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A large fraction of the current cost of wastewater treatment is from the treatment and disposal
of wastewater sludge. Improved design, energy efficiency, and performance of dewatering facilities

could significantly decrease transport and disposal costs.

Dewatering facilities are designed based on ﬁc;,ld experience, trial and error, pilot plant testing,
and/or full scale testing. Design is generally time-consuming and expensive. A full-scale test typically
consists of side-by-side operation of 4 to 5 full-scale dewatering units for several weeks to more than 6
months. Theoretical modeling of the physics of dewatering units such as the belt filter press, based on
laboratory determined sludge'plroperties, would better predict dewatering performance.

This research developed a numerical computer model of the physics of gravity sedimentation.

The model simulated the gravity sedimentation portion of the belt filter press. The model was



developed from a physically-based numerical computer model of cake filtration by Wells (1990).

As opposed to the cake filtration model, the inertial and gravity terms were retained in the
gravity sedimentation model. Although in the cake filtration model, the inertial terms were shown to'
be negligible, according to Dixon, Souter, and Buchanan (1985), inertial effects in gravity
sedimentation cannot generally be ignored. The region where'inertia is important is the narrow
interface between suspension and sediment. In the cake filtration model the gravity term was negligible
due to the relatively large magnitude of the applied pressure; but in the gravity sedimentation model,
since there was no applied pressure, it was necessary to consider the effect of gravity.

Two final governing equations were developed - solid continuity and total momentum with
continuity ("momentum®). - The finite difference equations used a "space-staggered” mesh. The solid
continuity equgtion was solved using an explicit formulation, with a forward difference in time and
central difference in space. The "momentum"” equation used a fully implicit formulation with a forward
difference in time. The modeler could choose either a central difference or forward difference in
space. Non-linear terms were linearized. Boundary conditions and constitutive relationships were
determined. Numerical errors in the numeriéal model were analyzed.

The model was calibrated to known data and verified with additional data. The model was
extremely sensitive to the constitutive relationships used, but relatively unaffected by the At or the use
of central difference or forward difference for the spatial derivative term in the "momentum"” equation.
Correlations of the calibrated model to data with a low initial concentration show that the constitutive

. parameters approximate the data, but not very well. Model runs with low initial concentration required
the addition of artificial viscosity to remain stable.

The gravity term was always significant, whereas the inertial terms were many orders of
magnitude less than gravity. However, the lower the initial concentration, the larger the inertial terms.

In addition to .the belt filter press, the model can also be applied to cake filtration and design

of gravity sedimentation tanks as well.
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CHAPTER 1
INTRODUCTION . -
BACKGROUND

Production of sewage sludge, the residual from municipal wastewater treatment plants, has
increased two-fold over the past 20 years in the United‘ States (Morse, 1989). The current annual sludge
productioh is over 8 million dry tons (EPA, 1990, as cited by Ravenscroft, 1992). Wastewater
treatment costs are currently increasing, with sludge treatment and disposal representing a large fraction
of the overall treatment cost. Since sludges typically consist of approximately 95% water (Villiers and
Farrell, 1977), costs are signihcantly decreased by dewatering. Dewatering effectively minimizes the
‘volume and mass of the sludge. Resultant transportation cost savings can be dramatic, as noted in
Villiers and Farrell’s (1977) example of a 50% decrease in cost resulting from increasing the sludge
solids content from 20% to 30%.

Sludge disposal, which is regulated by a combination of state agencies and the Environméntal
Protection Agency (EPA), primarily consists of landfilling (64%), incineration (14%), land application
(9%), distribution and ;narketing (6%), and ocean dumping (5%) - (EPA, 1990, as cited by
Ravenscroft, 1992). The Federal Ocean Dumping Ban Act of 1988 prohibited ocean dumping of
sludge; In January 1992, New York City became the last major city to halt its ocean dumping
practices (Ravenscroft, 1992).

Landfilling of wet sludge, which may result in leachate problems, are discouraged or banned.
Greater amounts of landfill sp.ace are required-for wetter sludges, due to its increased volume. With
.landfill siting tending to be furtiler from the population centers (due to the Not-in-my-Backyard, or

NIMBY, syndrome) and with new environmental regulations for landfill construction and closure,



transportation and disposal costs for landfilling are rising.

Incineration is not possible if the sludge is too wet for combustion. Land application of
extremely wet sludge cakes has more probability of odors, insects, or liquid runoff (Smith et al, 1989),
and greatly increases the required land area (Villiers and Farrell, 1977). And composting of sludge
with wet cakes is far less economical due to the costs of mamtzunmg a specific moisture and
temperature range (Smith and Semon, 1989). According to Smith and Semon (1989), the acceptable
minimum solids content may vary for different means of disposal, i.e, 18% for parrow trench
landfilling, 24% for combustion, and 28-30% for economical operation of an incineration facility. Due

.to economic, social, and environmental pressures regarding sludge disposal, an increased emphasis is
being placed on the need for improved efficiency and performance of the wastewater treatment plant’s
sludge dewatering treatment process.

Development of processes for dewatering of wastewater sludge began toward the end of the
19th and beginning of the 20th century (Dick and Ball, 1980). Equipment for dewatering wastewater
sludge include vacuum filters, filter presses, belt filter presses, gravity filters, and centrifuges. .
Vacuum filtration is intrinsically limited by the available vacuum, and centrifugation has been limited
by practical machine speeds, such that neither can develop sufﬁcient force on the cake to move the free
water from the interior of the cake as it is formed (Villiers and Farrell, 1977). Nevertheless, recent
advances in centrifugation technology have made this process more efficient in sludge dewatering. The
belt filter press squeezes the water out of a sludge layer compressed between two porous woven fiber

.belts, and thus can remove more of the residual water (Villiers and Farrell, 1977).

Belt filter presses, initially designed to dewater paper pulp, were modified in the early 19605
in Germany by Klein to dewater sewage sludge (Villiers and Farrell, 1977). Although the belt filter
press was introduced into the United States by Carter in 1971 (Villiers and Farrell, 1977), the
difference between U.S. and European sludge led to low cake solids and poor solids capture (EPA,
1987). Early belt filter presses demonstrated poor performance and durability, as compared to vacuum

filters and centrifuges, and often required large dosages of conditioning chemicals (EPA, 1986). These



early problems led to American manufacture of the belt filter press. The first American belt filter
presses were based on the design of belt conveyors and were much lighter than their European
counterparts, and thus were p.lagucd with mechanical failures of rollers and bearings (EPA, 1987). By
the late 1970s, American manufacturers made significant improvements, considerably rcduc.i‘ng failures,
‘and leading to an increased popularity of the belt filter press (EPA, 1987),‘4:‘~xFurtherm6re, compared to
other mechanical dewatering equipment, belt filter presses have very low power requirements and are
quite energy conservative (EPA, 1987). Thus, although the belt filter press is a relatively new addition
in the variety of commercially available sludge dewatering equipment, it is now marketed by ten to
fifteen different manufacturers in the U.S. (Searle and Bennett, 1987).

Design of dewatering equipment, such as the belt filter press, is based on field experience,
trial and error, pilot plant testing, and/or full scale testing. Time-consuming and expensive, full-scale
dewatering tests might include four to five side-by-side full-scale dewatering units for time periods
ranging from several weeks to over 6 months (EPA, 1982; as cited in Wells, 1988). -

Use of dewaterability tests in the lab, such as the specific resistance test, have not been able to
predict full-scale equipment p.erformance (EPA, 1987; as cited in Wells, 1988). Although small-scale
-dewatering units may provide more accuracy than the lab tests, obtaining operational data may be
expensive and time-consuming (Wells, 1988).

Better prediction of dewatering performance could be provided by use of theoretical modeling
of the physics of the belt filter press based on laboratory determined sludge properties. Thus, optimal
design and operations of a belt filter press could be determined without the necessity of full-scale
testing. This is in contrast to empirical models of sludge dewatering processes, which are each
applicable only to specific sludges. Because each sludge must be verified independently, a relatively
large experimental effort is required. And since physical properties of sludge change with time, such
empirical data and models derived from them may have limited value.

To date, no numerical studies of dewatering for the belt filter press have been developed which

incorporate all the physical plienomena of the process. An operating belt filter press continuously



4
dewaters sludge (after chemical conditioning) by gravity drainage and mechanically-applied pressure in

both a low pressure "wedge" zone and high pressure "shear" zone, as shown in Figure 1.

Upper belt 2

Polymer
\ , Flocculator
Sludge feed —>"__ﬂ_:\

Qm_. Belt wash

Belt tension
rollers

P
2z Conveyer
&) Alignment roller

L 1
‘l‘l

Filtrate and wash water

Lower belt

Figure 1. Belt filter press schematic diagram (Viessman and Hammer, 1985).

In the gravity drainage zone, approximately one-half or more of the water is removed, and
suspended solids content is doubled (Viessman and Hammer, 1985), or even tripled (EPA, 1986; and
EPA, 1987). Gravity drainage is essential to create a great enough solids concentration for the sludge
to be squeezed between the belts (Task Committee on Belt Filter Presses, 1988). Within the low
pressure "wedge" zone, the sludge is gradually compressed between the upper and lower belts, forming
a firm sludge cake able to withstand the shear forces within the high pressure zone. Within the high
pressure "shear" zone;, the confined sludge layer is subjected to both compression and shearing action
caused by the outer belt being a greater distance from the center of the roller than the inner belt

(Viessman and Hammer, 1985).



PROBLEM DESCRIPTION

This study focuses on the physical modeling of the gravity drainage (or sedimentation) portion
‘of the belt filter press operation. The model was developeci from a physically based numerical
computer model of cake filtration developed by Wells (1990), which solv;d:t non-linear, partial _
differential equation with an explicit finite difference procedure. o

Both the gravity sedimentation and cake filtration models were based on the same governing
equations for two-phase flow: liquid continuity, solid continuity, liquid momentum, apd solid
momentum. Whereas cake filtration may occur due to either a gravity head or applied pressure,
gravity sedimentation is driven only by gravity. Thus, in Wells’ (1990) cake filtration model the
gravity term was negligible due to the relatively large magnituc.;le of the applied pressure, but.in the
gravity sedimentation model, since there was no applied pressure it was necessary to consider the effect
of gravity.

Although in the cake filtration model the inertial terms were shown to be negligible, accérding
‘to Dixon, Souter, and Buchanan (1985), inertial effects m gravity sedimentation cannot be generally
ignored. The region whefe inertia is important is the narrow interface between suspension and
sediment.

The strategy in developing the gravity sedimentation model involved the following:

(1) Determination of the solid and liquid continuity and momentum equations;

(2) Derivation of the final equations to be solved numerically;

(3) Development of a numerical solution strategy;

(4) Determination of boundary conditions and constitutive relationships;

(5) Analysis of numerical errors in the numerical model; and

(6) Comparison of model predictions to known data..

The governing equations used in this study were compared to those developed by other
investigators. Two final equations were developed: (1) solid continuity, and (2) total momentum with
continuity (derived based on & technique used by Soo in 1989, and referred to as the "momentum"

equation). First, the solid continuity equation was solved to determine porosity at the next time step.

Then the "momentum" equation was solved for the solid velocity, also at the next time step.



Boundary conditions were required for the equations being solved. Constitutive relationships
were developed for "k" (intrinsic permeability) and "m," (coefficient of volume compressibility), both
functions of porosity, which accounted for the sedimentation zone and the transition zone (between free
settling and the cake).

Different computational strategies were used for each of the two final equation included in the
numerical solution. A finite difference eqﬁation was developed with a "space-staggered mesh", such ‘
that porosity was evaluated at the control volume center and solid velocity was evaluated at the control
volume edges. An explicit formulation was used to solve the solid continuity equation with a forward
difference in time and a centered difference in space. A fully impliéit formulation (which required
linearization of the non-linear terms) was used for the "momentum" equation, with a forward difference
in time. Both upwinding and central differences were used for the spatial derivatives. As the model
‘was developed and refined, a number of other computational schemes were tried for the "momentum"
equation. The computer code was developed to be as general as possible with the ability to toggle
bethn alternate schemes.

Analysis of the modified "momentum” equation indicated which terms led to instability due to
numerical dispersion. This was used to determine how much "artificial viscosity" was necessary to
reduce these numerical errors (by adding numerical diffusion) and smooth out the solution.

And finally, the model physics were verified by comparison to gravity sedimentation porosity

data collected by Wells and Dick (1988) at the Cornell High Energy Synchrotron Source (CHESS).



CHAPTER I

REVIEW OF THE LITERATURE

.
e

INTRODUCTION

Research in sediment.ation and consolidation has been applied to environmental engineering,
material science, marine geology, coastal engineering, biotechnology, chemical engineering, mining
‘engineering, and geotechnical engineering (Schiffman, 1985). This research involves soil or soil-like
materials, the compressibility and permeability properties of a porous material, and time effects. The
applications differ in the time scale of interest. For example, the geologist is interested in millions of
years, while the geotechnical engineer is generally concerned with the one- to fifty-year life of a
constructed facility, and the chemical engineer involved with filtration processes is concerned with
seconds (Schiffman et al., 1985).

The following literature review focuses on: (1) general theory, such as
sedimentation/consolidation, one-dimensional nonlinear finite strain theory, and constitutive

relationships; and (2) applied theory, such as gravity thickening and cake filtration.

GENERAL THEORY

Sedimentation/Consolidation

Hindered Settling. Although sedimentation processes were used in chemical engineering for

many years, until 1950 most of the experimental work was based on Stokes law (1851; as cited by
Richardson and Zaki, 1954) and assumed a steady-state process (Lamb, 1932; as cited in Schiffman et
al., 1985). The settling velocity, a function of the Stoke’s velocity and the particle concentration, was

considered to be a "material" property of the mixture (Schiffman et al., 1985) and was based on the



motion of a single spherical particle in an infinite fluid (Richardson and Zaki, 1954).

The settling of slimes, containing particles with a wide range of sizes, were studied by Coe
Aand Clevenger in 1916 (Richardson and Zaki, 1954). Although sedimentation usually began at a
constant rate, they noted a progressive decrease in the rate of sedimentation as thickening occurred.

A modification of the Stokes’ law was suggested in 1926 by Robinson (Richardson and Zaki,
1954) for predicting the settling rates of suspensions of fine uniformly sized particles.

Steinour studied the sedimentation of suspensions of uniform particles under conditions of
streamline flow in 1944 (Richardson and Zaki, 1954). He assumed that the effect of concentration
could be taken into account by using the density of the suspension and the viscosity of the liquid, and
that a function of the porosity could be used to account for the shape and size of the flow spaces.

Hawksley expressed a rate of settling of concentrated .suspensions based on the assumption that
during the settling process an "equilibrium arrangement" of particles was established (Richardson and
Zaki, 1954).

All three researchers -‘Robinson, Steinour, and Hawksley - assumed that the effective
'buoya.ncy force acting on the particles depends on the density of the suspension. Richardson and Zaki
(1954) demonstrated that the falling velocity of a suspension relative to a fixed horizontal plane was
equal to the upward velocity of liquid required to maintain a suspension at the same concentration.
Their work showed that the earlier assumption - that the effective gravitational force acting on a
particle in a suspension was determined by the density of the suspension and that the drag on the
particles was a function of the apparent viscosity - could not be true for a suspension of uniform
particles.

The theoretical background of sedimentation was established by Kynch (1952; as cited in
Schiffman et al., 1985) and Richardson and Zaki (1954; as cited in Schiffman et al., 1985). Kynch
realized that the settling process of uniform dispersions was a highly transient process. The theo;'y of
hindered settling - the downward motion of solid particles as they coalesce and their packing density

increases - developed by Kynch primarily focused on the continuity of the solid phase. This simplifies



the problem because effective stresses in the sediment formed at the bottom of the dispersion were
ignored, and the velocity of the solid particles was a function solely of the porosity (Schiffman et al.,
1985). Thus, the particulate suspension is characterized over the entire concentration range by a single
relationship between settling velocity and concentration of solids, implying the existence of ‘;1 flux curve
for each slurry (Kos, 1985). Schiffman et al. (1985) noted that as the concdntration of solids tended to
zero, Kynch’s theory reduces to Stokes’ theory.

Kynch’s concept was used by nearly all of the disciplines concerned with settling phenomena
(Schiffman et al., 1985). This theory was elaborated by chemical engineering literature, and applied to
continuous thickening processes of sludges (Schiffman et al., 1985). In 1980, Shin and Dick noted that
Kynch’s assumption that the settling velocity of a suspension was a function of the particle
‘concentration only may not be valid for flocculent suspensions, and thus the initial settling velocity data
might not accurately represent the settleability of a suspension as it was formed during thickening.
Because the Kynch theory applied only to sedimentation of particulate suspensions, it assumed no
interparticle contacts and postulated the existence of only one settling velocity for each solids
concentration (Kos, 1985). Sedimentation of ﬂo;;culatcd suspensions could not be described by Kynch
theory because a certain quantity of water, kept by the flocks, could be expelled from the sediment
except by means of compression (Concha and Bustos, 1985). The various shabes of batch settling
curves for flocculent suspensions, which are the result of the consolidation of the interconnected matrix
of solids, thus cannot be described by the Kynch theory (Kos, 1985).

Consolidation. According to Schiffman et al. (1985), "The theory of consolidation is a
continuum theory designed to. predict the progress of deformation of an element of a porous material
-when this element is subjected to an imposed disturbance. The porous medium is defined, in the
general case, as a system of interacting continua where each component continqum is governed by its
constitutive (stress-strain and flow) relationships. "

Five milestones in the history of the theory of consolidation are shown in Table I (Schiffman

et al., 1985):



TABLE I

MILESTONES IN THE HISTORY OF THE THEORY OF CONSOLIDATION

10

RESEARCHER | TYPE OF THEORY OF CONSOLIDATION DESCRIPTION
(YEAR)
1. Terzaghi One-dimensional theory of consolidation The reduced coefficient of permeability is _
(1923), (Terzaghi) formulated in a finite strain theory defined as k/(&-F¢) where k is the conventionally
Znidarcic and assuming that compressibility and the reduced measured coefficient of permeability and e is the
Schiffman, coefficient of permeability are constant (Znidarcic current void ratio.
1982) and Schiffman)
2. Terzaghi One-~dimensional theory of consolidation This is conventional theory. A first attempt at
(1942) reformulated in an infintesimal strain theory with the transformation of the 1923 theory to
linear properties for constant compressibility and infinitesimal strains was provided by Terzaghi
coefficient of permeability and Fronlich (1936); however, this work was
somewhat ambiguous with regard to the
definition of strain.
3. Mikasa One-dimensional nonlinear finite strain theory of Unrestricted with respect to the magnitude of
(1963), Gibson, consolidation strain and the variations of compressibility and
England and permeability save that they are single-valued
Hussey, 1967) functions of the void ratio alone.
4. Biot (1941) Coupled multi-dimensional infinitesimal strain In 1956, this theory was clarified by Biot by
theory of consolidation defining Darcy’s law in terms of the relative
velocity between the fluid and solids.
5. Biot (1972), Multi-dimensional nonlinear finite strain theory of | Mathematical complexity and the lack of
Carter, Small consolidation where both the deformations and the | verifiable information on multi-dimensional
and Booker fluid flow occur in more than one-dimension constitutive models applicable to soft clay have
(1977) limited development of such models.

One-dimensional nonlinear finite strain consolidation theory de.veloped in both the geotechnical
(Mikasa, 1963; Gibson, England and Hussey, 1967; as cited in &Mfﬁm et al., 1985) and chemical
engineering fields (Shirato et al., 1970; Kos, 1977; Dixon, 1979; Tiller, 1981; as cited in Schiffman et
al., 1985) are reviewed below..
‘ | More recently, Kynch’s theory has been generalized to take account of a zone of consolidation
below the suspension (Tiller, 1981; as cited in Schiffman et al., 1985; Fitch, 1983; as cited in
Schiffman et al., 1985). The new equations by Tiller (1981) take account of the sediment rising from
the bottom of the settling chamber. |

A Linked Theog‘ . Been (1980; as cited in Pane et al., 1985) hgs demonstrated that
consolidation and hindered settling derive from the same basic principles, and that by setting the

effective stress to zero, hindered settling can be deduced from consolidation. Schiffman et al. (1985)
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explaix_x that when the concentration was defined as the volume fraction (i.e. ¢ = 1-n, where n is the
porosity of the suspension and c is the volumetric concentration of particles) the equation for hindered
settlement led to the solid continuity equation. This equation was also the Gibson, England and Hussey
(1967; as cited in Schiffman, et al., 1985) consolidation equation, with the void ratio as th;dependent
variable in which the vertical .effective stress was everywhere zero. Thusy Been was a.ble to show: that
Kynch’s theory of hindered sett.lement (1952) was one component of the more general Gibson,
England, and Hussey non-linear finite strain theory of consolidation (1967) - logically linking
sedimentation (hindered settling) and consolidation.

This single theoretical basis for sedimentation and consolidation processes of solid-water
mixtures was provided by modifying the effective stress principle (Schiffman, Pane aﬁd Gibson, 1984;
as cited in Schiffman et al., 1985) and by extending the concept of the permeability to the dispersed '
state (Pane, 198S5; as cited in Schiffman et al., 1985). However, the use of the concept of hindered
settling and the qualitative linkage between sedimentation and gonsolidation has long been recognized
by environmental (or sanitary) engineers (Mohlman, 1934; as cited in Schiffman et al., 1985).

