, it is estimated that more than half of all semiconductors sold will be 

semi custom designs of which gate arrays are a major part. Today, gate arrays outsell 

standard cell ICs by 4 to 1 margin. Over 70 vendors currently offer gate arrays and this 

number is constantly increasing. Gate arrays are semicustom digital integrated circuits, 

which are mostly made ahead of time and which are customized to the users' need by 

defining one or more layers of metal (via the appropriate mask) on the die itself. 

Each of these techniques, full custom approach and semi-custom approach, 

requires an extensive manufacturing effort, taking several months from beginning to 

end. This results in a high cost for each unit unless large volumes are produced. 

In the electronics industry, it is vital to reach the market with new products in the 

shortest possible times, so the reduction of the development and production times is 

essential. It is also important that the financial risks of developing a new product can be 

limited so that more new ideas can be prototyped. Field Programmable Gate Arrays 

(FPGAs) are a solution to these time-to-market and financial risk problems because 

they provide instant manufacturing and very low cost prototypes. A field programm

able device is a device in which the final logic structure can be directly configured by 

the end user without the use of an IC fabrication facility. 



ILL EVOLUTION OF PROGRAMMABLE DEVICE 

Programmable devices have long played a key role in the design of digital 

hardware. They are general purpose chips that can be configured for a wide variety of 

applications. There are several types of programmable devices such as fuse-link pro

grammable, electrically programmable and software programmable. Examples of 

fuse-link programmable devices are: programmable read-only memories (PROMs), pro

grammable array logics (PALs), and field programmable logic arrays (FPGAs). Exam

ples of electrically programmable device are electrically erasable programmable read

only memories (EEPROMs) and EPROMs. An example of a device that can be 

software programmable to perform a logic function is a microprocessor. 

PROMs are a viable alternative for realizing simple logic circuits, and its struc

ture is well suited for implementing computer memories. Another type of device for 

implementing a logic circuit is PLD. It comprises an array of AND gates connected to 

an array of OR gates. The logic circuit implemented in a PLD is a Sum-Of-Products 

form. The most basic version of PLD is the PAL. It is a collection of pre-made logic 

functions on a chip. It consists of a programmable-AND followed by a fixed-OR plane. 

On a PAL, the interconnect lines among the logic functions are fixed in place. The 

users' only choice is to break or not break (via fusible link) a given line. A more flexi

ble version of PAL is the PLA. PLAs also comprise an AND plane followed by an OR 

plane, but both planes are programmable. They are available in both mask programm

able and field-programmable options. For mask programmable devices, it is made to 

the point where the metallization will define its function. For field programmable dev

ices, its connections always involve some sort of programmable switch (such as a fuse). 

Although both types of PLDs allow high speed performance implementation of logic 

circuits, they can only implement small logic circuits that can be represented with a 
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modest number of product terms. 

The most general type of programmable devices consists of an array of uncom

mitted elements that can be interconnected according to a user's specifications. One of 

the classes of devices is known as the Mask Programmable Gate Arrays (MPGAs). It 

consists of rows of transistors that can be interconnected to implement a desired logic 

circuit. User specified connections are available both within the rows (to implement 

basic logic gates) and between the rows (to connect the basic gates). In MPGAs, all the 

mask layers that define the circuitry of the chip are pre-defined by the manufacturer 

except those that specify the final metal layers. These metal layers are customized to 

connect the transistors in the array to implement the desired circuit. The main advan

tage of MPGAs over PLDs is that they can implement a much larger circuit The other 

class of devices is known as Field Programmable Gate Array (FPGA), which combines 

the programmablility of a PLD and the scalable interconnection structure of an MPGA. 

Like MPGAs, the FPGAs consist of an array of uncommitted elements that can be inter

connected in a general way. Like PALs, the interconnections between the elements are 

user programmable. FPGAs were first introduced by Xilinx in 1985. Since then many 

different FPGAs have been developed by a number of companies: Actel, Algotronix, 

Altera, Atmel, among others. 

ll.2. IMPLEMENTATION PROCESS 

A designer who wants to make good use of FPGAs must have access to an 

efficient CAD system. Figure 1 shows the steps involved in a typical CAD system for 

implementing a circuit in an FPGA. 
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Input Design 

Logic Optimization 

Technology Mapping 

Placement 

Routing 

Programming unit to configure FPGA 

Figure 1. CAD system for FPGAs. 

The starting point for the design process is the initial logic entry of the circuit that 

is to be implemented. The circuit description used in this thesis is disjoint ON cubes 

written in PLA format. This set of disjoint ON cubes is then processed by a logic optim

izations tool. The goal is to optimize the area and speed of the final circuit. The optim

ized disjoint ON cubes are next transformed into a circuit using FPGA logic blocks. 

This is done by the technology mapping stage. Having mapped the circuit into logic 

blocks, it is necessary to decide where to place each block in the FPGA array. A place

ment program is used to solve this problem. The final step in the CAD system is 
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performed by the routing software, which assigns the FPGA wire segments and chooses 

programmable switches to establish the required connections among the logic blocks. 

Upon the successful completion of the placement and routing, the CAD system's output 

is fed to a programming unit to configure the final FPGA chip. 

This thesis involves only the logic optimization and technology mapping. The 

Davio Expansion is applied to decompose and optimize the boolean function, and 

transform it into a circuit of Atmel' s FPGA logic blocks. 



CHAPTER III 

ARCHITECTURE OF AT 6000 SERIES 

The AT 6000 series is a new generation of Field Programmable Gate Arrays 

introduced by Atmel. Its general architecture is based on an array of logic cells. In con

trast to other FPGAs, like the Actel's Multiplexer Based or Xilinx's Table Look Up 

based approaches, the logic cells in the AT 6000 series can realize functions of only up 

to three input variables. Therefore, the architecture is also called "Fine Grain Cellular 

Array FPGAs". Because this thesis introduces the synthesis methods that are especially 

suited for the AT 6000 series, the basic features of this architecture will be reviewed in 

this chapter. 

The AT 6000 series employs a patented, symmetrical architecture consisting of 

many small yet powerful logic cells connected to a flexible bussing network and sur

rounded by a programmable I/0. The Atmel 's architecture was developed to provide 

the highest levels of performance, functional density and design flexiblility in an FPGA. 

The cells' small size allows for the realization of arrays with a large number of cells. 

For example, the AT 6000 has 6400 logic cells while the largest Xilinx chip has only 

900 cells, so that the lower cell complexity is traded off for the larger number of cells. 

A simple, high speed bussing network offers fast, efficient communication over 

medium and long distances. Thus, the AT 6000 series provides the density and perfor

mance of custom gate arrays without the prototyping and debugging delays necessary 

for mask-programmed devices. 
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III.l. BUSING NElWORK 

There are two kinds of buses: local and express. Local buses are the link between 

the array of cells and the bussing network. There are two local buses North-South 1 

and North-South 2 for every column of cells, and two local buses East-West 1 and 

East-West 2 for every row of cells. Each local bus is connected to every cell in its 

column or row, thus providing every cell in the array with read/write access to two 

North-South and two East-West buses. 

Each cell, in addition, provides the ability to make a 90 degree turn between 

either of the two North-South buses and either of the two East-West buses. Express 

buses are not connected directly to cells and, thus, provide the highest speeds. Each 

express bus is paired with a local bus. There is a connective unit, a repeater, spaced 

every eight cells, which serves to allow interchanges between local and express buses. 

III.2. CELL STRUCTURE 

The Atmel cell (Fig 4) is simple and small and yet can be programmed to per

form all the logic and wiring functions needed to implement any digital circuit. 

Because its four sides are functionally identical, each cell is completely symmetrical. 

In addition to the four local bus connections, a cell receives eight inputs and pro

vides two outputs to its North, South, East, and West neighbors. These ten inputs and 

outputs are divided into two classes: A and B. There is an A input and a B input for 

each neighboring cell and a single A output and single B output driving all four neigh

bors. Between cells, an A output is always connected to an A input and a B output to a 

B input. 
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Within the cell, the four A inputs and the four B inputs enter two separate, 

independently configurable multiplexers. Cell flexibility is enhanced by allowing each 

multiplexer to select also the logical constant 1. The two multiplexer outputs enter the 

two upstream AND gates. The write access to the four local buses are controlled by the 

tri-state buffer. 
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lll.3. LOGIC STATES 

The Atmel cell implements a rich and powerful set of logic functions, stemming 

from forty-four cell states. Some states use both A and B inputs. Other states are 

created by selecting the 1 input on either or both of the input to the multiplexer. There 
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are twenty-four purely combinational states with a range of functions, including AND, 

OR~ NAND~ NOR and one-bit multiplexer. Five constant states that produce all combi

nations of constant values at two cells outputs as shown in Figure 5. 

1 

clock 

reset 

A A A A B B B B 

Figure 4. Cell Structure. 
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CHAPTER IV 

CURRENT RESEARCH VERSUS OUR APPROACH 

Recently, each of these programs [3, 15, 23, 18] introduced some new multilevel 

formalization. In this thesis, the researcher puts together, compares and generalizes 

these formalisms. The program, RESPER, was developed and several comparisons 

were done. 

IV.l. CURRENT RESEARCH 

The REMIT program(3] starts from a completely specified Boolean function in 

the form of an array of ON disjoint cubes, and generates a permuted tree using Reed

Muller Expansion. The variable selection rules select the variable that occurs most 

often in disjoint cubes, one at a time. 

RMS program[15] uses Reed-Muller Expansion to create a new efficient 

representation called Functional Decision Diagrams (FDDs). It starts with a two level 

SOP to calculate an order of variables in the FDD according to the most often used 

variables. The isomorphic subtrees are next reduced. 

ASYL program[23] applies Shannon Expansion to build the BDD of each func

tion. It also uses the Reduced Order Binary Decision Diagrams (ROBDDs) approach to 

minimize the area. Its target is on ACfEL's multiplexer-based Field Programmable 

Gate Arrays (FPGAs). Its heuristics to select the variable are the following: 

1 Select a variable that appears in all product terms under the same polarity. 
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2 If a product tenn is restricted to a simple literal then select this literal. 

3 If all the variables appear only once in a function then select the smallest product 

term. 

