
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-23-1993

Automatic Tuning of Integrated Filters Using Neural Automatic Tuning of Integrated Filters Using Neural

Networks Networks

Lutz Henning Lenz
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Electronics Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lenz, Lutz Henning, "Automatic Tuning of Integrated Filters Using Neural Networks" (1993). Dissertations
and Theses. Paper 4604.
https://doi.org/10.15760/etd.6488

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4604
https://doi.org/10.15760/etd.6488
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Lutz Henning Lenz for the Master of Science in

Electrical Engineering presented July 23, 1993.

Title: Automatic tuning of integrated filters using Neural Networks

APPROVED BY THE MEMBERS OF

Rolf Schaumann -

Horm6iZ·

Component values of integrated filters vary considerably due to· manufacturing

tolerances and environmental changes. Thus it is of major importance that the com-

ponents of an integrated filter be electronically tunable. The method explored in this

thesis is the transconductance-C-method.

A method of realizing higher-order filters is to use a cascade structure of second

order filters. In this context, a method of tuning second-order filters becomes important

The research objective of this thesis is to determine if the Neural Network metho-

dology can be used to facilitate the filter tuning process for a second-order filter (realized

via the transconductance-C-method). Since this thesis is, at least to the knowledge of the

author, the first effort in this direction, basic principles of filters and of Neural Networks

[1-22] are presented.

2

A control structure is proposed which comprises three parts: the filter, the Neural

Network, and a digital spectrum analyzer. The digital spectrum analyzer sends a test sig

nal to the filter and measures the magnitude of the output at 49 frequency samples. The

Neural Network part includes a memory that stores the 49 sampled values of the nominal

spectrum. ·A compai-ator subtracts the latter values from the measured (actual) values,

and feeds them as input to the Neural Network. The outputs of the Neural Network are

the values of the percentage tuning amount The adjusting device, which is envisioned

as a component of the filter itself, translates the output of the Neural Network to adjust

ments in the value of the filter's transconductances.

Experimental results provide a demonstration that the Neural Network methodol

ogy can be usefully applied to the above problem context. A feedforward, single

hidden-layer Backpropagation Network reduces the manufacturing errors of up to 85%

for the pole frequency and of up to 41% for the quality factor down to less than approxi

mately 5% each. It is demonstrated that the method can be iterated to further reduce the

error.

AUTOMATIC TUNING OF INTEGRATED FILTERS

USING NEURAL NE1WORKS

by

LUTZ HENNING LENZ

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
IN

ELECfRICAL ENGINEERING

Portland State University
1993

TO THE OFFICE OF GRADUATE STUDIES:

The members of the committee approve the thesis of Lutz Henning Lenz

presented July 23, 1993.

-~ Rolf Schaumann

APPROVED:

Rolf Schaumann, Chairman, Department=6f Electrical Engineering

Roy W.' Koch/Vice Provost for Graduate Studies and Research

TABLE OF CONTENTS

PAGE

LIST OFT ABLES. v

LIST OF FIGURES. vi

CHAPTER

I INTRODUCTION. 1

II FILTERS . 3

11.1 Introduction. 3

11.2 Preliminary characterization of filter types. .

11.3 Transfer functions of filters.

4

4

11.4 Characterization of second-order filter types
via transfer functions . 6

11.5 Passive and active second-order filter realizations 6

11.5.1 Example of a passive filter realization
11.5.2 Example of an active filter realization

11.6 The tuning problem for continuous-time integrated
filters. 10

11.7 Problem definition. 12

III NEURAL NE1WORKS 19

Ill.1 Motivation for the use of Neural Nertworks 19

lll.2 Basic building blocks of Neural Networks 20

III.2.1 Processing element

III.3 The backpropagation training algorithm 25

III.3 .1 The idea
111.3.2 Mathematical basics

lV

III.4 Neural computing . 28

IV NEURAL NE1WORK APPROACH FOR THE PRESENT
PROBLEM 29

IV .1 Data generation . 29

4 IV .2 Evaluation of neural network output 32

IV.3 Neural Network experiments 34

IV.3.1 Network architecture used
IV .3.2 Activation function
IV.3.3 Network dynamics and learning rate
IV.3.4 Testing the Neural Network

V RESULTS FOR CIRCUIT B 38

V .1 Learning dynamics . 38

V .2 Performance . 44

V.2.1 Testing on 6253 previously seen records
(training data)
V.2.2 Testing on 4896 previously not seen records
(generalization data)

V .3 Iterative tuning . 52

V .4 Tabulated performance 60

VI RESULTS FOR CIRCUIT A . 62

VI.1 Initial experiment . 62

VI.2 Non-unique inverse mapping 62

VI.3 Results with 50 inputs 64

Vll CONCLUSIONS 67

REFERENCES . 69

APPENDICES

A RESULTSOFCIRCUITB'SNEURALNE1WORK 71

B MATLAB-FILES FOR DATA GENERATION. 106

C MATLABANDC-FILESFOREVALUATION 115

D NE1WORKPARAMETERS 119

LIST OFT ABLES

TABLE PAGE

I Definition of filter types . 7

II Nominal quality factors and component values of Circuit A 16

III Nominal quality factors and component values of Circuit B 17

IV Results of training data (6253 records) 60

V Results of unseen data (4896 records). 61

VI Learning dynamics (percentage error in L-C-space) 63

VII Performance (percentage error in L-C-space) 63

VIII Residual errors after tuning (unseen data) 66

FIGURE

1.

2.

LIST OF FIGURES

Passbands and stopbands .

Input -output mapping of a filter

3. Higher order filter realized through a cascade of second-order

PAGE

... 3

5

filters 5

4. Transconductor circuit symbol . 8

5. Second-order low-pass RCL-filter realization 8

6. Second-order gm -C filter with low-pass and band-pass outputs . . 9

7. Nominal and actual transfer function 10

8. Normal distribution of component values 11

9. Magnitude of the transfer function for different quality
factors Qp . 16

10. Control Structure . 18

11. Layered feedforward Neural Network 21

12. Processing element (PE)

13. Sigmoid.

23

24

14. tanh 24

15. Measurement of resistor R . 30

16. Backpropagation Network for the present problem. 35

17. Network dynamics for Qpo = 5.0,
(Wpo = 10Mrad/s in Figures 17. to 25.) 39

18. Network dynamics for Qpo = 3.33,
(Wpo = 10Mrad/s in Figures 17. to 25.) 39

19. Network dynamics for Qpo = 2.5,
(ropo = 10Mrad/s in Figures 17. to 25.) 40

20. Network dynamics for Qp 0 = 1.67,
(ropo = 10Mradls in Figures 17. to 25.) 40

21. Network dynamics for Qpo = 1.25,
(ropo = 10Mrad!s in Figures 17. to 25.) 41

22. Ne~ork dynamics for Qpo = 1.0,
(ropo = 10Mradls in Figures 17. to 25.) 41

23. Network dynamics for Qpo = 0.83,
(ropo = 10Mradls in Figures 17. to 25.) 42

24. Network dynamics for Qp 0 = 0. 707,
(ropo = 10Mradls in Figures 17. to 25.) 42

25. Network dynamics for Qp o = 0.625,
(ropo = 10Mradls in Figures 17. to 25.) 43

26. Initial errors of the quality factor Qp and the pole frequency rop
(training data) . 45

27. Residual errors of the quality factor QP and the pole frequency roP
after tuning via NN (testing with training data, Qpo = 5.0)
(compare with Figure 26.) . 46

28. Initial errors of the quality factor Qp and the pole frequency rop
(generalization data) . 47

29. Residual errors of the quality factor QP and the pole frequency rop
after tuning via NN (testing with generalization data, Qj, 0 = 5.0)
(compare with Figure 28.) 48

30. Selected initial errors of the quality factor QP and the pole
frequency rop (11 samples, generalization data) 49

31. Residual errors of the quality factor QP and the pole frequency roP
after tuning via NN (testing with 11 samples, generalization data,
Qpo = 5.0)(compare with Figure 30.). 50

32. Residual errors of the quality factor Q P and the pole frequency rop
after tuning via NN (testing with 11 samples, generalization data,
Qpo = 5.0)(enlargement of Figure 31.) 51

33. Initial errors of the quality factor Qp and the pole frequency rop
(11 samples, genralization data) 53

34. Residual errors of the quality factor QP and the pole frequency roP
after tuning via NN (testing with 11 samples, generalization data,
Qpo = 5.0). • 54

vii

35. Residual errors of the quality factor QP and the pole frequency Olp,

after the output of the NN has been used to tune the filter the
second time (11 samples, generalization data, Qpo = 5.0). 55

36. Residual errors of the quality factor QP and the pole frequency Olp

after tuning via NN (testing with 11 samples, generalization data,
Qpo ~ 5.0)(enlargement of Figure 34.) 56

37. Residual errors of the quality factor QP and the pole frequency Olp,

after the output of the NN has been used to tune the filter the
second time (Qpo = 5.0, generalization data)(enlargement of
Figure 35.) . 57

38. Control Structure . 58

39. Varying parameters and resulting changes in the magnitude 59

40. Network dynamics for QP 0 = 5.0 . .

41. Network dynamics for Qp o = 1.0 . .

65

65

42. Network dynamics for Qpo = 0.625. 65

viii

CHAPTER I

INTRODUCTION

The motivation for my thesis was the result of different, yet interrelating aspects.

Schaumann [1] says : "All modern communication systems and most measuring equip

ment contain various types of electrical filters that the designer has to realize in an

appropriate technology." Decisions about how a filter should be realized bring up ques

tions such as which type of filter is to be used, or which order of filter is required, and

questions about the implementation method. In general, the choice of network imple

mentation is based on economic and technological considerations. As far as this thesis is

concerned, technological considerations are emphasized. As is well known, without tun

ing, the transfer function of an integrated, continuous-time filter will vary considerably

due to fabrication tolerances, environmental changes (temperature, humidity, aging) and

parasitic effects. Thus it is of major importance that the components. of an integrated

filter be electronically tunable, and this implies an implementation approach based, for

example, on the transconductance-C -method. This method is the main focus of the

present thesis, but in addition passive, discrete RLC -networks are described and investi

gated, since they provide additional insight into the problem solving process.

Current manufacturing practice typically employs a "master and slave" tuning pro

cess [2,3,4]. This process involves manufacturing two copies of the same filter on one

chip. An assumption is made that the two copies of the filter are identical-- i.e., the same

manufacturing errors will have been made on both of them. The one called 'slave' is

used to process the information-carrying signal, the one called 'master' is presented with

a reference signal and its output is used to derive information for tuning the 'slave' filter

2

--and tunes itself at the same time. In this way, tuning can be accomplished on-line; the

cost associated with this is duplicate circuitry plus tuning circuitry on the (same) chip

[2,3]. As with any tuning method, an accurate reference frequency is required. The

accuracy of the "master and slave" tuning technique is limited by the accuracy of the

actual matching of the characteristics of the two filters. Generally speaking, one can say

that the existing (published) tuning methods do work, yet not as satisfactory as desired

[1-7]. There is need for alternative methods to improve the tuning process.

The research objective of this thesis is to determine if the Neural Network (NN)

methodology can be used to facilitate the filter tuning process and if the tuning circuitry

required (the NN) can be implemented on a separate chip. Happily, the answer (to each

question) turns out being yes.

CHAPTER II

FILTERS

II.l INfRODUCfiON

A filter may best be described as a two-port Circuit, which processes the magni

tude and/or phase of an input signal in some prescribed way in order to generate a desired

output signal.

In general, certain frequency components are transmitted (passed) by the filter with

little or even no change, whereas other frequency components are rejected or stopped.

Accordingly passbands (PB) and stopbands (SB) have been defined, as shown in Figure

1.

Gain

IE PB·---~

Frequency

Figure .!.:. Passbands and stopbands.

4

This thesis does not consider the problem of designing a filter to realize a particular

transfer function for some given problem. The interested reader can find many design

techniques in the literature, e.g. [1] and [8]. The problem addressed is the following:

measure the actual transfer function implemented by the manufactured filter, determine

differences from the desired (nominal) transfer function, and calculate parameter values

to perform a tuning of the manufactured filter.

11.2 PRELIMINARY CHARACTERIZATION OF FILTER TYPES

A common way to describe the general behavior of a filter is to characterize it by

the frequency components it lets pass. Accordingly, a low-pass filter transmits low

frequency components and stops high-frequency components. Similarly, a high-pass

filter transmits high-frequency components, and stops low-frequency components.

Band-pass and band-stop filters may be described analogously. These filters, in contrast

to low-pass and high-pass filters, stop or pass frequency components which are in an

interval between high and low frequencies. As the title of this section suggests, this is

only a general description of filter types, since the meaning of high-frequency and low

frequency is fuzzy. Their exact definition stays open, so far. As a consequence of the

characterization given, we have four filter types: low-pass, high-pass, band-pass, and

band-stop.

II.3 TRANSFER FUNCfiONS OF FILTERS

A given filter may be viewed as a black box (see Figure 2), whose input-output

mapping is defined by the transfer function given in equation 2.1.

Filter

H(s)

Figure 2. Input-output mapping of a filter.

5

H s ---- - . - Vout -~s - amsm+ ... +als+ao (21)
() V;n D s sn + bn-lsn-l + ... + b IS + bo

The order of the filter is given by the order of the denominator n , where n ~ m has

to be satisfied. The transfer function H(s) may be written in factored form [1] as:

m/2

H (s)= li.J.s.l = k~l (a2k s
2
+ a 1k s + <Xok l

~ ;n~/~2-----------------~
i~l(s2 + srop/Qp + coj>

(2.2),

where the order of the filter n is assumed to be even. Equation (2.2) makes evident that a

higher-order filter may be realized through a cascade of second-order filters.

0 -o
V;n H21 H22 H2n Vou

0 f. <J

Figure 3. Higher-order filter realized through a cascade
- (l2·s 2 + (ll·s + ao·

of second-order filters.(H 2j (s) = 2
1

1
1J ~).

s + s Olpj pj + CJlpj

If the order of the filter n is odd, either one first-order filter would have to be added

or one third-order filter would have to replace one of the second-order filters in Figure 3.

Other realizations of higher-order filters, for example the ladder structure, are

explained in [1]. However, as will be described in Section 11.7, the approach taken in this

thesis is based on the cascade method of Figure 3.

11.4 CHARACfERIZA TION OF SECOND-ORDER FILTER TYPES

VIA TRANSFER FUNCTIONS

In general, the transfer function of a second-order filter may be written as

a2s2 + als + ao
H 2(s) = s 2 + s rop !Qp + roJ

where rop represents the pole frequency and Qp stands for the pole quality factor.

6

(2.3),

As mentioned in Section II.2, the behavior of a filter may be described as low-pass,

high-pass, band-pass, or band-stop. Varying coefficients in equation (2.3) leads to each

of the various types of filter. This is demonstarted in Table I. Simultaneously the

transfer function given in this Table may be seen as a definition of the different filter

types.

11.5 PASSIVE AND ACTIVE SECOND ORDER FILTER REALIZATIONS

Historically, passive, discrete RLC-networks have been used to implement filters.

More recently, to reduce the size and cost of these networks, the large and costly indue-

tors have been replaced by active networks. The result is active RC-networks composed

of resistors, capacitors, and transistors, later augmented with operational amplifiers.

