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1. Introduction 

 The ability of sorbent materials to collect analytes is closely tied to performance 

characteristics in sensors, responsive materials and analyte-delivery systems across a 

wide range of fields including biomedicine, corrosion science and environmental 

monitoring [73, 102-105]. Hydrogels have been employed in many such devices because 

of their attractive characteristics, a list which includes their compositional variability, 

tunable mechanical properties, electrolyte exchangeability, sensitivity to stimuli, low 

electrical impedance, portability and low cost [75, 106]. Headgroups of hydrogels include 

carboxylic acids, ammonium, sulfonates, amides, amines and hydroxyls, which can all be 

leveraged to effectively absorb and concentrate metal ions from solution [67-71], 

allowing for detection limits in the sub-ppm range. Common device responses are 

generated by analyte-headgroup interactions that act to swell or deswell the hydrogel [52, 

63, 66, 107, 108], while others involve an added marker in the form of a fluorescent dye, 

nanoparticle or colorimetric tag which then gives a measurable spectral change of the gel 

in response to analyte concentration [59, 64, 65, 109-112]. Still others use electrical 

changes within hydrogels from altered resistance, capacitance, impedance or 

voltammetry [53-55]. Because the various responses of hydrogels to analytes are usually 

correlated, often multiple signals are produced [54, 107]; and, as multi-responsive 

materials, hydrogels are of great interest in dual-functional devices, such as 

spectroelectrochemical devices [48, 103]. 

Detection of metal ion analytes enables important research questions to be 

addressed in many fields, including biosensing, environmental monitoring and corrosion 
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science [35, 113, 114].  The ability to determine the concentration of transition metal ions 

present in the human body, a body of water, in the air or on a potentially corroding metal 

surface is a necessity in order to make informed decisions and treatment plans. In the case 

of corrosion of steel and copper alloys, detection of small amounts of Fe2+, Fe3+, Cu+ and 

Cu2+ could permit the development of an early corrosion warning system, capable of 

signaling the failure of anti-corrosion measures such as protective coatings or cathodic 

protection. In the case of environmental analysis, real-time monitoring of heavy metal 

ions, such as As3+, Cd2+, Cr3+, Pb2+ or Hg2+, which are considered to be of highest 

significance to health [115], could warn if a factory, agricultural practice, etc., presents a 

risk to the public and/or environment. 

 The formation of Prussian blue (PB), the blue pigmented complex 

Fe4(III)[Fe(II)(CN)6]3 [99], has been used to detect Fe2+ or Fe3+ in solution when salts of 

ferricyanide [Fe(CN)6]
3-, or ferrocyanide [Fe(CN)6]

4-, respectively, are used [95]. 

Complexes of other transition and lanthanide metal ions (e.g. Cu2+ [116], Ti4+ [117], Cr3+ 

[118], Sn4+, Al3+, Mn2+, Zn2+ [93], Co2+, Ni2+, Pd2+, In3+ [92], Ga2+ [119], Y3+ [120], Zr4+ 

[121], Ag+ [122], Cd2+ [123], La3+ [124], Pb2+ [125], Pt2+ [126], and Bi3+ [127]) may be 

also be formed with salts of ferricyanide or ferrocyanide, having the general formula of 

Mx+[Fe(CN)6]
 y-

x/y where M= transition metal, [92, 116] and have found potential 

application in sensors, environmental remediation, imaging, and energy conversion [92, 

117-119, 122]. Both hexacyanoferrate ions and metal hexacyanoferrate complexes have 

been characterized by impedance spectroscopy in solution [92, 94, 128-132] and the 

unique colors of the complexes allow for spectral differentiation of the metal ions present 
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[93, 133]. Given that Prussian blue and its metal hexacyanoferrate analogues can be 

formed in aqueous solution, we hypothesize that it is likely that such complexes can also 

be formed within hydrogels and used in transition metal ion sensing applications by 

colorimetric, electrical and mechanical/volumetric changes. 

The electrical and mechanical changes that may occur within hydrogels upon 

formation of metal hexacyanoferrates are influenced by the thermodynamic principles 

that drive interactions between cations and headgroups. It is known that the introduction 

of divalent, rather than monovalent, cations into already existing anionic hydrogel 

networks causes an increase in Young’s modulus. This increase is taken to indicate 

headgroup-cation interactions that have formed a secondary “ionically cross-linked” 

network, in addition to the primary covalently bonded network of the hydrogel. The type 

of multivalent cation involved determines the level of interaction; alkali earth cation 

interactions typically consist of electrostatic interactions, while interactions with 

transition metal cations tend towards quasi-covalent bonds [88-90]. 

