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A large fraction of the current cost of wastewater treatment is from the treatment and disposal 

of wastewater sludge. Improved design, energy efficiency, and performance of dewatering facilities 

could significantly decrease transport and disposal costs. 

Dewatering facilities are designed based on field experience, trial and error, pilot plant testing, 

and/or full scale testing. Design is generally time-consuming and expensive. A full-scale test typically 

consists_ of side-by-side operation of 4 to 5 full-scale dewatering units for several weeks to more than 6 

months. Theoretical modeling of the physics of dewatering units such as the belt filter press, based on 

laboratory determined sludge properties, would better predict dewatering performance. 

This research developed a numerical computer model of the physics of gravity sedi~entation. 

The model simulated the gravity sedimentation portion of the belt filter press. The model was 
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developed from a physically-based numerical computer model of cake filtration by Wells (1990). 

As opposed to the cake filtration model, the inertial and gravity terms were retained in the 

gravity sedimentation model. Although in the cake filtration model, the inertial terms were shown to 

be negligible, according to Dixon, Souter, and Buchanan (1985), inertial effects in gravity 

sedimentation cannot generally be ignored. The region where inertia is important is the narrow 

interface between suspension and sediment. In the cake filtration model the gravity term was negligible 

due to the relatively large magnitude of the applied pressure; but in the gravity sedimentation model, 

since there was no applied pressure, it was necessary to consider the effect of gravity. _ 

Two final governing equations were developed - solid continuity and total momentum with 

continuity ("momentum"). ·The finite difference equations used a "space-staggered" mesh. The solid 

continuity equation was solved using an explicit formulation, with a forward difference in time and 

central difference in space. The "momentum" equation used a fully implicit formulation with a forward 

difference in time. The modeler could choose either a central difference or forward difference in 

space. Non-linear terms were linearized. Boundary C?nditions and constitutive relationships were 

determined. Numerical errors in the numerical model were analyzed. 

The model was calibrated to known data and verified with additional data. The model was 

extremely sensitive to the constitutive relationships used, but relatively unaffected by the At or the use 

of central difference or forw~d difference for the spatial derivative term in the "momentum" equation. 

Correlations of the calibrated model to data with a low initial concentration show that the constitutive 

parameters approximate the data, but not very well. Model runs with low initial concentration required 

the addition of artificial viscosity to remain stable. 

The gravity term was always significant, whereas the inertial terms were many orders of 

magnitude less than gravity. However, the lower the initial concentration, the larger the inertial terms. 

In addition to the belt filter press, the model can also be applied to cake filtration and design 

of gravity sedimentation tanks as well. 
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CHAPTER I 

INTRODUCTION 
~.~· ~Y-

BACKGROUND 

Production of sewage sludge, the residual from municipal wastewater treatment plants, has 

increased two-fold over the past 20 years in the United States (Morse, 1989). The current annual sludge 

production is over 8 million dry tons (EPA, 1990, as cited by Ravenscroft, 1992). Wastewater 

treatment costs are currently increasing, with sludge treatment and disposal representing a large fraction 

of the overall treatment cost. Since sludges typically consist of approximately 95% water (Villiers and 

Farrell, 1977), costs are significantly decreased by dewatering. Dewatering effectively minimizes the 

·volume and mass of the sludge. Resultant transportation cost savings can be dramatic, as noted in 

Villiers and Farrell's (1977) example of a 50% decrease in cost resulting from increasing the sludge 

solids content from 20% to 30%. 

Sludge disposal, which is regulated by a combination of state agencies and the Environmental 

Protection Agency (EPA), primarily consists of landfilling (64%), incineration (14%), land application 

(9%), distribution and marketing (6%), and ocean dumping (5%)- (EPA, 1990, as cited by 

Ravenscroft, 1992). The Federal Ocean Dumping Ban Act of 1988 prohibited ocean dumping of 

sludge. In January 1992, New York City became the last major city to halt its ocean dumping 

practices (Ravenscroft, 1992). 

Landfilling of wet sludge, which may result in leachate problems, are discouraged or banned. 

Greater amounts of landfill space are required· for wetter sludges, due to its increased volume. With 

.landfill siting tending to be further from the population centers (due to the Not-in-my-Backyard, or 

NIMBY, syndrome) and with new environmental regulations for landfill construction and closure, 
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transportation and disposal costs for landfilling are rising. 

Incineration is not possible if the sludge is too wet for combustion. Land application of 

extremely wet sludge cakes has more probability of odors, insects, or liquid runoff (Smith et al, 1989), 

and greatly increases the required land area (Villiers and Farrell, 1977). And composting of sludge 

with wet cakes is far less economical due to the costs of maintaining a sp~Hic moistu~e and 

temperature range (Smith and Semon, 1989). According to Smith and Semon (1989), the acceptable 

minimum solids content may vary for different means of disposal, i.e, 18% for narrow trench 

landfilling, 24% for combustion, and 28-30% for economical operation of an incineration facility. Due 

to economic, social, and environmental pressures regarding sludge disposal, an increased emphasis is 

being placed on the need for improved efficiency and performance of the wastewater treatment plant's 

sludge dewatering treatment process. 

Development of processes for dewatering of wastewater sludge began toward the end of the 

19th and beginning of the 20th century (Dick and Ball, 1980). Equipment for dewatering wastewater 

sludge include vacuum filters, filter presses, belt filter presses, gravity filters, and centrifuges. 

Vacuum filtration is intrinsically limited by the available vacuum, and centrifugation has been limited 

by practical machine speeds, such that neither can develop sufficient force on the cake to move the free 

water from the interior of the cake as it is formed (Villiers and Farrell, 1977). Nevertheless, recent 

advances in centrifugation teclmology have made this process more efficient in sludge dewatering. The 

belt filter press squeezes the water out of a sludge layer compressed between two porous woven fiber 

belts, and thus can remove more of the residual water (Villiers and Farrell, 1977). 

Belt filter presses, initially designed to dewater paper pulp, were modified in the early 1960s 

in Germany by Klein to dewater sewage sludge (Villiers and Farrell, 1977). Although the belt filter 

press was introduced into the United States by Carter in 1971 (Villiers and Farrell, 1977), the 

difference between U.S. and European sludge led to low cake solids and poor solids capture (EPA, 

1987). Early belt filter presses demonstrated poor performance and durability' as compared to vacuum 

filters and centrifuges, and often required large dosages of conditioning chemicals (EPA, 1986). These 
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early problems led to American manufacture of the belt filter press. The first American belt filter 

presses were based on the design of belt conveyors and were much lighter than their European 

counterparts, and thus were plagued with mechanical failures of rollers and bearings (EPA, 1987). By 

the late 1970s, American manufacturers made significant improvements, considerably reducing failures, 

·and leading to an increased popularity of the belt filter press (EPA, 1987}«. ~urthermore, compared to 

other mechanical dewatering equipment, belt filter presses have very low power requirements and are 

quite energy conservative ·(EPA, 1987). Thus, although the belt filter press is a relatively new addition 

in the variety of commercially available sludge dewatering equipment, it is now marketed by ten to 

fifteen different manufacturers in the U.S. (Searle and Bennett, 1987). 

Design of dewatering equipment, such as the belt filter press, is based on field experience, 

trial and error, pilot plant testing, and/or full scale testing. Time-consuming and expensive, full-scale 

dewatering tests might include four to five side-by-side full-scale dewatering units for time periods 

ranging from several weeks to over 6 months (EPA, 1982; as cited in Wells, 1988). 

Use of dewaterability tests in the lab, such as the specific resistance test, have not been able to 

predict full-scale equipment performance (EPA, 1987; as cited in Wells, 1988). Although small-scale 

·dewatering units may provide more accuracy than the lab tests, obtaining operational data may be 

expensive and time-consuming (Wells, 1988). 

Better prediction of dewatering performance could be provided by use of theoretical modeling 

of the physics of the belt filter press based on laboratory determined sludge properties. Thus, optimal 

design and operations of a belt filter press could be determined without the necessity of full-scale 

testing. This is in contrast to empirical models of sludge dewatering processes, which are each 

applicable only to specific sludges. Because each sludge must be verified independently, a relatively 

large experimental effort is required. And since physical prop~rties of sludge change with time, such 

empirical data and models derived from them may have limited value. 

To date, no numerical studies of dewatering for the belt filter press have been developed which 

incorporate all the physical phenomena of the process. An operating belt filter press continuously 
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dewaters sludge (after chemical conditioning) by gravity drainage and mechanically-applied pressure in 

both a low pressure "wedge" zone and high pressure "shear" zone, as shown in Figure 1. 

} Flocculator 
Poly me~ 

Sludge feed ~ Upper belt 
,.!. ~;_ 

Belt tension -:-> Gravity drainage zone 

rolle~r:s:----~~ii~iiiiiiiiiii!~~~~~..,,,_"._ 
~ ' ~ Wedge zone 

~ Cake discharge 
.! 

Lower belt Bit ._ ._ ~~~ Q O w:sh High-pressure zone -:- ~< Conveyer 
,.. ~ Ahgnment roller 

~ 
Filtrate and wash water 

Figure 1. Belt filter press schematic diagram (Viessman and Hammer, 1985). 

In the gravity drainage zone, approximately one-half or more of the water is removed, and 

suspended solids content is doubled (Viessman and Hammer, 1985), or even tripled (EPA, 1986; and 

EPA, 1987). Gravity drainage is essential to create a great enough solids concentration for the sludge 

to be squeezed between the belts (Task Committee on Belt Filter Presses, 1988). Within the low 

pressure "wedge" zone, the sludge is gradually compressed between the upper and lower belts, forming 

a firm sludge cake able to withstand the shear forces within the high pressure zone. Within the high 

pressure "shear" zone, the confined sludge layer is subjected to both compression and shearing action 

caused by the outer belt being a greater distance from the center of the roller than the inner belt 

(Viessman and Hammer, 1985). 



PROBLEM DESCRIPTION 

This study focuses on the physical modeling of the gravity drainage (or sedimentation) portion 

of the belt filter press operation. The model was developed from a physically based numerical 

computer model of cake filtration developed by Wells (1990), which solved a non-linear, partial _ 
~.~· ~;-

differential equation with an explicit finite difference procedure. 

Both the gravity sedimentation and cake. filtration models were based on the same governing 

equations for two-phase flow: liquid continuity, solid continuity, liquid momentum, and ~lid 

momentum. Whereas cake filtration may occur due to either a gravity head or applied pressure, 

gravity sedimentation is driven only by gravity. Thus, in Wells' (1990) cake filtration model the 

gravity term was negligible due to the relatively large magnitude of the applied pressure, but in the 
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gravity sedimentation model, since there was no applied pressure it was necessary to consider the effect 

of gravity. 

Although in the cake filtration model the inertial terms were shown to be negligible, according 

to Dixon, Souter, and Buchanan (1985), inertial effects in gravity sedimentation cannot be generally 

ignored. The region where inertia is important is the narrow interface between suspension and 

sediment. 

The strategy in developing the gravity sedimentation model involved the following: 

(1) Determination of the solid and liquid continuity and momentum equations; 
(2) Derivation of the final equations to be solved numerically; 
(3) Development of a numerical solution strategy; 
( 4) Determination of boundary conditions and constitutive relationships; 
(5) Analysis of numerical errors in the numerical model; and 
(6) Comparison of model predictions to known data .. 

The governing equations used in this study were compared to those developed by other 

investigators. Two final equations were developed: (1) solid continuity, and (2) total momentum with 

continuity (derived based on a technique used by Soo in 1989, and referred to as the "momentum" 

equation). First, the solid continuity equation was solved to determine porosity at the next time step. 

Then the "momentum" equation was solved for the solid velocity, also at the next time step. 
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Boundary conditions were required for the equations being solved. Constitutive relationships 

were developed for "k" (intrinsic permeability) and "lllv" (coefficient of volume compressibility), both 

functions of porosity, which accounted for the sedimentation zone and the transition zone (between free 

settling and the cake). 

Different computational strategies were used for each of the two .fi:naJ. equation included In the 

numerical solution. A finite ~ifference equation was developed with a "space-staggered mesh", such 

that porosity was evaluated at the control volume center and solid velocity was evaluated at the control 

volume edges. An explicit formulation was used to solve the ~olid continuity equation with a forward 

difference in time and a centered difference in space. A fully implicit formulation (which required 

linearization of the non-linear terms) was used for the "momentum" equation, with a forward difference 

in time. . Both upwinding and ~ntral differences were used for the spatial derivatives. As the model 

was developed and refined, a number of other computational schemes were tried for the "momentum" 

equation. The computer code was developed to be as general as possible with the ability to toggle 

between alternate schemes. 

Analysis of the modified "momentum" equation indicated which terms led to instability due to 

numerical dispersion. This was used to determine how much "artificial viscosity" was necessary to 

reduce these numerical errors (by adding numerical diffusion) and smooth out the solution. 

And finally, the model physics were verified by comparison to gravity sedimentation porosity 

data collected by Wells and Dick (1988) at the Cornell High Energy Synchrotron Source (CHESS). 



CHAPTER IT 

REVIEW OF TIIE UTERATURE 
I)_~.-\.-,.-

INTRODUCTION 

Research in sedimentation and consolidation has been applied to environmental engineering, 

material science, marine geology, coastal engineering, biotechnology, chemical engineering, mining 

·engineering, and geotechnical engineering (Schiffman, 1985). This research involves soil or soil-like 

materials, the compressibility and permeability properties of a porous material, and time effects. The 

applications differ in the time scale of interest. For example, the geologist is interested in millions of 

years, while the geotechnical engineer is generally concerned with the one- to fifty-year life of a 

constructed facility, and the chemical engineer involved with filtration processes is concerned with 

seconds (Schiffman et al., 1985). 

The following literature review focuses on: (1) general theory, such as 

sedimentation/consolidation, one-dimensional nonlinear finite strain theory, and constitutive 

relationships; and (2) applied theory, such as gravity thickening and cake filtration. 

GENERAL THEORY 

Sedimentation/Consolidation 

Hindered Settling. Although sedimentation processes were used in chemical engineering for 

many years, until1950 most of the experimental work was based on Stokes law (1851; as cited by 

Richardson and Zaki, 1954) and assumed a steady-state process (Lamb, 1932; as cited in Schiffman et 

al., 1985). The settling velocity, a function of the Stoke's velocity and the particle concentration, was 

considered to be a "material" property of the mixture (Schiffman et al., 1985) and was based on the 



motion of a single spherical particle in an infinite fluid (Richardson and Zaki, 1954). 

The settling of slimeS, containing particles with a wide range of sizes, were studied by Coe 

and Clevenger in 1916 (Richardson and zaici, 1954). Although sedimentation usually began at a 

constant rate, they noted a progressive decrease in the rate of sedimentation as thickening occurred. 

A modification of the Stokes' law was suggested in 1926 by Robinson (Richardson and Zaki, 

1954) for predicting the settling rates of suspensions of fine uniformly sized particles. 

Steinour studied the sedimentation of suspensions of uniform particles under conditions of 

streamline flow in 1944 (Richardson and Zaki, 1954). He assumed that the effect of concentration 

could be taken into account by using the density of the suspension and the viscosity of the liquid, and 

that a function of the porosity could be used to account for the shape and size of the flow spaces. 
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Hawksley expressed a rate of settling of concentrated suspensions based on the assumption that 

during the settling process an "equilibrium arrangement" of particles was established (Richardson and 

Zaki, 1954). 

All three researchers -·Robinson, Steinour, and Hawksley- assumed that the effective 

buoyancy force acting on the particles depends on the density of the suspension. Richardson and Zaki 

(1954) demonstrated that the falling velocity of a suspension relative to a fixed horizontal plane was 

equal to the upward velocity of liquid required to maintain a suspension at the same concentration. 

Their work showed that the earlier assumption- that the effective gravitational force acting on a 

particle in a suspension was determined by the density of the suspension and that the drag on the 

particles was a function of the apparent viscosity - could not be true for a suspension of uniform 

particles. 

The theoretical background of sedimentation was established by Kynch (1952; as cited in 

Schiffman et al., 1985) and Richardson and Zaki (1954; as cited in Schiffman et al., 1985). Kynch 

realized that the settling proc~ss of uniform dispersions was a highly transient process. The theory of 

hindered settling - the downward motion of solid particles as they coalesce and their packing density 

increases - developed by Kynch primarily focused on the continuity of the solid phase. This simplifies 
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the problem because effective stresses in the sediment formed at the bottom of the dispersion were 

ignored, and the velocity of the solid particles was a function solely of the porosity (Schiffman et al., 

1985). Thus, the particulate suspension is characterized over the entire concentration range by a single 

relationship between settling velocity and concentration of solids, implying the existence of a flux curve 

for each slurry (Kos, 1985). Schiffman et al. (1985) noted that as the co~ntration of solids tended to 

zero, Kynch's theory reduces to Stokes' theory. 

Kynch's concept was used by nearly all of the disciplines concerned with settling phenomena 

(Schiffman et al., 1985). This theory was elaborated by chemical engineering literature, and applied to 

continuous thickening processes of sludges (Schiffman et al., 1985). In 1980, Shin and Dick noted that 

Kynch's assumption that the se~tling velocity of a suspension was a function of the particle 

·concentration only may not be valid for flocculent suspensions, and thus the initial settling velocity data 

might not accurately represent the settleability of a suspension as it was formed during thickening. 

Because the Kynch theory applied only to sedimentation of particulate suspensions, it assumed no 

interparticle contacts and postulated the existence of only one settling velocity for each solids 

concentration (Kos, 1985). Sedimentation of flocculated suspensions could not be described by Kynch 

theory because a certain quantity of water, kept by the flocks, could be expelled from the sediment 

except by means of compression (Concha and Bustos, 1985). The various shapes of batch settling 

curves for flocculent suspensions, which are the result of the consolidation of the interconnected matrix 

of solids, thus cannot be described by the Kynch theory (Kos, 1985). 

Consolidation. According to Schiffman et al. (1985), "The theory of consolidation is a 

continuum theory designed to predict the progress of deformation of an element of a porous material 

. when this element is subjected to an imposed disturbance. The porous medium is defined, in the 

general case, as a system of interacting continua where each component continuum is governed by its 

constitutive (stress-strain and flow) relationships." 

Five milestones in the history of the theory of consolidation are shown in Table I (Schiffman 

et al., 1985): 



10 

TABLE I 

MILESTONES IN THE IDSTORY OF THE THEORY OF CONSOUDATION 

RESEARCHER TYPE OF THEORY OF CONSO~ATION DESCRIPTION 
(YEAR) 

1. Terzaghi Ono-dimensional theory of consolidation The reduced coefficient of permeability is _ 
(1923), (ferzaghi) formulated in a finite strain theory defined as kl(~~) where k is the conventionally 
Znidarcic and assuming that compressibility and the ~uced measured coefficient of permeability and e is the 
Schiffman, coefficient of permeability are constant (Znidarcic current void ratio. 
1982) and Schiffman) 

2. Terzaghi Ono-dimensional theory of consolidation This is conventional theory. A first attempt at 
(1942) reformulated in an infintesimal strain theory with the transformation of the 1923 theory to 

linear propertiey for constant compressibility and infinitesimal strains was provided by Terzaghi 
coefficient of permeability and Fronlich (1936); however, this work was 

somewhat ambiguous with regard to the 
definition of strain. 

3. Mikasa Ono-dimensional nonlinear finite strain theory of Unrestricted with respect to the magnitude of 
(1963), Gibson, consolidation strain and the variations of compressibility and 
England and permeability save that they are single-valued 
Hussey, 1967) functions of the void ratio alone. 

4. Biot (1941) Coupled multi-dimensional infinitesimal strain In 1956, this theory was clarifiedby Biot by 
theory of consolidation defining Darcy's law in terms of the relative 

velocity between the fluid and solids. 

5. Biot (1972), Multi-dimensional nonlinear finite strain theory of Mathematical complexity and the lack of 
Carter, Small consolidation where both the deformations and the verifiable information on multi-dimensional 
and Booker fluid flow occur in more than ono-dimension constitutive models applicable to soft clay have 
(1977) limited development of such models. 

One-dimensional nonlinear finite strain consolidation theory developed in both the geotechnical 

(Mikasa, 1963; Gibson, England and Hussey, 1967; as cited in Schiffman et al., 1985) and chemical 

engineering fields (Shirato et ~., 1970; Kos, 1977; Dixon, 1979; Tiller, 1981; as cited in Schiffman et 

al., 1985) are reviewed below .. 

More recently, Kynch's theory has been generalized to take a900unt of a zone of consolidation 

below the suspension (Tiller, 1981; as cited in Schiffman et al., 1985; Fitch, 1983; as cited in 

Schiffman et al., 1985). The new equations by Tiller (1981) take account of the sediment rising from 

the bottom of the settling chamber. 

A Linked Theocy. Been (1980; as cited in Pane et al., 1985) has demonstrated that 

consolidation and hindered settling derive from the same basic principles, and that by setting the 

effective stress to zero, hindered settling can be deduced from consolidation. Schiffman et al. (1985) 
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explain that when the concentration was defined as the volume fraction (i.e. c = 1-n, where n is the 

porosity of the suspension and c is the volumetric concentration of particles) the equation for hindered 

settlement led to the solid continuity equation. This equation was also the Gibson, England and Hussey 

(1967; as cited in Schiffman, et al., 1985) consolidation equation, with the void ratio as the dependent 

-
variable in which the vertical effective stress was everywhere zero. Thus~~·.Been was able to show that 

. Kynch's theory of hindered settlement (1952) was one component of the more general Gibson, 

England, and Hussey non-linear finite strain theory of consolidation (1967) - logically linking 

sedimentation (hindered settling) and consolidation. 

This single theoretical basis for sedimentation and consolidation processes of solid-water 

mixtures was provided by modifying the effective stress principle (Schiffman, Pane and Gibson, 1984; 

as cited in Schiffman et al., 1985) and by extending the concept of the permeability to the dispersed 

state (Pane, 1985; as cited in Schiffman·et al., 1985). However, the use of the concept of hindered 

settling and the qualitative linkage between sedimentation and consolidation has long been recognized 

by environmental (or sanitary) engineers (Mohlman, 1934; as cited in Schiffman et al., 1985). 

Harris, Somasundaran and Jensen (1975; as cited in Schiffman et al., 1985) and Somasundaran 

(1981; as cited in Schiffman et al., 1985) have studied the process of sedimentation and consolidation 

primarily from an experimental' and phenomenological viewpoint. Tiller (1981; as cited in Schiffman et 

al., 1985) developed consistent equations for both sedimentation and consolidation phases and linked the 

two by matching the boundary condition at the interface between phases. 

Schiffman et al. (1985) noted that the study of coupled sedimentation and consolidation had 

been limited to an abrupt change from a dispersion to a soil. Within a transition zone there was a wide 

range of void ratios where even relatively inert clay dispersions exhibited fabric changes and intrinsic 

time dependency. Pane and Schiffman (1985) noted that studies by Michaels and Bolger (1962) and by 

Been and Sills (1981) have shown the existence of a transition zone between the dispersion and soil 

(i.e., the pelagic deposition of a sediment column) characterized by large concentration gradients with 

depth. 
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Two aspects of the sedimentation/consolidation theory -the constitutive relationships of the 

medium and the finite strain nature of the deformations are discussed below. 

One-Dimensional Nonlinear Finite Strain Consolidation Theory 

One-dimensional finite strain consolidation theory was independently developed by M~ in 
~;. ~-· 

1963, and Gibson, England, and Hussey in 1967 (fownsend and Hernandez, 1985). 

Gibson, et al. (Gibson, Schiffman, and Cargill, et al.; 1981, as cited in Benson; 1987) derived 

their finite-strain consolidation equation by applying the continuity equation, force equilibrium, 

porewater equilibrium, Darcy equation, and effective stress principle to a differential element of the 

compressible media. Their model considered the value of the hyd;raulic conductivity at each point in 

the consolidating layer for all times during the consolidation process. Their model showed that as the 

material near the filter compacted due to the very large effective stress gradient, the resistance to the 

·flow of water through this thin compacting layer increased causing a slowing of the consolidation 

process (Benson, 1987). 

According to Townsend and Hernandez (1985), the theory of Gibson et al. (1967) had the 

following advantages over previous theories: incorporation of the nonlinearity of both permeability and 

compressibility with depth, inclusion of the influence of self-weight of the consolidating layer, and 

removal of limitation to infitesimal strains. 

According to Townsend and Hernandez (1985), Gibson et al. 's (1981) one-dimensional fmite 

strain equation was reformulated by Somgyi (1980) using a lll3;terial coordinate system such that it 

described the excess pore pressure during consolidation; an 8.Iternating direction explicit finite 

difference procedure was used for its solution. As a result of this reformulation of the finite strain 

consolidation equation, the conventional coefficient of consolidation was seen to be a highly non-linear 

function of the void ratio. Both Somogyi and Gibson et al. incorporated this nonlinear function into 

their fmite strain solutions, while others such as Yong and Ludwig (1984; as cited in Townsend and 

Hernandez, 1985) and Olson and La.dd (1979; as cited in Townsend and Hernandez, 1985) selected a 

piecewise linear consolidation model. The piecewise linear consolidation theory uses an assumption of 
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continuous loading, nonlinear soil properties and nonhomogeneity (Townsend and Hernandez, 1985). 

The classical consolidation theory was formulated by Yong and Ludwig (1984; as cited in 

Townsend and Hernandez, 1985). Although "the overall solution of the problem was nonlinear, the 

coefficients of permeability (k) and compression ( ~) remained constant for each time step and were 

continually updated by taking small time steps." . ~ ~.· 
If,:'"_. .. ·':: 

Development of num~rical procedures has been reported for a wide variety of field situations 

as cited by Shiffman et al. (1985): Shirato et al. (1970), Pane (1981), Somogyi, Keshian, and 

Bromwell (1981), and Mikasa and Takada (1984). Also, Townsend and Hernandez (1985) reported 

that finite strain numerical analyses and piecewise linear models have been used to provide design 

predictions for predicting the rates and magnitudes of settlement/consolidation in phosphate mining in 

Florida (Townsend and Hernandez, 1985). 