Simultaneously, this enabled engineers to utilize advances in integrated Circuit technol

ogy to implement low-cost filters with small size. Nowdays, operational transconduc

tance amplifiers (OTAs) are available that do not suffer from the restricted bandwidths

that the initial active components such as operational amplifiers had. OT As have

significantly higher bandwidth than operational amplifiers [1]. A main disadvantage of

such integrated filters is that they are more affected by variability of component values

realized during manufacture, or due to environmental changes. Since active filters are

Type of filter

Low-Pass

Band-Pass

High-Pass

Band-Stop

All-Pass

TABLE I

DEFINITION OF FILTER TYPES

Transfer function H 2(s) Remarks

a2=0,a1=0

ao in some realizations:
s2 + s roP !Qp + roJ

ao = roj

a2=0,ao=O

a 1s in some realizations:
s 2 + s ropiQp + roJ

a 1 = rop/Qp

a 1 =0,ao=O

a2s2 in some realizations:
2+ /Q 2 s s Cilp p + Cilp

a 2 = 1

a2s 2 + a0
a1 =0

s 2 + s roP /Qp + roJ

a 2 = 1

a 2s 2 + a 1 s + a o
a 1 = -Olp !Qp

s 2 + s rop !Qp + roj ao= roJ

Magnitude = I H 2(s) I = 1

7

8

electronically tunable, this turns out to be a problem that can be solved. Filters imple

mented using the transconductance-C-method can easily be tuned by bias currents or bias

voltages. The ideal OT A (Figure 4.) is a voltage-controlled current source described by

I o = gm (V+- v-)

Figure 4. Transconductor circuit symbol.

In many designs, the value of the transconductance gm is proportional to the value

of a control bias current, and this bias current may be independently set.

As mentioned earlier, this thesis is concerned mainly with active filter realizations,

but passive realizations are also discussed for development of ideas. An example for

each is given in the following section. Both second-order filters realize the biquadratic

function given in equation (2.3).

11.5.1 Example of! passive filter realization

Figure 5 shows a possible realization of a second-order low-pass RCL-filter.

c
Vout

0

Figure~ Second order low-pass RCL-Filter realization.

Input voltage: V;n = V R + VL + V c

9

Output voltage: Vout = Vc

where: I V R = JR , V L = /Ls , V c = rs ·
Using the above equations, the transfer function of the RCL-filter shown in Figure

5 is easily derived as

Vout _ l!LC
H2(s) = V;n - s2+sRIL + l!LC (2.4)

Comparing this with Table I, we see immediately that the condition a 2 = a 1 = 0 is

satisfied, and thus, this filter realizes a second-order low-pass filter. We also see that

ao= Lb =ro)aswellasQp =rop ~ = ~ #.
11.5.2 Example of an active filter realization

Figure 6 shows the realization of a second-order transconductance-C-filter given in

[2].

VIP VBP

Figure 6. Second order gm -C filter with low-pass and band-pass outputs.

10

The reader can verify by simple analysis that the circuit realizes the second-order

low-pass transfer function

HLP = V f. = ~ ~ ? . g':.!gm 2 = ? . --~ . -- ? (2.5).
l

Comparing this with Table I, we see immediately that the condition a 2 = a 1 = 0 is

satisfied, and thus, this filter also realizes a second-order low-pass filter. In this case we

seethatao= gm!gm 2 =ro2 andQ =-~. c1c2 p p 'J~

Il.6 THE TUNING PROBLEM FOR CONTINUOUS-TIME INTEGRATED FILTERS

Without tuning, the transfer function of a continuous-time filter could vary consid

erably owing to fabrication tolerances, environmental changes (temperature, humidity,

aging), and parasitic effects [1] (see Figure 7).

Gain

Frequency

Figure 7. Nominal and actual transfer function.

To obtain accurate filter performance, the component values also have to be accu

rate. IC processing is only reliable in realizing accurate ratios of like components. For

example, it is an empirical fact that the ratio of two capacitors C 1/C 2 stays within an

11

interval of as low as 0.1% of the nominal value. Yet, the tolerances of absolute values of

C sand gm s may approach 30%. Therefore, frequency parameters, which are determined

by absolute component values, may be off, such that the filter does not perform within

specifications. Typically, statistical methods are used to describe the deviations of the

component values [2]. A normal distribution centered around the nominal value and with

a variance of 15% of the nominal value may be assumed to be reasonable (i.e., the

expected value equals the nominal value). Figure 8 shows the probability density func

tion (pdf) of a standard normal distribution. The term standard normal distribution

implies that the expectation value equals zero. The common symbol cr for the variance is

used.

pdf

1-0' 1-cr 1 1+0' 1 + 20'

Normalized Component Value

Figure ~ Normal distribution of component values.

As described in [1] and [2], tuning implies measuring filter performance, compar

ing it with a standard, calculating the error, and applying a correction to the filter to

reduce the error by making use of a suitable control circuit. The problem definition,

12

given in the next section will reveal that the controller used in this approach will be real

ized as aNN, which provides the tuning parameter values off-line.

ll.7 PROBLEM DEFINITION

Previous explanations discussed characteristics of filters, how they might be imple

mented and at which point difficulties may arise. Now we are in a position to define the

problem to be solved in this thesis. The task of this thesis is to investigate if a NN is able

to calculate the parameters for tuning a filter. Since this is, at least to the knowledge of

the author, the first effort in this direction, there are several restrictions imposed. This

thesis deals with second-order low-pass filters, in particular the filters shown in Figure 5

and in Figure 6, referred to as Circuit A and Circuit B, respectively, in the remainder of

this thesis. This is not as severe a constraint as it might seem at first. In Section 2.3, it

was explained that the building blocks for a higher-order filter are second-order filters

(biquads) if the higher-order filter is realized in cascade structure. Table I illuminates

that there is not a difference in principle between a low-pass, high-pass, or band-pass.

Each numerator consists of one coefficient. The denominators even equal each other.

Indeed a method, used in practice, is to design a low-pass filter and then, using an

appropriate frequency transformation, to derive either a high-pass, band-pass, or band

stop filter. This is accomplished through the following scheme [2]: replace each indepen-

dent frequency parameter s in the transfer function of a low-pass filter by l (B1 s
2
+ 1 ,

s s

B 2 s 1), in order to obtain the transfer function of a high-pass (band-pass, band-stop)
s +

filter.

As far as the tuning problem is concerned, this thesis takes only the tuning of the

magnitude of the transfer function into consideration. Thus the problem of tuning the

filter to obtain the correct phase remains unsolved. This is the most severe restriction for

applying any solution found in the forthcoming chapters. The task of simultaneously

13

tuning the phase and the magnitude has to be the subject of future research.

Furthermore for the purposes of the present research, it is assumed that the filter

has already been designed. Through this design, we know both the nominal transfer

function of the filter and the intended method of implementation. Circuit A and Circuit

B show the two possibilities for implementation this thesis deals with - passive RLC

filters and active gm -C -filters. As mentioned in the general introduction and in the dis-

cussion of the tuning problem, filter components vary. This is especially the case for

integrated circuits, and hence, for filters implemented using the transconductance-C

method. Yet, the main advantage is that these filters can be tuned electronically, by bias

currents or bias voltages.

We have the following transfer function:

where, for Circuit A:

and for Circuit B

ro2
p 2 H 2(s) = s2 + srop/Qp + Olp

Cllp =~
1- fL

Qp =x~c

Cllp = ~ Km1Km2 clc2

The rna . Qp = - rg;;:;c;
gnttude IH(jro)l d . "'4 ~~ enves to

1
lHUro) I = ---------

-v 1 ro 2 ro 4
1 + (- - 2)(-) + (-)

Ql Olp Olp

(2.6),

(2.7)

(2.8)

(2.9)

(2.10).

(2.11)

Equations (2.7) through (2.11) show that with varying components - either gm b

gm 2, C 1, C 2 orR , L, C - the magnitude as a function of the pole frequency and the pole

14

quality factor will alter. Different approaches for Circuit A and Circuit Bare suggested

in this thesis to tune the components of the manufactured filter to arrive at an implemen

tation whose transfer function is close to the nominal values.

In Circuit A, all components have to be tuned, such that in the end, when the actual

magnitude equals the nominal magnitude, each component (R ,L ,C) also takes on its

nominal value (R o,Lo,C o). Since the magnitude (equation 2.11) is defined by only two

parameters - QP and rop - tuning R , L, and C in Circuit A results in a non-unique inverse

mapping. Different changes in R, L, and C cause the same error in the magnitude of the

transfer function. Therefore additional information about the actual (manufactured) filter

is required. For the case of Circuit A, this information is obtained through a de measure

ment as described in Chapter IV .1, Data Generation. Simultaneously it will be sketched

that the NN is able to determine the error terms AC and AL under the assumption that

the resistor R takes on its nominal value, with no additional measurement needed.

In Circuit B, for considerations to be described, only the transconductances are

allowed to be tuned to achieve a matching of the actual magnitude to the nominal magni

tude. The logical reasoning behind this adopted constraint derives from the fact that the

values of the two g m s may be tuned by bias currents or bias voltages, in a continuous

manner. On the other hand, the capacitors can only be changed in discrete steps and this

process would require switches. Such switches would result in parasitic resistance and

parasitic capacitance. These side-effects are, of course, not desired, as they would cause

other difficulties. The empirical fact that the ratio of the capacitors C 1/C 2 stays constant

within 0.1% during manufacturing allows us to do the tuning without modifying capaci

tor values.

It is important to realize that this choice - tuning only the gm s, where the C s stay

untuned - is not really a constraint. The magnitude of the second-order low-pass filter

(equation 2.11) depends only on two parameters. Therefore it ought to be enough to tune

only two parameters to correct the magnitude, even if all of the four parameters are off.

15

Mathematically, this means that the gm s are tuned such that they cancel out the errors

caused by the capacitors. Also a de measurement, as suggested for Circuit A, to make an

unique determination, would not be practicable for Circuit B. In order to measure the

value of a single component, the connections to this component would have to be cut.

This is not a viable proposition.

For the present research, it is assumed that the (customer provided) nominal values

are a pole frequency equal to 10 MHz and capacitors are available in the range between

0.1 pico-Farad and 20 pico-Farad. As a consequence, three different transfer functions

for Circuit A and nine different transfer functions for Circuit B have been calculated.

These transfer functions differ in the value of the quality factor Qp . The values of the

different nominal quality factors together with the component values are given in Tables

II and Til. Figure 9 shows how the magnitude changes for different quality factors.

As a consequence of the difficulties of current methods for tuning, the use of a

Neural Network is suggested. This suggestion is based on the more general assumption

that NNs are said to be 'smart' enough to learn non-linear relations. Additionally,

several other requirements have to be fulfilled to make use of aNN in tuning the magni

tude of a second-order low-pass filter. This will be described via Figure 10, the proposed

control structure.

The filter output is sampled at 49 frequency components, centered around the nom

inal pole frequency roP 0. The nominal magnitude is subtracted from the measured

'actual' magnitude. In practice, the measurement will be accomplished through a digital

spectrum analyzer. The error-vector comprising the differences in the magnitude of the

49 frequency samples is the input for the NN. The error has been caused by the environ

ment, where the expression environment stands as abbreviation for the physical environ

ment during and after manufacturing.

Magnitude

..
5 ~ ~ : : i ... : ... ; .. : .. i . .k. i : :

2 -f ! ·:· ·:· ·:·

. .
1 --t ~: ~~: ~~~

0.5

•••••• •!• •••• ·=· ••.

0.2
~ QJo ~ o.62S ~

. : : i ... : ... ; .. :.,, ... ·:· ·=·
0.2 0.5 1 2 5

N onnalized Frequency

Figure 9. Magnitude of the transfer function for different quality
factors Qp.

TABLE II

NOMINAL QUALITY FACfORS AND COMPONENT VALUES OF CIRCUIT A

Qpo R inil C inpF L inmH

5 200 100 0.1

1 100 1000 0.01

0.625 160 1000 0.01

16

:

I

!

I

I

I

I

I

I

!

I

I

I

17

TABLE Ill

NOMINAL QUALITY FACTORS AND COMPONENT VALUES OF CIRCUIT B

Qpo gm 10 in lo-s S gm20 in lo-s S C1o in pF C2o in pF

5.0 2.5 2.5 12.5 0.5

3.33 1.6667 1.6667 5.5556 0.5

2.5 1.25 1.25 3.125 0.5

1.67 0.8333 0.8333 1.3889 0.5

1.25 0.625 0.625 0.7813 0.5

1.0 0.5 0.5 0.5 0.5

0.83 0.4167 0.4167 0.3472 0.5 I

0.707 0.3536 0.3536 0.25 0.5

0.625 0.3125 0.3125 0.1953 0.5
L____ _______ ----- -----------~------- ---------------------~-----~-----------------------------------

The number 49 has been a heuristic choice, yet based on practical considerations

from a computational point of view. The latter comment refers to the fact that 49 data fill

a 7x7 matrix. A matrix consisting of no more than seven columns fits in a Matlab diary

file used to store the data for both training and testing. The following reasoning lead to

the various choices made. The analytic expression of the transfer function is complete.

The sampled representation becomes more and more sparse if fewer samples are taken.

Based on human judgement, the decision was made that 49 frequency samples will

represent the magnitude of the transfer function as a whole pattern. In fact, a question

18

that future research should answer has to be how many frequency samples are necessary

and sufficient to represent the characteristics of the transfer function being considered.

However, the results demonstrate that 49 frequency samples do a good job.

The NN is designed such that its outputs are the percentage of change the respec-

tive component of the filter has to be tuned to reduce the error towards zero. Therefore

an adjusting device, which keeps track of the nominal value, is required. The task of this

device is to multiply each of the outputs of the NN by the nominal value of the respective

component of the filter and make the appropriate changes in the bias currents and/or vol

tages. Finally a memory to store the ideal or nominal spectrum sampled values of the

magnitude of the transfer function is required.

f*(t)
- ..

Environment

!
Filter

I

Adjusting
Device

f(t)

lr

" !lgml ~gm2 Digital
Spectrum
Analyzer

Neural
Network

I'

F (ro)
+

I ~- I : ():
errorvector = F

Figure 10. Control structure.

~

Nominal Spectrum
Sampled Values

CHAPTERlll

NEURAL NETWORKS

III.l MOTIVATION FOR THE USE OF NEURAL NETWORKS

Feedforward NNs have been shown to learn unknown relationships even though

only a limited number of example data pairs (input-output patterns) are used. Hence the

NN may be described as robust. This means that the NN does not just memorize the

training data, rather the trained NN has the ability to interpolate its output for input pat

terns not explicitly shown during training. The common expression for the latter

behaviour is generalization. It is a question of major importance whether the NN being

considered does a good job on the generalization or whether it does not.

In contrast to feedforward NNs, recurrent NNs include loops [9], which cause

dynamics such as, for example, delay. For the given problem this is not required. The

outputs of the NN, at a time, depend only on the current errorvector. In production

mode, an input to the NN can be directly fed through the NN to the output. Feedback is

required only during training, where the error of the output will be backpropagated to

make adjustments within the NN. This step will be explained in Section Ill.3.

In general, the power of a NN-based approach does not necessarily lie in the

elegance of a particular solution, but rather in the generality of the NN to find its own

solution [9]. After a feasible approach to the problem being considered is found (this

refers to the actual realization of the NN, e.g. components of the NN and their interrela

tions) the NN is simply presented with examples of the desired behavior or example data

pairs. The significant advantage of a NN-based approach to problem solving is that we

do not need to have a mathematical algorithm for mapping an input into an output. The

20

process of training is simply a matter of altering the connection weights systematically to

encode the desired input-output relationship, which might be unknown. In our case, we

construct the data sets by making a sequence of known changes in the circuit parameters,

calculate the magnitude of the 49 sample points of the frequency response for the result

ing transfer function, calculate the differences between these values and the correspond

ing nominal values, and use these differences as a 49-component error vector input to the

NN. The NN will have as many outputs as we have parameters (e.g., Circuit A: M, tlL,

!lC; Circuit B: !lgm 1, !lgm 2). We know what ll-values we used to generate the data, so

these are used during the training process. The task of the NN is to learn to map a 49-

component error vector to the correct ll-values. (The author knows of no straightfor

ward, analytical process to make such computations). A problem such as this is well

suited to the Back-propagation-of-error method in the Neural Network technology [10].

