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CHAPTER! 

INTRODUCTION 

Using linearized .rate equations, McCumber in 1966 predicted that a perturbation 

in the intracavity intensity of a four-levellaser would results in an output power spectrum 

that contains a resonant spike whose frequency is dependent on the pump power [1]. For 

almost a decade after the theory was introduced, literature was still being published testing 

the validity ofMcCumber's theory. Geusic et.al. presented results using a continuous 

wave (cw) Nd:YAG laser which qualitatively showed that the output contained a resonant 

peak [2]. Similar behavior was also reported by Ikegami and Suematsue using an injection 

laser, where they showed that when the injection current is modulated at microwave fre­

quencies, the output modulation depth exhibits a resonant peak. Kimura and Otsuka, also 

using a cw pumped Nd:YAG laser, reported that when the cavity is perturbed sinusiodally, 

the output intensity experiences a sinusoidal amplitude modulation or becomes a regular 

train of spikes, depending on the frequency of the perturbation. They term the former 

output response as a resonant AM mode and the latter output response as a spiking mode. 

They claim that while the frequency of the resonant AM mode is pump power and cavity­

parameter dependent and coincides with McCumbers theory, the frequency of the spiking 

mode is independent of pump power and cavity losses and depends only on the fluorescent 

lifetime of the laser medium. 

In this thesis, it is shown analytically and experimentally for the case of a cw 

pumped Nd:YAG laser that, when the cavity losses are perturbed, the output intensity ex-



periences an amplitude modulation or becomes a regular train of spikes, with the fre­

quency depending on the pump power. Nonlinear rate equations including the cavity 

perturbation term, are solved numerically by a Runga-Kutta method using experimentally 

measured parameter values for a Nd:YAG laser. 

2 

A flash lamp-pumped Nd:YAG laser was used to verify this theory. The intracav­

ity loss modulation was accomplished by placing an acousto-optic modulator within the la­

ser cavity. For a proper choice of loss modulation frequency and pump power, the laser 

output shows the periodic spiking behavior predicted by numerical analysis of the nonlin­

ear rate equations. 



CHAPTER II 

THEORETICAL ANALYSIS 

The dynamic as well as the steady state behavior of a laser can be described with 

reasonable precision by a set of coupled nonlinear rate equations. The Nd: Y AG laser used 

in the present work will be described in tenns of the energy-level diagrams shown in Fig­

ure 1. In any laser, two energy levels are of prime importance in laser action: the excited 

upper laser level E2, and the lower laser level E,. While many analysis of laser action in 

three- and four-level systems can be carried out to a good approximation using a simpli­

fied two-level representation, the present work will solve the rate equations for a general 

four-level case while making as few assumptions as possible. The rate equations for a 

four-level laser are: 

dNo=N'+N2+N3_p 
dt tto t20 t30 

dNt dt=hc:ht(Nz-N1)+ Nz + N 3 
_ (Nt-Nts) 

tlt tlt tto 

dN2 1 1 N3 
-=-lltC'lt(Nl-Nt)-(Nl-Nls)(-+-)+-
dt tlO 'tll 't32 

dN3 1 1 1 - = p -(N 3- N 3B)(-+-+-) 
dt 't30 tll t32 

dill c 121 
-=12t0'2t(N2-Nt)----+S. 
dt n Vm tcav 

(1) 

(2) 

(3) 

(4) 

(5) 
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The "N's" represent the population of each level in absolute numbers, rather than in 

terms of population density (as commonly seen in the literature). Since the ground state 

population N0 is orders of magnitude larger than N1, N2, or N3, (1) can be set equal. to zero 

because N0 does not change appreciably with time under normal operation of the laser. 

Nm, N28, and N38 are the steady-state (un-pumped) equilibrium populations for there­

spective levels due to the Boltzmann distribution. The value of these populations are cal­

culated in Appendix C. N28 and N38 are for all intents purposes zero, and only N m need 

be retained for an accurate analysis. 

The "t's" are the relaxation or decay time constants for atoms as they undergo 

transition from one level to another. The value for t 31 is not available in the literature to 

date. But it is generally accepted in the laser community that t 31 is much longer than any 

other time constant and, therefore, that it is safe to eliminate any terms involving t 31 [5]. 

tcav is the average lifetime of a photon in the resonator before being scattered, emitted, or 

lost in other ways to the optical system. t~ is defined as 

'tRT 2L/c 
'taw= =--

RTloss RTloss 
(6) 

where tRT is the round-trip time of a photon in a resonator of optical path length L , and 

RT loss is the total round trip loss in the resonator, including the mirror losses (see Ap­

pendix B for a detailed calculation of a,., the total losses prorated over the length of the 

gain medium, 1). It should be pointed out that the measurements of the time constants is 

no trivial matter, and in some cases, like that of t 31, the value is not even available. Con­

sequently, instead of having one numerical value for any given time constant, the literature 

contains a range of values. Similar argument is also true for values of the stimul~ted 

emission cross-section area, 0 21 • I 21 is the intracavity photon flux (units: #photons/sec­

an2). P represents the pump rate at which atoms are transferred from the ground state to 

the pump band (units:# photons/sec). While the experiment was perfonned using a laser 
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pumped by tungsten lamps with a broad emission spectrum, the theoretical analysis will be 

carried out for a laser pumped by a laser diode that emits photons in a very narrow spec-

tral range, near 808 nm, which overlaps with the absorption spectrum of Nd: Y AG (Figure 

2). For the purpose of comparing experimental and theoretical results, Appendix B also 

includes a calculation that attempts to estimate how much of the energy from the tungsten 

lamps is contained in the 808 nm band 

In the current analysis, it is assumed that all the pump photons are absorbed by the Y AG 

rod and therefore directly contribute towards increasing the population of level 3, Nr V,.. 

is the mode volume (see Appendix A). The term S in (5) accounts for the increase in the 

intracavity intensity due to small amount of spontaneous emission. Although S is very 

small (almost zero), this term is included because it provides the source of radiation which 

initiates laser emission. For practical analysis which follows S is set equal to zero. The 

numerical values of all constants used and the references from which the values were taken 

are ~sted in Table I. Equations 2-5 represents a series of four equations and four un­

knowns. The steady state solutions to these equations are: 

N1 =[P-t-
3 

•t20+N1P t_20 -£\Nc]·--t-
10

-
t32 t1o t1o+t20 

N2=P-t-
3 

·t20-[P -t
3 

·t20+Nts-t-
20·-&Nc]·-' -t

20
--

t32 t32 'riO t10 + t20 

N3 = P'tl 

N3 N2 te-e 
121=(---)·-

't32 't2 · nVm 

where ~cis the steady state population inversion value. 

(7) 

(8) 

(9) 

(10) 



TABLE I 

VALUE OF CONSTANTS 

• Optical Path Length: OPL = 32.77 em 

• Index of Y AG: n = 1.82 [7] 

• Mode Area: Am= 4.2429 • 1 Q-3 cm2 

• Mode Volume: V m = 2.5457 • 1 o-2 cm3 

•noping Level ofNd•3: 1.38 • 1020 atoms/cm3 

• Population of Ground State: N0 = [Nd•3] * V m = 3.513 * 1011 

• Stimulated Emission Cross Section Area: a21 = 6.5 • lQ-19 cm2 [7] 

• Tune Constants: 
t 10 = 11 ns [8] 
~ = 395 ~s [9] 
~ =550~s [7] 
~=50 J.1S [6] 
tn = 450 ps [10] 
t 2 = (t20·• + ~-·r• = 230 ~s 
~ = (t30•1 + t 32·•r• = 0.449996 ns 
tRT = (2 * OPL)/c = 2.18467 ns 

• hv0 = 2.46015 • IQ-19 J 

• hv 1064 = 1. 86823 • 1 Q-19 J 

6 

Almost always, one is interested in knowing the value of the steady state output 

power of a laser. To calculate the value of the steady state output power P aut' multiply the 

intracavity intensity in (10) by the transmission of the output coupler, the mode area of the 

beam A,., the energy per photon of the photon emitted at A.= 1.064 JJ.m and a factor of 

1(2. The~ calculated in (10) is the sum of the intensity of the right and left traveling 

wave inside the cavity. Since we are only interested in the output from one side of the la-



ser, the value of~ needs to by divided by a factor of 2. In equation form, P OUl can be ex­

pressed as 

1 
Pout= -(1- Roc)· Am· hvt~ · ht. 

2 
(11) 

The rate equations were solved numerically in a Quick Basic program using a 

Runga-Kutta method and experimentally measured parameters to study the transient or 

dynamic behavior of laser oscillations. A listing of the basic program is included in Ap­

pendix E. The transient behavior is discussed in the next section. 

Transient Analysis 

7 

In this section some aspects of the transient or dynamic behavior of a laser oscilla­

tor are discussed. While lasers can exhibit several different kinds of characteristic tran-

sient or modulation behaviors, the discussion here will be limited to spiking and relaxation 

oscillation. These two types of behaviors are the most predominant mechanisms that 

cause fluctuations in the output of many lasers, especially solid state lasers in which the 

upper-state lifetime is relatively long compared to the laser cavity decay time tcav • Follow­

ing Siegman's notation [11], the term "spiking" will be used to describe the discrete, sharp, 

large-amplitude pulses that typically occur during the initial tum on phase, or when the la-

ser gain or loss is modulated at some resonant frequency. The term "relaxation oscilla­

tion" will then be used to describe small-amplitude, quasi-sinusoidal, exponentially damped 

oscillations about the steady state amplitude which occur when a cw output laser is sud­

denly perturbed by any kind of small fluctuations in the cavity gain or loss, or cavity 

alignment 

Spjkin&. The phenomenon of the spike formation when aNd: Y AG laser is frrst 

turned on can be explained with the aid of results from a computer simulation shown in 

Figures 3 and 4. Figure 3 shows the changes in the population inversion and the onset of 



the spiking behavior when the laser is frrst turned on. Figure 4 is a more detail graph of 

the changes in the population inversion and the frrst few spikes. While the graph shows 

the change in output power Pout as function of time, the following discussion will be. in 

tenns of change in circulation intensity ~1 since 121 a Pout· 

8 

When the laser pump source is first turned on, the number of photons per fre­

quency corresponding to A= 1.064 Jlm is essentially zero. The pump radiation causes a 

linear buildup of the excited atom and the population is inverted. Although under steady 

state oscillation conditions the population inversion (N2 - N1) can never exceed the 

threshold value of (N2 - N1) 111, under transient conditions the pumping can raise the popula­

tion inversion above the threshold level because not enough laser oscillation has been 

built-up and no radiation due to stimulated emission yet exists to pull the population in­

version back down. 