Harris, Somasundaran and Jensen (1975; as cited in Schiffman et al., 1985) and Somasundaran
(1981; as cited in Schiffman ét al., 1985) have studied the process of sedimentation and consolidation
primarily from an experimental and phenomenological viewpoint. Tiller (1981; as cited in Schiffman et
al., 1985) developed consistent equations for both sedimentation and consolidation phases and linked the
two by matching the boundary condition at the interface between phases.

Schiffman et al. (1985) noted that the study of coupled sedimentation and consolidation had
been limited to an abrupt change from a dispersion to a soil. Within a transition zone there was a wide
range of void ratios where even relatively inert clay dispersions exhibited fabric changes and intrinsic
time dependency. Pane and Schiffman (1985) noted that studies by Michaels and Bolger (1962) and l;y
Been and Sills (1981) have shown the existence of a transition zone between the dispersion and soil
(i.e., the pelagic deposition of a sediment column) chatacterize'd by large concentration gradients with

depth.
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Two aspects of the sedimentation/consolidation theory - the constitutive relationships of the

medium and the finite strain nature of the deformations are discussed below.

One-Dimensional Nonlinear Finite Strain Consolidation Theory

One-dimensional finite strain consolidation theory was independegtly developed by Mikasa in
1963, and Gibson, England, and Hussey in 1967 (Townsend and Hernand:}.,';1985).

Gibson, et al. (Gibson, Schiffman, and Cargill, et al.; 1981, as cited in Benson; 1987) derived
their finite-strain consolidation equation by applying the continuity equation, force équilibrium,
porewater equilibrium, Darcy equation, and effective stress principle to a differential element of the
compressible media. Their model consi&ered the value of the hydraulic conductivity at each point in
the consolidating layer for all times during the consolidation process. Their model showed that as the
material near the filter compa;:ted due to the very large effective stress gradient, the resistance to the
-flow of water through this thin compacting layer increased causing a slowing of the consolidation
process (Benson, 1987). o

According to Townsend and Hernandez (1985), the theory of Gibson et al. (1967) had the
following advantages over previous theories: incorporation of the noﬁlinearity of both permeability and
compressibility with depth, inclusion of the influence of self-weight of the consolidating layer, and
removal of limitation to infitesimal strains.

According to Townsend and Hernandez (1985), Gibson et al.’s (1981) one-dimensional finite
strain equation was reformulated by Somgyi (1980) using a material coordinate system such that it
described the excess pore pressure during consolidation; an alternating direction explicit finite
difference procedure was used for its solution. As a result of this reformulation of the finite strain
consolidation equation, the conventional coefficient of consolidation v.vas seen to ‘be a highly non-linear
function of the void ratio. Both Somogyi and Gibson et al. incorporated this nonlinear function into
their finite strain solutions, while others such as Yong and Ludwig (1984; as cited in Townsend and
Hernandez, 1985) and Olson and Ladd (1979; as cited in Townsend and Hernandez, 1985) selected a

piecewise linear consolidation model. The piecewise linear consolidation theory uses an assumption of
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continuous loading, nonlinear soil properties and nonhomogeneity (Townsend and Hernandez, 1985).

The classical consolidation theory was formulated by Yong and Ludwig (1984; as cited in
Townsend and Hernandez, 1985). Although "the overall solution of the problem was nonlinear, the
coefficients of permeability (k) and compression (a,) remained .constant for each time step a;nd were
continually updated by taking small time steps. " o ¥ )

Development of numerical procedures has been reported for a wide variety of field situations
as cited by Shiffman et al. (1985): Shirato et al. (1970), Pane (1981), Somogyi, Keshian, and
‘Bromwell (1981), and Mikasa and Takada (1984). Also, Townsend and Hernandez (1985) reported
that finite strain numerical analyses and piecewise linear models have been used to provide design
predictions for predicting the rates and magnitudes of settlement/consolidation in phosphate mining in
Florida (Townsend and Hernandez, 1985).

Townsend and Hernandez (1985) determined that numerical models based upon effective
stresses were only appropriate for consolidation phases. They found that physical models (such as by
using a centrifuge to evaluate consolidation properties) were a viable technique for validating numerical
models and programs. Also, Townsend and Hernandez (1985) concluded that the physical models
could represent the sedimentation/consolidation phases, provided the appropriate time scaling
component was used. According to Schiffman et al. (1985) centrifuge validation of nonlinear finite
strain consolidation for soft and very soft materials was presented by Bloomquist and Townsend (1984),
"Croce, et al. (1984), Lcuxig, et al. (1984), Mikasa and Takada (1984), and Scully et al. (1984).

To a large extent, existing theory of nonlinear finite strain consolidation was limited to one-
dimension. Some work published by Somogyi et al. (1981; as cited by Schiffman, 1985) used a
simplified theory incorporating multi-dimensional flow but maintaining one-dimensional compression.
Some work has been undertaken to develop a fully coupled theory of multi-dimensional finite strain by
Carter, Small, and Booker (1977; as cited by Schiffman, 1985).

Schiffman, Pane, and Sunara (1985) summarized their research by stating that nonlinear finite

strain consolidation theory was an accurate predictor of field performance and that it should replace the
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use of conventional theory. Their research of nonlinear finite strain theory indicated the following in
‘comparison to conventional theory: (1) progress of settlement was substantially faster; (2) dissipation
‘of excess pore water pressure of a loaded clay layer was substantially slower than the progress of
settlement; (3) the vertical effective stresses was generated faster in many cases - especiall); -those
involving slow accumulation of material; and (4) the measured values of thé‘change in compressil;ility
and permeability as function of the void ratio replaced the use of a single value of the coefficient of

consolidation.

Constitutive Relationships
In order to define the physical properties of a porous medium, a constitutive model describing
filtration and deformation properties must be developed (Kos, 1985).
These constitutive relationships were: |
(1) an interrelationship befween the component stresses (i.e., the effective stress principle), and
2 a deﬁni.tion of flow of fluid through the porous medium.

Effective Stress Principle. Effective stress is a measure of the soil or intergranular pressure.

The éffective stresss principle states that there is a state of stress ¢°, which is responsible for the
deformation of the porous deformable mineral skeleton. The porous medium is a two-phase system
consisting of a deformable mineral skeleton filled with an incompressible liquid (water), such that the
| effective stress principle can be formulated as:
o=2d +u, 2.1)
o = total stress applied to the system [M/L-T°]
o’ = effective stress (inter-particle pressure) [M/L-T,]
u, . porewater pressure [M/L-T,]
The effective stress ;;rinciple governs the deformation of a porous medium, such as in the
.consoidation zone. At the top ;)f the settling zone, the total stress and the pore water pressure were
equal when as measured in a sedimentation column by Michaels and Bolger (1962; as cited in

Schiffman et al., 1985), Been (1980; as cited in Schiffman et al., 1985), and Been and Sills (1981; as



15

cited in Schiffman et al., 1985). Schiffman, et al. (1985) note that this indicates the particles have not
aggregated and thus the effecfive stresses are zero. According to Michaels and Bolger (1962) and Been
(1980), a thin transition zone separating the settling and consolidation zones exists where the effective
stresses are non-zero, but do not follow the Equation _1 (Schiffman et al., 1985). Asa reéﬁlt of these
observations, the effective stress equation was restated in a more general form as follows (Schiffman,
Pane, and Gibson, 1984; Pane, 1985; Pane and Schiffman, 1985; as cited in Schiffman et al., 1985):

g = B(e)o’ + u, 2.2)

Total stress applied to the system [M/L-T?]

= A monotonic function of the void ratio, e [-]

= Effective stress (inter-particle pressure) [M/L-T7
- Porewater pressure [M/L-T9

]
8
o’
u,

Kos investigated a model for constitutive theory whicl; deviated from the work of previous
investigations of compression during gravity thickening. While the earlier investigations had
counterparts in soil consolidation and modern cake filtration theory, Kos’ models were déveloped on
the basis of a detailed measurement of filtration and consolidation properties of flocculent suspensions
'during continuous thickening. Thus, Kos’ models reflect changes of structure of the flocculent porous
medium during compression.

Flow Relationsips. In both sedimentation and consolidation there were two absolute velocities
- that of the solid particles and that of the fluid. The coefficient of permeability of the system, k, is the
proportionality factor which relates the relative seepage velocity and the excess pore water pressure
gradient, according to the Darcy-Gersevanov law (Darcy, 1856; Gersevanov, 1934; Verruijt, 1969; as‘

cited in Schiffman et al., 1985):



16

- (Vl_vs)
* o, Pv @.3)
K3

k = coefficient of permeability [L.%] . ; -
& = porosity [-]

v; = velocity of the fluid [L/T]

v, . velocity of the solid particles [L/T]

u, = excess pore water pressure [M/L-T%]

¢ = "convective" coordinate [L%T

p, = density of water [M/L*]

Tiller and Green (1973; as cited in Tiller et al., 1985) in the theory of flow through
compressible cakes, demonstrat.ed that the flow rate of a highly compressible material reached a
‘constant value when the pressure drop exceeded some relatively low value. Resistance to flow
increased at that point in direct proportion to the pressure drop, and no increase in flow rate took place
with increasing pressure and the average porosity reached an essentially constant value at the same

point (Tiller et al., 1985).
APPLIED THEORY

Gravity Thickening

Introduction. Gravity Mckmhg is a solid-liquid separation process. Because the particles are
more dense than the liquid, the gravitational force per unit volume of particles is greater than that per
unit volume of liquid, causing particles to move downwards relative to the liquid. The bottom of the
container restricts particle mo;/ement, resulting in an increase in average particle concentration in the
.lower parts of the container (Dixon, 1979).

Suspensions of fine particles are usually treated with coagulants, to cause particles to form
aggregates before they can be successfully separated by gravity. The forces opposing the downward
motion of flocs are: (1) inter-particle forces, resisting increase in particle concentration, and (2) liquid-

drag forces from the relative motion of flocs and liquid (Dixon, 1979). In a "thickening" process, the
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particles move closer together, resulting in increased particle concentrations such that the inter-particle
force is the primary force which opposes the gravitational force. The drag force which occurs due to
the relative motion between the particles and liquid during thickening is a secondary force opposing the
gravitational force (Di).(on, 1979).

In comparison, clarification - which precedes ihickening - involves'the relati\;e motion bt-:tween
flocs and liquid. Thus, the drag force is the primary force which opposes the gravity. Therefore,
clarification only occurs at a sufficient distance above the bottom of the container that thickening from
inter-particle forces transmitted from the bottom is negligible. In the clarification region, the velocity
varies with the particle concentration since the drag force varies with the relative velocity of flocs and
liquid and with the particle con;:entration (Dixon, 1979).

History. The earliest work on gravity thickening was carried out at the Tigre Mining
Company in Sonora, Mexico, as reported by Mishler in 1912 (Okey, 1989). This study demonstrated a
bench-scale technique, which was used to define the inter-relationship between solids concentration,
settling velocity, tank depth, tank area and thickening capacity. In 1916, Coe and Clevenger introduced
the concept of thickener capacity - that each concentration layer of a suspension in a continuous

thickening tank has a certain capacity to transmit solids - as follows (Kos, 1985):

cap=—_"2i__ '
ST _ (2.9
Cy

<
CU

CAP = capacity of a suspension at concentration c; to transmit solids

uy; = the zone settling velocity obtained from the linear portion at the beginning of the
sedimentation curve [L/T]
c, = underflow concentration [M/L?]

Coe and Clevenger (1916), and later Kynch (1952), provided methods for obtaining sedimenation rates

from static, batch tests used for designing continuous thickeners (Wakeman and Holdich, 1984).
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Thickeners were first reported for environmental applications by Comings (1940) and
Kammermeyer (1941). Works were published by Torpey and co-workers on the co-thickening of
primary with waste activated and primary with digested sludge (Torpey, 1954; Torpey and Melbinger,
1967). Torpey optimized the operation of gravity thickeners by strict attention to the criticai
‘operational factors (Okey, 1989). o

During the latter portion of the *60s and into the *70s, substantial contributions to the theory of
the thickening of flocculent and compressible solids were made (Dick and Ewing, 1967; Edde and
Eckenfelder, 1968; Vesilind, 1968; Dick, 1970; Dick and Young, 1972; Cole et al., 1973; Kos, 1977;
and Fitch, 1979). Hoyever, gravity methods seldom produced solids concentrations greater than 1.5%-
2.5% solids by weight in operating facilities (Okey, 1989).

Flotation thickening was investigated in the mi'd-fifties, and 1.0%-4.0% solids were obtained
without polymer (Eckenfelder et al., 1958 and Howe, 1958). By the mid-sixties, data were presented
showing that primary and activated sludge mixtures could be flotation thickened to 4.0%-8.0% with the
use of polymers (Wahl et al., 1964). A comprehensive thickening study, appearing in the literature by
Mulbarger and Huffman (1976}, showed that flotators could thicken waste activated sludge to 4.0%-
'5.0% solids (Okey, 1989).

Dixon, Souter, and Buchanan (1976) concluded that inertial effects in sedimentation could not
be generally ignored in all cases. While most researchers ignored the inertial effects, they concluded
that the region where inertia was important was the narrow interface between suspension and sediment
where rapid velocity change was occurring. Above the thickening region interface, the particles settled
at the terminai velocity. corresponding to the initial concentration and did not experience acceleration or
retardation. Below the thickening interface, the solid \}clocity was approximately zero. The inertial
effects in the narrow region at the interface were due to ratardation of the particles as they struck the
top of the sediment (Dixon, Souter, and Buchanan, 1976).

Dixon (1979) also studied batch thickening of an initially uniform suspension. He concluded

that when the suspension was.initially in free settling, the inertial effects could not normally be
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neglected because the initial subsidence rate would be maintained until nearly all the particles had
entered the compression zone. When the suspension was initially in compression, inertial effects were
normally negligible.

In 1984, Wakeman and Holdich considered the distributions and magnitudes of weight, drag,
inertial, and solids compressive stresses in sedimentatk;n. The inertial effécts in differént parts ot: the
column were found to be very small everywhere.

Settling Properties of Sludges. Gravity thickening can be carried out as a batch or a

continuous process. In the batch process, a tank with a dilute material is allowed to settle for a desired
period of time, after which th? clear liquid (supernatant) is decanted and the thickened suspension is
‘removed from the bottom of the tank. The continuous process of gravity thickening has continuous
feed and continuous or periodic withdrawal of the thickened suspension from the tank bottom.
Historically, the batch settling process has been studied more intensively than the continuous thickening
process (Kos, 1985).

Settlement of suspended particles depends on the concentration of the suspension and the
particle characteristics,‘ such as density, shape, and size. Four distinct types of sedimentation,
reflecting the concentration of the suspension and the ﬂocculating properties of the particles, include
(Fitch, 1958; as cited in Weber, 1972):

(1)  Class-1 clarification - the settling of a dilute suspension of particles which have little or no

tendency to flocculate;
) Class-2 clarification - the removal of a dilute suspension of flocculent particles;

(3  Zone settling - subside'nce of particles as a large mass rather than as discrete particles (due to
the particles being sufficiently close such that interparticle forces are able to hold them in fixed
positions relative to each other); and

(4)  Compression - restriction of further consolidation.
According to Weber (1972), sludges normally exhibit zone settling characteristics, as shown by the

appearance of a distinct horizontal interface between the solids and the liquid.
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Work with activated sludge (Dick, 1970a; as cited in Weber, 1972) has shown that fluid
resistance and inter-particle drag need to be considered simultaneously and that a significant amount of
"compression” may accompany sedimentation at comparatively dilute concentrations. For example,
interparticle forces may reduce the subsidence rate of activated sludge at ordinary mixed-liqﬁor
suspended solids concentrations (Weber, 1972). e

Conditioning of Sludges. Sludge conditioning refers to chemical and physical methods for
altering sludge properties to remove water more readily. Conditioning technology is based on trial-and-
error experimentation. The efficacy of alternate conditioning methods is evaluated by the many
laboratory-derived parameters - such as specific resistance, coefficient of compressibility, yield, rise
rate, and subsidence velocity - depending on the dewatering or thickening process to be used (Weber,

1972).

Cake Filtration

Models of one-dimensional cake filtration have been developed, based on two-phase flow
theory and constitutive rclatioﬁships, by: Smiles (1970), Atsumi and Akiyama (1975), Kos and Adrian
.(1975), Wakeman (1978), Tosu'n (1986), and Wells (1990).

A similarity transformation was used by Smiles (1970), Atsumi and Akiyama (1975), and
Wakeman (1978) to change the governing partial differential equation into an ordinary differential
equation. Due to the use of the similarity transformation, the applications of these models were
restricted to situations where the average cake concentration was indépcndcnt of time (Atsumi and
Akiyama, 1975).

Tosun (1986) used a solution technique developed by Kehoe (1972) to approximate the non-
linear governing equation with a moving boundary, and obtained similar results to those of Atsumi and
Akiyama’s (1975) similarity transformation. The results of Wakeman’s (1978) model compared well to
porosity data (obtained by electrical resistivity measurements after fitting model coefficients to the data
by a least squares technique) even though Tosun (1986) showed that Wakeman did not have the correct

moving boundary condition.
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Wells (1990) solved the full non-linear, partial differential equation (using an explicit finite
difference procedure) to predict cake development with time, shrinkage, and filtrate production. His
model used porosity data from the Cornell High Energy Synchrotron Source (CHESS) and porewater
pressure measurements, within the kaolin cakes to determine constitutive relationships. Weilé and Dick
(1988) showed that the numerical model accurately described the effect of;presedimeniation on

filtration. However, Wells’ (1988) model used an initial known porosity profile as an initial condition,

and did not account for gravity sedimenation.



CHAPTER I
DEVELOPMENT OF THE GRAVITY SEDIMENTATION MODEL -
TWO PHASE FLOW GOVERNING EQUATIONS

Summary - Two Phase Flow Governing Equations

The gravity sedimentation model is based on four governing equations (Willis, 1983): liquid
and solid continuity (Equations 3.1 and 3.2) and liquid and solid momentum (Equations 3.3 and 3.4).

The four equations with their respective coordinate systems are shown in Figures 2-4.

(1) Liquid Continuity: ,
2 -2 (ev)) (3.1)

(2) Solid Continuity:

2 -2 (1017, (3.2)

(3) Liquid Momentum:

av. v, 3
epl—éFl +ep1V1-551 =-£p,;9 —eF(Vl—VS)—e—ag 3.3)
Inertial Convective Gravity Drag Liquid

Acceleration Pressure

(4) Solid Momentum:

av, av, ap aq’
(1-e)ps—a?s +(1.‘8)P5Vs'3—zs =-(1-¢)p.g +eF(V1—Vs)—(1—s)-§ “ 3z y
Inertial Convective Gravity Drag Ligquid Inter- 34
Acceleration Pressure granular

Stresses
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& = porosity [-] = volume liquid/total volume

t = time [T]

z = distance from filtration medium [L]

V, = true liquid velocity (in contrast to Darcy velocity, £€V)) [L/T]

|

V, = velocity of the solid particles [L/T]

F eu/k, Averaged interfacial interaction term between the solid and the liquid phases
[M/L3-T] .

dynamic (or absolute) viscosity [M/L-T]
intrinsic permeability [L?]

fluid static pressure [M/L-T%
acceleration due to gravity [L/T9]

liquid density [M/L?*]

= solid density [M/L?]

g effective stress [M/LT]

(1o Il ~
ihwn

>
i

1l

The liquid continuity equation describes the difference in liquid flux into and ou£ of the control
volume, which is equal to the change in the mass of fluid within the control volume. Similarly, the -
solid continuity equation describes the difference in solid flux into and out of the control volume. A
schematic of the solid and liquid flux into and out from a control volume is shown in Figure 2.

Control volumes are also shown in Figures 3 and 4 for the liquid and solid momentum
balances. The sum of all body and surface forces acting on the body of fluid within the control volume
are equated to the rate of chatllge of momentum (McCormack and Crane, 1973) within the control

-volume.

Many researchers have investigated and derived equations for the conservation of mass
(continuity) and momentum in two-phase flow. The continuity equations can be easily compared
between researchers and are accepted as presented in this paper. |

The momentum equations presented by researchers are more difficult to compare because of
the variety of terms and the varied nomenclature. To confirm the correctness of the momentum
equations presented here, a comparison was made of other researchers’ equations, as shown in Tables
O-V. Wells’ (1990) governing equations for cake filtration before his scaling analysis determining
negligible terms (i.e., gravity and inertial terms), Soo’s (1989) equations for batch settling, and

Gidaspow and Ettehadleh’s (1983) 2-dimensional hydrodynamic modeling of fluidization
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Liquid Solid
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/ Change Solid Solid
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Figure 2. Liquid and solid continuity balance over a control volume.
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fluid mass

Figure 3. Liquid momentum balance over a control volume. Equation is a sum of all
the forces: body forces include gravity, and surface forces include the liquid pressure
(shown with a Taylor series expansion) and the drag (shear).
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Figure 4. Solid momentum balance over a control volume. Equation is a sum of all
the forces: body forces include gravity, and surface forces include the liquid pressure
(shown with a Taylor series expansion), the effective stress, and the drag (shear).