III.2 BASIC BUILDING BLOCKS OF NEURAL NETWORKS

As described in [9], a NN structure might be described as a collection of parallel

processors, in the following discussion referred to as processing elements (PEs). These

PEs are connected together in the form of a directed digraph, and are organized such that

the network structure lends itself to the problem being considered. Figure 11 schemati

cally represents the PEs as nodes and the connection between the nodes as arcs. A graph

ical representation of one PE, is shown in Figure 12 and is described in Section lll.2.1.

The specifics of an application determine the number of PEs for the input layer and

for the output layer. In the context of filters, which need to be tuned, the number of PEs

in the output layer (M) equals the number of components of the filter which are to be

tuned. The number of input PEs (N) is determined by the number of frequency samples

taken. The latter statement will be further illuminated in Section IV.1, data generation

for a NN. The design of the (one or more) hidden layers is more complicated. In fact,

this is a major part in the discussion of the NN experiments carried out.

21

After the NN has been designed, and after all NN parameters take on their initial

values, the NN is prepared for the first phase of its life cycle, the training phase. During

this phase, the NN is presented with example data pairs in order to adjust the weights of

the connections. The testing phase follows. A criterion for evaluation, suitable for the

problem context under consideration, has to be developed. As soon as the accuracy of

the NN is sufficient, the last phase, which is the reason for doing all this, starts. The

weights do not change, the NN is in production mode and fulfills its task.

Output Layer
(index: i)

Hidden 2 Layer
(index: j2)

Hidden 1 Layer
(index: j1)

Input Layer
(index: k)

Figure 11. Layered feedforward Neural Network.

Realizing that NN structures are highly parallel simultaneously reveals that they

ought to be and in fact are faster than commonly used sequential computers. What seems

more important to the author, is the promising statement in [9], that NN architectures

might be developed to solve problems belonging to the class of organized complexity.

The latter expression is a term used by Hall and defined in [11, Chapter 1]. Current

research even led to the creation of new sciences of complexity [12].

22

III.2.1 Processing element

Inspired by knowledge from neuroscience, artificial neurons (alias processing ele

ments) have been developed as the counterpart to biological neurons. As is well known,

biological neurons comprise dentrites, synapses, an axon, the cell body (soma), and the

nucleus. In analogy, the PE consists of several components, which are described below

(with respect to the components of the biological neuron).

The model of the PE (Figure 12) replaces the tree-like network of the dentrites,

which are connected to the cell body, by a so-called ins tar. Current theories assume that

changes due to learning take place at the junction between two biological neurons, the

synapse. A change in the neurotransmitter released by the presynaptic cell is asserted to

be responsible [9]. The process of learning represented in nature may be best described

as: the more often a process takes place, the stronger it gets. Since the basic theory

comes from a book by Hebb [13], the literature [9,12,14] refers to this as Hebbian learn

ing. The artificial neuron (PE) replaces these synapses by weights (w; 1 ... wiLt). During

training, the weights of each PE are variable, such that the collection of PEs (NN) is in

general capable of learning. How the process of learning takes place is described in the

following section about the learning algorithm called Backpropagation. After training,

the weights are fixed, with the exception that some learning paradigms exist, which allow

the NN to learn on-line. In such cases, the weights adapt to the respective situation. Yet,

the changes should be made only slowly to allow the NN to perform within

specifications. The output of the PE symbolizes the axon. The cell-body, including the

nucleus, may be seen represented by a threshold term and the non-linear function f. It is

important to realize that the described relationship is only a principal characterization of

similarities. One could argue in a different way by saying that in a biological neuron

electrochemical processes take place, whereas in the PE all processes are of electrical

nature. What seems most important to me, is to see that artificial neurons are not a new

creation, rather they are based on biological neurons, which have been copied, in order to

23

create artificial learning processes.

The question which immediately arises is which task the PE has to perform. Each

PE forms a weighted sum (equation 3.1) of the inputs (instar) from previous layers to

which it is connected, adds a threshold value (equation 3.2) and produces a non-linear

function f of this sum as its output value (equation 3.3). Depending on the problem con

text, the threshold value may be positive, zero or even negative. Since the non-linear

function f (equation 3.3) converts the net input (equation 3.1) to an activation value for

the respective PE, this function is called activation function. Another expression found

in the literature is transfer function [15,16].

In star:

hl

hz

0;

hLl

Figure 12. Processing element (PE).

net;(p) = ~ w;j h/P)
}~

net;(p)* = net;(p) + 9; = ~ W;j h/P) + 9;
}~

O;(p) = f (net;(p)*) = f s~ Wjj h/P) + 9;)

24

(3.1)

(3.2)

(3.3)

The activation function has to be non-linear, to take advantage of the hidden layers. A

linear activation function simply means that the output is proportional to the net input.

Yet, this task is already accomplished through the weights. The most common transfer

functions are the sigmoid (equation 3.4) and the hyperbolic tangent (tanh, equation 3.5).

f (x) = sigmoid(x) = - 1

ex -e-x
f (x) =tanh (x) = ex+ e-x

(3.4)

(3.5)

For both cases, the transfer function levels off and approaches fixed limits for large nega

tive and large positive inputs. Saturation is a feature usually forced by the application.

For the filters, the percentage amount for tuning has to stay in a fixed. range of [-30%,

+30%] of the nominal value. The sigmoid activation function (Figure 13) provides a

[0,1] range, while the hyperbolic tangent (Figure 14) provides a [-1,1] range.

1

Figure 13. Sigmoid. Figure 14. tanh.

25

Ill.3 THE BACKPROPAGATIONTRAINING ALGORITHM

III.3.1 The idea

The backpropagation training algorithm may be summarized as follows. It pro

vides that a notion of weight space exists. This step has already been accomplished

through equations 3.1 to 3.3. The algorithm is based on a strategy called gradient des-

cent. The task is to minimize a criterion or error function.

More detailed the algorithm includes the following steps. If t;(p) are the target out

put values and o;(p) are the actual output values of the NN for the p th input pattern, then

one trains the NN by minimizing the error-function given through:

E = Pt E<Pl = tt ~ (t;<Pl- o;<Pl)2 (3.6)

In order to simplify the mathematics, the threshold value is assumed to equal zero.

Substituting equation 3.3 in equation 3.6 results in:

E = Pt E<Pl = -i-Pt 1~ (t;<Pl- f s't,w;ih/Pl)
2

(3.7)

Equation 3.7 adds an extra dimension to the weight space defined through equa

tions 3.1 to 3.3. Therefore one can think of the error-function E as a surface in weight

space. The goal is to find the minimum of this surface. E (p > depends only on the weights

and the problem patterns. The problem patterns are known and fixed. Thus only the

weights can be changed to minimize the error-function. Provided we are at a certain

point in weight space, it is obvious that weight changes should occur in the direction of

and proportional to the negative gradient of E, with respect to the weights w;j.

In general, the backpropagation training algorithm works on multilayer NNs. This

makes evident that the weights of different layers have to be updated. Updating the

weights of the output layer is accomplished relative easily, as equations 3.10 to 3.12

show. Updating the weights of one or more hidden layers is a more complicated task

26

(equations 3.13 to 3.14). There is no method to determine the correct output of a hidden

PE in advance. Consequently the error in the output of a hidden PE cannot be calculated,

although the actual output might be known. Otherwise it is understandable that the error

in the output of a hidden PE has an influence on all the error terms on the output layer.

Accordingly the error of all output PEs to which the respective hidden PE is connected, is

backpropagated. Hence the name for this training algorithm is backpropagation of error.

Mathematically this trick is accomplished through the calculation of the gradient of the

error-function E with respect to the weights of the hidden layer (equation 3.13). After

the gradient of the error-function E, with respect to the respective weight, is calculated,

the weights are updated according to

w (t+ 1) = w (t) + ~w(t) (3.8),

where

L1w(t) =-n V E(p) (3.9).

The factor 11 is called the learning rate. The value of 11 is positive and usually less than 1

[9]. The exact value will be discussed in Chapter IV.

Ill.3.2 Mathematical basics

The remainder of this Chapter describes the derivation of the gradient of the error

function, with respect to both, the weights of the output layer and the weights of the hid

den layer. It is assumed that the NN comprises only one hidden layer.

The gradient of the error-function with respect to the weights of the output layer

derives to:

a£(p) a£(p) do;(p) dnet;(p)
dwij = do;<P) anet;<P) dw;j

(3.10).

27

Further analysis yields:

aE(p>
~ =- (t;(p)- o;(p)) (/;)' h,.(p) =-ow> h,(p)

lj l J
(3.11),

where ol(p) is defined by:

o,(p) = (t;(p)- o;(p)) (f;)' (3.12).

Hereby (/;)'expresses the partial derivative of the activation function with respect to its

argument. For certain activation functions f , the partial derivative can easily be calcu

lated. Mathematical analysis for a linear activation function yields (/;)' = 1, whereas for

the sigmoid activation function the result is determined by

(f;)' = /; (1- /;) = o;(p) (1- o;(p>).

The gradient of the error-function with respect to the weights of the hidden layer

derives to:

aE (p) = 1 ~ a(t;(p)- o;(p))2

aw jk 2 ,f;t dw jk
(3.13).

Equation 3.13 may be rewritten as:

~ = - ~ (t·(p) - 0 ,(p)) ao;(p) a net; 3.!!L anetk
~k 1 1 dnet· ~ dnetkb ~k J z= 1 J J

~ =-f' (netk)ik ~ (t;(p>)f' (net;) w;j
dwjk ~~

~ = - f 1
(netk)isubk ~ 01(p) Wjj

dwjk ~
(3.14)

The latter form of equation 3.14 makes evident that every update on the hidden

layer depends on all error terms o,(p) on the output layer. As already suggested through

the form of equation 3.6, weight updates are performed as each training pattern is pro

cessed. It would be possible to sum the error of all patterns and then make one update to

the weights. The minimazation process would then be described byE = f £(p). Yet, it
p=l

has little advantage and requires storing a large amount of data [9].

28

III.4 NEURAL COMPUTING

The question which still has to be answered is, how will the NN be realized?

Although hardware implementations [17,18,19] exist, most current NNs are simulated by

sequential computers. Since the goal of this paper is to investigate the efforts required to

tune second-order, integrated filters using NNs, an actual hardware implementation is not

required. A simulation of NNs is sufficient. The NeuralWorks Professional IT/Plus

software package from NeuralWare incorporation was known to the author before. It is

available on the Unix system of Portland State University and includes all the features

discussed. Consequently it has been used for simulation of the NN.

To understand what is going on, while using the software, it seems important to the

author to keep some characteristics in mind. All PEs in a layer fire synchronously and

each layer fires sequentially. The updating of the weights is accomplished similarly.

This means all weights (in each layer) are updated together and at one step in time.

Whether the weights are updated after each pattern has been presented, depends on how

the network parameters are set up in detail. The approach taken in this paper sets the

respective parameters (Epoch) to the value one, such that the weights are indeed incre

mentally updated. This approach led to good results.

CHAPTER IV

NEURAL NETWORK APPROACH FOR THE PRESENT PROBLEM

IV.l DATA GENERATION

Starting work with NNs requires a set of input-output patterns (example data

pairs), which represent the desired problem domain. From the problem definition previ

ously given, it is already known that the input to the filter are the 49 differences of the

actual and the desired magnitude of the respective filter's (Circuit A or Circuit B) fre

quency response. It would have been possible to present the actual magnitude of the

transfer function to the NN (rather than the error values). As discussed in data prepara

tion for a NN [20], changes in amount are preferred to absolute values, as they provide a

smaller range, and consequently small-value differences are more meaningful to the NN.

The sampling of the filter at 49 frequency components was performed to represent

the magnitude of the transfer function as a whole pattern. Accordingly, all49 frequency

samples have to be presented to the NN at once. This requires 49 PEs in the input layer

of the NN, resulting in the fact that each PE recognizes changes in the magnitude for a

fixed value of the frequency.

The data were created using the mathematical software package called Matlab (see

APPENDIX B). The frequency samples were taken for a range from 0.2 to 2.6 times the

nominal pole frequency (1 MHz for both Circuit A and Circuit B) and with a stepsize of

0.05 times the nominal pole frequency. The components of the filter are varied between

-30% and +30% of their nominal value. For both cases, training data generation as well

as testing data generation, each component was incrementally changed with a step-size of

5%. The training data vary between -30% and +30%, whereas the testing data take on

30

the in-between values in the range from -27.5% to +27.5%. For the data generation of

Circuit B, the constraint that C 1/C 2 stays constant within 0.1% of its nominal value has

been used. C 1 and C 2 differ at most by 5%, in either direction.

For each nominal quality factor Qp 0, a training set and a testing set has been

created. The above changes result in the fact that the NN for Circuit A has been trained

on 2197 different transfer functions, whereas the NN for Circuit B has been trained on

6253 different transfer functions. The testing set consists of 1728 (Circuit A) or 4896

(Circuit B) records.

Computing the input-output patterns is clear cut for Circuit A. One just has to

keep track of the ~s which change the transfer function and store them as the desired out

puts. The transfer function of a low-pass filter with unity gain is determined by only two

parameters. To enable the NN to tune three parameters, additional information is

required to avoid a non-unique inverse mapping. For the de case, the capacitor C and the

inductor L of Circuit A can be neglected. Hence using a resistor R o (see Figure 15),

whose value is exactly known, the value of R can be determined.

V;n

Figure 15. Measurement of resistor R.

Viewing Figure 15 makes evident that:

Vout _ Ro
V;n - R +Ro

This can be rewritten as:

V;n _ 1), R =Ro(~

31

where V;n and Vout have to be measured. The additional information is provided through

this measurement and is included as the fiftieth input of the NN.

For Circuit B we have to go through a mathematical analysis to prove that the gm s

can be tuned, such that they cancel out the error caused through the capacitors. After

tuning the transconductances, the components are described by:

_ (1 + Agmla + Agmlt)
gml-gmlO gmlO

_ (1 + Agm2a + Agm2t)
gm2- gm20 gm

2
0

C Ala) 1 =C1oO + -c
10

A2a c 2 = c 20 (1 + ~)
L- 20

(4.1a)

(4.1b)

(4.2a)

(4.2b)

where the subscript 0 denotes the nominal value. The lla -term describes the actual

amount the respective component is off. The ll1 -term, which occurs only in equations

(4.1), stands for the amount the respective transconductance has been tuned. Substituting

equations (4.1) and (4.2) in equations (2.9) and (2.10) results in the actual pole frequency

roa and the actual quality factor Qa.

----- ~(1 + Agmla +Agmlt)(1 + Agm2a +Agm2t)
(1) _ ""' / gm 10gm20 gm 10 gm20

a- \1 C wC20 :</(1 + AC la)(1 + AC2a)
\[C1o C20

(4.3)

- /(1 + Agmla +Agmlt)(1 + AC1a)
Q _ ~ gmloC 10 \f gmlO C 10

a - gmzoC 20 /(1 + Agm2a + Agm2t)(1 + AC 2a)
gm20 C2o

(4.4)

32

The nominal pole frequency ffip o and the nominal quality factor Qp o are defined by:

(J) _ ~ gmloJlm20
po- c10c20 (4.5)

Qpo= ~ gmwC:w (4.6)

It is obvious that after tuning, the actual and the nominal values of the pole frequency

should equal each other. The analogous statement is true for the quality factor. Conse

quently the second term in equation (4.3) and the second term in equation (4.4) have to

equall.