Consideration of the “law of matching water affinities” is relevant in the 

discussion of possible headgroup-cation interactions and their intensities of association. 

First proposed by Collins in 2006, this law states that ions of similar size have similar 

enthalpies of hydration, making them more likely to form close ion pairs than ions of 

dissimilar sizes [79]. This law was developed from initial observations by Hofmeister and 

has been extensively observed by others [77, 78, 134, 135]. These principles can be 

extended to polyelectrolytes, where, for example, a sulfonic acid headgroup is considered 

to be chaotropic because it is more likely to form close ion pairs with large, weakly 
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hydrated ions [83, 84, 136, 137]. Considering the equation for conductivity:     

(1) 

where σ is conductivity, n is number of charge carriers, μ is the mobility of the charge 

carriers, and Z is the charge of those carriers, it is possible to see that the mobility 

parameter will be altered by the degree of association between the headgroup and cation. 

The associative response of hydrogels to soluble transition metal ions, in turn, affects the 

viscosity of water contained within the hydrogel. Viscosity of different aqueous salt 

solutions is dependent upon the hydration free energy and the hydrated radius of the 

cation, as summarized by Tansel [82]. A strong hydration shell causes more resistance to 

flow, and an increased viscosity of water. These types of ions are often categorized as 

kosmotropic, which have a polarity greater than that of water and thus their presence 

encourages hydrogen bonding between water molecules [82, 83]. It is expected that the 

changing viscosity of the water as different types of ions are introduced would also 

stimulate changes in the impedance of the hydrogels.  

In this study, hydrogels composed of polyacrylic acid (PAA) co-polymerized with 

acrylamido-methyl propane sulfonic acid (AMPS) were exposed to soluble transition 

metal ions. PAA is known to have a strong proton affinity, so AMPS is likely the primary 

ion exchanger in this case [85, 86].  After exposure to transition metal ions, the hydrogels 

were treated with ferricyanide or ferrocyanide to form Prussian blue or one of its metal 

hexacyanoferrate analogues. The formation of this complex affected the impedance of the 

hydrogels, and the unique colors of the complexes allowed for differentiation of the metal 

ions present. An advantage of our method is the robust nature of the impedimetric 

σ = nμZ 
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detection; there is no need for a marker or tag that could become photobleached or lose 

sensitivity over time. In order to measure the concentration of metal ion present, it is only 

necessary to measure the impedance at one frequency, allowing for a rapid measurement 

with simple data interpretation. These hydrogels have already been utilized to assess the 

protective quality of coatings on coated outdoor metalworks (e.g. sculptures) using 

impedance spectroscopy, demonstrating its ability to be used as a portable sensor [138]. 

In this work, we expand the role of such hydrogels to act not only as the solid electrolyte 

in an impedimetric sensing device, but to collect and have an active response to transition 

metal ions, which are markers of active corrosion.   

2. Experimental 

2.1 Hydrogel Synthesis 

All chemicals for hydrogel synthesis were obtained from Sigma-Aldrich and 

solutions were made using deionized H2O. AMPS-co-PAA hydrogels were synthesized 

from the sodium salts of 2-acrylamido-2-methylpropanesulfonic acid (AMPS; 50 wt% 

solution) and poly(acrylic acid) (PAA; average MW~5100, 50 wt% solution). N,N’-

methylenebis(acrylamide) (MBA; 1 wt% solution) was used as the cross-linker and the 

polymerization was carried out via the potassium persulfate and metabisulfite redox 

initiator system (1 wt% solutions) with glycerol added as a humectant.  Further details on 

the hydrogel synthesis are available in a previously published paper [138].   

Once synthesized, the hydrogels were removed from their molds and allowed to 

equilibrate with the desired supporting electrolyte for two hours at minimum, and then 
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the electrolyte was replaced with fresh solution and the hydrogels again equilibrated for 

two hours. This process also allowed for removal of unreacted monomers. The typical 

hydrogel thickness after equilibration was 3.0 ± 0.2 mm.    