As soon as the population inversion passes the threshold inversion, the net round 

trip laser gain exceeds the loss and the circulating photon flux ~ in the cavity begins to 

build up exponentially from noise. The increase in~ continues until the level of~1 is 

substantially higher than the steady state value ~1 .. for the particular pump level. But 

when ~ becomes very large, the rate of depletion of the population inversion due to 

stimulation emission becomes correspondingly large and is greater than the pumping rate 

P. Consequently, the population inversion passes through a maximum and begins to de­

crease rapidly, driven downward by the large circulating intensity flux ~. The point at 

which the population in~ersion just reaches the steady state or threshold value (N2 - N 1) ... is 

also the point at which the photon flux ~ reaches its peak value. Since, ~ is still very 

large, the population inversion continues to be driven below its threshold value until the 

net gain of the laser is less than the net loss of the cavity and ~ decreases exponentially. 

When ~ reaches the threshold value ~1111, the population inversion reaches a minimum, 

after which the pump P can again begin to build up the population inversion towards 



threshold The photon flux ~1 continuous to decrease to negligible values, however, such 

that the pumping back up of the population inversion is essentially independent of the 

photon flux [11]. 

9 

Because of the rapid rates of rise and fall of the photon flux ~1 , the laser spikes are 

steep and narrow. This kind of large-signal spiking behavior exponentially dampens to­

wards steady state or quasi-sinusoidal relaxation-oscillation type of behavior because nei­

ther the cavity photon flux ~1 nor the population inversion decreases completely to zero 

following a spike. Consequently, each successive spike starts from initial conditions that 

are closer and closer to the steady state behavior of the laser. Figures 5 through 10, gen­

erated using the basic program, illustrate the onset of spiking behavior and the subsequent 

exponential decay to a steady state value for a range of pump powers. 

Once the spiking behavior in a laser has damped down to what are essentially 

small-amplitude fluctuations about the steady state oscillation conditions in the laser, we 

are now in a position to carry out a linearized small signal analysis of the laser equations. 

This topic is taken up in the next section. 

Relaxation Oscillations Small signal analysis by definition implies that the value of 

the perturbations of all variables are small with respect to the steady state values. For the 

purpose of analyzing relaxation oscillations, the perturbations can be introduced in the 

form of cavity loss or gain modulation. Since the perturbations are going to be small with 

respect to the steady state value, the response of the laser to either type of modulation 

should be the same [1]. In this section, the perturbation will be in the fonn of gain modu­

lation. For subsequent theoretical and experimental analysis the perturbation will be intro­

duced as loss modulation. Assume that the solutions to the rate equations (2)-(5) are of 

thefonn 

N1 = N1 + Re(~N 1e-,;.') 

N2 = N~ + Re(~N 2e-,;.') 

(12) 

(13) 



N3 = N3+ Re(aN 3e-jau) 

l21 = loc + Re(al2te-jcD') 

(14) 

(15) 

10 

where the first term in e~h solution represents the steady state values for that vari~ble, 

and the second term is a small perturbation around the steady state value. To allow for 

any phase differences between the perturbation and the signal, the second term in each of 

the above solutions includes an e-jalt term. In addition to the above solutions, assume that 

the pumping also deviates from a steady state value in the same manner, i.e.: 

P = P+ Re(aPe-jcD'). (16) 

Let us introduce the term modulation depth ~ to define the relative output intensity 

fluctuation as a function of modulation frequency for different pump powers. The mathe­

matics necessary to drive an analytical expressions of the modulation depth as a function 

of modulation frequency is presented in Appendix D, and only the final result is given 

here. To evaluate the change in the intensity as a function of the pump fluctuation a 

Mathcad program (DeltaiS.MCD) was written and is included in Appendix D. The ex­

pression for the modulation depth ~ as a function of modulation frequency is 

~J&I = (~1-11N1) 
I 'tC:aw aN cC1) 

(17) 

In (17), note that the oscillation frequency ro is strongly dependent on the photon flux loc 

and therefore, on the pump power density. This dependence is confmned in the results 

from the Mathcad program (fig. 11) which show that the modulation depth is peaked 

sharply about a characteristic modulation frequency whose value depends strongly on the 

pump power and the time constants. Note that when the modulation frequency ap­

proaches some resonance or characteristic frequency, the modulation depth is greater than 

unity. Under these conditions, the small signal analysis no longer applies, and one must 

resort to iterative numerical analysis of the original coupled nonlinear rate equations. This 

topic is taken up in the next section. 
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Numerical Analysis of the Rate EQuations 

In this section the nonlinear rate equations are again solved numerically using the 

same basic program used in the section on Spiking. But, this time the equations include a 

cavity perturbation term. Once the output of the laser was determined to have reached 

steady state, the cavity loss was decreased by approximately 1.1% from 0.544% to 

0.538% for 2 J.LS • This had the effect of introducing a relaxation-oscillation behavior in 

the output of the laser. As in previous sections, only the results will be presented here. 

Figures 12-17 show the results of the rate equations starting from zero initial intracavity 

intensity flux for pump powers ranging from 225 mW to 500 mW. Figures 12A- 17A 

show both the spiking and the relaxation-oscillation behavior. Note that since the pertur­

bation is small with respect to the steady state loss value, the response is also small and 

returns to the original steady state output value quicker when compared to the time it 

takes for the relaxation-oscillation to dampen to a steady state value at the onset of lasing 

(fig. 3). Figures 12B - 17B show the relaxation-oscillation response in greater detail. 

From these figures, the average frequency of 10 cycles was calculated . H the program 

was started again from the steady state population inversion and intracavity values, but 

this time with the cavity loss modulated at the resonant frequency, the output should be a 

train of spikes. This analysis, if carried out for all the different pump powers, should pro­

duce (qualitatively) similar spiking behavior. This was carried out for pumping at 350 mW 

where the cavity loss was modulated at 50.130 kHz which is approximately 9% less than 

the resonant frequency determined above. The result was a train of spikes occurring at the 

same frequency as that of the cavity loss modulation (Figures 18-20). Figure 18 shows 

the laser output beginning with spiking associated with the initial turn-on followed by 

decay to steady state and then the onset of the spike train when the loss is modulated at a 
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frequency of 50.130 kHz. Figure 19 depicts the spike train and cavity loss as a function of 

time. In Fig. 19,. note that there is a finite delay between the onset of the loss modulation 

and when the output becomes a spike train with each spike having identicle peak-to-peak 

value. The delay occurs because,. it takes time for the phase of all the circulating modes 

within the cavity to synchronize or lock-up. Figure 20 shows just a few of the spikes in 

greater detail. Again, note the delay in when the output reaches the maximum and the 

transition in the cavity loss from high to low value. Similar analysis was carried out at 

24.009 kHz and 11.818 kHz,. corresponding to the frequencies of the frrst and second sub­

harmonics, respectively, and the results are shown in figures 21-22. 
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CHAPTER ill 

EXPERIMENTAL RESULTS 

The experimental setup used in the present study is shown in Figure 23A and Fig­

ure 23B. 

All measurements were taken using a commercially available Q-switched Nd: Y AG 

laser (Model C-95, CVI Corp., Alberqurque, NM). The Nd:Y AG rod used was 60 mm 

long and 3 mm in diameter. It contained 1.0 percent neodymium ions by weight. To 

minimize the reflection losses, both ends of the rods were anti-reflection (AR) coated for 

operation at 1. 064 J.lm. The pumping was achieved by focusing the output from two 

tungsten lamps onto the· rod using double-elliptical cylindrical optics. The optical resona­

tor consisted of a concave highly reflective back mirror (R>99. 98%) and a partially reflec­

tive (R=98.93%) flat output coupler (OC). The reflectivity of the OC was determined 

using a Carey 14 spectrophotometer which measures intensity transmission. But because 

the mirrors used in this laser are dielectric stacked mirrors, and dielectric mirrors can 

usually be assumed to be lossless, the reflectivity is simply equal to unity minus the trans­

mission. The value ofRoc = 98.93% was obtained by averaging the results often trials. 

The intracavity loss modulation was achieved by the use of an AR coated acousto-optic 

modulator (AOM). The AOM was controlled using an external 15 watt Q-switch driver. 

The controlling signal is an amplitude modulated carrier frequency that operates at 24 

MHz. The modulation is a TTL signal which causes the carrier frequency to turn on or off 

at an adjustable rate between 1 kHz and 30kHz. The duration of the 'off cycle is fixed at 
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2 JJ.S. To limit the oscillation to TEM00 mode, an iris of variable aperture was placed be­

tween the AOM and the OC. The cavity gain and losses of the laser were experimentally 

determined (refer to Appendix B for details). 

A number of measures were taken to stabilize the output power of the laser, espe­

cially when operating near threshold. The most important of these measures was to oper­

ate the two tungsten lamps using a DC power supply (Model DCR150-35A, Sorensen 

Power Supplies, Norwalk, CN) capable of delivering 200 volts at 45 amps. The output of 

the Sorensen was monitored using a digital volt meter and a current probe. A second 

measure was to monitor the temperature of the water used to cool the rod, and operate 

the laser only when the building water was below 20 °C. Finally, to reduce the intracavity 

intensity fluctuations arising from air eddy currents, pieces of frosted glass tubing 1 em in 

diameter were placed in regions where the beam was propagating in air. 

The transient response of the laser was monitored using a fast silicon detector 

(Model DET2-Si, Thorlab Inc., Newton, NJ). The detector voltage is proportional to the 

instantaneous laser output intensity. The output from the detector was monitored using a 

Tektronix digital oscilloscope (Model2430A) terminated with a 10K ohm resistor. The 

average output of the laser was measured using a pyroelectric detector. To keep the de­

tector from giving artificially higher readings due to fluctuations in the room temperature, 

the detector was enclosed in a cardboard box with a small opening to allow the beam to 

go through. In addition, the room temperature was kept at 15.5 °C. 