_.. /(1 + flgm la + flgm lt)(1 + flgm2a + flgm2t)
-\J 1

gm 10 gm20

~(1 + LlC ta)(1 + !:J.C 2a) \1' Cw C2o

.... /(1 + I:J.gm la + Agm lt)(1 + AC 1a)

-\J 1

gm 10 C 10 = 1
(1 + I:J.gm2a + Agm2t)(1 + AC 2a)

gm20 C2o

Further mathematical analysis yields :

ilgm lt _ AC 2a

gmlO - C2Q
flgm 2t - AC 1a

gm20 - Cto

gm10

Agm2a
gm20

::1 (4.7)

(4.8)

(4.9)

(4.10),

in order to satisfy the constraints given through equations (4. 7) and (4.8). Accordingly

equations (4.9) and (4.10) define the output of the NN.

IV .2 EVALUATION OF THE NEURAL NETWORK OUTPUT

Evaluation of the NNs output at this point might seem to be a step ahead. Yet this

is not the case. When setting up NN experiments, one always has to think about the

evaluation in advance. How can it be judged, if or how well the NN does learn? A cri-

33

terion is needed to determine the performance of the NN. The meaning of the RMS-error

(Root-Mean-Squared-error), provided by the software, is very fuzzy. It shows whether

there is a tendency which is in general good or bad. A more precise criterion is desirable.

The evaluation of Circuit A is accomplished utilizing a c-file (see APPENDIX

C.1), which calculates both, the maximum error of each component (in either direction)

and the Euclidean distance (average, maximum, minimum) of the actual output of the

NN with respect to the desired and calculated output. This criterion enables us to judge

if the NN is able to determine the changes in the parameters.

The Matlab-evaluation-file for Circuit B (see APPENDIX C.3) even accomplishes

a more subtle task. It is supposed that the NN does not deliver exact values for

~gmltlgmlO and ~gm2rlgm20 (equations 4.9 and 4.10). Defining the error-terms e1 and e2

allows us to calculate the actual values of the normalized pole frequency Ola loop o and the

normalized quality factor Q0 1Qpo.

el = ~gmlNN _ ~gmlt
gmlO gmlO

(4.11)

~gm2NN ~gm2t
e2= ---

gm20 gm20
(4.12)

where the subscript t denotes the calculated tuning amount. NN stands for the actual

output of the NN.

Ola - /1 e 1 e 2 e 1 e 2
ropo = -\J +A+ B + --;ur (4.13)

_r-;;
Q ~1+-j-

a -

Qpo- "'Jl+ ~2 (4.14),

where A and B are defined by:

A - 1 ~c 2a B - 1 ~c ta
- + C2o ' - + L'W ·

More evident, the latter paragraph may be summarized by stating that the determi

nation of Walropo and Qa!Qpo requires keeping track of two steps, the calculation of the

34

error-terms e 1 and e 2 and the calcualtion of the term A and B. The latter terms are cal-

culated simultaneously with data generation (see APPENDIX B). The error-terms are

calculated via the NN result files, the .nnr-files (see APPENDIX C.3).

Using these mathematics, the actual Ola lrop o and Qa /Qp o as well as their maximum

and minimum values are calculated. Additionally it is calculated how many records stay

in a 5%- and in an 1 %-error-box around the nominal value.

Finally equations (4.3) and (4.4) are used to determine the worst cases of Olalropo

and Qa !Qp o before tuning.

Maximum: Ola =- /1.3 1.3 = 1.857
rop o 'I err err

Minimum : O>a = ~ 0·7 0·7 = 0.539
ropo 1.3 1.3

Maximum: Qa = ~ 1.3 0.75 = 1.411 -u;o err o:r

Minimum: Qa = - / 0·7 0·7 = 0.709
Qpo 'I 1.3 0.75

IV.3 NEURAL NETWORK EXPERIMENTS

IV.3.1 Network architecture used

Consistent throughout all experiments, the type of NN used was a Backpropagation

Network with one hidden layer. The input layer consisted of 49 PEs, with the exception

of the NN for Circuit A which required a fiftieth input for the measurement of R. The

number of output PEs equals the number of filter components, which are to be tuned -- 3

for Circuit A and 2 for Circuit B. Eighteen hidden PEs proved to do a good job for each

different nominal quality factor (TABLE I and TABLE II). Therefore a schematic of this

type of NN is shown in Figure 16. Changes in the number of the hidden PEs are men-

tioned for the respective case.

~Q•S.CI49inl19hidl2out

,
, , ..

'. , , .
' .

169 '"' ~~~~~~ut

(1

0

I n

8
Hiddenl

Figure 16. Backpropagation Network for the present problem.

IV.3.2 Activation function

35

RMS Error

The output of the NN takes on both negative and positive values. Accordingly, an

activation function has to be chosen that takes on positive and negative values. This is

obvious for the output layer. Thus the activation for all output PEs was selected to be the

hyperbolic tangent.

Initial experiments with different activation functions for the hidden PEs made evi

dent that the activation function of the hidden PEs also has to be the hyperbolic tangent,

in order to get reasonable outputs.

36

IV.3.3 Network dynamics and learning rate

An important question, while working with NNs, is how fast does the NN learn.

Asking this question already implies that the NN converges to an equilibrium point,

which results in at least very small errors of the NN output For the present problem,

convergence is guaranteed (CHAPTER V RESULTS) within a relatively small number

of iterations of about 200,000 to 300,000 , depending on the nominal quality factor.

Remember that the NN is trained on 6253 records. Accordingly, the NN sees each record

only 30 to 50 times until the weights have been adjusted.

Convergence dynamics is coupled with the value of the learning rate. Beginning

experiments started with high learning rates close to the value 1. Lowering this value to

0.5 did not make any changes. In both cases the NN could not solve the problem of

encoding the input-output relationship. Talking in terms of the weight space notion, it

seems that the high learning rate resulted in an inability of the NN to find an equilibrium

point. Obviously, the error-function (equation 3.6) could not be minimized, rather it

jumped over the minimum. Consequently the learning rate was decreased to values of

0.3 for the first 10000 iterations and down to about 0.001 for the last iterations (see

APPENDIX D).

IV.3.4 Testing the Neural Network

After a NN has been trained, it has to be tested. Two possibilities come up to

accomplish this step. On the one hand one may test the NN on the data presented during

training. Applying nothing but these previously seen data to the NN can only answer

questions regarding network dynamics and memorization of data. Since the task of the

NN is to tune a real-world filter, it can never be guaranteed that the NN is trained with all

parameter combinations. Thus a task demanded from the NN is to perform a good gen

eralization on unseen data. The meaning of good is defined by the evaluation criterion

(Chapter IV.2).

37

In this context the number of the weights has to be addressed. A rule of thumb

provides that the number of training records should be 5 to 10 times as large as the

number of weights, in order to enable a good generalization of the NN. Even if this rule

is obeyed, a good generalization can never be guaranteed. The data available for the

experiments yield values of 2.3 (for Circuit A's NN) and 6.8 (for Circuit B 's NN) for the

ratio of the number of training records and the number of weights. If the number of hid

den PEs is too large, or if the number of training records is too small, the NN might tend

to memorize the data. In such a case, the response on unseen data would be poor [20].

CHAPTER V

RESULTS FOR CIRCUIT B

Results of the NN approach to the present problem are, to a large extent, given

through graphic presentations. This choice has been made, because it is more apparent

than written text. In order to enable a more in-depth investigation of the results, the

results are summarized in Tables.

V.l LEARNING DYNAMICS

The following plots (Figures 17. to 25.) show the learning dynamics for both train

ing and generalization. A solid line represents the results of the previously seen records.

A dotted line shows the outcome of the NN when presented with unseen data. The upper

lines indicate the percentage of records included in a 5% error-box around the nominal

values of the quality factor and of the pole frequency. The lower lines indicate the per

centage of records which stay in a 1% error-box around the nominal values of the quality

factor and of the pole frequency.

Each of these plots shows that the learning process of the NN is relatively fast

After 200,000 to 300,000 iterations, the NN already achieves its best performance.

Further training might still change the weights. Despite this, the performance is not nor

mally improved.

number of
records (in %)

too -t S% .. ···~--·~·~·- ...,__...,......, ~,W'~-..

1
80

60

40

20

number of
records (in %)

1% / -----/------------------
," ,

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 17. Network dynamics for Qpo = 5.0,
(ropo = 10Mrad!s in Figures 17. to 25.).

100 so/o ·.:..·.:..·.:..· ~·,_. '-LJI•..a·········--- '"".._.._ """

80

60

40

20

1%
-------::.::.:::------------------

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 18. Network dynamics for Qp 0 = 3.33,
(ropo = 10Mradls in Figures 17. to 25.).

39

number of
records (in%)

1003.........................- -- ~-...~
5% ~

80

60

40

20

number of
records (in %)

r------------------------
1% / _____ _

50 100 150 200 250 300
number of iterations (in 1000)

Figure 19. Network dynamics for Qpo = 2.5,
(ropo = 10Mradls in Figures 17. to 25.).

100 5%;····~ --.................. ____ ... - ,......,....,....,v••••••••••••••••••••••

80

60

40

20

1%

50 100 150 200 250 300
number of iterations (in 1000)

Figure 20. Network dynamics for Qp 0 = 1.67,
(ropo = lOMradls in Figures 17. to 25.).

40

number of
records (in%)

100 -t ... -....... _________ ._._.__ -----·-··············

80

60

40

20

number of
records (in %)

5%

1%

50 100 150 200 250 300
number of iterations (in 1000)

Figure 21. Network dynamics for Qpo = 1.25,
(ropo = 10Mradls in Figures 17. to 25.).

100 •••••••••••••••••••••• ••...lu...t·~·..a.•.t.••·~ - ----- _
5% -----

80

60

40

20

1% :.:.::---

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 22. Network dynamics for Qp o = 1.0,
(ropo = 10Mradls in Figures 17. to 25.).

41

number of
records (in %)

100 ·························~ ~,""''"" ~-... ~ -...·
5% ~

80

60

40

20

number of
records (in %)

..... ----------------------
.........

1%

50 100 150 200 250 300
number of iterations (in 1000)

Figure 23. Network dynamics for Qpo = 0.83,
(ropo = lOMrad/s in Figures 17. to 25.).

100 ····s%·····~ ~·~u ~ --,...,.~ ~

80

60

40

20

1% ;_:::=----

50 100 150 200 250 300
number of iterations (in 1000)

Figure 24. Network dynamics for Qpo = 0.707,
(ropo = 10Mradls in Figures 17. to 25.).

42

number of
records (in %)

100 ··························..:..s•...l•..a.•.a.·~·.a.· ~---~.............................__.
5% ------

80

60

40

20

1%
~

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 25. Network dynamics for Qpo = 0.625,
(ropo = lOMradls in Figures 17. to 25.).

43

44

V.2 PERFORMANCE

A crucial step, which has to be accomplished, in order to evaluate a NN, is the

determination of the NN's performance. For the present problem, a file written in

Matlab-code (Appendix C.3) calculates the actual, normalized pole frequency roa /cop o

and the actual, normalized quality factor Q0 IQp O· 6253 training records and 4896 gen

eralization records are too complex to be realized by the human brain at once. Yet a

two-dimensional plot of the actual values (see following figures), allows us to recognize

the data as clusters. This enables the observer to judge the overall performance of the

NN. The significance of a single record is not neglected, in that extreme values will

always be apart from the clusters.

V.2.1 Testing on 6253 previously seen records (training data)

Figure 26 shows the initial errors of the quality factor and of the pole frequency.

Figures 27 and A.1 to A.9 show the response of the NN, when presented with the previ

ously seen training records. Realizing that the scale changes from Figure 27 to Figures

A.1 to A. 9 reveals that the performance of the NN is accurate. The response of the NN

with initial scaling is plotted only once. This choice has been made, because the plots of

different nominal quality factors are almost identical for this scale.

V .2.2 Testing on 4896 previously not seen records (generalization data)

Figures 28,29, and A.10 to A.18 show the response of the NN, when presented

with records not seen during training. Again the comments stated in V.2.1 have to be

kept in mind. To make the results of the NN' s generalization more evident, 11 samples

have been selected, as shown in Figure 30. The criterion of choice of the samples was to

choose records which took on either extreme initial value or extreme value after tuning.

The results are shown in Figures 31,32 and A.19 to A.34.

Normalized
Pole

Frequency

•
1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.6 0.8 1.0 1.2

•

•
•
•
•
•
•
•

1.4

small square:
scale of Figures

Alto A9

1.6 1.8

N onnalized Quality Factor

Figure 26. Initial errors of the quality factor Qp and the pole
frequency roP (training data).

45

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6-

-,
0.6

l
0.8

~

T
1.0

l
1.2

l
1.4

small square:
scale of Figures

Alto A9

T
1.6

T
1.8

Normalized Quality Factor

Figure 27. Residual errors of the quality factor Qp and the pole
frequency roP after tuning via NN (testing with training data,
Qpo = 5.0)(compare with Figure 26.).

46

Normalized
Pole

Frequency

1.8

1.6

1.4

•

1.2

1.0

0.8

0.6

0.6

•
• •

I • • •
• • 1 .. • •

• • • • • • • : .. ~·.-~.·. · ~--- ~ , .. .
I •• ,._•••••• ~~~·· ..

I I A7J•1•~t,·."f,•._ .-_ .. '
. ,~;sJt.t~~'f\•' ..

'~T~~# ... ,
•••

0.8 1.0

.. .
• #' •

• , .

• #.

1.2

,.
•

•
•
•
•
•
•
• •

~'·· • • ••• ••

1.4

small square:
scale of Figures

AlO to A18

1.6 1.8

Normalized Quality Factor

Figure 28. Initial errors of the quality factor Qp and the pole
frequency roP (generalization data).

47

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6-

I
0.6

I
0.8

[!]

I
1.0

I
1.2

I
1.4

small square:
scale of Figures

AlO to A18

T
1.6

l
1.8

Normalized Quality Factor

Figure 29. Residual errors of the quality factor Qp and the pole
frequency Olp after tuning via NN (testing with generalization
data, Qpo = 5.0) (compare with Figure 28.).

48

Normalized
Pole

Frequency

49

1.8-
•

1.6-

1.4-

• • • I
1.2-

I • •

D small square:
1.0 ~ scale of Figures

32 and A19 to A34

•

0.8] •
•

0.6
•

I I I
0.6 0.8 1.0 1.2 1.4 1.6 1.8

Normalized Quality Factor

Figure 30. Selected initial errors of the quality factor Qp and the pole
frequency roP (11 samples, generalization data).

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8-

0.6-

I
0.6

I
0.8

OJ • •

-1

1.0
1

1.2
T

1.4

small square:
scale of Figures

32 and A19 to A34

I
1.6

I
1.8

Normalized Quality Factor

Figure 31. Residual errors of the quality factor Qp and the pole
frequency roP after tuning via NN (testing with 11 samples,
generalization data, Qpo = 5.0)(compare with Figure 30.).

50

Normalized
Pole

Frequency

1.08-

1.06-
I •

1.04-

1.02 -I • • •
• •

1.00 _j •
• I

0.98-
I •

• I

0.96-

I •
0.94-

0.92-

T-- . u-r-- I I I I I I 1

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

Figure 32. Residual errors of the quality factor Qp and the pole
frequency roP after tuning via NN (testing with 11 samples,
generalization data, Qpo = 5.0)(enlargement of Figure 31.).

51

52

V .3 ITERATIVE TUNING

In the previous section, we showed that the residual errors of the pole frequency

and the quality factor, after the output of the NN has been used to tune the filter, remain

almost in a 5% error-box around the nominal value. In other words, after the first itera

tion, the maximum error gets down to no more than about 5%. This is a big reduction.

