
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Fall 1-18-2019 

Knowing Without Knowing: Real-Time Usage Knowing Without Knowing: Real-Time Usage 

Identification of Computer Systems Identification of Computer Systems 

Leila Mohammed Hawana 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Computer Sciences Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Hawana, Leila Mohammed, "Knowing Without Knowing: Real-Time Usage Identification of Computer 
Systems" (2019). Dissertations and Theses. Paper 4680. 
https://doi.org/10.15760/etd.6564 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4680
https://doi.org/10.15760/etd.6564
mailto:pdxscholar@pdx.edu


Knowing Without Knowing: 

Real-Time Usage Identification of Computer Systems 

by 

Leila Mohammed Hawana 

A thesis submitted in partial fulfillment of the 
requirements for the degree of 

Master of Science 
in 

Computer Science 

Thesis Committee: 
Wu-chi Feng, Chair 

Wu-chang Feng 
Bart Massey 

Portland State University 
2018 



i 

Abstract 

Contemporary computers attempt to understand a user’s actions and preferences 

in order to make decisions that better serve the user. In pursuit of this goal, computers can 

make observations that range from simple pattern recognition to listening in on 

conversations without the device being intentionally active. While these developments 

are incredibly useful for customization, the inherent security risks involving personal data 

are not always worth it. This thesis attempts to tackle one issue in this domain, computer 

usage identification, and presents a solution that identifies high-level usage of a system at 

any given moment without looking into any personal data. This solution, what I call 

“knowing without knowing”, gives the computer just enough information to better serve 

the user without knowing any data that compromises privacy. With prediction accuracy at 

99% and system overhead below 0.5%, this solution is not only reliable but is also 

scalable, giving valuable information that will lead to newer, less invasive solutions in 

the future. 

 

  



ii 

 

 

 

 

 

 

 This thesis is dedicated to every person who has given me the confidence and 

support to believe in myself and what I can accomplish. From home cooked meals and 

study sessions to crazy cat pictures, bubble tea, and warm hugs; I would not be where I 

am today without each and every one of you. 

  



iii 

Acknowledgements 

First, I’d like to express my sincerest gratitude toward my advisor Wu-chi Feng. 

Not only has he been nothing but supportive throughout the entire process, he has served 

as a mentor from beginning to end, taking me under his wing when I barely knew enough 

to keep up. I have nothing but the fondest of thoughts toward him and I’m so fortunate to 

have had the opportunity to work with him the last two years. My experience at PSU 

would not have been as fulfilling without his support. 

Second, I’d like to express my appreciation to my thesis committee, Professors 

Wu-chang Feng and Bart Massey. Not only was their input to the project valuable, but 

their selfless attitudes and inspiring service to the community at PSU are second to none. 

I am very grateful to have worked with these fine individuals during my time at PSU. 

Next, I’d like to thank my manager Sandeep Nair and my father Mohammed 

Hawana for helping me grow professionally during this process. From being a sounding 

board to offering advice and support, they have both given me the confidence to speak up 

and believe in my skills enough to succeed in my research and to keep imagining what I 

can do next, no matter how impossible it may seem. 

On that note, I’d also owe my deepest gratitude to my friends and family. While 

most of the time I appear as a ghost, I am in awe of the love and support they always 

throw my way. Thank you for making the whole process that much easier. 

Lastly, I want to acknowledge my better half, Erik, for everything I can’t describe 

in words. My heart is full as I write this, and yet I have no idea what to say that will fully 

encompass the support you have given me for so long. Thus, all I will say is thanks.



 

Table of Contents  

Abstract................................................................................................................................ i 

Dedication........................................................................................................................... ii 

Acknowledgements........................................................................................................... iii 

List of Tables .....................................................................................................................vi 

List of Figures....................................................................................................................vii 

Chapter 1: Introduction and Related Work 

1.1 Introduction....................................................................................................................1  

1.2 Related Work.…............................................................................................................2 

1.2.1 Linear and Nonlinear Methods for Brain Computer Interfaces……..........................2 

1.2.2 Telemetry Mining in Space Systems..........................................................................3 

1.2.3 Power Analysis and Optimization Techniques...........................................................4 

1.2.4 Monitoring of Computer Usage..................................................................................4 

Chapter 2: Experiments and Proposed Approach 

2.1 Methodology…..............................................................................................................6  