Measurements 

Originally, the AOM was designed to be used as a Q-switch. The AOM works by 

scattering light-waves off an acoustic grating created by electro-acoustic stimulation of a 

quartz crystal by an RF signal at the crystal resonance frequency. But by inserting a 12 dB 

attenuator between the Q-switch driver and the AOM and by minimizing the power deliv-



ered by the Q-switch driver, the function of the AOM was degraded to a variable loss 

element rather than a Q-switch. The loss of AOM occurs due to energy loss through 

scattered beams deflecting off an acoustic grating via Bragg diffraction. 
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For any pump power, the AOM can be modulated at a frequency such that the out­

put of the laser is a repeated pattern of a series of relaxation oscillations which decay ex­

ponentially to some steady state value. Figures 24-37 show the relaxation oscillations and 

the subsequent decay to a steady state value for a range of pump powers. The resonant 

frequency of the relaxation oscillations for each pump power was determined by averaging 

the frequencies over 10 cycles, just as in Chapter 1. Measurements show that the fre­

quency of relaxation oscillation increases with pump power as shown in Figure 38. Fur­

thermore, it was shown that if the modulation frequency is set approximately equal to the 

resonance frequency of relaxation-oscillation, the laser output exhibits a train of spikes at 

the same frequency as the modulation frequency. If the modulation frequency is approxi­

mately 1/2 or 1/4 of the resonance relaxation oscillation frequency, the output is shown to 

consist of the original spike pattern plus additional components (although smaller in ampli­

tude) located at time intervals equal to the inverse of the driving frequency. If the AOM is 

driven at twice the resonance frequency, the output is still the same as the spike pattern 

seen when the AOM is driven at resonance frequency. However, if the drive frequency is 

anything other than that of sub- or multiple harmonic, the output consist of non repeating 

pattern of spikes or chaotic output. Figures 39-44 illustrate the output of a laser where 

thc.modulation frequencies are lx, 1/2x, 1/4x, 2x, and non-harmonic multiples of the 

resonant frequency. 
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6&nrc 32. Laser output when pumped at V in= 95.008 V. lin= 11.79 A 
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oscillation frequency is fR.o= 37.453 kHz. 
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Fi&nac 33. Laser output when pumped at V in= 96.002 V, lin= 11.86 A 
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Fi&J~re 34. Laser output when pumped at V in= 97.006 V, lin= 11.93 A 
which corresponds to Pin = 1157.28 W. Pout= 59.47 m W, the relaxation 
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E&nre 35. Laser output when pumped at V in= 98.025 V, lin= 11.99 A 
which corresponds to Pin= 1175.32 v..·. Pout= 66.21 mW, the relaxation 
oscillation frequency is fR.o = 42.194 kHz. 

J 

I 
I 

1 

~ 
I 

I 

I 
--i 

I 

~ 

! 
i 
i 
I 

~ 

57 

CH1 



~ ·v; 
c 
(J 

.! 
(J 

.~ -co: 
u 
~ 

CHI 101'lV 

I 

i 
! 
I 
I 

A !00us 7.031'1V 

4.4053kHz 

I ..... 
.i. 

CHl 

1-
' I 

~ ..! I 

! 
I 

! ; 

~ t 
~ -

I 

t-

I 
I 
I 
I -I 
\ 
i 
i 
i -H-+-! 'H fif,'l'lin u; ," ·+ 

I 

I t I 

I 
I 

i 
L 
~ 
I 
I 
I 
! 

L 
----'1111'~ 1\ ft !I !\ r. /l, .1

1:!\tti' Vtlu'\i\~ - --~-._ .. -_.-..... -._.-._.-._.·----------.-.. 

I 
i 

~ 
I 
i 
I 

l 

~ t l J J ~ f \ l v ti u ';_,i .,_,. ·: 1 + 
\~ \.1 ;} •j ' ! 1 

+ 
1" ..... 

Time (~LS) 

EKJlre 36. Laser output when pumped at V in= 99.018 V, lin= 12.05 A 
which corresponds to Pin = 1193. j 7 \V. Pout= 71.82 m W, the relaxation 
oscillation frequency is fR.o = 44.053 kHz. 
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F! ~re 37. Laser output when pumped at V in = 100.008 V, lin = 12.12 A 
which corresponds to Pin= 1212.10 W. P OUl = 77.43 mW, the relaxation 
oscillation frequency is fR.o = 45.872 kHz. 
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CHAPTER IV 

DISCUSSION 

In order to compare the experimental and the theoretical results, the experimental 

values of the pump power need to be multiplied by the proportionality factor Js deter­

mined in Appendix B so that it is possible to estimate the amount of power the lamp emits 

in the 808 nm region. In addition, let us normalize the pump power, for both experimental 

and the theoretical case, by subtracting from the pump power the threshold pump value. 

The last step makes it possible to compare the experimental and the theoretical resonant 

frequency as a function of pump power on the same graph. 

The results from experiments and the computer simulations both show that the 

resonance frequency of the relaxation-oscillation increases with increasing pump power 

(Figure 45). The increase in the resonance frequency with increasing pump power is ex­

pected because with higher pump power, the gain of the laser medium increases -- imply­

ing that the incremental change in intensity with distance (i.e. /lll/lz) also increases. But 

the cavity transit time is constant and is independent of the pump power. Therefore 

lliL.At, which is the product of 6.1/ /).z and 'c,' the speed of light, also increases. This 

means that after a perturbation is introduced into the laser, the circulating intensity, I, will 

return to equilibrium faster, via higher oscillation frequency, at higher pump powers than 

at lower pump powers. This effect is apparent if one compares Figures 12B and 17B in 

the case of the theoretical analysis, or Figures 26 and 3 6 in the case of the experimental 

analysis. In Fig. 12B, the laser, pumped at 225 mW, takes approximately 800 ~s to return 
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to the original steady state output after a perturbation is introduced. In Fig 17B, the laser 

pumped at 500 mW, takes less than 400 Jl.S to return to the original steady state value after 

a similar perturbation. 

While the results from the experiments and the computer simulations show similar 

response to a perturbation, there is a discrepancy in the absolute numerical values for the 

two cases. One key factor contribution to the discrepancy is the fact that the program as­

sumes pumping at 808 nm only and ignores all other absorption lines (Fig. 2) while the 

CVI laser used in the experiment is pumped with a flash lamp that emits in a broad spec­

trum. To simulate the operation of the laser used in this experiment, the rate equations 

have to be rewritten to take into account of absorption at these other lines. The pump 

term P in equation ( 4), instead of being a simple numerical value, should represent the 

convolution of the absorption spectrum ofNd:YAG and the black-body spectrum of the 

lamp for a given filament voltage and current Both the voltage and the current must be 

used since the filament resistance has a strong non-linear temperature dependence. If the 

value of P N3 determined in Appendix B using experimental data is larger than pump values 

used in the basic program, then this difference can also contribute to the above discrep­

ancy since P NJ is a lumped parameter, which includes contributions from all pump wave­

length not just 808 nm. Other factors leading to the discrepancy are the uncertainties such 

as whether or not the laser is oscillating in the TEM00 mode, and the accuracy of measured 

values of parameters like the beam waist which is used to determine the beam area. An 

accurate determination of the beam or mode area is important since this parameter is used 

extensively in the present work to determine many other parameters from the mode vol­

ume to the proportionality factor k3 (Appendix B). 

When attempting to drive the laser at sub- or multiple harmonic frequencies, it was 

observed that a train of spikes could be obtained, both in the theoretical and experimental 

analysis, even when the modulation frequency was different from the exact resonant re-
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laxation oscillation frequency by as much as 9% (Fig. 18-22, 40-43). However, for each 

sub- or multiple harmonic case, there is only one unique frequency which will result in a 

spike train having a maximum amplitude. The ability to induce resonant or spike train be­

havior by modulation at or near sub- or multiple harmonic frequencies is possible due to 

the nonlinearities present in the Nd:YAG laser. Since the modulation frequency is a func­

tion of intensity in a nonlinear system, the successive periods of relaxation oscillation 

wave forms change slightly with time. The phenomenon that the spike train behavior can 

be induced over a range of frequencies can be thought of, to some extent, as being similar 

to the mode pulling phenomenon observed in many lasers. 
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CHAPTER V 

CONCLUSION 

In the preceeding chapters, nonlinear rate equations, including cavity perturbation 

term, were solved numerically by a Runga-Kutta method using experimentally measured 

parameter values to study the relaxation oscillation and the spiking behavior in a Nd: Y AG 

laser. The equations were solved for a general four-level case while minimizing the num­

ber of assumptions made and include terms representing the steady state ( un-pumped) 

equilibrium populations for each level due to the Boltzmann distribution. 

It was shown analytically, for the case of a cw pumped Nd: Y AG laser, that when 

the cavity gain or loss was perturbed, the output intensity experienced an amplitude 

modulation or became a regular train of spikes, with the frequency depending on the pump 

power. In the case of Joss modulation, it was shown that by modulating the cavity loss at 

or near the sub-harmonics of the resonant frequency, one could still obtain the original 

spike train pattern but with additional components (although smaller in amplitude) located 

at time intervals equal to the incerse of the driving frequency. 

A flashlamp pumped Nd:YAG laser was used to verify the theoretical results. By 

attenuating the RF signal supplied to the intracvity AOM, it was possible to introduce 

perturbations in the laser in the form of loss modulation. The experimental results show 

that the resonant frequency of relaxation oscillation is dependent on the pump power, 

cavity parameters like cavity loss, and parameters inherent to the gain medium such as the 

flourescent lifetimes. 
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Both the theoretical and the experimental results are consistant with the theory 

proposed by McCun:tber. The model used in the present work is useful if pumping at only 

the 808 nm band. To simulate pumping using a flashlamp, the pump term Pin Eq .. (4) 

should represent the convolution of the absorption spectrum of Nd: Y AG and the broad 

band black-body emission spectrum of the flashlamp. 
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The spot size of the beam, 2wo' exiting the laser was determined using a ceo 

camera (Model EOC~IOOOHR Computer Camera, Electrim Corp., Princeton, NJ) to look 

at the beam reflecting off of a "speckle remover" located 183 em from the output coupler 

(OC) of the laser. A speckle remover, a piece of rotating white poster board, is used to 

minimize erroneous intensity measurements resulting from laser speckle effects. The 

speckle pattern changes as the disc is rotated, due to the slight surface abnormalities on 

the face of the disc. A large camera integration time was chosen so that the camera re-

spends to the average reflected intensity. 

The output from the camera is a 2-D image which is stored in a buffer file consist-

ing of a one dimensional array of 32,340 bytes corresponding to 165 lines of 196 bytes 

each. The 192 bytes of each line correspond to a row of 192 pixels. Each CCO element 

has eight bits of dynamic range, which correspond to 256 grey levels. A pixel value of 1 

represents black while a pixel value of 255 represents white. 

Before making any measurements, an image of a calibrated ruler, located at the 

same position as the speckle remover, was captured to obtain the horizontal scaling factor 

that was used when displaying subsequent beam profiles. To evaluate the beam profile, a 

cross section through the center of the image was obtained and displayed on a monitor 

using software supplied by the camera manufacturer. Figure A 1 depicts a profile of the 

beam from the laser used in the current experiment. By taking the ratio of the diameter of 

the profile at the 1/e2 point from the peak intensity (i.e. 2.2 em in Figure A 1) to the abso­

lute-distance corresponding to 1 em of horizontal axis (i.e. 6.4 em), the l/e2 beam diameter 

was determined to be 3.4375 mm. Since the measurement was taken approximately 183 

em from the output coupler, the value of the spot size at the output coupler had to be 

back-calculated from the Gaussian beam propagation equation 

., [ I ., ]1/2 w(z) = wo- l+(z zo)- (Al) 
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where w(z) is the beam radius measured a distance z from the output coupler, and Z0 is the 

Rayleigh range of the laser, defined by Z
0 
= 1tW

0 
2()... To determine the beam waist W0 , 

substitute into (Al) an estimated value of W
0

, calculate w(z), compare with the measured 

w(z) = 1.7188 mm, and iterate until a value of wo is found such that w(z)cak: - w(z)np. The 

results of this exercise are given in Table Al. 