Remember, the initial error (Section IV.2) took on values up to 85%. However, the filter

specifications may require even more accurate performance. To achieve a better perfor

mance, an iterative tuning scheme can be applied. The following sequence of experi

ments, for a nominal quality factor of 5.0, uses the first iteration and adds a second itera

tion to demonstrate that the control structure (Figure 10) is capable of performing tuning

as an iterative process.

Once an iterative control structure is set up then a stopping mechanism must be

developed. One approach is to include a threshold device in the control structure. This

step is demonstrated in Figure 38. The task of the threshold device is to measure if the

error-vector satisfies a given criterion. We assume that the filter specifications (provided

by the customer) will stipulate that the error in the stopband(s) and the error in the

passband(s) (Section 11.1) have to stay below a specified threshold. Consequently, each

component of the error-vector has to be checked with respect ot his threshold value. A

requirement might be, for example that if the threshold condition for only one component

of the error-vector is not satisfied, the iterative tuning process goes on. The relation

between an error in the magnitude and changes in the pole frequency and the quality fac

tor is schematically sketched in Figure 39.

Three components are involved in the tuning control strategy. One chip comprises

the filter and the adjusting device. A second chip consists of the NN, a threshold device,

a comparator, and a memory. Finally the digital spectrum analyzer measures the fre

quency samples and simultaneously supplies the filter with a spectrally rich signal.

Normalized
Pole

Frequency

1.8-

1.6-

1.4-
I

1.2~

1.0 -l

0.8l

0.6-

I
0.6

•

•

•

l
0.8

•

•

D
•

•

l
1.0

•

•

l
1.2

•

I
1.4

small square:
scale of Figures

36 and 37

l
1.6

l
1.8

Normalized Quality Factor

Figure 33. Initial errors of the quality factor Qp and the pole
frequency Wp (11 samples, generalization data).

53

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

OJ •
1.0- small square:

scale of Figure 36

0.8 -

0.6 -

T
0.6

1
0.8

•

1
1.0

l
1.2

T
1.4

l
1.6

Normalized Quality Factor

Figure 34. Residual errors of the quality factor Qp and the pole
frequency rop after tuning via NN (testing with 11 samples,
generalization data,Qp o = 5.0).

T
1.8

54

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

T
0.6

I
0.8

8

I
1.0

1
1.2

T
1.4

small square:
scale of Figure 37

T
1.6

T
1.8

Normalized Quality Factor

Figure 35. Residual errors of the quality factor Qp and the pole
frequency rop , after the output of the NN has been used to tune
the filter the second time (llsamples, generalization data,Qpo = 5.0).

55

1.08-

1.06-

Normalized I •
Pole

Frequency
1.04-

1.02 --1 • • •
• •

1.00 _J •
• I

0.98-
I •

• I

0.96-

I •
0.94-

0.92-

I - - I ------.- - - T----. I I r--~

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

Figure 36. Residual errors of the quality factor Qp and the pole
frequency COp after tuning via NN (testing with 11 samples,
generalization data, Qpo = 5.0)(enlargement of Figure 34.).

56

1.08-

1.06-

Normalized
Pole 1.04 _

Frequency

1.02-
•

• •
1.00- -• • •
0.98-

0.96-

0.94-

0.92-

I I I I I I I I I
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

Figure 37. Residual errors of the quality factor Qp and the pole
frequency roP , after the output of the NN has been used to
tune the filter the second time (Qp o = 5.0, generalization data)
(enlargement of Figure 35.).

57

f*(t) -

Environment

Filter

Adjusting
Device

I

Agml ~gm2

Neural
Network

Threshold
Device

f(t)

1

Digital
Spectrum
Analyzer

F (ro)
+

~ ~- :J (t ~
errorvector = F

Figure 38. Control structure.

58

Nominal Spectrum
Sampled Values

Magnitude

5

2

1

0.5

0.2

59

................................ ·- -..... -. -· .•................................ -... .
: : : : : : : I:, AQ = +20oi : :

••••••••••••••••••••••••• •' '• ,.:.. .. 1. • • ••••••••• !~" •••..•.. •' ··~ .. .

. ·- ·: ·=·.... . .. ·:· .. ·=·. ·=·. ·=·. ~~'

. ····-
·······:· ·:·····1

• • • • • • • • • • • • • • • •• • • • • • • • • •• • • • • • •- • • • • • • • • ... • • •• • ... • •• • • • • • • • • • • • • • • • • • •• • • A•'
.

0.2 0.5 1 2 5

Normalized Frequency

Figure39. Varying parameters and resulting changes in
the magnitude.

60

V.4 TABULATED PERFORMANCE

TABLE IV

RESULTS OF TRAINING DATA (6253 RECORDS)

rom in rom ax number of number of number of

Qpo Qmin Qmax
107Hz

records in records in iterations
107Hz

5% range 1% range (xlOOO)

5.0 4.707 5.292 0.936 1.066 6148 2113 200

3.33 3.137 3.503 0.938 1.066 6154 2254 300

2.5 2.354 2.618 0.938 1.065 6185 2297 200

1.67 1.593 1.744 0.935 1.062 6181 2306 200

1.25 1.195 1.306 0.939 1.063 6171 2332 200

1.0 0.949 1.046 0.942 1.062 6195 2316 200

0.83 0.789 0.871 0.940 1.072 6146 2313 250

0.707 0.662 0.743 0.944 1.072 6147 2233 250

0.625 0.582 0.656 0.938 1.072 6135 2195 300

61

TABLE V

RESULTS OF UNSEEN DATA (4896 RECORDS)

COm in COm ax number of number of number of

Qpo Qmin Qmax records in records in iterations
107Hz 107Hz

5% range 1% range (x1000)

5.0 4.798 5.227 0.948 1.053 4883 2022 200

3.33 3.200 3.475 0.947 1.052 4882 2131 300

2.5 2.398 2.605 0.948 1.052 4885 2171 200

1.67 1.605 1.742 0.950 1.054 4887 2179 200

1.25 1.200 1.304 0.950 1.051 4890 2194 200

1.0 0.959 1.050 0.950 1.048 4896 2203 200

0.83 0.794 0.870 0.942 1.050 4877 2166 250

0.707 0.675 0.741 0.941 1.047 4873 2094 250

0.625 0.600 0.653 0.941 1.050 4874 2128 300
----- -· --------- --------- ---- ------- -- -------------------- -------------

CHAPTER VI

RESULTS FOR CIRCUIT A

These results are included to show that the simple Backpropagation network with

only one hidden layer (Figure 16) is able to tune more than two filter components. More

over a proposal is given to determine the number of components that can be tuned by this

NN.

VI.l INITIAL EXPERIMENT

The first experiments were done with Circuit A, with only the inductor L and the

capacitor C varied. The nominal pole quality factor equalled the value 5.0. The range

for changes was also smaller, from -20% to +20%. Tables VI states the average

Euclidean distance in L -C -space (percentage), with respect to the value they were sup

posed to be. Table VII shows the the best outputs of the NN (Figure 16). Neither com

ponent is more than 1.5% off, after the output of the NN has been used to tune the filter.

The NN accomplishes its task very accurately. As consequence of a smaller training set

(81 records), the hidden layer consisted only of 9 PEs.

VI.2 NON-UNIQUE INVERSE MAPPING

In the beginning, the NN received 49 inputs, as this was the case in all experiments

that have been run so far. It turned out that the NN was not able to determine the

changes for three components. The maximum Euclidean distance took on values around

54%. The components varied between +30% and -30%, as given through the problem

definition. Thus the NN did not figure out the input-ouput relationship. Going through

some mathematics, the reason for this behavior became clear. Since a second-order

63

transfer function with unity gain is determined by only two parameters, different changes

in the components cause the same error.

iterations

training

generalization

TABLE VI

LEARNING DYNAMICS
(PERCENT AGE ERROR IN L-C-SPACE)

2000 4000 6000 8000 10000

2.43 2.08 1.71 2.13 1.80

2.19 1.56 1.22 1.54 1.20

TABLE VII

PERFORMANCE
(PERCENT AGE ERROR IN L-C-SPACE)

training generalization

average 0.84 0.78

max 1.71 1.22

t:,.Cmin -1.08 -0.40

!:,.Cmax 1.50 1.21

t:,.Lmin -1.36 -1.20

t:,.Lmax 0.58 0.60

12000 20000

1.75 1.77

1.19 1.21

From a mathematical point of view the problem is characterized by the fact that we

have fewer equations than unknowns. The determination of a unique solution requires as

many equations as unknowns. In our case the missing, third equation is provided by a de

measurement of the resistor R (see Section IV.l). Indeed this additional information

solved the problem of a non-unique mapping, such that the NN could encode the input-

64

output mapping. The results presented in the following sections will demonstrate the

latter statement.

VI.3 RESULTS WITH 50 INPUTS

As consequence of the additional information the NN, shown in Figure 16, had to

be modified. The number of input PEs increased to 50 and the NN comprises three out

put PEs. Everything else remained as before.

The Euclidean distance (with respect ot the desired value) and the amount single

components are off is used as evaluation criterion of the NNs performance. All result

data presented are percentage numbers. Figures 40 to 42 show the learning dynamic for

three different quality factors. The maximum Euclidean distance is plotted as a function

of the number of iterations the NN was trained. Again a solid line represents the results

of the previously seen records. The plots demonstrate that the learning process is rela

tively fast. After 100,000 to 300,000 iterations the NN converges.

Table VITI summarizes the performance of the NN, which was trained to tune Cir

cuit A. The maximum Euclidean distance is approximately 5%. Single components are

no more than 4% off. Thus the NN shows a good performance, even when three com

ponents are to be tuned.

max Euclidean
8--j distance (in %)

6

4

2

I
I I I I I I

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 40. Network dynamics for Qpo = 5.0.

max Euclidean
8 ~ distance (in %)

6

4

2

50 100 150 200 250 300
number of iterations (in 1000)

Figure 41. Network dynamics for Qp o = 1.0.

max Euclidean
8 ~ distance (in %)

6

4

2

50 100 150 200 250 300
number of iterations (in 1 000)

Figure 42. Network dynamics for Qpo = 0.625.

65

66

TABLE Vlll

RESIDUAL ERRORS AFfER TUNING (UNSEEN DATA)

Qpo 5.0 1.0 0.625

average Euclidean distance (%) 1.14 1.21 0.85

max Euclidean distance(%) 3.57 3.84 3.07

Mmin (%) -2.04 -2.76 -1.25

Mmax (%) 1.62 1.39 1.20

I

I

Mmin (%) -2.09 -3.00 -2.87 !

Mmax (%) 1.84 2.63 1.57

!:iCmin (%) -3.57 -3.11 -2.64

!:iCmax (%) 2.12 1.64 1.31

CHAPTER Vll

CONCLUSIONS

The objective of this research was to demonstrate whether the Neural Network

methodology could meaningfully assist in the task of tuning an active, continuous-time,

analog filter, implemented via the transconductance-C-method. The results are good.

The approach developed herein measures the frequency response of the manufac

tured filter at 49 selected frequencies, calculates the differences from the designed (nomi

nal) values at those frequencies, and inputs these 49 error values into the Neural Network

(NN). The NN has two outputs for the filters implemented via the transconductance-C

method. These two outputs specify the amount of error in the two transconductances

~gm 1 and ~gm2·

The tuning control strategy would be to use these values of ~gm 1 and ~gm 2 by an

adjusting device to modify values of the appropriate bias currents and/or voltages in the

manufactured filter.

The NNs used in the experiments achieved a reduction of manufacturing errors of

up to 85% for the pole frequency down to less than approximately 5%. It was demon

strated that the method can be iterated to further reduce the error. One extra iteration

reduced the worst errors to less than 1.5%.

Experimental results provide a demonstration that the NNs used are capable of tun

ing filters to compensate manufacturing errors. Yet, parasitic effects might exist and

cause errors in the magnitude of the transfer function. If the presence of the parasitic

effects would lead to the fact that the values of the actual quality factor and the actual

pole frequency are more off than the worst case training record (see Figure 26.), the

68

respective filter would have to be thrown away. However, one can expect that, even

when parasitic effects are taken under consideration, most of the manufactured (actual)

filters realize a quality factor and a pole frequency within the train-set. In these cases the

NN will accomplish a good job. If it turns out that too many manufactured filters (e.g.,

10%) realize a quality factor and a pole frequency outside the train-set, then the train-set

should be enlarged, such that it comprises a more realistic representation of the actual

tolerances of the quality factor and the pole frequency.

This method is applicable to a factory setting with off-line measurement and tun

ing. An important next step will be to determine whether the approach could be modified

to function on-line, so as to implement a tuning capability that would compensate for

parameter variations due to aging and/or environmental changes.

Even within the off-line context described herein, there remain a number of system

parameters to explore further. For example, it may not be required to use 49 sample

values of the frequency response. A series of experiments could be carried out to deter

mine some optimum value of measurements needed.

This thesis investigated second-order filters, in particular low-pass filters. Realiz

ing that Circuit B (Figure 6.) implements both a low-pass filter and a band-pass filter

makes evident that tuning of the low-pass filter simultaneously corrects the pole fre

quency and the quality factor of the band-pass filter.

Further questions relate to higher-order filters. If implemented via the cascade of

second-order modules (see equation 2.2), can we use the NN to tune each module

separately? If implemented via other methods, can we use the NN methodology in a

similar fashion for higher-order filters? A significant issue becomes that of developing

training data to encompass variations of a large number of parameters -- a combinatorial

issue.

This research provides an encouraging first step.

REFERENCES

[1] R. Schaumann, "The Design of Continuous-Time Fully Integrated Filters: A
Tutorial," Integrated Continuous-Time Filters: Principles, Design and Applica
tions, IEEE Circuits and Systems Society, A selected Reprint, 1993.

[2] R. Schaumann, M.S. Ghausi, and K.R. Laker, "Design of Analog Filters: Passive,
Active RC, and Switched Capacitor," Englewood Cliffs, N.J., Prentice-Hall,
1990.

[3] R. Schaumann and M.A. Tan, "The Problem of On-Chip Automatic Tuning in
Continuous-Time Integrated Filters," Proceedings IEEE International Symposium
on Circuits and Systems, 1989.

[4] F. Krummenacker and N. Joehl, "A 4-MHz CMOS Continuous-Time Filter with
On-Chip Automatic Tuning," IEEE Journal of Soild-State Circuits, June 1988.

[5] K.W. Moulding, J.R. Quartly, P.J. Rankin, R.S. Thompson, and G.A. Wilson,
"Gyrator Video Filter IC with Automatic Tuning," IEEE Journal of Solid-State
Circuits, December 1980.

[6] P.M. Van Peteghem and R. Song, "Tuning Strategies in High-Frequency
Integrated Continuous-Time Filters," IEEE Transactions on Circuits and Systems,
January 1989.

[7] Karen A. Kozma, David A. Johns, and Adel S. Sedra, "Automatic Tuning of
Continuous-Time Filters Using an Adaptive Filter Technique, IEEE Transactions
on Cirsuits and Systems, Vol. CAS-38, pp. 1241-1248, November 1991.

[8] G.C. Ternes and J.W. LaPatra, "Introduction to Circuit Synthesis and Design,"
McGrawhill, 1977.

[9] James A. Freeeman and David M. Skapura, "Neural Networks," Addison-Wesley
Publishing Company, 1992.

[10] Maureen Caudill, "Avoiding the Great Backpropagation Trap," Neural Network
Special Report, 1992.

[11] Arthur D. Hall, "Metasystems Methodology," Pergamon Press, Oxford, New
York, 1989.

[12] John Hertz, Anders Krogh, and Richard G. Palmer, "Introduction to the Theory of
Neural Computation," Addison-Wesley Publishing Company, 1992.

[13] Donald 0. Hebb, "The Organization of Behavior," Wiley, New-York, 1949.