2.1.1 Usage Scenarios..........................................................................................................6  

2.1.2 Data Collection...........................................................................................................7  

2.1.3 Experimental Setup.....................................................................................................8 

2.2 Data and Model Analysis.............................................................................................10  

2.2.1 Linear Versus Nonlinear Data..................................................................................11  

2.2.2 Feature Independence...............................................................................................12 

2.2.3 Feature Importance for Runtime...............................................................................13 

2.3 Proposed Approach......................................................................................................14  

Chapter 3: Results and Use Cases 

3.1 Further Complexity Reduction....................................................................................15  

3.2 Results..........................................................................................................................17  

3.3 Use Cases….................................................................................................................18  

 



 

Chapter 4: Future Work and Conclusion 

4.1 Future Work.................................................................................................................20  

4.2 Conclusion...................................................................................................................21  

References..........................................................................................................................22 

Appendix I: Final Feature Set............................................................................................23 



vi 

List of Tables 

Table 1: Processor, Memory, and Graphics Hardware........................................................9 

Table 2: Model Accuracies................................................................................................11 

 

  



vii 

 

List of Figures 

Figure 1: Usage Scenarios…...............................................................................................9 

Figure 2: Feature Importance.............................................................................................13 

Figure 3: Feature Count vs Accuracy………....................................................................16 

Figure 4: Ensemble Classifier Confusion Matrix..............................................................17 

  



1 

Chapter 1: Introduction and Related Work 

1.1 Introduction 

Today we live in a world where our sincerest desires, interests, livelihood, and 

identity are represented by data. As a consequence, data is becoming a resource as 

powerful and influential as water, electricity, and oil. Many companies try gathering 

personal data about their consumers to customize the user experience and improve their 

product. Unfortunately, consumers are weary of letting their information be collected and 

used due to increased risks associated with unknown tracking, security breaches, and 

misused information. This forces engineers to reassess their solutions and raises the 

question: What information is actually necessary to accomplish our goals? 

 Consider the scenario of understanding what a user is doing on their device. If we 

know exactly what they are doing at any given moment, we can customize their 

experience with helpful behaviors ranging from recommendations to performance 

improvements and personal statistics. While each of these options are customized for the 

targeted user, it may not be a specialization they desire in exchange for their personal 

data. But what if we could derive solutions that improve their experience without 

compromising their privacy? While the recommendations may not be as optimal, the user 

value remains for improvement and customization. 

 The usage identification example has generated great interest in the computer 

systems domain for many years. The primary application for usage identification has 

been on laptop battery lifetime optimization [5].  As an example, frequency scaling [4] can 

be employed to reduce battery usage when the user is using it for interactive activities 



2 

 

such as word processing. These coarse-grained approaches can continue to be improved 

with more fine-grained usage information, which would pave the way for further 

optimization of resources. In fact, the desire for understanding the current usage of the 

system has led to invasive solutions that allow the system to look at the applications a 

user is currently running [3]. 

 This thesis provides a non-invasive solution for usage identification using 

supervised learning techniques that perform real-time classification. This solution yields 

the advantages of the application-based approaches without being invasive by only using 

data directly from the system to train the model (such as CPU utilization, synchronization 

statistics, etc.). To our knowledge, this has not yet been previously proposed.  

 In the rest of this chapter, we discuss related work for the usage identification 

scenario. Chapter 2 focuses on the proposed methodology and experimentation done to 

arrive at the proposed solution. Chapter 3 focuses on the results of the experimentation 

and some use cases. Chapter 4 will discuss future work and conclude. 

1.2 Related Work 

 This section strives to cover works related to the area of usage identification from 

telemetric data and its relevant use cases. Although there is not a lot of work in this area, 

this section covers some of the related processes and previous attempts. 

1.2.1 Linear and Non-Linear Methods for Brain-Computer Interfaces 

 When it comes to utilizing machine learning algorithms across different domains, 

the same question arises: which type of model should be used? In several cases, the 



3 

 

answer is obvious. But in others, some investigative work needs to be done. Many times, 

questions on linearity need to be addressed. In this work documented by Gary E. Birch[1], 

two researchers debate the value of linear versus nonlinear models in brain-computer 

interfaces, a domain in need of statistical modeling and data analysis to further the field’s 

research. 