TABLEAl 

DETERMINATION OF w(z) USING THE ITERATIVE METHOD 

W
0 

(rnm) w(z) (mm) 

0.3000 2.086 
0.3500 1.803 
0.3650 1.736 
0.3675 1.714 
0.3750 1.694 
0.4000 1.599 

The beam waist was determined to be approximately 0.3675 mm which corresponds to a 

Rayleigh range of approximately 40 em. Since the laser rod length of 6 em is less than the 

Rayleigh length, one can assume a uniform intensity across the beam and therefore calcu­

late the mode area using the formula for the area of a circle. The mode area and the mode 

volume were determined to be 0.0042429 cm2 and 0.0254574 cm3, respectively. 

Because of the significance of the mode area and mode volume values used in the 

basic program to determine the threshold pump power for lasing, and also the steady state 

output power, care was taken to ensure that there was no interference from the camera 

front window and, more importantly, that the camera pixels did not saturate (since the 

CCD camera is designed to work with low powers like 1-2 mW.) To eliminate the risk of 
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saturation, the aperture on the camera lens was adjusted until it was barely open. Addi­

tionally, neutral density filters were placed between the OC and the speckle remover. One 

other improvement (although not possible in the present study), which would further result 

in more accurate value of the beam waist, is to take an average over a large number (like 

ten) scans. 
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In this appendix, the distributed cavity losses 0-r and the gain Yo per round trip are 

determined from experimental data. In addition, the ratio of the cavity loss when the 

acousto-optic modulator (AOM) is not driven (i.e. 0-r low-loss case) to the cavity loss 

when the AOM is supplied with RF power (i. e.T, high-loss case) is also determined. This 

ratio, the contribution of the losses from the AOM is also determined. 

Determination of a.int~ 

The condition of steady state output in a laser is reached when the saturated gain 

exactly balances the losses, which have been prorated over the length of the gain medium. 

In the Nd: Y AG laser, it is safe to assume that the laser transition is homogeneously broad­

ened and that the laser oscillates close to line center, so that the frequency dependence of 

the saturation behavior and gain can be ignored. 

To determine the gain and losses in the laser, we begin with the equation for steady 

state operation given in [7]. 

Is "( 0 

lou,=-(- -l)(T1 + T2) 
2 a.r 

where Is is the saturation intensity 
Yo is the gain coefficient per unit length in the inverted gain media 
Cl.r is the distributed losses in the laser 

(Bl) 

T1, Tz are the mirror transmission coefficients of the resonator mirrors M1, ~· 

The term Is is a constant with the dimension of (Watts/unit area) and is defined by 

Is= 
1 

'tto + tz- ttt2/t21 CT21 

Using the numerical values oft's, cr:! 1, and hv from Table 1, Is is calculated to be Is= 

1249.617 W/cm2. 

Typically, the back mirror can be thought of as a 1 OOo/o reflector and therefore T 
2 

can be set equal to zero. The term Cl.r can be expressed as a sum of two types of losses: 
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those which are internal to the laser such as scattering, diffraction, reflection, absorption in 

the mirrors, the amplifying medium, and all other elements in the resonator; and those 

which represent coupling to the outside of the laser, namely, the mirror reflectivities. In 

equation form 

1 1 
UT =a. int+ Uc.xt =a. int+-ln--

21 R1R2 
(B2) 

where I is the physical length of the gain medium. 

R
1
and R: represent the reflectivities of mirrors M1 and~' respectively. Again~ 

can be set equal to 1 for same reason T 2 was eliminated in (B 1 ). 

Solving (B 1) for y JfLr, and renaming R1 as Roc, the reflectivity of the output cou­

pler, one gets 

yo lo 2 
-=1+-·-
a. T Is 1- Roc 

(B3) 

where the transmission of the output coupler, T, has been replaced by 1-Roc. To simplify 

(B3), the term A(Roc) is introduced to represent the right hand side of (B3). The un­

knowns in (B3) are Yo and a.int which is imbedded in fLr· In order to solve for the two un-

knowns we need another equation. One simple way to generate another equation is to 

write Yo and C1..r as function of the output couple reflectivity: 

y.o(Rocl) = 1 + lo(Rocl) . 2 = A(Roc1). 
1 1 1 1- Rocl 

a. ina+ 2lln Rocl 

By substituting (B2) for 0-.r in (B3) and rewriting (B3) for two different mirror reflectivi-

ties, Roc 1 and Roc2, the result is 

yo(Roc2) _ 1 + Jo(Roc2). 2 = A(Roc2) 
1 1 - Is 1- Roc2 

a. ult+ 2lln Roc2 
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The above equations can again be rewritten in the form of an equation for a straight line 

A(Roc 1) 1 
yo(Rocl) = ClintA(Rocl) + In(-) 

21 Rocl 
(B4) 

yo(Roc2) =a intA(Roc2) + A(Roc 2) ln(-1-). 
21 Roc2 

(B5) 

Subtracting (B5) from (B4) results in, 

y o(R.oc 1)- y o(Roc2) 

= A(Roc1) ln(-1-) _ A(Roc2) ln(-1-) +a in{ A(Roc1)- A(Roc2)]. (B6) 
21 Roc1 21 Roc2 

If the pumping of the laser rod while out coupling with reflector Roc 1 is the same as when 

out coupling with reflector Roc2 (i.e. P P(Roc 1) = P /Roc2)), then the gain in both cases is the 

same (i.e. Yo (Roc I)= Yo (Roc2)). Consequently, the left side of (B6) can be set to zero and 

one can solve the resulting equation for aint to get 

. _ [A(Roc2) ln(-1-) _ A(Rocl) In(-1-)J(A(Rocl)- A(Roc2)r1
• 

a mt- 21 Roc2 21 Roc 1 

(B7) 

By measuring the output power of the laser for same pump power levels but with 

two different output couplers, (B7) enables one to determine aint. The values oflo can be 

obtained by dividing the output power by the mode area determined in Appendix A. 

Having found aint' one can easily calculate the value of the gain coefficient Yo by substitut­

ing the value of a.int into (B4) or (B5). 

To obtain a more accurate value of aint and Yo, the output power was measured 

over a range of input powers, and the results were averaged. A simple Mathcad program 

(CVIGAIN.MCD) was written to carry out the ite.rative calculations. Table B 1 contains 

the input and output powers using two different output coupler mirrors. 



TABLE B1 
OUTPUT POWER AS A FUNCTION OF MIRROR REFLECTIVITY 

AND PUMP POWER 

Roc1 Roc2 

pin (W) pout(mW) pin (W) pout(mW) 

998.58 79.5 1005 6 
1017.90 87.5 1014.82 10.75 
1052.82 100 1049.41 37 
1088.62 112.5 1085.61 67.5 
1124.98 127.5 1125.35 99.5 
1160.56 145 1161.46 132.5 
1199.00 162.5 1200.79 172.5 
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Because of the instability of the laser output when pumping near threshold in the case us­

ing Roc2, the value of a.int for this case was not used in the average. The values of yo and 

a.int were determined to be 0.006901 cm-1 and 0.0004497 cm-1, respectively. 

Using the value of a.int = 0.0004497 cm-1 in (B2), a..y. is found to be 0.001346 cm-1• 

Knowing a..y., one can calculate the distributed round trip loss (RT1osJ over the length of 

the laser rod using the simple equation 

R T1oss = 21 a..y. 

RT1oss = 1.615 %. (B8) 

The value of a..y. = 0. 001346 cm-1 represents the round trip loss under low loss 

conditions since the AOM in the cavity acts as a passive element when it is not supplied 

with any RF power. Calculation of the round trip loss when the AOM acts as an active 

device is taken up in the next section. 
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Determination of the high and low loss values. 

The acousto-optics Q-switch, under normal use, works by degrading the quality 

factor Q of the laser during the pumping so that the gain can build up to a very high value 

and yet not exceed the oscillation threshold value. When the population inversion in the 

gain medium reaches its peak, the Q is restored abruptly to its high value. The gain, which 

is well above the (lowered) oscillation threshold, causes a rapid build up of the oscillation 

field and a simultaneous depletion of the population inversion via stimulated emission. 

The objective of this section is to calculate the ratio of the cavity losses when the AOM 

acts as a passive element (low loss case, Case 1) and when the AOM acts an active ele-

ment (high loss case, Case 2). 

We begin with a mathematical expression for the saturated gain coefficient 

for a generalized model of the two atomic states involved in the laser as shown in Figure 

Bl, 

(R2t2( 1- t 10/ t21)- R1t 10 )cr21 
y = --=-----------=-----

1 + ( 't1o + t2- 't10t2/t:1)( 0"21h1 I hv) 
(B9) 

The R's represent rate of population increase for a given level due to direct pumping from 

ground state and any other indirect routes, such as excitation to and subsequent 

spontaneous emission from a higher state, but not those routes indicated in the diagram. 

The effective decay from level two is represented by 't: as defined in Table 1. Since both 

R1 and "t10 are small numbers with respect to the first term in the bracket in the numerator, 

the ·product of (R1 t 10) is even a smaller number and therefore can be eliminated from (B9). 

Near threshold or in the limit 121 ~ 0, the denominator in (B9) approaches unity 

and one obtains the small-signal gain coefficient in terms of the external pump rates and 

the lifetimes. That means 

y ~yo= R2t2(l- 't1oj't21)0"21. (BlO) 

Therefore, (B9) can rewritten in the following manner, 



y 0 _ kPP 
y (121) = 1 + 121/L -I+ h!/ls 

Stimulated 

2 

1 

.J--____......_ ______ ...;:a....__~o 

ReserYoir of atoms 
in ground state 

(B11) 

Figure B 1. Generalized pumping model of a two atomic states laser. 
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where Yo is expressed as the product of a proportionality constant k (units of 1/W-cm) and 

the pump power PP (units, Watts). 

Because, at threshold, the ratio of gain to loss equals unity regardless of whether 

the laser operates under low (Case 1) or high (Case 2) loss conditions, one can write 

yo I kPP1 
=-=1 (B12A) 

0. T lease! UTI 

yo! = kP.2 = 1. 
UT .., 0.T2 

case~ 

{B12B) 

By equating (B 12A) to (B 12B ), and with some simplification, it turns out that the 

losses for each case are proportional to the respective pump powers, i.e.: 

0.T2 kPp2 Pp2 
(B13) --=---=---

an kPP1 PP1 

Keep in mind that equation (B 13) is valid only at threshold. While it is difficult in 

practice to accurately measure the threshold pump power for most lasers, it is possible to 



get a good estimate of the threshold pump power by way of a linear regression fit using 

data for Pout versus P Pat higher pump power levels. 

To relate (B 13) to experimental values, replace Yo in (B 1) with Yo= kPP and then 

rewrite (B 1) in the form of an equation of a straight line. 