[14] Bart Kosko, "Neural Networks and Fuzzy Systems," Prentice Hall, 1992.

70

[15] NeuralWorks Professional II/Plus, "Neural Computing," NeuralWare Incorpora
tion, 1991.

[16] NeuralWorks Professional II/Plus, "Reference Guide," NeuralWare Incorporation,
1991.

[17] Russel D. Reed and Randall L. Geiger, " A Multiple-Input OTA Circuit for
Neural Networks," IEEE Transactions on Circuits and Systems, Vol. 36, May
1989.

[18] Paul W. Hollis and John J. Paulos, "An Analog BiCMOS Hopfield Neuron," Ana
log Integrated Circuits and Signal Processing, An International Journal, Kluwer
Academic Publishers, November 1992.

[19] Seokjim Kim, Yong-Chul Skin, Naida C.R. Bogineni and Ramglingam Sridhur,
"A Programmable Analog CMOS Synapse for Neural Networks," Analog
Integrated Circuits and Signal Processing, An International Journal, Kluwer
Academic Publishers, November 1992.

[20] Jeanette Lawrence, "Data Preparation for a Neural Network," Neural Network
Special Report, 1992.

[21] Alan Lapedes and Robert Faber, "How Neural Nets Work," Neural Information
Processing Systems, 1987.

[22] R. Schaumann, "The Design of Continuous-Time Fully Integrated Filters: A
Review, lEE Proceedings, Vol. 136, Electronic Circuits and Systems, pp. 184-
190, August 1989.

[23] Tom Kwan and Kenneth Martin, "An Adaptive Analog Continuous-Time CMOS
Biquadratic Filter," IEEE Journal of Solid-State Circuits, Vol. SC-26, pp.859-867,
1991.

[24] Edgar Sanchez-Sinencio, Randall L. Geiger, and H. Nevarez-Lozano, "Genera
tion of Continuous-Time Two Integrator Loop Filter Structures," IEEE Transac
tions on Circuits and Systems, Vol. 35, August 1988.

[25] Jacek M. Zurada, "Analog Implementation of Neural Networks," IEEE Transac
tions on Circuits and Systems, September 1992.

)lliQA\..L3N 'l~fi3N S, g ..LlfiJ'MIJ dO S~ '10S3"M

VXIGN3ddV

A.l. ENLARGEMENTS OF RESIDUAL ERRORS OF TRAINING DATA

1.08

1.06

Normalized

.. "'
Pole 1.04

Frequency

., .-.,~· ,._ . ~~
··~· ~

·: .. ; • ·y;_!~~ •• :..,.·: ··~ · .. , '-:~.j\,~:-:a .;f. ,, • ~J"-'- ~' , ,.. 't" :- . .. --~. ~ ~- ,, .. _ . •

•
1.02

1.00 •
•

0.98

0.96

0.94 •

0.92

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 1. Residual errors of Qp and rop after tuning via NN
(Qp o = 5.0, training data)

72

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•
•

.....
• • • ••• ,.,:.•.

Jt• • • ell • • ~. ··..!., '~t.~ : ~. ··', .,,,1-tl.... ~· ~ ...
:. •• .L.: -

•

•

• •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A2. Residual errors of Qp and OOp after tuning via NN
(Qp o = 3.33, training data)

73

1.08

1.06

Normalized
Pole

Frequency
1.04

I
1.02 I

1.00 I

0.98 I
0.96

0.94

0.92

•
• • •• • • • • --:. ~- 7 "' ~~ _ _. - ...
•

• •

•

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A3. Residual errors of Qp and COp after tuning via NN
(Qp o = 2.5, training data)

74

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

,
•• • •••• ·· .. ·'

··~·'' wr.t: .. • ., ~···i'l!!.:.:; .. :' . '.\ ~~
t'. • ·~··~1',•.::-tr•J!.t. : • • • , r...L{", ... • ..

••

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A4. Residual errors of Qp and COp after tuning via NN
(Qp o = 1.67, training data)

75

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

..
• •

... " : · , :'·
J#t;,•, •. • .. ~~ ,,_.1 ..
·~·-•~'tll._a !-'•••• ~ . ~ . ~ ..

:/~l;,.J.,.l:--·~ ~ • •

• • • -41.

• ••

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A5. Residual errors of Qp and Olp after tuning via NN
(Qp o = 1.25, training data)

76

77

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00~
.... ~ .. • • • • • ,!,.• - ~~

•
• •

0.98

I
•

0.96

0.94

0.92

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A6. Residual errors of Qp and Olp after tuning via NN
(Qp o = 1.0, training data)

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

'

•••• .. ,
....... 1.~· • •

., I .. •• • -1. • __ ,;) ,._. •
~ . •.. .,__ ,. . .

""· . .. ' iii .. ,_"". ,.tt •• '·. •• • ·~ ~.,··t!:.C...:. ,, ••• ,. •••
... ·- • ~~~ .. A.'H .. tt • • • ... ,

•

• •
•

• •

• • •

• •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 7. Residual errors of Qp and rop after tuning via NN
(Qpo = 0.83, training data)

78

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

I , • •• • • • • •••• '• · : -
, ·f •• _. " ""' • ''· ,. ·~·

'
• • • ,.,.,,.__ :r';r ·~·" ,. ' . • - -- .r ' • ,.. • .,.

••
•

• • •
• •

•
•

• •

• • • • • • •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A8. Residual errors of Qp and Wp after tuning via NN
(Qpo = 0.707, training data)

79

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

• •
•

•

•

• •
•

.. ,)·. :. . ..
• .:• • • 6 • • . ,. ' .. ;. :- ,, ,,. ~ ..

ee : # :J~I· ~~--~ • • • , .. , ··lh~:,·.· .. ', .. . • • • • • • • • ~'-~J/1!.!• ~ ·.-~
• ~~ ~· 9Ja ~ ..: •••••

•

• •
• '
• •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A9. Residual errors of Qp and rop after tuning via NN
(Qp 0 = 0.625, training data)

80

81

A.2. ENLARGEMENTS OF RESIDUAL ERRORS OF GENERALIZATION DATA

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 10. Residual errors of Qp and Olp after tuning via NN
(Qp o = 5.0, generalization data)

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•

• ,.
CA..~ \ • . ,.. .: . "'' .. .- • .•t~.-.;,.t··

~ :
'• ·-·

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 11. Residual errors of Qp and rop after tuning via NN
(Qp o = 3.33, generalization data)

82

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

• • • , ... · ·~ . •·s...... . ~~ ·. •

•
•••

• • • ..

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 12. Residual errors of Qp and Olp after tuning via NN
(Qp 0 = 2.5, generalization data)

83

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

• • ••

•

• • •
.~,..·

• • ·~· ~·. ..
\e ,.~- • , t···

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A13. Residual errors of Qp and Olp after tuning via NN
(Qp 0 = 1.67, generalization data)

84

85

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00~ •
• •

•• I

0.98

0.96

0.94

0.92

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A14. Residual errors of Qp and rop after tuning via NN
(Qpo = 1.25, generalization data)

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•

•• • • •• ' , ..
• •

~, # v:·~·· '. . '• .. •i•:• •: ··I• • • • ••
~ ·:a~ .. ' ••• :).;,·. : .. , .. ' ···~--· ... ,. .. ' . • • •• •• •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

Al5. Residual errors of Qp and COp after tuning via NN
(Qp o = 1.0, generalization data)

86

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•

-..
• '. - .- !J4_,,. • • •• • • _, f. 'Ceil I• 'I"' •:,• • •- •:...., , .. •• ,, f.-! ~· ••••• ,. •• c ,, • • ...,!1., , -\ ,

•• ••

• •

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 16. Residual errors of Qp and rop after tuning via NN
(Qp o = 0.83, generalization data)

87

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•

•

••

• .,
~li· .:rc. •

'.!..&\.# •
• • • ... - , -r.-r·

--'·'·' !.- •• ,_~.' • • ' . .._..,....... .~.~ ,. , . ,: ' . -... • • , • ..t •• , ..
• • ;. •• • :t .: .:

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A 17. Residual errors of Qp and Olp after tuning via NN
(Qp o = 0.707, generalization data)

88

1.08

1.06

Normalized
Pole 1.04

Frequency

1.02

1.00

0.98

0.96

0.94

0.92

•

•
•

·.a·:~
• \ ...
·····~ -c-:..t,· ~.,. • ',., ..

.. ~ •• • JI'-.... ••• , , ...
I .,,• • •tl ,: •• • •• .. , .. :,. ···=

I ••• I .: ••

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

Al8. Residual errors of Qp and COp after tuning via NN
(Qpo = 0.625, generalization data)

89

Normalized
Pole

Frequency

A.3. RESIDUAL ERRORS OF SELECTED SAMPLES

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

I
0.6

I
0.8

ITJ • •

I
1.0

I
1.2

I
1.4

I
1.6

Normalized Quality Factor

A 19. Residual errors of Qp and IDp after tuning via NN
(Qp o = 3.33, generalization data)

I
1.8

90

1.08-

1.06-

Normalized •
Pole 1.04 _

Frequency

1.02-

1.00-

0.98-

0.96-

0.94-

0.92-

•

• • •
•

•

• •

•

•

I J -, - J --HI - I I I J

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A20. Residual errors of Qp and rop after tuning via NN
(Qpo = 3.33, generalization data, enlargement of A19.)

91

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

I
0.6

I
0.8

ITJ

I
1.0

I
1.2

I
1.4

I
1.6

Normalized Quality Factor

A21. Residual errors of Qp and rop after tuning via NN
(Qp 0 = 2.5, generalization data)

I
1.8

92

Normalized
Pole

Frequency

1.08-

1.06-
I •

1.04-

1.02-
I • • •

• • 1.001 • •

0.98-

I • •
0.96-

I •
0.94-

0.92-

I I I I I I I I I
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A22. Residual errors of Qp and Olp after tuning via NN
(Qpo = 2.5, generalization data, enlargement of A21.)

93

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6-

I
0.6

I
0.8

ITJ • •

r
1.0

I
1.2

I
1.4

I
1.6

Normalized Quality Factor

A23. Residual errors of Qp and O>p after tuning via NN
(Qpo = 1.67, generalization data)

I
1.8

94

1.08-

1.06-

Normalized •

Pole 1.04 _
Frequency

1.02-

1.00-

0.98-

0.96-

0.94-

0.92-

•

• • • •
•

•
•

•

•

I I I I I I I I I
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A24. Residual errors of Qp and O>p after tuning via NN
(Qp 0 = 1.67, generalization data, enlargement of A23.)

95

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

T
0.6

T
0.8

D • •

T
1.0

I
1.2

I
1.4

I
1.6

Normalized Quality Factor

A25. Residual errors of Qp and rop after tuning via NN
(Qp o = 1.25, generalization data)

r
1.8

96

97

1.08-

1.06-

Normalized •
Pole 1.04 _

Frequency

1.02- •
• •

•
1.00- •

•

0.98-

0.96- • •

•
0.94-

0.92-

,- - - - T - - - -~ I I I I . - - -r
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A26. Residual errors of Qp and rop after tuning via NN
(Qpo = 1.25, generalization data, enlargement of A25.)

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

1
0.6

I
0.8

ITJ • •

1
1.0

1
1.2

I
1.4

1
1.6

N onnalized Quality Factor

A27. Residual errors of Qp and O>p after tuning via NN
(Qp o = 1.0, generalization data)

1
1.8

98

99

1.08-

1.06-

Normalized
I • Pole 1.04-

Frequency

1.02j •
• • •

1.ooJ • •
•

I
0.98-

I • •
0.96-

I •
0.94-

0.92-

I I I I ~------,--- I I I
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A28. Residual errors of Qp and rop after tuning via NN
(Qp 0 = 1.0, generalization data, enlargement of A27 .)

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

l
0.6

l
0.8

0 • • •

l
1.0

1
1.2

1
1.4

1
1.6

Normalized Quality Factor

A29. Residual errors of Qp and rop after tuning via NN
(Qpo = 0.83, generalization data)

1
1.8

100

1.08-

1.06-

Normalized
Pole 1.04 _

Frequency

1.02-

1.00-

0.98-

0.96-

0.94-

0.92-

•

•

•

• •

•
•

•

•

•

•

I - - I - T--- --~- -- -- - r I I I r
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A30. Residual errors of Qp and COp after tuning via NN
(Qp 0 = 0.83, generalization data, enlargement of A29.)

101

Normalized
Pole

Frequency

1.8-

1.6-

1.4-

1.2-

1.0-

0.8 -

0.6 -

T
0.6

T
0.8

0 • •

1
1.0

I
1.2

1
1.4

T
1.6

Normalized Quality Factor

A31. Residual errors of Qp and rop after tuning via NN
(Qpo = 0.707, generalization data)

T
1.8

102

103

1.08-

1.06-

Normalized
• Pole 1.04 _

Frequency
•

1.02- •
• •

•
1.00- • •

0.98-
•

•
0.96-

0.94- •

0.92-

~---T-----r------r-- . J I I I I

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A32. Residual errors of Qp and rop after tuning via NN
(Qpo = 0.707, generalization data, enlargement of A31.)

Normalized
Pole

Frequency

1.8

1.6

1.4

1.2

1.0
•

0.8

0.6

0.6 0.8

• • •• ,. .
•

1.0

•

1.2 1.4 1.6

Normalized Quality Factor

A33. Residual errors of Qp and rop after tuning via NN
(Qpo = 0.625, generalization data)

104

1.8

105

1.08-

1.06-

Normalized •
Pole 1.04 _

Frequency
• •

1.02- •

•

1.00- • • •

0.98-
•

0.96- •

0.94- •

0.92-

T- T--- I I I I I I I
0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Quality Factor

A34. Residual errors of Qp and rop after tuning via NN
(Qp 0 = 0.625, generalization data, enlargement of A33.)

NOllW3N3D V.LVG "MOd S3'1H-HV'l~VW

HXIGN3ddV

B.l. TRAINING RECORDS FOR RLC-FILTER

LO=le-4;
C0=1e-10;
R0=2e+2; %quality factor 5

wo=sqrt(1/(LO*CO));

dL=0.05*LO;
dC=0.05*CO;
dR=0.05*RO;
dw=0.05*wo;

wstart=0.15*wo;
Lstart=LO*(l-0.35);
Cstart=CO*(l-0.35);
Rstart=RO*(l-0.35);

n=O;
for 1=1:13

R=Rstart+l *dR;
for m=1:13

C=Cstart+m*d C;
for k=1:13

L=Lstart+k*dL;
j=O;

end
end

for q=1:7
n=n+l;

end

for p=l:7
j=j+ 1;
w=wstart+j*dw;
c=w*w*L*C;
co=w*w*LO*CO;
b=2*(R *R *C/(L *2)-1);
bo=2 * (RO* RO*CO/(L0*2)-1);
a=l +b*c+c*c;
ao=1 +bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- 1/DO;
end

n=n+l
G(n,l)=R!RO;
G(n,2)=(R-RO)/RO;

G(n,3)=(C-CO)/CO;
G(n,4)=(L-LO)!LO;

end

% pole frequency

107

B.2. TESTING RECORDS FOR RLC-FILTER

L0=1e-4;
CO=le-10;
R0=2e+2; % quality factor 5

wo=sqrt(1/(LO*CO));

dL=0.05*LO;
dC=0.05*CO;
dR=0.05*RO;
dw=0.05*wo;

wstart=0.15*wo;
Lstart=LO*(1-0.325);
Cstart=C0*(1-0.325);
Rstart=RO*(1-0.325);

n=O;
for 1=1:12

R=Rstart+l*dR;
for m=1:12

C=Cstart+m*dC;
for k=1:12

L=Lstart+k*dL;
j=O;

end
end

for q=1:7
n=n+l;

end

for p=l :7
j=j+l;
w=wstart+j*dw;
c=w*w*L*C;
co=w*w*LO*CO;
b=2*(R *R *C/(L*2)-l);
bo=2 *(RO*RO*CO/(L0*2)-1);
a= 1 +b*c+c*c;
ao= 1 +bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- 1/DO;
end

n=n+l
G(n,l)=RIRO;
G(n,2)=(R-RO)/RO;

G(n,3)=(C-CO)/CO;
G(n,4)=(L-LO)/LO;

end

% pole frequency

% in between points

108

B.3. TRAINING RECORDS FORgm-C-FILTER

C10=12.5e-12; C20=0.5e-12;
g10=2.5e-5; g20=2.5e-5; % quality factor 5

% pole frequency wO=sqrt(g 1 0* g20/(C 1 O*C20));
dC1=0.05*C10; dC2=0.05*C20;
dg1=0.05*g10; dg2=0.05*g20;
dw=0.05*w0; wstart=0.15*w0;
C1start=C10*(1-0.35); C2start=C20*(1-0.35);
glstart=glO*(l-0.35); g2start=g20*(1-0.35);

n=O;
fork=1:13 g1=g1start+k*dg1;

for j=1: 13 g2=g2start+j*dg2;
for 1= 1: 13 % C 1/C2 stays constant within 0.1% !