TABLE I

LIQUID MOMENTUM:
COMPARISON OF DIFFERENT RESEARCHERS’ EQUATIONS - INITIAL FORM
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LIQUID MOMENTUM (Initial Equation)

Researcher Inertial Forces L - Substitutions
S (nomenclature)
Unsteady +Convectv =Gravity +Drag <+ Liquid
Accelerat’n* Accelerat’n“ Pressure
Wells _ . _ Wells Wells -
(1990) = Vigs fa‘g 7 ARG =T, T
1 v=2
P1
mu'"‘t
Soo! W W . . e Soo  Wells
= Wes (4 PLF (W-H,) ppdp | 20 Yels
(1989) Pac P¥ez : i 5, 0z p=(1-e)p,
PP,
W=V,
W=V,
P=Py
p=ep,
- Fmiis
P -0)p
Giadspow/ 9 E) - B.AV.-V. Giadspow Wells
Ettehadin 3¢ P2V 2PV PLg B, (V,-V) -'—gf, e
(1983) A IAAZ t=0’
4 B,=¢F?
V=V,

*Rate of change of particle momentum
Net rate of convection of momentum of the particles

The liquid momentum equation is not actually presented by Soo. The solid momentum equation is
subtracted from the total momentum, both given by Soo:

Total Momentum: p——-#pw

Solid Momentum: p,%tﬁ +p W), a—2=-p,g+p,F(w—w)——l’-gf
PP

W, .9 O,

2.

W
'..Pp 3t +Pp p?zz— —'(P, pg
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TABLE Il
LIQUID MOMENTUM:

COMPARISON OF DIFFERENT RESEARCHERS’ EQUATIONS
‘IN COMPARABLE NOMENCLATURE

LIQUID MOMENTUM (Comparable Nomenclature)
M -
Researcher Inertial Forces
Unsteady + Convective | = Gravity +Drag +Liquid

Acceleration® | Acceleration® Pressure
Wells (1990) v, av, - ~eF(Vy-V, 9

lPr"# ‘pJVJ_E;l P9 eF(V;-V,) _‘_3-5
Soo (1989) av, av, - - -

:P;# ¢P1V1j71 eP1g F(V,-V,) -:%
Gidaspow/ av, v, - B (V,-V.) .9
Ettehadin? tp1 5 ep,Vy 52 i By Vv *32
(1983)

*Rate of change of particle momentum
*Net rate of convection of momentum of the particles

’To compare to the other equations, this 2-dimensional equation is written one-dimensionally. The
inertial terms (left-hand side of the equation) can be re-written as follows:

3 3 3
3t (P V) 55 (P2 U V,) 450 (P2 VW)
Writing as a 1-D equation: p, -2 (ev,) +p,% (GALA

| Expanding: ,,,[,%‘_’:W,% ,,,,[. v, 3y, 20
The sum of the second and fourth terms can be equated to zero, due to liquid continuity:

2e 307
at oy

av,
- gp'?tl +2p,V, —L
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SOLID MOMENTUM:
COMPARISON OF DIFFERENT RESEARCHERS’ EQUATIONS - INITTIAL FORM
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SOLID MOMENTUM (Initial Equation)
Researchr Inertial Forces Substitutions
S nomenclature
Unsteady +Convectv =Gravity +Drag + Liquid +ef
Accelerat’n* Accelerat’n® Pressure f
strss
Wells av, av, -(1-e)p,g +2F(V;-V,) Sp do:
(1990) -elp, oy | Goevgg e e |
Soo aw, W, -0, +p F(W-W,) Pp 3p Soo Wells
1989) T PeMo gz | R o= (1-0)p,
=P,
W,=v,
W=V,
F=Px
p=ep,;
= F, mells
Flsoo™ A-t)p .
Giadspow/ 3 3 -p.(1-2) +B,(V.-V.) 3p ' GiadspoWells
Ettel -2)V, = 1-2)0,V, P, t)g - -{1~ 4
adin -a—t{P,(l e)V,] a;‘[ti,( ) U,V,] 'y Vg (1-¢) o & s
(1983) 2. (1-0) V7, =0
'y B,=eF?
V.=V,

*Rate of change of particle momentum
*Net rate of convection of momentum of the particles
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SOLID MOMENTUM:
COMPARISON OF DIFFERENT RESEARCHERS® EQUATIONS
IN COMPARABLE NOMENCLATURE
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* SOLID MOMENTUM (Comparable Nomenclature)

Researcher Inertial Forces
Unsteady + Convective = Gravity +Drag + Liquid +Inter-
Acceleration® Acceleration® Pressure granular
stress
Wells (1990) av, av, (1= F(V,-V ]
(-ep,zf | G-wipy,gr | TTHRS *eF(V;V,) - 2 -2
Soo (1989) v, av, - (1- F(V,-V,
(1-¢) P'? (1-¢) p'VlE (1-¢)p,9 +eF(V,-V,) -(1-¢) %
Gidaspow/ av, v, -(1-¢)p,g +eF(V;-V,) —(1-¢) 0P da’
Ettehadin A-elpgy | Geolevy ’ e 5 K3
(1983)*

*Rate of change of particle momentum
*Net rate of convection of momentum of the particles

*To compare to the other equations, this 2-dimensional equation is written one-dimensionally. The
inertial terms (left-hand side of the equation) can be re-written as follows:
KATRIES LA RCEREAA +3"; lp,(1-2) V,V,)

Writing as a 1-D equation: p,-é%[(l-t)v,] +p,%([(1-.) v,1v)

The sum of the second and fourth terms can be equated to zero, due to solid continuity:
_oe, a1-e)V, _

at oy

av,
(1-e) p'#“ (1-¢) Pavn

p'[ (1-¢) %'V-g%]* ,,_[(1-;) v, ‘ZYV.’V._&’(I_'t)_L

Expanding: =
y

0

av,
By
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equations were compared. The liquid momentum equations were the same. The solid momentum
equations were equivalent, except Soo’s (1989) model did not consider the particle-to-particle
interaction force (and thus has no effective stress or inter-granular stress term).

Wells’ (1990) equation.s shown in Tables II-V were developed from the same govéfning
equation he used for cake filtration, without neglecting the inertial or gmyi;y_terms. According to
Dixon (1985), the inertial terms are important in the interface between suspension and sediment, where
rapid velocity change is occurring. In this narrow interface zone the particles, which have been settling
at the terminal velocity corresponding to the initial concentration, are retarded (the velocity is near zero
in the sediment) as they strike the top of the sediment.

Wells’ (1990) model assumed an applied pressure differential several orders of magnitude
greater than gravity, making the gravity term negligible. However, no such (large) pressure term
exists during gravity sedimentation. Thus, it is assumed that the gravity term is important, and is not

neglected.

Final Form of Governing Equations - Model Formulation

The solid and liquid continuity equations can be equated as follows:

de __9(evy) _3[(1-¢) V] 3.5)
at 3z dz

This equation was integrated from z=0, where £V,=¢,V, and V,=0, to z.

-[Patevy =[ a1 (1-e) V] (.6)
Ve (1]

Simplifying, Equation 3.6 becomes:

v,- goVo—(1-8) V, 3.7
£

V, = true liquid velocity (in contrast to Darcy velocity, £V)) [L/T]

v, velocity of the solid particles [IL/T]

porosity [-], volume liquid/total volume
terminal porosity at z=0 [-]
true liquid velocity at z=0 [L/T]

®» o
R
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It can be noted that these results differ from Soo’s* (1989) because of the boundary condition

applied at the media (z=0).

Similarly, the two momentum equations can be added, resulting in a total momentum equation.

v, v, __op do
P18 3¢ *PiEVi5 *(1-€) po3F +(1-e) pV, 5= =—7-{(1-€) p,*ep) 93

v, v, (3.8)

S
e

The technique for simplifying the governing equations is similar to Soo’s (1989) technique. By

(1) equating the solid momentum, Equation 3.4, and the total momentum, Equation 3.8; (2) substituting

V, from the total continuity, Equation 3.7, into Equation 3.8; (3) combining like terms; and (4)

substituting the constitutive relationship, mv=-_a__°/ (Peck, et al., 1974, and Das, 1983; as cited by

do

Wells, 1988); Equation 3.8 becomes:

[(1-e)p tepy)

A%

. 1-¢ av, V.-e,Vy)| ¢
ats+[p1(eoVu—(l—e)Vs)( - )+epsVs] azs+[-plls_;=gl]%

[Ereesnsaee 2 o ]

=eg(py-p,) +

DD ™
-

e N <p "

o

| A 1 [ O 1O |

—

F
—-€

155 ) (eoVom V) * s o 3.9

(1-¢)m, 3z

porosity [-], volume liquid/total volume
liquid density [M/L?]

solid density [M/L?]

velocity of the solid particles [L/T]
time [T]

terminal porosity at z=0 [-}

true liquid velocity at z=0 [L/T]
distance from filtration medium [L]
acceleration due to gravity [L/T?]

en/k, averaged interfacial interaction term between the solid and the liquid phases
M/L-T]

intrinsic permeability [L?]

“Soo (1989) obtained the following result for the less general case of no fluid loss, such as from a
closed bottom (i.e., at z=0, ¢V,=0 and V,=0):

__"tV,
7 (1-¢)

or, rearranging: Vl:il:fﬂ
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m, = 338_/, coefficient of volume compressibility [T>-L/M], where o’ =effective stress
[M/LTY
p = fluid static pressure [M/L-T%]

Details of the derivation of Equation 3.9 are shown in Table VI.

Equations 3.2 and 3.9 were used in the numerical computer modgl.* The first equation was
the solid continuity. The second equation was total momentum with conti;ili}y (referred to as the
"momentum” equation throughout the modeling section). The formulation of the numerical model is

discussed in more detail in the following section.
NUMERICAL SOLUTION TECHNIQUE

The final governing equations were put into a finite difference form and solved numerically
using appropriate boundary conditions. The solid cont-inuity equation (Equation 3.2) was first solved to
deterime ¢ at the new time level n+1. Using this result, the "momentum" equation (Equation 3.9) was
used to solve for V,, also at the new time level n+1. | |

The approach for developing the numerical solution strategy employed using simple techniques
first (i.e., the explicit method was tried before the implicit), ax;d then increasing the level of numerical
refinement. The numerical code was written in the most general way, such that various techniques
(such as explicit vs. implicit, central differencing vs. upwinding, added artificial viscosity, etc.) could
be explored with one code. When the computer code was written, toggles allowed the modeler to
.choose at the start of each run between different conditions such as the central or the upwind difference
for the convective terms. The modeler could choose degrees of explicitness or implicitness. The code
automatically calculated a value for the artificial viscosity (to counter numerical dispersion) which the
modeler could adjust during the run.

Many model simulations were made analyzing the behavior of the equation by varying the
degree of explicitness/implicitness, differencing techniclues, grid spacing, time step, artificial viscosity;

and constitutive parameters.
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SUMMARY OF DEVELOPMENT OF GOVERNING EQUATIONS
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SUMMARY OF DEVELOPMENT OF GOVERNING EQUATIONS

(1) Liquid continuity: —=-i 5 (2V2) e ) )
(2) Solid continuity: —--—[(1 e) V] J

av, av,
(3) Liquid momentum: **15¢ **PiVigy =Tt “tF(VV) "%
Inertial Convective Gravity Drag Liquid
Acceleration Pressure

vy)--d -2
oz

av, av,
(1-e)p, 57 +(1-e)p,V, 5] -

(4) Solid momentum:

Inertial Convective Gravity Drag Liquid Inter-
Acceleration Pressure granular
Stresses
oe

(5) Constitutive Relationship: m==—

(6) Equating liquid continuity (Equation 1) and solid continuity (Equation 2) leads to total
goVo-(1-2) V,

continuity: v,= >

(7) Equating liquid momentum (Equation 3) and solid momentum (Equation 4) leads to total

v, v, _
momentum: PJ'T*PJ‘VJa_“(l 2) p‘ 4(1 t)p,V, 52 :-[(1-¢)p'+gp1]g-%lz

(8) Equating both solid momentum (Equation 4) and total momentum (Equation 7) to --gg:

.g—.__(vl—v) __LQ"_

Solid momentum: -2p-
1-¢ Oz

av,
oz 0.5t 5 PVs az
Total momentum: -gzsplza +p1:V,—5—¢(1 z)p, +(1-z)P,V a—=41(1 z)p,npl]g+—

(9) Equating the solid and total momentum equations, shown in Step 8:
av, v, 3o
"'ac ""az T o

a V. g’
=P1:7I:— *pIOVI—-ﬁ' (1-e) Pa_‘ (1-s)p, 'E—‘*[(l-’) Psttp] g"é;

cF (VI-V Yol

(10) Substituting the liquid velocity, V,, (from total continuity, Equation 6) into the first term on
the right-hand side of Equation 9:

1 1-
v, 3 eoVo-(1-2) V, i_l 18(:V - “toVo de , 18(: Vo)
PJ'T!'PJ' (____o 2 . )'PJ'[‘oVo :. o ° '( :) \A ( )]'Pl'[ :z . t T “ < ]

- z‘,V‘,.at 16(: Vo) _(1-e) 9V, V, 3e]_ -(1-¢) OV, (V, z,V,) a, 18(:,‘{,)
Pr¥—23 A T T T 2 ot|" 3 _a_t_ e ¥ T

(11) Substituting the liquid velocity, V,, (from total continuity, Equation 6) into the second term on
the right-hand side of Equation 9:

Vo-(1-0) V] a[eoVe-(1-2) V, ale V) a!l! av,
ple_, 3 e [__“"___.] [‘—oc—,__]"’z('ovo'(l")v] 1 o o) te v\t 9(1-e) _(1-e) 9V,

e 07" 9z Ve 9z ¢ Oz
v, gc.\ 2 e _ (1-¢) OV,
ed -a;. e oz

=pifeoVo-(1-2) .]l 'oz"o%; ga-é_ (1—:) %__]-p‘{;vo (1-:)V{
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(12) Substituting Equations 10 and 11 into Equation 9:

_ _ - (1-¢) 9V, (V,—e,V,) 3e o1 d(e,Vp)
P-‘a—*"- .—5— - v e i Pz[ o’ .z 3 e o .

+p,[z,u,-(1-c)v_{ Vs :zoVo_g_t_ (1-e) 3V,

z A _a_J+(1—¢)p,-a_4(1 t) p,V, 'T 4{(1-c)p.+(p1]g+

(13) Organizing and simplifying terms:

[(1-2) Px*'P-]T‘[pII'OVO (1 ‘)V( 1- l)*'P.V]T‘[ (V “to¥o ]T'[—(toVo VeXeoVo~ (1-¢) V')]gi

_p OlzeVy) _ _ oF (:,v., (1—z)v-¢v 119"
P1—3¢ tg(p;=p,) + (1-e) \ (1 o) B3

(14) Substituting the constitutive relationship (Equation 5) into Equation 13:

[(1-:)pmp.]%‘i'[p;[to%-u-:)V(ﬂ)ﬂp. ]—5—{ —py e te¥s "’V"] ’{—('o"o Vaeoe- (1-0) V)| 32

3(e,V,)
A SRR ey A ARS Ty

P -c)m, 32
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Initially, the model was made to simulate sedimentation with no drainage out the bottom, so
that this output could be compared to an analytical solution by Soo (1989) for a simple nontrivial
solution. After satisfactorily simulating this condition, drainage could again be incorporated and cake

filtration with gravity sedimentation could be modeled by a future investigator.

Computational Strategy

A "space-staggered mesh" was employed such that porosity, £, was evaluated at the control
volume center, and solid veloi:ity, V,, was evaluated at the control volume edges. This is shown in
Figure 5 using the nomenclature of the computer program (i.e., EE is porosity and US is solid
velocity) . Note the location for "i" is different, contingent upon whether it is porosity or solid velocity

(US) which is being evaluated.

Boundary Conditions for € and V,

Boundary conditions were determined as follows:

17 '
Top: Z2-0 or (V,)pa=(Vi)x . 3.10)

€4.1/,=1.0 or EE1=10 (at I=K) - ‘ (3.11)
Bottom: V,=0 (3.12)

V, at z=0 was set equal to zero, and & was set equal to 1 at the top of the domain. These

boundary conditions reflect no flux of solids into the top or out from the bottom of the domain.

Finite Difference Form of Continuity Equation

An explicit formulation was used to solve the first equation (solid continuity), which had a

forward difference in time and central difference in space.

- o - - n
egd_s?:[(l 8)Vs],,% (1 e)VL,]i_% (3.13)
At . Az
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=0

DzB :iz

© EE(K+1)

° EE(K)

o EE(I+1)

! o
DzZP o EE(l)

00—

DZM ° EE(I-1)

¥

° EE(1)

S

F v

US(K+2)

US(K+1), EE1 at I=K

US(K)

O

US(I+1), EE1, DIST(I+1)

US(I), EE2, DIST(I)

EO

Figure S. Grid layout used in the computer program with the porosity array (EE)
evaluated at the control volume center and the solid velocity array (US) evaluated at
the control volume edges. EE1 and EE2 represent porosity evaluated at i+ (where
i is at the control volume center).
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Finite Difference Form of "Momentum" Equation

The "momentum" equation (Equation 3.9, representing total momentum with continuity) was .
put into a general explicit-implicit finite difference scheme, as shown in Table VII. The table shows
Equation 3.9 with: (1) the V, .term prior to discretization, (2) the discretized or finite diffe;':cnce form of
-the V; term (as either a functior‘l of time or in both its explicit and implicit formulatioﬁ), and (3) the
coefficient of the term. This table is discussed further below when comparing the explicit and implicit
solution strategies, comparing the effect of using a central difference versus an upwind difference of the
spatial derivative of the solid velocity, and describing the linearization of the non-linear terms.

Explicit vs Implicit Solution Strategy for "Momentum” Equation. The fully explicit
formulation for the "mc'unentum" equation required a very, very small At to remain stable, resulting in
a very lengthy computational time. The implicit solution technique allowed larger time steps, while
avoiding excessive buildup of round-off error (Farlow, 1982). In other words, relative to the
discretization error, this round-off error was small (Carnahan, Luther, and Wilkes, 1969).

Figure 6 compares the explicit and implicit schemes. In the explicit scheme, the solid velocity
at the next time step (V,**") is a function of the solid velocities at the initial time step n [i.e., V,%);,,
(V)");, and (V,);4,]. Thus, the 'only grid point at the advanced time level is the one which is being
solved for. This is contrasted to the implicit scheme where V,**! is a function of the velocities at
surrounding nodes at the advanced time level n+1, as well as the solid velocities at the initial time
level n. Explicit methods solve for (V,**'); explicitly in terms of earlier values (Farlow, 1982).
Whereas with implicit methods, a system of algebraic equations is solved to find all three of the values
(Farlow, 1982) of V**! simultaneously [i.e., (V2*"),,, (V,**), and (V') ]

In general, explicit schemes are simpler to formulate, but have severe restrictions on the grid
spacing and time increments. Although implicit methods are more complicated, they are also more
versatile. They require greater computer storage capacity, but use less running time than explicit

methods. More computation time is required per time step, but less steps are involved due



39

TABLE VII

DISCRETIZATION OF EQUATION 3.9

Discretized Terms Coefficient
(all terms evaluated
f(t) term Explicit term: Fully implicit term: at timestep n)
(V, term)* (V, term)**! . .
(V) I-(v) § - A=(1-¢) py+ep,
At
Central difference: Central difference: B;‘( (1;:) )Pl'ovo
WAFRCILAY N (V) - (v El
2Az 2Az
Upwind: Upwind:
(V) 4a-(V,)§ (V) Fi- (v i
Az Az
Central difference: Central difference: B, -ps(1-e)? ep
( V'Z)n _( V‘z)n - nd_( V,’)" | va t -
2 ) \2 )i vl 2
24z . 24
Upwind: Upwind:
vaY (v2) an.q_("_-’ 3
FLE) | benl)
Az
(v,) " (v,)at - P10t
4 1 C= e 3¢
~p1(eoVo) e
=%

z-—:—; ERALE

n o+l -
(V)% (Va7 G- ::h,v,(l-z)-g%
AT L
=2(V,) 2 (v,) 1 H{(V,)?];
H=_P‘—_8(¢°V°)

I=eg(p,-p,) *

F v.*

J=—‘(1_') g, Vo

F

R eTy)

d¢e %

om0z

*Note these terms are on the right side of the equation.

Explicit vs Implicit Solution Strategy for "Momentum" Equation. The fully explicit

formulation for the "momentum"” equation required a very, very small At to remain stable, resulting in

a very lengthy computational time. The implicit solution technique allowed larger time steps, while
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Figure 6. Comparison of explicit and implicit numerical strategies.

to the use of a larger time step; this is possible because they are usually unconditionally stable
(Anderson, Tannehill, and Pletcher; 1984).

To use the implicit scheme, a system of simultaneous linear algebraic equations is written for
the differential equation, and a Gaussian elimination procedure is used. The procedure is systematic,
_reducing the general matrix equ.ation to a tridiagonal system. This system can be solved with the
Thomas algorithm (Anderson, Tannehill, and Pletcher; 1984).

Central Difference vs Upwind with the Implicit Formulation. The "momentum" governing

equation could be discretized with either a central difference or upwind formulation for those terms

with the spatial derivative E_V;v, the terms with the B, and B, coefficients shown in Table VII. Figure
dz :

7, shown below, compares the central difference and upwind formulations.
To be as general as possible, both central and forward difference formulations were used in the

computer code. The central difference term adds numerical dispersive error, while the upwind
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(v

iv1 ]

Central Difference

(V)

i+1

Figure 7. Comparison of central and upwinding differencing.

formulation adds numerical diffusive error. These effects are discussed in the section analyzing the

modified equation.