4 Select the set of variables of maximum occurance. 

TECHMAP program[18] uses the concepts of BODs and FDDs applied to 

ACfEL and Atmel FPGAs by generating the Shared Reduced Ordered Kronecker Deci

sion Diagrams (SROKDDs). It adapted a breadth-first top-down algorithm for the 

SROKDD generation. If the input function is a multiple output function, it decomposes 

a single one-output function at a time. Based on the variable and expansion selection of 

the first single-output function, it decomposes the other single-output functions and 

generates the Kronecker Decision Diagram (KDD). During the decomposition, it com

bines all those isomorphic trees in order to generate a SROKDD. Its heuristics to select 

the variable are based on the following three conditions. All these conditions can deter-

mine that the next level node is redundant. 

Condition 1: 

fi =0 

fi = 1 

fi = Xj 

fi = Xj 

It states that the data input function fi is either a constant value, a single variable, or a 

negation of a variable. 

Condition 2: 

f.=f 
1 J 

It states that data input function fi is identical to input function fj in the same level of 
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the tree. 

Condition 3: 

fi =~ 

It states that data input function fi is the complement of data input function fj in the 

same level of the tree. 

Its heuristics to select the expansion are divided into three following modes. 

-Cl The expansion of a node is selected based on the two functions out of f5i, f~, and 

fSi E9 f~ having the highest fan-out In case of a tie, the heuristic C3 is applied. 

-C2 If the variable occurs mostly in a positive form in the output function, Davio 

expansion 2 is selected. If the variable occurs mostly in a negative form, Davio 

expansion 3 is selected. If there is a tie, the Shannon expansion is chosen. 

-C3 The expansion of a node is selected based on the two functions out of f5 i, fs;, and 

fSi E9 f~ having the least number of product terms. 

The main objective of the above FPGA technology mapping approaches was to 

minimize the area. 

IV.2. OUR APPROACH 

We developed the concept of the Reduced Shared Permuted Kronecker Decision 

Diagram (RSPKDD), and we applied most of the heuristics from the above researches 

to mapping as one of the possible applications of the RSPKDD. Our FPGA mapping 

techniques try to construct the network in such a way that: 

• the decomposed network is technology-feasible for the Atmel devices. 
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• the number of nodes in the network is as small as possible. 

• the path from the input to output is as short as possible. 

• the selected variable and expansion can vary in every level of the tree. 

The presented method has the following assets: 

• The decomposition methods are specifically adapted to the FPGAs whose gen

eral architectures are based on logic cells which can take up to three input vari

ables. 

• It applies a set of rules to select a good variable and an appropriate expansion 

for each node. 

• It uses the shared reduced order approach to reduce the number of nodes and 

levels . 



CHAPTER V 

THE DAVIO EXPANSION 

The general objective of decomposition methods in logic synthesis is to decom

pose a given set of functions into smaller subfunctions that can be realized by certain 

gate structures so that the final circuit realization is optimized for speed and area. Usu

ally, a large logic function is difficult to analyze and to find a small circuit realization 

for it One way to solve the problem is to decompose the initial logic function into 

smaller blocks which are easier to implement There are two basic approaches to 

decomposition: the algebraic factorization and the Boolean decomposition. The alge

braic decomposition methods are based on the factoring and extraction of common 

functions. They operate not on Boolean functions, but on certain expressions that 

describe these functions. Boolean decomposition methods take advantage of the struc

ture of the function itself to be decomposed. Because they operate on the whole func

tions they are computationally more expensive than the algebraic methods. Therefore, 

the multilevel synthesis tools like RENO and MISII make use of algebraic methods to 

find a local minimum and then try to apply Boolean decomposition methods to find a 

better local minimum. 

One of the most fundamental concepts for the decomposition of logic functions is 

the Shannon expansion. The Shannon expansion can always be applied to a logic func

tion in contrast to other types of Boolean decomposition like the Ashenhurst or Curtis 

decompositions. These decompositions can be only applied to logic functions belong-



22 

ing to certain classes, like the class of disjoint decomposable functions. 

Therefore, this chapter reviews the concepts of the Davio expansions over the 

Galois Field (2) and shows its circuit realizations. It will be shown that the Davio 

expansion is ideally suited to the decomposition of logic functions to subfunctions that 

can be realized with the AT 6000 series. 

V.l. DAVIO EXPANSIONS AND DECOMPOSffiON 

The well-known Davio expansion is given by 

f (xb··· Xj, ... Xn) =Xi· f (xh··· Xi=l, ... , xn) ffi Xi· f (xh··· xi=O, ... , Xn) (1) 

By applying the rules a= 1 EB a and a= 1 EB a one obtains the two Davio expansions: 

f (xt, ... Xi,··· xJ = 
f (xh··· Xj=O, ... , Xn) EB [xi· [f (xl,··· xi=O, ... , xn) EB f (xl,··· Xi=l, ... , Xn)l] (2) 

f (xt, ... Xj, ... Xn) = 

f (xl,··· Xi=l, ... , Xn) ffi [xi· [f (xb··· Xi=O, ... , Xn) ffi f (xb··· Xi=l, ... , Xn)J] (3) 

in short form: 

f = x· · f . EB x· · f-1 X1 1 Xi 
(4) 

f = f- ffi X· · [f . ffi f-) = f- ffi X· • g Xi 1 X, Xi Xi 1 
(5) 

f = fxi ffi Xi • [fxi ffi f~] = fxi ffi Xi· g (6) 

The circuit realization of Equation (4) is given by a multiplexer gate while Equation (5) 

and Equation (6) describe an AND/EXOR gate structure. 

-~--------------------------................. __ 1 
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a. Circuit Realization of Equation (4): 

fx-i 

f 
f~i 

Xi 

b. Circuit Realization of Equation (5): 

:~.~)D-f 
c. Circuit Realization of Equation ( 6): 

:~.~)D-f 
Figure 6. Circuit realizations of the Davio expansions. 

It can be observed from Figure 6, the circuit realization of the three expansions 

correspond to the realizable functions of a macrocell of the Atmel AT 6000 series. 

Therefore, the Davio expansions are ideally suited for the decomposition of Boolean 

functions with respect to the realization with the AT 6000 series. It is shown in Figure 

7 and Figure 8. 
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The application of (4) to all variables of a function leads to the construction of a 

BDD. BDDs are a graph representation of Boolean functions proposed by Akers[22] 

and developed by Bryant[lO]. Multiple BDDs can be joined into a single graph which 

consists of the BDDs sharing their sub-graphs. Minato[4] called them Shared BODs. 
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The application of (5) and (6) to each variable generates adaptive logic trees [15,16,17]. 

The FDDs are obtained by applying the reduction procedures used for BDDs[lO] to the 

adaptive logic trees. If only equation (5) is used repeatedly for some fixed order of 

expansion variables, the Reed-Muller Trees are created. If for every variable one uses 

(5) and (6), the Generalized RM Trees are created. If the trees are based on equation 

(2) but with different orders of variables in subtrees, the Permuted Reed Muller tree is 

obtained. If all three expansions are applied with a fixed order of variables, the 

Kronecker Reed-Muller trees are obtained. Applying the expansion in a tree for a fixed 

order of expansion variables, but selecting various variable polarities in different sub

trees, the Pseudo Kronecker Reed-Muller tree is obtained [19,20]. The Ordered 

Kronecker Decision Diagram (OKDD) is the decision tree obtained by applying any of 

the three expansions with fixed order of variables [18]. The Reduced OKDD (ROKDD) 

is obtained from the OKDD by removing isomorphic subtrees. The Shared ROKDD 

(SROKDD) for multioutput function is obtained similar to [14,23], connecting the iso

morphic subtrees with positive or negative (output inverter) edges. The Permuted 

Kronecker Decision Diagram (PKDD) is the decision tree obtained by applying any of 

the three expansions with a different order of variables in subtrees. The Reduced 

Shared PKDD is the decision tree obtained by applying any of the three expansions 

with different order of variables in subtrees, and all isomorphic subtrees will be con

nected with either positive or negative edges. The REduced Shared PERmuted 

(RESPER) is the program which implements the Reduced Shared PKDD to decompose 

boolean functions and map to Atmel FPGAs. This program will be introduced in a later 

chapter. 
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V.2. CIRCUIT REALIZATIONS OBTAINED BY THE DAVIO EXPANSION 

The relations between Reed-Muller Tree, Generalized Reed-Muller Tree, Per

muted Reed-Muller Tree, and Kronecker Reed-Muller Tree introduced in recent papers 

are illustrated here. Different type of trees generated from Davio Expansion form the 

solution space investigated in this thesis, and the investigation of this space has been 

one of the major motives of this thesis. In this section some basic terms and theories 

will be defined, and based on those theories a space is created. 

Definition 1. Literal 

The literal of a variable Xi can be in either positive (xi) or negative (xi) form. 

Definition 2. Polarity 

The polarity of a variable is "1" for a positive literal and "0" for a negative literal. 

Definition 3. Decomposition 

The decomposition means to decompose a large bloc of logic, which is difficult to 

analyze and implement, into several relatively smaller blocks which are easier to imple

ment. 

Definition 4. Terminal Vertex 

A teminal vertex has an attribute a value value(v) e 0, 1. 

Definition 5. Non-terminal Vertex 

A non-terminal vertex has an attribute an argument index index(v) e 1, ... , n and 

two children low(v), high(v) e V. 

Definition 6. Directed Graph 
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A directed graph is a finite nonempty set V together with an irreftexive relation R 

on V. As with graphs, the elements of V are called vertices. Each ordered pair in R is 

referred to as a directed edge. 

Definition 7. Cycle 

A u-v trail in which u=v and which contains at least three edges is called a cir

cuit. A cicuit is a graph G in which no vertices are repeated (except the first and last) is 

called a cycle of G. 

Definition 8. Acyclic Graph 

A graph has no cycle is acyclic graph. 

Definition 9. Directed Acyclic Graph 

A directed acyclic graph (DAG) is a graph which is directed and acyclic. An 

acyclic digraph has at least one point of outdegree or indegree. 

Definition 10. Tree 

A tree is a connected graph with no cycles. Let u and v be any vertices of a tree T. 

Then there is a unique path in T from u to v. 