Is · kP P • T _ Is T 
lo = ar 

or y=mPp-b (B14) 

where m = IskTICl.z- (cm-2) and b =1sT, andy= 10, the output intensity. By setting y = 0 

(corresponding to zero output from the laser), one can solve (B 14) for PP to get 

pp = J:. = IsT = O.T 

m lskT/ar k 
(Bl5) 
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which is the same as (B 12). By substituting (b/m) for P P in (B 12), one gets an expression 

for the ratio of a-da-n in terms of b's and m's: 

arz bl/mz bz ffi1 
-= =---
UTI bt/ffii bt ffi:2 

(B16) 

The values ofb's and m's can be determined by performing a linear regression fit through 

the data points in Table B2 for both cases. The data in Table B2 along with the regression 

is shown in Figure B2. Knowing the values for the b's and m's, one can easily determine 

the ratio of O-r!Ur1, and subsequently~ (since the value of 0-rt was determined in previ­

ous section). Substituting in the numerical values for b's and m's, the ratio of 0-r!O-rt and 

the value of <In are, 

0.T2 = 1.01099 
O.Tl 

UT2 =0.001367 (cm·I). 

(B17) 

(Bl8) 

Recall that we set out to determine the ratio of the cavity losses when the AOM is 

in the high loss and low loss states. The value of aint for the low loss case was determined 
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in section A. By equating equation (B 18) to (B2), one can solve for a.int for the hi loss 

case. The value for a.int high loss is 0.00047 cm·1. 

TABLEB2 

CONTRIBUTION OF LOSSES DUE TO THE AOM 

Case 1 Case 2 

pin pout pin pout 

952.9 5.75 955.5 4.9 
969.2 8.35 972.0 7.6 
986.6 11.12 990.9 10.0 
1003.3 13.5 1009.5 13.0 
1020.0 16.75 1026.2 16.0 
1036.9 19.25 1043.2 18.75 
1053.9 22.0 1060.2 21.75 
1070.8 25.0 1079.4 24.50 

The same equation used the previous section to determine round trip loss can be 

used to determine the loss due to one round trip through the AOM, 

AOM _ 1 -2aintlo·l lo- -e 

AOMhi = 1- e-2amthi·l. 

{B19A) 

{B19B) 

From (B 19A) one can easily find out the value of the loss due to the AOM in the low loss 

state. For reasons which will become apparent shortly, rewrite (B 19 A) as 

ln(1- AOM1o -loss)= -2a. int lo ·l 

ln(1- AOMru- loss)= -2a. int hi ·1. 

But from (B 17) we know a.int hi= 1. 01099 * a.int lo , therefore, 

ln(l- AOMh1) = 4.01099 · 2a. int lo ·1. 

(B20A) 

(B20B) 

(B21) 

By substituting (B20) into (B21) for ( -2a.int lo * 1), raising "e" to this power on both 

sides, and rearranging a little, one gets 



or 

1.01099 ·ln(1-AOMio) 

AO Mhi - loss = 1- e 

AOMtu -toss= 1- ( 1- AOM1o)1.
01099

. (B22) 

It is the numerical values from (B 19A) and (B22) that are used as high loss and low loss 

inputs, respectively, in the basic program. 

Amount of flashlamp pump power within the 808 nm region 
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After some algebraic manipulation, the amount of pump energy that the rod ex­

tracts at the wavelength of A.= 0.808 nm can be estimated. This wavelength corresponds 

to the output wavelength of a Ga-Al-As diode laser, and can be used to pump the 

Nd:YAG system from the ground level to the quartet F512 ( 
4F512 ) third excited energy 

level. 

We begin by defining R: in (B 1 0) with 

R2 = PN3 
hvsos · Vm 

(B23) 

where P Nl is the amount of pump power at 808 nm that is needed to excite atoms from the 

ground state to level 3 (Fig. 1). By equating Yo= kPP with (B 10), and rearranging terms, 

one can obtain an expression for P NJ which is proportion to the P p· 

PN3 
kP P = y o = · 't 2 cr 21 ( 1 - 't 1 I t 21 ) 

hvsos · Vm 

k·hv·Vm ·Pp=k3Pp. 
PN 3 = _ ( 1 _ 't , I 't :n ) 't 2 v 21 

(B24) 

Since we know the value of the slope of the lines in Figure B2, we can calculate the value 

ofk (units, 1/W-cm). By substituting in the numerical values for all other constants in 

(B24), Is is found to be k3 = 6.9446 * l0-4. By multiplying the power supplied to the 

flashlamp (i.e. Pin = IV) by k3, one can estimate the amount of power the lamps emit in the 

808 nm region. 
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a's = Pout in mW using mirror with radius of curvature ROC1 
b's = Pout in mW using mirror with radius of curvature ROC2 

a := 79.5 
1 

a := 127.5 
5 

b := 6 b 
1 2 

b := 132.5 
6 

nYAG := 1. 82 
!sat := 1249.65 
1 := 6 

a := 87.5 a := 100 a := 112.5 
2 3 4 

a := 145 a := 162.5 
6 7 

:= 10.75 b := 37 b := 67.5 b := 99.5 
3 4 5 

b := 172.5 
7 

index of YAG 
Saturation intensity (W/cmA2) 
physical length of the YAG rod (em) 
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modearea := .00424 
ROC1 := .9893 
ROC2 := .9543 

mode area of the beam at the oc (cm.2) 
Refelectivity of the output coupler Roc1 
Refelectivity of the output coupler Roc2 

s := 1 •. 7 

-3 
a · 10 

A1 ·- 1 + · -- · s [1] [ 2 ] 
s .- modearea Isat 1 - ROC1 

-3 
b ·10 

A2 ·= 1 + · -- · s [1] [ 2 ] 
s • modearea Isat 1 - ROC2 

aint is the cavity loss due to the gain medium only (1/cm). 
r is the small signal gain (1/cm). 

-ln(ROC2) -ln(ROC1) 
A2 - A1 

s 2·1 s 2·1 
aint := 

s A1 - A2 
s s 



r := A1 
s s 

-ln(ROC1) 

2·1 
+ A1 ·aint 

s s 

below are the value of the gain and the loss for the pump 
power corresponding to each of the above output values. 

Al A2 aint r 
s s s s 

3.80452358 1.04955766 0.00024706 0.00435058 
4.08673979 1.08879081 0.00019366 0.00445507 
4.52770262 1.30560557 0.0003198 0.00550691 
4.96866545 1.55752368 0.00047407 0.00680976 
5.49782084 I 1.8218312 0.00059114 0.00817864 
6.1151688 2.09439834 0.00066706 0.00956126 
6.732516761 2.42478274 ~00079~12 _o_._ 01137518 

aint + aint + aint + aint + aint 
2 3 4 5 6 

aintavg := 
5 
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AOM is renaming of the losses excluding the mirror losses (%) . 

AOMHi is the additional loss generated when when the AOM acts as 
an active device (%) . 

atot is the total loss in the cavity (1/cm). 

RTLoss is the cavity loss in percent. 

AOM := 1- [exp{aintavg·2·1)-
1
] 

1.01099 
AOMHi := 1 - (1 - AOM) 

atot := aintavg + _:_. ln[-
1
---] 

2·1 ROC! 

RTLoss := 2·l·atot 

r + r + r + r + r 
2 3 4 5 6 

ravg := 
5 



Numerical Values 

aintavg = 0.00044915 

atot = 0.00134562· 

ravg = 0.00690233 

AOM = 0.00537525 

AOMHi = 0.00543416 

1/cm 

1/cm 

1/cm 

(%) 

(%) 

RTLoss = 0.01614741 (%) 
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According to statistical thermodynamics, when a large collection of similar 

atoms is in thermal equilibrium at temperature T, the relative populations of any two 

energy levels E 1 and E2 must be related by the Boltzmann ratio 

N2 [ (E2-E1)] 
-=exp 
Nt kT 

(Cl) 
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where N2 and N 1 correspond to the population of atoms in energy levels E2 and E1, 

respectively, [5], and k is the Boltzmann constant. For energy gaps large enough such 

that E2 - E1 = hv >> kT, the ratio is approximately zero, and there will be few atoms in the 

upper energy level at thermal equilibrium. 

Using equation (C 1 ), the Boltzmann's population of energy levels 4/ 1112, 4F312, and 

4F512 (which correspond to levels 1, 2, 3 respectively in the simplified energy level diagram 

in Figure 1 in Chapter I) are calculated below. The population of the ground state 4/ 912 is 

determined by the product of the mode volume V m and the doping ofNd+3 ion. 

I). Population ofLevel 1. 

~= hvt =~= (6.626·10-
34

)(3·10
8

) = 10.132 
kT kT A.1kT (4.739·10-6 )(4.14·10-21 ) 

N 1 = N oe _E~'T = 3.513 ·1018 e--~ 0132 
N I= 1.39767 ·1014 

II). Population ofLevel 2. 

E2 = hV2 =~= 4.801·10-
5 

=55.25 
kT kT A.2kT 0.869 ·10-6 

N 2 = N oe _E3'r = 3.513 ·1018 e~s.2s 
N2 = 3.556·10~ ~ 0 



Til). Population ofLevel 3. 

I 

E 
u 

0 
X 

> 
~ 
" c 

w 

0 

E3 ~ hV3 =~= 4.801·10-
5 

=59.395 
kT kT A3kT 0. 808 ·1 o-6 

· E3/ 
N 3 = N oe- /kT = 3.513 ·1018 e-59.39 

N3 = 5.661·10~ ~ 0 

- Pump 

bJnd' 