Townsend and Hernandez (1985) determined that numerical models based upon effective 

stresses were only appropriate for consolidation phases. They found that physical models (such as by 

using a centrifuge to evaluate consolidation properties) were a viable technique for validating numerical 

models and programs. Also, Townsend and Hernandez (1985) concluded that the physical models 

could represent the sedimentation/consolidation phases, provided the appropriate time scaling 

component was used. According to Schiffman et al. (1985) centrifuge validation of nonlinear finite 

strain consolidation for soft an~ very soft materials was presented by Bloomquist and Townsend (1984), 

·Croce, et al. (1984), Leung, et al. (1984), Mikasa and Takada (1984), and Scully et al. (1984). 

To a large extent, existing theory of nonlinear finite strain consolidation was limited to one-

dimension. Some work published by Somogyi et al. (1981; as cited by Schiffman, 1985) used a 

simplified theory incorporating multi-dimensional flow but maintaining one-dimensional compression. 

Some work has been undertaken to develop a fully coupled theory of multi-dimensional finite strain by 

Carter, Small, and Booker (1977; as cited by Schiffman, 1985). 

Schiffman, Pane, and Sunara (1985) summarized their research by stating that nonlinear finite 

strain consolidation theory was an accurate predictor of field performance and that it should replace the 



14 

use of conventional theory. neir research of nonlinear finite strain theory indicated the following in 

comparison to conventional theory: (1) progress of settlement was substantially faster; (2) dissipation 

of excess pore water pressure of a loaded clay layer was substantially slower than the progress of 

settlement; (3) the vertical effective stresses was generated faster in many cases - especially those 

involving slow accumulation of material; and ( 4) the measured values of th.&·'change in compressibility 

and permeability as function of .the void ratio replaced the use of a single value of the coefficient of 

consolidation. 

Constitutive Relationships 

In order to define the physical properties of a porous medium, a constitutive model describing 

filtration and deformation properties must be developed (Kos, 1985). 

These constitutive relationships were: 

(1) an interrelationship between the component stresses (i.e., the effective stress principle), and 

(2) a definition of flow. of fluid through the porous medium. 

Effective Stress Principle. Effective stress is a measure of the soil or intergranular pressure. 

The effective stresss principle states that there is a state of stress a', which is responsible for the 

deformation of the porous deformable mineral skeleton. The porous medium is a two-phase system 

consisting of a deformable mineral skeleton filled with an incompressible liquid (water), such that the 

effective stress principle can be formulated as: 

C1 = q' + 1lw (2.1) 

CT = total stress applied to the system [MIL-'f2] 
a' = effeetive stress (inter-particle pressure) [MIL-T:J 
Uw = porewater pressure [MIL-T :z1 

The effective stress principle governs the deformation of a porous medium, such as in the 

consoidation zone. At the top of the settling zone, the total stress and the pore water pressure were 

equal when as measured in a sedimentation column by Michaels and Bolger (1962; as cited in 

Schiffman et al., 1985), Been (1980; as cited in Schiffman et al., 1985), and Been and Sills (1981; as 



15 

cited in Schiffman et al., 1985). Schiffman, et al. (1985) note that this indicates the particles have not 

aggregated and thus the effecfive stresses are zero. According to Michaels and Bolger (1962) and Been 

(1980), a thin transition zone separating the settling and consolidation zones exists where the effective 

stresses are non-zero, but do not follow the Equation _l_ (Schiffman et al., 1985). As a result of these 

observations, the effective stress equation was restated in a more general {onn as follows (Schiffnian, 

Pane, and Gibson, 1984; Pane, 1985; Pane and Schiffman, 1985; as cited in Schiffman et al., 1985): 

a = B(e)a' + llw (2.2) 

a = Total stress applied to the system [MIL-'f2] 
B = A monotonic function of the void ratio, e [-] 
a' = Effective stress (inter-particle pressure) [MIL-19 
llw = Porewater pressure [M/L-T2) 

Kos investigated a model for constitutive theory which deviated from the work of previous 

investigations of compression during gravity thickening. While the earlier investigations had 

counterparts in soil consolidation and modem cake filtration theory, Kos' models were developed on 

the basis of a detailed measurement of filtration and consolidation properties of flocculent suspensions 

during continuous thickening. Thus, Kos' models reflect changes of structure of the flocculent porous 

medium during compression. 

Flow Relationsips. In both sedimentation and consolidation there were two absolute velocities 

- that of the solid particles and that of the fluid. The coefficient of permeability of the system, k, is the 

proportionality factor which relates the relative seepage velocity and the excess pore water pressure 

gradient, according to the Darcy-Gersevanov law (Darcy, 1856; Gersevanov, 1934; Verruijt; 1969; as 

cited in Schiffman et al., 1985): 
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k=e (2.3) 

k = coefficient of permeability [L2
] 

! ~ ~· 

8 = porosity [-] ".":"· .. ,:-': 

vl = velocity of the fluid [UT] 
v. = velocity of the solid particles [UT] 

u... = excess pore water pressure [MIL-'f2] 
~ = "convective" coordinate [L2JT2] 
Pw = density of water [M/IJ] 

Tiller and Green (1973; as cited in Tiller et al., 1985) in the theory of flow through 

compressible cakes, demonstrated that the flow rate of a highly compressible material reached a 

·constant value when the pressure drop exceeded some relatively low value. Resistance to flow 

increased at that point in direct proportion to the pressure drop, and no increase in flow rate took place 

with increasing pressure and the average porosity reached an essentially constant value at the same 

point (Tiller et al., 1985). 

APPUED 1HEORY 

Gravity Thickening 

Introduction. Gravity thickening is a solid-liquid separation process. Because the particles are 

more dense than the liquid, the gravitational force per unit volume of particles is greater than that per 

unit volume of liquid, causing particles to move downwards relative to the liquid. The bottom of the 

container restricts particle movement, resulting in an increase in average particle concentration in the 

.lower parts of the container (Dixon, 1979). 

Suspensions of fine particles are usually treated with coagulants, to cause particles to form 

aggregates before they can be successfully separated by gravity. The forces opposing the downward 

motion of floes are: (1) inter-particle forces, resisting increase in particle concentration, and (2) liquid-

drag forces from the relative motion of floes and liquid (Dixon, 1979). In a "thickening" process, the 
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particles move closer together, resulting in increased particle concentrations such that the inter-particle 

force is the primary force which opposes the gravitational force. The drag force which occurs due to 

the relative motion between the particles and liquid during thickening is a secondaty force opposing the 

gravitational force (Dixon, 1979). 

In comparison, clarification - which precedes thickening - involveso\.the relative motion between 

floes and liquid. Thus, the drag force is the primacy force which opposes the gravity .. Therefore, 

clarification only occurs at a sufficient distance above the bottom of the container that thickening from 

inter-particle forces transmitted from the bottom is negligible. In the clarification region, the velocity 

varies with the particle concentration since the drag force varies with the relative velocity of floes and 

.liquid and with the particle concentration (Dixon, 1979). 

History. The earliest work on gravity thickening was carried out at the Tigre Mining 

Company ·in Sonora, Mexico, as reported by Mishler in 1912 (Okey, 1989). This study demonstrated a 

bench-scale technique, which was used to define the inter-relationship between· solids concentration, 

settling velocity, tank depth, tank area and thickening capacity. In 1916, Coe and Clevenger introduced 

the concept of thickener capacity - that each concentration layer of a suspension in a continuous 

thickening tank has a certain capacity to transmit solids'- as follows (Kos, 1985): 

ui 
CAP= 

ci cu 

CAP = capacity of a suspension at concentration ci to transmit solids 
~ = the zone settling velocity obtained from the linear portion at the beginning of the 

sedimentation curve [IJT] 
cu = underflow concentration [M/L3

] 

(2.4) 

Coe and Clevenger (1916), and later Kynch (1952}, provided methods for obtaining sedimenation rates 

from static, batch tests used for designing continuous thickeners (Wakeman and Holdich, 1984). 
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Thickeners were first reported for environmental applications by Comings (1940) and 

Kammermeyer (1941). Works were published by Torpey and co-workers on the co-thickening of 

primary with waste activated ~d primary with digested sludge (Torpey, 1954; Torpey and Melbinger, 

1967). Torpey optimized the operation of gravity thickeners by strict attention to the critical 

operational factors (Okey, 1989). •. ~. ~~--

During the latter portion of the '60s and into the '70s, substantial contributions to the theory of 

the thickening of flocculent and compressible solids were made (Dick and Ewing, 1967; Edde and 

Eckenfelder, 1968; Vesilind, 1968; Dick, 1970; Dick and Young, 1972; Cole et al., 1973; Kos, 1977; 

and Fitch, 1979). Ho~ever, gravity methods seldom produced solids concentrations greater than 1.5%-

2.5% solids by weight in operating facilities (Okey, 1989). 

Flotation thickening was investigated in the mid-fifties, and 1.0%-4.0% solids were obtained 

without polymer (Eckenfelder et al., 1958 and Howe, 1958). By the mid-sixties, data were presented 

showing that primary and activated sludge mixtures could be flotation thickened to 4.0%-8.0% with the 

use of polymers (Wahl et al., 1964). A comprehensive thickening study, appearing in the literature by 

Mulbarger and Huffman (1970), showed that flotators could thicken waste activated sludge to 4.0%-

·5.0% solids (Okey, 1989). 

Dixon, Souter, and Buchanan (1976) concluded that inertial effects in sedimentation could not 

be generally ignored in all cases. While most researchers ignored the inertial effects, they concluded 

that the region where inertia was important was the narrow interface between suspension and sediment 

where rapid velocity change was occurring. Above the thickening region interface, the particles settled 

at the terminal vel~city corresponding to the initial concentration and did not experience acceleration or 

retardation. Below the thickening interface, the solid velocity was approximately zero. The inertial 

effects in the narrow region at the interface were due to ratardation of the particles as they struck the 

top of the sediment (Dixon, Souter, and Buchanan, 1976). 

Dixon (1979) also studied batch thickening of an initially uniform suspension. He concluded 

that when the suspension was initially in free settling, the inertial effects could not normally be 
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neglected because the initial subsidence rate would be maintained until nearly all the particles had 

entered the compression zone. When the suspension was initially in compression, inertial effects were 

normally negligible. 

In 1984, Wakeman and Holdich considered the distributions and magnitudes of weight, drag,· 

inertial, and solids compressive stresses in sedimentation. The inertial effecls in different parts of the 

column were found to be very small everywhere. 

Settling Properties of Sludges. Gravity thickening can be carried out as a batch or a 

continuous process. In the batch process, a tank with a dilute material is allowed to settle for a desired 

period of time, after which the clear liquid (supernatant) is decanted and the thickened suspension is 

·removed from the bottom of the tank. The continuous process of gravity thickening has continuous 

feed and continuous or periodic withdrawal of the thickened suspension from the tank bottom. 

Historically, the batch settling process has been studied more intensively than the continuous thickening 

process (Kos, 1985). 

Settlement of suspended particles depends on the concentration of the suspension and the 

particle characteristics, such as density, shape, and size. Four distinct types of sedimentation, 

reflecting the concentration of the suspension and the flocculating properties of the particles, include 

(Fitch, 1958; as cited in Weber, 1972): 

(1) Class-1 clarification - the settling of a dilute suspension of particles which have little or no 

tendency to flocculate; 

(2) Class-2 clarification - the removal of a dilute suspension of flocculent particles; 

(3) Zone settling - subsidence of particles as a large mass rather than as discrete particles (due to 

the particles being sufficiently close such that interparticle forces are able to hold them in fixed 

positions relative to each other); and 

(4) Compression- restriction of further consolidation. 

According to Weber (1972), sludges normally exhibit zone settling characteristics, as ~hown by the 

appearance of a distinct horizontal interface between the solids and the liquid. 
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Work with activated sludge (Dick, 1970a; as cited in Weber, 1972) has shown that fluid 

resistance and inter-particle drag need to be considered simultaneously and that a significant amount of 

"compression" may accompany sedimentation at comparatively dilute concentrations. For example, 

interparticle forces may reduce 'the subsidence rate of activated sludge at ordinary mixed-liquor 

suspended solids concentrations (Weber, 1972). ~~. -\.;. 

Conditioning of Sludges~ Sludge conditioning refers to chemical and physical methods for 

altering sludge properties to remove water more readily. Conditioning technology is based on trial-and­

error experimentation. The efficacy of alternate conditioning methods is evaluated by the many 

laboratory-derived parameters - such as specific resistance, coefficient of compressibility, yield, rise 

rate, and subsidence velocity- depending on the dewatering or thickening process to be used (Weber, 

1972). 

Cake Filtration 

Models of one-dimensional cake filtration have been developed, based on two-phase flow 

theory and constitutive relationships, by: Smiles (1970), Atsumi and Akiyama (1975), Kos and Adrian 

. (1975), Wakeman (197&), Tosun (1986), and Wells (1990). 

A similarity transformation was used by Smiles (1970), Atsumi and Akiyama (1975), and 

Wakeman (1978) to change the governing partial differential equation into an ordinary differential 

equation. Due to the use of the similarity transformation, the applications of these models were 

restricted to situations where the average cake concentration was independent of time (Atsumi and 

Akiyama, 1975). 

Tosun (1986) used a solution technique developed by Kehoe (1972) to approximate the non-

linear governing equation with a moving boundary, and obtain~ similar results to those of Atsumi and 

Akiyama's (1975) similarity transformation. The results of Wakeman's (1978) model compared well to 

porosity data (obtained by electrical resistivity measurements after fitting model coefficients to the data 

by a least squares technique) even though Tosun (1986) showed that Wakeman did not have the correct 

moving boundary condition. 
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Wells (1990) solved the full non-linear, partial differential equation (using an explicit finite 

difference procedure) to predict cake development with time, shrinkage, and filtrate production. His 

model used porosity data from the Cornell High Energy Synchrotron Source (CHESS) and porewater 

pressure measurements. within the kaolin cakes to determine constitutive relationships. Wells and Dick 

(1988) showed that the numerical model accurately des~ribed the effect of~presedimentation on 

filtration. However, Wells' (1988) model used an initial known porosity profile as an initial condition, 

and did not account for gravity sedimenation. 



CHAPTER ill 

DEVELOPMENT OF THE GRAVITY SEDIMENTATIQN,: MODEL 

TWO PHASE FLOW GOVERNING EQUATIONS 

Summary - Two Phase Flow Governing Equations 

The gravity sedimentation model is based on four governing equations (Willis, 1983): liquid 

and solid continuity (Equations 3.1 and 3.2) and liquid and solid momentum (Equations 3.3 and 3.4). 

The four equations with their ·respective coordinate systems are shown in Figures 2-4. 

(1) Liquid Continuity: 

ae =-...£._ (e Vl) at az 

(2) Solid Continuity: 

~=_E_((l-e) V) at az s 

(3) Liquid Momentum: 

avl 
epl at 

av1 
+ep l vl az =-ep lg -eF( Vl-Vs) -e ap az 

Inertial Convective Gravity Drag Liquid 
Acceleration Pressure 

(4) Solid Momentum: 

av av a 
{1-e)p - 8 +(1-e)p V-5 =-(1-e)p g +eF(V1-V)-(1-e).J!. 

s at s s az s s az 
aa' 
Tz 

Inertial Convective Gravity 
Acceleration 

Drag Liquid Inter­
Pressure granular 

Stresses 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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t 

z 
vl 
v. 
F 

p. 
k 
p 
g 

Pt 
Ps 
q' 

= porosity [-] = volume liquid/total volume 
time [f] 
distance from filtration medium [L] 

= true liquid velocity (in contrast to Darcy velocity, 8 V 1) [LIT] 
= velocity of the solid particles [UT] 
= 8p.lk, Averaged interfacial interaction term between the solid and the liquid phases 

= 
= 
= 
= 
= 
= 
= 

[M/L3-T] . 
dynamic (or absolute) viscosity [M/L-T] 
intrinsic permeability [L ~ 
fluid static pressure [M/lr 'f2] 
acceleration due to gravity ~] 
liquid density [M/L3

] 

solid density [M/L3
] 

effective stress [M/L T] 

~.!. ~ .. -
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The liquid continuity equation describes the difference in liquid flux into and out of the control 

volume, which is equal to the change in the mass of fluid within the control volume. Similarly, the · 

solid continuity equation describes the difference in solid flux into and out of the control volume. A 

schematic of the solid and liquid flux into and out from a control volume is shown in Figure 2. 

Control volumes are also shown in Figures 3 and 4 for the liquid and solid momentum 

balances. The sum of all body and surface forces acting on the body of fluid within the control volume 

are equated to the rate of change of momentum (McCormack and Crane, 1973) within the control 

·volume. 

Many researchers have investigated and derived equations for the conservation of mass 

(continuity) and momentum in two-phase flow. The continuity equations can be easily compared 

between researchers and are accepted as presented in this paper. 

The momentum equations presented by researchers are more difficult to compare because of 

the variety of terms and the varied nomenclature. To confirm the correctness of the momentum 

equations presented here, a comparison was made of other researchers' equations, as shown in Tables 

ll-V. Wells' (1990) governing equations for cake filtration before his scaling analysis determining 

negligible terms (i.e., gravity and inertial terms), Soo's (1989) equations for batch settling, and 

Gidaspow and Ettehadleh's (1983) 2-dimensional hydrodynamic modeling of fluidization 
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liz in storage flux in flux out 4eV 4 (1-a) V 
of fluid mass At At 

l 
Change •£ Change 
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Liquid solid flux out 

flux out 

Figure 2. Liquid and solid continuity balance over a control volume. 
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Change of .1110-ntum 
in storage of 

fluid mass 
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Figure 3. Liquid momentum balance over a control volume. Equation is a sum of all 
the forces: body forces include gravity, and surface forces include the liquid pressure 
(shown with a Taylor series expansion) and the drag (shear). 
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Figure 4. Solid momentum balance over a control volume. Equation is a sum of all 
the forces: body forces include gravity, and surface forces include the liquid pressure 
(shown with a Taylor series expansion), the effective stress, and the drag (shear). 
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TABLE IT 

UQUID MOMENTUM: 
COMPARISON OF DIFFERENT RESEARCHERS' EQUATIONS- INITIAL FORM 

- ---- -----------~-

UQUID MOMENTUM (Initial Eq~ation) 

Researcher Inertial Forces · Substitutions 
..,. .. (nomenclature) .. 

Unsteady +Convectv =Gravity +Drag +liquid 
Accelerat'n• Accelerat'd' Pressure 

Wells av1 avl -g -aF(V1-v.> -..!..EE Wells Wells 
(1990) Tt vl pz p1 oz 

v=~ 
P1 

F111o1u"'8 ~ 

Soo1 
Paw pw.aw +pg +p7(W-W.P) +..&!EE 

Soo Wells 
(1989) at oz p; oz p.P= (1-a} P. 

Pp=p. 
w.P=v. 
W=V1 
P"PJ 
p=&pl 

F - Fllltll• 
~~oo- TI -aT o 

Giadspow/ a a -p~g +By{V.-V) 

__ §!. 
Giadspow Wells 

Ettehadin at <p~v,> ax[P~u,.v,.]+ Oy y=z a (1983) _ ay[p~v,v,.] T=o' 
B,.=aP? 
V=V 

•Rate of change of particle momentum 
l>Net rate of convection of momentum of the particles 

1'Ihe liquid momentum equation is not actually presented by Soo. The solid momentum equation is 
subtracted from the total momentum, both given by Soo: 

Total Momentum: p :~ +pw:! +p.P~ +p.PWP~=- :~- (p.P+p) g 

. aw. aw. P oF 
Sol~d Momentum: p ..:..:..:..£+p Pl. ..:..:..:..£=-p a+p Ji'(Ji-Pl.} -..!:..1!..-.P at .P .P oz g.-. sr .P pp oz 
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TABLE ill 

UQUID MOMENTUM: 
COMPARISON OF DIFFERENT RESEARCHERS' EQUATIONS 

'IN COMPARABLE NOMENCLATURE 

UQUID MOMENTUM (Comparable Nomenclature) 
'• ~· ¥""" •• 

Researcher Inertial Forces 

Unsteady + Convective =Gravity +Drag +liquid 
Acceleration• Acceleration" Pressure 

Wells (1990) av1 av1 -eplg -eF(V1-v.> -eEE 
cpJ~ cplvJ;r;: az 

Soo (1989) av1 av1 -eplg -F(V1-V.) -eEE 
cpJ~ cplvl~ az 

Gidaspow/ av1 av1 .-eplg -Py<vcv.> -eEE 
Ettehadin2 cpra't cplvlTz az 

(1983) 

•Rate of change of particle momentum 
bNet rate of convection of momentum of the particles 
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·I 

'To compare to the other equations, this 2-dimensional equation is written one-dimensionally. The 
inertial terms (left-hand side of the equation) can be re-written as follows: 

:t (p.,av,> + :x (p.,au,v,> +a~ (p.,av,v,) 

Writing as a 1-D equation: p, :t (ev,> +p,:, [ (ev.> v.J 

E d. . · [ av ae] [ av a< c v > J xpan mg. p c~+V- +p cV~+v.:...:.::..:_c_ . ' at 'at , , ay , ay 
The sum of the second and fourth terms can be equated to zero, due to liquid continuity: 

ae+o(eV,) =O 
at ay 
~ ~ -cp, at +cp,v, c3y 
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TABLE IV 

SOUD MOMENTUM: 
COMPARISON OF DIFFERENT RESEARCHERS' EQUATIONS- INITIAL FORM 

SOUD MOMENTUM (Initial Equation) 

Researchr Inertial Forces Substitutions 
•. ;. ·· .. nomenclature 

Unsteady +Convectv =Gravity +Drag +Liquid +ef 
Accelerat'n'- Accelerat'nb Pressure f 

strss 

Wells 
(1-a) p av. < > av. -(1-&) p.g +aF(V1-v.> -(1-a) EE ao· 

(1990) • ae 1-e p.v.-az az -0% 

Soo ~ ~ -p&P +p,)"(W-Ws>) -bEE. Soo Wells 
(1989) P» ae p»_N» az p.P az P,"" (1-e) P. 

p,•p. 
N,=v. 
W=V1 

p=pl 
p=epJ 
F _ F~~~ou • 

.soo-(i-e)o 

Giadspow/ a a -p.(1-a) g +B7 (Vg-V•) - (1-e) EE ik Giad~oWells 

Ettehadin 
jiP.,(1-e)V1 ] ax[p.,(1-e) u.v.] Oy -Oy 

a y=z 
(1983) ay[p.(1-e) v.v.] T=o1 

B7 =aF? 
V=V, 

•Rate of change of particle momentum 
bNet rate of convection of momentum of the particles 
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TABLE V 

SOUD MOMENTUM: 
COMPARISON OF DIFFERENT RESEARCHERS' EQUATIONS 

IN COMPARABLE NOMENCLATURE 

---- - -- -- ---- ---- ----

I · SOLID MOMENTUM (Comparable Nomenclature) . . ~ 
t~· •. 

Researcher Inertial Forces 

Unsteady + Convective =Gravity +Drag +liquid +Inter-
Acceleration• Acceleration" Pressure granular 

stress 

Wells (1990) 
< > av. < > av. - (1-&) p.g +eF(V1 -V.) - (1-e) .1z oa1 

1-e P•-at: 1-a p.v.& --;!;" 

Soo (1989) 
< > av. 1-a P•Jfi: < , av. 1-a p.v.& 

-(1-e) p.g +aF(VcV.) -(1-a)EE 
oz 

Gidaspow/ <1 _2 , P av. < , av. -(1-&)p.g +&F(V1 -V.> - (1-&) .£2 oa1 

Ettehadin • at 1-a p.v.-az oz - az 

(1983)3 

•Rate of change of particle momentum 
bNet rate of convection of momentum of the particles 

3-fo compare to the other equations, this 2-dimensional equation is written one-dimensionally. The 
inertial terms (left-hand side of the equation) can be re-written as follows: 

a a a 
at [p.(l-a) v.J +ax £p.(1-a) u.v.J + ay (p.(l-a) v.v.J 

Writing as a 1-D equation: P. ;t£(1-a)v.J+p.;(£(1-a)v.Jv.) 

Expanding: P [<1-a) av._v aa]+ P [<1-a) v av.+v o(1-e) v.] 
• at • at • • ay • oy 

The sum of the second and fourth terms can be equated to zero, due to solid continuity: 
a. o(1-c) v. 

-at+ ay -o 

{ ) av. < ) av. 
1-a P.Tt+ 1-a p.v. ay 

I 
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equations were compared. The liquid momentum equations were the same. The solid momentum 

equations were equivalent, except Soo's (1989) model did not consider the particle-to-particle 

interaction force (and thus h~ no effective stress or inter-granular stress term). 

Wells' (1990) equations shown in Tables 11-V were developed from the same governing 

equation he used for cake filtration, without neglecting the inertial or grayity,,terms. According to 

Dixon (1985), the inertial terms are important in the interface between suspension and sediment, where 

rapid velocity change is occurring. In this narrow interface zone the particles, which have been settling 

at the terminal velocity corresponding to the initial concentration, are retarded (the velocity is near zero 

in the sediment) as they strike the top of the sediment. 

Wells' (1990) model assumed an applied pressure differential several orders of magnitude 

greater than gravity, making the gravity term negligible. However, no such (large) pressure term 

exists during gravity sedimentation. Thus, it is assumed that the gravity term is important, and is not 

neglected. 

Final Form of Governing Eauations - Model Formulation 

The solid and liquid continuity equations can be equated as follows: 

ae 
at 

a(eV1) 

az 
a[ (1-e) V

8
] 

az 
This equation was integrated from z=O, where sV1=£0 V0 and V,=O, to z. 

f.&Vl (V• 
- a(eV1 ) =J, o[ (1-t:) V8 ] 

a0 V0 0 

Simplifying, Equation 3.6 becomes: 

v- 2 oVo- (1-e) V 
1 s 

e 

V1 = true liquid velocity (in contrast to Darcy velocity, sVJ [lJT] 
V, =· velocity of the solid particles [IJT] 
£ = porosity[-], volume liquid/total volume 
£0 = terminal porosity at z=O [-] 
Vo = true liquid velocity at z=O [IJT] 

(3.5) 

(3.6) 

(3.7) 
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It can be noted that these results differ from Soo's4 (1989) because of the boundary condition 

applied at the media (z=O). 

Similarly, the two momentum equations can be added, resulting in a total momentum equation. 

av av av av aP ao 
Pl£ a:+pl£Vl a:+(1-£)Ps a;+(1-£)pSVS a:=- az i(1-E)ps+t:pl)g- az (3.8) 

~-~- •\., . 