Definition 11. Binary Decision Diagram 

Binary Decision Diagram (BDD) (Fig. 9) is a Directed Acyclic Graph having 

root vertex v denoting a function fv denoted recursively as 

1. If v is a tenninal vertex: 

a) If value(v) = 1, then fv = 1. 

b) If value(v) = 0, then fv = 0. 

2. If vis a non terminal vertex with index(v)=i, then fv is the function 
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fv(xl .... , xrJ =X. ftow(v)(X 1, ... , xrJ +X . fhigh(v)(x 1, ... , Xn) 

where the cofactors are defined as f1ow(v)(x1, ... , Xn) = (xl, ... , Xi- b 0, ... , Xn) 

and fhigh(v)Cxl, ... , Xn) = (xl, ... ,Xi-}, 1, ... , Xn)· 

F=a+b·c 

c 

b 

a 

x~ equ4:x·f,EBX·fx 

fx fx 

Figure 9. Binary Decision Diagram. 

Definition 12. Ordered Function Graph 

An ordered function graph is a function graph such that for any non terminal ver

tex v, if low(v) is also non tenninal, then index(v) < index(low(v )). Similary, if high(v) 

is nontenninal, then index(v) <index(high(v)). 

Definition 13. Ordered Binary Decision Diagram 

An ordered BDD is an Ordered Binary Decision Diagram (OBDD ). 

Definition 14. Reduced Ordered Function Graph 
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An ordered function graph is reduced if it contains no vertex v with low(v) = 

high(v ), nor does it contain distinct vertices v and v' such that the sub graphs rooted by v 

and v' are isomorphic. 

Definition 15. Reduced Ordered Binary Decision Diagram 

An reduced OBDD is an Reduced Binary Decision Diagram (ROBDD ). 

Definition 16. Shared Reduced Ordered BDD 

Shared Reduced Ordered BOD (SBDD) is a DAG which contains multiple BODs 

sharing their subgraphs. (Fig 1 0) 

Ft =a· b F4 =a+b 

b 

a 

Figure 10. Shared BDD. 

Definition 17. Adaptive Logic Tree 

An Adaptive Logic Tree[l6] is a function graph having root vertex v denoting a 

function fv denoted recursively as 
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1. If v is a terminal vertex: 

a) If value(v) = 1, then fv = 1. 

b) If value(v) = 0, then fv = 0. 

2. If vis a non terminal vertex with index(v)=i, then fv is the function 

fv(Xt, ... , xn) =X. flow(v)(Xt .... , xn) +X . fhigh(v)(XI .... , Xn) 

Example 1: Let Fn represent a general Boolean function of n independent variables Xi, 1 

< i < n. We can then express each Fn as a canonical sum of products. Thus the general 

structure of Fn may be developed as follows: 

Po= ko · · · 

F1 = x'1 · ko +XI· k1 

Fz=x'z·x't·ko+x'z·xl·kl+x2·x'1·kz+xz·x1·k3 

(7) 

(8) 

(9) 

where x'i means .. not Xi11
, +is the OR function,· is the AND function and ki = 0 or 1. 

Thus the ki is the coefficients in the minterm expansion of the function. With a 

suitable choice of ki, Fn can take on any of the available functions of n variables. 

Further, we see that, from the general form, 

Fn = x'n. Fn-1 + Xn. p;_l (10) 

where Fr is Fj with different set of ki. This leads to an implementation of equation 10 

with the form of that of Figure 11. We can build up a general adaptive logic tree for the 

n variables in terms of the circuit of Figure 11 and a mechanisation of the recursion 

given by equation 10. 
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Fn-1 
, 

Xn 

F;_l 

·~ 
I 

Xn 

Figure 11. Circuit of the general form. 

Definition 18. Functional Decision Diagram 

A Functional Decision Diagram (FDD) is a DAG having root vertex v denoting a 

function fv denoted recursively as 

1. H v is a terminal vertex: 

a) lfvalue(v) = 1, then fv = 1. 

b) If value(v) = 0, then fv = 0. 

2. If vis a nonterminal vertex with index(v)=i, then fv is the function of fv(x0. 

Based on the Shannon Expansion of the two-level fixed-polarity Reed-Muller 

Expansion, there exists a recursively defined multilevel representation[ 16]: 

F0 = F0 (Xt, X2, .•• , X0 ) 

= F0 (X0 = 0) · X0 ffi F0 (X0 = 1) · X0 

= F0 (X0 = 0) ffi [F0 (X0 = 0) EB Fn(X0 = 1)] · Xn 

= Fn-1 ffi F;_l · X0 

where F;_1 is a function of n- 1 variables with identical structure but different 

coefficients than Fn-l· As a prerequisite, the input cubes must be disjoint. Graphically 

this could be illustrated as in Figure 12: 
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Fn-1 

F;_l 

Figure 12. Function graph of Fn. 

Using this recursive, multi-level representation, the function of four variables 

F =a· b · d + b · c · d + b · c · d becomes an adaptive logic tree[l6, 17] shown in Figure 

11. 

This logic tree could be easily transformed into a binary tree of Figure 14, by 

combining the AND and EXOR nodes from Figure 12 into a single node. Note that this 

is a multi-level representation of the canonical fixed-polarity RME with all of its 

coefficients. 

Using the same reduction procedures used for BDDs [10]: 

• combine all isomorphic subtrees. 

• eliminate all nodes with isomorphic children. 

and obtains a reduced representation of this logic tree. 

The result is a canonical representation of the functional domain (see Fig 15). It 

is called Functional Decision Diagram since each node of the FDD decides whether the 

product term belongs to the function or not. 
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F 

Figure 15. Functional Decision Diagram. 

Applying the theory of Functional Decision Diagrams, we can use different com

binations of Davio expansions to generate different types of trees. 

Definition 19. Reed-Muller Tree 

A Reed-Muller Tree (Fig. 16) is a function graph having root vertex v denoting a 

function fv denoted recursively as: 

1. If v is a terminal vertex: 

a. If value(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 

2. If v is a non-terminal vertex with index(v) = i, the fv is one and only of the 

functions: 

a. fv(XJ, ... 'Xn) = ftow(v)(XI,· .. ,Xn) EB X. [fhigh(v)(Xl, ... ,xJ EB flow(v)(XI, ... ,xJ]. 
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Any path from the root to the terminal vertices will traverse the same order of variables. 

F =abed + abed+ ac 

x ~ equ 5 : = fx $ x · [fx $ fxl 

f- fx E9 fx 
X 

Figure 16. Reed-Muller Tree. 

Definition 20. Permuted Reed-Muller Tree 

A Permuted Reed-Muller Tree (Fig. 17) is a function graph having root vertex v 

denoting a function fv denoted recursively as: 

1. If v is a terminal vertex: 

a. If value(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 
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2. If v is a non-terminal vertex with index(v) = i, the fv is one and only of the 

functions: 

a. fv(x1, ... , XrJ = ftow(v)(XI.···,Xn) ffi X. (fhigh(vlXI. ...• XrJ ffi flow(v)(XI •...• XrJ]. 

Any path from the root to the terminal vertices will traverse a different order of vari

ables. 

F =abed+ abed+ ac 

X~ equ 5 : = fx E9 x · [fx E9 fx] 

fx fx E9 fx 

Figure 17. Permuted Reed-Muller Tree. 

Definition 21. Generalized Reed-Muller Tree 

A Generalized Reed-Muller Tree (Fig. 18) is a function graph having root vertex 

v denoting a function fv denoted recursive! y as: 
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1. If v is a terminal vertex: 

a. If value(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 

2. If vis a non-terminal vertex with index(v) = i, the fv is a one and only of the 

functions: 

a. fv(XJ, ... 'xo) = flow(v)(Xl,···,xn) EB X . [fhigh(v)(Xl, ... ,xJ EB flow(v)(Xl, ... ,xJ]. 

b. fv(X!J ... , xo) = fhigh(v)(XI.-··,xo) EB X. [fhigh(v)(Xl, ... ,xJ EB flow(v)(Xl, ... ,xJ]. 

Any path from the root to the terminal vertices will traverse the same order of variables. 

Definition 22. Kronecker Reed-Muller Tree 

A Kronecker Reed-Muller Tree (Fig. 19) is a function graph having root vertex v 

denoting a function fv denoted recursively as: 

1. If vis a terminal vertex: 

a. If value(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 

2. If vis a non-terminal vertex with index(v) = i, the fv is a one and only of the 

functions: 

a. fv(Xl, ... 'xo) = flow(v)(Xl,···,Xn) EB X. [fhigh(v)(Xl, ... ,xJ EB flow(v)(Xl, ... ,xJ]. 

b. fv(XJ, ... 'xo) = fhigh(v)Cxl,-··,XrJ EB X. [fhigh(v)(Xl, ... ,xJ EB flow(v)(Xl, ... ,Xn)]. 

C. fv(Xb ... , xJ =X· [flow(v)(xl, ... ,Xn) EB X· fhigh(v)(Xl, ... ,xJ]. 

Any path from the root to the terminal vertices will traverse the same order of variables. 
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F =abed + abed + ac 

a 

c 

b 

d 

~ equ6:fx$X·[fxE9fxl 

fx fx ffifx 

x-{I] 
~· ~ equ5:fx-ffix·[fxffifx-] 

fx- fx m fx 

Figure 18. Generalized Reed-Muller Tree. 

Definition 23. Pseudo-Kronecker Reed-Muller Tree 

A Pseudo-Kronecker Reed-Muller Tree (Fig. 20) is a function graph having root 

vertex v denoting a function fv denoted recursively as: 

1. If vis a terminal vertex: 

a. If value(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 
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2. If vis a non-tenninal vertex with index(v) = i, the fv is a one and only of the 

functions: 

a. fv(Xt, ... , XrJ = ftow(v)(XI,···,Xn) (B X. (fhigh(v)(XI, ... ,XrJ $ flow(v)(Xl, ... ,XrJ]. 

b. fv(xt, ... , X0 ) = fhigh(v)(XJ, .. ,xn) EB X· [fhigh(v)(Xt, ... ,Xn) EB flow(v)(Xt, ... ,xn)]. 

c. fv(Xt, ... 'x,J =X. [flow(v)(Xl, ... ,Xn) ffi X. fhigh(v)(Xl, .... xJ]. 

Any path from the root to the terminal vertices will traverse the same order of variables. 