'F -c-- ll.'Po'••··;' 

~~~--- ~' -- 11501 em·• R ~--// 11414 ; 

I 

--:..Da-- LHtf 
tnn1ition 
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Figure Cl. Energy level diagram ofNd:YAG [5]. 
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Small signal analysis by definition implies that the value of the perturbations of all 

variables involved are small with respect to some steady state value. In this section the 

perturbations will be introduced as loss modulation. Assume solutions to equations (2) 

through ( 5) in chapter 1 are: 

N, = N, + dN,e-JWl 

N2 = N2 +~2e-jwt 

N) = N)+AN)e-JWl 

I21 = Ioc + ~Ie-jwt 

(D1) 

(D2) 

(03) 

(D4) 

where the first term in each solution represents the steady state value for that variable, and 

the second term is a small perturbation around the steady state value. To allow for any 

phase differences between the perturbation and the original signal, the second term also 

includes an e·j(.l)t term where ro represents the modulation frequency. For gain modulation, 

assume that the pumping also deviates from a steady state value in the same manner, i.e.: 

P = P + ~Pe-JWl (05) 

To get an expression for the change in intensity ~I as a function of pump 

fluctuation, we begin by substituting (D 1) through (05) back into their respective rate 

equation given in chapter 1, equate the e·JC.I)l terms, and solve for the ~N's and ~I. The 

steady state needed in the above procedure can either be obtained from the results of the 

Quick Basic program (CWJHON10.EXE) or calculated in the Mathcad program 

(DELT AI.MCD) just prior to calculating the transient values. Using the above outlined 

procedure one arrives at the following expressions for the ~N's and ~I: 

~N 3 = Mlt3 
1- jrot3 

N 
0'21loc~N 1- 0'21~l~c + ~ 3/t32 

~ 2 = __________ ....;..__ 
0'21Ioc + 1/t 2- jro 

(06) 

(07) 



LlN"t = 0'2tlocdN2+0'2t~l~c+~4't21 
0'2tloc + 1/ 'tto- jro 

~I= j(~N2- ~Nt)Ioc 
'tcav • (1) • ~c 

where (N2- Nt) = ~Nc. 
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(D8) 

(D9) 

In arriving at the final expression for ~I, the two terms involving lltcav in the denomina­

tor summed to zero. The justification for doing so is that ~I is strongly dependent on 

cavity losses introduced by the AOM since 't1ow toss>> tcav· If one tries to solve for 111 by 

substituting (06) through (08) in (D9), the resulting expression appears to be quite 

complicated and seemingly unsolvable. However, if (06) through (09) were written in 

matrix form, then the value for ~I can be obtained quite easily using Cramer's Rule. 

Rewriting (D6) through (D9) in matrix form one gets, 

where 

[

-KI 1 

-1 K"' 
K6 -K6 

{ M ] 

K2][~'] [K3] Ks ~2 = 0 

1 ~I 0 

[X]=(CJ 

Kt = C121loc = cr:nloc 

0'2tloc + 1/t 2- jro 

K2 = cr 21 ~Nc 
D2 

D2 

~N 3 1 t3 1 K3=-·-=ilP-·-t32 D2 'tn D2 

K"' = 0'21loc + 1/t 21 = 0'21loc + I/t21 

0'2tloc + 1/tto- jro D, 

(DlO} 

(011) 

(D12) 

(D13} 

(Dl4) 

(Dl5) 
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(016) 

Ioc 
K6 = J ~ctcavOO 

Using Cramer's Rule as suggested above, the solution to ~I is 

where 

-Kl 

.ii=I-1 
K6 

1 

K4 
-K6 

K3 

o I. 1 

detM 
0 

det M = -K1 K~ + K5K6( 1 - K,) + ~K6( 1 - K~) + l 

(Dl7) 

(018) 

is the determinant ofthe matrix defined in (DIO). Writing (018) in an equation form one 

gets 

~I= K3K6(l- K4) 
1- KtK4 + KsK6(l- Kt) + K2K6(l- K4) 

After some rearranging, the above expression reduces to 

Lll= K3 
l-KtK4 K 1-K, K ----+ 5 + :! 

K6(l- K4) 1- K4 

(Dl9) 

Since a numerical value for ~I by itself has little meaning, let us introduce the 

term modulation depth~ as being a measure of the output intensity fluctuation (~I), as a 

function of pump power and modulation frequency, relative to the steady state value. In 

equation form ~ is defined as: 

~ = l~Ij/1. 

To evaluate the above expression for a range of pump powers and modulation 

frequencies a Mathcad program (DELT AI.MCD) was written. A listing of the program 

is included at the end of this appendix. 
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This program calculates the output fluctuations arising 
from modulation of the pump source (or gain modulation) 
by calculating the steady state population and intra­
cavity intensity. Subsequently, the expression for out­
put intensity fluctuation derived earlier in this 
appendix is evaluated is evaluated. 

nYAG := 1.82 
1 := 6 
modearea := .00424 

-19 
0'21 := 6.5· 10 

-19 
hv1064 := 1.868· 10 

-19 
hv808 := 2.4601· 10 

10 
c := 3·10 
RTLoss := .016145 
ROC1 := .9893 
OPL := 32.77 

-9 
110 := 11· 10 

-6 
120 := 395· 10 

-6 
121 := 550· 10 

-6 
130 := 50· 10 

-9 
132 := .45· 10 

-1 

12 := [-=- + -=-] . 
120 121 

-1 

13 := [-=- + -=-] 
130 132 

Tcav : = [2 · OPLJ · -
1
-­

c RTLoss 

modvol := l·modearea 

CONSTANTS 

energy of photons at 1064 nm 

energy of photons at 808 nm 

speed of light (cmfs) 
total round trip loss (%) 
Reflectivity of output coupler 
optical path length of cavity 

time constants from Table I 

photon decay time (~s) 

mode volume (cm-3) 
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modvol·nYAG 
oNe := 

-rcav·a21·c 

20 
No:= 1.38·10 ·modvol 

NlB := No·exp(-10.132) 

steady state pop. inversion 

ground state population 

level 1 population due to 
Boltzman distribution 

STEADY STATE VLAUES 

CWPUMP := 2.0 

CWPUMP 
P ·-.-

hv808 

N3 := P·-r3 

input pump power (W) 

convert input power to # of 
photons at 808 nm 

pop. of levels 3, 2, 1 

[ 
r20 f20 ] flO 

Nl := N3·- + NlB·-- oNe·---
-r32 flO flO + f20 

[ 
f20 f20] 

N2 := N3·-- (N1- N1B)·-
f32 r10 

[
N3 N2] 1 

I := f32- f2 . oNc·a21 

1 

intracavity intensity in # 
of photons 

Pout:=-· (1- ROC1)·modearea·hv1064·I 
2 

Lowerf := 50000 
6 

Upperf := 1· 10 

Npt := 400 

s := 1 .. Npt 

SMALL SIGNAL VARIATION 

upper & lower modulation 
frequency (Hz) 

number of data points 
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log [Upperf] 
Lowerf 

of := 
Npt 

of·s+log(Lowerf) 
f := 10 

s 

w := f ·2·7T 
s s 

oP := .OS·P 

step size 

amount of perturbation 
from steady st. pumping 

all the D's and K's are defined on pg 98-99 

01 := [a21·I + _:_- i ·w] 
s 1' 10 s 

02 := [a21·I + =-- i ·W] 
s 1'2 s 

r3· 6'P 
6'N3 := 

s 1 - i . w . 1'3 

s 

a21·I a21· (N2 - N1) 
Kl ·- K2 .- .-

s 02 s D2 
s s 

1 
6'N3 a2l·I + 

s 1'21 
K3 ·- K4 ·-.- .-

s 132·02 s D1 
s s 

a21· (N2 - N1) i ·I 
KS ·- K6 ·-.- .-

s Dl s {N2- Nl)· rcav·w 
s s 

K3 . K6 ·"[1 - K4 J 
s s s 

delta! ·-.-
s 1- K1 ·K4 + K2 ·K6 · [1- K4] + K5 ·K6 · [1- K1] 

s s s s s s s s 
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Ampoi 
s 

:= ldeltaisl 

Amp or 
s 

Moddepth := 
s I 

WRITEPRN ( FREQ) : = f 
WRITEPRN(MOD6) := Moddepth 

0.3 
---- ------- -

Moddepth 
s 

0.003 
10000 f 

s 

write the mod. freq. 
and the mod. depth to 
PRN files 

r " , 
' ~ \ 

_..,., ... I' \ 

'\ 

i\. 
! 

I 

1"'-
~ 

1000000 
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This appendix includes the listing of a program, written using Microsoft Quick 

Basic, to generate numerical results of the coupled nonlinear rate equations listed at the 

beginning of Chapter II. To minimize round off errors resulting from arithmatic operation 

involving number like 1 0·34 for Planck's constant and 1019 for the Nd doping oncentration, 

the units of 'mm' and '~ts' were used wherever possible. 

To determine the accuracy of the program, a number of simulations were run using 

artificially long time constants for "t20, "t21 , and "t32, like 1 second, and checking to see if the 

ratio of the output-to-input power approached the quantum efficiency of the system. In 

testing this hypothesis the assumption is made that if there are no non-radiative losses in 

the laser, the laser should operate at the quantum efficiency of75.6% which is obtained by 

taking the ratio of the pump wavelength to that of the output wavelength. The resulsts of 

the simulations show that when there are no non-radiative losses, the output of the laser is 

75.2% which is equals the theoretical quantum efficiency. 



SIMULATION OF RELAXATION/OSCILLATIONS IN Nd:YAG LASER 

'This program solves the rate equations using Runga-Kutta method. To 
'minimize the round off errors due to multiplication/division of large 
'numbers by small numbers (and vice versa), will use mm & us units 
'wherever possible. 

--------------------~-------------------------------------------DEFINE CONSTANTS AND VARIABLES 