The technique·for simplifying the governing equations is similar to Soo's (1989) technique. By 

(1) equating the solid momentum, Equation 3.4, and the total momentum, Equation 3.8; (2) substituting 

V1 from the total continuity, Equation 3.7, into Equation 3.8; (3) combining like terms; and (4) 

substituting the constitutive relationship, m =- ae. (Peck, et al., 1974, and Das, 1983; as cited by 
v aa1 

Wells, 1988); Equation 3.8 ~mes: 

. ( (1-£) p l+£Ps] a s +[p l(t.o Vo- (1-£) Vs)( 1-£ )+t:p V] avs + -p (Vs-&o Vo)] at: av · [ 
t E 8 8 az l & at 

+[ ::(&0V0-V8 )(&0V0-(1-&) V8)] ~~ +[-pl :t (&0Vol l 
( 

F ) e. ae. =t.g(pl-ps) + 1-& (&oVo-Vs) + (1-&)mor oz 

e 
Pt 
P. 
v. 
t 

So 
Vo 
z 
g 
F 

k 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 

porosity [-], volume liquid/total volume 
liquid density [MIL 3] 
solid density [MIL 3] 
velocity of the solid particles [LIT] 
time [T] 
terminal porosity at z=O [-] 
true liquid velocity at z=O [LIT] 
distance from filtration medium [L] 
acceleration due to gravity [IJT2] 
eplk, averaged interfacial interaction term between the solid and the liquid phases 
[MIL3-T] 
intrinsic permeability [L 2] 

(3.9) 

4Soo (1989) obtained the following result for the less general case of no fluid loss, such as from a 
closed bottom (i.e., at z=O, eV1=0 and V.=O): 

-£Vl 
Vs= (1-&) 

or, rearranging: v
1 

- (1-&) vs 
E 



Illy 

p 

= ~, coefficient of volume compressibility ['fl-UM], where a'= effective stress 
aa' 
[MIL~] 

= fluid static pressure [MIL-T2] 

Details of the derivation of Equation 3. 9 are shown in Table VI. 

Equations 3.2 and 3.9 were used in the numerical computer model. The first equation was 
.~. o\.,. 

the solid continuity. The second equation was total momentum with continuity (referred to as the 

"momentum" equation throughout the modeling section). The formulation of the numerical model is 

discussed in more detail in the following section. 

NUMERICAL SOLUTION TECHNIQUE 

The final governing equations were put into a finite difference form and solved numerically 
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using appropriate boundary conditions. The solid continuity equation (Equation 3.2) was first solved to 

deterime e at the new time level n + 1. Using this result, the "momentum" equation (Equation 3.9) was 

used to solve for V,, also at the new time level n+ 1. . 

The approach for developing the numerical solution strategy employed using simple techniques 

first (i.e., the explicit method was tried before the implicit), and then increasing the level of numerical 

refinement. The numerical code was written in the most general way, such that various techniques 

(such as explicit vs. implicit, ~ntral differencing vs. upwinding, added artificial viscosity, etc.) could 

be explored with one code. When the computer code was written, toggles allowed the modeler to 

choose at the start of each run between different conditions such as the central or the upwind difference 

for the convective terms. The modeler could choose degrees of explicitness or implicitness. The code 

automatically calculated a value for the artificial viscosity (to counter numerical dispersion) which the 

modeler could adjust during the run. 

Many model s~mulations were made analyzing the behavior of the equation by varying the 

degree of explicitness/implicitness, differencing techniques, grid spacing, time step, artificial viscosity, 

and constitutive parameters. 



TABLE VI 

SUMMARY OF DEVELOPMENT OF GOVERNING EQUATIONS 

SUMMARY OF DEVELOPMENT OF GOVERNING EQUATIONS 

(1) Liquid continuity: ~~ =- :z (eV1 ) 

(2) Solid continuity: ~~ = :z[(l-e) V.] 

av1 
(3) Liquid momentum: cp ere avl E2. +ap1 V1az- =-cp1g -aF(V1 -v.> -c c3z 

Inertial Convective Gravity Drag Liquid 
Acceleration Pressure 

._.!.-\.. •. 

<1 -•> P av. 
• c3t 

av a 
+(1-c) p.v. a: =-(1-a) pp +aF(V1 -V.)-(1-a) ~ 

(4) Solid momentum: 
Inertial Convective Gravity Drag Liquid 

Acceleration Pressure 

(5) Constitutive Relationship: mv=- ;;, 

oa1 

- az 
Inter­

granular 
Stresses 

(6) Equating liquid continuity (Equation 1) and solid continuity (Equation 2) leads to total 
continuity: vl eoVo-(1-e) v. 

e 

(7) Equating liquid momentum (Equation 3) and solid momentum (Equation 4) leads to total 

tu . ov1 ov1 av. av. aP aa momen m. p1aTt+p1cvraz-• (1-a) p•Tt+(1-c) p.v.-az=- az i<1-a) p.••P1]g- az 

(8) Equating both solid momentum (Equation 4) and total momentum (Equation 7) to -¥z: 
Solid momentum: -EE =p av. +p v av. +p n-..!L ( v

1
-v ) +_!_ 00 

az • at •• oz - 1-c • 1-c 0% 

T tal . a av av av av a ' o momentum. -~=p1a 0;+p1av1 a:•<1-alp. a;•<1-a)p.v. a;=+f(1-a)p.+ep1]g+ a~ 

(9) Equating the solid and total momentum equations, shown in Step 8: 
av. av. a F 1 &· 

p•Tt+p•V•Tz+pp- 1-c (Vz-V•) + 1-c oz 
av av av: av ao· 

=p1 c a: +p1cV1 a:+ (1_-c) P. a;+ (1-a) p.v. a:•+((1-c) p.+ap1]g+Tz 

(10) Substituting the liquid velocity, Vb (from total continuity, Equation 6) into the first term on 
the right-hand side of Equation 9: 

[ 1Jl1 1!P1-& l c3Vl o(aoVo-(1-c)V•) a 1c3(&oVo>-(1-c)c3V. c r-&oVoik 1D(&oVo>] PI&Tt•pl&Tt a •plc aoVo t +&-----at -c- Tt-v. t •pl& -;;-ae•&-----at 

r -&0 V0 c3a 1 a(a0 V0 ) (1-c) av. v. c3cl r- (1-c) av. (V.-c 0 V0 ) c3a 1 a(coVo) 1 
•p1a -;;--ae•-;-----ae--.-Tt+-;i"Tt •p1a --.-Tt+ cz Tt+&-----at 

(11) Substituting the liquid velocity, V1, (from total continuity, Equation 6) into the second term on 
the right-hand side of Equation 9: 

oVl [c0 V0 -(1-c)V•] iJ[&oV0 -(1-a)V•] _r V. ( ) [1 c3(&0 V0 ) a(~) a(1-&) (1-&) av.J plcvlTz=plt: c az c =p.q_co o- 1-c v.] &---az-+toVO az -v.-az---e-Tz 

•p [& V. -(l-c) Vlf -eoVo ae + v. c3a _ (1-e) c3V•]·p.I& V. -(1-e) vi v.-&0 V0 c3a _ (1-c) iJV•] 
l 0 0 •J aZ Tz r;Z Tz & Tz -'l O O ·~ &3 Tz 1: Tz 
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TABLE VI 

SUMMARY OF DEVELOPMENT OF GOVERNING EQUATIONS 
(continued) 

(12) Substituting Equations 10 and 11 into Equation 9: 
oV. oV. eF ( ) 1 iJof [- (1-e) oV. (V.-c0 V0 ) in 1 o(e0 V0 ) 

P.-at•p.v.-az+p.g-l=C Vl-V• + 1-c Tz•plc --,-at+ c2 ae•&--at 
.{ v -• v. av! l av av .! ~. , , 

+pl[toVo- (1-a) v. • c2o o ¥z- (1;c) Tz + (1-&) P.af•(1-&) p.v.Tz•+f(1-&) p.••PJ]g+* 

(13) Organizing and simplifying terms: 

( (1-&) p 1 +ap.J;t ip 1[&0 V0 - (1-&) v.~ 1;• )+ap.v.J~i -p 1 ( v. ~&o Vo ]-* 1 :~(&0 V0 -V.)(& 0 V0 - (1-c) V.)]ii 

o(&oVo} ( ) tF -(.•oVC,-(1-&) v.-av-!)1" 1 ~.oa1 
-pl----a;;-=•g pl-p. + (1-e) & - (1-c) +l az 

(14) Substituting the constitutive relationship (Equation 5) into Equation 13: 

((1-e) p1 +ap.J;t+(Pl[&0 V0 - (1-e) v.~ 1;• )+cp.v.J~i-p1 (V.~&oVo ]~1 :~(&0V0 -V.)(&0V0- (1-a) V.)]ii 

o(&oVo) i F ) & c3& 
-pJ~=cg(pJ-p•) (1-a) <•oVo-v .. > + (1-a)m, iJz 
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Initially, the model was made to simulate sedimentation with no drainage out the bottom, so 

that this output could b~ compared to an analytical solution by Soo (1989) for a simple nontrivial 

solution. After satisfactorily simulating this condition,. drainage could again be incorporated and cake 

filtration with gravity sedimentation could be modeled by a future investigator. 

', .\_ 
tl ....... •; 

Computational Strategy 

A "space-staggered mesh" was employed such that porosity, e, was evaluated at the control 

volume center, and solid velocity, V,, was evaluated at the control volume edges. This is shown in 

Figure 5 using the nomenclature of the computer program (i.e., EE is porosity and US is solid 

velocity) . Note the location for "i" is different, contingent upon whether it is porosity or solid velocity 

(US) which is being evaluated. 

Boundary Conditions for e and V. 

Boundary conditions were determined as follows: 

Top: avs =0 or ( vs> k+:z= ( vs> k az 

ek+l/2 =1. o or EE1=1.0 (at I=K) 

Bottom: V
8
=0 

(3.10) 

(3.11) 

(3.12) 

v. at z=O was set equal to zero, and e was set equal to 1 at the top of the domain. These 

boundary conditions reflect no flux of solids into the top or out from the bottom of the domain. 

Finite Difference Form of Continuity Eauation 

An explicit formulation was used to solve the first equation (solid continuity), which had a 

forward difference in time and central difference in space. 

er_tl-ei 
At 

((1-E) Vs]: • .! -((1-E) Vs]:_]; 
2 2 

llz 
(3.13) 



o EE{K+ 1) 
US(K+2) 

z 
o EE(~) 

I 

I 

1 

US(K+ 1), EEl at 1-K 

US(K) 
•. ~. ~ .. 

o EE(I+ 1) 
US(I+ 1), EEl, DIST(I+ 1) 

~ DZP G) EE(I) 
'1 -
~~ 

,1 DZM o EE(I-1) 
US(I), EE2, DIST(I) DZB I 

o EE(l) 
z-0 /Jf'J''''J'''J'''''J EO 

~ v0e0A 

Figure 5. Grid layout used in the computer program with the porosity array (EE) 
evaluated at the control volume center and the solid velocity array (US) evaluated at 
the control volume edges. EEl and EE2 represent porosity evaluated at i±1h (where 
i is at the control volume center). 
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Finite Difference Form of "Momentum" Eauation 

The "momentum" equation (Equation 3.9, representing total momentum with continuity) was 

put into a general explicit-implicit finite difference scheme, as shown in Table VII. The table shows 

Equation 3.9 with: (1) the v. term prior to discretization, (2) the discreti.zed or fmite difference form of 

. -
-the v. term (as either a function of time or in both its explicit and implicit_ formulation), and (3) the 

coefficient of the term. This table is discussed further below when comparing the explicit and implicit 

solution strategies, comparing the effect of using a central difference versus an upwind difference of the 

spatial derivative of the solid velocity, and describing the linearization of the non-linear terms. 

Explicit vs Implicit Solution Strategy for "Momentum" Eauation. The fully explicit 

formulation for the "momentum" equation required a very, very small at to remain stable, resulting in 

a very lengthy computational time. The implicit solution technique allowed larger time steps, while 

avoiding excessive buildup of round-off error (Farlow, 1982) .. In other words, relative to the 

discretization error, this round-off error was small (Carnahan, Luther, and Wilkes, 1969). 

Figure 6 compares the explicit and implicit schemes. In the explicit scheme, the solid velocity 

at the next time step (V.n+l) is a function of the solid velocities at the initial time step n [i.e., V,,i-1, 

(V.n)i, and (V,n)i+tl· Thus, the only grid point at the advanced time level is the one which is being 

solved for. This is contrasted to the implicit scheme where v,n+1 is a function of the velocities at 

surrounding nodes at the advanced time level n + 1, as well as the solid velocities at the initial time 

level n. Explicit methods solve for {V,n+t)i explicitly in terms of earlier values (Farlow, 1982). 

Whereas with implicit methods, a system of algebraic equations is solved to find all three of the values 

(Farlow, 1982) of v,n+l simultaneously [i.e., (V,n+l>i-1' (V.n+l)i, and (V,n+l)i+l]. 

In general, explicit schemes are simpler to formulate, but have severe restrictions on the grid 

spacing and time increments. Although implicit methods are more complicated, they are also more 

versatile. They require greater computer storage capacity, but use less running time than explicit 

methods. More computation time is required per time step, but less steps are involved due 
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TABLE VJI 

DISCRETIZATION OF EQUATION 3.9 

v. term Discretized Terms Coefficient 
(all terms evaluated 

f(t) term Explicit term: Fully implicit term: at timestep n) 
(V. term)• (V. term)•-t-t -

~.-·~ . ; 
av. ( v.> ~·1 - ( v.> ~ A= (1-a) p1+ap. 
Tt lit 

av. Central difference: Central difference: B =( (1-a) )P a v. 
Tz 

< v.> ~.1- < v.> ~-1 < v.> T.t- < v.> ~:i 
1 a 1 o o 

21iz 21iz 
Upwind: Upwind: 

cv.> ~.1- (v.) ~ < v.> T.t- < v.> ~·1 

liz liz 

av. Central difference: Central difference: -p (l-c) 2 
v.az-

(vzr (vzr [v.·v ... ~-( v/)l.~ iv.•v.••l-( YrL~ 
Bz= J a +cp. 

~ --} 1+1---} 1-1 
21iz 2.1z' = 

oz Upwind: Upwind: 

(vzr (vzr [v.·v ... ~-( YrL
1 
iv.•v.••l-( Y)l 

--} 1+1---} 1 
.118 liz 

v. <v.>; cv.> ~·1 C=- Pz in 
e ot 

-pz(&oVo) in 
D= a ot 

Pz( v;pin E•-;a Co o Tz 

v. cv.>; (v.)~1 Pz ( ) in F--;a &oVa Tz 

v. cv.>; (V.)~1 -p in 
~---fc0V.,(l-c)Tz e z 

(V.)z [<v.>2]~ [<v.>2t•1 -pz in 

-2 ( v.> ; ( v.> ~·1i ( v.> 2); 
G2•7 (1-c) Tz 

cJ(&oVo) 
H•-pz----at 

I=cg(p1-p.) * 

F * J= (1-e) CoVo 

v. <v.>; <v.>~l K=--F-* 
(1-e) 

L=--c __ c3e * 
(1-c)mv oz 

*1' ote these terms are on the rif!b.t side of the eauahon. 

Explicit vs Implicit Solution Strategy for "Momentum" Equation. The fully explicit 

formulation for the "momentum" equation required a very, very small .dt to remain stable, resulting in 

a very lengthy computational time. The implicit solution technique allowed larger time steps, while 
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Figure 6. Comparison of explicit and implicit numerical strategies. 

to the use of a larger time step; this is possible because they are usually unconditionally stable 

(Anderson, Tannehill, and Pletcher; 1984). 

To use the implicit scheme, a system of simultaneous linear algebraic equations is written for 

the differential equation, and a Gaussian elimination procedure is used. The procedure is systematic, 

. reducing the general matrix equation to a tridiagonal system. This system can be solved with the 

Thomas algorithm (Anderson, Tannehill, and Pletcher; 1984). 

Central Difference vs Upwind with the Implicit Formulation. The "momentum" governing 

equation could be discretized with either a central difference or upwind formulation for those terms 

40 

with the spatial derivative avs , the terms with the B1 and B2 coefficients shown in Table Vll. Figure 
az 

7, shown below, compares the central difference and upwind formulations. 

To be as general as possible, both central and forward difference formulations were used in the 

computer code. The central difference term adds numerical dispersive error, while the upwind 
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Figure 7. Comparison of central and upwinding differencing. 

formulation adds numerical diffusive error. These effects are discussed in the section analyzing the 

modified equation. 

Linearizing the "Momentum" Equation for the Implicit Solution Scheme. It was necessary to 

. "linearize" the terms at then+ 1 timestep, which had either a (V
1

)
2 or v avs in them. All V

8
's at the 

s az 

n timestep were already known, and therefore did not require linearizing. 

The terms requiring linearizing were the second and second-to-last terms of the right side of 

Equation 3.9, the "momentum" equation (shown as the terms with the "B/ and "G2" coefficients in 

Table VII). The general method for doing this involved defining the Vs term at timestep n+ 1, as 

follows (Anderson, Tannehill, and Pletcher, 1984): 

CJ(V terll1} 
( V term) n•1 • ( V term) n + s (V n•1 -·V n) s s :~v8 8 8 

(3.14) 
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The second term on the right side of Equation 3.9, the "momentum" equation (the term with the "~" 

coefficient in Table VII), was linearized as follows. 

)

n+l 
V 2 

2 
n+l 

From Table Vll: ( avs)n ... ;= (a ( ; ) - (Vs termt•1 =( V; ) 
vs az . . az 

(3.15) 

Linearizing: V 2 n+l V 2 n a ( V:) v 2 n+l V 2 n (3.16) 
( )

n 

(--f) = (--f) + a;. (v. n•1-v. ")- (--f) = (--f) + v. n( v.n•1-v8 ") 

• • • ( 2 )n+l ( V 2) n Combmmgliketerms: ~ ;::: vsnvsn+l_ ; (3.17) 

The resulting n + 1 terms were no longer non-linear (i.~., they no longer had a squared term at the n + 1 

timestep). 

Similarly, the second-to-last term on the right-hand side of Equation 3.9, the "momentum" 

equation (the term with the "G2" coefficient in Table VII), was also linearized: 

From Table Vll: V
8 

term= V/ (3.18) 

. linearizing: {V/)"+1 = (Vj)n+( a~~) r(Vs n+1_ v. ")- (V /)n+1 = (V/) n+ 2 v. n ( v. n+1_ v. n) (3.19) 

Combining like terms: (V/r ... 1 = 2(V
8 

nvsn+1)-(V/r (3.20) 

Final Form of the "Momentum" Equation for the Tridiagonal Matrix. The finite difference 

equations were formulated as a general explicit-implicit scheme in Tables VIll and IX. This finite 

difference scheme weighted the V8 terms at timesteps nand n+ 1 (as shown in Table Vll) by 8 and 

(1-8), respectively. When 8=0 the scheme was fully implicit, and when 8= 1, the scheme was fully 

explicit. 

The procedure for writing the "momentum" equations as a tridiagonal matrix, involved: (1) re-

writing the weighted finite difference equation with like terms grouped together, (2) re-organizing the 
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equations, (3) incorporating appropriate boundary conditions, and (4) writing the equations in the 

. tridiagonal matrix form. This procedure is shown in Tables VIll and IX. 

Table Vlli shows the use of a central difference of the spatial derivative term for V,, and 

Table IX shows the upwind scheme of the spatial derivative term for v.. A comparison of the two 

matrices for the central and upwind schemes are shown in Tables Vlli and IX. The upwind and central 

difference schemes were identical in form, except x1 and x2 were equated to zero for the upwind case. 

An Analysis of the Modified "Momentum" Equation 

The modified equation was determined for the finite difference form of the "momentum" 

equation. The modified equation is the equation satisfied by( the numerical approximation when the 

leading truncation errors were included. The leading truncation errors represent the difference between 

the partial differential equation and the finite difference equation in its discretized form. 

To evaluate the modi~ed equation, the governing partial differential equation must be linear in 

·the v. terms. This analysis is shown in Table X below and differs from the numerical model 

formulation in that the B and G coefficients include V. as a constant. Thus, the modified equation is 

only an estimate of the truncation error of the finite difference equation used in the model. 

The tr~mcatioa error was derived in the following manner: (1) the finite difference 

approximation for the modified equation was determined by weighting the V. terms at both time levels 

n and n + 1 by 8 and (1-8), respectively; (2) the Taylor's series expansion for each derivative was 

substituted into the governing equation; and (3) the leading order term from the Taylor series 

expansions were retained and all higher-order terms neglected; and ( 4) the second derivative with 

respect to time, CPvs, was determined from the original partial differential equation, thus changing the 
at2 

time derivative in the truncation error to a spatial derivative. These steps are shown in Tables XI and 

· XII, for the central difference and forward difference, respectively. 



TABLEVIll 

SUMMARY OF DEVELOPMENT OF EQUATION 3.9 
(CENTRAL DIFFERENCE SCHEME) 
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A weighted average of the finite difference approximation is determined by weighting the V, terms, 
which were defmed above at both timesteps nand n+ 1, by 0 and (1-8). 

[ 
(V)n•1-(V)"] ~ ( (V)" -(V)") ( (V)a+1_(V)"•1)] A • 1. • 1 +B 6 • 1•1 • 1-1 + (1 -6) • 1+1 • 1-1 + 

At 2Az 2Az 

-• _!_ V"vn•1 2 V"Va+1 2 [ [( v3)" {vz)"] [[ {~)"] i {~)"] ]] 
~ 6 2 1;Az 2 1.-1 +(1-6) • • 2 1;Az• • 2 1.-1 +. 

C(6(V) 11+(1-8) (V )".1]+D+E+F(8(V) 12+(1-8) (V ) 12•1]+ • 1 • 1 • 1 • 1 

G1(8 (V.) :+ (1-8) (V.) 71]+~[8(V.2)~+ (1-8) (2 (V.)~(V.) r 1
- (V.2

) #]+H•I+JtK(6V.) :+ (1-8) (V.) 71]+L 

Re-writing and grouping like terms: 

[
-(1-8)(B +RIV) 12 

)] i (1-6)(B +~IV\12 
)] 

1 3\ • J.-1 ( V) 12+1iA + (1-6) (C+F+G +2G (V )"-R\] ( V) a+1 1 \. •11+1 (V) a+]. 
2Az • 1-1 At 1 3 • 1 --, • 1 2Az • 1·1 

[ 
8~ (l-28)B~V)11 

] i 8R (1-28)~),. ] • --- •.t-1 (V)• i....!!..+8(-C-F-G+K}+(l.-28)r.ty\11](V) 11 __ ""1__ •.t•1 (V) 11 +(-D-B-H+I+J+L) 
2~z •~z • 1-1 ~t 1 '"'"' •11 • 1 2~z 4~z • 1•1 

The terms can be re-named as follows, so as to set up the tridi~gonal system. 

Xo=-D-E-H+I+J+L 

Expll.Cl·t· 6B (1-28) B (V6 )
12 -6B (1-28) R.tV )" 

• ·Y=--1 -
3 1-1 • Y.=A+6(-C-F-G+K)+(1-28)G~'V\12 • Z=--1+---~ 61

•
1 

~ 2Az · 4Az ' 1 At 1 3\ •11' 1 2Az - · 

Implicit: x =- <
1

-
6> (B1 ·~(v.);_].); Y. =-A+ < 1 -e>(C+F+G1+2G2 (V.)~-K); z3= <;~> (B].+Ba(V.):.J 

3 2Az 3 At 

Substituting the terms for Xo, x11 y1, z11 x2, y2 , and~ into Eguation 3.22: 

~ ( v.) ~~ +y2 < v.> ~·1 + z2 ( v.> :~ "'X1 < v.> ;_1 + Y1 ( v.) ~+ Z1 ( v.> ;.1 +xo 

Boundary conditions: 
Bottom: < v.> 1 =o 

Top: av. =O or ( v.> :..2 = ( v.> :. ( v.> :=i= ( v.H·1 

az 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 



TABLE VIII 

SUMMARY OF DEVELOPMENT OF EQUATION 3.9 
. (CENlRAL DIFFERENCE SCHEME) 

(continued) 

Substituting i=k+ 1 into Equation 3.26: ~ (V.)~1 +y2 <v.>~~ +z2 <v.>::! -~ <v.> :+ Y1 <v.> :.1 +zl <v.> :.2 +Jeo 

Substituting top boundary condition < v.> :.2 = < v.> ~. ( v.> r.~ = < v.> ~·~ : 
(-"2+z2 ) <v.>~·~ +y2 <v.> ::~ - (~+z1 ) <v.> :+ Y1 <v.> ;.1 +Jeo 

The following is the matrix representing the system of equations to be solved at each time step for 
all (V Jn+t. The right-hand side of the equations represent the knowns. 

1 
(V.) :·'] I 

0 

0 ~ Y2 Zz <v.>f1 x1 (V.) 1 +yt <v.> 2 z1 (V6 ) 3 +Xo 

0 0 ~ y 2 z 2 <v.>r-1 
~<v.>z Yt <v.>) z1 <v.>, +xo 

... ·· .... 

... ~. ... 
0 0 0 0 0 0 -"2 Yz Zzl 
0 0 0 0 0 0 0 -"2+z2 y 2 <v.> ~:i 
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I <v.> ;-~~ I ~ ( v.> r-1 +yl ( v.> r +zl. ( v.) r·l +xo 

+ (xl +zl.) ( v.> r +yl v.J:+l ·+0 +Xo 
(3.27) 



TABLE IX 

SUMMARY OF DEVELOPMENT OF EQUATION 3.9 
(UPWIND SCHEME) 
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A weighted average of the finite difference approximation is determined by weighting the V, terms, 
which were defmed above ~t both timesteps nand n+ 1, by 0 and (1-0). 