Linearizing the "Momentum" Equation for the Implicit Solution Scheme. It was necessary to

" "linearize" the terms at the n+1 timestep, which had either a (V,)* or ﬂg in them. All Vs at the
s 0z

n timestep were already known, and therefore did not require linearizing.

The terms requiring linearizing were the second and second-to-last terms of the right side of

Equation 3.9, the "momentum" equation (shown as the terms with the "B," and "G," coefficients in

Table VII). The general method for doing this involved defining the V, term at timestep n+1, as

follows (Anderson, Tannehill, and Pletcher, 1984):

(Vg term) ™'« (V, term)” +

9(V, term
av,

s

(Vsnbl ._.Van)

(3.14)
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- The second term on the right side of Equation 3.9, the *momentum” equation (the term with the "B,"

coefficient in Table VII), was linearized as follows.

. 2 n+l -
From Table VII: v\ ‘ Ve ' v 2y (3.15)
v,o2=| =la1 2 - (V, term)=i=| -5
* 0z “\"- 0z s 2
V2 n

() v (3.16)

Vz n n+1 V2 n
(EP L i (] (4]

Linearizing: ( v z)n*l

s
2
Combining like terms: ( _V,j)"“: o nyne _( V2 )" (3.17)
2 5 s
The resulting n+1 terms were no longer non-linear (i.e., they no longer had a squared term at the n+1
timestep).
Similarly, the second-to-last term on the right-hand side of Equation 3.9, the "momentum”

equation (the term with the "G2" coefficient in Table VII), was also linearized:

From Table VIL: v term=v,2 (3.18)
Linearizing: . 18730 e I (3.19) .
. . (Vsz)n t= (Vsz)n+( BVS (Vs 1.Vsm)-. (Vsz) ta (Vsz)u+ 2V, (Vs I—Vs ) .
Combining like terms: (VSZ)ml: 2(Vsnvgn~1)_(vsz)n (3.20)

Final Form of the "Momentum" Equation for the Tridiagonal Matrix. The finite difference

equations were formulated as a general explicit-implicit scheme in Tables VIII and IX. This finite
difference scheme weighted the V, terms at timesteps n and n+1 (as shown in Table VII) by 6 and
(H)), respectively. When 6=0 the scheme was fully implicit, and when =1, the scheme was fully
explicit.

The procedure for writing the "momentum" equations as a tridiagonal matrix, involved: (1) re-

writing the weighted finite difference equation with like terms grouped together, (2) re-organizing the
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equations, (3) incorporating a.ppropriate boundary condifions, and (4) writing the equations in the
. tri;:liagonal matrix form. This 'procedure is shown in Tables VIII and IX.
Table VIII shows the use of a central difference of the spatial derivative term for V,, and
Table IX shows the upwind scheme of the spatial derivative term for V,. A comparison of the two
matrices for the central and upwind schemes are shown in Tables VIII and IX. The upwind and central

difference schemes were identical in form, except x, and x, were equated to zero for the upwind case.

An Analysis of the Modified "Momentum" Equation

The modified equation was determined for the finite difference form of the "momentum"
equation. The modified equation is the equation satisfied by ‘the numerical approximation when the
leading truncation errors were included. The leading truncation errors represent the difference between
the partial differential equation and the finite difference equation in its discretized form.

To evaluate the modified equation, the governing partial differential equation must be linear in

“the V, terms. This analysis is shown in Table X below and differs from the numerical model
formulation in that the B and G coefficients include V, as a constant. Thus, the modified equation is
only an estimate of the truncation error of the finite difference equation used in the model.

The truncation error was derived in the following manner: (1) the finite difference
approximation for the modified equation was determined by weighting the V, terms at both time levels
n and n+1 by 6 and (1-), respectively; (2) the Taylor’s series expansion for each derivative was
substituted into the governing equation; and (3) the lea'ding order term from the Taylor series

expansions were retained and all higher-order terms neglected; and (4) the second derivative with

respect to time, FV , was determined from the original partial differential equation, thus changing the

at?

time derivative in the truncation error to a spatial derivative. These steps are shown in Tables XI and

" X11, for the central difference and forward difference, respectively.
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TABLE VIII

SUMMARY OF DEVELOPMENT OF EQUATION 3.9
(CENTRAL DIFFERENCE SCHEME)

A weighted average of the finite difference approximation is determined by weighting the V, terms,
which were defined above at both timesteps n and n+1, by 6 and (1-6).

n - n+l_ s
+Bl[9[ (va) i1 (v, 1-1)+(1—9) [————-——(v') ELS v 1")]+
]* '

2Az 2Az
cl[e (V,) 3+(1-8) (V,) r;*l]m,[e(v_’);« (1-8)(2(V,)F(v) T -(v,2) 7)]+H-1+J1x[ev,) a4 (1-6) (V) ;M}u.

(ALAL:
At

CELAEL, oot

2Az

4]
ayan_| Ve
1‘1‘[‘,' ve _( 2 ) Jys

2Az

B0

c[e (V,) 2+(1-6) (V,) ‘;“]+D+E+F[6 (V,) 3+ (1-8) (V,) 2'1]4

(3.21)
Re-writing and grouping like terms:
-(1-8) (By+By(V,)? (1-8)(B, +B,(V,)"
S F RO T et RAESE Kl 2] AP
-20 a - a
[ LB ()7 A 0(-copeton 120 a7 o - D e
(3.22)
The terms can be re-named as follows, so as to set up the tridiagonal system.
X,=-D-E-H+I+J+L (3-23)
Explicit: 6s, _ (1-20) B(v,)7. R -85, (1-28) B(V,)7, 3.24
P A v 1 Yl=ﬁ+8(—C—F-G1+m +(1-20)G(V)}: Zi=5po+ iz L2 ( )
Implicit: - (1-6) (B, +B, (V)7 A a (1-6) a
plicit: o 2200, v a-m(eraaamin) oGl nmi)
(3.25)
Substituting the terms for x,, Xy, ¥y, Z;, Xy, ¥, and z, into Equation 3.22:
T (VT (V)T (V) £ V) (V) ], o3, (3.26)

Boundary conditions:
Bottom: (v),=0

Top: %:o or (V,)2,=(V)2, (v,)2i=(v,)i?




SUMMARY OF DEVELOPMENT OF EQUATION 3.9
(CENTRAL DIFFERENCE SCHEME)

TABLE VIII

(continued)
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Substituting i=k+ 1 into Equation 3.26: X, (V.) l:l +y, (V) ;:: +2,(V,) :: -x,(V,) :* v (V)

Substituting top boundary condition (V) Ram (V)2 (V) Ea= (V)3

(%:42,) (V) 17245, (V)1 = (3642,) (V) [+ 9, (V) 1 +X,

The following is the matrix representing the system of equations to be solved at each time step for
The right-hand side of the equations represent the knowns.

au(\/n+l
1

0x v 2
00 x5 2,

~ -

00x Yy, 2z
0 0 0 x,+2, ¥,

vy
(v 5
(v,

RAF.

(V) 5s

0 .
x,(V,), (V) z,(V); +x,
x(V,), NV, (), +x

L4

X ( Vs) k-1 +y1 (V') x *2, ( V-) K1 "xo

+(x+2) (V) e w0V, +0 +X,

(3.27)
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TABLE IX

SUMMARY OF DEVELOPMENT OF EQUATION 3.9
(UPWIND SCHEME)

A weighted average of the finite difference approximation is determined by weighting the V, terms,
which were defined above at both timesteps n and n+1, by 6 and (1-6).

a n 1 ne
05,.[ [(V)l‘Al (v‘)l]z,(l-e) (—-——(V)"ZZ(V) 1]]+
(2L A0, b, 2]
[} 2 J1a 2 )4 +(1-0) s - 2 i U7 2/
Az

Az

(v (v,)2
“[ Y

+

B,

c[e (V,) 2+ (1-8) (V,) ’;“]+D+E*F[ﬂ (V,)2+(1-8) (V,) ';'1]+

GO (V) 24(1-0) (V) TH{+GfH(V,)2% (1-0) (2 (V) (V) £ (V) o= Iook[8V,) 2+ (1-8) (V,) T

(3.28)
Re-writing and grouping like terms:
1-8)( )
( B‘( ')’+COF+G 1 +2Gy(V,)? —K] (v, )""0[ ) B‘wz(v')"’ v,
[_oa(ﬁ-c-p-clox) ¢(1-2e)( oc‘} v,)° ](V)"o[ LY %"Jﬂ](v)n o(.-D-B-HoIoJoL)
3.29)
The terms can be re-named as follows, so as to set up the tridiagonal system.
X,=-D-E-H+I+J+L (3.30)
EXpllClt: X,=0; Y‘_A_t+e(A -C-F-G. +I()*(1 26)( 5 +Gz)(V, ;: Z,= _251*»_(_1_%%6;_8’(‘/');‘1 (331)
. . 16
Implicit: %205 Yf'&"“’e)[[ B;f:( ')‘]*cuma 26,2 x] Zz— )‘B;+Bz( i)
(3.32)
Substituting the terms for x,, Xx,, ¥, Z;, X,, ¥, and z, into Equation 3.29:
x,(V)‘”‘ +y,(V)"" +z,(V)‘;:: =%, (V,) § )e +y,(V)"¢zl(V);“ X~ Y, (V, )"" +z,(V)';::-y1(V)"*zx(l/)M (3 33)

Boundary conditions:
Bottom: ( V,),=0

- d
TOP-B_‘;-=0 or (V)Ra=(V)L (VaEi=(v)E*
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TABLE IX

SUMMARY OF DEVELOPMENT OF EQUATION 3.9
' (UPWIND SCHEME)
(continued)

Substituting i=k+1 into Equation 3.33: X (V,) 24y, (V,) 2242, (V) 21 mx, (V,) 24+ 3, (V,) 2, 42, (V,) 2, +x,
Substituting top boundary condition (yz _(v,z, (V) I3=(v,) x,=0 and x,=0 (Equations 31 and

32)! 2, (V)T ey, (V) =2, (V) 243, (V) 2, 4%

The following is the matrix representing the system of equations to be solved:
1 (v 0

00y, 7 (v,ya y1(Ve)a +Z (V) +X,
000 y; z ‘ Py Vi(V,); +z, (V) +x,
; (V)5

T Y

R S
000y z| [(VIFY  [mV)y +5 (V) +x
0 0 0002y, _(V.)fr:: Z (V) g +¥1(V) gy +X,

(3.34)




48

Accuracy. Accuracy was determined by the order of errors in the leading truncation error.
Thé lowest order term in the truncation error gives the order of the method. In this case, the forward
time centered space method is O[At,AZ’] (i.e., second order in space), and the upwind method is
O[At,Az] (i.e., first order in space). Higher order indicates greater accuracy. Thus, the central
difference scheme was. more accurate.

Consistency. Consistency was an indication of the extent the finite difference equation
approximated the governing partial differential equation. Consistency was determined by taking the
limit of the truncation error as Az andA At go to zero, and shov.ving that the result equates to zero. In
both the central difference and the upwind, the solution was linconditionally consistent.

Analysis of the Truncation Error of the Modified Equation. The coefﬁcients for each of the

derivative terms in the truncation error were compared. The magnitude of the numerical diffusive and
- dispersive errors were analyzed for §=1 (an explicit scheme). This provided a simplistic comparison
of these errors.

Terms with even derivatives led to numerical diffusion, and terms with odd derivatives led to
numerical dispersion. Whereas the even derivative diffusive error was dissipative, the o;ld derivative
dispersive etror caused phase relations between various waves to be distorted (Anderson, Tannehill,
and Pletcher, 1984). The mz;gnitudcs of these terms for both the central difference and upwind schemes
are shown in Equations 3.46 and 3.54, respectively.

For both the central difference and upwind, the magnitude of the diffusive and dispersive terms
were compared. Because the coefficient C, (C,=C+F+G-K, as shown in Tables XI and XII),
included the drag force (the term with the K coefficient) which was always significant, the dispersive
term was usually much larger than the diffusive term(s).

For both the central difference and upwind schemes, At and Az could be decreased to improve
numerical accuracy. Although reducing At changed the absolute magnitudes of the first two terms in

Equations 3.46 and 3.54, the magnitude of the dispersive error remained significantly greater. On the



TABLE X

FORMULATION OF MODIFIED EQUATION

f(t) term

(v' term)"'

Coefficient (all terms evaluated at timestep n)

(VI F-(v) i

A=(1-¢)p;+ep,

At
Central Central B (1 1-e
=p 2o Vo— (1-8) VYN ——]+sp ,V,
difference: difference: % " ® ‘
(VJ) Fa- (V) § (V) T~ (v §
2Az 2Az
Upwind: Upwind:
(V) ia- (V)1 (v)ia-(va it
Az Az
(v oy -1
et ot
~P1(2,Vo) Be
5t

B-% (eove) 232

P de
F-_z—; (24Vp) =

. Je
G--—‘T" (e,%,-V,) (1-¢) 5=

H=-p, LAY

I=eg(p;-p,) *

r

=4 *
J: (1-2) 'OVL!

F_x

=y

Oe x

13
b (1-e)m, 0z

*Note these terms are on the right side of the equation.
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TABLE XI

THE MODIFIED EQUATION
(CENTRAL DIFFERENCE)

A weighted average of the finite difference approximation is determined by weighting the V, terms,
which were defined above at both timesteps n and n+1, respectively by 8 (i.e., explicit) and 1-6
(i.e., implicit). '

V)2 -(v,) ;l (V) 22-(v,) ';'*]]
{GB[ Az +(1-0)B — a4z |

[ (V)m1-(v,)
At

[ec(v,) (-8 cw,) ‘;’1]+D+E~{0F(V,) 1+ (1-8) F(V,) ‘;“]+

[OG(V,) 7+ (1-8)G6(v,) Tllon-pm{ex(v_) (-0 Kx(V,) ';"]+L

(3.35)
Based on Taylor series, the following terms can be substituted back into the finite difference
equation: . ‘
Forward time: Y, (V*-(V)"_ A &V, I+ ' (3.36)
Bt At 2 gea? "t
Central difference at n: ¥, _(Wfa"(afy a2 20, 3.3
9z '° 2Az 31 gz3 77T
Central difference at n+1: e L N as S
oz = 24z 31 §z2 17T
(3.3%)
The first two terms of the weighted average finite difference equation can then be rewritten,
including the truncation error:
RALLSAY CATIICAY] 2 0 (V)= (v,) e 1
A (——-———v 1At v ‘]‘—Az—t%%)lnh . .]*08 [————v ‘;AZV "Jo% a‘a;") 4., .}&(1"3)8[ v. 1'2‘sz ES ‘)+.A§. a’(g‘ +, . ]
(3.39)
The truncation error is:
At PV, Az? PVy° Az? PV,
A[——szac—zllnu . ] +63[+3—zl—a(;)—+. . .]+(1-6)B[¢3—7;-—(a-%—+. . ]
(3.40)

The original partial differential equation can be written as follows (with the coefficients as defined
for the formulation of the modified equation):

AV, 5%
8t oz

+(C+P+G-K) V,+ (-D-E-H+I+J+L) =
More simply:

av, av,
A—="+B—2+C,V,=D,, where C,=C+F+G+K and D,=-D-E-H+I+J+L
z

3t 23
And, finally:

(3.41)




51
TABLE XI
THE MODIFIED EQUATION

(CENTRAL DIFFERENCE)
(continued)

Taking another derivative with respect to time (of the original partial differential equation again) in
order to change the time derivative in the truncation error to a spatial derivative:

*Y, B3 (av,)_ c, v,

Bc: Adz\3t) A ot
(3.42)
Substituting i‘is from the original partial differential equation into Vs above:
at at?
*v, Ba( BV, G Dl) cl( BaV, C Dl)
P2 Adz\ 20z A <A/ A 2 A2
(3.43)
Re-writing and grouping like terms:
&V, (B2 &V, (28G9, ((C)), (GD
Fm) () () (52)
(3.44)
Substituting 3V, (Equation 3.8 ) into the first term of the truncation error for the central
at?
difference scheme (Equation 3.39):
At 2BC, C, C,D, Az? PV Az? P(V,>?
-AT[(—]?O( ) .(S__)_) -( 1) . .]¢es[‘ =3 .-—g?)—h..]*(l-e)84 = -J;;;),—-«..]
Simplifying:
(BzAt)Pz_Vi{BclAt)iY! (ﬁ)'At) {QDAC) OB[ Azz—(—)—aj +. ]+(1—9)B[ Az? ——(—)-—y V‘r1+ ]
AJet L A Jox R 2A 3T oz az (3.45)

Accuracy is determined by the order of errors in the leading truncation error. (Note: this can be

seen in the truncation error both before and after substituting for FVy .) The order of errors are
at?
At and AZ2.

Consistency is determined by taking the limit of the difference between the partial differential
equation and the finite difference equation (this difference is the truncation error) as the grid
spacing Az and At go to zero.

1im [[5’“]6‘" o("c‘“)‘w {@——“ ) {_—C*D;“] es[ A BVY" ].(1-3)3.“’3' -M.‘..”-o
Az, At~0

2A ) 3z 31 o 31 az?

This solution is unconditionally consistent.




TABLE XI

THE MODIFIED EQUATION
(CENTRAL DIFFERENCE)
(continued)

52

An analysis of the coefficients (of the derivative terms) for an explicit scheme (§=1) are:

BAt AV,] [BGAE AV, lgpaz® AV, |
22 Az? A Az 3t A"

Multiplying each term by _A4 Z2_ | leads to:
AV B

BAt CAtAz Az

"2T] —a [F]

Diffusive Dispersive Dispersive

(3.46)

Each term can be evaluated by substituting approximate values for A, B C,, At, and Az, as
follows:

A=1

B=0, where B=B,+B,V, (see Tables VI and IX)

C,=10**, where C,=C+F+G+K, and G=G,+G,V, (see Tables VI and IX)

At=1

Az=1
Evaluating the relative magnitude of the three terms:

(-0 [-10°] [-107]

Diffusive Dispersive Dispersive

“*Based on using constitutive properties for kaolin suspensions (Wells and Dick, 1993)
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TABLE XII

THE MODIFIED EQUATION
(UPWIND)

A weighted average of the finite difference approximation is determined by weighting the V, terms,
which were defined above at both timesteps n and n+1, respectively by @ (i.e., explicit) and 19

(i.e., implicit).
(V) 1, - (V) L. (V) ia-(v,)
fo i ] oo L2

[eCtv.) 5+ (1-0) C(V,) T+D+EHBF(V,) §+ (1-6) F(V,} 5]+

(v (v, e
A[ At

[OG(V,) 7+ (1-0)&(V,) ‘;‘1]'+H-I+J4{9KV,) +(1-8)k(V,) ‘;‘1]+L

(3.47)
Based on Taylor series, the following terms can be substituted back into the finite difference
equation: .
Forward time: aV m“ - §V2" EXAZTIN . (3.48)
2 "
Upwind at n: LA (Vg (Vo) _ Az #(V)" I+ ' (3.49)
3z =" Az 21 gz2 4
Upwind at n+1: aV.I S VAT, Az BT
ﬂ‘l Az 2l az: F R
(3.50)
The first two terms of the wéighted average finite difference equation can then be rewritten,
including the truncation error:
(V)21-(v,) V2~V 2 ap Fv)e Vo=V, 2) 4, &,
frmens) sean o Dne0i) s, | W50 e |
(3.51)
The truncation error is:
A[-Atﬂ_}.l +, ]+63[+.A_2_§(_'Ln . ]+(1—9)B[ Azm+...] (3'52)
2 at2 322 oz?

The second derivative with respect to time (of the original partial differential equation) can be
derived, using Equations 3.40-3.43 in the previous table. (Note they are the same as for the central.
difference scheme.) The final equation (3.43) is re-stated here:

Fv, 2V, (2BC, ov, . ), (&P
e (5w (S (5R)

Substituting 7 s FV (Equation 3.43) into the first term of the truncation error for the upwind scheme
at? »

(Equation 3.51):

a8 #v, (2BG)oV, (&) Gb + + +A Fv)° +(1- LA PVt

SR RS )ASR) e 357 Jrooosl 4170

21 9z2 21 dz?

Simplifying:

BAE| &V, BClAt)aV‘ (Cl)‘At:) {ClplAt) Az 9’(V,!" Az Py
(Zﬁ)az’{ A )oz Cua A Wy M v Fye (- 9)3*—| St

(3.53)




54
TABLE XTI

THE MODIFIED EQUATION
(UPWIND)
(continued)

Accuracy is determined by the order of errors in the leading truncation error. The order of errors -
are At and Az.

Consistency is determined by taking the limit of the difference between the partial differential
equation and the finite difference equation (this difference is the truncation error) as the grid
spacing Az and At go to zero.

Bac\FV, (Boat)av, [(c)ac _(D,Ac) *V,)° . . v, .
L C oA MEC I TN RIS B

This solution is unconditionally consistent.