 While both sides presented meaningful claims, the final decision was evident: 

simplicity is best whenever possible. With regards to linear and nonlinear models, 

simplicity best fits with linearity. While they concluded that linear models should be used 

whenever possible, Birch also noted that nonlinear models should be used as the data 

complexity grows or as the size of the dataset increases due to the ability to better fit the 

data in general.  

 In this thesis, linearity is explored to determine how the data behaves and how it 

will continue to behave with increased data and complexity. With this information, the 

scope of potential models is narrowed down significantly. 

1.2.2 Telemetry Mining in Space Systems 

 In Takehisa et al. [2], the authors address the issue of requiring domain expertise 

for anomaly detection in spacecrafts by using machine learning and data mining 

techniques to analyze system telemetry data. Before this approach, common methods 

were based on apriori expert knowledge and deductive reasoning [2]. By using a dynamic 

Bayesian network, they create a model that can estimate unknown parameters from past 

data, thereby relieving the need for expert knowledge and handcrafted modeling [2]. 



4 

 

 This work is one example of how simply using telemetric data can give 

information not otherwise obtained, suggesting that there is more to explore in the 

telemetric data than otherwise thought. With similar processes in mind, this thesis 

attempts to explore telemetric data in computer systems to identify the usage of a given 

device without relying on domain expertise, application data, or private information.  

1.2.3 Power Analysis and Optimization Techniques 

 “Power Analysis and Optimization Techniques for Energy Efficient Computer 

Systems” by Chedid et al. [4] provides a thorough presentation of materials that address 

power consumption reduction through dynamic monitoring of system hardware. The goal 

of this research is to provide optimizations to the system that will reduce power 

consumption without affecting the necessary performance of the system. While this 

research is beneficial for system optimization, it does not understand what the system is 

being used for at any given moment. This work provides foundations for understanding 

the types of relationships system hardware has with performance optimization. Coupled 

with information about the current system usage, machines can be further optimized for 

targeted benefits like battery optimization, temperature, performance, or audible effects. 

1.2.4 Monitoring of Computer Usage 

 In a patent by McCreesh and Stockton [3], computer usage identification is solved 

by looking at application names and maintaining a white list mapping of applications to 

usages. This means that as more and more applications are used, the list continues to 

grow. Unfortunately, this solution can easily get out of hand. The solution in this thesis 



5 

 

addresses this problem by using machine learning algorithms to learn usages without 

looking at the application running. By training the model to recognize usage scenarios in 

this manner, the issues that arise with whitelisting are no longer relevant. Further, with 

accuracy as high as 99%, the tradeoff of certainty with probability is insignificant. 



6 

 

Chapter 2: Experiments and Proposed Approach 

 This chapter covers some of the initial experimentation with regards to data 

collection and model analysis and concludes with a proposed approach to solving the 

real-time usage identification problem. It addresses questions such as linearity, 

independence, and complexity as a way to understand the inherent behavior of the data.  

2.1 Methodology 

 This section discusses the foundational information required to set up the 

experiments in section 2.2 including the types of usage scenarios considered, the data 

collection process, load generation, and system specifications.  

2.1.1 Usage Scenarios 

In this thesis, four usage scenarios are considered: 3D gaming, video streaming, 

CPU-intensive workloads, and user idle. 3D gaming refers to games that use a significant 

amount of 3D graphics, such as Rocket League and League of Legends. Video streaming 

refers to videos that are streamed over the internet in real-time. This includes sources 

such as YouTube, Netflix, and Hulu, to name a few.  A CPU-intensive workload refers to 

activities that utilize the CPU. This was simulated with a CPU benchmark Cinebench 

which runs various CPU workloads and evaluates the system based on its performance. 

Finally, user idle signifies a state when the user is not using the device. This differs from 

a typical idle state as there may be background apps running that potentially use the CPU 

or GPU. 