The various supporting electrolytes used were sodium chloride (Fisher Chemical), 

cesium chloride (Amresco ultra pure), rubidium chloride (Alfa Aesar 99.9%) strontium, 

magnesium, potassium and calcium chloride (Sigma-Aldrich 99%) and were prepared in 

deionized H2O at a concentration of 10 mM with a pH of 4.  The pH was adjusted with 1 

M hydrochloric acid as necessary, measured with an Oakton Ion 510 Series meter.  

2.2 Synthesis of Prussian Blue and Analogs in Hydrogels 

All reagents were used as received without further purification. To prepare 

Prussian blue or one of the other transition metal ion complex analogs within the 

hydrogels, 3 cm × 3 cm portions of hydrogel, already equilibrated in supporting 

electrolyte as described above, were placed into appropriately sized beakers.  Then a μL-

mL sized aliquot of the desired metal salt stock solution (depending on the desired final 

concentration) was added to the beaker, as well as the amount of deionized water needed 

to bring the total mL of the metal ion solution and water to 10 mL.  Then 90 mL of 

10mM NaCl at pH 4 (unless otherwise noted) was added so that the total final volume the 

gels were soaked in was 100 mL.  The beakers were then covered and the gels soaked for 

8-12 hrs.  The hydrogels were then removed from the beakers, placed on glass, excess 

electrolyte wicked off, and a 375 L aliquot of the appropriate hexacyanoferrate ion was 

pipetted evenly over the hydrogel forming a droplet that evenly covered the gels and 
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blue values of each spot were measured, compared to calibrated PB hydrogels [72], and 

the results were plotted in Fig. 3.1a. The histograms in Fig. 3.1a show that the range and 

average amount of Fe2+ present. It was generally observed that for the plates treated with 

Figure 3.1: a) Heat map of nanomoles of Fe2+ detected based on the calibrated colorimetric response 

for each of the inhibitors evaluated, where n= the number of carbons in the inhibitor. Two controls 

were utilized; “solvent only” refers to a plate soaked in ethanol without inhibitor, while “freshly 

sanded” refers to a plate tested immediately after sanding. The solid blue line represents the average 

nanomoles of Fe2+ detected on substrates that had been prepared using corrosion inhibitor dissolved in 

ethanol alone, while the dashed line and squares indicate the same except the inhibitors were dissolved 

in a 4:1 mixture of ethanol and chloroform (required for solubility reasons), also indicated by asterisks 

in the legend. The horizontal diamond marker indicates the average for ‘solvent’ and the horizontal 

diamond marker indicates the average for ‘freshly sanded’. b): Images showing the range of PB 

formation behavior. The increasing yellow coloration evident in the images moving to the right is due 

to unreacted ferricyanide remaining within the gel. 
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the longer chain fatty acids (>10 carbons), the gels had formed smaller, more localized 

spots of PB, in shapes with greater circularity, while the shorter fatty-acid chains 

(approximately 0-6 carbons) formed PB in larger, irregular areas across larger regions of 

the sensor, as can be seen in Fig 3.1b. Considering the pKa values of the different acidic 

headgroups aids in interpretation of the singular exception to the overall trend, which was 

seen in formic acid-treated plates. Formic acid, having a pKa of 3.75 is lower than the 

other acids (which range between 4.5-5); and given its greater acidity, it that likely led to 

increased corrosion, producing insoluble iron species. That hypothesis was supported by 

visual inspection, which revealed orange corrosion products on the formic acid-treated 

plate (which were not present on any of the other inhibitor-treated plates).   

The overall trend of improved corrosion inhibition with increasing fatty acid 

chain lengths is ascribed to multiple factors, including higher melting points with longer 

chain lengths, and therefore increased intermolecular forces. Inhibitors having chain 

lengths <10 have melting points below room temperature; and it is interesting to note that 

corrosion inhibitor performance increases most substantially as the melting points 

increase above room temperature (e.g. myristic, with 14 carbons has a melting 

temperature of 54.2°C). The two longest chains tested, arachidic and behenic acid, are too 

nonpolar to be dissolved in ethanol alone, and therefore were dissolved in a 4:1 

ethanol/chloroform mixture. To enable comparison with the shorter chain data set (n=1-

18), where only ethanol was the solvent, stearic acid was also dissolved in the 4:1 ethanol 

to chloroform ratio. When stearic acid was dissolved in the 4:1 mixture, the amount of 

PB formed on the plate decreased slightly, likely due to improved solubility that allowed 

for better dispersion compared to the ethanol-only solutions. That this simple colorimetric 
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technique detected differences in the inhibitory nature of these monolayers demonstrates 

the excellent sensitivity of the sensors.  