An analysis of the coefﬁcients (of the derivative terms) for'an explicit scheme (§=1) are:
At AV,] [Bo At Av, A
[ 5] [P e i

Multiplying each term by AAZ 5 leads to:

5

][] (5

Diffusive Dispersive Diffusive

(3.54)

Each term can be evaluated by substituting approximate values for A, B C,, At, and Az, as
follows:

A=1 :

B=0, where B=B,+B,V, (see Tables VI and IX)

C1=10%, where C =C+F+G+K, and G=G,+G,V, (see Tables VI and IX)

At=1

Az=1 '
Evaluating the relative magnitude of the three terms:

(-0] (-10%] -1}

Diffusive Dispersive Diffusive

*Based on using constitutive properties for kaolin suspensions (Wells and Dick, 1993)
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other hand, if Az was decreased, the relative dispersive trror aecreased, and the relative diffusive error
remained constant or decreased. Decreasing At and Az sufficiently to eliminate significant diffusive

and dispersive errors was not practical because of the increased computational time required.

_Artificial Diffusion (or Artificial Viscosity)

An artificial viscosity or diffusive term can be introduced to counteract the mathematical
effects of the dispersive error introduced by the numerical scheme (Von Neumann and Richtmeyer, as
cited by Plaskett, 1992). This artificial viscosity term would result in smoothing the shock front in the
numerical solution. The term will be of the form of the diffusive term, i.e., a second derivative using

‘

central finite differencés, such as:

w’p asz =w/ stu—z V51+V34—1 Where; ®= “’/ps (3,55)
$ 9z2 s Az2 Az?
and w’ is the artificial diffusion coefficient [L*/T].
PV, -
0Py =0 (Ve 72Ve 4V, ) (3.56)

. Weighting the V, terms by 6 and (1-6) respectively for the general explicit and implicit schemes:

%V,
w’ azzs =00 (V,, -2V, +V, )+(1-0) o (V, -2V, +V, ) (3.57)

Adding the artificial viscosity, defined in Equation 3.57, to Equation 3.26 (or Equation 3.33):

(x,-(1-6) w? (Vo) 357 +(72* (1-0) (20)) (V) 5 (2, (1-0) ) (V) 717

= (4, +00) (V) 2 +(7,-0(20)) (V) 24(z,+80) (V,) 2 +x, (3.58)
And, finally, redefining the x,, y,, z,, and X,, y,, and z, terms used in Equations 3.24 and 3.25 (and
3.31 and 3.32): .

X,=%,-(1-0) w; Y,=y,+(1-6) (2w); Z,=z,-(1-0) w;

X,=x,+0w; Y =y -6(2w); Z =z +0w (3.59)
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These re-defined terms were substituted into the tridiagonal matrix. solution form in Equations 3.27 and

3.34.

Comparing the Numerical Model to an Analytical Solution by Soo

The numerical gravity sedimentation model, with the implicit formulation, was compared to
Soo’s (1989) analytical solution for "the simplest nontrivial situation”. Soo (1989) made the following
simplifying assumptions: (1) no liquid flow out the bottom (V1‘=0 at z=0) and (2) solid density much
larger than liquid density (p,> >p,). Soo’s (1989) equations also do not consider the effect of effective

- strength, ¢’. Therefore, to simulate Soo’s simplified case, o’ was set equal to O within the numerical

model. ‘
Soo’s (1989) analytical solution for settling velocity, V,, and fluid velocity, V, was:
TV (1 ey < ViF (17, (3.60)
.9
where:

F
F’=——s_‘;2 =10 sec™?
e

a,=1-g, (volume fraction solid)

The boundary conditions in the numerical model at both the top and the bottom were:

V=0 and V=0

The numerical model was simplified by dividing both sides of Equation 3.9 by p, and then

equating P1_, (based on the assumption that p,> >p)). The initial condition of V,=0 at t=0 was

Ps

“assumed. The following coefficients, shown in Table X, were used to simulate Soo’s simplified case:
A=g¢
B=¢V,=0
C=D=E=F=G=H=0

=-£g
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K= _ (ff;l)l; =-F, =—F (see Table II)
s

.A comparison of the analytical solution to the numerical solution is shown in Figure 8.

Constitutive Relationships

Constitutive relationships were required to model gravity sedimentation. These relationships,
the coefficient of volume compressibility, m,, and intrinsic permeability, k, are both functions of
porosity, &.

Coefficient of Volume Compressibility. The coefficient of volume comprssibility, m,,

L4

describes the empirical relationship between porosity, £, and effective stress, o°, where:

,,,V:_aa_e/ ' (3.61)
s

Plaskett (1992) determined and used the following constitutive equation, which fit the
experimental data for cake filtration from Wells (1990).

e=vo/ 1 -, ©.62)

porosity [-]
coefficient for dimensional consistency [L-T%/M]
effective stress, kPa [M/L-T?]
empirical constant, = 0.54 kPa [M/L-T]
; = empirical constant corresponding to limiting effective stress [M/L-T?]
& = empirical constant corresponding to limiting porosity [-]

1Y

~

Qe Qq ¥ ™
I

A plot of the equation (3.62) compared to the experimental data is shown in Figure 9.

As seen in Equations 3.61 and 3.62, the coefficient of volume compressibility, m,, was a
function of £ and ¢’. Knowing ¢, a root finding technique was' required to determine ¢’. Knowing o’,
as well as g, allowed m, to be determined.

A bi-section techniciue was used for the root finding algorithm. An initial guess for ¢° was
required for this technique. After calculating the corresponding &, ¢° was either doubled or halved

until its corresponding porosity and the porosity corresponding to the previous guess were on either
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Figure 8. Comparison of Soo’s (1989) analytical solution to the numerical model
results,

side of the known porosity value for which the root was being sought. This technique was repeated
until the two values for porosity were very close (within +1.0x10°).

The coefficient of volume compressibility, m,, as given by Equation 3.61, was determined by

taking the natural log of both sides of Equation 3.62,

lne:( In(ve’) -1n el)

g’
o/-ag/,

and differentiating by parts.

%a,;:( ¢ 1 __ ¢ ln(vo’))aa’

o’~0'; (ve) (o/-a’))?
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After multiplying both sides by -¢, and substituting Equation 3.62 for &:

mv=—_ai=—((va’) /C/—el)( ¢ 1 __ ¢ 2ln(vc’)) (3.63)
2

do’ a/-o o’-a’; (va’) (o’-0’)

A plot of the relationsl;ip between porosity, &, and the coefficient of volume compressibility, m,, is
shown in Figure 10.

Another technique by Wells (1990) used the following constitutive equation, which fit
experimental data for gravity sedimentation and cake filtration.

o/(kPa)=1.69x10° exp(-28.9¢) . (3.64)

where:

m,(kPa™)=2.04x10"1 exp (28.9¢e) (3.65)
Figures 9 and 10 show a graphical presentation of Equations 3.64 and 3.65.

Intrinsic Permeability. Experimental data for kaolin clay suspensions collected at the Cornell

High Energy Synchrotron Source (CHESS) showed that the intrinsic permeability is an exponential
function of the following general form (Wells, 1990).

k=aexp (BeY ‘ (3.66)
Wells and Dick (1993) determined the spatial and temporal distribution of permeability within the filter

cake, and a best-fit equation for £ <.65, as shown in Figure 11, was:

k, (cm?) =2.7x 107 exp (20¢) | (3.67)
For £<.65, the scatter appears to be in the limits of the experimental technique. However, in the
higher porosity regions where the cake was growing (£=0.65), the data scatter appeared to be greater
than the limits of the experimental technique, and an equation with a different set of coefficients was
.determined. Another exponential equation was used in the upper range (¢=0.65), such as:

k,=a, exp (B,¢e) : (3.68)

The coefficient §, was input to the model, and the coefficient c, was determined by setting

Equation 3.67 equal to Equation 3.68 at £=0.65, i.e.,
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Figure 9. Plot of data obtained from Wells (1990) and constitutive relationships for
porosity, &, vs. the effective stress, ¢’, from Plaskett (1992) and Wells (1990).

2.7x107% exp(20x0.65) =a, exp ($,x0.65) (3.69)

®,=2.7x 107 exp((20-P,) 0.65) ' (3.70)
B, was determined by calibrating porosity model predictions to data.

In the computer code, the permeability was constrained to be a function of the initial porosity

if £> ;5. This occurred in the upper range, and Equations 67 and 68 became:
k, (cm?) =2.7x 10718 exp (20 &%, , 3.7D

initial)

ky=a, exp (B, € nicia1) (3.72)



. m,(kPa™')=2.04x10 exp(28.9¢) /

= (Wells, 1990)
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Figg' re 10. Plaskett’s (1992) and Wells’ (1990) relationships between porosity, ¢, and
the coefficient of volume compressibility, m,.
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Figure 11. Plot of porosity vs. permeability from cake filtration data for kaolin clay
suspensions (Wells, 1990)
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CHAPTER IV
MODEL RESULTS
CALIBRATION TO GRAVITY SEDIMENTATION DATA

The model was calibrated by varying model parameters until model predictions of suspended solids
compared well with gravity sedimentation suspended solids dat'a obtained by Wells (1990) at the Cornell
High Energy Snychrotron Source (CHESS). The data was real“time suspended solids concentration
measurements at 0.5 mm vertical separation and interpolated to 1 minute intervals. Experimental error
in suspended solids concentrations between replicate experiments was on the order of +8% (Wells,
| 1990).

The model parameters included: the At, the scheme (central difference or upwind), and the w
factor (a multiplier after calculating the artificial viscosity from the initial porosity (¢;), m, (the
coefficient of volume compressibility) and the permeability in the upper range.

Wells (1990) obtained six different gravity sedimentation data sets for kaolin clay suspensions.

The six data sets each had a different initial suspended solids concentration (low, medium, and high), .
cell size (small, medium, and large), temperature (24°C, 26°C, and 27°C), and time period of
experiment (ranging from 10-29 minutes) . The appropriate initial porosity, cell size, temperature, and
time length were input into the model. Initial porosity could be calculated knowing initial suspended
solids concentration and solid density (assumed to be 2.616 gm/cm’ for kaolin clay), C;=p,(1-£).

The model was calibrated to the data set SEDM1K (D2), with was based on a medium initial
concentration (0.31 g/cm®), medium cell size (8.1 cm x 1.905 cm), 24°C temperature, and an 18
minute duration. The calibrated model used: a time step At of 1 second, the central difference scheme,

an w factor of 0 (i.e., no artificial diffusion), constitutive relationship for m, as shown in Equation 3.65
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‘from Wells (1990), and the constitutive relationship for pex:meability with 3,=24 such that the equation

for k, in Equation 3.68 is as follows.

k,(cm?)=2.0 x1077 exp (24¢) (CHY)

A plot comparing the relationships of k; and k; is shown in the model sensitivity section.
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cm?, and temperature=24°C.
Figure 12 shows the calibrated model predictions of suspended solids concentration to suspended solicis
data set SEDMIK (D2). Even though the model domain included prediction of the clarification at the

top of the model domain, CHESS data was limited to the thicl&ening region. The mean error and root
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‘mean square (RMS) errors, defined as Y, (Cuara=Cpodes) and \J Y (Cuara=Cuoger) 2 Where Cis
. T 5
thg suspended solids concentration and n is the number of observations, are shown in Table XIII.
Solid velocity predictions from the same model simulation, with the calibrated model parameters
are compared to calculgtions of solid velocity from suspended solids data in Figure 13. The.solid
velocity from the CHESS prorosity data was calculated using Equation 3.10. The mean and root mean
square (RMS) errors are shown in Table XTII.

The simulation took approximately 80 seconds using a 486 25 mHz PC to approximate 15 minutes

of real time. .
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cm’, and temperature=24°C. (Note: 10°® mm/second is a default value for any solid velocity
<10%)
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The mass vs. time was plotted in Figure 14 for the model simulation which was calibrated to the
SEDMI1K (D2) data set. Figure 14 shows that mass is, in gemneral, conserved during the model
simulation. It can be noted that at the onset mass is lost rather rapidly, but by the end of the simulation
approximately half this mass has been regained. In the case of the low initial porosity simulations, far

less mass is regained by the end of the simulation.
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Figure 14. Plot of mass Vs. time for the model simulation which was calibrated to the
SEDMIK (D2) data set.

o

MODEL VERIFICATION

Without changing the model coefficients for the constitutive relationships from those used during
the calibration, other simulations were run in order.to verify the validity of the model predictions. As
during the calibration, the time step At=1 and the central difference scheme was used during the
simulations. The w factor was O for the medium and high initial concentrations. In the case of the two
data sets with low initial concentration, SEDL3K (D7) and DPK6 (D11), the model simulation became

numerically unstable without artificial viscosity.



67
Table XTII shows a summary of comparisons between the model predictions of suspended solids
and solid velocity profiles and the CHESS data with their respective mean and RMS errors. Figures
15-19 show the model results graphically compared to the data for both suspended solids concentrations

and solid velocities.

TABLE X111

STATISTICS FROM MODEL RESULTS FOR SUSPENDED SOLIDS CONCENTRATION
COMPARED TO GRAVITY SEDIMENTATION DATA FOR KAOLIN CLAY SUSPENSIONS -

CHESS Data Initial Cell Size Temp No. of Mean RMS Conserva-
Concen- | (cm?) (§®) comparisons Error** Error** tion of
tration ** Mass***
(g/em®) 1
SEDMIK (D2) 0.31 15.4305 24°C 531 004988 .016376 99.5%
267 -.000667 .001758

SEDL2K (D7) 0.48 26.3250 24°C 832 1029761 1046786 99.6%
400 -.000389 000590

SEDL3K (D10) | 0.14 26.3250 24°c | 335 1 0972091 .130913 98.0%
191 -.003050 1005939

DPK6 (D11) 0.15 8.0190 27°C 216 041247 1086124 98.2%
115 -.007026 .007767

KDM10 (D13) 0.31 15.4305 26°C 274 .013180 .041873 99.2%
115 -.000610 .001483

LKD4 (D14)* . 0.31 26.33 26°C 335 -.080199 .102047 99.4%
267 -.000721 .001769

*After 20 minutes Ap of 15 psi applied
**First number is for suspended solids (g/cm’), and second number is for solid velocity (mm/sec)
*4*Based on final mass divided by initial mass
Correlations of the calibrated model to data with a low initial concentration indicated that the
conpstitutive parameters in the low suspended solids region may need to be readjusted. Simulations with

low initial concentration required the addition of artificial diffusion. The w factor of 10° was used, and

still some instability was apparent.
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MODEL SENSITIVITY

Model sensitivity to the following parameters were considered: coefficient of volume
compressibility (m,), permeability (k), artificial viscosity (w factor), central difference vs. upwind, time
stop (At), and degree of explicitness/implicitness (§). Predicted suspended solids profiles at 3 minutes

and S minutes were compared between simulations with two different sets of parameter values.

. Constitutive Relationships

Permeability. Figure 20 is a graphical presentation of k, (Equation 3.67) and k, (Equation 4.1)
superimposed over the plotted pgrmeability data obtained from Wells (1990). The permeability was
compared between the calibrated coefficient value for the upper( range (£=0.65), §,=24, and §,=21.
This difference had a sigﬁiﬁcant effect, as shown in Figure 20a. Both the 3 minute and 5 minute
model predictions for §,=21 predicted less concentration at the bottom and more concentration at the
top. |

Coefficient of Volume Compressibilty. The constitutive relationship for m, by Wells (1990) was

compared to the relationship by Plaskett (1992), as shown in P:igure 21b. Model simulations with
Plaskett’s (1992) relationship predicted an almost constant concentration at the bottom, because of the
use of a limiting porosity (&) at which m, was tumea on. If the porosity was greater than ¢, m, was
set to a very large number, thus making the effective stress term approximately 0. The rationale for

this approach was that there would be no effective stress above a limiting porosity value, &;.

Central Difference vs. Upwind

The central difference and upwind formulations were compared for the parameters of the data set
SEDM1K (D2), with medium initial concentration, as shown in Figure 22a. The model predictions
appeared the same for the two formulations, indicating that the convective acceleration term (where the
two schemes were applied) was very small. This is shown in a later section which compares the orders

of magnitude of the different terms of the equation.
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Comparisons of two simulations with low initial concentrations also produced similar results.
Thesé two simulations were based on the parameters of data set DPK6 (D11), and included an w factor

.of 108,

Time Step, At

The effect of changing the time step, At, from 1 second to 0.1 seconds is shown in Figuré 21b for

the calibration model simulation. The model predictions appeared the same.

Effect of Artificial Diffusion

Changes in the w factor between simulations had a significant effect at the bottom of the domain
near z=0. Figure 23a compares w factor=10" to 10° (used in (thc verification runs for the low initial
concentration). Whereas with a At=1, the simulations with low. initial concentration would not run,
lowering the At to .01 with an @ factor=1 caused the simulation to run for an elapsed time of 143
seconds. This suggests that a small enough time step could compensate for the w. This is disucussed
‘in the section, Analysis of the Modified "Momentum® Equation, which shows that the numerical

dispersive error decreases as At decreases.

Degreee of Explicitness/Implicitness

Setting 6 at 0.6 or greater (model is fully explicit at 6=1) caused numerical instabilities in the
model for the calibration simulation with w=0 and a time step of At=1. As the degree of explicitness
increases, the At must decrease or the model will become unstable. A comparison of § at 0.0 and 0.5,

shown in Figure 23b, appeared to result in the same predictions.
MAGNITUDE OF TERMS

Figures 24-26 show the magnitude of terms given by the model for low, medium, and high initial

concentrations. The process was gravity-driven. Therefore, the gravity term was always significant,
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whereas the inertial terms were' many orders of magnitude less than gravity. However, the lower the

initial concentration, the larger the inertial terms.

The effective stress was largest at the bottom of the domain, and decreased with height.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

This research developed, _calibrated, and verified a numerical computer model of the physics of
gravity sedimentation. This is an important step towards a more comprehensive model simulating the
‘gravity section of a dewatering process, such as the graﬁty drainage section of the belt filter press.

The gravity sedimentation model was developed from a physically-based numerical model of cake
filtration by Wells (1990). Both the cake filtration and gravity sedimentation models were based on the
liquid and solid continuity and liquid and solid momentum equations. However, as opposed to the cake
filtration model, the inertial and gravity terms were retained in the gravity sedimentation model.

Two final governing equations were developed - solid continuity and total momentum with
continuity ("momentum"). The finite difference cquati;:ns used a "space-staggered” mesh. The solid
continuity equation was solved using an explicit formulation, with a forward difference in time and
central difference in space. The "momentum" equation used a fully implicit formulation with a forward
difference in time. The modeler could choose either a central difference or forward difference in space
for the convective acceleratior.x terms. Non-linear terms were linearized. Boundary conditions and
-constitutive relationships were determined. Numerical errors in the numerical model were analyzed.

The calibrated model was extremely sensitive to the constitutive relationships used, but relatively
unaffected by the use of central difference or forward difference for the spatial derivative term in the
"momentum"” equation. The model was stable when §=0.5 or less, and unstable as it became more
explicit with no artificial viscosity. Correlation of model predictions of suspended solids concentration
and solid velocity to dz;ta taken at CHESS by Wells (1990) show excellent agreement at initial
suspension concentrations of 0.31 g/cm’. Agreement was still good, but not excellent, at initial

suspension concentrations of 0.14 g/cm® and 0.47 g/cm’ using calibrated constitutive properties from an
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initial suspended solids concentration of 0.31 g/cm®. Model runs with low initial concentration required
‘the. addition of artificial viscosity to remain stable. The mass, in general, was conserved during the
model simulations.

The gravity term was always significant, whereas the inertial terms were many orders of magnitude
less than gravity. However, the lower the initial concentration, the larger the inertial terms. The
relatively unimportant inertial terms are a result of the small particle size and choice of constitutive
model. .

As shown by the model’s sc;,nsitivity to the constitu'tive relationships, they could be improved with
further research. Suspensions with larger particle sizes could be studied to determine under what

P
conditions the inertial terms are important.