[ 
(V)n•1-(V).a] { ( (V)" -(V.)") ( (V)"•1-(V)"+1)] A • 1 • 1 +B 8 • 1+1 1 + ( 1 _8 ) • 1+1 • 1 + 

/it Az Az 

~ ~ v "V .a+l _!_ v "V D+l _!_ [ (( a)" { a)"] [[ { ~)"] i { ~)"] ] 
Ba 8 2 1Az 2 1 + (1-8) • • 2 1~z • • 2 1 I+ 

C[8 (V) "+ (1-8) (V )"+1]+D+E+F(8 (V) "+ (1-8) (V )"•1]+ 6 1 •1 •1 .1 

G~8 (V6 ) ~+(1-9) (V.) 71]+G~9(V.2)~+ (1-9) {2 (V6)~(V.) r 1
- (V.2 )~]+H•I+J+I"(8V.) ~+(1-8) (V.) 71]+L 

Re-writing and group,ing like terms: 

[ ( -~-Ba(V)" )] i (1-8)(~+8-IV)" )] .A._+(l-8) • 1 +C+F+G+2G.(V)"-K (V).a+l ~ •1+l (V)n+l 
At Az 1 2 • 1 • 1 A~ • 1•1 

[ 
s,_ ( -B } ] I 8s,_ (l.-28l ~v.)• ] •~+8(--C-F-~+.K)+(l.-28) --2 +~ V)"(V)"+--- l•l (V)" +(-D-B-H+I+J+L) 

At A.z 2Az • 1 • 1 A.z 2A.z • 1+1 

The terms can be re-named as follows, so as to set up the tridiagonal system. 

X0 =-D-E-H+I+J+L 

Explicit: ~ =o; A ( B · ) ( -B ) -8B (1-28) B 
Y1 =At+8 A~-C-F-G1 +K+(l-28) 2A~+G2 (V.)~; Z1 = A.z

1
+ ?A,. 

2
(V.);.1 

. . 
Implicit: Xa=o; A ~( -~-Bl(V.)") ] (l-8)(R +B-IV)" ) 

Ya=At+(1-8)~ Az 1 +C+F+G1+2Ga(V.)~-K; Z:z-~ ~ •1·~ 

Substituting the terms for Xo, x1, y1, z1, ~' y2, and~ into Equation 3.29: 

Xa ( v.> ~! +y2 < v.> ~·1 +z2 ( v.> ~! -~ ( v.> ;_1 + Y1 ( v.> ~· Z1 < v.> ;.1 +JCo• Y2 ( v.> 7'1 
+ z2 < v.> ~:! •Y1 < v.> ~· z 1 < v.> ;.1 +x. 

Boundary conditions: 
Bottom: ( V

8
) 

1 
=0 

Top: av. =o or < v.> k•2 = < v.> k· < v.> k:i= < v.> r 1 

oz 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 



TABLE IX 

SUMMARY OF DEVELOPMENT OF EQUATION 3.9 
(UPWIND SCHEME) 

(continued) 

Substitutingi=k+l into Equation3.33: v_(V)D+l+y (V)D+l+z (V)D•l-x (V)"+y (V)" +z (V)" +v_ ·-z • .t 2 • .t+l 2 • .t+2 1 • .t 1 • .t+l 1 • .t+2 ·-o 
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Substituting top boundary condition <v >" =<v >" <v >"•l=<v >"•1, x1 =0 and x2 =0 (Equations 31 and 
• .t+2 • kt • .t+2 • A: 

32): z2 (V),..1 +y
2
(V)"•1 •z

1
(V).o+y1 (V)" +x

0 • .t • .t+l • A: • k+l 

The following is the matrix representing the system of equations to be solved: 

1 (V.lf.'l 
0 0 y 2 z2 <v.>~tl 
0 0 0 y2 Za 

··. ... ··• <v.>~·l 

·· .... ··• 
o o o o o o o Y2 Zzll < v.> ~·1 
o 0 o 0 o o o Z 2 Y2 <v..> ~:~ 

ly· (~.>, +zt <v.> 3 +Jeo 

y1 <v.>) +zl <v.> 4 +xo 

y 1 <v.>.., +z1 <v.> ..,.1 +Jeo 

zl <v.> J.: +yl <v.> J.:•l +Jeo 

(3.34) 
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Accuracy. Accuracy was determined by the order of errors in the leading truncation error. 

The lowest order term in the truncation error gives the order of the method. In this case, the forward 

time centered space method is O[at,ar] (i.e., second order in space), and the upwind method is 

O[at,az] (i.e., first order in space). Higher order indicates greater accuracy. Thus, the central 

difference scheme was· more accurate. 

Consistency. Consistency was an indication o.f the extent the finite difference equation 

approximated the governing partial differential equation. Consistency was determined by taking the 

limit of the truncation error as dz and at go to zero, and showing that the result equates to zero. In 

both the central difference and the upwind, the solution was unconditionally consistent. 
( 

Analysis of the Truncation Error of the Modified Equation. The coefficients for each of the 

derivative terms in the truncation error were compared. The magnitude of the numerical diffusive and 

dispersive errors were analyzed for 8= 1 (an explicit scheme). This provided a simplistic comparison 

of these errors. 

Terms with even derivatives led to numerical diffusion, and terms with odd derivatives led to 

numerical dispersion. Whereas the even derivative diffusive error was dissipative, the odd derivative 

dispersive etror caus~ phase relations between various waves to be distorted (Anderson, Tannehill, 

and Pletcher, 1984). The magnitudes of these terms for both the central difference and upwind schemes 

are shown in Equations 3.46 and 3.54, respectively. 

For both the central difference and upwind, the magnitude of the diffusive and dispersive terms 

were compared. Because the coefficient C1 (C1 =C+ F+G-K, as shown in Tables XI and XII), 

included the drag force (the term with the K coefficient) which was always significant, the dispersive 

term was usually much larger ~han the diffusive term(s). 

For both the central difference and upwind schemes, at and az could be decreased to improve 

numerical accuracy. Although reducing at changed the absolute magnitudes of the first two terms in 

Equations 3.46 and 3.54, the magnitude of the dispersive error remained significantly greater. On the 
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TABLE X 

FORMULATION OF MODIFIED EQUATION 

v. f(t) tenn (V. tenn)• (V. tenn)•-+-t Coefficient (all terms evaluated at timestep n) 
tenn 

av. <v.> T1- ( v.> ~ A= (1-c) p1 +cp. 
Tt At 

av. Central Central B=pJ..r.0 v;,- (1-a) v.~ 1;c)+ap.v. Tz difference: difference: 

< v.> 1.1- < v.> ~-1 ( v.> f.i- ( v.> ~=~ 
2Az 2Az 

Upwind: Upwind: 

< v.> ~.1- <v.> ~ ( v.) r.i- ( v.> T1 

Az Az 

v. <v.>; (V.)~l e=-!l ac , ae 
f 

1P= -p 1 (co Vo) en 
, at 

B-b. (c v.) 2 Or. 
,~ 0 0 Tz 

v. <v.>; <v.>~l P1< > ac F--;i &o Vo Tz 

v. <v.>~ <v.>~l -pl ac G•-;z (c,v,-v.> (1-a) Tz 

o(a0 V0 ) 
H•-pl~ 

I•cg(p1 -p.) • 

- p • 
J- (1-r.) loVo 

v. • <v.> ~ (V.)~l K=--F-• 
(1-r.) 

L=--c __ ac,.. 
(1-c)m,.. az 

_._ ... T • -• . - . -· gb eq· 



TABLE XI 

1HE MODIFIED EQUATION 
(CENTRAL DIFFERENCE) 
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A weighted average of the finite difference approximation is determined by weighting the v. terms, 
which were defined above at both timesteps nand n+ 1, respectively by 0 (i.e., explicit) and 1-8 
(i.e., implicit). 

[ 
(V)A•1-(V)"]{ [ (V)Il -(V)"] [ (V)"•1-(V)11+1]) A • 1 • 1 8B • 1+1 • 1 +(1 -8)B • 1+1 • 1 + 

At il.z il.z 

f8C(V) "+ (1-8) C(V) .a+1)+D+E+f8F(V8 ) "+ (1-8) F( V) n+1]+ l •.t 11 1 l 1 11 1 

f8G(V) "+ (1-8) G(V) ..,.1)+H•I+J+f8K(V) "+ (1-8) K(V) n+1)+L l •.t 11 1 l 11 1 •.t 

Based on Taylor series, the following terms can be substituted back into the fmite difference 
equation: , 

Forward time: av •• (v.t•1
-(V.)" -.!! ozv.

1 
+ •• 

Tt At 2 at.a " • 

Central difference at n: av.
1 

• (V.);.1- (V.);_1 + Az2 c1l(V.)"I +. • •• 
OZ D 2il.z JJ 0Z) 1 

Central difference at n + 1: av.
1 

_ (V.);:~ - (V.)~i + b. z2 c1l(V.)..,.1 
1 

+ 
oz D+1 2il.z 3 I azl 1 ••• 

The first two terms of the weighted average finite difference equation can then be rewritten, 
including the truncation error: 

)( cv.>~·1 -<v.> ~)- .1t ~ 
1 
+ ] +esfl( cv.> ;.1-<v.> ;_1)+ .1r2 c3l(V.)" + ]+<1_8, sfl( cv.>~~- cv.>~:~)+ .1r2 c3l(V.)a+1 + ] 

~ A e 2 at2 D • • • ~ 2Az 31 az3 • • • ~ 2Az 31 az3 ••• 

The truncation error is: 

A[-.!E OZ(V.) I + ... ] + 8B[+ il.za c1l(V.t + ••• }+ (1-8) B[+ b. z:Z c1l(V.)n+1 + •• ·] 
2 c3t2 " 3 I c3z3 31 c3zl 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

The original partial differential equation can be written as follows (with the coefficients as defined 
for the formulation of the modified equation): 

av av · 
A 

0
;+B a:+ (C+F+G-1() V11+ (-D-E-H+I+J+L) = 

More simply: 

av av 
A 

0
;+B 

0
;+C,.V11=Dl' where C1=C+F+G+K and D1 =-D-E-H+I+J+L 

And, finally: 

av. =-.!.!. av. _ c1 v +~ 
at A az A • A 

(3.41) 



TABLE XI 

THE MODIFIED EQUATION 
(CENTRAL DIFFERENCE) 

(continued) 

Taking another derivative with respect to time (of the original partial differential equation again) in 
order to change the time derivative in the truncation error to a spatial derivative: 

iPv. B a (av.) C1 av. w·-'Aaz -at -A"Tt 

'51 

(3.42) 

Substituting avs from the original partial differential equation into ()2 Vs above: 
at at2 

iPv. --~ ..£..(-~ av. _ C1 v + D1)- cl(-~ ~ _ cl v + ~) otl A oz A oz A • A A A oz A • A 
(3.43) 

-~ 

Re-writing and grouping like terms: 

iPV.j Bl) iPV. +( 2BCt).av. +(1Sf)v -( C1D1) otl \Al ozl Al oz Al • A2 
(3.44) 

Substituting ()2 Vs (Equation li_) into the first te~ of the truncation error for the central 
at2 · 

difference scheme (Equation 3.39): 

Atfi(Bl)iPV.{2BCl)av.{g) JclDl) ] e { Azl~ ] < 8) [ Az2 0l(V.t•
1 

] -A2~ Al ~ ~ Tz Al v.l~ + •.. + B +3T· ozl + ... + 1- B +3T ozl +. •. 

Simplifying: 

( B2At)iPv •. (BC1At)av •. ((C1t.lt) -(c;.D1At) 8 [ Azl Ol(V.)" ] ( _8) [ Azl Ol(V.)a--
1 

] 2A Tzl\_A_ Tz\ 2A v. ~ + B +JT ozl + ••• + 1 B +JT ozl + .•. 

(3.45) 

Accuracy is determined by the order of errors in the leading truncation error. (Note: this can be 

seen in the truncation error both before and after substituting for ()2 Vs . ) The order of errors are 
at2 

at and az2
• 

Consistency is determined by taking the limit of the difference between the partial differential 
equation and the finite difference equation (this difference is the truncation error) as the grid 
spacing az and at go to zero. 

[( 
2• )fPV {BC,.t.t)av {tc..\lfit) iCDt.t) [ • 2 ;JltvY' ] [ • 2 ;Jltv1n•1 ]] lim ~ -• -- ~ ~ v. - 1- 1 - +6B +~.:...L!L+ ••• +(1-G)B +~.:....L!L_+, •• •0 

Az, 11 t-o 2A c3z2 ~ az 2A 2 3 I az> 3 I az> 

This solution is unconditionally consistent. 



TABLE XI 

THE MODIFIED EQUATION 
(CENTRAL DIFFERENCE) 

(continued) 

An analysis of the coefficients (of the derivative terms) for an explicit scheme (8= 1) are: 

[
B2At AV•] [BC1 At AV.,J [eBAz

2 
AV•In+•. ·] 

2A Az2 A Az 3! Az3 

Multiplying each term by 6. Z
2 

, leads to: 
6. VSB 

[ B:At] [ C1 A;AzJ [ !~] 
Diffusive Dispersive Dispersive 

Each term can be evaluated by substituting approximate values for A, B C1, 6.t, and 6.z, as 
{ 

follows: 
A~1 

B~O, where B=B1+B2V. (see Tables VI and IX) 
C1 ~ 108*, where C1=C+F+G+K, and G=G1+G2V. (see Tables VI and IX) 
at~ 1 
az~ 1 

Evaluating the relative magnitude of the three terms: 

(-0) [-lo'] [-lo-1] 

Diffusive Dispersive Dispersive 

*Based on usmg constltubve properties for kaolm suspensions (Wells and Dick, 1993) 
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(3.46) 



TABLE XII 

THE MODIFIED EQUATION 
(UPWIND) 
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A weighted average of the finite difference approximation is determined by weighting the V, terms, 
which were defmed above at both timesteps nand n+ 1, respectively by 8 (i.e., explicit) and 1-8 
(i.e., implicit). 

[
(V),..1-(V)"]{ [(V)

11 
-(V).a] [(V)-

1
-(V)"•1

]) A • 1 • 1 as • 1·1 • 1-1 +( 1 -e>s • 1•1 • 1-1 + 
lit 21iz 21iz 

[aC(V) "+ (1-a) C(V) .,.1)+D+E18F(V) "+ (1-a) F(V) .o+l]+ 
"1 "1 "1 •1 

[aG(V.) ~+ (1-8) G(V.l ~1p-H•I+J+(9KV.) ~+ (1-9) K(V.) ~·1)+L 

Based on Taylor series, the following terms can be substituted back into the finite difference 
equation: 1 

Forward time: av. _ cv.t·1 -(V.,)" -~ czv.
1 

+ 
Tt lit 2 at" " · · · 

Upwind at n: ov.
1 

• (V.);.l- (V.)~ _ liZ 02(V.t 1
1 

+ ••• 
az " liz 21 oz" 

Upwind at n+l: av,l .. (V.)~:~- (V.)~l + liz cY(V,.)"•l 11+ ••• az D+l • liz 2 I oz" 

The first two terms of the weighted average finite difference equation can then be rewritten, 
including the truncation error: 

)( <v.>~·l- <v.> ~)-At c32(V.,) I + ••• )+e)( <v.> ~.1- <v.> ~). b.z c32(V.)" + ... ]. (l-8l)f <v.>~:~-<v.>~•l)• b.z c32(v.r=1 + ••• J 
~ b. t 2 at2 11 ~ b.z 2 I az2 ~ Az 21 az2 

The truncation error is: 

A[-.!!~ I + •. ·]+as(+ liz OZ(V.,)" + ••• ]+ (1-a) s[+ liz OZ(V.) .... l + .• ·] 
2 ot~ " 2 I oz" 2 I oz~ 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

The second derivative with respect to time (of the original partial differential equation) can be 
derived, using Equations 3.40-3.43 in the previous table. (Note they are the same as for the central. 
difference scheme.) The final equation (3.m is re-~tated here: 

czv.-{ s") cYv. +( 2sc1) av. +(.6t)v -( c1D1) 
otl A" oz" A3 Tz A1 • Al 

Substituting ()2 Vs (Equation 3 .43) into the first term of the truncation error for the upwind scheme 
ac2 

(Equation 3. 51): 

11 tfl( s:z) cYv. j 2BC1 ) oV. j ICl\:a) j C1D1 ) ] e [ liz CZtV.\ 11 
] ( O) [ liz CZ(V.t•l ] 

-A2~ A.a ~ "l"Al Tz ·~7 v. lAl + •.• + B +21~+ •.. + 1- B +21 ozl + •.• 

Simplifying: 

( szli t) CZV11 .( BC1 11 t) oV • .( (C1 )
1
A t)v ( C1D1 A t)+ as[+ liz OZ(V.)" + ••• ]+ (1 .:.9) s(+ /iz 02(V.) .... 

1 
+ ... ] 

2A ozl 1. A oz 1. 2A II l.. 2A 2 I oz" 2 I ozl 
(3.53) 



TABLEm 

THE MODIFIED EQUATION 
(UPWIND) 
(continued) 

Accuracy is determined by the order of errors in the leading truncation error. The order of errors · 
are 8t and 8z. 

Consistency is determined by taking the limit of the difference between the partial differential 
equation and the finite difference equation (this difference i~ the truncation error) as the grid 
spacing 8z and 8t go to zero. 

lim ((B2At)OIV.,.{B~At)av.,~(~) (C1D1At) e [ A~OI(V.,t ] ( -8) [ A~OI(V.,L1 ]]· 
!u, At-0 2:\"" aza \-A- Tz\ 2A V.,\-2- + B +21 aza + ... + 1 B +21 aza +... 0 

This solution is unconditioJ?.ally consistent. 

An analysis of the coefficien~ (of the derivative terms) for(an explicit scheme (8= 1) are: 

[B2!J.t !J.v•] [Bc;_!J.t tJ.v .. ] [aB!J.z av. 1 + ••• ] 
2A !J.z2 A !J.z 2 I !J.z2 " 

Multiplying each term by A Z
2 

leads to: 
flVsB 

[ B2~t] [ C1 !J.;!J.z] [ ~~] 
Diffusive Dispersive Diffusive 
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(3.54) 

Each term can be ev"a.luated by substituting approximate values for A, B C1, 8t, and 8z, as 
follows: 
A~1 

B~O, where B=B1+B2V, (see Tables VI and IX) 
C1 ~ 108*, where C1 =C+ F+G+ K, and G=G1 +G2V, (see Tables VI and IX) 
8t~1 

8z~1 

Evaluating the relative magnitude of the three terms: 

(-0) [-10'] (-1] 

Diffusive Dispersive biffusive 

*Based on using constitutive properties for kaolin suspensions (Wells and Dick, 1993) 
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other hand, if ll.z was decreased, the relative dispersive ~rror decreased, and the relative diffusive error 

remained constant or decreased. Decreasing ll.t and ll.z sufficiently to eliminate significant diffusive 

and dispersive errors was not. practical because of the increased computational time required. 

Artificial Diffusion (or Artificial Viscosity) 

An artificial viscosity or diffusive term can be introduced to counteract the mathematical 

effects of the dispersive error introduced by the numerical scheme (Von Neumann and Richtmeyer, as 

cited by Plaskett, 1992). This artificial viscosity term would result in smoothing the shock front in the 

numerical solution. The term will be of the form of the diffusive term, i.e., a second derivative using 

central finite differences, such as: 

(i)lp __ s =CJ>'p .1+1 1 .1-1 c32V (Vs -2V8 +V8 ) 

s az2 s I:J.z2 
where, (j) = CJ> 

1 
P s 

I:J.z2 

and w' is the artificial diffusion coefficient [L2!11. 

<12V ~ 
(i)

1
p --

8 =CJ> (V -2 V + V ) 
s az2 si-1 . si si•1 

. Weighting the V. terms by 8 and (1-8) respectively for the general explicit and implicit schemes: 

a2 v 
(i)

1
--

5 =6CJ>(V8 . -2V5 .+V8 . )+(l-6)(i)(V5 . -2V5 .+V8 .) az2 ~-l ~ ~·1 ~-1 ~ ~·1 

Adding the artificial viscosity, defined in Equation 3.57, to Equation 3.26 (or Equation 3.33): 

(X - ( 1-0) (i)) ( V ) ~·1 +(Y + ( 1-6) ( 2 CJ>)} ( V ) ~·1 +(z - ( 1-0) <..>) ( V ) n+l 
2 s 1-1 2 s 1 2 s 1+1 

= (X1 +OCJ>) ( V5 ) ~-1 + (Y1 -0 {2<..>)) ( V8 ) ~+(Z1 +_OCJ>) ( V8 ) ~.1 +x0 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

And, finally, redefining the X 1, y1, Z1o and x2, y2, and~ terms used in Equations 3.24 and 3.25 (and 

3.31 and 3.32): 

X2 =x2 -(l-0)w; Y2 =y2 +(1-0) (2<..>); Z2 =z2 -(1-0)w; 

X1 =x1 +Ow: Y1 =yi-e (2<..>); Z1 =z1 +Ow (3.59) 
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These re-defined terms were substituted into the tridiagonal matrix. solution form in Equations 3.27 and 

3.34. 

Comparing the Numerical Model to an Analytical Solution by Soo 

The numerical gravity sedimentation model, with the implicit formulation, was compared to 

Soo's (1989) analytical solution for "the simplest nontrivial situation". Soo (1989) made the following 

simplifying assumptions: (1) no liquid flow out the bottom (V1=0 at z=O) and (2) solid density much 

larger than liquid density (p.> >p;). Soo's (1989) equations also do not consider the effect of effective 

strength, u'. Therefore, to simulate Soo' s simplified case, a' was set equal to 0 within the numerical 

model. 

where: 

Soo's (1989) analytical solution for settling velocity, v., and fluid velocity, Vl. was: 

- VsF' = ( 1-e-F't) = VlF' (l-ao) 
g ao9' 

F'= Fsoo =10 sec-1 

e2 

a =1-e (volume fraction solid) 
0 0 

The boundary conditions in the numerical model at both the top and the bottom were: 

v;=o and ~+1=0 

(3.60) 

The numerical model was simplified by dividing both sides of Equation 3.9 by p. and then 

equating ~ =0 (based on the assumption that p,> > pJ. The initial condition of V,=O at t=O was 
Ps 

assumed. The following coefficients, shown in Table X, were used to simulate Soo's simplified case: 

A=t 

B=sV.=O 

C=D=E=F=G=H=O 

1=-sg 
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J=O 

K= _ Fwells =-F· =-F' (see Table ll) 
(1-e) Ps soo 

.A comparison of the analytical solution to the numerical solution is shown in Figure 8. 

Constitutive Relationships 

Constitutive relationships were required to model gravity sedimentation. These relationships, 

the coefficient of volume compressibility, lllv, and intrinsic permeability, k, are both functions of 

porosity, 8. 

Coefficient of Volume Compressibility. The coefficient of volume comprssibility, lllv, . ( 

describes the empirical relationship between porosity, 8, and effective stress, u', where: 

ae 
mv=- ao' 

Plaskett (1992) determined and used the following constitutive equation, which fit the 

experimental data for cake filtration from Wells (1990). 

_c_ 
I a1-a1 

e=vo 1 -e 1 

8 = porosity [-] 
v = coefficient for dimensional consistency [L-'f21M] 
u' = effective stress, kPa [MIL-'f2] 
t = empirical constant, = 0.54 kPa [M/L-'fl] 
u' 1 = empirical constant corresponding to limiting effective stress [MIL-'f2] 
81 = empirical constant corresponding to limiting porosity [-] 

A plot of the equation (3.62) compared to the experimyntal data is shown in Figure 9. 

As seen in Equations 3.61 and 3.62, the coefficient of volume compressibility, lllv, was a 

(3.61) 

(3.62) 

function of 8 and u'. Knowing 8, a root finding technique was required to determine u'. Knowing u', 

as well as 8, allowed ~ to be determined. 

A bi-section techniq\.\e was used for the root finding algorithm. An initial guess for u' was 

required for this technique. After calculating the corresponding 8, u' was either doubled or halved 

until its corresponding porosity and the porosity corresponding to the previous guess were on either 
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Figure 8. Comparison of Soo's (1989) analytical solution to the numerical model 
results. 

side of the known porosity value for which the root was being sought. This technique was repeated 

until the two values for porosity were very close (within ± l.Oxl<r}. 

The coefficient of volume compressibility, m.,, as given by Equation 3.61, was determined by 

taking the natural log of both sides of Equation 3.62, 

ln e =(---,l-, ln (v.o') -ln e 1) 
a -a 1 . 

and differentiating by parts. 

2ae=(-'--1
- ( ln (va'>)oa 1 

e a1-a1
1 {va1

) (a 1-a'1Y 
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After multiplying both sides by-e, and substituting Equation 3.62 for s: 

m =-~=-((va1} -'--&1)(-'--
1
-

v aa' a1-a11 a 1-a11 (va 1) ' ( o'-o',)2 ln ( v a')) (3.63) 

A plot of the relationship between porosity, s, and the coefficient of volume compressibility, lily, is 

shown in Figure 10. 

Another technique by Wells (1990) used the following constitutive equation, which fit 

experimental data for gravity sedimentation and cake filtration. 

a 1 (kPa) =1. 69x109 exp ( -28. 9e) (3.64) 

where: 

mv(kPa-1 ) =2. 04xll:J-11 exp (28. 9e) (3.65) 

Figures 9 and 10 show a graphical presentation of Equations 3.64 and 3.65. 

Intrinsic Permeability. Experimental data for kaolin clay suspensions collected at the Cornell 

High Energy Synchrotron Source (CHESS) showed that the intrinsic permeability is an exponential 

function of the following general form (Wells, 1990). 

k=aexp(pe} (3.66) 

Wells and Dick (1993) determined the spatial and temporal distribution of permeability within the filter 

cake, and a best-fit equation for s< .65, as shown in Figure 11, was: 

k 1 ( cm2 ) =2. 7 x 10-16 exp (20t:) (3.67) 

Fore< .65, the scatter appears to be in the limits of the experimental technique. However, in the 

higher porosity regions where the cake was growing (e~0.65), the data scatter appeared to be greater 

than the limits of the experimental technique, and an equation with a different set of coefficients was 

determined. Another exponential equation was used in the upper range (s~0.65), such as: 

k2=«2 exp ((32e) (3.68) 

The coefficient {32 was input to the model, and the coefficient a 2 was determined by setting 

Equation 3.67 equal to Equation 3.68 at e=0.65, i.e., 
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Figure 9. Plot of data obtained from Wells (1990) and constitutive relationships for 
porosity, s, vs. the effective stress, e1', from Plaskett (1992) and Wells (1990). 