As can be seen in Figure 3.2, there were also instances where deliberate damage 

(scratches) on the plate were distinguishable by the localized formation of PB along the 

contours of the damage. The ability to detect such localized damage would allow for 

area-specific treatment, therefore lessening repair costs.  

The hydrogel sensors were also evaluated for their electrochemical response to 

transition metal ions and to the formation of PB. Standard cell EIS (using a standard glass 

cell with liquid electrolyte) was attempted but proved unsuccessful, as the plates corroded 

too quickly under the strong electrolyte. Hydrogel cell EIS provided a successful 

alternative, as it lessens the oxidative conditions compared to standard cell EIS and has 

been found to be more sensitive to surface phenomena [193]. Typical Bode plots for 

plates treated with and without corrosion inhibitor are shown in Figure 3.3. At the highest 

frequencies, instrumental inductance was present. The solution resistance of the hydrogel 

was seen in the high- to mid-range frequencies, before a capacitive region attributed to 

Figure 3.2: a) Steel plate with line scratched through a stearic acid film and into the metal. b) Image 

taken 30 min after gel was applied. 
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the double layer formed at the interface of the steel and the hydrogel solid electrolyte. At 

the lowest frequencies, the beginnings of a resistor was seen, and attributed to the charge 

transfer resistance. Greater insight into the inhibitory behavior of the treated panels can 

be gained from closely examining the individual circuit element(s) that vary depending 

on surface treatment. As can be seen in Figure 3.4, the CPE-P values closely follow the 

quantitative colorimetric trend. The freshly sanded plate had a CPE-P value of 0.8644, 

while the plates soaked for 24 hrs showed an increase in the CPE-P value, signifying the 

formation of more charged species at the surface. However, with increasing length of 

aliphatic chain, the CPE-P value once again decreased, as the aliphatic chain blocked 

access of the electrolyte to the plate surface, as is consistent with other studies [194]. In 

Figure 3.3: a) Representative impedance plots of corrosion inhibitors on steel. Green circles represent 

a plate tested immediately after sanding with no inhibitors added. Pink squares represent a plate 

modified with stearic acid. Closed markers are the impedance modulus spectra, while open markers 

are the phase angles. b) Equivalent circuit model used to fit all the EIS plots without added 

ferricyanide. L= inductor, R1= solution resistance, CPE= constant phase element and R2= charge 

transfer resistance. 
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the case of formic acid, since it lacks a chain of any length, its CPE-P value suggests the 

formation of an oxide layer that partially prevented the formation of charge layers at the 

surface. The cutoff frequency, calculated as νcutoff = 1/(Rct × Cdl), follows a similar trend 

as the other two plotted values. The cutoff frequency decreases from butyric (0.15 Hz) to 

stearic (0.05 Hz), indicating a reduction of the kinetic energy of the charge-carrying 

species as the chain length increases. As chain length extended beyond stearic acid, the 

trend started to deviate, due to a decrease in the values of double layer capacitance (Cdl), 

while the charge transfer resistance values continued to increase. The values of the circuit 

elements provide insight into the surface structure of these systems: there likely exists 

disorder and/or packing defects that detract from the inhibitory quality of the longest two 

Figure 3.4: Comparison of colorimetric trends with EIS CPE-P values and cutoff frequencies. Blue 

circle markers represent the average nanomoles of Fe2+ present, the green diamond markers are the 

plotted CPE-P values and the red square markers are the cutoff frequencies. The solid lines represent 

corrosion inhibitors that were dissolved in ethanol alone, while the dashed lines represent corrosion 

inhibitors that were dissolved in a 4:1 mixture of ethanol and chloroform. The disconnected diamond 

markers represent freshly sanded plates.  
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chains, which is seen as an effect on the organized structure of the double layer, while the 

average thickness of the layer continued to increase, which is seen as an increase in the 

charge transfer resistance.  