In addition to the belt filter press, the model can be applied to cake filtration and the design of

gravity sedimentation tanks.
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APPENDIX A

GRAVITY SEDIMENTATION - FORTRAN COMPUTER CODE
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C GRAVCU13.FOR (5/93)
C****************************************************************************
C NUMERICAL SCHEME IS EXPLICIT FOR SOLID CONTINUITY WITH FTCS
C SCHEME IS EXPLICIT/IMPLICIT FOR “MOMENTUM"™ EQUATION WITH
C FORWARD DIFFERENCE IN TIME. MODELER CAN CHOOSE BETWEEN
C UPWIND OR CENTRAL DIFFERENCE FOR SPATIAL DERIVATIVES .
C****************************************************************************
c

IMPLICIT DOUBLE PRECISION(A-H,0-2)

real inert2, inert3, icoef, jcoef, kcoef, lcoef

COMMON/OUT/ TIML,NPR,NITL, INPOR

COMMON/PAR/ VO,EQ

COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0,TIM, TEMP,

1 EI,PAPP,RM,DL,NFIL,NSOL, FACT,EYLD
COMMON/PRIM/ U(100),US(100),P(100),SIGMAC100),
1 AA(100),88(100),CC(100),DD(100)

COMMON/DIAG/ IDIAG(8),IPLOT,IDT
COMMON/DOMN/ DIST(100),EET(100),UST(100)
COMMON/PERMC/ PERM2(100)
COMMON/AVCAL/AVA,AVB, EL
COMMON/PERMCAL/PKA1,PKB1,NKC,PKA2,PKB2,EKP,A
c
C READ IN INPUT FILE:
CALL INIT(EO,THETA) 4
WRITE(*,333)
333 FORMAT(1X, 'ENTER DT IN S IN F10.0/)
READ(*,*)DT
TIM=0.0
-The following will determine whether to use an upwind or
central difference scheme for the spatial derivative of
solid velocity, DUDZ.
-SCHEME=0 (Central Difference); SCHEME=1 (Upwind)
WRITE(*,444)
444 FORMAT(1X, /ENTER SCHEME: O=Central Difference (numerical’,
. ! smoothing); 1=Upwind’)
READ(*, *)SCHEME

s NeNeNg]

SUMQ=0.0

NSTOP=0

VOLCUM=0.0

DLL=DL

DL2=DL

NIT=0

N30=1 .
NP30=1 -
DIST(1)=0.0

NHOLD=0

NFILT=1

.C

C ESTABLISH DZ AND DIST (PRINTED AS J=2,K+1):
IF(INPOR.NE.1)GO TO 65
DZ=DIST(K+1)-DIST(K)
DIST(K+2)=DIST(K+1)+DZ
DIST(K+3)=DIST(K+2)+DZ

C REDO DOMAIN IF NO SOLIDS IN CELLS DUE TO SEDIMENTATION
DO 64 J=1,K+1

64 IF(EE(J).EQ.1.0)GO TO 63

C

C DVOL IS TOTAL WATER VOL ABOVE CAKE AFTER FORMATION PERIOD
63 DVOL=AREA* (K- J+2)*DZ

K=J-2
DL=DIST(K+1)
DLL=DL
DL2=DL
GO TO 1
C
65 DZ=DL/REAL(K)
C

DO 4381 J=1,K+2
4381 DIST(J)=REAL(J-1)*DZ
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do 457 j=1,k+1
if(j.eq.write(12,507)dist(j),ee(j), tim
1f(j.eq.1)write(18,507)dist(j),us(j),tim
if(j.ne.Nwrite(12,508)dist(j),ee(])

457 if(j.ne.urite(18,508)dist(j),us(j)
ngo=0

c

1 AV=AVV(EE(1))

c

CR*RARARARARAAAAARAAR AR AR AR AR AAARAARRARARR KRR AR KRR AR AR R R AR hhdhhhdtdhdkk ki

C This solution technique involves two equations: (1) solid continuity;
C and (2) total momentum with continuity ("momentum"). The solid
C continuity is used to solve for poroisty at the next timestep, and the
C the "momentum" - using the newly solved for porosity - is used to
C solve for the solid velocity at the next timestep.
c********************************************************************tt******
[»
C BOUNDARY CONDITIONS
uUs(1=0.0
US(K+2)=us(k)

700  CONTINUE
C -Time: Compute max. allowable time step based on stability
c restrictions:
c rs
ee(k+1)=ee(k)
DO 4431 J=1,K+1
4431 PERMZ(J)=PERM(EE(J))
PERMZ (K+2)=PERM(EE(K+1})

21 CONTINUE .
IF((TIM+DT).GT.TIML)DT=TIML-TIM

NIT=NIT+1
TIM=TIM+DT

C -Density parameters for kaolin slurry:
DENL=1.0
DENS=2.62

C -Other Parameters/Definitions:
6=980.

C CALCULATE VO
u(1)=vo
v0=0.0

C .

C THE FOLLOWING DO-LOOP BEGINS THE SOLUTION PROCESS:
DO 10 I=1,K .
if(ee(i).eq.1.0)go to 10

c

C DEFINITIONS FOR DISCRETIZATION:
C -Distance:
IF(I.GE.2)THEN
DZM=DIST(I)-DIST(I-1)
ELSE
DZM=DZ
DZP=DIST(I+1)-DIST(I)
END IF
DZ8=0.5*(DZM+DZP)
C -Porosity:
IF(I.GE.2)THEN
EE1=(EE(I+1)+EE(1))/2.
EE2=(EE(I-1)+EE(I1))/2. -
C UPPER BC KARAAAR KAk ARk Rd

IF(1.EQ.K)EE1=1.0

C ki dkkkkdkkddkdk
ELSE
EE1=(EE(I+1)+EE(I))/2.
EE2=EOD
END IF
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SOLID CONTINUITY EQUATION: *
EET(I)=EE(I)+(((1.0-EET)*US(i+1))-((1.0-EE2)*US(i)))
. *DT/DZP
if(eet(i).gt.1.0)eet(i)=1.0
continue i

CALCULATE EOT AND VOT -NEW VARIABLES
EOT=EET(1)
V0T=0.0

COMBINED MOMENTUM EQUATION:
-Due to the repition of these, the following variables are created:
-Boundary conditions:
UsS(1)=0.0
US(K+2)=us(k)
UST(K+2)=ust(k)
UST(1)=0.0
do 11 i=2,K+1
DZP=DIST(I+1)-DIST(I)
DZM=DIST(I)-DIST(I-1)
DZB=0.5*(DZM+DZP)
-Porosity:
EE1=(EE(I+1)+EE(1))/2.
Note that these terms should apply only in a thickening region,
not in a region where the solid mass is declining...why don‘t these
equations deal with that??? so a quick fix below....
EE2=(EE(I-1)+EE(I))/2.
if(i.eq.k+1)ee2=ee(k)
if(eel.gt.ei)ee2=ei
EE2T=CEET(I-1)+EET(1))/2.
if(i.eq.k+1)ee2t=eet(k)
-Intrinsic Permeability:
PERMZ2=(PERMZ(1)+PERMZ(I-1))/2.

-Upwind or central diff. can be used for the spatlal derivative of
solid velocity, DUDZ. The "I" for solid velocity is defined
differently than the "I" for porosity. All variables are evaluated
around the "I" for solid velocity (which is the same as. "I-1/2" for
porosity).

-Due to the repitition of these, the following variables are created:

-Central difference:

DEDT=(EE2T-EE2)/DT
DEDZ=(EE(1)-EE(I-1))/DZB
if(ee(i).ge.ei)dedt=0.0
if(ee(i).ge.ei)dedz=0.0
if(i.eq.k+1)dedz=0.0
F=(EE2)*DVIS/PERMZ2 -
POR=1.0-EE2 .

-The solution is implicit, and uses the Thomas algorithm.

Each term is divided into both a coefficient and solid velocity
component (if it exists). The following are the coefficients,
after linearizing.
ACOEF=POR*DENL + EE2*DENS
B1COEF=(DENL/EE2)*DENL*EQ*V0
B2COEF=-DENL* (POR**2)/EE2+EE2*DENS
CCOEF=-(DENL/EE2)*DEDT
DCOEF=- (DENL*EO*VO/EE2)*DEDT
ECOEF=(DENL/EE2**2)*((EQ*V0)**2)*DEDZ
FCOEF=-(DENL/EE2**2)Y*EQ0*VO*DEDZ
G1COEF=~(DENL/EE2**2)*EQ*VO*POR*DEDZ
G2COEF=-(DENL/EE2**2)*POR*DEDZ
HCOEF=-DENL*(EOTfVOT-EO*VO)/DT
ICOEF=EE2*G*(DENL-DENS)
JCOEF=(F/POR)*(EO*V0)
KCOEF=-(F/POR)
LCOEF=EE2/(POR*AVV(EE2) )*DEDZ
termi=abs(acoef*us(i)/dt)
convac=abs(b2coef*((us(i))**2)/dz)+abs(ccoef*us(i))+

1 abs(g2coef*((us(i))**2))

gravit=abs(icoef)
drag=abs(kcoef*us(i))
es=abs(Lcoef)
if(es.eq.0.0)es=1.e-8
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if(tim.eq.180.and.i.eq.2)write(13,515)(10*dist(i)),

o1 term1,convac, tim
if(tim.eq.180.and.i.eq.2)write(14,516)(10*dist(i)),
1 gravit,drag,es,tim
if(tim.eq.180.and.i.ne.2)write(13,517)(10*dist(i)),
1 term1,convac
if(tim.eq.180.and.i.ne.2)write(14,518)(10*dist(i)),
1 gravit,drag,es
if(tim.eq.1200.and.i.eq.2)write(15,515)(10*dist(i)),
1 term1,convac, tim
if(tim.eq.1200.and.i.eq.2)write(17,516)(10*dist(i)),
1 gravit,drag,es, tim
if(tim.eq.1200.and.i.ne.2)write(15,517)(10*dist(i)),
1 term1, convac
if(tim.eq.1200.and.i.ne.2)write(17,518)(10*dist(i)),
1 gravit,drag,es

-OMEGA CALCULATION

Omega is the additional numerical diffusion coefficient

Modeler can change omega at the screen by applying

a multiplying factor. Omega is calculated at I=2.
if(omega.NE.0.0)go to 447

c To calculate omega at I=k:

¢ -Note: altho omega was derived from the "“modified

c

c

0O000

equation which has a single coefficient (G), here
it uses G1 and G2. See thesis.
omega=(ccoef+fcoef+glcoef+g2coef-kcoef)*dt*dz/acoef
write(*,b445)
read(*,446)factor
445 format(1x, ’ENTER OMEGA MULTIPLYING FACTOR in f15.6')
446  format(f15.6) )
omega=omega*factor
o .
C  -SCHEME=0 (Central Difference); SCHEME=1 (Upwind)
447 IF (SCHEME.EQ.0) GO TO 6997
IF (SCHEME.EQ.1) GO TO 6998
C -The following are for a central difference formulation: -
6997 X0=- (DCOEF+ECOEF+HCOEF )+ (I1COEF+JCOEF+LCOEF)
X1=(THETA*B1COEF)/(2.0*DZB)-((1-2*theta)*b2coef)
1 /(4.0*DZB)+omega*theta
Y1=(ACOEF/DT)+THETA*(-2.*omega-CCOEF- FCOEF-g1coef+KCOEF )+
1  (1.0-2.0*theta)*G2coef*us(i)
Z1=-(theta*B1coef)/(2.0*DZB)+((1-2*theta)*B2coef*US(i+1))
1 /(4.0*DZB)+theta*omega
X2=-(1.0-THETA)*((B1coef+B2coef*US(i-1))/(2.0*DZB)+omega)
Y2=(ACOEF/DT)+(1.0-THETA)*(2.*omega+CCOEF+FCOE F+G1COEF+
1 (2.0*G2coef*us(1))-KCOEF)
Z2=((1.0-theta)/(2.0*dzb))*(B1coef+B2coef*us(i+1))-
. (1.0-theta)*omega
C -The following defines variables within the tridiagonal
c system of equations for central difference:
BB(I1)=X2
if(i.eq.k+1)bb(i)=bb(i)+z2
pD(I)=Y2
AA(1)=Z2
CCCI)=XT1*US(I-1)+YT1*US(I)+Z1*US(I+1)+X0
GO TO 11
C -The coefficients are simplified as follows, for upwind:
6998 X0=- (DCOEF+ECOEF+HCOEF )+( 1 COEF+JCOEF+LCOEF)
X1=omega*theta
Y1=(ACOEF /DT )+THETA*((b1coef/dzb) - CCOEF-FCOEF-g1coef+KCOEF )+
1 (1.0-2.0*theta)*((-b2coef/2*dzb)+G2coef*us(i))-2.*
1 omega*theta
Z1=-((theta*blcoef)/(dzb))+((1.0-2.0*theta)*
1  b2coef/2*dzb)*us(i+1)+omega*theta
X2=-omega*(1.-theta)
Y2=(ACOEF/DT)+(1.0-THETA)*(((-blcoef-b2coef*us(i))/dzb)+
1 CCOEF+FCOEF+G1COEF+(2.0*G2coef*us(1))-KCOEF)+
1 2.*omega*(1.-theta)
Z2=((1.0-theta)/dzb)*(B1coef+B2coef*us(i+1))-
1 (1.-theta)*omega



C -The following defines variables within the tridiagonal
c system of equations for the upwind formulation:
© BB(I)=X2
if(i.eq.k+1)bb(i)=bb(i)+z2
pD(I)=Y2
AA(1)=22
CCCI)=XT*US(I-1)+Y1*US(I )+Z1*US(I+1)+X0
1 continue
c -SOLVE WITH THE THOMAS ALGORITHM
IL=2
IU=K+1
CALL THOMAS (IL,IU)

do 111 i=1,k+2
if(i.eq.1)go to 110
if(i.eq.k+2)go to 110
UST(I)=CC(I)
C
C -THIS PRINTS DATA FOR PLOTTING AT SPECIFIED TIMES
.110 ntim=tim
min=60
ntimé0=ntim/min
if((ntim60*min).ne.ntim.or.ngo.EQ.0) go to 111
if(i.eq.1)write(12,507)dist(i),eet(i),tim
if(i.eq.1)write(18,507)dist(i), ust(i),tim f
if(i.ne.1)urite(12,508)dist(i),eet(i)
if(i.ne.1)write(18,508)dist(i),ust(i)

11 CONTINUE
if(ntimé0*min.eq.ntim)ngo=0
if(ntim60*min.ne.ntim)ngo=1

507 format(1x,F12.7,4X,E10.4,4x,F8.3)

508 format(1x,F12.7,4X,E10.4)

509 format(14(1X,E8.2),1X,F8.3)

515  format(1X,F8.3,2(1X,E10.4),1X,F8.3)

516 format(1X,F8.3,3(1X,E10.4),1X,F8.3)

517 format(1X,F8.3,2(1X,E10.4))

518 format(1X,F8.3,3(1X,E10.4))

500  FORMAT (1X F10.5,1x,E10.4,1x,E10.4,1x, E10 4,1x,F10.8,1X,F14.8,

1  1x,E10.4,1x, Fl0. 8 1x, F10 8)

DO 701 1=1,k+1
if(i.eq. k+1)go to 702
EE(I)=EET(I)
702 continue .
701 US(I)=UST(I)
CALL SMASS(XX)
WRITE(*,956)XX
WRITE(11,957)tim, xx
956  FORMAT(1X, 'MASS=’,1X,E14.5)
957  FORMAT(1X,F8.3,1X,E14.5)
) IF(NITL.GT.NIT.and.TIML.GT.TIM)GO TO 700

CLOSE(UNIT=10)
CLOSE(UNIT=11)
CLOSE(UNIT=12)
CLOSE(UNIT=13)
CLOSE(UNIT=14)
CLOSE(UNIT=15)
CLOSE(UNIT=16)
CLOSE(UNIT=17)
CLOSE(UNIT=18)
CLOSE(UNIT=19)
CLOSE(UNIT=20)
CLOSE(UNIT=21)
c
C COMPUTE NEW DOMAIN
CALL SOLV2(NIT,NHOLD)
END

o



c* ***************************************************v***************

SUBROUTINE SOLVZ2(NIT,NHOLD)
[t L L S T T T P S e
COMPUTES NEW DOMAIN AND
SOLV2 SOLVES FOR LIQUID VELOCITY(CM/SEC)-U,
SOLID VELOCITY(CM/SEC)-US,PORE WATER PRESSURE(GM/CM/SEC/SEC)-P,
AND SOLID STRESS(GM/CM/SEC/SEC)-SIGMA,AND PERMEABILITY(CM*CM)

3 Xz Xz sz

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION E(100),D(100)

COMMON/PERMC/ PERMZ(100)

COMMON/DIAG/ IDIAG(8),IPLOT,IDT

COMMON/PRIM/ U(100),US(100),P(100),SIGMA(100),

1 AA(100),BB(100),CC(100),0D(100)
COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0, TIM, TEMP
1 ,EI,PAPP,RM,DL,NFIL,NSOL, FACT ,EYLD
COMMON/PAR/ VO, EO

COMMON/DOMN/ DIST(100),EET(100),UST(100)

RECOMPUTE DOMAIN AND NEW DZ
DIST:DIST FROM POROUS PLATE CORRESPONDING TO EE

DURING NHOLD=1 NO DOMAIN HEIGHT CHANGE

s NsEsNeNeNeNe)

IF(NHOLD.EQ.1)GO TO 678
DH=VO*DT*EE(1)
DL=DL-DH
KK=0
SK1=(DL/DZ)+0.5
SK2=SK1-INT(SK1)

IF (SK2 .NE. 0.0)KK=1
K=INT(SK1)+KK
DIST(K+1)=DL

: DIST(K+2)=DL+(DIST(K+1)-DIST(K))

c

C CREATE LARGER CELL AT UPPER BOUNDARY IF DZ GETS TOO SMALL

c

DZ1=DIST(K+1)-DIST(K)

DZ2=D2/4.

IF(DZ1.LT.DZ2)GO TO 897

GO To 898

897  CONTINUE

K=K-1

DIST(K+1)=DL .

DIST(K+2)=DL+(DIST(K+1)-DIST(K))

898  CONTINUE

CALL INTER(DIST(K+1),4,E1)

EET(K+1)=E1

CALL INTER(DIST(K+2),4,E1)

EET(K+2)=E1

678 DO 3 J=1,K+2
3 EE(J)=EET(J)

c

IF(NSOL.EQ.0)GO TO 50
c
50 RETURN

c END

99



c****************************************************M’****************

SUBROUTINE INIT(EOQ,THETA)
c**********************************************************************
c
C INIT READS IN INPUT DATA AND INITIALIZES POROSITY ARRAY
c

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/DOMN/ DIST(100),EET(100),UST(100)
COMMON/PORTERM/ ETERM(50),T2(50),NETERM
COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0,TIM, TEMP,

1 EI,PAPP,RM,DL,NFIL,NSOL, FACT,EYLD
COMMON/OUT/ TIML,NPR,NITL,INPOR
COMMON/VOLUME/ V(50),T1(50),NVOL

COMMON/DIAG/ IDIAG(8),IPLOT,IDT

COMMON/AVCAL/ AVA,AVB,EL

COMMON/PERMCAL/ PKA1,PKB1,NKC,PKA2,PKB2,EKP, A

DEFINITION OF VARIABLES:

A: MEAN PARTICLE DIAMETER IN CM

AREA:AREA OF FILTRATION CELL IN CM**2

AVA ,AVB:PARAMETERS USED IN AV CALCULATION IN AVV SUBROUTINE

(NOTE:AVA IN UNITS OF GM/CM/S/S)

EE:POROSITY AT EACH SPATIAL STEP FROM THE MEDIA
EKP:POROSITY AT WHICH PKA1,PKB1 IS VALID IN PERM SUBROUTINE

EI:INITIAL POROSITY OF THE SUSPENSION o
DL:LENGTH OF DOMAIN(CM)

DT:TIME STEP IN SECONDS

DVIS:DYNAMIC VISCOSITY IN GM/CM/SEC

DZ:VERTICAL SPATIAL STEP IN CM

EL:LIMITING POROSITY BETWEEN PARTICLE/PARTICLE CONTACT AND NO
CONTACT

FACT:SAFETY FACTOR FOR TIME STEP STABILITY ANALYSIS 1.0>FACT>0.0

IDIAG:DIAGNOSTIC FLAGS THAT PRINT INTERMEDIATE CALCULATIONS

IDT:IF IDT=1, TIME STEP IS SET TO DT IN INPUT DATA FILE

K:NUMBER OF SPATIAL STEPS IN VERTICAL DOMAIN

NETERM:NUMBER OF TERMINAL POROSITY WITH TIME DATA

NITL:TIME LIMIT IN TIME STEPS FOR RUN TO CEASE

NKC:FLAG THAT USES CARMEN-KOZENY PERM IF NKC=1

NPR:FULL OUTPUT PRINTED EVERY NPR TIME CYCLES

NSOL :PARAMETER TO TURN ON(=1)OR OFF(=0)THE CALCULATION
OF VS,VL,P,SIGMA

NVOL :NUMBER OF FILTRATE VOLUME WITH TIME DATA

PAPP:APPLIED PRESSURE DIFFERENTIAL IN PASCALS(N/M**2)

PKA,PKB:PARAMETERS USD IN PERM VS POROSITY CALCULATION IN PERM
(NOTE:PKA IN UNITS-OF CM*CM)

SO:SPECIFIC SURFACE(1/CM)(USED IN PERM IF NKC=1)
SYLD:EFFECTIVE STRESS AT WHICH SOLID PHASE YIELDS(PASCALS)

TEMP:TEMPERATURE OF THE SUSPENSION IN DEGREES CELSIUS

TIM:TIME SINCE BEHINNING OF THE RUN UPDATED IN MAIN SEC

TIML:TIME LIMIT IN SEC TO STOP CALCULATIONS

OPEN(UNIT=10, FILE=’CAKEIN.DAT/, STATUS=/OLD’)
OPENCUNIT=11, FILE='CKFWGOUT.1/, STATUS=’NEW’)
OPEN(UNIT=12, FILE='CKFWGOUT.2’, STATUS=’NEW‘)
OPEN(UNIT=13, FILE='CKFWGOUT.3’, STATUS='NEW’)
OPEN(UNIT=14, FILE='CKFWGOUT.4’, STATUS=’NEW')
OPEN(UNIT=15, FILE='CKFWGOUT.5’, STATUS='NEW’)
OPEN(UNIT=16, FILE='CKFWGOUT.6’, STATUS='NEW’)
OPEN(UNIT=17, FILE='CKFWGOUT.7’, STATUS='NEW’)
OPEN(UNIT=18, FILE='CKFWGOUT.8’, STATUS=’NEW')
OPEN(UNIT=19, FILE='CKFWGOUT.9’, STATUS=’NEW’)
OPEN(UNIT=20, FILE='CKFWGOUT.10/, STATUS=’NEW’)
OPEN(UNIT=21, FILE='AVV.OUT/, STATUS='NEW’)
READ(10, 200)

READ(10, 100)DL, AREA, TEMP,EI,PAPP,A, TIML,SYLD
READ(10,200)