C1=C1start+l*dC1;
C3(l)=C2start+l *dC2;
C3(2)=C2start+(l-l)*dC2;
C3(3)=C2start+(l+ l)*dC2;
if 1 > 1
if 1 < 13
for m=1:3

end

C2=C3(m);
i=O;
for q=1:7
n=n+l;

end
n=n+1

for p=1:7 i=i+1;
w=wstart+i *dw;
c=w*w*C1 *C2/(gl *g2);
co=w*w*C10*C20/(g10*g20);
b=2*(g2*C2/(2*gl *C1)-1);
bo=2*(g20*C20/(2*g10*C10)-1);
a= 1 +b*c+c*c;
ao= 1 +bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- 1/DO;
end

G(n, 1)=(C2-C20)/C20-(g1-g10)/g10;
G(n,2)=(C1-Cl 0)/C10-(g2-g20)/g20;
G(n,3)=Cl/Cl0; %term B
G(n,4)=C2/C20; %term A

end % end of if
end % end of if
if 1 == 1
C3(2)=C3(3);
for m=1:2

C2=C3(m);

109

end
end

end

i=O;
for q=l :7
n=n+l;

end
n=n+1

for p=1:7 i=i+l;
w=wstart+i*dw;
c=w*w*Cl *C2/(gl *g2);
co=w*w*ClO*C20/(glO*g20);
b=2*(g2*C2/(2*gl *Cl)-1);
bo=2*(g20*C20/(2*g10*C10)-l);
a= 1 +b*c+c*c;
ao=1+bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)= 1/D - 1/DO;
end

G(n,1)=(C2-C20)/C20-(gl-g10)/g10;
G(n,2)=(C1-C10)/C10-(g2-g20)/g20;
G(n,3)=C1/C10; %term B
G(n,4)=C2/C20; % term A

end
end % end of if
if I== 13
for m=1:2

end

C2=C3(m);
i=O;
for q=1:7
n=n+1;

end
n=n+1

for p=1:7 i=i+l;
w=wstart+i*dw;
c=w*w*C1 *C2/(gl *g2);
co=w*w*C1 O*C20/(g 1 0* g20);
b=2*(g2*C2/(2*gl *Cl)-1);
bo=2*(g20*C20/(2*g10*Cl0)-1);
a= 1 +b*c+c*c;
ao=1+bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)= 1/D - 1/DO;
end

G(n, 1)=(C2-C20)/C20-(gl-g10)/gl0;
G(n,2)=(Cl-C1 O)/Cl0-(g2-g20)/g20;
G(n,3)=Cl/Cl0; %term B
G(n,4)=C2/C20; %term A

end % end of if

110

B.4. TESTING RECORDS FOR gm -C-FIL TER

C10=12.5e-12; C20=0.5e-12;
g10=2.5e-5; g20=2.5e-5; % quality factor 5
wO=sqrt(glO*g20/(ClO*C20)); %pole frequency
dC1=0.05*C10; dC2=0.05*C20;
dgl=0.05*gl0; dg2=0.05*g20;
dw=0.05*w0; wstart=0.15*w0;
Clstart=Cl 0*(1-0.325); C2start=C20*(1-0.325);
glstart=g10*(1-0.325); g2start=g20*(1-0.325); %in between points

n=O;
for k=1:12 g1=glstart+k*dg1;

for j=1:12 g2=g2start+j*dg2;
forl=l:l2

Cl=Cl start+l*dCl;
C3(l)=C2start+l*dC2;
C3(2)=C2start+(l-1)*dC2;
C3(3)=C2start+(l+ l)*dC2;
if 1 > 1
if I< 12
for m=1:3

end

C2=C3(m);
i=O;
for q=l :7
n=n+l;

end
n=n+l

for p= 1:7 i=i+ 1;
w=wstart+i *dw;
c=w*w*Cl *C2/(gl *g2);
co=w*w*ClO*C20/(glO*g20);
b=2*(g2*C2/(2*gl *Cl)-1);
bo=2*(g20*C20/(2*glO*C10)-1);
a= 1 +b*c+c*c;
ao= 1 +bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- 1/DO;
end

G(n, l)=(C2-C20)/C20-(gl-g10)/gl0;
G(n,2)=(C1-Cl 0)/Cl 0-(g2-g20)/g20;
G(n,3)=C1/Cl0; %term B
G(n,4)=C2/C20; % term A

end % end of if
end % end of if
if 1 == 1
C3(2)=C3(3);
form=1:2

C2=C3(m);

111

end
end

end

i=O;
for q=1:7
n=n+l;

end
n=n+l

for p=l:7 i=i+l;
w=wstart+i *dw;
c=w*w*C1 *C2/(gl *g2);
co=w*w*C10*C20/(g10*g20);
b=2*(g2*C2/(2*gl *Cl)-1);
bo=2*(g20*C20/(2*g10*C10)-1);
a= 1 +b*c+c*c;
ao=l+bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- liDO;
end

G(n, l)=(C2-C20)/C20-(gl-g10)/g10;
G(n,2)=(Cl-C10)/C10-(g2-g20)/g20;
G(n,3)=C1/C10; %term B
G(n,4)=C2/C20; % term A

end
end % end of if
if I== 12
for m=l:2

end

C2=C3(m);
i=O;
forq=1:7
n=n+1;

end
n=n+l

for p=1:7 i=i+l;
w=wstart+i *dw;
c=w*w*Cl *C2/(gl *g2);
co=w*w*ClO*C20/(glO*g20);
b=2*(g2*C2/(2*g1 *Cl)-1);
bo=2*(g20*C20/(2*g10*C10)-1);
a= 1 +b*c+c*c;
ao=l+bo*co+co*co;
D=sqrt(a);
DO=sqrt(ao);
G(n,p)=l/D- liDO;
end

G(n, 1)=(C2-C20)/C20-(g 1-glO)/glO;
G(n,2)=(Cl-Cl 0)/Cl0-(g2-g20)/g20;
G(n,3)=Cl!C10; %term B
G(n,4)=C2/C20; % term A

end % end of if

112

B.5. TESTING RECORDS (2nd ITERATION) FORgm-C-FILTER

Qn=5;
wn=l;
dw=0.05*wn;
wstart=0.15*wn;

A=e18gen;
B=qwgenll;

Cl(l)=-0.275;
Cl (2)=0.025;
Cl (3)=0.27 5;
Cl(4)=0.125;
Cl (5)=-0.275;
Cl (6)=0.125;
Cl (7)=0.225;
C1(8)=-0.125;
Cl (9)=0.075;
Cl(l0)=:.0.225;
Cl(ll)=-0.275;

C2(1)=-0.275;
C2(2)=0.025;
C2(3)=0.27 5;
C2(4)=0.125;
C2(5)=-0.225;
C2(6)=0.125;
C2(7)=0.225;
C2(8)=-0.125;
C2(9)=0.025;
C2(10)=-0.275;
C2(11)=-0.275;

help(l)=l;
help(2)=15;
help(3)=33;
help(4)=206;
help(5)=376;
help(6)=398;
help(7)=1803;
help(8)=2044;
help(9)=2470;
help(10)=4492;
help(11)=4863;

for k=1:11

% nominal quality factor

% load .nnr file ! !
% load qw-actual-data-file

% keep track of the delta-Cs

% record numbers of test points

g1(k)=A(help(k),l)-A(help(k),3); %tuning amount for 2nd iteration:
g2(k)=A(help(k),2)-A(help(k),4); % calculated-measured NN output

end % (of 1st iteration)

113

for k=l:ll
AB(k,l)=l +Cl (k);
AB(k,2)=1 +C2(k);

end

n=O;
for k=l:ll

wa=B(k,2)*wn;
Qa=B(k,l)*Qn;
i=O;

for q=1:7
n=n+l;
for p=1:7

i=i+ 1;
w=wstart+i*dw;
a=w*w/(wa*wa);
aO=w*w/(wn*wn);
b=l/(Qa*Qa)-2;

%new termB
%new term A

bO= 1/(Qn*Qn)-2;
c=sqrt(l +b*a+a*a);
cO=sqrt(l +bO*aO+aO*aO);
G(n,p)= 1/c-1/cO;

end
end

n=n+l
G(n,l)=gl (k);
G(n,2)=g2(k); % -->.nna-file

end
end;

114

NOll Vil,VA3 "MOd S3'1Id<) GNV -HV'1J. YIN

:>XIGN3ddV

C.l. CALCULATION OF THE EUCLEDIAN DISTANCE FOR CIRCUIT A

#include <stdio.h>
#include <math.h>
#define FILE_LENGTH 2197 % Number of records
float RO, CO, LO, R, L, C, Rmin, Rmax, Cmin, Cmax, Lmin, Lmax;
float errorR,errorC,errorL,delta,min,max,help,average;
float min,max,help;
int j;

mainO
{

min=l, max=O, help=O;
Rmin=l, Rmax=O, Cmin=l, Cmax=O, Lmin=l, Lmax=O;
printf("Oesults for the training dataO);
for(j=l; j<(FILE_LENGTH + 1); j++)
{

scanf("%f %f %f %f %f %f', &RO, &CO, &LO, &R, &C, &L);

errorR=R-RO;
errorC=C-CO;
errorL=L-LO;

if (errorR <Rmin) Rmin=errorR;
if (errorC<Cmin) Cmin=errorC;
if (errorL<Lmin) Lmin=errorL;

if (errorR>Rmax) Rmax=errorR;
if (errorC>Cmax) Cmax=errorC;
if (errorL>Lmax) Lmax=errorL;

delta=sqrt(errorR *errorR +errorC*errorC+errorL *errorL);

if (delta<min) min=delta;
if (delta>max) max=delta;

average=help+del ta;
help=average;

}
average=help/FILE_LENGTH;
printf ("average: %4.6fO,average);
printf ("min: %4.6fO,min);
printf ("max: %4.6fO,max);
printf ("Rmin: %4.6fO,Rmin);
printf ("Rmax: %4.6fO,Rmax);
printf ("Cmin: %4.6fO,Cmin);
printf ("Cmax: %4.6fO,Cmax);
printf ("Lmin: %4.6fO,Lmin);
printf ("Lmax: %4.6fO,Lmax);
}

116

C.2. INITIAL VALUES OF THE QUALITY FACTOR Qp and
THE POLE FREQUENCY Olp

C10=12.5e-12; C20=0.5e-12;
g10=2.5e-5; g20=g10;
wO=sqrt(g 1 0* g20/(C 1 O*C20));
q0=sqrt(g10*Cl0/(g20*C20));
dC1=0.05*ClO; dC2=0.05*C20;
dgl=0.05*g10; dg2=0.05*g20;
dw=0.05*w0; wstat1=0.15*w0;
Clstart=ClO*(l-0.35); C2start=C20*(1-0.35);
glstart=glO*(1-0.35); g2start=g20*(1-0.35);

n=O;
for k=1:13 gl=glstart+k*dgl;

for j=1:13 g2=g2start+j*dg2;
for 1=1:13

C1=C1start+I*dCl;
C3(1)=C2start+l *dC2;
C3(2)=C2start+(l-1)*dC2;
C3(3)=C2start+(l+ l)*dC2;
if 1 > 1
if I< 13
for m=1:3

end
end
end

C2=C3(m);
n=n+l
G(n, 1)=sqrt(gl *Cl/(g2*C2))/q0;
G(n,2)=sqrt(gl *g2/(C1 *C2))/w0;

if I== 1
C3(2)=C3(3);
for m=1:2

end
end

C2=C3(m);
n=n+l
G(n,l)=sqrt(gl *Cl/(g2*C2))/q0;
G(n,2)=sqrt(gl *g2/(Cl *C2))/w0;

if I== 13
for m=1:2

C2=C3(m);
n=n+l
G(n, l)=sqrt(gl *Cl/(g2*C2))/q0;
G(n,2)=sqrt(gl *g2/(Cl *C2))/w0;

end end
end

end
end

% nominal pole frequency
% nominal quality factor

% normalized quality factor
% normalized pole frequency

%end of if
%end of if

% normalized quality factor
% normalized pole frequency

%end of if

% normalized quality factor
% normalized pole frequency
%end of if

117

C.3. ACTUAL QUALITY FACfOR Qa AND
POLE FREQUENCY C.Oa AFfER TUNING

A=AB;
B=e18;
intl=O;
int2=0;
for n=1:6253

% load the error-terms A and B ! !
%load the .nnr result-file

%number of records
%el/A al (n)=(B(n,3)-B(n, 1))/ A(n,2);

a2(n)=(B(n,4)-B(n,2))/ A(n, 1);
output(n,l)=sqrt((l +al (n))/(1 +a2(n)));
output(n,2)=sqrt(l +al (n)+a2(n)+al(n)*a2(n));
if output(n,l) > 0.95

%e2/B
% Q actual
% w actual

end

if output(n,l) < 1.05

end

if output(n,2) > 0. 95

end

if output(n,2) < 1.05
inti =intl + 1;
end

if output(n,l) > 0.99

end
end

if output(n,l) < 1.01

end

if output(n,2) > 0.99

end

if output(n,2) < 1.01
int2=int2+ 1;
end

% minimum quality factor
% maximum quality factor
% minimum pole frequency
% maximum pole frequency

qmin=min(output(:, 1))
qmax=max(output(:, 1))
wmin=min(output(:,2))
wmax=max(output(:,2))
rangel=intl
range2=int2

% number of records in 5% intetvall
% number of records in 1% intetvall

end;

118

S'Mll3WVdVd)l'MOAU3N

OXION3ddV

~--------------------------~-------------------------------------

0.1. INITIAL NETWORK FOR CIRCUIT A

Title: Q=5.0/50in/18hid/3out
Display Mode: Network

Display Style: default
Control Strategy: backprop

0 Learn 0 Recall
1 Aux 1 0 Aux 2

L/R. Schedule: backprop

Type: Hetero-Associative

L/R Schedule: backprop
0 Layer
0Aux3

Recall Step 1 0 0 0 0
Input Clamp 0.0000 0.0000 0.0000 0.0000 0.0000
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 5000 0 0 0 0
Coefficient 1 0. 9000 0.0000 0.0000 0.0000 0.0000
Coefficient 2 0.6000 0.0000 0.0000 0.0000 0.0000
Coefficient 3 0.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000