These hydrogels were used to directly sense Fe2+ by their electrical response; the 

gels were pre-loaded with ferricyanide and formation of PB within the gels was 

hypothesized to provide a detectable impedance change. Such hydrogels showed a 

decrease in the CPE-P values when compared to hydrogels without ferricyanide. 

Formation of PB sequesters Fe2+, a charged species, which would ordinarily contribute to 

the double layer capacitance; the observed decrease in the CPE-P value indicates a 

reduction in the concentration of soluble iron species. As can be seen in Figure 3.5, the % 

change in the CPE-P values reflect the relative changes corresponding to each treatment. 

Plates soaked in ethanol alone showed the greatest decrease in CPE-P value; as there was 

Figure 3.5: Comparison of % decrease in CPE-P values for various treated panels. The % change is 

based on difference between the types of hydrogels used: hydrogels pre-loaded with ferricyanide 

compared to those without. 



51 

 

no inhibitor present those panels rapidly evolved Fe2+ at their surfaces. As the chain 

length of the corrosion inhibitors increased, sequentially smaller changes in the CPE-P 

values were seen, due to the protective nature of the aliphatic chains inhibiting the 

production of Fe2+ at the surfaces.  

These observations in the colorimetric & EIS trends suggest that the production of 

soluble charged iron species from the treated substrates decreases with increasing chain 

length. This study included longer aliphatic chains than were used in some other studies 

in the hope of locating a turning point, after which no further gains in the inhibitory 

powers could be observed.  The off-trend cutoff frequency for behenic acid suggests that 

there begins to be such a turning point at a chain length of 22. Chain lengths exceeding 

22 are not practical for this application: they are significantly costlier and they are 

insoluble in the solvent mixture used, while other nonpolar hydrocarbon solvents have 

been found to form dimers with fatty acids, rendering them insoluble [195]. 

  To gain a more fundamental understanding of the interactions between fatty 

acids and steel panels, XPS was utilized. The XPS spectrum of the Fe2p3/2 peak for a 

representative panel is shown in Figure 3.6.  Overall, the XPS spectra for the various 

inhibitor-treated panels showed a broad peak attributed to Fe3+ with a maximum peak 

value that ranged from 710.38-710.59 eV (no discernible trend in the eV for the different 

chain lengths) and a satellite peak of Fe3+ (Fe3+
sat) at 712.66-713.47 eV. A distinct peak at 

706.65-706.72 eV is attributed to Fe(0), while the shoulder between Fe(0) and Fe3+ is 

attributed to peaks of Fe2+ (707.4-707.59 eV) and (708.1-708.38 eV). The fit is greatly 

improved by the inclusion of two peaks, likely due to multiple Fe(II) species present on 

the surfaces [196]. 
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The trends in the XPS data (Fig. 3.6b) correlate with those found through the 

colorimetric and EIS data. The amount of both divalent and trivalent iron species detected 

decreased with increasing chain length, indicating that less of those species were 

produced by those plates. While formic acid-treated panels had less Fe2+ and Fe(0) 

species compared to panels treated with butyric acid, they had increased Fe3+ peak areas 

which supports the visual observations made for formic acid -- that it permitted the 

formation of insoluble corrosion species, a more advanced stage of corrosion.  

Figure 3.6: a) Fe2p3/2 portion of XPS plot of a steel plate modified with stearic acid. Solid trace is the 

spectrum, while the lighter dashed lines depict the peak fits. Peak at 706.64 eV is assigned to Fe(0), 

peaks at 707.5 eV and 708.27 eV are assigned to Fe2+, while the peaks at 710.54 eV and 713.47 eV are 

assigned to Fe3+ and the satellite peak of Fe3+, respectively. b): Black circle markers indicate the 

expected intensity decrease (y= -0.092), while red square and blue triangle markers indicate the 

normalized peak areas of Fe3+ (y= -0.1486x, R2= 0.865) and Fe2+ (y= -0.1271x, R2= 0.9618), 

respectively. The open markers indicate the values for formic acid, not used as part of the fit lines.  
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 In this study a simple quantitative colorimetric technique was used to quickly 

confirm the presence of nanomole quantities of iron ions. As noted, Prussian blue has 

many transition metal analogs and, based on prior work, it is likely that these analogs 

could also be used as other specific ion sensors with colorimetric and impedimetric 

changes [72]. The impedance characteristics of the corrosion inhibitor thin films, based 