READ(10, 100)AVA, AVB,PKA1,PKB1,EL, FACT, THETA, PKB2

IPLOT:IF EQUAL TO ’1’/ AN OUTPUT FILE SUITABLE FOR PLOTTING IS MADE

100
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C CALCULATE DVIS BASED ON TEMP .
CALL INTER(TEMP,3,DVIS)
c-
C CONVERT TO CGS SYSTEM, PASCALS(KG/M/SEC/SEC) TO (GM/CM/SEC/SEC)
"SYLD=10.*SYLD
C
C COMPUTE POROSITY AT WHICH CRACKING BEGINS...FILTRATION CEASES
EYLD=(-1./AVB)*LOG( (EXP(-AVB*ED ))+AVA*AVB*SYLD)
c
C IF INPOR=1,INITIAL POROSITY DISTRIBUTION IS GIVEN TO ALLOW FOR
C SEDIMENTATION
READ(10,200)
READ(10, 101) INPOR, NVOL , NETERM, K, NPR, NITL , NFIL, NKC
READ(10,200)
READ(10,101)IPLOT,NSOL, IDT, IETERM
READ(10,200) :
READ(10,101) IDIAG
C
C INITIALIZE POROSITY ARRAY
0O 10 I=1,K
10  EE(I)=El
READ(10,200)
IF(INPOR.NE.1)GO TO 11
0o 13 J=1,K
13 READ(10,103)DIST(J),EE(J) !
11 READ(10,200)
C

C TERMINAL POROSITY AS A FUNCTION OF TIME
IF(IETERM.EQ.1)GO TO 14
DO 12 J=1,NETERM .
12 READ(10,103)ETERM(J), T2(J)
EO=ETERM(1)

GO TO 15
.C COMPUTE ETERM FROM MV RELATIONSHIP
14 continue

EO=(-1./AVB)*LOG((PAPP*AVA*AVB)+EXP(-AVB*EI))
ETERM(1)=EO

15 CONTINUE

c IFCIDIAG(1).EQ.1)WRITE(17,201)SYLD,EYLD,EO
RETURN

c

C FORMAT STATEMENTS

c

100  FORMAT(8F10.5)
101  FORMAT(8110)
103  FORMAT(2F10.5)
200  FORMAT(1X)

END
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c*******************************************************************

SUBROUTINE INTER(T,N,2)

C*******************************************************************

INTER INTERPOLATES INPUT DATA TO OBTAIN DYNAMIC VISCOSITY LIQuID
VELOCITY AT 2=0, TERMINAL POROSITY

T..TIME IN SEC OR TEMP IN DEG C OR POROSITY
N..SPECIFIC VARIABLE TO INTERPOLATE:1=TERM POR
2=LIQ VEL
3=DvIS
4=NEW POROSITY

OoO0O0OO0O0O0O0O0O00n

2. .RETURNED VARIABLE
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION VIS(15),VTEMP(15),X(100),Y(100)
COMMON/DIAG/ IDIAG(8),IPLOT,IDT
COMMON/PORTERM/ ETERM(50),T2(50),NETERM
COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0,TIM, TEMP,
1 EI,PAPP,RM,DL,NFIL,NSOL, FACT,EYLD
COMMON/VOLUME/ V(50),T1(50),NVOL
COMMON/DOMN/ DIST(100),EET(100),UST(100)

THE FOLLOWING VISCOSITY(GM/CM/SEC)-TEMP(C) DATA IS FROM G. K.,
BATCHELOR, AN INTRODUCTION TO FLUID DYNAMICS P.595,1967‘

OO0 0n

DATA vis/1.781,1.514,1.304,1.137,1.002,0.891,0.798,

1 0.720,0.654,0.548,0.467,0.405,0.355,0.316,

1 0.283/ .

DATA VTEMP/0.,5.,10.,15.,20.,25.,30.,35.,40.,50.,60.,

70.,80..,90.,100./

1F(N-2)10,20,30
10 NY=NETERM

DO 1 J=1,NY

X(J)=T2(J)
1 Y(J)=ETERM(J)

GO TO 5
20 NY=NVOL

DO 2 J=1,NY

X(J)=T1(J)
2 Y(J)=vVWJ)

GO TO S
30 IF(N.EQ.4)GO TO 40

NY=15.

DO 3 J=1,NY
: X(JI=VTEMP(J)
3 Y(J)=VIS(J)*0.01

GO TO 5
40 NY=K+1
' DO 4 J=1,NY
Y(JI=EET(J)
X(J)=DIST(J)
CONTINUE

LINEAR INTERPOLATION

ooOoounes

IF(N.EQ.1.AND.NETERM.EQ.1)GO TO 204
IF(T.LE.X(1))GO TO 206
IF(T.GE.X(NY))GO TO 207

DO 6 J=1,NY
IF(T.EQ.X(J))GO TO 201
IF(T.LT.X(J))GO YO 50

wio o

0 CONTINUE
DX=X(J-1)-X(J)
DY=Y(J-1)-Y(J)
SLOPE=DY/DX
Z=Y(J-1) + SLOPE*(T-X(J-1))
IF(N.EQ.2)2=SLOPE/AREA
GO TO 202

201 2=Y(J)
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C AVERAGE SLOPE ON EITHER SIDE OF THE POINT ¢
IF(N.EQ.2)Z=((Y(J+T)-Y(J))/(X(J+1)-X(J))*0.5 +
1 (Y(I)-Y(I-1))/(X(JI)-X(J-1))*0.5)/AREA
GO TO 202
206  Z2=Y(1)
IF(N.EQ.2)Z=(Y(1)-Y(2))/(X(1)-X(2))/AREA
GO TO 202
207  Z=Y(NY)
IF(N.EQ.2)Z=(Y(NY-1)-Y(NY))/(X(NY-1)-X(NY))/AREA
GO TO 202

204  Z=ETERM(1)

202 IF(IDIAG(7).EQ.1)WRITE(11,101)N,NY,T,Z, SLOPE
RETURN

c

C FORMAT STATEMENTS

101 FORMAT(1X,’'N=’,12,1X,’NY=/,12,1X, /T=/,€10.3,1X, 'Z=' ,E10.3,
1 1X, 'SLOPE=/,E10.3)
END
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ChRAREAARKKAKRAARKAKARAARARAAARRAARAARAAARAARRAR KRR AR AR IRk hkhkkhkkhkhkhk

FUNCTION AVV(EE)
C********************************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/AVCAL/ AVA,AVB, EL

avv=ava*exp(avb*ee)

go to 21

E=EE

IF(E.GT.EL.or.e.lt.0.55) GO TO 20

c BI-SECTION ROOT-FINDING TECHNIQUE
c This is an iterative root-finder for E=f(o). After an
c initial guess (00), o is halved or doubled until o1
c is on the left and 02 on the right of the root for
¢ the passed variable, E. Iterations are begun by interpo-
c lating for new 00s, assuming a linear relationship. E and
c EO are compared until they are very close.
SIGMA0=100.0 .
ZETA=0.54
EPI=2.0

1 EO=SIGMAO**(ZETA/(SIGMAO-EPI))-(1-ZETA)

12 DIFFO=E-EO
IF((DIFFO0.GE.-0.000001).AND.(DIFFO.LE.0.000001))GO TO 20
IF(DIFFO.LT.0.0)THEN

13 SIGMA1=SIGMAQ

SI1GMA2=2.0*SI1GMAO !
SIGMAO=SIGMA2
E1=EQ
E2=SIGMA2**(ZETA/(SIGMA2-EPI))-(1-ZETA)
EO=E2
DIFF1=DIFFO
DIFF2=E-E2
DIFFO=DIFF2
IF((DIFFO.LT.0.0).AND.(DIFF2.L7.0.0))GO TO 13
END IF .
IF(DIFFO.GT.0.0)THEN
14 SIGMA2=SIGMAQ
SIGMA1=0.5*SIGMAO
SIGMAO=SIGMA1
E2=E0
E1=SIGMAT**(ZETA/(SIGMA1-EPI))-(1-ZETA)
EO=E1
DIFF2=DIFFO "
DIFF1=E-E1
DIFFO=DIFF1
IF((DIFFO.GT.0.0) .AND.(DIFF1.GT.0.0))GO TO 14
END IF
c Find 00 for new iteration:
SIGMAO=SIGMA2- (SIGMA2-SIGMA1)*(E2-E)/(E2-E1)
GO TO 11 !

20 CONTINUE

IF(E.GT.EL)then
AVV=1.E20
go to 21

end if

¢ next line is only for kaolin, very important!!fi}
if(e.lt.0.55)then

avv=2.9e-9
go to 21
end if

¢ Compute coefficient of volume compressibility, mv in units of kPa-1

avv=-(EO*(ZETA*((SIGMAO-EPI)**(-1)))/SIGMAQ
1 -ZETA*((SIGMAO-EPI)**(-2))*dLOG(SIGMAQ))

¢ change of units to (gm/cm/s/s)*-1, conversion factor is *10*-4
avv=avv/(10.**4)

21 continue
RETURN
END



it L e ey
FUNCTION PERM(E)

c*f*********************************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/PERMCAL /PKA1,PKB1,NKC, PKA2 ,PKB2,EKP A
COMMON/AVCAL/ AVA,AVB, EL

COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0,TIM, TEMP,
1 E1,PAPP,RM,DL,NFIL,NSOL, FACT,EYLD
EKP=.65

PKA2=PKAT*EXP ( (PKB1-PKB2)*EKP)
IF(E.LE.EKP)PERM=PKAT*EXP(PKB1*E)
IF(E.Gt.EKP)PERM=PKA2*EXP(PKB2*E)
if(e.gt.ei.and.e.le.ekp)perm=PKAT1*EXP(PKB1*ei)
if(e.gt.ei.and.e.gt.ekp)perm=PKA2*EXP(PKB2*ei)
RETURN

END

Chhkkhhhhkhhhk Ak Ak AR A AR ARARAARRARRARARRARA AR AR R AR AR AR R ARk R kk

SUBROUTINE SMASS(X)
c***********************************************************
C COMPUTES THE MASS IN THE DOMAIN
C [THE CALCULATION IS REALLY THE VOLUME OCCUPIED BY "SOLIDS,
C TO OBTAIN THE MASS MULTIPLY BY THE MASS DENSITY OF SOLIDSI
Cc

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/DOMN/ DIST(100),EET(100),UST(100) ‘-

COMMON/POR/ DT,DZ,AREA,DVIS,K,EE(100),S0, TIM, TEMP

1 ,E1,PAPP,RM,DL,NFIL,NSOL, FACT,EYLD

X=0.0
D0 10 J=1,K
DZZ=DIST(J+1)-DIST(J)
ES=(EE(J+1)+EE(J))*0.5-
10 X=X+DZZ*(1.-ES)*AREA
RETURN
END
'c*********************************************************************

SUBROUTINE THOMAS (IL,IU)
R deddedok ke ok Aok ek A e Aok e s ok sk ke ok ok sk ok ok ok s ok sk b sk sk ok sk ok o ok s sk ok s ok ok
THOMAS SOLVES A TRIDIAGONAL SYSTEM OF EQUATIONS BY ELIMINATION
IL=SUBSCRIPT OF FIRST EQUATION
IU=SUBSCRIPT OF LAST EQUATION
BB=COEFFICIENT BEHIND DIAGONAL
DD=COEFFICIENT ON DIAGONAL
AA=COEFFICIENT AHEAD OF DIAGONAL
CC=ELEMENT OF CONSTANT VECTOR
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/PRIM/ U(100),Us(100),P(100),SIGMA(100),
1 AA(100),BB(100),CC(100),DD(100)

(s Nz NeNesNeNoNy]

ESTABLISH UPPER TRIANGULAR MATRIX

(s NeNg

LP=IL+1

DO 10 I=LP,IU
R=BB(I1)/DD(I-1)
DD(I1)=DD(I)-R*AA(I-1)
CC(I)=CC(I)-R*CC(I-1)

o

BACK SUBSTITUTION

OO0 =

CC(1U)=CC(I1U)/DD(IU)
DO 20 I=LP,IU
J=1U-1+1IL
0 €C(J)=(CCCJII-AA(J)*CC(J+1))/DD(J)

SOLUTION STORED IN CC

ooon

RETURN
END
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APPENDIX B

SAMPLE INPUT FILE
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DL AREA TEMP El PAPP - A TIML SYLD
3.925 26.325 24.0 0.9465 117.60 1.0E-4 1525. 1.7E5
© AVA AVB PKA1 PKB1 EL FACT THETA PKB2
2.04E-13 28.9 2.70E-16 20.0 0.84 1.0 0.0 24.
INPOR NVOL NETERM K NPR NITL NFIL NKC
0 0 1 079 95500 1001100 0 0
IPLOT NSOL DT IETERM
1 0 1
IDIAG(1) IDIAG(2) IDIAG(3) IDIAG(4) IDIAG(5) IDIAG(6) IDIAG(7) IDIAG(8)
1 0 0 0 0 0 0 0
INITPOR
.025 .725

.07500 .75900
.12500 .78550
.17500 .81820
.22500 .84470
.27500 .86430
.32500 .87380
.37500 .87740
.42500 .88000
.47500 .88150
.52500 .88150
.57500 .88150
.62500 .88150 ;
.67500 .88150
.72500 .88150
.77500 .88150
.82500 .88150
.87500 .88150
.92500 .88150
.97500 .88150
1.02500 .88150
1.07500 .88150
1.12500 .88150
1.17500 .88150
1.22500 .88150
1.27500 .88150
1.32500 .88150
1.37500 .88150
1.42500 .88150
1.47500 .88150
1.52500 .88150
1.57500 . .88150
1.62500 .88150
1.67500 .88150 .
1.72500 .88150
1.77500 .88150
1.82500 .88150
1.87500 .88150
1.92500 .88150
1.97500 .88150
2.02500 .88150
2.07500 .88150
2.12500 .88150
2.17500 .88150
2.22500 .88150
2.27500 .88150
2.32500 .88150
2.37500 .88150
2.42500 .88150
2.47500 .88150
2.52500 .88150
2.57500 .88150
2.62500 .88150
2.67500 .88150
2.72500 .88150
2.77500 .88150
2.82500 .88150
2.87500 .88150
2.92500 .88150
2.97500 .88150
3.02500 .88150
3.07500 .88150



3.12500
3.17500
3.22500
3.27500
3.32500
3.37500
3.42500
3.47500
3.52500
3.57500
3.62500
3.67500
3.72500
3.77500
3.82500
3.87500
3.92500

ETERM

.88150
.88150
.88150
.88150
.88150

- ad ed el e e e ed ed wd e o
. “« .o « .
00000000 OOOO

- O0O000O0O

4
m
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APPENDIX C

FORTRAN COMPUTER CODES FOR PROCESSING DATA AND MODEL OUTPUT



FORTRAN CODE TO SORT POROSITY DATA (DATA-EE.FOR)

C 'DATA-EE.FOR

C SORTS POROSITY DATA FROM “DATA.EE3" TO *.DT

200
201

.202
100

DIMENSION EE(40,40)

CHARACTER*20 FN
OPEN(1,FILE='1.DT/,STATUS='NEW’)
OPEN(2,FILE='2.DT’/,STATUS='NEW’)
OPEN(3,FILE=/3.DT’ ,STATUS=/NEW')
OPEN(4,FILE='4.DT’,STATUS='NEW')
OPEN(5,FILE='5.DT/,STATUS='NEW’)
OPEN(6,FILE='6.DT’,STATUS='NEW')
OPEN(7,FILE='7.DT’,STATUS='NEW')
OPEN(8,FILE='8.DT’,STATUS='NEW')
OPEN(9,FILE='9.DT/ STATUS='NEW')
OPEN(10,FILE=710.DT’,STATUS='NEW')
OPEN(11,FILE='11.DT’/,STATUS='NEW’)
OPEN(12,FILE="12.DT’,, STATUS='NEW’)
OPEN(13,FILE='13.DT’/,STATUS='NEW’)
OPEN(14,FILE="14.DT’ ,STATUS='NEW’)
OPEN(15,FILE="15.DT’,STATUS='NEW’)
OPEN(16,FILE="16.DT/,STATUS='NEW’ )
OPEN(17,FILE=/17.DT/ ,STATUS='NEW’)
OPEN(18,FILE="18.DT/,STATUS='NEW’)
OPEN(19,FILE="19.DT/,STATUS=/NEW’)
OPEN(20,FILE=’20.DT’,STATUS=/NEW’)
OPEN(21,FILE=/21.DT’,STATUS='NEW')
OPEN(22,FILE=/22.DT’/,STATUS='/NEW’)
OPEN(23,FILE='23.DT’/,STATUS='NEW’)
OPEN(24,FILE="24.DT’,STATUS='NEW')
OPEN(25,FILE=/25.DT’,STATUS='NEW’)
OPEN(26,FILE="26.DT/ ,STATUS='NEW’)
OPEN(27,FILE=’27.DT’ ,STATUS=/NEW')
OPEN(28,FILE=/28.DT’,STATUS='NEW’)
OPEN(29,FILE='29.DT’,STATUS='NEW’)
OPEN(30,FILE="30.DT’/,STATUS='NEW’)
open(31,file=’data.ee3’)

DO 200 J=1,40
read(31,201)(ee(j,i),1=1,40)
CONTINUE

FORMAT(1X,20F6.4)

0z=0.5

DO 100 IWR=1,22

DO 100 J=1,39

Z=(REAL(J)*DZ)-0425

Z1=2/10.

X=2.616*(1.0-EE(J, IWR))
I1F(EE(J,IWR).EQ.0.0)GO TO 100
if(x.eq.0.0)go to 100
if(x.1t.0.1)go to 100
FORMAT(1X,F10.5,4X,F10.5)
WRITE(IWR,202)Z,X

CONTINUE

STOP
END
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FORTRAN CODE TO CALCULATE SOLID VELOCITY FROM THE POROSITY DATA SET (SOLVEL.FOR)

program solvel

[~

parameter(m=40,ml=m-1)

real zero,half,one,

1 dt,dz, eelt,eel,ee2,

1 ee(m,m),vs(m,m)
c

data zero,half,ones/0.0,0.5,1.0/
c

dt=60.

dz=0.5

do 10 n=1,40
10 vs(1,n)=zero

open(10,file='data.ee3’,status='old’)
open(11,file='solvel.out’, status='new’)
c
C READ IN POROSITY DATA:
Cc
do 100 i=1,m
100  read(10,’((1X,20f6.4))’ ,end=101) (ee(i,n),n=1,m)
101  continue
close (10,status='keep’)

COMPUTE SOLID VELOCITY:
Note: The i in the vs terms in this code is actually i+1
(in the gravcull code), and the i-1 in this code is i
do n=1,m1
do 301 i=2,m1
eelt=(ee(i-1,n+1)+ee(i,n+1))*half
eel =(ee(i,n)+ee(i+1,n))*half
if (eel.eq.one) eel=.99
ee2 =(ee(i-1,n)+ee(i,n))*half
. vs(i,n)=
1 (((ee(i,n+1)-ee(i,n))/dt)*dz+(one-ee2)*vs(i-1,n))/(one-eel)
301 continue
end do

0000

c
C WRITE OUT SOLID VELOCITY DATA:
c .
do i=1,m1
write(11,3000) (vs(i,n),n=1,m1)
end do
3000 format((1X,20e12.4))
close (11,status='keep’)

stop
end



FORTRAN CODE TO SORT SOLID VELOCITY DATA (DATA-US.FOR)

C “DATA-US.FOR

C SORTS SOLID VELOCITY DATA FROM "SOLVEL.OUT" TO *.DT

200
201

202
100

DIMENSION US(40,40)
OPEN(1,FILE='1.DT’,STATUS='NEW’)
OPEN(2,FILE=’2.DT’,STATUS='NEW’)
OPEN(3,FILE='3.DT/,STATUS='NEW')
OPEN(4 ,FILE='4.DT’,STATUS='NEW’)
OPEN(5,FILE='5.DT’,STATUS='NEW')
OPEN(6,FILE='6.DT’,STATUS='NEW’)
OPEN(7,FILE='7.DT’,STATUS='NEW')
OPEN(8,FILE='8.DT’,STATUS='NEW')
OPEN(9,FILE='9.DT’/,STATUS='NEW’)
OPEN(10,FILE="10.DT’,STATUS='NEW’)
OPEN(11,FILE=’11.DT’,STATUS='NEW')
OPEN(12,FILE="12.DT’,STATUS='NEW')
OPEN(13,FILE=’/13.DT"., STATUS='NEW')
OPEN(14,FILE="14.DT’ ,STATUS='NEW')
OPEN(15,FILE='15.DT’,STATUS='NEW')
OPEN(16,FILE='16.DT’,STATUS='NEW’)
OPEN(17,FILE='17.DT’,STATUS='NEW’)
OPEN(18,FILE='18.DT’/,STATUS='NEW’)
OPEN(19,FILE="19.DT’,STATUS='NEW’)
OPEN(20,FILE="20.DT’,STATUS='NEW’)
OPEN(21,FILE='21.DT’,STATUS='NEW')
OPEN(22,FILE=722.DT’,STATUS='NEW')
OPEN(23,FILE=/23.DT’/,STATUS='NEW')
OPEN(24,FILE="24.DT’ ,STATUS='NEW')
OPEN(25,FILE="25.DT’,STATUS='NEW')
OPEN(26,FILE='26.DT/,STATUS='NEW’)
OPEN(27,FILE='27.DT’,STATUS='NEW’)
OPEN(28,FILE='28.DT’,STATUS="NEW’)
OPEN(29,FILE='29.DT/,STATUS="NEW’)
OPEN(30,FILE='30.DT/,STATUS='NEW’)
open(31,file=’solvel.out’)