Definition 24. Permuted Kronecker Reed Muller Tree 

A Permuted-Kronecker Reed-Muller Tree (Fig. 21) is a function graph having 

root vertex v denoting a function fv denoted recursively as: 

1. If vis a terminal vertex: 

a. Ifvalue(v) = 1, then fv = 1. 

b. If value(v) = 0, then fv = 0. 

2. If v is a non-tenninal vertex with index(v) = i, the fv is a one and only of the 

functions: 

a. fv(Xt' ... 'xn) = ftow(v)(Xt.-··,Xn) EB X. [fhigh(v)(Xl, .... xJ ffi flow(v)(XJ, ... ,xJ]. 

b. fv(XJ, ... , xn) = fhigh(v)(xl.-··,xJ EB X· [fhigh(v)(Xl, ... ,xJ EB flow(v)(Xt, ... ,Xn)]. 

c. fv(xb ... , X0 ) =X· [flow(v)(xl, ... ,xn) EB X· fhigh(v)(xl, ... ,xJ]. 

Any path from the root to the terminal vertices will traverse different order of variables. 
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F =abed + abed + ac 

c 

a 

b 

d 

~ equ4:x·fxE9X·fx 

fx fx: 

~ equ5:fxE9x·[fxEBfxl 

fx: fx EB fx 

~ equ6:fxE9X·[fxE9fxl 

fx fx EB fx 

Figure 19. Kronecker Reed-Muller Tree. 

-~ 
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F =abed + abed + ac 

c 

a 

b 

d 

~ equ4:x·fxEBX·fx 

fx fx-

~ equS:fxEBx·[fxEBfxl 

fx fx E9 fx 

~equ 6 : fx EB X· [fx EB fxl 

fx fx E9 fx 

Figure 20. Pseudo-Kronecker Reed-Muller Tree. 
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F =abed+ abed+ ac 

~ equ4:x·fx$X·fx 

fx fx-

~ equS:fx:EDx·[fxEDfxl 

fx- fx E9 fx 

~ equ6:fxEDX·[fxEDfxl 

fx fx E9 fx 

Figure 21. Permuted Kronecker Reed Muller Tree. 
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V.3. 1WO LEVEL CIRCUIT REALIZATIONS 

The expansion formulas applied to various variables and the resulting subfunc

tions fj generate different multi-level tree circuits as described in the previous section. 

The obtained tree circuits can be flattened to a two level form which can be real

ized by an AND-EXOR circuit 

Definition 25. Flattening 

This is one of the basic operations in logic synthesis, which is the inverse opera

tion of "substitution". If G is a fan-in function ofF, flattening G into F re-expresses F 

without G. 

Example 2. If F = Ga + b and G = c + d then flattening G into F results in 

F=ac +ad+ b. 

Definition 26. Reed-Muller form 

Reed-Muller ( RM ) form is an ESOP obtained by flattening of an RM Tree. 

Example 3. Assuming a four variables input function (Fig. 16), the RM form expression 

is of the following form: 

F( a, b, c, d ) = c E9 bed E9 ac E9 abd 

Definition 27. Generalized Reed-Muller ( GRM) form 

Generalized Reed-Muller ( GRM ) form is an ESOP obtained by flattening of a 

GRMTree. 

Example 4. Assuming a four variables input function (Fig. 18), the GRM form expres

sion is of the following form: 
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F(a, b, c, d) =dEB cd EB a EB ad EB ab EB ac 

Definition 28. Kronecker Reed-Muller ( KRM )form 

Kronecker Reed-Muller ( KRM ) form is an ESOP obtained by flattening of a 

KRMTree. 

Example 5 Assuming a four variables input function (Fig. 19), the KRM form expres

sion is of the following form: 

F(a~ b, c~ d)= cd EBbed EB ac EB abed EB abd EB abed EB ad 

Definition 29. Pseudo-Kronecker Reed-Muller ( PKRM )form 

Pseudo-Kronecker Reed-Muller ( PKRM ) form is an ESOP obtained by flatten

ing of a PKRM Tree. 

Example 6 Assuming a four variables input function (Fig. 20), the KRM form expres

sion is of the following form: 

F(a, b, c, d) = ac EB cd ffi bed ffi abd ffi ad 

V.4. SOLUTION SPACE 

From [3] and [18], they show that permuted RM synthesis and KRM synthesis 

can generate compact circuits. We looked into several different types of trees and 

DAGs, and those diagram can create a space for different synthesis methods for multi

level circuits. Table I shows all those forms of diagram with different search methods, 

and there exists some empty space for researchers to further explore. Comparing 

KRMs with RMs, KRMs have an edge since they use three equations rather than one. 

Comparing the permuted tree search with the non-permuted tree search, permuted tree 

search will provide more flexibility to select a splitting variable. Because of these two 
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advantages, the researcher chose KRM tree combined with permuted tree search and 

DAG as our approach to create a compact circuit. 

TABLE I 

SOLUTION SPACE 

RM GRM 

non-pennuted REMIT 
Tree 

Penntited REMIT 
Tree 

Non-Pennuted 
DAG 

Pennuted 
DAG 

KRM 

Techmap 
KDD 

RES PER 

Techmap 
KDD 

RES PER 



...........___ 

CHAPTER VI 

SEARCHING METHODS FOR TREES 

In many problems, a systematic order to search all the vertices in a graph is a 

must In tree search, it always start from the root vertex. Although there are many pos

sible orders for visiting vertices of the graph, two methods are of particular importance. 

Vl.l. DEPTH FIRST SEARCH 

Depth first traversal of a graph is roughly analogous to preorder traversal of an 

ordered tree. It traverses a singlepath of the graph as far as it can go (that is, until it 

visits a node with no successors or a node all of whose successors have already been 

visited). It then resumes at the last node on the path just traversed that has an unvisited 

successor and begins traversing a new path emanating from that node. Suppose that the 

traversal has just visited a vertex v, and let wbw2, ... ,wk be the vertices adjacent to v. 

Then we shall next vist w1 and keep w2, ... ,wk waiting. After visiting w1 we traverse all 

the vertices to which it is adjacent before returning to traverse w2, ••• , wk. 

Depth-first traversal is naturally formulated as a recursive algorithm. Its action, 

when it reaches a vertex v, is 

DepthFirst(graph) 

{ 

for all vertex in graph do 



visited[ vertex] =FALSE; 

for all vertex in graph do 

} 

if not visited[ vertex] then 

Traverse( vertex); 

4 

Figure 22. Depth first search. 
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10 

The recusion is performed in the following procedure, to be declared within the previ

ous one. 

Traverse( vertex) 

vertexW: vertices adjacent to the visit node 

{ 

visited[ vertex] =TRUE; 

Visit( vertex); 

for all vertexW adjacent to vertex do 

if not visited[vertexW] then 

Traverse(vertexW); 

} 
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VI.2. BREADTH FIRST SEARCH 

Breadth first traversal of a graph is roughly analogous to level-by-level traversal 

of an ordered tree. It visits all successors of a visited node before visiting any succes

sors of any of those successors. This is contradistinction to depth-first traversal, which 

visits the successors of a visited node before visiting any of its "brothers ... If the traver

sal has just visited a vertex v, then it next visits all the vertices adjacent to v, putting 

other vertices adjacent to these in a queue to be traversed after all vertices adjacent to v 

have been visited. 

7 

8 

Figure 23. Breadth first search. 

Since using recursion and programming with stacks are essentially equivalent, 

depth first traversal can be formulated with using stack, pushing all unvisited vertices 

adjacent to the one being visited onto the stack and popping the stack to find the next 

vertex to visit. The algorithm for breadth-first traversal is quite similar to the resulting 

algorithm for depth first traversal, except that a queue is needed instead of a stack. Its 

outline follows. 



Bread thFirs t( Graph) 

vertexW : vertices adjacent to vertex 

{ 

for all vertex in graph do 

if not visited( vertex) then 

begin 

AddQueue(vertex, Queue) 

Repeat 

DeleteQueue(vertex, Queue) 

visited[ vertex] =true 

Visit( vertex) 

for all vertex W adjacent to vertex do 

if not visited[vertexW] then 

AddQueue(w) 

Until Empty(Queue) 
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CHAPTER VII 

DESCRIPTION OF RESPER 

REduced Shared PERmuted (RESPER) Kronecker Decision Diagram is the syn

thesis algorithm for the calculation of the Permuted Kronecker Reed-Muller Tree for a 

given completely specified Boolean function having the minimal number of 

AND/EXOR gates and multiplexers. RESPER consists of three parts: trivial function, 

expansion selection and decomposition. The trivial function is used for the realization 

of Boolean functions as cascade circuits, where only one next level module is allowed 

or no module at all. Expansion selection option determines an appropriate expansion to 

be chosen for that module in that level. RESPER applies breadth first search alogrithm 

to do the expansion and variable selection. Finally, the RESPER is developed to pro

vide a Reduced Permuted Pseudo Kronecker Reed-Muller Tree that is especially suited 

for the technology mapping to the AT 6000 series of Atmel. 

VII.l. TRIVIAL FUN CIT ON REALIZATION 

The basic principle of the level by level minimization algorithm from [9,7] is to 

find the minimal number of next level modules for a given level. This approach will be 

adopted here. A sin1ilar principle is used for the realization of Boolean functions as 

cascade circuits where only one next level module is allowed or no module at all. 

There exist six basic conditions for which a next module is redundant. 
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Condition 1: fx· = 0 
I 

If this condition is applied to equation 6, one will get f =xi· f~. 

Proof: 

f = fxi ffi Xi · [fxi ffi f~] 

= 0 ffi X.. [0 ffi f-1 
1 XrJ 

=Xi. f~ 

We can use an AND gate with one negated input to implement this function, instead of 

using AND/EXOR gate which has the longest delay in the AT 6000 series. The AT 

6000 series does not provide ~~o~~ as one of its inputs. 

Condition 2: fx; = 0 

If this condition is applied to equation 5, it will get f = Xi · fxi· 

Proof: 

f = f- ffi X· • (f . (9 f-] 
Xi 1 X, Xi 

= 0 E9 x· · [0 ffi f-] 
1 Xi 

=Xi. fx; 

We can use an AND gate with one negated input to implement this function, instead of 

using AND/EXOR gate which has the longest delay in AT 6000 series. And the AT 

6000 series does not provide "0" as one of its inputs. 