 



7 

 

2.1.2 Data Collection 

 When approaching the problem of usage identification, it is important to consider 

the individual workloads and how they differ from one another. For example, in a gaming 

mode, it is expected that GPU utilization will increase due to the heavy graphics usage. In 

contrast, a CPU-heavy workload sees increased CPU utilization but decreased GPU 

utilization. Further, the user idle scenario directly opposes the previous usages as CPU 

and GPU utilization are minimal. 

 To start, over 60,000 system counters were read every five seconds using the 

Windows Performance Data Helper (PDH) library to collect data for analysis. Some of 

these counters include system utilization, power levels, synchronization events, and 

packet transfers, to name a few. The complete list may be found in Appendix I. These 

counters form the dynamic features that the model will receive. For the purposes of this 

discussion, a dynamic feature is a feature that is read periodically at runtime. The goal of 

this is then to use machine learning techniques to provide classification of usage scenario 

from the counters. 

In addition to the dynamic features, static features need to be assessed in order to 

address the scalability of the model, which were collected with the executable CPUZ. A 

static feature, contrasting the dynamic feature, is one that is only read once at the 

beginning because the information does not change throughout. Since different types of 

processors have different thresholds with relation to power, dynamic readings will vary 

drastically between systems. Static features alleviate the issue this causes by training the 



8 

 

models to relate system type with counter readings and use that to accurately predict the 

usage. The complete list of static features may also be found in Appendix I.  

 Following significant data analysis which will be described in section 2.2, the data 

collection script has been modified to collect 47 specific features, with 23 of the features 

being dynamic and the remaining 24 features being static. These features were chosen 

primarily due to their influence on the final prediction and are, thus, the features that are 

most distinguishing between workloads. 

2.1.3 Experimental Setup 

 For the experiments in the following sections, data was collected on a variety of 

systems by isolating each usage scenario for 60-minute increments and collecting pure 

data. In all experiments, the computer was connected with an ethernet cable, so no 

internet connectivity issues were present. The gaming data usage scenario was simulated 

with FishGL which is an online interactive fish tank using 3D graphics. The interactive 

tank used 325 fish per second, had lights and sound on, and a recently cleaned tank. The 

streaming data was simulated by playing YouTube and Netflix videos in full screen mode 

at 720p. This was collected by running prolonged yule log videos like the one displayed 

in Figure 1. The CPU data was gathered by running the Cinebench benchmark tests 

which are designed to simulate a heavy CPU workload. The idle scenario was gathered 

by letting the computer remain idle for the allotted time with background apps running 

normally. Some examples of the types of background apps can be found in the upper 

right of Figure 1. While there are a variety of other settings that can be simulated for the  



9 

 

 

Figure 1: Each image represents a scenario that was run during the data collection phase. The upper left 

represents the gaming scenario with FishGL, a 3D online fish tank. The upper right represents the idle 

scenario and shows the utilization levels when the data was collected. Nothing was running on the system 

for the idle scenario except for background applications. The lower left shows the streaming scenario with 

a YouTube video being streamed at 720p HD resolution at normal speed. The lower right shows the CPU 

scenario by showing a time lapse of the Cinebench workload. 

Processor Storage Graphics 

Ivy Bridge NVMe Intel® HD Graphics 515 

Haswell RAID Intel® HD Graphics 615 

Broadwell SATA Intel® HD Graphics 620 

Skylake  Intel® UHD Graphics 620 

Kaby Lake  Intel® Iris® Plus Graphics 640 

Coffee Lake  NVIDIA GeForce MX130 

  NVIDIA GeForce 940MX 

  NVIDIA GeForce GTX 1050 

Table 1: List of the different types of processors, memory, and graphics hardware used during training. 

This list was referenced while searching for testing systems to ensure that the hardware type had been seen 

by the model before but not the specific system. 



10 

 

idle scenario, only background applications with no active foreground screens were used 

for these experiments. Other varieties of idle will be added in future work. 

The testing experiments were run on an Asus Zenbook running a Windows 10 OS 

with an Intel® Coffee Lake processor, a SATA memory type, and Intel® UHD Graphics 

620 graphics hardware. This machine was chosen because it was a system the model was 

not trained on but contained similar hardware to systems that the model had trained on. 

The list of processors, storage, and graphics the model has been trained on can be found 

in Table 1. 