10 Parameters
Learn Data: File Rand. (einsR) Binary Load

Recall Data: File Seq. (einsR)
Result File: Desired Output, Output

UseriO Program: userio
1/P Ranges: -1.0000, 1.0000
0/P Ranges: -0.3000, 0.3000

liP Start Col: 1 MinMax Table: einsr
0/P Start Col: 51 Number of Entries: 56

MinMax Table <einsr>:
Col: 1 2 3 4 5 6
Min: -0.0832 -0.1193 -0.1557 -0.1903 -0.2214 -0.2481
Max: 0.0384 0.0602 0.0869 .121 .1787 .2626
Col: 7 8 9 10 11 12
Min: -0.2697 -0.2861 -0.3321 -0.4421 -0.5930 -0.8055
Max: .3889 .5881 .924 1.542 2.783 4.727
Col: 13 14 15 16 17 18
Min: -1.1132 -1.5674 -2.2207 -3.0582 -3.6985 -3.2079
Max: 4.902 4.882 4.533 4.16 4.265 5.434
Col: 19 20 21 22 23 24
Min: -2.3863 -1.7522 -1.3240 -1.0343 -0.8319 -0.6856
Max: 5.883 6.234 6.489 6.473 6.486 6.313
Col: 25 26 27 28 29 30
Min: -0.5763 -0.4926 -0.4268 -0.3741 -0.3312 -0.2958
Max: 6.131 6.006 4.802 3.588 2.718 2.125
Col: 31 32 33 34 35 36
Min: -0.2661 -0.2409 -0.2194 -0.2008 -0.1846 -0.1705
Max: 1.71 1.412 1.189 1.019 .8849 .7776
Col: 37 38 39 40 41 42
Min: -0.1580 -0.1469 -0.1370 -0.1282 -0.1202 -0.1130
Max: .6902 .6178 .5571 .5056 .4615 .4234
Col: 43 44 45 46 47 48

120

Min: -0.1064
.3901
49

-0.0773
.2569
55

0.0000
0

-0.1005
.361

50
-1.3000

1.3
56
0.0000
0

-0.0950 -0.0900 -0.0854 -0.0812
Max: .3352 .3123 .2918 .2735
Col: 51 52 53 54
Min: -0.3000 -0.3000 -0.3000 0.0000
Max: .3 .3 .3 0
Col:
Min:
Max:
Layer: 1

PEs: 1 W gt Fields: 2 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: --None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)
Winner 1: None Winner 2: None
PE: Bias

1.000 Err Factor 0.000 Desired
0.000 Sum 1.000 Transfer

0 Weights -6.664 Error
Layer: Iri

1.000 Output
0.000 Current Error

PEs: 50 W gt Fields: 1 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: --None--

Init Low: -0.100 Init High: 0.100 LIR Schedule: (Network)
Winner 1: None Winner 2: None
PE:2

1.000 Err Factor 0.645 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 3

1.000 Err Factor 0.619 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE:4

1.000 Err Factor 0.589 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 5

1.000 Err Factor 0.554 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE:6

1.000 Err Factor 0.514 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE:7

1.000 Err Factor 0.467 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 8

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

121

122

1.000 Err Factor 0.416 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:9

1.000 Err Factor 0.358 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 10

1.000 Err Factor 0.295 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 11

1.000 Err Factor 0.229 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 12

1.000 Err Factor 0.164 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 13

1.000 Err Factor 0.101 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 14

1.000 Err Factor 0. 044 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 15

1.000 Err Factor -0.006 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 16

1.000 Err Factor -0.045 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 17

1.000 Err Factor -0.070 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 18

1.000 Err Factor -0.085 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 19

1.000 Err Factor -0.091 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 20

1.000 Err Factor -0.096 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:21

1.000 Err Factor -0.108 Desired

123

0.000 Sum 0.000 Transfer 0.000 Output
0 Weights 0.000 Error 0.000 Current Error

PE:22
1.000 Err Factor -0.124 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 23

1.000 Err Factor -0.145 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 24

1.000 Err Factor -0.168 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:25

1.000 Err Factor -0.193 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 26

1.000 Err Factor -0.218 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 27

1.000 Err Factor -0.245 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:28

1.000 Err Factor -0.268 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 29

1.000 Err Factor -0.287 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 30

1.000 Err Factor -0.304 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 31

1.000 Err Factor -0.319 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 32

1.000 Err Factor -0.331 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 33

1.000 Err Factor -0.341 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 34

1.000 Err Factor -0.351 Desired
0.000 Sum 0.000 Transfer 0.000 Output

124

0 Weights 0.000 Error 0.000 Current Error
PE: 35

1.000 Err Factor -0.358 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 36

1.000 Err Factor -0.364 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 37

1.000 Err Factor -0.370 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 38

1.000 Err Factor -0.375 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 39

1.000 Err Factor -0.380 Desired
0.000 Sum 0.000 Transfer 0.000 Output

OW eights 0.000 Error 0.000 Current Error
PE: 40

1.000 Err Factor -0.383 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 41

1.000 Err Factor -0.386 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:42

1.000 Err Factor -0.389 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:43

1.000 Err Factor -0.391 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:44

1. 000 Err Factor -0.393 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:45

1.000 Err Factor -0.394 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:46

1.000 Err Factor -0.396 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:47

1.000 Err Factor -0.397 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error

125

PE:48
1.000 Err Factor -0.399 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:49

1.000 Err Factor -0.400 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 50

1.000 Err Factor -0.401 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 51

1.000 Err Factor 0.731 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
Layer: Hidden 1

PEs: 18 Wgt Fields: 3 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Cum-Delta-Rule

Init Low: -0.100 Init High: 0.100 L/R Schedule: hidden1
Winner 1: None Winner 2: None

L/R Schedule: hidden 1
Recall Step 1 0 0 0 0

Input Clamp 0.0000 0.0000 0.0000 0.0000 0.0000
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 2 0.4000 0.2000 0.0500 0.0031 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000

PE: 52
1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 53

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 54

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 55

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 56

126

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 57

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE:58

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 59

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 60

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 61

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 62

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 63

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 64

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 65

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 66

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 67

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 68

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

51 Weights 0.000 Error 0.000 Current Error
PE: 69

1.000 Err Factor 0.000 Desired

0.000 Sum
51 Weights

Layer: Out

0.000 Transfer
0.000 Error

0.000 Output
0.000 Current Error

PEs: 3 W gt Fields: 3 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: TanH

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Cum-Delta-Rule

Init Low: -0.100 Init High: 0.100 L/R Schedule: out
Winner 1: None Winner 2: None

L/R Schedule: out
Recall Step

Input Clamp
Firing Density
Temperature
Gain
Gain

Learn Step
Coefficient 1
Coefficient 2
Coefficient 3
Temperature

PE:70

1 0 0 0 0
0.0000 0.0000 0.0000 0.0000 0.0000

100.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000

10000 30000 70000 150000 310000
0.1500 0.0750 0.0188 0.0012 0.0000
0.4000 0.2000 0.0500 0.0031 0.0000
0.1000 0.1000 0.1000 0.1000 0.1000
0.0000 0.0000 0.0000 0.0000 0.0000

1.000 Err Factor -0.050 Desired
0.000 Sum 0.000 Transfer

19 Weights 0.000 Error
PE:71

1.000 Err Factor -0.150 Desired
0.000 Sum 0.000 Transfer

19 Weights 0.000 Error
PE:72

1.000 Err Factor 0.150 Desired
0.000 Sum 0.000 Transfer

19 Weights 0.000 Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

127

0.2. INITIAL NETWORK FOR CIRCUIT B

Title: Q=5.0/49in/18hid/2out
Display Mode: Network

Display Style: default
Control Strategy: backprop

0 Learn 0 Recall
1 Aux 1 0 Aux 2

L/R Schedule: backprop

Type: Hetero-Associative

L/R Schedule: backprop
0 Layer
0Aux3

Recall Step 1 0 0 0 0
Input Clamp 0.0000 0.0000 0.0000 0.0000 0.0000
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 5000 0 0 0 0
Coefficient 1 0. 9000 0.0000 0.0000 0.0000 0.0000
Coefficient 2 0.6000 0.0000 0.0000 0.0000 0.0000
Coefficient 3 0.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000

IO Parameters
Learn Data: File Rand. (eins6253) Binary Load

Recall Data: File Seq. (eins6253)
Result File: Desired Output, Output

UseriO Program: userio
1/P Ranges: -1.0000, 1.0000
0/P Ranges: -0.6000, 0.6000

1/P Start Col: 1 MinMax Table: eins6253
0/P Start Col: 50 Number of Entries: 56

MinMax Table <eins6253>:
Col: 1 2 3 4 5 6
Min: -0.0293 -0.0471 -0.0703 -0.1000 -0.1375 -0.1850
Max: .115 .2008 .335 .5533 .9329 1.654
Col: 7 8 9 10 11 12
Min: -0.2453 -0.3224 -0.4221 -0.5533 -0.7297 -1.1422
Max: 3.003 3.78 4.124 4.428 4.674 4.768
Col: 13 14 15 16 17 18
Min: -1.7341 -2.4171 -3.2727 -4.2157 -4.5963 -3.9259
Max: 4.379 3.876 3.002 2.176 1.859 2.543
Col: 19 20 21 22 23 24
Min: -2.9754 -2.2457 -1.7447 -1.3980 -1.1501 -0.9668
Max: 3.615 4.516 4.923 5.161 5.675 5.667
Col: 25 26 27 28 29 30
Min: -0.8271 -0.7178 -0.6305 -0.5594 -0.5006 -0.4513
Max: 5.616 5.527 5.412 5.291 5.153 5.057
Col: 31 32 33 34 35 36
Min: -0.4095 -0.3737 -0.3427 -0.3157 -0.2920 -0.2710
Max: 4.934 4.827 4.715 4.608 4.386 3.926
Col: 37 38 39 40 41 42
Min: -0.2524 -0.2357 -0.2208 -0.2073 -0.1951 -0.1840
Max: 3.399 2.91 2.496 2.156 1.879 1.653

128

Col:
Min:
Max:
Col:
Min:
Max:
Col:
Min:
Max:

43
-0.1739

1.468
49

-0.1281
.8271
55

0.0000
0

Layer: 1

44
-0.1646
1.313
50
-0.6000

.6
56
0.0000
0

45 46 47
-0.1561 -0.1482
1.183 1.073

51 52 53
-0.6000 0.7000
.6 1.3 1.3

48
-0.1410 -0.1343

.9792 .8978
54

0.7000 0.0000
0

PEs: 1 W gt Fields: 2 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: --None--

Init Low: -0.100 Init High: 0.100 L/R. Schedule: (Network)
Winner 1: None Winner 2: None
PE: Bias

1.000 Err Factor 0.000 Desired
0.000 Sum 1.000 Transfer

o·weights -7.508 Error
Layer: In

1.000 Output
0.000 Current Error

PEs: 49 W gt Fields: 1 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: --None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)
Winner 1: None Winner 2: None
PE:2

1.000 Err Factor 0.063 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 3

1.000 Err Factor 0.023 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE:4

1.000 Err Factor -0.032 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 5

1.000 Err Factor -0.104 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE: 6

1.000 Err Factor -0.200 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error
PE:7

1.000 Err Factor -0.321 Desired
0.000 Sum 0.000 Transfer

0 Weights 0.000 Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0. 000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

129

130

PE: 8
1.000 Err Factor -0.432 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:9

1.000 Err Factor -0.315 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 10

1.000 Err Factor -0.007 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 11

1.000 Err Factor 0.516 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 12

1.000 Err Factor 0. 771 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 13

1.000 Err Factor 0.071 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 14

1. 000 Err Factor -0.379 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 15

1.000 Err Factor -0.606 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 16

1.000 Err Factor -0.720 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 17

1.000 Err Factor -0.793 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 18

1.000 Err Factor -0.839 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 19

1.000 Err Factor -0.870 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 20

1.000 Err Factor -0.894 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 21

131

1.000 Err Factor -0.913 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:22

1.000 Err Factor -0.924 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 23

1.000 Err Factor -0.933 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:24

1.000 Err Factor -0.943 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:25

1.000 Err Factor -0.948 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 26

1.000 Err Factor -0.952 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:27

1.000 Err Factor -0.955 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:28

1.000 Err Factor -0.958 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:29

1.000 Err Factor -0.960 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 30

1.000 Err Factor -0.962 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 31

1.000 Err Factor -0.965 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 32

1.000 Err Factor -0.966 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 33

1.000 Err Factor -0.968 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 34

1.000 Err Factor -0.969 Desired

132

0.000 Sum 0.000 Transfer 0.000 Output
0 Weights 0.000 Error 0.000 Current Error

PE: 35
1.000 Err Factor -0.970 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 36

1.000 Err Factor -0.971 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 37

1.000 Err Factor -0.970 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 38

1.000 Err Factor -0.967 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 39

1.000 Err Factor -0.964 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:40

1.000 Err Factor -0.961 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 41

1.000 Err Factor -0.957 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:42

1.000 Err Factor -0.954 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 43

1.000 Err Factor -0.951 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:44

1.000 Err Factor -0.947 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:45

1.000 Err Factor -0.945 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:46

1.000 Err Factor -0.942 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE:47

1.000 Err Factor -0.939 Desired
0.000 Sum 0.000 Transfer 0.000 Output

133

0 Weights 0.000 Error 0.000 Current Error
PE: 48

1.000 Err Factor -0.936 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 49

1.000 Err Factor -0.934 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
PE: 50

1.000 Err Factor -0.932 Desired
0.000 Sum 0.000 Transfer 0.000 Output

0 Weights 0.000 Error 0.000 Current Error
Layer: Hidden 1

PEs: 18 W gt Fields: 3 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: TanH

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Cum-Delta-Rule

Init Low: -0.100 Init High: 0.100 L/R. Schedule: hidden1
Winner 1: None Winner 2: None

L/R Schedule: hidden 1
Recall Step 1 0 0 0 0

Input Clamp 0.0000 0.0000 0.0000 0.0000 0.0000
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 20000 60000 140000 300000 620000
Coefficient 1 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 2 0.4000 0.2000 0.0500 0.0031 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000

PE: 51
1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 52

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 53

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 54

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 55

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error

134

PE: 56
1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 57

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 58

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 59

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 60

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 61

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 62

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 63

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 64

1.000 Err Factor 0. 000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 65

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 66

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 67

1.000 Err Factor 0.000 Desired
0.000 Sum 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
PE: 68

1.000 Err Factor 0.000 Desired
0.000 Sllln 0.000 Transfer 0.000 Output

50 Weights 0.000 Error 0.000 Current Error
Layer: Out

PEs: 2 W gt Fields: 3 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: TanH

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Cum-Delta-Rule

Init Low: -0.100 Init High: 0.100 UR Schedule: out
Winner 1: None Winner 2: None

L/R Schedule: out
Recall Step

Input Clamp
Firing Density
Temperature
Gain
Gain

Learn Step
Coefficient 1
Coefficient 2
Coefficient 3
Temperature

PE: 69

1 0 0 0 0
0.0000 0.0000 0.0000 0.0000 0.0000

100.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000

20000 60000 140000 300000 620000
0.1500 0.0750 0.0188 0.0012 0.0000
0.4000 0.2000 0.0500 0.0031 0.0000
0.1000 0.1000 0.1000 0.1000 0.1000
0.0000 0.0000 0.0000 0.0000 0.0000

1.000 Err Factor 0.200 Desired
0.000 Sum 0.000 Transfer

19 Weights 0.000 Error
PE:70

1.000 Err Factor 0.500 Desired
0.000 Sum 0.000 Transfer

19 Weights 0.000 Error

0.000 Output
0.000 Current Error

0.000 Output
0.000 Current Error

135

	Automatic Tuning of Integrated Filters Using Neural Networks
	Let us know how access to this document benefits you.
	Recommended Citation

	Lenz_Lutz_Henning-1993_01
	Lenz_Lutz_Henning-1993_03