on equivalent circuits, have similarly shaped trends with the colorimetric data, 

demonstrating the capability of the dual sensing modes (i.e. spectro-electrochemical 

detection). The impedimetric data showed that with longer aliphatic chain length there is 

a decreased cutoff frequency and greater resistance to charge transfer. The CPE-P values 

suggest that there were decreased available charged species present on the surface as a 

result, an expected characteristic of an effective corrosion inhibitor. The correlation 

between chain length and corrosion inhibitor efficacy is also demonstrated in the XPS 

data, which showed decreased oxidized iron peak areas with increasing chain length. To 

the authors’ knowledge, this is the first published study where quantitative amounts of 

specific ions solubilized from a corroding metal surface have been directly recorded and 

visualized via the described portable, low-cost technique utilizing hydrogels. It is hoped 

that this will serve as a useful study for the development of quantitative benchmarks in 

corrosion processes. 
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Chapter 4: Conclusions & Final Thoughts 

 

This body of work has successfully demonstrated capture and detection of 

corrosion-induced metal ions by hydrogel-based sensors. The intelligent nature of the 

hydrogel response to transition metals produces multiple complementary sensing 

mechanisms. The colorimetric response is inexpensive, accessible and allows for rapid 

visual confirmation of ongoing corrosion. The electrical sensing offers a slightly wider 

dynamic range, a perhaps more desirable linear response (as opposed to logarithimic), 

and an alternative response if the lighting conditions are not ideal. The calibrated ranges, 

which are comparable to current sensor literature, are also shown to be suitable for the 

proposed application of corrosion sensing, based on the ion concentrations collected from 

a set of steel substrates. The ability to collect these ion concentrations will be 

considerably useful for the future of corrosion prevention. Beyond these two calibrated 

sensing methods, volumetric, mechanical and vibrational changes were also seen in the 

hydrogels and could be further explored in the future.  

The sensors’ demonstrated ability as substrate ion sensors and their previous 

success in the field as solid electrolytes make them a strong candidate for in situ work 

[193, 197]. In comparison to current literature techniques for detecting corrosion, these 

sensors detect the earliest signs of corrosion, a vast improvement over the current practice 

of detecting the signs of advanced corrosion damage, when it is far too late to mitigate 

the damage. The hydrogel sensors were compared to two literature standard techniques; 

EIS, which is the standard technique for evaluating inhibitor films, and XPS, an advanced 

technique for determing elemental composition. The correlation with both techniques was 
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excellent, indicating that this far cheaper, field-friendly and more accessible technique 

produces comparable results, while also producing a unique set of information of its own.    

The ability of the hydrogels to distinguish between various transition M-HCF 

complexes based on their absorbances could be leveraged for various applications. In the 

field of corrosion detection, one application may be to detect specific element-specific 

flaws in alloys, or to detect metal ions leaching from a coating as it loses its protective 

quality. Beyond the study of corrosion, the hydrogels have alternate applications 

(environmental, biomedical) that would benefit from a sensor that can differentiate 

between ion species in a mixture. With this in mind, one of the primary aspects that 

future work on this project should focus on is determining and improving upon the exact 

specificity of the sensors if necessary, through voltammetry, UV-vis, or alternate 

methods.  

 Based on the data presented in Chapter 3, the hydrogels demonstrate the ability to 

“map” regions of a substrate. The colorimetric data, typically visible to the naked eye, 

has revealed deliberate damage to the substrate, as well as seeming to show defects in the 

corrosion inhibitor films. While this ability was only peripherally investigated in this 

body of work, this is an ability that could be utilized to identify which regions are 

contributing to corrosion and therefore warrants further study. 
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Appendix: Video Files  

 

 

Video 1. Depicts the process of forming Prussian blue within the hydrogels.  The 

concentrations shown are the ppm within the hydrogel.  

Filesize: 1788 KB  

Filetype: Audio Video Interleaved (.avi) 

Possible required software: Free VLC media player.    

 

 

 

Video 2. Depicts the process of removing the excess ferricyanide from the gels. Note that 

the 30 min soak is typically repeated with fresh electrolyte, not shown here for brevity.  

The concentrations shown are the concentration within the hydrogel.   

Filesize: 4043 KB  

Filetype: Audio Video Interleaved (.avi) 

Possible required software: Free VLC media player.    