TAUlO = decay time from level 1 to ground state or level o 
TAU20 =- II " II II 2 II " II II II 0 
TAU21 = II II II II 2 II level 1 
TAU30 = II II " " 3 II ground state or level o 
TAU32 =- II II " " 3 II level 2 
TAU2eff = effective decay time out of level 2 
TAU3eff = " II II " II " 3 

LAMBOAl =- wavelength of the diode (808nm) that pumps the Nd:YAG rod 
LAMBOA2 =- n of the output beam (1064nm) exiting YAG laser 
V808 • frequency of the pump beam 
V1064 - " II II output beam 
Hplank • Plank's constant (J/US) 
HV808 = energy of photon at 808 (nm) 
HV1064 - " " " " 1064 (nm) 

c =- speed of light (mmjus) 
PI =- pi radian 

nYAG 
LENROO 
LENCAV 
SIGMA21 
DOPING 

• index of Nd:YAG rod at 300 K 
• length of the Nd:YAG rod (mm) 
• optical path length of the cavity 
= stimulated emission cross section 
= Nd ion concenteration (#/mmAJ) 

(mm) 
(mmA2) 

MODAREA =- mode area of the 1064nm beam @ the output coupler (mmA2) 
MODVOLM = mode volume of the 1064 nm beam (mmAJ) 
NGND = population of the ground state (#) 
NlB • level 1 population due to the Boltzman distribution (#) 

DIMENSION & DECLARE VARIABLES 

DECLARE SUB Runga (PUMP) 

DIM Ibwd(SOO), Ifwd(SOO) AS DOUBLE 
DIM SHARED N(J) AS DOUBLE 
DIM SHARED YN(3) AS DOUBLE 
DIM SHARED YERROR(J) AS DOUBLE 
DIM TSTART(3600), TEND(3600) AS DOUBLE 
DIM RSTART(300), REND(300) AS DOUBLE 
DIM P(SOO) AS DOUBLE 
DIM SHARED TK1(3), TK2(3), IPRIME(3) AS DOUBLE 

COMMON SHARED TAU10, TAU20, TAU21, TAU30, TAU32, TAU2eff AS DOUBLE 
COMMON SHARED TAU3ef, fSIGMA21, SIGMA03, COEF21, COEFOUT AS DOUBLE 

106 



COMMON SHARED NGNO, NlB, OELTAT, DELTAZ, DEL2, DEL6 AS DOUBLE 
COMMON SHARED CWPUMP, PUMP, SIMTIME AS DOUBLE 
COMMON SHARED YI, T, twindow, RTT, TOUT, RTLoss AS DOUBLE 
COMMON SHARED !old, !loss, Iout AS DOUBLE 
COMMON SHARED EPcoef, ELcoef, Epump, Ecav, Eout AS DOUBLE 
COMMON SHARED C, Eloss, EN1, EN2, EN3, Ebalanc AS DOUBLE 
COMMON SHARED LAMBDA1, LAMBDA2, V808, V1064, HV808, HV1064 AS DOUBLE 

TAU10 • .011 
TAU20 = 395 
TAU21 =- 550 
TAU30 • 50 
TAU32 =- .00045 
c = 300000! 
PI • 4! * ATN(1!) 

LAMBDAl • .000808 
LAMBDA2 • .001064 

Hplank • 6.626D-28 
LENROD • 109.2 
nYAG =- 1. 82 
SIGMA21 • 6.SD-17 
DOPING • 1.38E+17 
MODAREA# • • 424 

CONSTANTS VALUES 

'11 ns 
'395 us 
'550 us 
'50 us 
'450 ps 

PROMPT USER FOR VARIABLE VALUES 
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'The following loop writes the user input values to a file (filename.inp) 
'that can be called up when executing the cwjhon1d.exe program in a 
'sequential manner. 

CLS 
INPUT "Enter a .INP filename (w/o .INP) or hit return "; dum$ 
IF dum$ <> "" THEN 

OPEN dum$ + ".inp" FOR INPUT AS #4 
FOR vt • 1 TO 13 

INPUT #4, XX$ 
PRINT XX$ 

NEXT vt 

IF EOF(4) THEN 
CLOSE #4 

ELSE 
INPUT #4, xx$ 
PRINT XX$ 
INPUT #4 , xx$ 
PRINT XX$ 
CLOSE #4 

END IF 
END IF 

LENCAV = 327.7 



INPUT "Enter output coupler transmission {%)="; TOUT 
TOUT • TOUT * . 01 
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INPUT "Enter HiLoss (%)"; HiLoss 
HiLoss • HiLoss * .01 

'experimentally determined hi & low 
'loss vlaues of the AOM. 

INPUT "Enter LowLoss (%)"; Lowloss 
Lowloss a Lowloss * .01 

INPUT "Enter AOM Off Time(2us) (s)"; utl 
ut1 = ut1 * 10000001 

INPUT "Enter AOM On Time (s)"; ut2 
ut2 = ut2 * 10000001 

'duration of time the AOM is in 
'low loss state (fixed @ 2 us) 

'duration of time the AOM is in 
'high loss state (user defined) 

INPUT "Enter trigger delay for AOM Off cycle (sec)"; TrigAOM 
TrigAOM • TrigAOM * 1000000! 

INPUT "ENTER CW Pump power (mW) ="; CWPUMP 
CWPUMP a CWPUMP * .001 * .000001 'convert pump power to Jfus 

PRINT "ENTER Mode area ("; MODAREA#; "mm"" 2) •" ; : INPUT MODAREA# 

INPUT "ENTER DURATION OF SIMULATION TIME (sec)="; SIMTIME 
SIMTIME = SIMTIME * 1000000! 'convert simulation time to us 

INPUT "ENTER TIME INCREMENT (0.364ns)"; DELTAT 
DELTAT • .364 * .001 

DELTAZ • DELTAT * C 
LENROD a DELTAZ 

NTIME& • INT(SIMTIME I OELTAT) + 1 

NCAVITY% a INT(LENCAV / OELTAZ) 

LENCAV a CDBL(NCAVITY%) * OELTAZ 
RTT • 2! * LENCAV I C 

Losstl = INT(ut1 / DELTAT) 
Losst2 • INT(ut2 / DELTAT) 

TrigAOM • INT(TrigAOM I DELTAT} 

PRINT "New cavity length="; LENCAV; "mm" 

'step size in space domain 
'normalize rod length to equal 
'the step size in space domain 

'number of round trips before 
'seeing mode locking 

'sectionalize the cavity into 
'integer number of sections 

'renormalize cavity length 
'cavity round trip time 

'discretize the duration time 
'AOM is in the low/high loss 
'state to integer multiples 
'of DELTAT. 

'AOM trigger delay 

PRINT "New modulation frequency="; c I 2! 1 LENCAV; "Hz" 
PRINT "New 2L/C• 11 ; RTT; "us" 

INPUT "Enter the number of round trips between print out =11 ; TBPO 
INPUT "Enter the amout of the print out time (ns)="; POT 
POT = POT * .001 'convert POT to (us) 

INPUT "Do you want to start from previous session (N/Y) 11 ; StartCheck$ 
IF StartCheck$ = "Y" OR StartCheck$ = "Y" THEN 



StartCheck$ = "Y." 
INPUT "Enter previous status file name (w/o .STA)"; statusfile$ 
statusfile$ = statusfile$ + ".STA" 

END IF 
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'The following loop allows the user to choose between storing the 
'results or viewing the results. If the user opts to store the results, 
'three files are generated: the .INP, .STA, .OAT files. The .INP file 
'stores all the user inputs and these inputs can be called up at the 
'beginning of each execution of the program. The .STA file stores the 
'values of the population levels and the backward, and the forward 
'intensity levels. The usefulness of the .STA files is that it allows 
'the user to segment long simulation times into smaller runs and thereby 
'still retain the resolution of the results. The .OAT file stores the 
'time increments, Pout, population of levels 1&2, and the cavloss. The 
'choice of variables stored in .OAT file is @ the discretion of the user. 

INPUT "Do you want to print input values and data to a file (NIY)"; PFILE$ 
IF PFILE$ = "Y." OR PFILE$ = "Y" THEN 

PFILE$ = "Y." 

ELSE 

INPUT "Enter the output file name (W/O extensions) =-"; filename$ 
datfile$ =- filename$ + ".OAT" 
infofile$ = filename$ + ".INP" 

PFILE$ = "N" 
END IF 

INPUT "PRINT OUT TO SCREEN?"; PSCREEN$ 
IF PSCREEN$ = "Y" THEN PSCREEN$ = "Y." 

Write all user input to .INP file 

IF PFILE$ = "Y" THEN 
OPEN infofile$ FOR OUTPUT AS #2 

PRINT #2, "CWJHON10.BAS" 
PRINT #2, "Cavity Length (mm)", LENCAV 
PRINT #2 ' "TOUT II ' TOUT 
PRINT #2, "hiloss (%)", HiLoss 
PRINT #2, "lowloss (%)", Lowloss 
PRINT #2, "AOM off time (s)", ut1 I 1000000! 
PRINT #2, "AOM on time (s)", ut2 1 1000000! 
PRINT #2, "triger delay for AOM off (us)", TrigAOM * OELTAT 
PRINT #2, "CWpump (w)", CWPUMP * 1000000! 
PRINT #2, "Simulation time(us)", SIMTIME 
PRINT #2, "Delta t (us)", OELTAT 
PRINT #2, "# of round trips before print out", TBPO 
PRINT #2, "duration of print out time (us)", POT 
PRINT #2, "Round trip loss", RTLoss 
PRINT #2, "NCAVITY.% 11 , NCAVITY.% 

END IF 

CALCULATE FREQUENTLY USED CONSTANT VALUES 



V808 = c I LAMBDA1 
HV808 = Hplank * V808 
V1064 = C I LAMBDA2. 
HV1064 = Hplank * V1064 

MODVOLM# = MOOAREA# * (LENROD / nYAG) 
NGND = DOPING * MODVOLM# 
'N1B = 314487914000000# 
N1B = NGNO * (EXP(-10.132)) 

CWPUMP = CWPUMP I HV808 

COEF21 = SIGMA21 * C / (nYAG * MODVOLM#) 

COEFOUT = MODAREA# * HV1064 * 1000000! 

TAU2eff = (1# I TAU21 
TAU3eff = (1# I TAU32 

DEL2 = OELTAT * .5 
DEL6 = DELTAT I 6! 

+ 1# I TAU20) 
+ 1# / TAU30) 

'# of 808 nm (pump) photonjus 

'coefficient for di/dt in 
'Runga (1/us) 
'enrgy convers'n to output J/S 

'DEL2 & DEL6 are used in the 
'Runga as dummy variables 

'Print out values of some of the variables for reference check before 
'starting the simulation. 
I 

PRINT "hv808="; HV808; 11 hv1064="; HV1064 
PRINT "mode area= 11 ; MODAREA#; 11 Modvolm= 11 ; MOOVOLM#; 11 Lenrod="; LENROD; 
PRINT" CWpump="; CWPUMP; 11 ModPow="; MODPOW; 
PRINT " N1B• 11 ; N1B; 11 SIGMA21="; SIGMA21; "COEF21= 11 ; COEF21 
PRINT "TAU2eff="; TAU2eff; 11 TAU3eff= 11

; TAU3eff; "COEFOUT= 11
; COEFOUT; 

INPUT q$ 

INITIAL CONDITIONS 

'If the user wants to continue simulating from the termination of a 
'previous execution, the values for the population of each level and 
'intensities are taken from the .STA file gernerated in the previous 
'execution. Otherwise, all values except N1 are initialized to 1. 
'N1 is set equal to NlB. 
I 

IF StartCheck$ = "Y" THEN 
OPEN statusfile$ FOR INPUT AS #3 

INPUT #3 , TPREV 
PRINT "Simulation time at the end of 