DO 200 i=1,39
read(31,201)(us(i,n),n=1,39)
CONTINUE

FORMAT ((1X,20e12.4))

DZ=0.5

DO 100 IWR=1,30

Do 100 1=1,39

Z=(REAL(I)*DZ)-0.25

X=US(I, IWR)

if(x.eq.0.0)x=1.E-6

FORMAT (1X,E12.4,4X,F10.5)
WRITE(IWR,202)abs(X),Z

CONTINUE

STOP

END
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FORTRAN CODE TO SORT POROSITY QUTPUT FROM MODEL (MODEL-EE.FOR)

-C

900
25
200
26
100

C
250

500

CHARACTER*20 FN

OPEN(1, FILE=’1.MD/, STATUS=NEW')
OPEN(2, FILE=’2.MD’, STATUS='NEW’ )
OPEN(3,FILE=/3.MD’,STATUS='NEW')
OPEN(4,FILE=/4.MD*, STATUS='NEW')
OPEN(S5, FILE='5.MD’,STATUS='NEW')
OPEN(6, FILE=/6.MD’,STATUS='NEW')
OPEN(7,FILE=/7.MD’,STATUS=NEW')
OPEN(8, FILE='8.MD’,STATUS="NEW')
OPEN(9, FILE=’9.MD’,STATUS='NEW')
OPEN(10,FILE=/10.MD/ ,STATUS='NEW')
OPEN(11,FILE=/11.MD’, STATUS='NEW')
OPEN(12, FILE='12.MD’,STATUS=NEW')
OPEN(13, FILE='13.MD’,STATUS=' NEW' )
OPEN(14,FILE=/14.MD’ ,STATUS="NEW' )
OPEN(15,FILE=15.MD’, STATUS='NEW' )
OPEN(16,FILE='16.MD’ ,STATUS='NEW' )
OPEN(17,FILE="17.MD’,STATUS='NEW')
OPEN(18,FILE=/18.MD’,STATUS='NEW’)
OPEN(19, FILE="19.MD*, STATUS='NEW' )
OPEN(20,FILE='20.MD’,STATUS='NEW' )
OPEN(21,FILE=/21.MD’,STATUS='NEW')
OPEN(22, FILE=/22.MD* ,STATUS='NEW' )
OPEN(23, FILE=/23.MD’ ,STATUS='NEW’ )
OPEN(24,FILE='24 .MD’ ,STATUS=/NEW')
OPEN(25, FILE='25.MD/, STATUS='NEW')
OPEN(26, FILE=/26.MD* ,STATUS='NEW')
OPEN(27,FILE='27.MD’, STATUS='NEW')
OPEN(28, FILE=/28.MD ', STATUS='NEW')
OPEN(29, FILE=/29.MD ', STATUS='NEW' )
OPEN(30, FILE=/30.MD’:, STATUS='NEW')

OPEN(31, FILE='CKFWGOUT .2/ ,STATUS='0LD’)

read(31,900)

format(1x)

IWR=1

DO 100 1=1,6000
1F(1.EQ.1)GO TO 25

22=2
READ(31,200,END=250)Z,X
2=2*10.

X=2.616*(1.0-X)
FORMAT(1X,F12.7,4X,E10.4)
IF(1.EQ.1)GO TO 26
IF(Z.LT.2Z)IWR=IWR+1
if(x.eq.0.0)go to 100
IF(2.GT.40.0)G0 TO 100
WRITE(IWR,200)2,X
CONTINUE

CONTINUE

x=1.0

z=0.0

do 500 i=iwr+1,30
write(i,200)z,x
continue

STOP

END
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FORTRAN CODE TO SORT SOLID VELOCITY OUTPUT FROM MODEL ¢MODEL-US.FOR)

900

25

200

26
100
250

500

OPEN(1,FILE="1.MD’,STATUS='NEW’)

OPEN(2,FILE='2.MD’,STATUS='NEW’)

OPEN(3,FILE="3.MD’,STATUS='NEW’)

OPEN(4,FILE='4.MD’,STATUS='NEW')

OPEN(5,FILE=/5.MD’,STATUS='NEW')

OPEN(6,FILE='6.MD’ ,STATUS='NEW’)

OPEN(7,FILE='7.MD’,STATUS='NEW')

OPEN(8,FILE='8.MD’,STATUS='NEW')

OPEN(9,FILE='9.MD’ ,STATUS='NEW’)

OPEN(10,FILE="10.MD’,STATUS='NEW')
OPEN(11,FILE='11.MD’,STATUS='NEW’)
OPEN(12,FILE='12.MD’,STATUS='NEW’)
OPEN(13,FILE='13.MD’,STATUS='NEW’)
OPEN(14,FILE="14.MD’ , STATUS='NEW’)
OPEN(15,FILE='15.MD’., STATUS='NEW')
OPEN(16,FILE='16.MD' ,STATUS='NEW’)
OPEN(17,FILE='17.MD’ ,STATUS='NEW’)
OPEN(18,FILE='18.MD' ,STATUS='NEW’)
OPEN(19,FILE="19.MD’,STATUS='NEW’)
OPEN(20,FILE='20.MD’ ,STATUS='NEW’)
OPEN(21,FILE='21.MD’,STATUS='NEW’)
OPEN(22,FILE='22.MD’ ,STATUS='NEW’)
OPEN(23,FILE='23.MD’,STATUS='NEW')
OPEN(24,FILE='24.MD’ STATUS='NEW’)
OPEN(25,FILE='25.MD’ ,STATUS='NEW')
OPEN(26,FILE='26.MD’,STATUS='NEW’)
OPEN(27,FILE='27.MD’ ,STATUS='NEW’)
OPEN(28,FILE='28.MD’,STATUS='NEW')
OPEN(29,FILE='29.MD/  STATUS='NEW’)
OPEN(30,FILE='30.MD’,STATUS='NEW')

OPEN(31,FILE='CKFWGOUT.8,STATUS='0LD")

read(31,900)

format(1x)

1WR=1

DO 100 1=1,6000
IF(I.EQ.1)GO TO 25

22=2
READ(31,200,END=250)Z,X
Z=2*10.

x=10.*abs(x)
if{x.eq.0.0)x=1.e-6
FORMAT(1X,E10.4,4X,F12.7)
IFC(I.EQ.1)GO TO 26
IF(Z.LT.ZZ)IWR=IWR+1
1F(Z.GT.40.0)Go TO 100
WRITE(IWR,200)X,Z
CONTINUE

CONTINUE

do 500 i=iwr+1,30
write(i,200)x,z
continue

STOP

END
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FORTRAN CODE TO COMPARE MODEL-DATA POROSITIES AND GIVEr STATISTICS (STAT-EE.FOR)

L=1

STAT-EE.FOR .
STATISTICS COMPARING POROSITY DATA TO MODEL PRED.
DIMENSION CONC(150),DDIST(150)
DIMENSION PDIST(150),PCONC(150),DCONC(150),X(1000)
OPEN(65,FILE='stat.out’,STATUS='new’)

SUMM=0.0
SUMR=0.0
do 6000 iwr=1,22

IF
IF
IF
IF
IF
IF
IF
IF
IF

(IWR.EQ.1)OPEN(1,FILE="1.DT’)

(IWR.EQ.2)OPEN(2,FILE='2.DT'")

(IWR.EQ.3)OPEN(3,FILE='3.DT’)

(IWR.EQ.4)OPEN(4,FILE='4.DT’)

(IWR.EQ.5)O0PEN(5,FILE='5.DT")

(IWR.EQ.6)OPEN(6,FILE='6.DT’)

(IWR.EQ.7)OPEN(7,FILE='7.DT’)

(IWR.EQ.B)OPEN(8,FILE='8.DT’)

(IWR.EQ.9)OPEN(9,FILE=/9.DT’)

(IWR.EQ.10)OPEN(10,FILE='10.DT’)
(IWR.EQ.11)OPEN(11,FILE='11.DT")
(IWR.EQ.12)OPEN(12,FILE='12.DT’)
(IWR.EQ.13)OPEN(13,FILE='13.DT’)
(IWR.EQ.14)OPEN(14,FILE='14.DT")
(IWR.EQ.15)OPEN(15,FILE=/15.DT/)
(IWR.EQ.16)OPEN(16,FILE='16.DT")
(IWR.EQ.17)OPEN(17,FILE="17.DT’)
(IWR.EQ.18)OPEN(18,FILE='18.DT’)
(IWR.EQ.19)OPEN(19,FILE=/19.DT’)
(IWR.EQ.20)OPEN(20,FILE='20.DT’)
(IWR.EQ.21)OPEN(21,FILE='21.DT/)
(IWR.EQ.22)OPEN(22,FILE=/22.DT')
(IWR.EQ.23)0PEN(23,FILE='23.DT’)
(IWR.EQ.24)0PEN(24,FILE="24.DT)
(IWR.EQ.25)0PEN(25,FILE='25.DT")
(IWR.EQ.26)OPEN(26,FILE='26.DT’)
(IWR.EQ.27)OPEN(27,FILE='27.DT’)
(IWR.EQ.28)OPEN(28,FILE='28.DT’)
(IWR.EQ.29)OPEN(29,FILE=/29.DT')
(IWR.EQ.30)OPEN(30,FILE='30.DT’)

(IWR.EQ.1)OPEN(31,FILE='1.MD")

(IWR.EQ.2)OPEN(32,FILE='2.MD")

(IWR.EQ.3)OPEN(33,FILE='3.MD’)

(IWR.EQ.4)OPEN(34,FILE='4.MD’)

(IWR.EQ.5)O0PEN(35,FILE='5.MD")

(IWR.EQ.6)O0PEN(36,FILE='6.MD")

(IWR.EQ.7)OPEN(37,FILE='7.MD’)

(IWR.EQ.8)OPEN(38,FILE='8.MD')

(IWR.EQ.9)OPEN(39,FILE='9.MD’)

(IWR.EQ.10)OPEN(40,FILE='10.MD")
(IWR.EQ.11)OPEN(41,FILE="11.MD")
(IWR.EQ.12)O0PEN(42,FILE='12.MD")
(IWR.EQ.13)O0PEN(43,FILE="13.MD')
(IWR.EQ.14)OPEN(44, FILE=14_MD’)
(IWR.EQ.15)0PEN(45,FILE='15.MD")
(IWR.EQ.16)OPEN(46,FILE='16.MD’)
(IWR.EQ.17)OPEN(47,FILE='17.MD’)
(IWR.EQ.18)OPEN(48,FILE='18.MD’)
(IWR.EQ.19)OPEN(49,FILE='19.MD')
(IWR.EQ.20)OPEN(50,FILE='20.MD")
(IWR.EQ.21)OPEN(51,FILE='21.MD")
(IWR.EQ.22)OPEN(52,FILE="22.MD')
(IWR.EQ.23)O0PEN(53,FILE='23.MD')
(IWR.EQ.24)0PEN(54,FILE='24.MD")
(IWR.EQ.25)0PEN(55,FILE='25.MD")
(IWR.EQ.26)0PEN(56,FILE='26.MD’)
(IWR.EQ.27)O0PEN(57,FILE='27.MD’)
(IWR.EQ.28)OPEN(58,FILE='28.MD')
(IWR.EQ.29)OPEN(59,FILE='29.MD')
(IWR.EQ.30)OPEN(60,FILE='30.MD’)
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2000
2001
3000

2500
2501
2700

9998

JWR=TWR+30 .
NMOD=0
DO 2000 J=1,100 .
READ (JWR, 3000, END=2001)PDIST(J),PCONC(J)
NMOD=NMOD+1
CONTINUE
CONTINUE
FORMAT(1X,F12.7,4X,E10.4)

IF(L.EQ.0)CI=PCONC(NMOD)
NDAT=0
DO 2500 1=1,100

READ(IWR, 2700, END=2501)DDIST(1),DCONC(I)
NDAT=NDAT+1

CONTINUE

CONTINUE

FORMAT(1X, F10.5,4X,F10.5)

N=NDAT
K=2

DO 4000 J=1,N

CONTINUE

IF (DDIST(J).GT.PDIST(K)) THEN
K=K+1 !
IF (K .GT. NMOD)GO TO 4010
GO TO S

ENDIF

WRITE(65,9998)L,J,K,DDIST(J),PDIST(K)

FORMAT (1X,3(1X,13),2(1X,F8.4))

IF(DDIST(J).EQ.PDIST(K)) THEN
CONC(J)=PCONC(K)
GO TO 19
ENDIF
Z=DDIST(J)
ZLOW=PDIST(K-1)
ZHI=PDIST(K)
CLOW=PCONC(K-1)
CHI=PCONC(K)
CONC(J)=CLOW+((CHI-CLOW)*(2-ZLOW))/(ZHI-ZLOW)
IF (CONC(J).EQ.CI)GOTO 4010

C L: # OF COMPARISONS X: ERROR

19

9999
4000
4010

6000

5500

IF(DCONC(J).EQ.0.0.0R.CONC(J).EQ.0.0)GO TO 4000
X(L)=(DCONC(J)-CONC(J))
SUMM=SUMM+X (L) .
SUMR=SUMR+(X(L))**2
NRITE(65,9999)L,J,K,DCONC(J),CONC(J),X(L),SUMM,SUMR
FORMAT(1X,3(1X,I3),5(1X,F8.4))
L=L+1
CONTINUE
CONTINUE
CLOSE(IWR)
CLOSE (JWR)
CONTINUE
NOBS=L
XMEAN=SUMM/NOBS
RMS=(SUMR/NOBS )**(0.5
IF(NOBS.LT.50)STD=((SUMR-SUMH**Z/NOBS)/(NOBS-1))**0.5
IF(NOBS.GE.50)STD=( (SUMR/NOBS) -XMEAN**2 )** 5
K=25
WRITE(65,5500)L,XMEAN,RMS, STD
FORMAT(1X,15,3(1X,F10.6))
close(unit=65)
STOP
END
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FORTRAN CODE TO COMPARE MODEL-DATA SOLID VELOCITIES AND GIVE STATISTICS (STAT-US.FOR)

STAT-US.FOR
STATISTICS COMPARING SOLID VEL. DATA TO MODEL PRED.

DIMENSION VS(150),DDIST(150)

DIMENSION PDIST(150),PVS(150),DVS(150),X(1000)
OPEN(65,FILE='stat.out’,STATUS='new’)

SUMM=0.0
SUMR=0.0
L=1

do
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

6000 iwr=1,21
(IWR.EQ.1)OPEN(1,FILE=/1.DT")
(IWR.EQ.2)OPEN(2,FILE=/2.DT/)
(IWR.EQ.3)OPEN(3,FILE='3.DT’)
(IWR.EQ.4)OPEN(4,FILE=/4.DT/)
(IWR.EQ.5)OPEN(5,FILE=/5.DT')
(IWR.EQ.6)OPEN(6,FILE=/6.DT")
(IWR.EQ.7)OPEN(7,FILE=/7.DT’)
(IWR.EQ.8)OPEN(8,FILE='8.DT’)
(IWR.EQ.9)OPEN(9,FILE=/9.DT’)
(IWR.EQ.10)OPEN(C10,FILE=/10.DT’)
(IWR.EQ.11)OPEN(11,FILE=/11.DT’)
(IWR.EQ.12)OPEN(12,FILE=/12.DT’)
(IWR.EQ.13)OPEN(13,FILE='13.DT’)
(IWR.EQ.14)OPEN(14,FILE=/14.DT/)
(IWR.EQ.15)OPEN(15,FILE=/15.DT’)
(IWR.EQ.16)OPEN(16,FILE=/16.DT’)
(IWR.EQ.17)OPEN(17,FILE=/17.DT’)
(IWR.EQ.18)OPEN(18,FILE=/18.DT')
(IWR.EQ.19)OPEN(19,FILE=/19.DT’)
(IWR.EQ.20)OPEN(20,FILE=/20.DT’)
(IWR.EQ.21)OPEN(21,FILE=/21.DT’)
(IWR.EQ.22)OPEN(22,FILE=/22.DT’)
(IWR.EQ.23)OPEN(23,FILE='23.DT’)
(IWR.EQ.24)OPEN(24,FILE='24.DT")
(IWR_EQ.25)O0PEN(25,FILE=/25.DT")
(IWR.EQ.26)OPEN(26,FILE='26.DT’)
(IWR.EQ.27)OPEN(27 ,FILE='27.DT’)
(IWR.EQ.28)OPEN(28,FILE=/28.DT')
(IWR.EQ.29)0PEN(29,FILE=/29.DT’)
(IWR.EQ.30)OPEN(30,FILE='30.DT/)

(IWR.EQ.1)OPEN(31,FILE='1.MD')

"(IWR.EQ.2)OPEN(32,FILE='2.MD')

(IWR.EQ.3)OPEN(33,FILE='3.MD')

(IWR.EQ.4)OPEN(34,FILE="4.MD')

(IWR.EQ.5)OPEN(35,FILE='5.MD')

(IWR.EQ.6)OPEN(36,FILE='6.MD')

(IWR.EQ.7)OPEN(37,FILE='7.MD')

(IWR.EQ.8)OPEN(38,FILE=/8.MD')

(IWR.EQ.9)OPEN(39,FILE='9.MD')

(IWR.EQ.10)OPEN(40,FILE=/10.MD’)
(IWR.EQ.11)OPEN(41,FILE='11.MD)
(IWR.EQ.12)OPEN(42,FILE='12.MD')
(IWR.EQ.13)OPEN(43,FILE=/13.MD")
(IWR.EQ.14)OPEN(44,FILE='14.MD")
(IWR.EQ.15)OPEN(45,FILE='15.MD")
(IWR.EQ.16)OPEN(46,FILE=/16.MD’)
(IWR.EQ.17)OPEN(47,FILE="17.MD")
(IWR.EQ.18)OPEN(48,FILE='18.MD')
(IWR.EQ.19)0OPEN(49,FILE='19.MD")
(IWR.EQ.20)OPEN(50,FILE="20.MD")
(IWR.EQ.21)OPEN(51,FILE=/21.MD")
(IWR.EQ.22)0PEN(52,FILE='22.MD')
(IWR.EQ.23)OPEN(S3,FILE=/23.MD")
(IWR.EQ.24)OPEN(54 ,FILE=/24.MD")
(IWR.EQ.25)O0PEN(55,FILE='25.MD")
(IWR.EQ.26)OPEN(56,FILE='26.MD")
(IWR.EQ.27)OPEN(S7,FILE='27.MD’)
(IWR.EQ.28)OPEN(58,FILE=/28.MD")
(IWR.EQ.29)OPEN(59,FILE=/29.MD")
(IWR.EQ.30)OPEN(60, FILE='30.MD")
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2000
2001
3000

2500
2501
2700

9998

JWR=IWR+30 .
NMOD=0
DO 2000 J=1,100
READ (JWR,3000, END=2001)PVS(J),PDIST(J) "
NMOD=NMOD+1
CONTINUE
CONTINUE
FORMAT(1X,E10.4,4X,F12.7)

IF(L.EQ.Q)VSI=PVS(NMOD)
NDAT=0
DO 2500 1=1,100

READ(IWR,2700,END=2501)DVS(I),DDIST(I)
NDAT=NDAT+1

CONTINUE

CONTINUE

FORMAT(1X,E12.4,4X,F10.5)

N=19
K=2
DO 4000 J=1,N
CONTINUE
IF (DDIST(J).GT.PDIST(K)) THEN
=K+1 f
IF (K .GT. NMOD)GO TO 4010
GO TO 5
ENDIF
WRITE(65,9998)L,4,K,DDIST(J),PDIST(K)
FORMAT(1X,3(1X,13),2(1X,F8.4))

IF(DDIST(J).EQ.PDIST(K)) THEN
VS(J)=PVS(K)
GO TO 19
ENDIF
Z=DDIST(J)
ZLOW=PDIST(K-1)
ZHI=PDIST(K)
VSLOW=PVS(K-1)
VSHI=PVS(K)
VS(J)=VSLOW+((VSHI-VSLOW)*(Z-ZLOW))/(ZHI-ZLOW)
IF (VS(J).EQ.VSI)GOTO 4010

C L: # OF COMPARISONS X: ERROR

19

9999
4000
4010

6000

5500

IF(DVS(J).EQ.1.0.0R.VS(J).EQ.1.0)GO TO 4000
X(L)=(DVS(J)-VS(JN)
SUMM=SUMM+X (L) .
SUMR=SUMR+(X(L))**2
WRITE(65,9999)L,4,K,DVS(J),VS(J),X(L), SUMM, SUMR
FORMAT(1X,3(1X,I3),5(4X,E12.4))

L=L+1

CONTINUE

CONTINUE

CLOSE(IWR)

CLOSE(JWR)

CONT INUE

NOBS=L

XMEAN=SUMM/NOBS

RMS=(SUMR/NOBS)**0.5

lF(NOBS.LT.50)STD=((SUMR-SUMM**Z/NOBS)/(NOBS-1))**0.5

lF(NOBS.GE.50)STD=((SUMR/NOBS)-XMEAN**Z)**.S

HRITE(65,5500)L,XMEAN,RMS,STD
FORMAT(1X,15,3(1X,F10.6))

close(unit=65)

STOP

END
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