2. 7 x 10-16 exp (20x0. 65) =cx 2 exp <P 2 xo. 65) 

cx 2 =2 .7x10-16 e_xp((20-P 2 ) 0.65) 

{32 was determined by calibrating porosity model predictions to data. 
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1.00 

(3.69) 

(3.70) 

In the computer code., the permeability was constrained to be a function of the initial porosity 

if £>£initial· This occurred in the upper range, and Equations 67 and 68 became: 

k 1 ( cm2
) =2. 7 x 10-16 e.xp (20 &i~1it:ial) (3.71) 

k 2 =« 2 exp (l32 £initial) (3.72) 
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CHAPTER IV 

MODEL RESULTS 

CAliBRATION TO GRAVITY SEDIMENTATION DATA 

The model was calibrated by varying model parameters until model predictions of suspended solids 

compared well with.gravity sedimentation suspended solids data obtained by Wells (1990) at the Cornell 

High Energy Snychrotron Source (CHESS). The data was real!.time suspended solids concentration 

measurements at 0.5 mm vertical separation and interpolated to 1 minute intervals. Experimental error 

in suspended solids concentrations between replicate experiments was on the order of ± 8% (Wells, 

1990). 

The model parameters included: the At, the scheme (central difference or upwind), and thew 

factor (a multiplier after calculating the artificial viscosity from the initial porosity (BJ, ll1y (the 

coefficient of volume compressibility) and the permeability in the upper range. 

Wells (1990) obtained six. different gravity sedimentation data sets for kaolin clay suspensions. 

The six data sets each had a different initial suspended _solids concentration (low, medium, and high), 

cell size (small, medium, and large), temperature (24°C, 26°C, and 27°C), and time period of 

experiment (ranging from 10-29 minutes) . The appropriate initial porosity, cell size, temperature, and 

time length were input into the model. Initial porosity could be calculated knowing initial suspended 

solids concentration and solid_ density (assumed to be 2.616 gm/cm3 for kaolin clay), Ci=pi1-e). 

The model was calibrated to the data set SEDM1K (D2), with was based on a medium initial 

concentration (0.31 g/cm3
), medium cell size (8.1 em x 1.905 em), 24°C temperature, and an 18 

minute duration. The calibrated model used: a time step At of 1 second, the central difference scheme, 

an w factor of 0 (i.e., no artificial diffusion), constitutive relationship for 1nv as shown in Equation 3.65 
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·from Wells (1990), and the constitutive relationship for permeability with {32=24 such that the equation 
f 

fork~ in Equation 3.68 is as follows .. 

k 2 (cm2 ) =2. 0 xl0-17 exp (24e) 

A plot comparing the relationships of k1 and ~ is shown in the model sensitivity section. 
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Figure 12. Comparison of model predictions for suspended solids (solid lines) to data set 
SEDMlK (D2). Data set (symbols) with initial concentration=0.31 g/cm3, cell size 26.325 
cm2

, and temperature=24°C. 

(4.1) 

Figure 12 shows the calibrated model predictions of s~pended solids concentration to suspended solids 

data set SEDMlK (D2). Even though the model domain included prediction of the clarification at the 

top of the model domain, CHESS data was limited to the thickening region. The mean error and root 



·mean square (RMS) errors, defined as L (Cdata-CmodetJ and 
n 

E < cdata -cmodel> 
2 where cis 

n 

the suspended solids concentration and n is the number of observations, are shown in Table XIII. 

Solid velocity predictions from the same model simulation, with the calibrated model parameters 

are compared to calcul~tions of solid velocity from suspended solids data in Figure 13. The solid 
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velocity from the CHESS prorosity data was calculated using Equation 3.10. The mean and root meaD. 

square (RMS) errors are shown in Table XIII. 

The simulation took approximately 80 seconds using a 486 25 mHz PC to approximate 15 minutes 

of real time. 
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Figure 13. Comparison of model predictions for solid velocity (solid lines) to data set 
SEDM1K (D2). Data set (symbols) with initial concentration=0.31 g/crrf, cell size=26.325 
em\ and temperature=24°C. (Note: 10-6 m.m/second is a default value for any solid velocity 
< 10-6.) 
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The mass vs. time was plotted in Figure 14 for the mqdel simulation which was calibrated to the 

SEDMlK (D2) data set. Figure 14 shows that mass is, in gemeral, conserved during the model 

simulation. It can be noted that at the onset mass is lost rather rapidly, but by the end of the simulation 

approximately half this mass has been regained. In the case of the low initial porosity simulations, fat 

less mass is regained by the end of the simulation. 
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Fi2llre 14. Plot of mass vs. time for the model simulation which was calibrated to the 
SEDM1K (D2) data set. 

MODEL VERIFICATION 

Without changing the model coefficients for the constitutive relationships from those used during 

the calibration, other simulations were run in order to verify the validity of the model predictions. As 

during the calibration, the time step at= 1 and the central difference scheme was used during the 

simulations. The w factor was 0 for the medium and high initial concentrations. In the case of the two 

data sets with low initial concentration, SEDL3K (07) and DPK6 (011), the model simulation became 

numerically unstable w~thout artificial viscosity. 

~ 
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Table Xlli shows a summary of comparisons between the model predictions of suspended solids . . 

and solid velocity profiles and the CHESS data with their respective mean and RMS errors. Figures 

15-19 show the model results graphically compared to the data for both suspended solids concentrations 

and solid velocities. 

TABLEXITI 

STATISTICS FROM MODEL RESULTS FOR SUSPENDED SOUDS CONCENTRATION 
COMPARED TO GRAVITY SEDIMENTATION DATA FOR KAOUN CLAY SUSPENSIONS 

- - -----

CHESS Data Initial Cell Size Temp No. of Mean RMS Conserva-
Cooceo- (em~ t:>C) comparisons Error** Error** tion of 
tratioo ** Mass*** 
(g/cm') 

SEDM1K(D2) 0.31 15.4305 24°C 531 .004988 .016376 99.5% 
267 -.000667 .001758 

SEDUK(D7) 0.48 26.3250 24°C 832 .029761 .046786 99.6% 
400 -.000389 .000590 

SEDL3K (010) 0.14 26.3250 24°C 335 .097291 .130913 98.0% 
191 -.003050 .005939 

DPK6 (011) 0.15 8.0190 2~C 216 .041247 .086124 98.2% 
115 -.007026 .007767 

KDM10 (013) 0.31 15.4305 26°C 274 .013180 .041873 99.2% 
115 -.000610 .001483 

LKD4 (014)* · 0.31 26.33 26°C 335 -.080199 .102047 99.4% 
267 -.000721 .001769 

*After 20 minuteS .!Sp-of f5 psfapplioo 
**First number is for suspended solids (g/cm3

), and second number is for solid velocity (mm/sec) 
***Based on final mass divided by initial mass 

Correlations of the calibrated model to data with a low initial concentration indicated that the 

constitutive parameters in the low suspended solids region may need to be readjusted. Simulations with 

low initial concentration required the addition of artificial diffusion. Thew factor of lOS was used, an:d 

still some instability was apparent. 
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MODEL SENSITIVITY 

Model sensitivity to the following parameters were considered: coefficient of volume 

compressibility (Dlv), permeability (k), artificial viscosity (w factor), central difference vs. upwind, time 

stop (.6t), and degree of explicitness/implicitness (8). Predicted suspended solids profiles at 3 minutes 

and 5 minutes were compared between simulations with two different sets of parameter values. 

Constitutive Relationships 

Permeability. Figure 20 is a graphical presentation of k1 (Equation 3.67) and k2 (Equation 4.1) 

superimposed over the plotted permeability data obtained from Wells (1990). The permeability was 

( 

compared between the calibrated coefficient value for the upper range (s~0.65), {32=24, and {32=21. 

This difference had a significant effect, as shown in Figure 20a. Both the 3 minute and 5 minute 

model predictions for {32=21 predicted less concentration at the bottom and more concentration at the 

top. 

Coefficient of Volume Compressibilty. The constitutive relationship form, by Wells (1990) was 

compared to the relationship by Plaskett (1992), as shown in Figure 21b. Model simulations with 

Plaskett's (19~2) relationship predicted an almost constant concentration at the bottom, because of the 

use of a limiting porosity (sJ:at which II1v was turned on. If the porosity was greater than eL, II1v was 

set to a very large number, thus making the effective stress term approximately 0. The rationale for 

this approach was that there would be no effective stress above a limiting porosity value, sL. 

Central Difference vs. Upwind 

The central difference and upwind formulations were compared for the parameters of the data set 

SEDMlK (D2), with medium initial concentration, as shown in Figure 22a. The model predictions 

appeared the same for the two formulations, indicating that the convective acceleration term (where th~ 

two schemes were applied) was very small. This is shown in a later section which compares the orders 

of magnitude of the different terms of the equation. 
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Comparisons of two simulations with low initial conceptrations also produced similar results. 

These two simulations were based on the parameters of data set DPK6 (Dll), and included an w factor 

of lOS. 

Time Step, .dt 

The effect of changing the time step, .dt, from 1 second to 0.1 seconds is shown in Figure 21b for 

the calibration model simulation. The model predictions appeared the same. 

Effect of Artificial Diffusion 

Changes in the w factor between simulations had a significant effect at the bottom of the domain 

I . 

near z=O. Figure 23a compares w factor= 1010 to lOS (used ~ the verification runs for the low initial 

concentration). Whereas with a .llt= 1, the simulations with low_ initial concentration would not run, 

lowering the .dt to .01 with an w factor= 1 caused the simulation to run for an elapsed time of 143 

seconds. This suggests that a s~ll enough time step could compensate for thew. This is disucussed 

·in the section, Analysis of the Modified "Momentum" Equation, which shows that the numerical 

dispersive error decreases as .dt decreases. 

Degreee of Explicitness/Implicitness 

Setting 8 at 0.6 or greater (model is fully explicit at 8= 1) caused numerical instabilities in the 

model for the calibration simulation with w=O and a time step of at= 1. As the degree of explicitness 

increases, the at must decrease or the model will become unstable. A comparison of 8 at 0.0 and 0.5, 

shown in Figure 23b, appeared to result in the same predictions. 

MAGNITUDE OF TERMS 

Figures 24-26 show the magnitude of terms given by the model for low, medium, and high initial 

concentrations. The process was gravity-driven. Therefore, the gravity term was always significant, 
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whereas the inertial terms were· many orders of magnitude)ess than gravity. However, the lower the 

initial concentration, the larger the inertial terms. 

The effective stress was largest at the bottom of the domain, and decreased with height. 

{. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS FOR FUR1HER RESEARCI{ 

This research developed, calibrated, and verified a numerical computer model of the physics of 

gravity sedimentation. This is ~ important step towards a more comprehensive model simulating the 

gravity section of a dewatering process, such as the gravity drainage section of the belt filter press. 

The gravity sedimentation model was developed from a p)lysically-based numerical model of cake 

filtration by Wells (1990). Both the cake filtration and gravity sedimentation models were based on the 

liquid and solid continuity and liquid and solid momentum equations. However, as opposed to the cake 

filtration model, the inertial and gravity terms were retained in the gravity sedimentation model. 

Two final governing equations were developed - solid continuity and total momentum with 

continuity ("momentum"). The finite difference equations used a "space-staggered" mesh. The solid 

continuity equation was solved using an explicit formulation, with a forward difference in time and 

central difference in space. The "momentum" equation used a fully implicit formulation with a forward 

difference in time. The modeler could choose either a central difference or forward difference in space 

for the convective acceleration terms. Non-linear terms were linearized. Boundary conditions and 

·constitutive relationships were determined. Numerical errors in the numerical model were analyzed. 

The calibrated model was extremely sensitive to the constitutive relationships used, but relatively 

unaffected by the use of central difference or forward difference for the spatial derivative term in the 

"momentum" equation. The model was stable when 8=0.5 or less, and unstable as it became more 

explicit with no artificial viscosity. Correlation of model predictions of suspended solids concentration 

and solid velocity to data taken at CHESS by Wells (1990) show excellent agreement at initial 

suspension concentrations of 0.31 g/cm3
• Agreement ~as still good, but not excellent, at initial 

suspension concentrations of 0.14 g/cm3 and 0.47 g/cm3 using .calibrated constitutive properties from an 
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initial suspended solids concentration of 0.31 g/cm3
• Model runs with low initial concentration required 

·the addition of artificial viscosity to remain stable. The mass, in general, was conserved during the 

model simulations. 

The gravity term was always significant, whereas the inertial terms were many orders of magnitude 

less than gravity. However, the lower the initial concentration, the larger the inertial terms. The 

relatively unimportant inertial terms are a result of the small particle size and choice of constitutive 

model. 

As shown by the model's sensitivity to the constitutive relationships, they could be improved with 

further research. Suspensions with larger particle sizes could be studied to determine under what 
r 

conditions the inertial terms are important. 

In addition to the belt filter press, the model can be applied to cake filtration and the design of 

gravity sedimentation tanks. 



REFERENCES 

Anderson, D.A., J.C. Tannehill, and R.H. Pletcher, 1984. Computational Fluid Mechanics and Heat 
Transfer, Hemisphere Publishing Corporation, Washington. 

Atsumi, K. and T. Akiyama. 1975. "A Study of Cake Filtration- Formulation as a Stefan Problem," 
Journal Chemical Engineering Japan, 8, 487-492. 

Azbel, D.S. and N.P. Cherenlisinoff. 1983. Fluid Mechanics and Unit Operations, Ann Arbor 
Science, Ann Arbor, MI. 

'Batchelor, G.K. 1967. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge. 

Been, K., 1980. "Stress Strain Behaviour of a Cohesive Soil Deposited Under Water," Ph.D. 
Dissertation, University of Oxford, Oxford, United Kingdom. 

Been, K., and G.C. Sills. 1981. "Self-Weight Consolidation of Soft Soils: An Experimental and 
Theoretical Study," Geotechnigue, 31, 519-535. 

Benson, R.E., Jr. 1987. "A Consolidation Model for Sludge Dewatering", in Environmental 
Engineering Specialty Conference, ed. by J.D. Dietz, American Society of Civil Engineers, New 
York, 276-284. 

Bierck, B.R., S.A. Wells, and R.I. Dick. 1988, "Compressible Cake Filtration: Monitoring Cake 
Formation and Shrinkage Using Synchrotron X-Rays," Journal Water Pollution Control Federation, 
60 (5), 645-649. 

Biot, M.A. 1941. "General Theory of Three-Dimensional Consolidation," Journal of Applied Physics, 
12, 155-164. 

Biot, M.A. 1972. "Theory of Finite Deformations of Porous Solids," Indiana University of 
Mathematics Journal, 21, 597-620. 

·Bloomquist, D. G. and F.C. Townsend. 1984. "Centrifugal Modeling of Phosphatic Clay 
Consolidation," in Sedimentation Consolidation Models: Predictions and Validation, ed. by R.N. 
Yong and F.C. Townsend, American Society of Civil Engineers, New York, 565-580. 

Carnahan, B., H.A. Luther, and J.O. Wilkes. 1969. Applied Numerical Methods, John Wiley & 
Sons, New York. 

Carter, J.P., J.C. Small, and J.R. Booker. 1977. "A Theory of Finite Elastic Consolidation," 
International Journal of Solids and Stuctures, 13, 467-478. 

Coe, H.S. and G.H. Clevenger. 1916. "Methods for Determining the Capacities of Slime-Settling 
Tanks," Transactions of the American Institution o.f Mining Engineers, 55, 356. 



86 

Cole, J.A., L.B. Polk:owski, and J.A. Hoopes. 1973. "Thickening of Compressible Sludges," in 
· Proceedings of the 28th Industrial Waste Conference, Purdue University, Lafayette, Indiana, 293-

308. 

Comings, E.W. 1940. "Thickening Calcium Carbonate Slurries," Industrial and Engineering 
Chemistry, 32(5), 663-667. 

Concha, F. and M.C. Bustos. 1985. "Theory of Sedimenation of Flocculated Fine Particles," 
in Flocculation, Sedimentation and Consolidation, ed. by B.M. Moudgil and P. Somastmdaran, 
Proceedings Engineering Foundation Conference, Sea Island, GA, 39-55. 

Croce, P., V. Pane, D. Znidarcic, H.Y. Ko, H.W. Olsen, and R.L. Schiffman. 1984. "Evaluation of 
Consolidated Theories by Centrifugal Modeling," Proceedings of the Conference on Applications of 
Centrifuge Modeling to Geotechnical Design, Manchester University, United Kingdom, 380-401. 

Darcy, H.P.G. 1856. Les Fontaines Publigues de la Ville de Diion, Dalmont, Paris, France. 

Dick, R.I. 1970a. "Thickening Characteristics of Acvtivated 'Sludge," in Advancves in Water Pollution 
Research, Proceedings of the 4th International Conference of Water Pollution Res., Prague, 1969, 
ed. by S.H. Jenkins, Pergamon Press, New York, 625. 

Dick, R.I. 1970b. "Role of Activated Sludge Final Settling Tanks," Journal of the Sanitary 
Engineering Division, ASCE, 36(SA2), 423-436. 

Dick, R.I. and K. W. Young. 1972. "Analysis of Thickening Performance of Final Settling Tanks," in 
Proceedings of the 27th Industrial Waste Conference, Purdue University, Lafayette, Indiana, 33-
54. 

Dick, R.I. and R.O. Ball. 1980. "Sludge Dewatering," Critical Reviews in Environmental Control, 10, 
269-337. . 

.Dick, R.I. and B.B. Ewing .. 1967. "Evaluation of Activated Sludge THickening Theories," Journal of 
the Sanitary Engineering Division, ASCE, 93(SA4), 9-29. 

Dixon, D.C., P. Souter, and J.E. Buchanan. 1976. Chern. Eng. Sci., 31, 737. 

Dixon, D.C. 1979. "Theory of Gravity Thickening," in Progress in Filtration and Separation, ed. by 
R.J. Wakeman, Elsevier, The Netherlands. 

Dixon, D.C., P. Souter, and J.E. Buchanan. 1985. "Argument Not Invalidated," Filtration & 
Separation, 22(3), 183. 

Eckenfeler, W. W., Jr., T.F. Rooney, T.B. Burger, and J.T. Gruspier, 1958. "Studies on Dissolved 
Air Flotation of Biological Sludges," in Biological Treatment of Sewage and Industrial Wastes­
Volume 2. Anaerobic Digestion and Solids-Liquid Separation, ed. by J. McCabe and W.W. 
Eckenfelder, Jr., Reinhold Publishing Corporation, New York, New York, 251-258. 

Edde, H.J. and W. W. Eckenfelder, Jr. 1968. "Theoretical Concept of Gravity Sludge Thickening; 
Scaling-up Laboratory Units to Prototype Design," Journal Water Pollution Control Federation, 
40(8)' 1486-1498. 



Evans, B. and D. Filman. 1988. "Solids Handling Costs' at Large Sewage Treatment Plants," 
. Specialty Conference Proceedings- Joint CSCE-ASCE National Conference on Environmental 

Engineering, Vancouver, BC, 590-598. 

Farlow, S.J. 1982. Partial Differential Equations for Scientists and Engineers, John Wiley & Sons, 
New York. 

Fitch, E.B. 1958. in Biological Treatment of Sewage and Industrial Wastes - Volume 2: Anaerobic 
Digestion and Solids-Ligui(i Separation, ed. by J. McCabe and W. W. Eckenfelder, Jr.,· Reinhold 
Publishing Corp., New York, 159-170. 

87 

Fitch, B. 1979. "Sedimentation of Flocculent Suspensions: State of the Art," AIChE Journal, Vol. 25, 
No. 6, 913-930. 

Fitch, B. 1983. "Kynch Theory and Compression Zones," AIChE Journal, Vol. 29, No.6, 940-947. 

Gersevanov, N.M. 1934. "Dinamika Mekhaniki Grunkov" Foundations of Soil Mechanics, 2, 
Gosstroiisdat, USSR. ~ 

Gibson, R.E., G.L. England, and M.J.L. Hussey. 1967. "The Theory of One-Dimensional 
Consolidation of Saturated Clays, I. Finite Non-Linear Consolidation of Thin Homogeneous 
Layers," Geotechnigue, 17, 261-273. 

Gibson, R.E., R.L. Schiffman, and K.W. Cargill. 1981. "The. Theory of One-Dimensional 
Consolidation of Saturated Clays. IT. Finite Non-Linear Consolidation of Thick Homogeneous 
Layers," Canadian Geotechnical Journal, 18, (2), 280-293. 

Gidaspow, D. and B. Ettehadleh. 1983. "Fluidization in Two-Dimensional Beds with a Jet, Part IT. 
Hydrodynamic Modeling," l&EC Fundamentals, 22, 193-201. 

Giadspow, D., Y.C. Seo, and B. Ettehadieh. 1983. "Hydrodynamics of Fluidization: Experimental and 
Theoretical Bubble S~ in a Two Dimensional Bed with a Jet," Chern. Eng. Communications, 22, 

253-272. 

Halde, R.E. 1980. "Filterbelt Pressing of Sludge - A Laboratory Simulation," Journal Water Pollution 
Control Federation, 52, 310-316. 

Halde, R.E., 1980. "Filterbelt Pressing of Sludge - A Laboratory Simulation," Journal Water 
Pollutiion Control, Vol. 52, No. 2, 31-316. 

Hammer, M.J~ 1986. Water and Wastewater Technology, John Wiley & Sons, New York. 

Harris, C.C., P. Somasundaran, and R.R. Jensen. 197$. "Sedimentation of Compressive Materials: 
Analysis of Batch Seimentation Curve," Powder Technology, 11, 75-84. 

Hawksley, P. G. W. "Some Aspects of Fluid Flow," Symposium, Edward Arnold & Co., London. 

Howe, R.H.L. 1958. "A Mathematical Interpretation of Flotation for Solids-Liquid Separation," in 
Biological Treatment of Sewage and Industrial Wastes-Volume 2, Anaerobic Digestion and Solids­
Liquid Separation, ed. by J. McCabe and W. W. Eckenfelder, Jr., Reinhold Publishing 
Corporation, New York, .New York, 241-250. 



Kammermeyer, K. 1941. "Settling and Thickening of Aqueous Suspensions," Industrial and 
. Engineering Chemistry, 33(12), 1484-1491. 

Kehoe, P. 1972. "A Moving Boundary Problem with Variable Diffusivity," Chemical Engineering 
Science, 27, 1184-1185. 

Kos, P. and D.D. Adrian. 1975. "Tranposrt Phenomena Applied to Sludge Dewatering," Journal of 
the Environmental Engineering Division, ASCE, 101, 947-965. 

Kos, P. 1977. "Fundamentals of Gravity Thickening," Chemical Engineering Progress, 73, (11), 
99-105. 

Kos, P. 1985. "Sedimentation and Thickening- General Overview", in Flocculation. Sedimentation, 
and Consolidation, ed. by B.M. Moudgil and P. Somasun~, Sea Island, GA, 39-55. 

Kreyszig, E. 1983. Advanced Engineering Mathematics, John Wiley & Sons, New York. 

Kynch, G.J. 1952, "A Theory of Sedimentation," Transactions of the Faraday Society, 48, 166-176. 

Lamb, H. 1932. Hydrodynaniics (Sixth edition), Dover Publications, New York, New York. 

Leclerc, D. and S. Rebouillat. 1985. "Dewatering by Compression," in Mathematical Models & 
Design Methods in Solid-Liquid Separation, ed. by A. Rushton, Martinus-Nijhoff, 356-391. 

88 

Leung, P.K., R.L. Schiffman, H.Y. Ko, and V. Pane. 1984. "Centrifuge Modeling of Shallow 
Foundations on Soft Soil," Proceedings, Sixteenth Annual Offshore Technology Conference, 4308, 
3, 275-282. 

McCormack, P.D. and L. Crane. 1973. Physical Fluid Dynamics, Academic Press, New York. 

Michaels, A.S. and J.C. Bolger. 1962. "Settling Rates and Sediment Volumes of Flocculated Kaolin 
Suspensions," Industrial and Engineering Chemistry, 1, (1), 24-33. 

Mikasa, M. 1963. The Consolidation of Soft Clay- A New Consolidation Theory and its APPlication, 
Kajima Institution Publishing Co, Ud. (in Japanese). 

Mikasa, M. and N. Takada. 1984. "Self-Weight Consolidation: of Very Soft Clay by Centrifuge," in 
Sedimentation Consolidation Models: Predictions and Validation, ed. by R.N. Yong and F.C. 
Townsend, ASCE, 121-140. 

Mishler, R.T. 1912. "Settling Slimes at the Tigre Mill," The Engineering and Mining Journal, 94(14), 
643-646. 

Mohlman, F.W. 1934. "The Sludge Index," Sewage Work Journal, 6, 119-122. 

Morse, D. 1989. "Sludge in the Nineties," Civil Engineering, 59, No. 8, 47-50. 

Mulbarger, M.C. and D.D. Huffman. 1970. "Mixed Liquor Solids Separation by Flotation," Journal of 
the Sanitary Engineering Division, ASCE, 96(SA4), 861-871. 

Okey, R.W. 1989. "The Evolution of Sludge Thickening Practice," in Environmental Engineering, ed. 
by J.P. Malina, Jr., Proceedings of the 1989 Specialty Conference, Austin, 507-522. 



Olson, R.E. and C. C. Ladd. 1979. "One-Dimensional Consolidation Problems," Journal of 
· Geotechnical Engineering Division, ASCE, 105, (1), 1979. 

Pane, V. 1981. "One-Dimensional Finite Strain Consolidation," M.S. Thesis, Department of Civil 
Engineering, University of Colorado, Boulder, Colorado. · 

89 

Pane, V. and R.L. Schiffman. 1985, "A Note on Sedimentation and Consolidation." Geotechnique, 35, 
69-72. 

Pane, V. 1985. "Sedimentation and Consolidation of Clays," Ph.D. Thesis, Department of Civil 
Engineering, University of Colorado, Boulder, Colorado. 

·Plaskett, J. 1992. Parameter Uncertainty and Modeling of Sludge Dewatering in One-Dimension, 
Masters Thesis, School of Engineering and Applied Science, Portland State University, Portland, 
OR. 

Ravenscroft, G.A. 1992. "Managing a Special Waste: Sewage Sludge," Solid Waste & Power. 
I 

Richardson, J.P. and W.N. Zaki. 1954. "Sedimentation and Fluidisation: Part I" 
Trans. Instn Chern. Engrs. 