Condition 3: fxi = 1 

If this condition is applied to equation 4, it will get f =xi· 1 E9 Xi· f~. 
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Proof: 

f = x· · f . E9 X.· f-1 X, I Xi 

= x· · 1 E9 X.· f-1 1 Xi 

We are able to use one wire less for the inputs to the multiplexer, since the AT 6000 

series allows us to select "1 II for one of the inputs. 

Condition 4: f~ = 1 

If this condition is applied to equation 4, it will get f = xi · fxi E9 Xi · 1. 

Proof: 

f = Xi · fx· E9 Xi • fx-: 
1 1 

=Xi· fxi EB Xi· 1 

We are able to use one wire less for the inputs to multiplexer, since the AT 6000 series 

allows us to select 11 1 II for one of the input 

Condition 5: a data-input function is identical to another data-input function to a multi

plexer in the same level of the tree circuit 

fxi = fij 

If this condition is applied to the equation 5, it gives f~ and fxt 

Proof: 

f = f- EB X .• [f . EB f-] 
Xi 1 X, Xi 

=f-EB x· · [f-EB f-] 
Xi 1 Xi Xi 

=f-EB x· · 0 Xi 1 

=f-=f Xi Xi 
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If this condition is applied to the equation 6, it gives f~ and fxt 

Proof: 

f = fx· E9 Xi • [fx. EB fx-J 
1 1 1 

=f-EB x· · [f-EB f-] 
Xi 1 Xi Xi 

=f-EB x· · 0 Xi 1 

=f-=f Xi Xi 

Condition 6: a data-input function is the complement of another data-input function to a 

multiplexer in the same level of the tree circuit 

fxi = fij 

If this condition is applied to equation 5, the resultant function will be f = f~ EB Xi· 

Proof: 

f = fx; EB Xi· [fxi EB f~] 

= f- EB x· · [f- EB f-] 
Xi 1 Xi Xi 

=f-EB x· · 1 
Xi 1 

= f- ffi x· 
Xi 1 

If this condition is applied to equation 6, the result will be f = fxi E9 Xi. 

Proof: 

f = fx. ffi Xi • [ fx· EB fx-J 
I I 1 

= f . ffi x· · [f- ffi f-] X1 1 Xi Xi 

= fxi ffi Xi • 1 

= fxi ffi Xi 
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As we see, it will give less wire connections and less modules for the next level. 

In most algorithms only the first five conditions are taken into consideration to 

decrease the number of next level modules. The case of a data input function being the 

complement of another data input function has not been taken into consideration in any 

synthesis algorithm. The advantage of the presented method is, that it also verifies 

Condition 6. The complement function can be easily realized by an inverter logic cell 

as shown in Figure 25. The pseudo code of trivial realization is described in Fig. 24. 

VII.2. VARIABLE AND EXPANSION SELECTION 

The size of the BDD of a function is sensitive to the ordering of the input vari

ables. A human with some understanding of the problem domain can generally choose 

an appropriate ordering without great difficulty for a small function from the Kamaugh 

map. It seems quite likely that using a small set of heuristics, a computer program itself 

could select an adequate ordering most of the time. Heuristic is any rule that directs the 

search. The construction of BDD starts from a minimized SOP expression of each 

function and performs successive Shannon decompositions according to the order of 

splitting variables. Some heuristics have been proposed to find a good order. They are 

based either on the analysis of an existing multilevel netlist [2] or on the number of 

occurances of the variables [3]. 

There has been a tremendous effort for determining a good variable order

ing[12,13]. The researcher adopted the synthesis algorithm form [9] for the RESPER. 

To reduce the solution space for a large function to a space that is computationally 

feasible, the heuristic searching algorithm allows all three decomposition choices. The 

heuristic for the variable selection is to select the variable that will obtain less modules 
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in the next level. In order to obtain the result which is as close as possible to the exact 

solution, the program starts to check all possible variables at each node in each level. 

Selecting the variable is determined by the set of conditions defined in the previous sec-

tion. 

II module 1 :one bit multiplexer 
II module 4 : two-inputs XOR 
II module 6 : two-inputs AND 
II module 7 : two-inputs AND with one of the input negated 
II temp module : a sub-routine to store the result function in a temperaory place 

- until that level will be computed. 
//trivial : a flag to indicate any of these conditions is met 

Input:function f, 
function fnot, 
function g. I* g = f:Jt EB f-x *I 

Output: trivial, 
select module. 

check trivial(f,ftwt, g, trivial, select module) { - -

} 

if(g == 0) 
I* fx == fxnot *I 

create temp module(); 
if(g == 11__ -
I* fx == fxnot *I 

select module 4; 
if(fx == 0) -
I* select equation 6 *I 

select module 7; 
if(fx == 1) -
I* select equation 4 *I 

select module 1; 
if(fxnot == 0) 
I* select equation 5 *I 

select module 6; 
if(fxnot == l) 
I* select equation 4 *I 

select_module 1; 

Figure 24. Pseudo-code of condition checking. 
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Figure 25. Cell Configuration: inverter. 
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The expansion selection is limited by the modules availability and their delay 

times. In AT 6000 series two modules are provided which fit two of the Davio Expan

sions. One of the modules is a two input multiplexer which is good for equation 4 and 

the other is the AND/XOR which is good for equation 5. If equation 6 is used we need 
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to add an inverter to the AND/XOR. The time delay is also an important factor for the 

choice. If there is a tie for the Equation 5 and Equation 6, we need to choose equation 5 

since an inverter needs to be added. An added inverter will increase the number of lev

els of the tree. 

The seleetion of an appropriate variable also creates the backbone for selecting an 

appropriate expansion. The expansion selections also are using the same set of condi

tions as the variable selection is. If condition 3 or condition 4 is met, then expansion 4 

will be selected. If condition 2 or condition 6 is met, then expansion 5 will be chosen. 

If condition 1 is met, then equation 6 is chosen. If condition 5 is met, either equation 5 

or 6 will create the same result For condition 6, the program will select either equation 

5 or equation 6. Since the objective for this program is to minimize the delay and area, 

equation 5 will be chosen if condition 6 is met. If condition 5 is met during the expan

sion and variable selection, the program will stop searching and will select equation 5 

for that module. The reason is that this function is independent of the chosen variable, 

and it does not need a module to represent this function at this level. However, if none 

of those conditions had been detected, the cost of each expression for each selected 

variable is calculated. Whichever combination of expansion type and variables pro

vides the least number of cubes will be chosen. This evaluation is performed for each 

input variable for every of the output functions. 

The pseudo code of variable and expansion selection is illustrated in Fig. 24. 

VII.3. SHARED FUNCfiONAL DECISION DIAGRAM 

FDD is a canonical representation of the functional domain (Fig.15). Each node 

of the FDD decides whether the product term belongs to the function or not. Each FDD 

has the 



following operation: 

1. Deleting a node whose two edges direct to the same node. 

2. Sharing isomorphic sub-graph. 

II trivial : a flag from the check trivial which declares one of the condition 
has been met in this function from check _trivial 

I I selected_ module : a module has been selected during this current evaluation 
II chosen module : the chosen module after the evaluation 
II situation :a flag to state whelther a condition has been met or not during 

the evaluation 
II selected_literal: the select literal for the decomposition 
I I k : one of the input literal 

Input: trivial 
selected module 

Output: selected literal 
chosen module 

select expansion( select literal, trivial, select module) { - -

} 

if (trivial = = true) 
if (situation == trivial) 

if (the size of previous chosen module is greater than the select module){ 
chosen module = selected module; 

} 

size ofchosen module= size of the select module; 
selected _literal = k; 

else{ 

} 

chosen module= selected module; 
size of chosen module = size of the select module; 
selected literal = k; 
situation= trivial; 

else if (situation == trivial) 
if (the size of previous chosen module is greater than the select module){ 

chosen module = selected module; 
size of chosen module = size of the select module; 
selected literal = k; 

} -

Figure 26. Pseudo-code of variable and expansion selection. 
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fl(A,B,C,D) f2(A,B,C,D) 

0 1 

C D 
G) X • fx EB X · fx: 

(J] fx EB x · [fx EB fxl 

Figure 27. Shared Functional Decision Diagram. 

Multiple FDDs can be joined into a single SFDD which consists of the FDDs 

sharing their subgraphs (Fig 27). In other words, two isomorphic subgraphs do not 

coexist in the SFDD. In SFDD, there is an input inverter added (Fig 28). Its purpose is 

to swap a positive edge and negative edge at the next node. By using this input 

inverter, SFDD will not only reduce those isomorphic subgraphs but also those sub

graphs which are inverses of the others. This constraint brings about the following 

advantages to manipulate a completely specifed Boolean functions. 

1. The equivalence between two functions can be checked by 

Fn EB Fm = 0 n ;:t m 

2. The inversion between two functions can be checked by 

Fn EB Fm = 1 n ;:t m 



3. By sharing sub-graph we can compactly represent many functions together. 

fl(A, B,_ C, D) f2(A, B,_ C, D) 

C D 

G x · fx Eax· fx: 

~ fx $ x · [fx $ fx 

Figure 28. input inverter. 

The pseudo code of finding isomorphic nodes is described in Fig. 29. 

VII.4. RES PER IMPLEMENTATION 
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The algorithms described above form the core of the decomposition. The task of 

these subroutines is to assist the whole program to choose an optimal variable order 

combined with a suitable expansion, to create a graph without coexisting subgraphs. 

The program reads in the disjoint ON cubes written in PLA format. If the input data 

include n output functions, the program divides an n-output functions into n single

output functions. Each output function is stored in n different modules. Starting from 
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module[O], the program computes all input literals and searches for the best selected 

variable based on those six conditions. After the selected variable is chosen, it gen-

erates a module[ n+ 1] and checks for an isomorphic module. If the module[ n+ 1] is iso-

morphic with other module, the module[n+ 1] will be eliminated. The program will go 

on to module[1], module[2] until there isn't any isomorphic module left The pseudo

code of the whole program is presented in Fig.30-36, and it is followed by an example 

which realizes one of the selected MCNC benchmark functions. It shows only the 

evaluation of the first level of the permuted KDD. 