INPUT #3, N(O), N(1), N(2), RTLoss 
FOR zi% = 1 TO NCAVITY% 

last sessione="; TPREV 

INPUT #3, Ifwd(zi%) 
INPUT #3, Ibwd(zi%) 

NEXT zi% 
INPUT #3, 
INPUT #3, 
INPUT #3, 
INPUT #3, 

ozp% 
Epump 
Eloss 
Eout 

'last pump slice used from previous run 
'cummulitive Epump from previous run 

" Eloss " " " 
II Eout II II II 

CLOSE #3 

ELSE 
N(1) = N1B! 'initial populat'n of level 1 (#atoms) 
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N(2) 
N(3) 
N(O) 

- 1! 
- 1! 
- 1! 

" 
II 

" 
" 

" 
II 

'intensity at z=O t = 0 

II 

II 
2 
3 

" 
II 

FOR zit = 1 TO NCAVITY% 
Ifwd(zi%) = 1! 
Ibwd(zi%) = 1! 

'initlize all sect'ns of cavty to 1 

NEXT zi% 
END IF 

TWONCAV% = 2 * NCAVITY% 
FOR zpt = 1 TO TWONCAV% 

P(zpt) = CWPUMP 
NEXT zpt 

----------------------------------------------------------------ADDITIONAL ENTRIES TO THE .INP FILE 
----------------------------------------------------------------
IF PFILE$ = "Y" THEN 

PRINT #2, "init N(O)", N(O) 
PRINT #2, "init N(1)", N(1) 
PRINT #2, "init N(2)", N(2) 
PRINT #2, "init N(3)", N(3) 

FOR zit = 1 TO NCAVITYt 
PRINT #2, "fwd", zi%, Ifwd(zi%) 

NEXT zi% 
FOR zit = 1 TO NCAVITY% 

PRINT #2, "bwd", zi%, Ibwd(zi%) 
NEXT zi% 

END IF 

GENERATE PRINT OUT WINDOWS 

J& = 0 
DO WHILE TSTART(J&) < NTIME& 

J& = J& + 1 
TSTART(J&) = TBPO * J& * TWONCAV% - Ozp% 
TEND(J&) = TSTART(J&) + INT(POT / DELTAT) 

LOOP 

K& =- 0 
DO WHILE RSTART(K&) < NTIME& 

K& • K& + 1 
RSTART(K&) = (Losst2 + Losst1) * (K& - 1) + TrigAOM 
REND(K&) = RSTART(K&) + Losst1 

LOOP 

BEGIN TIME LOOP 

IF PFILE$ = "Y" THEN 
OPEN datfile$ FOR OUTPUT AS #1 

END IF 
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J& :a 1 
K& = 1 
RTLoss = HiLoss 
flag% = o 
Rflag% = o 

IF StartCheck$ 
zp% = Ozp% 

ELSE 

zp% = o 
END IF 

PUMP = P(1) 

"Y" THEN 

'reset transition counter 
'reset transition counter 

'set pump slice indicator to match the value 
'at the end of previous run or if this is a 
'new run, reset the pump slice indicator to o. 

PRINT TIME$; "computing ... T="; T 

FOR ti& = 1 TO NTIME& 
T = CDBL(ti&) * DELTAT 

IF zp% > TWONCAV% THEN zp% = 1 

CHECK FOR FILE OUTPUT WINDOW 

IF ti& > TSTART(J&) AND ti& <= TEND(J&) THEN 
IF flag% = 0 THEN flag% = 1 'transition from out­

'side the window to in­
'side window. 

write variable values to the screen or to the .OAT file 
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'Pout is multiplied by 1000 to display the value in mW. 
'RTLoss is multiplied by 100 to display the value in percent. , 

IF PFILE$ ::s "Y" THEN 
twindow = CDBL(ti&- TSTART(J&)) * DELTAT 
PRINT #1, T, Iout * COEFOUT * 1000, N(1), N(2), RTLoss * 100 

END IF 
IF PSCREEN$ ::s "Y" THEN 
PRINT USING "#.###"""""'"""""; T; 
PRINT" 1)"; :PRINT USING "#.###"'"'A"'"; N(1); 
PRINT 11 2)"; :PRINT USING"#.###"""""""""; N(2); 
PRINT" 3)"; :PRINT USING"#.###"""""""""; N(J); 
PRINT" i)"; : PRINT USING"#.###"""""""""; N(O); 
PRINT " o)"; : PRINT USING "#.###"""""""""; Iout * COEFOUT * 1000; 
PRINT "mW" 

PRINT "Epump•"; Epump * EPcoef; " Eout="; Eout * ELcoef; 
PRINT " Eloss="; Eloss * ELcoef 

END IF 
ELSE 

IF flag% = 1 THEN 
flag% = 0 'transition from printing to not 
J& = J& + 1 'printing & look for next print win 
PRINT TIME$; " computing . . . T="; T 



END IF 
END IF 

----------------------------------------------------------------
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'check for the next window when the loss is supposed to switch to a low value 

I ----------------------------------------------------------------

IF (ti& > RSTART(K&) AND ti& <• REND(K&)) THEN 
RTLoss a Lowloss 
IF Rflag% = 0 THEN Rflag% = 1 

ELSE 
RTLoss a HiLoss 
IF Rflag% a 1 THEN 

Rflag% = o 
K& = K& + 1 

END IF 
END IF 

N(O) • Ibwd(2) + Ifwd(2) 
CALL Runga (PUMP) 
Ibwd(2) • N(O) * Ibwd(2) / (Ifwd(2) + Ibwd(2)) 
Ifwd(2) • N(O) - Ibwd(2) 

shift the photon package around the cavity 

!old a Ibwd(1) 'temporary storage cell while shift­
'ing from !fwd to Ibkwd. 

FOR zi\ a 2 TO NCAVITY\ 
Ibwd(zi\ - l) • Ibwd(zi\) 'shift photons bckward in Z dirxn. 

NEXT zi\ 

'calculate the amount of enegy converted to output, lost due to losses, and 
'returned back into the cavity. 
I 

!out • Ifwd(NCAVITY\) * TOUT 
!loss a Ifwd(NCAVITY\) * RTLoss 
Ibwd(NCAVITY\) • Ifwd(NCAVITY\) - !out - !loss 

FOR zi\ = NCAVITY\ TO 2 STEP -1 
Ifwd(zi\) • Ifwd(zi\ - 1) 'shift photons forward in Z dirxn 

NEXT zi\ 

Ifwd(1) • !old 

'carry out bookkeeping to account for all tha input energy 
I 

Epump • Epump + PUMP 
Eout a Eout + !out 
Eloss a Eloss + !loss 

NEXT ti& 
CLOSE #1 

'total pump energy 
'total output energy 
'total cavity loss energy 

SAVE THE FINAL CAVITY CONDITIONS TO .STA FILE 



IF PFILE$ =- "Y" THEN 
OPEN filename$ + ".STA 11 FOR OUTPUT AS #3 

PRINT #3, TPREV + T 
PRINT #3, N(O), N(l), N(2), N(J) 
FOR zit s 1 TO NCAVITY% 

PRINT #3, Ifwd(zi%) 
PRINT #3, Ibwd(zi%) 

NEXT zi% 
PRINT #3, zp% 
PRINT #3, Epump 
PRINT #3, Eloss 
PRINT #3, Eout 

CLOSE #3 
END IF 

SAVE FINAL CAVITY CONDITIONS TO .INP FILE 

IF PFILE$ • "Y" THEN 
PRINT #2, "final N(O)", N(O) 
PRINT #2, "final N(l)", N(l) 
PRINT #2, "final N(2)", N(2) 
PRINT #2, "final N(3)", N(J) 

Ecav • 0 
FOR zi% • 1 TO NCAVITY% 

PRINT #2, "fwd", zi%, Ifwd(zi%) 
Ecav =- Ecav + Ifwd(zi%) 'sum all inter cavity energy 
Ecav =- Ecav + Ibwd(zi%) 

NEXT zit 
FOR zit • 1 TO NCAVITY% 

PRINT #2, "bwd", zi%, Ibwd(zi%) 
NEXT zit 

EPcoef • DELTAT * HV808 'convert pump intensity to Joules 
ELcoef • KV1064 * MOOAREA# * .000001 ' " lasing " " " 

Epump • Epump * EPcoef 
Ecav • Ecav * ELcoef 
Eout • Eout * ELcoef 
Eloss s Eloss * ELcoef 

'take into account the energy stored in the different levels due to Boltzman 
'distribution and redo the bookkeeping of input energy again. 
' 

EN1 • (N(l) - NlB) * KV808 * 2117.74 I 12376.24 
EN2 s N(2) * HV808 * 11516.24 I 12376.24 
EN3 • N(3) * HV808 
Ebalanc • Ecav + Eout + Eloss + ENl + EN2 + EN3 

PRINT #2, "total pump energy into system•"; Epump; "3" 
PRINT #2, "total energy left inside cavity-"; Ecav; "3" 
PRINT #2, "total lasing energy•"; Eout; "J" 
PRINT #2, "total cavity loss energy•"; Eloss; "J" 
PRINT #2, "energy stored as N(l)•"; ENl; "J" 
PRINT #2, "energy stored as N(2)•"; EN2; "J" 
PRINT #2, "energy stored as N(3)•"; EN3; "J" 
PRINT #2, "total energy balance •"; Ebalanc; "J" 
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PRINT #2, "final power out="; Iout * COEFOUT; "W" 

'write the differential equations to be passed to Runga. IPRIME(l-3) corres­
'pond to population of levels l-3, IPRIME(O) corresponds to intensity. 
I 
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IPRIME(l) • N(O) * SIGMA2l * (N(2) - N(l)) + N(2) I TAU2l- (N(l) - NlB) / TAUlO 
IPRIME(2) • N(J) I TAU32 - (N(2) - N(l)) * SIGMA2l * N(O) - N(2) * TAU2eff 
IPRIME(J) • PUMP - N(3) * TAU3eff 
IPRIME(O) • (N{2) - N(l)) * COEF2l * N(O) 

'at steady state, the values of the IPRIME(0-3) should be zero or atleast many 
'orders of magnitude less than the steady state value. These values are print 
'ed out below. 

PRINT #2, "d.Nlldt •" IPRIME(l) 
PRINT #2, "d.N2Idt •" IPRIME(2) 
PRINT #2, "dN3Idt •" IPRIME(3) 
PRINT #2, "diidt •"; IPRIME(O) 

CLOSE #2 
END IF 

BEEP: BEEP: BEEP: BEEP: BEEP: BEEP 

SUB Runga (PUMP) 

Runga Kutta differential equation solver 
source : Computational methods in Ordinary Differential Equations 
Author : Lambert 
Orginated by : R. England ( page 133 ) 
Advantage: ERROR estimate 

DELTAT • step size 
T.Kl-6 • dummy variables 

FOR It • 0 TO 3 'first step 
YN(It) • N(It) 
T.Kl(I\) • IPRIME(I\) 
N(I\) • YN(I\) + DEL2 * IPRIME(I\) 

NEXT It 

GOSUB 300 

FOR It • 0 TO 3 'second step 
T.K2(I\) • IPRIME(I%) 
N(I\) • YN(I\) + DEL2 * IPRIME(I\) 

NEXT It 

GOSUB 300 

FOR It • 0 TO 3 'third step 
N(I\) • YN(I\) + DELTAT * IPRIME(I\) 
TK2(I%) = TK2(I%) + IPRIME(I\) 

NEXT I\ 



300 

GOSUB 300 

FOR It = 0 TO 3 'forth step 
N(I%) - YN(I%) + DEL6 * (TKl(I%) + IPRIME(I%) + 2# * TK2(I%)) 

NEXT I% 

GOTO 200 

IF N(O) < 1! THEN N(O) 
IF N(1) < 1! THEN N(1) 
IF N(2) < 1! THEN N(2) 
IF N(3) < 1! THEN N(3) 

1! 
1! 
1! 

- 1! 

'depletion of intensity o 
'depletion of level 1 
'depletion of level 2 
'depletion of level 3 

IPRIME(1) • N(O) * SIGMA2l * (N(2) - N(l)) + N(2) I TAU2l- (N(l) - NlB) 
IPRIME(l) = IPRIME(1) I TAU10 
IPRIME(2) = N(3) I TAU32 - (N(2) - N(1)) * SIGMA2l * N(O) - N(2) * TAU2eff 
IPRIME(J) = PUMP - N(J) * TAUJeff 
IPRIME(O) = (N(2) - N(1)) * COEF2l * N(O) 
~ 

200 END SUB 
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