Robinson, C.S. 1926. Industrial Engineering Chemistry, 18, 869. 

Schiffman, R.L., V. Pane, and R.E. Gibson. 1984. "The Theory of One-Dimensional Consolidation of 
Saturated Clays, IV. An Overview of Nonlinear Finite Strain Sedimentration and Consolidation," 
in Sedimentation Consolidation Models: Predictions and Validation, ed. by R.N. Y ong and F. C. 
Townsend, American Society of Civil Engineers, New York, 1-29. 

Schiffman, R.L., V. Pane, and V. Sunara. 1985. "Sedimentation and ~nsolidation," Flocculation, 
Sedimentation and Consolidation, ed. B.M. Moudgil & P. Somasundaran, Sea Island, Georgia, 57-
121. 

Scully, R.W., R.L. Schiffman, H.W. Olsen, and H.Y. Ko. 1984. "Validation of Consolidation 
·Properties of Phosphatic Clay at Very High Void Ratios," in Sedimentation Consolidation Models: 
Predictions and Validation, ed. by R.N. Yong and F.C. Townsend, American Society of Civil 
Engineers, New York, 158-181. 

Searle, T.G. and M.C. Bennett, ill. 1987. "Belt Filter Press Dewatering of Alum Sludge", in 
Environmental Engineering, ed. Unknown, 269-275. 

Shin, B.S. and Dick, R.I. 1980. "Applicability of Kynch Theory to Flocculent Suspensions," Journal of 
the Environmental Engineering Division, ASCE. 

Shirato, M., Kato, H, ~obayashi, K., and Sakazaki, H. 1970. "Analysis of Settling of Thick Slurries 
due to Consolidation," Journal of Chemical Engineering, (Japan), 3, 94-104. 

Smiles, D. 1970. "A Theory of Constant Pressure Filtration," Chemical Engineering Sceince, 25, 985 
-996. 

Smith, J.E. and J.A. Semon. 1989. "Dewatering Municipal Sewage Sludges- Selecting a Process", in 
Environmental Engineering, ed. by J.F. Malina, Jr., Austin, 515-522. 



Somasundaran, P. 1981. "Thickening or Dewatering of Slow-Settling Mineral Suspensions," Mineral 
. Processing, Proceedings, Thirteenth International Mineral Processing Congress, ed. by J. 

Laskowski, Elsevier, Amsterdam, The Netherlands, 2 (A), 233-261. 

Somogyi, F. 1980. "Large Strain Consolidation of Fine-Grained Slurries," presented at Canadian 
Society for Civil Engineers, Annual Conference, Winnipeg, Manitoka, 1980. 

Somogyi, F., B. Keshian, Jr., and L.G. Bromwell. 1981. "Consolidation Behavior of Impounded 
Slurries," Presented at ASCE Spring Convention, New York, New York. 

Soo, S.L. 1989. Particulates and Continuum Multiphase Fluid Dynamics, Hemisphere Publishing 
Corporation, New .York. 

Steinoir, H.H. 1944. Industrial Engineering Chemistry, 36, 618. 

Stokes, G.G. 1901. Mathematical and physical papers. 

Task Committee on Belt Filter Presses. 1988. "Belt Filter Press Dewatering of Wastewater Sludge," 
Journal of Environmental Engineering, 114, (5), 991-1006. 

Terzaghi, K. 1923. "Die Berechnung der Durcblasslgkeitsziffer des Tones aus dem Verlauf der 
Hydrodynamischen Spannungserscheinungen," Akademie der Wissenchaften in Wien, 
Sitzungsberichte, 132, (3i4), 125-138 . 

. Terzaghi, K. 1942. Theoretical Soil Mechanics, John Wiley and Sons, Inc., New York, New York. 

Tiller, F.M. and T.C. Green, 1973. "Role of Porosity in Filtration IX Skin Effect with Highly 
Compressible Materials," AIChE Journal, 19(6), 1266-1269. 

Tiller, F.M. 1981. "Revision of Kynch Sedimentation Theory," AIChE Journal, 27, No. 5, 823-829. 

Torpey, W.N. 1954. "Con~ntration of Combined Primary and Activated Sludges in Separate 
Thickening Tanks," Journal of Sanitary Engineering Division, ASCE, 80, 443. 

Torpey, W.N. and N.R. Melbinger. 1967. "Reduction of Digested Sludge Volume by Controlled 
Recirculation," Journal of Water Pollution Control Federation, 39(9), 1464-1474. 

Tosun, I. 1986. "Formulation of Cake Filtration," Chemical Engineering Science, 41, 2563-2568. 

90 

Townsend, F.C. and J. Hernandez. 1985. "Predictions of Phosphatic Clay Consolidation by Numerical 
& Centrifical Models," in Floc., Sed. & Consolidation, ed. B.M. Moudgil & P. Somasundaran, 
Sea Island, GA, 449-455. 

U.S. Environmental Protection Agency. 1982. "Dewatering Municipal Wastewater Sludges," 
Municipal Environmental-Research Laboratory, Cincinnati, OH. 

U.S. Environmental Protection'Agency. 1986. Design Information Report: Belt Filter Presses, Water 
Engineering Research Laboratory, Cincinnati, OH. 

U.S. Environmental Protection Agency. 1987. Dewatering Municipal Wastewater Sludges, Municipal 
Environmental Research Laboratory, Cincinnati, OH. 



U.S. Environmental Protection Agency. 1990. NationaJt Sludge Survey. 

Verruijt, A. 1969. "Elastic Storage of Aquifers," in Flow Through Porous Media, ed. by R.J.M. 
DeWiest, Academic Press, New York, New York, 331-376. 

Vesilind, P.A. 1968. "Theoretical Considerations: the Design of Prototype Thickeners from Batch 
Settling Tests," Water and Sewage Works, 115, 302-307. 

Vesilind, P.A. 1979. "Sludge Dewatering," Treatment and Disposal of Wastewater Sludges, Ann 
Arbor Science, Ann Ar~r, 135-205. 

Vesilind, P.A., G.C. Hartman,. and E.T. Skene. 1986. "Sludge Dewatering," Sludge Management & 
Disposal for the Practicing Engineer, Lewis Publishers, Inc., Chelsea, Michigan, 40-62. 

Viessman, W., Jr. and M.J. Hammer. 1985. Water Supply and Pollution Control, Harper & Row, 
New York. 

Villiers, R.V. and J.B. Farrell. 1977. "A Look at Newer M~hods for Dewatering Sewage Sludges," 
Civil Engineering, 47, No. 12, 66-71. 

Wahl, A.J., C.C. Larson, J.B. Neighbor, T.W. Cooper, W.J. Katz, J.J. Wirts, S.J. Sebesta, and J.B. 

91 

Hanlon. 1964. "1963 Operators' Forum," Journal Water Pollution Control Federation, 36(4), 401-
433. . 

Wakelnan, R.J. 1978. "A Numerical Integration of the·Diffemetial Equations Describing the 
Formation and Flow in Compressible Cakes," Transactions Institute Chemical Engineering, 56, 
258-265. 

Wakeman, R.J. and Holdich, R.G. 1982. "Theoretical and Experimental Modeling of Solids and 
Liquid Pressures in Batch Sedimentation," Proceedings of the Filtration Society. 

Wakeman, R.J. and R.G. Holdrich. 1984. "Theoretical and Experimental Modeling of Solids and 

Liquid Pressures in Batch Sedimentation," Filtration and Separation, 21, 420-422. 

Weber, W.J., Jr. 1972. Physicochemical Processes for Water Quality Control, John Wiley & Sons, 

Inc., New York. 

Wells, S.A. 1988. National Science Foundation proposal. 

Wells, S.A. and R.I. Dick. 1988. "Synchrotron Radiation Evaluation of Gravity Sedimentation 

Effects Prior to Dewatering," Proceedings ASCE-CSCE National Conference on Environmental 

Engineering, Vancouver, B.C. 

Wells, S.A. and R.I. Dick, 1989. "Mathematical Modeling of Compressible Cake Filtration," in 
ASCE-CSCE National Conference on Environmental Engineering Proceedings, ed. by J. Malina, 
Austin, Texas, 788-795. 



Wells, S.A. 1990. Compressible Cake Filtration Modeling and Analysis, Ph.D. Dissertation, School 
. of Civil and Environmental Engineering, Cornell University, Ithaca, N.Y. 

Wells, S.A. and R.I. Dick, 1993, "Permeability, Liquid and Solid Velocity, and Effective Stress 
Variations in Compressible Cake Filtration," Chicago American Filtration Society Conference, 
Chicago, IL. 

Willis, M.S. 1983. "A Multiphase Theory of Filtration," in Progress in Filtration and Separation, 
ed. by R.J. Wakeman, Elsevier Scientific, New York, 1-56. 

Yong, R.N. and C.A. Ludwig. 1984. "Large Strain Consolidation Modelling of Land Subsidence," 
Symposium on Geotechnical Aspects of Mass and Materials Transportation, Bangkok, Thailand .. 

Znidarcic, D., and R.L. Schiffman. 1982. "On Terzaghi's Concept of Consolidation," Geotechnigue, 
32, 387-389, Discussions and Reply in Geotechnigue, 34, 130-134. 

92 



3:00;) 'HH.LildWO;J .NVID."'M:Od -NOUVLNHWIOHS Al.IA V"HD 

VXIONHddV 



C****************************************************•*********************** 
C GRAVCU13.FOR (5/93) 
C***************************************************~************************ 
C NUMERICAL SCHEME IS EXPLICIT FOR SOLID CONTINUITY WITH FTCS 
C SCHEME IS EXPLICIT /IMPLICIT FOR 11MOMENTUM11 EQUATION WITH 
C FORWARD DIFFERENCE IN TIME. MODELER CAN CHOOSE BETWEEN 
C UPWIND OR CENTRAL DIFFERENCE FOR SPATIAL DERIVATIVES 
C**************************************************************************** 
c 

c 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
real inert2, inert3, icoef, jcoef, kcoef, lcoef 
COMMON/OUT/ TIML,NPR,NITL,INPOR 
COMMON/PAR/ VO,EO 
COMMON/PORI DT,DZ,AREA(DVIS,K,EE(100),S0,TIM,TEMP, 

1 EI,PAPP,RM,DL,NFIL,NSOL,FACT,EYLD 
COMMON/PRIM/ U(100),US(100),P(100),SIGMA(100), 

1 AA(100),BB(100),CC(100),00(100) 
COMMON/DIAG/ IDIAG(8),IPLOT,IDT 
COMMON/DOMN/ DIST(100),EET(100),UST(100) 
COMMON/PERMC/ PERMZ(100) 
COMMON/AVCAL/AVA,AVB,EL 
COMMON/PERMCAL/PKA1,PKB1,NKC,PKA2,PKB2,EKP,A 

C READ IN INPUT FILE: 

333 

CALL INIT(EO,THETA) 
WRITE(* ,333) 
FORMAT(1X,'ENTER DT INS IN F10.0 1 ) 

READ(*,*)DT 
TIM=O.O 

~ 

c 
c 
c 
c 

-The following will determine whether to use an upwind or 
central difference scheme for the spatial derivative of 
solid velocity, DUDZ. 

444 

c 

.C 

-SCHEME=O (Central Difference); SCHEME=1 (Upwind) 
WRITE(* ,444) 
FORMAT(1X,'ENTER SCHEME: O=Central Difference (numerical', 
' smoothing); 1=Upwind') 
READ(*,*)SCHEME 

SUMQ=O.O 
NSTOP=O 
VOLCUM=O.O 
DLL=DL 
DL2=DL 
NIT=O 
N30=1 
NP30=1 
DIST(1 )=0.0 
NHOLD=O 
NFILT=1 

C ESTABLISH DZ AND DIST (PRINTED AS J=2,K+1): 
If(INPOR.NE.1)GO TO 65 
DZ=DIST(K+1)-DIST(K) 
DIST(K+2)=DIST(K+1)+DZ 
DIST(K+3)=DIST(K+2)+DZ 

C REDO DOMAIN IF NO SOLIDS IN CEllS DUE TO SEDIMENTATION 
DO 64 J=1,K+1 

64 IF(EE(J).EQ.1.0)GO TO 63 
c 
C DVOL IS TOTAL WATER VOL ABOVE CAKE AFTER FORMATION PERIOD 
63 DVOL=AREA*(K-J+2)*DZ 

K=J-2 
DL=DIST(K+1) 
DLL=Dl 
DL2=DL 
GO TO 1 

c 
65 DZ=Dl/REAL(K) 
c 

DO 4381 J=1, K+2 
4381 DIST(J)=REAL(J-1)*DZ 
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do 457 j=1,k+1 
if(j.eq.1)wr te(12,507)d st(j),ee(j),tim 
if(j.eq.1)wr te(18,507)d st(j),us(j),tim 
if(j.ne.1)wr te(12,508)d st(j),ee(j) 

457 if(j.ne.1)wr te(18,508)d st(j),us(j) 
ngo=O 

c 
1 AV=AVV(EE(1)) 
c 
C**************************************************************************** 
C This solution technique involves· two equations: (1) solid continuity; 
C and (2) total momentum with continuity ( 11momentum11

). The solid 
C continuity is used to solve for poroisty at the next timestep, and the 
C the 11momentum11 

- us.ing the newly solved for porosity - is used to 
C solve for the solid velocity at the next timestep. 
C**************************************************************************** 
c 
C BOUNDARY CONDITIONS 

US(1)=0.0 
US(K+2)=us(k) 

CONTINUE 700 
c 
c 

-Time: Compute max. allowable time step based on stability 
restrictions: 

c 

4431 

c 

ee(k+1)=ee(k) 
DO 4431 J=1,K+1 
PERMZ(J)=PERM(EE(J)) 
PERMZ(K+2)=PERM(EE(K+1)) 

21 CONTINUE 
If((TIM+DT).GT.TIML)DT=TIML-TIM 
NIT=NIT+1 
TIM=TIM+DT 

C -Density parameters for kaolin slurry: 
DENL=1.0 
DENS=2.62 

C -Other Parameters/Definitions: 
G=980. 

C CALCULATE VO 
U(1)=VO 
VO=O.O 

c 
C THE FOLLOWING DO-LOOP BEGINS THE SOLUTION PROCESS: 

c 

DO 10 I=1,K 
if(ee(i).eq.1.0)~o to 10 

C DEFINITIONS FOR DISCRETIZATION: 
c -Distance: 

IF (I. GE. 2)THEN 
DZM=DIST(I)-DIST(I-1) 
ELSE 
DZM=DZ 
DZP=DIST(I+1)-DIST(I) 
END IF 
DZB=O.S*(DZM+DZP) 

c -Porosity: 
IF( I.GE.2HHEN 
EE1=(EE(I+1)+EE(I))/2. 
EE2=(EE(I-1)+EE(I))/2 •. 

C UPPER BC ***************. 
IF(I.EQ.K)EE1=1.0 

c ************************ 

c 

ELSE 
EE1=(EE(I+1)+EE(I))/2. 
EE2=EO 
END IF 

~ 
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C SOLID CONTINUITY EQUATION: . • 
EET(I)=EE(I)+(((1.0-EE1)*US(i+1))-((1.0-EE2)*US(i))) 

• . *DT/DZP 
if(eet(i).gt.1.0)eet(i)=1.0 

10 continue 
C CALCULATE EOT AND VOT -NEW VARIABLES 

EOT=EET(1) 
VOT=O.O 

c 
C COMBINED MOMENTUM EQUATION: 
C -Due to the repition of these, the following variables are created: 
C -Boundary conditions: 

US(1)=0.0 
US(K+2)=us(k) 
UST(K+2)=ust(k) 
UST(1)=0.0 
do 11 i=2,K+1 
DZP=DIST(I+1)-DIST(I) 
DZM=DIST(I)-DIST(I-1) 
DZB=O.S*(DZM+DZP) 

C -Porosity: 
c EE1=(EE(I+1)+EE(I))/2. 
c Note that these terms should apply only in a thickening region, 
c not in a region where the solid mass is declining ••• why don't these 
c equations deal with that??? so a quick fix below.... ~ 

EE2=(EE(I-1)+EE(I))/2. 
if(i.eq.k+1)ee2=ee(k) 
if(ee2.gt.ei)ee2=ei 
EE2T=(EET(I-1)+EET(I))/2. 
if(i.eq.k+1)ee2t=eet(k) 

C -Intrinsic Permeability: 
PERMZ2=(PERMZ(I)+PERMZ(I-1))/2. 

C -Upwind or central diff. can be used for the spatial derivative of 
C solid velocity, DUDZ. The 11 111 for solid velocity is defined 
C differently than the 11 111 for porosity. All variables are evaluated 
C around the 11 111 for solid velocity (which is the same as. 11 1-1/211 for 
C porosity). 
c -Due to the repitition of these, the following variables are created: 
C -Central difference: 

DEDT=(EE2T-EE2)/DT 
DEDZ=(EE(I)-EE(I-1))/DZB 
if(ee(i).ge.ei)dedt=O.O 
if(ee(i).ge.ei)dedz=O.Q 
if(i.eq.k+1)dedz=O.O 
F=(EE2)*DVIS/PERMZ2 • 
POR=1.0-EE2 

C -The solution is implicit, and uses the Thomas algorithm. 
C Each term is divided into both a coefficient and solid velocity 
C component (if it exists). The following are the coefficients, 
C after linearizing. 

ACOEF=POR*DENL + EE2*DENS 
B1COEF=(DENL/EE2)*DENL*EO*VO 
B2COEF=-DENL*(POR**2)/EE2+EE2*DENS 
CCOEF=-(DENL/EE2)*DEDT 
DCOEF=-(DENL*EO*VO/EE2)*DEDT 
ECOEF=(DENL/EE2**2)*((EO*V0)**2)*DEDZ 
FCOEF=-(DENL/EE2**2)*EO*VO*DEDZ 
G1COEF=-(DENL/EE2**2)*EO*VO*POR*DEDZ 
G2COEF=-(DENL/EE2**2)*POR*DEDZ 
HCOEF=-DENL*(EOT*VOT-EO*VO)/DT 
ICOEF=EE2*G*(DENL-DENS) 
JCOEF=(F/POR)*(EO*VO) 
KCOEF=-(F/POR) 
LCOEF=EE2/(POR*AVV(EE2))*DEDZ 
term1=abs(acoef*us(i)/dt) 
convac=abs(b2coef*((us(i))**2)/dz)+abs(ccoef*us(i))+ 

abs(g2coef*((us(i))**2)) 
gravit=abs(icoef) 
drag=abs(kcoef*us(i)) 
es=abs(lcoef) 
if(es.eq.0.0)es=1.e-8 
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c 
c 
c 
c 

c 
c 
c 
c 

445 
446 

c 

if( tim. eq. 180.and. i .eq·. 2}write( 13,515 )( 1 O*di st."( i)), 
term1,convac,tim 

if(tim.eq.180.and.i.eq.2)write(14,516)(10*dist(i)), 
gravit,drag,es,tim 

if(tim.eq.180.and.i.ne.2)write(13,517)(10*dist(i)), 
term1,convac 

if(tim.eq.180.and.i.ne.2)write(14,518)(10*dist(i)}, 
gravit,drag,es 

if(tim.eq.1200.and.i.eq.2}write(15,515)(10*dist(i}}, 
term1,convac,tim 

if(tim.eq.1200.and.i.eq.2)write(17,516)(10*dist(i)}
1 

gravit 1 drag,es,tim 
if(tim.eq.1200.and.i.ne.2)write(15 1 517)(10*dist(i}} 1 

term1 1 convac 
i f(t im.eq. 1200 .• and. i .ne. 2}wri te( 17 1 518) ( 10*di st( i}} 1 

1 gravit 1 drag 1 es 
-OMEGA CALCULATION 
Omega is the additional numerical diffusion coefficient 
Modeler can change omega at the screen by apply{ng 
a multiplying factor. Omega is calculated at 1=2. 

if(omega.NE.O.O}go to 447 
To calculate omega at I=k: 

-Note: altho omega was derived from the 11modified 
equation which has a single coefficient (G), here 
it uses G1 and G2. See thesis. 
omega=(ccoef+fcoef+g1coef+g2coef-kcoef}*dt*dz/acoef 
write(* 1 445} 
read(* 1 446}factor 
format(1x,'ENTER OMEGA MULTIPLYING FACTOR in f15.6'} 
format(f15.6} · 
omega=omega*factor 

r 

C -SCHEME=O (Central Difference}; SCHEME=1 (Upwind) 
·447 IF (SCHEME.EQ.O} GO TO 6997 

I F (-SCHEME. EQ. 1 } GO TO 6998 
C -The following are for a central difference formulation:-
6997 XO=-(DCOEF+ECOEF+HCOEF)+(ICOEF+JCOEF+LCOEF} 

X1=(THETA*B1COEF}/(2.0*DZB)-((1-2*theta}*b2coef} 
1 /(4.0*DZB}+omega*theta 
Y1=(ACOEF/DT}+THETA*(-2.*omega-CCOEF-FCOEF-g1coef+KCOEF}+ 

1 (1.0-2.0*theta}*G2coef*us(i) 
Z1=-(theta*B1coef}/(2.0*DZB}+((1-2*theta)*B2coef*US(i+1}} 

1 /(4.0*DZB)+theta*omega 
X2=-(1.0-THETA}*((B1coef+B2coef*US(i-1)}/(2.0*DZB}+omega} 
Y2=(ACOEF/DT}+(1.0-THETA}*(2.*omega+CCOEF+FCOEF+G1COEF+ 

1 (2.0*G2coef*us(I})-KCOEF} 
Z2=((1.0-theta}/{2.0*dzb}}*(B1coef+B2coef*us(i+1}}­

• (1.0-theta}*omega 
C -The following defines variables within the tridiagonal 
C system of equations for central difference: 

BB(I )=X2 
if(i.eq.k+1}bb(i}=bb(i}+z2 
DD(I)=Y2 
AA(I )=Z2 
CC(I)=X1*US(I-1}+Y1*US(I}+Z1*US(I+1)+XO 
GO TO 11 

C -The coefficients are simplified as follows, for upwind: 
6998 XO=-(DCOEF+ECOEF+HCOEF)+(ICOEF+JCOEF+LCOEF) 

X1=omega*theta 
Y1=(ACOEF/DT)+THETA*((b1coef/dzb)-CCOEF-FCOEF-g1coef+KCOEF}+ 

1 (1.0-2.0*theta)*((-b2coef/2*dzb)+G2coef*us(i))-2.* 
1 omega*theta 
Z1=-((theta*b1coef}/(dzb)}+((1.0-2.0*theta)* 

1 b2coef/2*dzb)*us(i+1}~omega*theta 
X2=-omega*(1.-theta) 
Y2=(ACOEF/DT)+(1.0-THETA}*(((-b1coef-b2coef*us(i}}/dzb)+ 

1 CCOEF+FCOEF+G1COEF+(2.0*G2coef*us(I}}-KCOEF)+ 
1 2.*omega*(1.-theta} 
Z2=((1.0-theta}/dzb}*(B1coef+B2coef*us(i+1))-

1 (1.-theta}*omega 
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C -The following defines variables within the tridia~onal 
C system of equations for the upwind formulation: 

BB(I )=X2 
if(i.eq.k+1)bb(i)=bb(i)+z2 
00(1 )=Y2 
AA(I )=Z2 
CC(I)=X1*US(I-1)+Y1*US(I)+Z1*US(I+1)+XO 

11 continue 
C -SOLVE WITH THE THOMAS ALGORITHM 

IL=2 

c 

c 

IU=K+1 
CALL THOMAS (IL,IU) 

do 111 i=1,k+2 
if(i.eq.1)go to 110 
if(i.eq.k+2)go to 110 
UST(I)=CC(I) 

C -THIS PRINTS DATA FOR PLOTT)NG AT SPECIFIED TIMES 
.110 ntim=tim 

c 

min=60 
ntim60=ntimtmin 
if((ntim60*min).ne.ntim.or.ngo.EQ.O) go to 111 
if(i.eq.1)write(12,507)dist(i),eet(i),tim 
if(i.eq.1)write(18,507)dist(i),ust(i),tim 
if(i.ne.1)write(12,508)dist(i),eet(i) 
if(i.ne.1)write(18,508)dist(i),ust(i) 

111 CONTINUE 
if(ntim60*min.eq.ntim)ngo=O 
if(ntim60*min.ne.ntim)ngo=1 

507 format(1x,F12.7,4X,E10.4,4x,F8.3) 
508 fonmat(1x,F12.7,4X,E10.4) 
509 format(14(1X,E8.2),1X,F8.3) 
515 format(1X,F8.3,2(1X,E10.4),1X,F8.3) 
516 format(1X,F8.3,3(1X,E10.4),1X,F8.3) 
517 format(1X,F8.3,2(1X,E10.4)) 
518 format(1X,F8.3,3(1X,E10.4)) 

r 

500 FORMAT (1X,F10.5,1x,E10.4,1x,E10.4,1x,E10.4,1x,F10.8,1X,F14.8, 
1 1x,E10.4,1x,F10.8,1x,F10.8) 

c 
DO 701 1=1,k+1 

if(i.eq.k+1)go to 702 
EE( I )=EET( I) 

702 continue 
701 US(I)=UST(I) 

CALL SMASS(XX) 
WRITE(* ,956)XX 
WRITE(11,957)tim,xx 

956 FORMAT( 1X, 'MASS=' I 1X,E14 .• 5) 
957 FORMAT(1X,F8.3,1X,E14.5) 

c 

c 

IF(NITL.GT.NIT.and.TIML.GT.TIM)GO TO 700 

CLOSE(UNIT=10) 
CLOSE(UNIT=11) 
CLOSE (UN IT=12) 
CLOSE(UNIT=13) 
CLOSE(UNIT=14) 
CLOSE (UN IT=15) 
CLOSE(UNIT=16) 
CLOSE(UNIT=17) 
CLOSE(UNIT=18) 
CLOSE(UNIT=19) 
CLOSE(UNIT=20) 
CLOSE(UNIT=21) 

C COMPUTE NEW DOMAIN 
c CALL SOLV2(NIT,NHOLD) 

END 
c 
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C****************************************************~*************** 
SUBROUTINE SOLV2(NIT,NHOlD) 