/lend: total number of modules in that level 
/!module: module 
//total module: total number of modules in the tree. 
I /match: the modules which match 

Input: Module[] 
total module 
end -

Output: match I !flag match, inverse, no match 

find isomorphic(module, total module, match, end) { - -

} 

for i = 0 to end 
{ 

} 

if(module[total module] xor module[i] is equal to 0){ 
I* module[ total] is matched with module[i] *I 

match= i; 
return 1; 

}else{ 
if(module[total module] xor module[i] is equal to 1) 
I* module[ total] is matched with the inverse ofmodule[i] *I 

match= i; 
return 0; 

}else 
return 2; 

Figure 29. Pseudo-code of finding isomorphic node. 



IIi :input literal counter 
llj : output literal counter 
//list :a list of input cubes 
//total_ module: total modules of present level 
//compute J : a subroutine to generate fx 
//compute Jnot: a subroutine to generate fx-
/I compute g : a subroutine to do f exor fnot 
I /match - : the number of that module match with 
I /flag : an indicator to indicate there is a matched function 
/lend :total modules of previous level 

main() 
{ 

} 

Get the input function 

for i = 0 to ( outLiterals - 1) 
create_ module( module, i, list); 

while (done== FALSE){ 
for i = 0 to end{ 

} 
} 

for j = 0 to inLiterals{ 
f = compute J(module[i], j); 
fnot = compute Jnot(module[i], j); 
g = compute_g(f,fnot); 
check_trivial(f,fnot, g, trivial, select_ module); 
select expansion(variable, trivial, select module); 

} I* end oflloop *I -

f = compute J(module[i], variable); 
fnot = compute Jnot(module[i], variable); 
g = compute _g(f,fnot); 

switch (select module){ 
case 1: pseudo-code in Fig. 27 
case 2: pseudo-code in Fig. 28 
case 3: pseudo-code in Fig. 29 
case 4: pseudo-code in Fig. 30 
case 6: pseudo-code in Fig. 31 
case 7: pseudo-code in Fig. 32 

if (total module = = 0) 
end= total module; 

else -
done= TRUE; 

Figure 30. Pseudo-code of RES PER. 
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case 1: I* select equation 4 */ 

create(module, total module,/); 
flag =find isomorphic( module, total module, match, end); - -

if(flag == 0) 
I* module[ match] is inversed of module[ total module] *I 

connect to the module[ match] with negated input; 
else if (flag = = 1) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

create(module, total module,fnot); 
flag =find _isomorphic( module, total_ module, match, end); 

if (flag == 0) 
I* module[match] is inversed of module{ total module] *I 

connect to the module{ match] with negated input; 
else if (flag== 1) 
I* module[ match] is matched with module{ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

Figure 31. Pseudo-code of case 1. 
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case 2: !* select equation 6 *I 

create(nzodule, total module,fnot); 
flag =find _isomorphic( module, total_ module, match, end); 

if (flag == 0) 
I* module[match] is inversed of module[ total module] *I 

connect to the module[ match] with negated input; 
else if (flag = = I) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

create(module, total_module, g); 
flag =find isomorphic( module, total module, match, end); - -

if (flag == 0) 
I* module[ match] is inversed of module[ total module] *I 

connect to the module[ match] with negated input; 
else if (flag = = I) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

Figure 32. Pseudo-code of case 2. 
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case 3: !* select equation 5 *I 

create(modu/e, total module,[); 
flag= fznd_isomorphic(module, total_module, match, end); 

if (flag == 0) 
!* modu.le[match] is inversed of module[ total module]*! 

connect to the module[ match] with negated input; 
else if (flag== 1) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

create( module, total_ module, g); 
flag= find_isomorphic(module, total_module, match, end); 

if (flag == 0) 
!*module[ match] is inversed of module[ total module]*! 

connect to the module[ match] with negated input; 
else if (flag = = 1) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

Figure 33. Pseudo-code of case 3. 
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case 4: I* select equation 5 with g = 1*1 

create(module, total modu/e,fnot); 
flag= find_isomorpiilc(module, total_module, match, end); 

if(flag == 0) 
!*module[ match] is inversed of module[ total module] *I 

connect to the module[ match] with negated input; 
else if (flag = = I) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

Figure 34. Pseudo-code of case 4. 

case 6: !* select equation 1 with f = 0 *I 

create(module, total module,fnot); 
flag= find_isomorphic(module, total_ module, match, end); 

if (flag == 0) 
I* module[ match] is inversed of module[ total module] *I 

connect to the module[ match] with negated input; 
else if (flag = = 1) 
I* module[ match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
I* there isn't any match *I 

total_ module++; 

Figure 35. Pseudo-code of case 6. 
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Example6: 

case 7: !*select equation 1 withfnot = 0 *! 

create(module, total_module,f); 
flag= find_isomorphic(module, total_module, match, end); 

if(jlag == 0) 
!*module[ match] is inversed of module[ total module]*! 

connect to the module[ match] with negated input; 
else if (flag == 1) 
I* module[match] is matched with module[ total module] *I 

connect to the module[ match]; -
else 
!* there isn't any match *I 

total_ module++; 

Figure 36. Pseudo-code of case 7. 
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As example of the execution of the algorithm is shown below. The selected input 

function is one of the MCNC benchmarks, "adr2", which contains 4 inputs and 3 out-

puts. This function is a completely specified disjoint function. 

Step 1: The input function 

input literal = 4 

output literal = 3 

.inputs vO v1 v2 v3 

.outputs v4 .0 v4 .1 v4 2 

OOlx 100 

0101 100 

OJ 10100 

1100100 



1111100 

100x 100 

xOxl 010 

x1x0 010 

0111001 

1101 001 

1xlx001 

Step 2: Create output modules from the list 

2v3 
vOv 001x 

0101 

0110 

1100 

1111 

lOOx 

This is module[O] - v4.0 

v2v3 
' v0v1 

00 
01 

11 

10 

00 01 11 10 

[ 

0111 J 
1101 

1xlx 

This is module[2] - v4.2 

total_module = 3; 
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v2v3 
vOv~ 00 01 11 10 

~~ l]'l~tll [ xOxl J 
x1x0 

11 

10 

This is module[!] - v4.1 



Step 3: Loop 

i = 0; j = 0; 

/* doing module[O], literal 0 (vO) *I 

[ ~;] 
100 

00 

01 

11 

10 

0 1 

function fv0 function fvo 

Step 3a: check_trivial 
trivial = TRUE; 
selected_module = 4; 

Step 3b: select_expansion 
chosen_module = 4; 
size of chosen module = 3; 
selected_literal = 0; 
situation = TRUE; 

i = 0; j = 1; 

/*doing module[O], litera11 (vl) */ 

v3 
vOv~ 

0 1 VV V.£. 

00 

[111] 
00 

01 100 01 

11 010 11 

10 1 001 10 

0 1 

function fvl function fvl 

Step 3a: check_trivial 

[ 

110 J 
101 

01x 

[lOx J 
01x 

00 

01 

11 

10 

00 

01 

11 

10 
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[xxx] 

function g 

L xx1 =:1 

function g 



trivial =FALSE; 

Step 3b: select_expansion 
chosen_mod ule = 4; 

size of the chosen module= 3; 
selected_literal = 0; 
situation = TRUE; 

i = 0; j = 2; 

/*doing module[O], litera12 (v2) */ 

00 [111] 
01 ~ 010 

01 

11 1 OOx 11 

10 10 

0 1 

function fv2 function fv2 

Step 3a: check_trivial 
trivial =TRUE; 
selected_module = 4; 

Step 3b: select_expansion 
chosen_module = 4; 
size of the chosen module= 3; 
selected_literal = 0; 
situation = TRUE; 

[lOx J 
110 
011 

i = 0; j = 3; /* doing module[O], literal 3 (v3) */ 

72 

v3 
vOv~ 0 1 

00 

01 r 11 1) Cxxx:J 
11 

10 

function g 



v2 
vOv~ 0 1 

[Ox1 J 
lxO 

00 

[001 J 00 

01 010 01 

11 Ill 11 

10 1 100 10 

function fv3 function fv3 

Step 3a: check_trivial 
trivial = FALSE; 

Step 3b: select_expansion 
chosen_module = 4; 
size of the chosen module = 3; 
selected_literal = 0; 
situation = TRUE; 

v3 
" v1 v2 0 1 

00 

[ 
111 J 
~~~ 

v3 
" v1 v2 

00 
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v2 

vOv~ 1 

00 

01 r 1 1 1~ C xlx :1 
11 

10 

function g 

0 1 

[
lOx] 
110 
.{\ 1 1 



flag= 2; 

total_module = 4; 
/*print output* I 
.names vO In3 v4.0 
10 1 
011 

i = 1; j = 0; 

00 

01 

11 

10 

/*doing module[ I], literal 0 (vO) */ 

v3 v3 
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module[3]: 

[ 
111 J 
010 

OOx 

v4.0 

module 4 

m3 0 

v3 



Step 3a: check_trivial 

trivial =TRUE; 
selected_module = 5; 

Step 3b: select_expansion 
chosen_module = 5; 
size of the chosen module = 2; 

selected_literal = 0; 
situation = TRUE; 

i = 1; j = 1; 

I* doing module[1], literal 1 (v1) *I 

00 
01 
11 

10 

1 

function fvt 

C xxO ~ 

Step 3a: check_trivial 

trivial =TRUE; 
selected_module = 4; 

Step 3b: select_expansion 

chosen_module = 5; 

00 
01 

11 

10 

size of the chosen module = 2; 

selected_literal = 0; 
situation =TRUE; 

i = 1; j = 2; 

I* doing module[1], literal 2 (v2) *I 

Cxx1 ~ 

function fv 1 

00 

01 

11 

10 
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LXXX~ 

function g 



v3 
vO vi" 0 1 vOv ~ 1 vO v 

00 00 

01 [xlOJ 01 titj [xlOJ 11 xOl 11 xOl 
10 10 j 

function fv2 function fv2 function g 

Step 3a: check_trivial 

trivial= TRUE; 
selected_module = 5; 

Step 3b: select_expansion 
chosen_module = 5; 
size of the chosen module = 2; 
selected_literal = 0; 
situation = TRUE; 

i = 1; j = 3; 

/*doing module[ I], literal3 (v3) */ 

00 

01 C xOx ::1 
11 

10 

function fv3 

Step 3a: check_trivial 
trivial =TRUE; 
selected_module = 5; 

Step 3b: select_expansion 
chosen_module = 5; 

00 

01 

11 

10 

v2 
1 v0v1~ 1 

00 

C x1x ::1 01 y 11 1~ 

11 

10 

function fv3 function g 
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NIL 

LXXX =:J 



size of the chosen module = 2; 
selected_literal = 0; 
situation= TRUE; 

~v3 v1 v 0 1 - -
00 1 

01 1 [ lxO] 
11 1 Oxl 
10 1 

f= compute_f(module[1], 0) 

v1 v2 

00 

01 

11 

10 

v3 
0 1 

NIL 

g = compute_g(f, fnot) 

switch(5) 
create_module(temp_module, 0, t) 
temp_module[O]: 

v3 
v1 v2 

00 

01 

11 

10 

v3 
v1 v2 0 1 

00 1 

01 1 [ lxOJ 
11 1 Ox1 
10 1 

fnot = compute_fnot(module[1], 0) 

0 

[ lxO J 
Ox1 

temp_module[O] 

i = 0; j = 0; 
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/* doing temp_modulefO], literal 0 (vO) */ 

1 

[ xoJ 

function fvl 

Check_ trivial: 
trivial = TRUE; 
selected_module = 4; 

Select_ expansion: 

chosen_module = 4; 
size of the chosen module = 1; 
selected_literal = 0; 
situation = TRUE; 

i = 0; j = 1; 

function fv1 

/* doing temp_module[O], literal 1 (vl) */ 

[ ~~] 
function fv2 

Check_tri vial: 

trivial = TRUE; 
selected_module = 5; 

Select_ expansion: 

chosen_module = 5; 
size of the chosen module = 2; 

selected_literal = 1; 
situation =TRUE; 

i = 0; j = 2; 

1[ 1 

function fv2 

v2 

[XlJ 

[ ~~] 

v3 
0 1 

0 
I I J 

1 

function g 

1 

0 
I I I 

1 

function g 

78 

[XX] 

NlL 



I* doing temp_module[O], literal 2 (v2) *I 

1 

function fv3 

Check_trivial: 

[OX] 

trivial = TRUE; 
selected_module = 5; 

Select_ expansion: 

chosen_module = 5; 
size of the chosen module = 2; 

selected_literal = 1; 
situation = TRUE; 

switch (5) 

function fv3 

create_module(temp_module, 1, f) 

temp_module[ 1] 

[IX] 

temp_module[1] 

i = 1; j = 0; 

I* doing temp_module(l], literal 0 (vO) *I 
f: 
0 1 
fnot: 

1 1 

g: 
X 1 

Check_ trivial: 
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[XX] 

function g 



trivial= TRUE; 
selected_module = 4; 

Select_expansion: 
chosen_module = 4; 
size of the chosen module = 1; 

selected_literal = 0; 

situation = TRUE; 

i = 1; j = 1; 

I* doing temp_module[l]~ literal 1 (v1) */ 

f: 
01 
fnot: 

1 1 
g: 
xl 

Check_ trivial: 

trivial = TRUE; 
selected_module = 4; 

Select_ expansion: 

chosen_module = 4; 

size of the chosen module = 1; 

selected_literal = 0; 

situation = TRUE; 

f = compute_f(temp_module[l], 0); 
0 1 

fnot = compute_fnot(temp_module[l], 0); 
1 1 

g = compute_g(f, fnot); 
X 1 

switch (4) 
create_module(module, 4, fnot); 
/*module has only 1 variable and this module is done;*/ 

total_module = 4; 

/*print output*/ 

.names v 1 v3 v4.1 
10 1 
011 
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v4.0 

module 4 

m3 0 

i = 2; j = 0; 

!* doing module[2], literal 0 (vO) */ 

1 v1 v2 

00 

01 [ xlx] 
11 101 
10 1 

function fvo 

Step 3a: check_trivial 
trivial= FALSE; 

Step 3b: select_expansion 
chosen_module = 1; 
size of chosen module = 3; 
selected_literal = 0; 
situation = FALSE; 

i = 2; j = 1; 

00 

01 

11 

10 

/*doing modulef2], literal 1 (vl) */ 
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v4.1 

module 4 

vl v3 

v3 
0 1 

[011 [ 111] 110 
1 101 

10 

function fvo function g 



v3 
vO v2 0 1 v0v2 

00 

[ llxl 01 011 
11 101 
10 1 

function fvt 

Step 3a: check_trivial 
trivial = FALSE; 

Step 3b: select_expansion 
chosen_module = 1; 
size of chosen module = 3; 
selected_literal = 0; 
situation= FALSE; 

i = 2; j = 2; 

00 
01 
11 
10 

/*doing module[2], literal2 (v2) */ 

v3 
vO v1 "\.. 0 1 

00 00 
01 [ lxx] 01 

11 011 11 

10 10 

v3 
0 1 

function fv 1 

1 

1 

function fv2 function fv2 

Step 3a: check_trivial 
trivial = FALSE; 

Step 3b: select_expansion 
chosen_module = 1; 
size of chosen module= 3; 
selected_literal = 0; 
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~3 vO v 0 1 
00 

[ 11xJ 01 tjj [ 011] 11 101 
10 

function g 

~3 vOv 0 1 

00 tE [lOx] 01 1 110 
[ 111] 11 1 011 

10 

function g 



situation= FALSE; 

i = 2; j = 3; 

I* doing module[2], literal 3 (v3) */ 

v2 

~ vO vl 0 1 vOv 1 

00 

[ 011] 
00 

01 110 01 
11 lxl 11 
10 10 e 
function fv3 function fv3 

Step 3a: check_trivial 
trivial = FALSE; 

Step 3b: select_expansion 
chosen_module = 1; 
size of chosen module= 3; 
selected_literal = 0; 
situation = FALSE; 

l 
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v2 
vO vl 0 1 

00 

01 [ 011] 
[ 1x1] 11 110 

10 

function g 



v3 
vlv2~ 1 

00 

01 t±ij [ xlx] 
11 101 
10 

f = compute_f(module[2], 0) 

v1 v2 
v3 

0 1 

00 

01 

11 

10 

[ 
Olx] 
110 

101 

g = compute_g(f, fnot) 

switch (1) 

create(module, 4, f); 
flag= 2; 

module[4] 

total_module = 5; 

create(module, 5, fnot); 

flag= 2; 
module[5] 

vl v2 

00 

01 

11 

10 
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v3 
vlv2~ 1 

00 

01 m [ 111] 
11 1 

10 

fnot = compute_fnot(module[2], 0) 

v3 
0 1 

[ x1x] 
101 

module [4] 



total_module = 6; 
/*print output* I 
.names m4 m5 v4.2 
11- 1 
1-1 1 

v4.0 

module 4 

m3 0 

Step 4: 
begin= 3; 
end= 5; 
done = FALSE; 

GoTo Step 3; 

v3 
vl v2 0 1 

00 

01 ~ [ 111] 

11 ~ 
10 

module (5] 

v4.1 

module4 

vl v3 

Repeat the same steps until there are no more modules created. 
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v4.2 

module 1 vO 

m4 m5 



CHAPTER VIII 

EVALUATION OF THE RESULTS 

The researcher ran RESPER on a networked SUN 4/670MP workstation. The 

results are listed in Table II and III. All results are verified by the "verify" command of 

the MIS-II system. The procedure for verifying is: 

resper MCNC _file > output _file 

misll 
read_pla MCNC _file 
write_blif MCNC _file.blif 

\* executeRESPER program 
MCNC _file: The name of the example file from 
the MCNC benchmark; 
output _file: The name of the output file which 
user assigned. 

\* enter misii program *\ 
\* read in the MCNC benchmark example file *\ 
\* write the MCNC benchmark example file in 
blif fonnat *\ 

verify output _file MCNC _jzle.blif \* verify *\ 

The results listed under TECHMAP and REMIT are from [18] and [3] respec

tively. It also ran on a networked SUN 4/670MP workstation. 

In Table II and III, EIN is the name of the example. /IN is the number of input 

variables. 0/N is the number of output functions. Modules is the number of modules in 

the final mapped circuit. Level is the longest path that a signal must go from the pri-

mary input to the primary output in the circuit. Time is the running time which the pro-

gram takes to generate the output. C 1, C2 and CJ in Table II are the heuristics used by 

TECHMAP to select the expansion. It was mentioned in Chapter 3. From Table III, we 

obsetve that permuted tree search method alone in REMIT(3] will not create good 
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results compared with TECHMAP[l8] which was using heuristic C3. Based on Table 

II, the heuristic used should be the best heuristic among those three in TECHMAP. 

Based on the comparison from Table ill, we observe that RESPER can generate rela

tively good result as TECHMAP for single output function. However, from Table II we 

observe that RESPER generates a better result on multi-output than TECHMAP. As it 

was mentioned in Chapter IV, the poor results were generated from TECHMAP is 

because of the method of chosen variable and expansion. TECHMAP based on the vari

able and expansion selection of the first single output function, and decomposed the 

other single output function. On the other hand, RESPER can generate good results is 

because it selects the best variable and expansion of each node. Although RESPER 

generates better result than TECHMAP, it has its weakness in minimizing function. We 

can observe from benchmark 5xpl, which is the case where TECHMAP beats RESPER 

because of its weakness. In RESPER, the size of the function is one of the criteria to 