C******************************************************************** 
·c COMPUTES NEY DOMAIN AND 
C SOLV2 SOLVES FOR LIQUID VELOCITY(CM/SEC)-U, 
C SOLID VELOCITY(CM/SEC)-US,PORE YATER PRESSURE(GM/CM/SEC/SEC)-P, 
C AND SOLID STRESS(GM/CM/SEC/SEC)-SIGMA,AND PERMEABILITY(CM*CM) 
c 

c 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION E(100),D(100) 
COMMON/PERMC/ PERMZC100) 
COMMON/DIAG/ IDIAG(8),1PLOT,IDT 
COMMON/PRIM/ U(100),US(100),P(100),SIGMA(100), 

1 AA(100),BB(100),CC(100),DD(100) 
COMMON/PORI DT,DZ,AREA,OVIS,K,EE(100),S0,TIM,TEMP 

1 ,EI,PAPP,RM,DL,NFIL,NSOL,FACT,EYLD 
COMMON/PAR/ VO,EO 
COMMON/DOMN/ DIST(100),EET(100),UST(100) 

C RECOMPUTE DOMAIN AND NEW DZ 
c 
C DIST:DIST FROM POROUS PLATE CORRESPONDING TO EE 
c 
C DURING NHOLD=1 NO DOMAIN HEIGHT CHANGE 
C I 

c 

IF(NHOLD.EQ.1)GO TO 678 
OH=VO*OT*EE(1) 
DL=DL-DH 
KK=O 
SK1=(DL/DZ)+0.5 
SK2=SK1-INT(SK1) 
IF (SK2 .NE. O.O)KK=1 
K=INT(SK1 )+KK 
DIST(K+1 )=DL 
DIST(K+2)=DL+(DIST(K+1)-DIST(K)) 

C CREATE LARGER CELL AT UPPER BOUNDARY IF DZ GETS TOO SMALL 
c 

DZ1=DIST(K+1)-DIST(K) 
DZ2=DZ/4. 
IF(DZ1.LT.DZ2)GO TO 897 
GO TO 898 

897 CONTINUE 
K=K-1 
DIST(K+1 )=DL 
DIST(K+2)=DL+(DIST(K+1)-DIST(K)) 

898 CONTINUE 
CALL INTER(DIST(K+1),4,E1) 
EET(K+1 )=E1 
CALL INTER(DIST(K+2),4,E1) 
EET(K+2)=E1 

678 DO 3 J=1,K+2 
3 EE(J)=EET(J) 
c 

IF(NSOL.EQ.O)GO TO 50 
c 
50 RETURN 
C END 
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C****************************************************~**************** 
SUBROUTINE INIT(E01THETA) 

C***************************************************~****************** 
c 
C INIT READS IN INPUT DATA AND INITIALIZES POROSITY ARRAY 
c 

c 

IMPLICIT DOUBLE PRECISION (A-H10-Z) 
COMMON/DOMN/ DIST(100) 1EET(100) 1UST(100) 

COMMON/PORTERM/ ETERM(50) 1T2(50) 1NETERM 
COMMON/PORI DT 1DZ 1AREA1DVIS1K1EE(100) 1S01TIM 1TEMP1 

1 EI 1PAPP 1RM 1DL 1NFIL 1NSOL 1FACT 1EYLD 
COMMON/OUT/ TIML 1NPR 1NITL 1INPOR 
COMMON/VOLUME/ V(50) 1T1(50) 1NVOL 
COMMON/DIAG/ IDIAG(8),~PLOT 1 IDT 
COMMON/AVCAL/ AVA1AVB1EL 
COMMON/PERMCAL/ PKA1 1PKB1 1NKC 1PKA2 1PKB21EKP1A 

C DEFINITION OF VARIABLES: 
C A: MEAN PARTICLE DIAMETER IN CM 
C AREA:AREA OF FILTRATION CELL IN CM**2 
C AVA1AVB:PARAMETERS USED IN AV CALCULATION IN AVV SUBROUTINE 
C (NOTE:AVA IN UNITS OF GM/CM/S/S) 
C EE:POROSITY AT EACH SPATIAL STEP FROM THE MEDIA 
C EKP:POROSITY AT WHICH PKA1 1PKB1 IS VALID IN PERM SUBROUTINE 
C EI:INITIAL POROSITY OF THE SUSPENSION ~ 
C DL:LENGTH OF DOMAIN(CM) 
C DT:TIME STEP IN SECONDS 
C DVIS:DYNAMIC VISCOSITY IN GM/CM/SEC 
C DZ:VERTICAL SPATIAL STEP IN CM 
C EL:LIMITING POROSITY BETWEEN PARTICLE/PARTICLE CONTACT AND NO 
C CONTACT 
C FACT:SAFETY FACTOR FOR TIME STEP STABILITY ANALYSIS 1.0>FACT>O.O 
C IDIAG:DIAGNOSTIC FLAGS THAT PRINT INTERMEDIATE CALCULATIONS 
C IDT:IF IDT=1 1 TIME STEP IS SET TO DT IN INPUT DATA FILE 
C IPLOT:IF EQUAL TO '1' AN OUTPUT FILE SUITABLE FOR PLOTTING IS MADE 
C K:NUMBER OF SPATIAL STEPS IN VERTICAL DOMAIN 
C NETERM:NUMBER OF TERMINAL POROSITY WITH TIME DATA 
C NITL:TIME LIMIT IN TIME STEPS FOR RUN TO CEASE 
C NKC:FLAG THAT USES CARMEN-KOZENY PERM IF NKC=1 
C NPR:FULL OUTPUT PRINTED EVERY NPR TIME CYCLES 
C NSOL:PARAMETER TO TURN ON(=1)0R OFFC=.O)THE CALCULATION 
C OF VS 1VL 1P,SIGMA 
C NVOL:HUMBER OF FILTRATE VOLUME WITH TIME DATA 
C PAPP:APPLIED PRESSURE DIFFERENTIAL IN PASCALS(N/M**2) 
C PKA1PKB:PARAMETERS USD IN PERM VS POROSITY CALCULATION IN PERM 
C (NOTE:PKA IN UNITS·OF CM*CM) 
C SO:SPECIFIC SURFACE(1/CM)(USED IN PERM IF NKC=1) 
C SYLD:EFFECTIVE STRESS AT WHICH SOLID PHASE YIELDS(PASCALS) 
C TEMP:TEMPERATURE OF THE SUSPENSION IN DEGREES CELSIUS 

.c TIM:TIME SINCE BEHINNING OF THE RUN UPDATED IN MAIN SEC 
C TIML:TIME LIMIT IN SEC TO STOP CALCULATIONS 
c 

c 

OPEN(UNIT=101 FILE='CAKEIN.DAT', STATUS='OLD') 
OPEN(UNIT=11 1 FILE='CKFWGOUT.1' 1 STATUS='NEW') 
OPEN(UNIT=12, FILE='CKFWGOUT.2' I STATUS='NEW') 
OPEN(UNIT=131 FILE='CKFWGOUT.3' 1 STATUS='NEW') 
OPEN(UNIT=141 FILE='CKFWGOUT.4 1 1 STATUS='NEW') 
OPEN(UNIT=15 1 FILE='CKFWGOUT.5 1 1 STATUS='NEW') 
OPEN(UNIT=161 FILE='CKFWGOUT.6' I STATUS='NEW') 
OPEN(UNIT=171 FILE='CKFWGOUT.7' 1 STATUS='NEW') 
OPEN(UNIT=181 FILE='CKFWGOUT.8' 1 STATUS='NEW') 
OPEN(UNIT=191 FILE='CKFWGOUT.9' I STATUS='NEW') 
OPEN(UNIT=201 FilE='CKFWGOUT.10' I STATUS='NEW') 
OPEN(UNIT=21, FILE='AVV.OUT' 1 STATUS='NEY') 
READ(10,200) 
READ(10 1100)DL,AREA,TEMP,EI,PAPP,A,TIML,SYLD 
READ(10,200) 
READ(10,100)AVA,AVB 1PKA1,PKB1 1EL,FACT,THETA,PKB2 
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C CALCULATE DVIS BASED ON TEMP 
CALL INTER(TEMP,3,DVIS) 

·c. 
C CONVERT TO CGS SYSTEM, PASCALS(KG/M/SEC/SEC) TO (GM/CM/SEC/SEC) 

'SYLD=10.*SYLD 
c 
C COMPUTE POROSITY AT WHICH CRACKING BEGINS ••• FILTRATION CEASES 

EYLD=(-1./AVB)*LOG((EXP(-AVB*EO ))+AVA*AVB*SYLD) 
c 
C IF INPOR=1,INITIAL POROSITY DISTRIBUTION IS GIVEN TO ALLOW FOR 
C SEDIMENTATION 

c 

READ(10,200) 
READ(10,101)INPOR,NVOL,NETERM,K,NPR,NITL,NFIL,NKC 
READ(10,200) 
READ(10,101)1PLOT,NSOL,IDT,IETERM 
READ(10,200) . 
READ(10,101)IDIAG 

C INITIALIZE POROSITY ARRAY 

10 

13 
11 
c 

DO 10 1=1,K 
EE(I)=EI 
READ(10,200) 
IF(INPOR.NE.1)GO TO 11 

DO 13 J=1,K 
READ(10,103)DIST(J),EE(J) 

READ(10,200) 

C TERMINAL POROSITY AS A FUNCTION OF TIME 

12 

IF(IETERM.EQ.1)GO TO 14 
DO 12 J=1,NETERM 
READ(10,103)ETERM(J),T2(J) 
EO=ETERM(1) 

GO TO 15 
.C COMPUTE ETERM FROM MV RELATIONSHIP 
14 continue 

15 
c 

c 

E0=(-1./AVB)*LOG((PAPP*AVA*AVB)+EXP(-AVB*EI)) 
ETERM(1)=EO 
CONTINUE 
IF(IDIAG(1).EQ.1)WRITE(17,201)SYLD,EYLD,EO 

RETURN 

C FORMAT STATEMENTS 
c 
100 FORMAT(8F10.5) 
101 FORMAT(8110) 
103 FORMAT(2F10.5) 
200 FORMAT( 1X) 

END 
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C******************************************************************* 
SUBROUTINE INTER(T,N,Z) 

C*~***************************************************************** 
c 
C INTER INTERPOLATES INPUT DATA TO OBTAIN DYNAMIC VISCOSITY, LIQUID 
C VELOCITY AT Z=0 1 TERMINAL POROSITY 
c 
c 
c 
c 
c 
c 
c 

c 

T •• TIME IN SEC OR TEMP IN DEG COR POROSITY 
N •• SPECIFIC VARIABLE TO INTERPOLATE:1=TERM POR 

2=LIQ VEL 
3=DVIS 
4=NEW POROSITY 

Z .• RETURNED VARIABLE 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION VIS( 15) I VTEMPC,15) ,X( 100) I Y( 100) 
COMMON/DIAG/ IDIAG(8),IPLOT,IDT 
COMMON/PORTERM/ ETERM(50),T2(50),NETERM 
COMMON/PORI DT,DZ1AREA,DVIS,K1EE(100) 1SO,TIM,TEMP, 

1 EI 1PAPP,RM,DL,NFIL,NSOL,FACT,EYLD 
COMMON/VOLUME/ V(50),T1(50),NVOL 
COMMON/DOMN/ DIST(100),EET(100),UST(100) 

C THE FOLLOWING VISCOSITY(GM/CM/SEC)-TEMP(C) DATA IS FROM G. K., 
C BATCHELOR, AN INTRODUCTION TO FlUID DYNAMICS P.595,1967 
C r 

DATA VIS/1.781,1.514,1.304,1.137,1.002,0.891,0.798, 
1 0.72010.654,0.548,0.467,0.405,0.355,0.316, 
1 0.283/ 

DATA VTEMP/0. 15. 110. 115. 120.,25. 130. 135.,40. 150.,60. 1 
1 70 • 1 80·. 1 90 • 1 1 00 ./ 

IF(N-2)10120,30 
10 NY=NETERM 

DO 1 J=1,NY 
X(J)=T2(J) 
Y(J)=ETERM(J) 
GO TO 5 

20 NY=NVOL 
DO 2 J=1,NY 
X(J)=T1(J) 

2 Y(J)=V(J) 
GO TO 5 

30 IF(N.EQ.4)GO TO 40 
NY-=15. 
DO 3 J=1 1NY 
X(J)=VTEMP(J) 

3 Y(J)=VIS(J)*0.01 
GO TO 5 

40 NY=K+1 
DO 4 J=1,NY 
Y(J)=EET(J) 

4 X(J)=DIST(J) 
5 CONTINUE 
c 
C LINEAR INTERPOLATION 
c 

c 

IF(N.EQ.1.AND.NETERM.EQ.1)GO TO 204 
IF(T.LE.X(1))GO TO 206 
IF(T.GE.X(NY))GO TO 207 

DO 6 J=1 1NY 
IF(T.EQ.X(J))GO TO 201 

6 IF(T.LT.X(J))GO TO 50 
c 
50 CONTINUE 

c 

DX=X(J-1)-X(J) 
DY=Y(J-1)-Y(J) 
SLOPE=DY/DX 
Z=Y(J-1) + SLOPE*(T-X(J-1)) 
IF(N.EQ.2)Z=SLOPE/AREA 
GO TO 202 

201 Z=Y(J) 
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C AVERAGE SLOPE ON EITHER SIDE OF THE POINT 
IF(N.EQ.2)Z=((Y(J+1)-Y(J1)/(X(J+1)-X(J))*0.5 + 

1 (Y(J)-Y(J-1))/(X(J)-X(J-1))*0.5)/AREA 
GO TO 202 

206 ·z=Y( 1) 
IF(N.EQ.2)Z=(Y(1)-Y(2))/(X(1)-X(2))/AREA 
GO TO 202 

207 Z=Y(NY) 
IF(N.EQ.2)Z=(Y(NY-1)-Y(NY))/(X(NY-1)-X(NY))/AREA 
GO TO 202 

204 Z=ETERM(1) 
202 IF(IDIAG(7).EQ.1)WRITE(11,101)N,NY,T,Z,SLOPE 

RETURN 
c 
C FORMAT STATEMENTS 
101 FORMAT(1X,'N=' ,I~,1X,'NY=' ,12,1X,'T=' ,E10.3,1X,'Z=' ,E10.3, 

1 1X,'SLOPE=',E10.3) 
END 

~ 
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C********************************************************************** 
FUNCTION AW(EE) 

C******************************************************************** 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON/AVCAL/ AVA,AVB,EL 
avv=ava*exp(avb*ee) 
go to 21 
E=EE 
IF(E.GT.EL.or.e.lt.O.SS) GO TO 20 

c BI-SECTION ROOT-FINDING TECHNIQUE 
c This is an iterative root-finder for E=f(u). After an 
c initial guess (u0), u is halved or doubled until u1 
c is on the left and u2 on the right of the root for 
c the passed variable, E. Iterations are begun by interpo­
c lating for new uOs, assuming a linear relationship. E and 
cEO are compared until they are very close. 

SIGMA0=100.0 
ZETA=0.54 
EPI=2.0 
EO=SI GMAO**CZETA/(SI GMAO"-EPI))- ( 1-ZETA) 11 

.12 DI FFO=E-EO 
IF((DIFFO.GE.-0.000001).AND.(DIFFO.LE.0.000001))GO TO 20 
IF(DIFFO.LT.O.O)THEN 

13 

14 

SIGMA1=SIGMAO 
SIGMA2=2.0*SIGMAO 
SIGMAO=SIGMA2 
E1=EO 
E2=SIGMA2**(ZETA/(SIGMA2-EPI))-(1-ZETA) 
EO=E2 
DIFF1=DIFFO 
DIFF2=E-E2 
DIFFO=DIFF2 
IF((DIFFO.LT.0.0).AND.(DIFF2.LT.0.0))GO TO 13 

END IF . 
IF(DIFFO.GT.O.O)THEN 

SIGMA2=SIGMAO 
SIGMA1=0.5*SIGMAO 
SIGMAO=SIGMA1 
E2=EO 
E1=SIGMA1**(ZETA/(SIGMA1-EPI))-(1-ZETA) 
EO=E1 
01 FF2=DI FFO. 
DI FF1=E-E1 
D I FFO=D I FF1 
IF((DIFFO.GT.0.0).AND.(DIFF1.GT.0.0))GO TO 14 

END IF 
c Find uO for new iteration: 

20 

SIGMAO=SIGMA2-(SIGMA2-SIGMA1)*(E2-E)/(E2-E1) 
GO TO 11 . 
CONTINUE 
I F(E.GT .El)then 

AW=1.E20 
go to 21 

end if 
c next line is only for kaolin, very important!!!!! 

if(e.lt.O.SS)then 
avv=2.9e-9 
go to 21 

end if 

r 

c Compute coefficient of volume compressibility, mv in units of kPa-1 
avv=-CEO*(ZETA*((SIGMAO-EPI)**(-1)))/SIGMAO 

1 -ZETA*((SIGMA0-EPI)**(-2))*dLOG(SIGMA0)) 
c change of units to (gm/cm/s/s)A-1, conversion factor is *10A-4 

avv=avv/(10.**4) 
21 continue 

RETURN 
END 
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C********************************************************************* 
FUNCTION PERM(E) 

C*********************************************************************** 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON/PERMCAL/PKA1,PKB1,NKC,PKA2,PKB2,EKP,A 
COMMON/AVCAL/ AVA,AVB,EL 
COMMON/PORI DT,DZ,AREA,DVIS,K,EE(100),S0,TIM,TEMP, 

1 EI,PAPP,RM,Dl,NFIL,NSOL,FACT,EYLD 
EKP=.65 
PKA2=PKA1*EXP((PKB1-PKB2)*EKP) 
IF(E.LE.EKP)PERM=PKA1*EXP(PKB1*E) 
IF(E.Gt.EKP)PERM=PKA2*EXP(PKB2*E) 
if(e.gt.ei.and.e.le.ekp)perm=PKA1*EXP(PKB1*ei) 
if(e.gt.ei.and.e.gt.ekp)perm=PKA2*EXP(PKB2*ei) 
RETURN 
END 

C*********************************************************** 
SUBROUTINE SMASS(X) 

C*********************************************************** 
C COMPUTES THE MASS IN THE DOMAIN 
C [THE CALCULATION IS REALLY THE VOLUME OCCUPIED BY"SOLIDS, 
C TO OBTAIN THE MASS MULTIPLY BY THE MASS DENSITY OF SOLIDS] 
c 

c 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON/DOMN/ DIST(100),EET(100) 1 UST(100) 
COMMON/PORI DT 1 DZ,AREA,DVIS,K1 EE(100),S0,TIM,TEMP 

1 ,EI,PAPP,RM,DL,NFIL,NSOL,FACT,EYLD 

X=O.O 
DO 10 J=1,K 
DZZ=DIST(J+1)-DIST(J) 
E5=(EE(J+1)+EE(J))*0.5· 

10 X=X+DZZ*(1.-E5)*AREA 
RETURN 
END 

r. 

.C********************************************************************* 
SUBROUTINE THOMAS (IL,IU) 

C******************************************************************** 
C THOMAS SOLVES A TRIDIAGONAL SYSTEM OF EQUATIONS BY ELIMINATION 
C IL=SUBSCRIPT OF FIRST EQUATION 
C IU=SUBSCRIPT OF LAST EQUATION 
C BB=COEFFICIENT BEHIND DIAGONAL 
C DD=COEFFICIENT ON DIAGONAL 
C AA=COEFFICIENT AHEAD OF DIAGONAL 
C CC=ELEMENT OF CONSTANT VECTOR 

c 

IMPLICIT DOUBLE PRECISION (A-H 1 0-Z) 
COMMON/PRIM/ U(100),US(100) 1 P(100) 1 SIGMA(100), 

1 AA(100),BB(100) 1 CC(100),DD(100) 

C ESTABLISH UPPER TRIANGULAR MATRIX 
c 

LP=IL+1 
DO 10 I=LP I IU 
R=BB(I )/DD( I-1) 
DD(I)=DD(I)-R*AA(I-1) 

10 CC(I)=CC(I)-R*CC(I-1) 
c 
C BACK SUBSTITUTION 
c 

CC(IU)=CC(IU)/DD(IU) 
DO 20 I=LP I IU 

J=IU-I+Il 
20 CC(J)=(CC(J)-AA(J)*CC(J+1))/DD(J) c . 
C SOLUTION STORED IN CC 
c 

RETURN 
END 
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DL AREA TEMP EI PAPP A TIML SYLD 
3.925 26.325 24.0' 0.9465 117.60 1.0E-4 1525. 1. 7E5 

AVA AVB PKA1 PKB1 EL FACT THETA PKB2 
2.04E-13 28.9 2.70E-16 20.0 0.84 1.0 0.0 24. 

INPOR NVOL NETERM K NPR NITL NFIL NKC 
0 0 1 079 95500 1001100 0 0 

I PLOT NSOL lOT IETERM 
1 0 0 1 

IDIAG(1) IDIAG(2) IDIAG(3) IDIAG(4) IDIAG(5) IDIAG(6) IDIAG(7) IDIAG(8) 
1 0 0 0 0 0 0 0 

INITPOR 
.025 .725 
.07500 • 75900 
.12500 .78550 
.17500 .81820 
.22500 .84470 
.27500 .86430 
.32500 .87380 
.37500 .8n4o 
.42500 .88000 
.47500 .88150 
.52500 .88150 
.57500 .88150 
.62500 .88150 
.67500 .88150 
.72500 .88150 
.n5oo .88150 
.82500 .88150 
.87500 .88150 
.92500 .88150 
.97500 .88150 

1.02500 .88150 
1.07500 .88150 
1.12500 .88150 
1.17500 .88150 
1.22500 .88150 
1.27500 .88150 
1.32500 .88150 
1.37500 .88150 
1.42500 .88150 
1.47500 .88150 
1.52500 .88150 
1.57500 .88150 
1.62500 .88150 
1.67500 .88150 
1. 72500 .88150 
1.n5oo .88150 
1.82500 .88150 
1.87500 .88150 
1.92500 .88150 
1.97500 .88150 
2.02500 .88150 
2.07500 .88150 
2.12500 .88150 
2.17500 .88150 
2.22500 .88150 
2.27500 .88150 
2.32500 .88150 
2.37500 .88150 
2.42500 .88150 
2.47500 .88150 
2.52500 .88150 
2.57500 .88150 
2.62500 .88150 
2.67500 .88150 
2.72500 .88150 
2.n5oo .88150 
2.82500 .88150 
2.87500 .88150 
2.92500 .88150 
2.97500 .88150 
3.02500 .88150 
3.07500 .88150 



3.12500 
3.17500 
'3.22500 
3.27500 
3.32500 
3.37500 
3.42500 
3.47500 
3.52500 
3.57500 
3.62500 
3.67500 
3.72500 
3.77500 
3.82500 
3.87500 
3.92500 

ETERM 

.88150 

.88150 

.88150 

.88150 

.88150 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.00 
1.00 
1.00 
1.00 
1.00 

TIME 
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FORTRAN CODE TO SORT POROSITY DATA (DATA-EE.FOR) 

C 'DATA-EE.FOR 
C SORTS POROSITY DATA FROM 11DATA.EE3 11 TO * .DT 

DIMENSION EE(40,40) 
CHARACTER*20 FN 
OPEN(1,FILE='1.DT' ,STATUS='NEW') 
OPEN(2,FILE='2.DT' ,STATUS='NEW') 
OPEN(3,FILE='3.DT' ,STATUS='NEW') 
OPEN(4,FILE='4.DT',STATUS='NEW') 
OPEN(S,FILE='S.DT',STATUS='NEW') 
OPEN(6,FILE='6.DT' ,STATUS='NEW') 
OPEN(7,FILE='7.DT',STATUS='NEW') 
OPEN(8,FILE='8.DT' ,STATUS='NEW') 
OPEN(9,FILE='9.DT' (STATUS='NEW') 
OPEN(10,FILE= 1 10.DT' ,STATUS='NEW') 
OPEN(11,FILE='11.DT',STATUS='NEW') 
OPEN(12,FILE='12.DT'~STATUS='NEW') 
OPEN(13,FILE='13.DT' ,STATUS='NEW') 
OPEN(14,FILE='14.DT' ,STATUS='NEW') 
OPEN(15,FILE='15.DT',STATUS='NEW') 
OPEN(16,FILE='16.DT' ,STATUS='NEW') 
OPEN(17,FILE='17.DT',STATUS='NEW') 
OPEN(18,FILE='18.DT',STATUS='NEW') 
OPEN(19,FILE='19.DT' ,STATUS='NEW') 
OPEN(20,FILE='20.DT' ,STATUS='NEW') 
OPEN(21,FILE='21.DT',STATUS='NEW') 
OPEN(22,FILE='22.DT',STATUS='NEW') 
OPEN(23,FILE='23.DT' ,STATUS='NEW') 
OPEN(24,FILE='24.DT',STATUS='NEW') 
OPEN(25,FILE='25.DT',STATUS='NEW') 
OPEN(26,FILE='26.DT' ,STATUS='NEW') 
OPEN(27,FILE:'27.DT',STATUS='NEW') 
OPEN(28,FILE='28.DT',STATUS='NEW') 
OPEN(29,FILE='29.DT' ,STATUS='NEW') 
OPEN(30,FILE='30.DT' ,STATUS='NEW') 
open(31,file='data.ee3') 
DO 200 J=1,40 
read(31,201)(ee(j,i),i=1,40) 

200 CONTINUE 
201 FORHAT(1X,20F6.4) 

DZ=O.S 
DO 100 IWR=1,22 
DO 100 J=1,39 
Z=(REAL(J)*DZ)-0,25 
Z1=Z/10. 
X=2.616*(1.0-EE(J,IWR)) 
IF(EE(J,IWR).EQ.O.O)GO TO 100 
if(x.eq.O.O)go to 100 
if(x.lt.0.1)go to 100 