select appropriate variable and expansion. Overall speaking, the permuted tree search 

method combined with shared reduced order approach will produce a good result in 

general cases. 
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TABLE II 

COMPARISONS BETWEEN RESPER, AND TECHMAP 

---- ---------- ----------------------------- - ------

RESPER TECH MAP 

E/N 1/N 0/N mod. Level time Cl C2 C3 Level time 

adr2 4 3 4 3 0.1 6 6 6 3 0.1: 
bl2 15 9 50 8 33.9 130 147 125 12 11.4 i 

I 

cc 21 20 42 6 49.4 117 117 117 15 24.7 I 
I 

coni 7 2 10 4 0.4 16 24 15 5 0.2 
cu 14 11 27 9 11.7 73 73 78 10 1.5 
inc 7 9 61 6 3.1 81 89 76 6 2.0 

squar5 5 8 18 4 0.5 29 35 29 4 0.4 

f5lm 8 8 35 7 8.4 52 53 45 7 3.3 

xor5 5 1 3 3 0.2 3 3 3 3 0.1 

5xpl 7 10 55 6 5.3 51 54 44 6 2.6 

rd53 5 3 12 4 0.7 13 14 12 4 0.3 

bw 5 28 100 4 3.0 102 104 102 4 2.8 

misexl 8 7 32 5 8.3 60 39 56 7 1.2 

misex2 25 18 107 11 79.6 282 271 275 23 15.8 

i TOTAL 560 1015 1029 983 
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TABLE III 

COMPARISONS BETWEEN RESPER, REMIT, AND TECHMAP 

RES PER REMIT TECH MAP 

E/N 1/N 0/N modules Level modules Level modules Level 

misex52.tt 6 1 10 5 19 5 10 5 

5x1.tt 7 1 10 4 28 4 9 4 
5x10.tt 7 1 6 4 16 4 6 4 
5x2.tt 7 1 20 6 51 6 19 4 
5x5.tt 7 1 6 6 10 6 7 6 
5x6.tt 7 1 3 6 6 6 3 6 

5x7.tt 7 1 2 6 6 6 2 6 

con11.tt 7 1 5 6 17 6 8 6 
con12.tt 7 1 5 6 11 6 7 6 

misex21.tt 5 1 12 5 24 5 11 5 

misex22.tt 5 1 10 5 19 5 9 5 

misex23.tt 5 1 8 5 18 5 9 5 

misex25 5 l 9 5 19 5 11 5 

misex26 5 1 7 5 13 5 7 5 

misex48 6 1 14 5 24 5 12 5 

misex49 6 1 9 5 19 5 10 5 

misex50 6 1 8 5 20 5 8 5 

misex52 6 1 10 5 19 5 10 5 

misex53 6 1 7 5 14 5 7 5 

misex54 6 1 I6 5 23 5 12 5 

misex55 6 I 9 5 20 5 8 5 

misex56 6 I 8 5 20 5 9 5 

misex57 6 I 9 5 19 5 11 5 

misex58 6 1 7 5 12 5 7 5 

misex59 11 1 23 11 244 11 20 11 

misex60 11 1 11 11 67 11 11 11 

misex61 I1 1 13 11 69 11 13 11 

TOTAL 257 827 257 



CHAPTER IX 

FUTURE WORK 

There has been lots of research on Multi-level decomposition. Those have been 

mainly targeted at AND/OR function. The same theory algorithm was used in this 

thesis to decompose ESOP function[19, 21]. The only modification needed is the pro

cedure to minimize the ESOP function, and the algorithm from [21] is used to make the 

program work for ESOP function. The following is a step by step example following 

the pseudo code from RESPER. 

Step 1: input function 
~oxoo 1 

OOxx 1 
xxx1 1 
Oxlx 1 
1101 1 

Step 2: create output module 

module[O]: 
OxOO 1 

OOxx 1 
xxx1 1 
Oxlx 1 
1101 1 

Step 3: Loop 

do module[O]; 

i = 0; j = 0; 

f: 



xxl 1 
101 1 
fnot: 
1xx 1 
x11 1 
g: 
001 1 
lxx 1 

Step 3a: check trivial 
trivial = FALSE; 

Step 3b: select expansion 
select literal = 0 
select module = 1 
size of the module = 4 

i = 0; j = 1; 

f: 
xll 1 
Oxx 1 
fnot: 
001 1 
xxl 1 
g: 
101 1 
Oxx 1 

Step 3a: check trivial 
trivial = FALSE; 

Step 3b: select expansion 
select literal = 0 
select module = 1 
size of the module = 4 

i = 0; j = 2; 

f: 
Olx 1 
xx1 1 
foot: 
101 1 

91 



Olx 1 
g: 
101 1 
xxl 1 

Step 3a: check trivial 
trivial= FALSE; 

Step 3b: select expansion 
select literal = 0 
select module = 1 
size of the module = 4 

i = 0; j = 3; 

f: 
111 1 
OxO 1 
xOx 1 
fnot: 
Olx 1 
g: 
100 1 
xxl 1 

Step 3a: check trivial 
trivial= FALSE; 

Step 3b: select expansion 
select literal= 0 
select module = 1 
size of the module = 4 

f = compute_f(module[O], 0); 

fnot = compute_fnot(module[O], 0); 

g = compute_g(f, fnot); 

switch(l) 
create_module(module, 1, f); 

module[l] 
xxl 1 
101 1 

total_module = 2; 

create_module(module, 2, fnot); 
module[2] 

1xx 1 
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xll 1 
total_module = 3; 

Step 3c: print output 
.names vO ml m2 mO 

do module[l] 

i = 0; j = 0; 

f: 
11 1 
fnot: 
xl 1 
g: 
01 1 

Step 3a: check trivial 
trivial = FALSE 

Step 3b: select expansion 
select_literal = 0 
select_module = 1 
size of the module = 2 

i = 0; j = 1; 

f: 
x1 1 
fnot: 
01 1 
g: 
11 1 

Step 3a: check trivial 
trivial = FALSE 

Step 3b: select expansion 
select_literal = 0 
select_module = 1 
size of the module = 2 

i = 0; j = 2; 

f: 
10 1 
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XX 1 
fnot: 
NIL 

g: 
10 1 
XX 1 

Step 3a: check trivial 
trivial = TRUE; 
select_module = 6; 

Step 3b: select expansion 
select_literal = 2 
select_module = 6 
size of the module = 2 

f = compute_f(module[l], 2); 
foot= compute_fnot(module[l], 2); 

g = compute_g(f, fnot); 

switch(6) 
create_module(module, 3, t); 

module[3] 
10 1 
XX 1 

total_module = 4; 

Step 3c: print output 
.names v3 m3 ml 

do module[2] 

i = 0; j = 0; 

f: 
xxl 
11 1 
foot: 
11 1 
g: 
XX 1 

Step 3a: check trivial 
trivial= TRUE; 
select_module = 4 

Step 3b: select expansion 
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select_li teral = 0 
select_module = 4; 

size of module = 1; 

i = 0; j = 1; 

f: 
lx 1 

x1 1 
fnot: 
1x 1 
g: 
x1 1 

Step 3a: check trivial 
trivial= FALSE; 

Step 3b: select expansion 
select_literal = 0 
select_modu le = 4; 

size of module = 1; 

i = 0; j = 2; 

f: 
1x 1 
x1 1 

fnot: 

x1 1 

g: 
x1 1 

Step 3a: check trivial 
trivial = FALSE; 

Step 3b: select expansion 
select_literal = 0 
select_module = 4; 

size of module= 1; 

f = compute_f(module[2], 0); 

fnot = compute_fnot(module[2], 0); 
g = compute(f, fnot); 

switch (4) 
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1 

create_module(module, 4, fnot); 
module[4] 

11 1 
total_module = 5; 

Step 3c: print output 
.names vl m4 m2 

do module[3] 

i = 0; j =0; 

f: 
1 1 
fnot: 
X 1 

g: 
0 1 

Step 3a: check trivial 
trivial = TRUE; 
select_ module = 1; 

Step 3b: select expansion 
select_literal = 0; 

select_module = 1; 
size of module = 1; 

i = 0; j = 1; 

f: 
X 1 
fnot: 

0 1 
g: 
1 1 

Step 3a: check trivial 
trivial = TRUE; 
select_module = 1; 

Step 3b: select expansion 
select_literal = 0; 
select_ module = 1; 
size of module = 1; 
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f = compute_f(module[3], 0); 
fnot = compute_fnot(module[3], 0); 

g = compute_g(f, fnot); 

switch(l) 
create_module(module, 5, t); 
module has only one cube with 2 or less variable 

Step 3c: print output 
.names v 1 v2 m3 

do module[4] 

it has only 2 variables this module is done 

Step 3c: print output 
.names v2 v3 m4 
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The researcher can also extend the SRKDD to an incompletely specified func-

tion. The method to reduce the amount of modules and levels is still an open 

research area 



CHAPTER X 

CONCLUSION 

The goal of this research is to generate a compact circuit realization as a 

multi-level circuit The researcher focuses on minimizing the number of nodes in the 

network and minimize the length of the path. Two methods are presented to accom

plish this goal. One is the permuted tree search method, to select a good variable and 

an appropriate expansion for each node. Another one is the shared reduce order 

approach, to reduce the number of nodes and levels. 

In this thesis, a tutorial approach is used to explain several Decision Diagrams 

and the concept to permuted KFDD. An efficient algorithm for Permuted KFDD is 

also presented. The obtained results are very promising and motivate to further inves

tigate KFDD and other permuted(free) diagram. There is a need to research for all 

FDD to find better heuristic to obtain circuit realization with the shortest path from 

input to output And the RES PER can be generalized to incompletely specified func

tions. 

Based on Table t it clearly points out that new research areas and potential 

advantages of combining idea of permuting variables and adding expansion types. It 

seems that this is the direction of Decision Diagram development: more expansion 

types and no restriction on the order or the number of repetition of a variable. 

FDDs have levels corresponding to input variables and Shannon expansion. 

And KFDDs have levels corresponding to input varaibles, at every level all nodes are 
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expanded with respect to the satne type of expansion: Shannon, Davioi and Davioii. 

It was proved that essential improvement in both the number of levels and the 

number of nodes are obtained when the nodes in a level of a diagram have various 

types of expansions. In this thesis, researcher observed from Table II that when a 

tree diagram has various types of expansions and input variables at each node will 

have a major decrease in terms of number of levels and nodes against FDDs and 

KFDDs. 

From the experimental results, it is proved that the permuted tree search 

method will not generate as a good result as shared reduced order approach combined 

with some kind of heuristic. However, the permuted tree search method combined 

with shared reduced order approach will produce a good result in general cases. And 

the result shows that this approach is relatively better than REMIT and TECHMAP 

in terms of providing a compact circuit realization in the multi-level circuit 

Further extension to REPER will include mapping to other new celluler 

FPGAs, especially those from Motorola. Variants of the method can be also created 

including geometrically increase KFDD, which will improve the operation to inter

link placement and routing. 
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