.202 FORHAT(1X,F10.5,4X,F10.5) 
WRITE(IWR,202)Z,X 

100 CONTINUE 
c 

STOP 
END 
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FORTRAN CODE TO CALCULATE SOLID VELOCITY FROM THE POROSITY DATA SET (SOLVEL.FOR) 

c 

·C 

c 

c 

program solvel 

parameter(m=40,m1=m-1) 

real zero,half,one, 
1 dt,dz,ee1t,ee1,ee2, 
1 ee(m,m),vs(m,m) 

data zero,half,one/0.0,0.5,1.0/ 

dt=60. 
dz=O.S 
do 10 n=1,40 

10 vs(1,n)=zero 
c 

c 

open(10,file='data.ee3' ,status='old') 
open(11,file='so{vel.out', status='new') 

c READ IN POROSITY DATA: 
c 

do 100 i=1,m 
100 read(10,'((1X,20f6.4))',end=101) (ee(i,n),n=1,m) 
101 continue 

close (10,status='keep') 
c 
c COMPUTE SOLID VELOCITY: 

I 

c Note: The i in the vs terms in this code is actually i+1 
c (in the gravcu11 code), and the i-1 in this code is i 

do n=1 ,m1 
do 301 i=2,m1 

ee1t=(ee(i-1,n+1)+ee(i,n+1))*half 
ee1 =(ee(i,n)+ee(i+1,n))*half 
if (ee1.eq.one) ee1=.99 

ee2 =(ee(i-1,n)+ee(i,n))*half 
. VS( i ,n)= 
(((ee(i,n+1)-ee(i,n))/dt)*dz+(one-ee2)*vs(i-1,n))/(one-ee1) 

301 continue 
end do 

c 
c WRITE OUT SOLID ·vELOCITY DATA: 
c 

do i=1,m1 
write(11,3000) (vs(i,n),n=1,m1) 

end do 
3000 format((1X,20e12.4)) 

close (11,status='keep') 
c 

stop 
end 
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FORTRAN CODE TO SORT SOLID VELOCITY DATA (DATA-US.FOR) 

C .DATA-US.FOR 
C SORTS SOLID VELOCITY DATA FROM 11 SOLVEL.OUP' TO * .DT 

DIMENSION US(40,40) 
OPEN(1,FILE='1.DT 1 ,STATUS='NEW') 
OPEN(2,FILE='2.DT',STATUS='NEW') 
OPEN(3,FILE='3.DT',STATUS='NEW') 
OPEN(4,FILE='4.DT' ,STATUS='NEW') 
OPEN(S,FILE='S.DT',STATUS='NEW') 
OPEN(6,FILE='6.DT',STATUS='NEW') 
OPEN(7,FILE='7.DT' ,STATUS='NEW') 
OPEN(8,FILE='8.DT',STATUS='NEW') 
OPEN(9,FILE='9.DT',STATUS='NEW') 
OPEN(10,FILE='10.DT' ,STATUS='NEW') 
OPENC11,FILE='11.DT',STATUS='NEW') 
OPEN(12,FILE='12.DT',STATUS='NEW') 
OPEN(13,FILE='13.DT'~STATUS='NEW') 
OPEN(14,FILE='14.DT 1 ,STATUS='NEW') 
OPEN(15,FILE='15.DT' ,STATUS='NEW') 
OPEN(16,FILE='16.DT',STATUS='NEW') 
OPENC17,FILE='17.DT',STATUS='NEW') 
OPEN(18,FILE='18.DT',STATUS='NEW') 
OPEN(19,FILE='19.DT',STATUS='NEW') 
OPEN(20,FILE='20.DT',STATUS='NEW') 
OPEN(21,FILE='21.DT' ,STATUS='NEW') 
OPEN(22,FILE='22.DT',STATUS='NEW') 
OPENC23,FILE='23.DT',STATUS='NEW') 
OPEN(24,FILE='24.DT',STATUS='NEW') 
OPEN(25,FILE='25.DT' ,STATUS='NEW') 
OPEN(26,FILE='26.DT' ,STATUS='NEW') 
OPENC27,FILE='27.DT' ,STATUS='NEW') 
OPEN(28,FILE='28.DT',STATUS='NEW') 
OPEN(29,FILE='29.DT',STATUS= 1 NEW') 
OPEN(30,FILE='30.DT',STATUS='NEW') 
open(31,file='solvel.out') 
DO 200 i=1,39 
read(31,201)(us(i,n),n=1,39) 

200 CONTINUE 
201 FORMAT((1X,20e12.4)) 

DZ=O.S 
DO 100 IWR=1,30 
DO 100 1=1,39 
Z=(REAL(I)*OZ)-0.25 
X=US(I,IWR) 
if(x.eq.O.O)x=1.E-6 

202 FORMAT(1X,E12.4,4X,F10.5) 
WRITE(IWR,202)abs(X),Z 

100 CONTINUE 
STOP 
END 
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FORTRAN CODE TO SORT POROSITY puTPUT FROM MODEL (MODEL•EE.FOR) 

·C 

900 

25 

200 

26 

100 
c 
250 

500 

CHARACTER*20 FN 
OPEN(1,FILE='1.MD',STATUS='NE~') 
OPEN(2,FILE='2.MD';STATUS='NEW') 
OPEN(3,FILE='3.MD' ,STATUS='NE~') 
OPEN(4,FILE='4.MD' ,STATUS='NE~') 
OPEN(5,FILE='5.MD' ,STATUS='NE~') 
OPEN(6,FILE='6.MD' ,STATUS='NE~') 
OPEN(7,FILE='7.MD',STATUS='NE~') 
OPEN(8,FILE='8.MD',STATUS='NE~') 
OPEN(9,FILE='9.MD' ,STATUS='NEY') 
OPEN(10,FILE='10.MD' ,STATUS='NEY') 
OPEN(11,FILE='11.MD' ,STATUS='NE~') 
OPEN(12,FILE='12.MD' ,STATUS='NEY') 
OPEN(13,FILE='13.MD',STATUS='NE~') 
OPEN(14,FILE='14.MD' ,STATUS='NE~') 
OPEN(15,FILE='15.MD' ,STATUS='NE~') 
OPEN(16,FILE='16.MD' ,STATUS='NE~') 
OPENC17,FILE='17.MD' ,STATUS='NE~') 
OPEN(18,FILE='18.MD' ,STATUS='NEY') 
OPENC19,FILE='19.MD' ,STATUS='NE~') 
OPEN(20,FILE='20.MD' ,STATUS='NEY') 
OPEN(21,FILE='21.MD' ,STATUS='NE~') 
OPEN(22,FILE= 1 22.MD' ,STATUS='NE~') 
OPEN(23,FILE='23.MD' ,STATUS='NE~') 
OPEN(24,FILE='24.MD',STATUS='NE~') 
OPENC25,FILE='25.MD' ,STATUS='NE~') 
OPEN(26,FILE='26.MD' ,STATUS='NEY') 
OPEN(27,FILE='27.MQ' ,STATUS='NEY') 
OPEN(28,FILE='28.MD' ,STATUS='NE~') 
OPEN(29,FILE='29.MD' ,STATUS='NE~') 
OPEN(30,FILE='30.MD'~STATUS='NEY') 
OPEN(31,FILE='CKFYGOUT.2' ,STATUS='OLD') 
read(31,900) 
format(1x) 
IYR=1 
DO 100 1=1,6000 
IF(I.EQ.1)GO TO 25 
ZZ=Z 
READ(31,200,END=250)Z,X 
Z=Z*10. 
X;:2.616*(1.0-X) 
FORMAT(1X,F12.7,4X,E10.4) 
IF(I.EQ.1)GO TO 26 
IF(Z.LT.ZZ)I~R=I~R+1 
if(x.eq.O.O)go to 100 
IF(Z.GT.40.0)GO TO 100 
~RITE(IYR,200)Z,X 
CONTINUE 

CONTINUE 
x=1.0 
z=O.O 
do 500 i=iwr+1,30 
write(i,200)z,x 
continue 
STOP 
END 

r 
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FORTRAN COOE TO SORT SOLID VELOCITY OUTPUT FROM MOOEL tMODEL-US.FOR) 

900 

25 

200 

26 

100 
.C 
250 

500 

OPEN(1,FILE='1.MD',STATUS='NEY') 
OPEN(2,FILE='2.MD' ,STATUS='NEY') 
OPEN(3,FILE='3.MD',STATUS='NEY') 
OPEN(4,FILE='4.MD' ,STATUS='NEY') 
OPEN(5,FILE='5.MD',STATUS='NEY') 
OPEN(6,FILE='6.MD' ,STATUS='NEY') 
OPEN(7,FILE='7.MD',STATUS='NEY') 
OPEN(8,FILE='8.MD',STATUS='NEY') 
OPEN(9,FILE='9.MD' ,STATUS='NEY') 
OPEN(10,FILE= 1 10.MD' ,STATUS='NEY') 
OPEN(11,FILE='11.MD' ,STATUS='NEY') 
OPEN(12,FILE='12.MD' ,STATUS='NEY') 
OPEN(13,FILE='13.MD',STATUS='NEW') 
OPEN(14,FILE='14.MD' ,STATUS='NEY') 
OPEN(15, FI LE='15 .MD'·, STATUS='NEY') 
OPEN(16,FILE='16.MD',STATUS='NEY') 
OPEN(17,FILE='17.MD',STATUS='NEY') 
OPEN(18,FILE='18.MD' ,STATUS='NEY') 
OPEN(19,FILE= 1 19.MD' ,STATUS='NEW') 
OPEN(20,FILE='20.MD' ,STATUS='NEW') 
OPEN(21,FILE='21.MD' ,STATUS='NEW') 
OPEN(22,FILE= 1 22.MD',STATUS='NEW') 
OPEN(23,FILE='23.MD',STATUS='NEW') 
OPEN(24,FILE='24.MD' ,STATUS='NEW') 
OPEN(25,FILE= 1 25.MD' ,STATUS='NEW') 
OPEN(26,FILE='26.MD' ,STATUS='NEW') 
OPEN(27,FILE='27.MD' ,STATUS='NEY') 
OPEN(28,FILE='28.MD' ,STATUS='NEY') 
OPENC29,FILE='29.MD' ,STATUS='NEY') 
OPEN(30,FILE='30.MD' ,STATUS='NEY') 
OPEN(31,FILE='CKFYGOUT.8' ,STATUS='OLD') 
read(31,900) 
format(1x) 
IWR=1 
DO 100 1=1,6000 
IF(I.EQ.1)GO TO 25 
ZZ=Z 
READ(31,200,END=250)Z,X 
Z=Z*10. 
x=10.*abs(x) 
if{x.eq.O.O)x=1.e-6 
FORMAT(1X,E10.4,4X,F12.7) 
IF(I.EQ.1)GO TO 2& 
IF(Z.LT.ZZ)IWR=IYR+1 
IF(Z.GT.40.0)GO TO 100 
YRITE(IWR,200)X,l 
CONTINUE 

CONTINUE 
do 500 i=iwr+1,30 
write(i,200)x,z 
continue 
STOP 
END 

r 
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FORTRAN CODE TO COMPARE MODEl-DATA POROSITIES AND GIV8 STATISTICS (STAT-EE.FOR) 

c 
c 

c 

c 

STAT-EE. FOR 
STATISTICS COMPARING. POROSITY DATA TO MODEL PRED. 
DIMENSION CONC(150),0DIST(150) 
DIMENSION PDIST(150),PCONC(150),DCONC(150),X(1000) 
OPEN(65,FILE='stat.out' ,STATUS='new') 
L=1 
SUMM=O.O 
SUMR=O.O 
do 6000 iwr=1,22 

IF (IWR.EQ.1)0PEN(1,FILE='1.DT') 
IF (IWR.EQ.2)0PEN(2,FILE='2.DT'-) 
IF (IWR.EQ.3)0PEN(3,FILE='3.DT 1 ) 

IF (IWR.EQ.4)0PEN(4,FILE='4.DT') 
IF (IWR.EQ.5)0PEN(5,FILE='5.DT') 
IF (IWR.EQ.6)0PEN(6,FILE='6.DT') 
IF (IWR.EQ.710PEN(7,FILE='7.DT') 
IF (IWR.EQ.8)0PEN(8,FILE='8.DT') 
IF (IWR.EQ.9)0PEN(9,FILE= 1 9.DT') 
IF (IWR.EQ.10)0PEN(10,FILE='10.DT') 
IF (IWR.EQ.11)0PEN(11,FILE='11.DT') 
IF (IWR.EQ.12)0PEN(12,FILE='12.DT') 
IF (IWR.EQ.13)0PEN(13,FILE='13.DT') 
IF (IWR.EQ.14)0PEN(14,FILE='14.DT') 
IF (IWR.EQ.15)0PEN(15,FILE='15.DT') 
IF (IWR.EQ.16)0PEN(16,FILE='16.DT') 
IF (IWR.EQ.17)0PENC17,FILE='17.DT') 
IF (IWR.EQ.18)0PEN(18,FILE='18.DT') 
IF CIWR.EQ.19)0PEN(19,FILE='19.DT') 
IF (IWR.EQ.20)0PEN(20,FILE='20.DT') 
IF (IWR.EQ.21)0PEN(21,FILE= 1 21.DT 1 ) 

IF (IWR.EQ.22)0PEN(22,FILE='22.DT') 
IF (IWR.EQ.23)0PEN(23,FILE='23.DT 1 ) 

IF (IWR.EQ.24)0PEN(24,FILE='24.DT') 
IF (IWR.EQ.25)0PEN(25,FILE='25.DT') 
IF (IWR.EQ.26)0PEN(26,FILE='26.DT') 
IF (IWR.EQ.27)0PEN(27,FILE='27.DT') 
IF (IWR.EQ.28)0PEN(28,FILE='28.DT') 
IF (IWR.EQ.29)0PEN(29,FILE='29.DT') 
IF (IWR.EQ.30)0PEN(30,FILE='30.DT') 

IF (IWR.EQ.1)0PEN(31,FILE= 1 1.MD') 
IF (IWR.EQ.2)0PEN(32,FILE= 1 2.MD') 
IF (IWR.EQ.3)0PE~33,FILE='3.MD') 
IF (IWR.EQ.4)0PEN(34,FILE='4.MD') 
IF (IWR.EQ.5)0PEN(35,FILE= 1 5.MD 1 ) 

IF (IWR.EQ.6)0PEN(36,FILE='6.MD') 
IF (IWR.EQ.7)0PEN(37,FILE='7.MD') 
IF (IWR.EQ.8)0PEN(38, FILE=-'8.MD') 
IF (IWR.EQ.9)0PEN(39,FILE='9.MD') 
IF (IWR.EQ.10)0PEN(40,FILE='10.MD') 
IF (IWR.EQ.11)0PEN(41,FILE='11.MD') 
IF (IWR.EQ.12)0PEN(42,FILE='12.MD') 
IF (IWR.EQ.13)0PEN(43,FILE= 1 13.MD') 
IF (IWR.EQ.14)0PEN(44,FILE='14.MD') 
IF (IWR.EQ.15)0PEN(45,FILE='15.MD') 
IF (IWR.EQ.16)0PEN(46,FILE='16.MD') 
IF (IWR.EQ.17)0PEN(47,FILE='17.MD') 
IF (IWR.EQ.18)0PEN(48,FILE='18.MD') 
IF (IWR.EQ.19)0PEN(49,FILE='19.MD') 
IF (IWR.EQ.20)0PEN(50,FILE='20.MD') 
IF (IWR.EQ.21)0PEN(51,FILE='21.MD') 
IF (IWR.EQ.22)0PEN(52,FILE='22.MD') 
IF (IWR.EQ.23)0PEN(53,FILE='23.MD') 
IF (IWR.EQ.24)0PEN(5~,FILE='24.MD') 
IF (IWR.EQ.25)0PEN(55,FILE= 1 25.MD') 
IF (IWR.EQ.26)0PEN(56,FILE='26.MD') 
IF (IWR.EQ.27)0PEN(57,FILE='27.MD') 
IF (IWR.EQ.28)0PEN(58,FILE='28.MD') 
IF (IWR.EQ.29)0PEN(59,FILE='29.MD') 
IF (IWR.EQ.30)0PEN(60,FILE='30.MD') 

r 
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2000 
2001 
3000 

·C 

2500 
2501 
2700 
c 

c 

5 

9998 

J\.JR=I\.JR+30 
NMOO=O 
DO 2000 J=1,100 

READ(J\.JR,3000,END=2001)PDIST(J),PCONC(j) 
NMOD=NMOD+1 

CONTINUE 
CONTINUE 

FORMAT(1X,F12.7,4X,E10.4) 

IF(L.EQ.O)CI=PCONC(NMOD) 
NDAT=O 

DO 2500 I=1,100 
REAO(IWR,2700,END=2501)DOIST(I),DCONC(I) 
NDAT=NDAT+1 

CONTINUE 
CONTINUE 
FORMAT(1X,F10.5,4X,Fl0.5) 

N=NDAT 
K=2 

DO 4000 J=1,N 
CONTINUE 
IF (DDIST(J).GT.PDIST(K)) THEN 

K=K+1 
IF (K .GT. NMOD)GO TO 4010 
GO TO 5 

ENDIF 
\.JRITE(65,9998)L,J,K,DDIST(J),PDIST(K) 
FORMAT(1X,3(1X,I3),2(1X,F8.4)) 

IF(DDIST(Jj.EQ.PDIST(K)) THEN 
CONC(J)=PCONC(K) 
GO TO 19 

END IF 
Z=DDIST(J) 
ZLOW=PD I ST(K -1) 
ZHI=PDIST(K) 
CLO\.J=PCONC(K-1) 
CHI=PCONC(K) 
CONC(J)=CLO\.J+((CHI-CLOW)*(Z-ZLOW))/(ZHI-ZLOW) 
IF (CONC(J).EQ.CI)GOTO 4010 

C L: # OF COMPARISONS X: ERROR 
IF(DCONC(J).EQ.O.O.OR.CONC(J).EQ.O.O)GO TO 4000 

19 X(L)=(DCONC(J)-CON,(J)) 
SUMM=SUMM+X(L) 

:{ 

SUMR=SUMR+(X(L))**2 
\.JRITE(65,9999)L,J,K,DCONC(J),CONC(J),X(L),SUMM,SUMR 

9999 FORMAT(1X,3(1X,I3),5(1X,F8.4)) 
L=L+1 

4000 CONTINUE 
4010 CONTINUE 

CLOSE(IWR) 
CLOSE(J\.JR) 

6000 CONTINUE 
NOBS=L 
XMEAN=SUMM/NOBS 
RMS=(SUMR/NOBS)**0.5 
IF(NOBS.LT.50)STO=((SUMR-SUMM**2/NOBS)/(NOBS-1))**0.5 
IF(NOBS.GE.50)STD=((SUMR/NOBS)-XMEAN**2)**.5 

c K=25 
\.JRITE(65,5500)L,XMEAN,RMS,STD 

5500 FORMAT( 1X,.I5 ,3( 1X, F10 .6)) 
close(uni t=65) 
STOP 
END 
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FORTRAN CODE TO COMPARE MODEL-DATA SOLID VELOCITIES AND GIVE STATISTICS (STAT-US.FOR) 

c • STAT-US.FOR 
c STATISTICS COMPARING' SOLID VEL. DATA TO MODEL PRED. 

c 

c 

DIMENSION VS(150),DDIST(150) 
DIMENSION PDIST(150),PVS(150),DVS(150),X(1000) 
OPEN(65,FILE='stat.out' ,STATUS='new') 
SUMM=O.O 
SUMR=O.O 
L=1 
do 6000 iwr=1,21 
IF (IWR.EQ.1)0PEN(1,FILE='1.DT') 
IF (IWR.EQ.2)0PEN(2,FILE='2.DT') 
IF (IWR.EQ.3)0PEN(3,FILE='3.DT') 
IF (IWR.EQ.4)0PEN(4,FILE='4.DT') 
IF (IWR.EQ.S)OPEN(S,FILE='S.DT') 
IF (IWR.EQ.6)0PENC6,FILE='6.DT') 
IF (IWR.EQ.7)0PEN(7,FILE='7.DT') 
IF (IWR.EQ.8)0PEN(8,FILE='8.DT') 
IF (IWR.EQ.9)0PEN(9,FILE='9.DT') 
IF (IWR.EQ.10)0PEN(10,FILE='10.DT') 
IF (IWR.EQ.11)0PEN(11,FILE='11.DT') 
IF (IWR.EQ.12)0PEN(12,FILE='12.DT') 
IF (IWR.EQ.13)0PEN(13,FILE='13.DT') 
IF (IWR.EQ.14)0PEN(14,FILE='14.DT') I 

IF (IWR.EQ.15)0PEN(15,FILE='15.DT') 
IF (IWR.EQ.16)0PEN(16,FILE='16.DT') 
IF (IWR.EQ.17)0PEN(17,FILE='17.DT') 
IF (IWR.EQ.18)0PEN(18,FILE='18.DT') 
IF (IWR.EQ.19)0PENC19,FILE='19.DT') 
IF (IWR.EQ.20)0PEN(20,FILE='20.DT') 
IF (IWR.EQ.21)0PEN(21,FILE='21.DT') 
IF (IWR.EQ.22)0PEN(22,FILE='22.DT') 
IF (1WR.EQ.23)0PEN(23,FILE='23.DT') 
IF (IWR.EQ.24)0PEN(24,FILE='24.DT') 
IF (IUR.EQ.25)0PEN(25,FILE='25.DT') 
IF (IUR.EQ.26)0PEN(26,FILE='26.DT') 
IF (IWR.EQ.27)0PEN(27,FILE='27.DT') 
IF (IWR.EQ.28)0PEN(28,FILE='28.DT') 
IF (IWR.EQ.29)0PEN(29,FILE='29.DT') 
IF (IWR.EQ.30)0PEN(30,FILE='30.DT') 

IF (IWR.EQ~1)0PEN(31,FILE='1.MD') 
IF.(IWR.EQ.2)0PEN(32,FILE='2.MD') 
IF (IWR.EQ.3)0PEN(J3,FILE='3.MD') 
IF (IWR.EQ.4)0PEN(34,FILE='4.MD') 
IF (IWR.EQ.S)OPEN(35,FILE='5.MD') 
IF (IWR.EQ.6)0PEN(36,FILE='6.MD') 
IF (IWR.EQ.7)0PEN(37,FILE='7.MD') 
IF (IWR.EQ.810PEN(38,FILE='8.MD') 
IF (IUR.EQ.9)0PEN(39,FILE='9.MD') 
IF (IWR.EQ.10)0PEN(40,FILE='10.MD') 
IF (IWR.EQ.11)0PEN(41,FILE='11.MD') 
IF (1WR.EQ.12)0PEN(42,FILE='12.MD') 
IF (1WR.EQ.13)0PEN(43,FILE='13.MD') 
IF (IWR.EQ.14)0PEN(44,FILE='14.MD') 
IF (IWR.EQ.15)0PEN(45,FILE='15.MD') 
IF (IWR.EQ.16)0PEN(46,FILE='16.MD') 
IF (IWR.EQ.17)0PENC47,FILE='17.MD') 
IF (IWR.EQ.18)0PEN(48,FILE='18.MD') 
IF (1WR.EQ.19)0PEN(49,FILE='19.MD') 
IF (IWR.EQ.20)0PEN(50,FILE='20.MD') 
IF (IWR.EQ.21)0PEN(51,FILE='21.MD') 
IF (IWR.EQ.22)0PEN(52,FILE='22.MD') 
IF (IWR.EQ.23)0PEN(53,FILE='23.MD') 
IF (IWR.EQ.24)0PEN(54,FILE='24.MD') 
IF (IWR.EQ.25)0PEN(5S,FILE='25.MD') 
IF (1WR.EQ.26)0PEN(56,FILE='26.MD') 
IF (IWR.EQ.27)0PEN(57,FILE='27.MD') 
IF (1WR.EQ.28)0PEN(58,FILE='28.MD') 
IF (IWR.EQ.29)0PEN(59,FILE='29.MD') 
IF (1WR.EQ.30)0PEN(60,FILE='30.MD') 
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JWR=I\lR+30 
NMOO=O 
DO 2000 J=1,100 

READ(JWR,3000,END=2001)PVS(J),PDIST(J). 
NMOO=NM00+1 

2000 CONTINUE 
2001 CONTINUE 
3000 FORMAT(1X,E10.4,4X,F12.7) 
c 

IF(l.EQ.O)VSI=PVS(NMOO) 
NDAT=O 

DO 2500 1=1, 100 
READ(IWR,2700,END=2501)DVS(I),DDIST(I) 
NDAT=NDAT+1 

2500 CONTINUE 
2501 CONTINUE 
2700 FORMAT(1X,E12.4,4X,F)0.5) 
c 

c 

5 

9998 
c 

N=19 
K=2 

DO 4000 J=1,N 
CONTINUE 
IF (DDIST(J).GT.PDIST(K)) THEN 

K=K+1 
IF (K .GT. NMOD)GO TO 4010 
GO TO 5 

END IF 
WRITE(65,9998)L,J,K,DDIST(J),PDIST(K) 
FORMAT(1X,3(1X,I3),2(1X,F8.4)) 

IF(DDIST(J1.EQ.PDIST(K)) THEN 
VS(J)=PVS(K) 
GO TO 19 

ENDIF 
Z=DDIST(J) 
ZLOW=PD I ST( K -1 ) 
ZHI=PDIST(K) 
VSLOW=PVS(K-1) 
VSHI=PVS(K) 
VS(J)=VSLOW+((VSHI-VSLOW)*(Z-ZLOW))/(ZHI-ZLOW) 
IF (VS(J).EQ.VSI)GOTO 4010 

C l: # OF COMPARISONS X: ERROR 
IF(DVS(J).EQ.1.0.0R.VS(J).EQ.1.0)GO TO 4000 

19 X(l)=(DVS(J)-VS(J~) 
SUMM=SUMM+X(l) 
SUMR=SUMR+(X(l))**2 
WRITE(65,9999)l,J,K,DVS(J),VS(J),X(L),SUMM,SUMR 

9999 FORMAT(1X,3(1X,I3),5(1X,E12.4)) 
L=L+1 

·4000 CONTINUE 
4010 CONTINUE 

CLOSE(IWR) 
CLOSE(JWR) 

6000 CONTINUE 
NOBS=L 
XMEAN=SUMM/NOBS 
RMS=(SUMR/NOBS)**O.S 
IF(NOBS.LT.50)STO=((SUMR-SUMM**2/NOBS)/(NOBS-1))**0.5 
1F(NOBS.GE.50)STO=((SUMR/NOBS)-XMEAN**2)**.5 

WRITE(65,5500)l,XMEAN,RMS,STD 
5500 FORMAT(1X,I5,3(1X,F10.6)) 

close(uni t=65) 
STOP . 
END 
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