2.2 Data and Model Analysis 

 The problem of usage identification is one that can be solved numerous ways. 

While clustering algorithms by usage type is one approach, this thesis considers the 

approach of supervised learning strategies for two reasons. First, supervised learning 

gives more control over how the data is organized. With this control, we can understand 

the subtleties associated with each type of usage and allow that to guide future usage 

categorization. Second, while some supervised learning techniques take a while to train, 

they are very quick to infer, thus not taking up much compute time on the system. 

 In order to understand which types of models and features will work best with the 

supervised approach, three major questions were addressed and are discussed in the 

sections below. These experiments will address the linearity, independence, and 

complexity of the data. From this, we infer the best approach to employ for the solution. 



11 

 

For the purposes of these experiments, the features referred to are dynamic. The static 

features are added for model evaluation but not for feature evaluation. 

2.2.1 Linear Versus Nonlinear Data 

 In the first experiment, it was imperative to narrow down the behavior of the data 

to reduce the scope of possible algorithms. In order to do this, the collected data was run 

through a neural network, a decision tree, a random forest, a naïve Bayes classifier, and a 

logistic regression algorithm. The logistic regression and naïve Bayes algorithms were 

chosen to showcase linear data while the neural network, decision tree, and random forest 

were chosen to showcase nonlinear data. The results can be found in Table 2. 

Algorithm Training Accuracy Testing Accuracy Difference 

Logistic Regression 99.540% 98.693% 0.847% 

Naïve Bayes 93.349% 77.886% 15.463% 

Neural Network 99.974% 99.833% 0.141% 

Decision Tree (w/ 

Bagging) 

99.989% 97.552% 2.437% 

Random Forest 99.949% 99.221% 0.728% 

Ensemble  99.994% 99.833% 0.161% 

Table 2: Training and testing accuracy of various algorithms. It is evident that the best results come from 

the non-linear algorithms such as network and tree-based algorithms. As a note, the ensemble network is 

composed of a neural network, a decision tree with bagging, and a random forest. 

Based upon the preliminary testing of the data with these selected algorithms, it is 

evident that the data behaves nonlinearly. Further, the accuracy significantly improved in 

certain usages, with streaming and gaming being correctly classified 100% of the time. 

Most of the inaccuracies with the non-linear models were consistent and isolated to the 



12 

 

CPU and Idle scenarios. With this information, the next question to be investigated 

involves feature independence. 

2.2.2 Feature Independence 

 The second experiment was done to understand the dependence of the features. 

With models such as naïve Bayes, one assumes independence of features. In many cases, 

this assumption is not wrong. However, in cases where features are not truly independent, 

models that make this assumption perform poorly compared to models that do not. This 

experiment was designed to determine if the data performs well with the independence 

assumption. 

 The experiment was run by feeding the data through the neural network and naïve 

Bayes networks represented in Table 2 above. It is important to note that both a Gaussian 

Naïve Bayes and a Multinomial Naïve Bayes were considered for evaluation. However, 

the Gaussian naïve Bayes achieved the highest accuracy and therefore is used to represent 

the naïve Bayes model in Table 2. With the neural network outperforming the best naïve 

Bayes model by approximately 22%, it became evident that the feature independence 

assumption did not hold with this data. One example further proving this is the GPU 

features listed in Appendix 1. These four features, when included together, make the 

network stronger. However, when one or two of them are removed, the model accuracy 

severely drops. When all of them are removed together, the model accuracy drops, but 

not as severely as when only one or two of them were removed. This example 

demonstrates the dependence between certain features in the network. Establishing the 



13 

 

fact that the data is not linear and the features are not independent, a third experiment was 

conducted to determine which of the features are necessary for runtime performance. 

2.2.3 Feature Importance for Runtime 

 The third experiment looked at which features were ideal for runtime 

performance. Upon the first iteration of filtering, the random forest exposed some of the 

most beneficial features to involve the cache, GPU utilization, CPU transitions, and 

synchronization, among others. As it can be noted in Figure 2, the most important feature 

by far was “GPU_3D_Util_Percentage” with “C3 Transitions” and “Idle Break Events” 

being the next most relevant. These features appear to make sense with our four scenarios 

since GPU utilization and CPU Transitions differentiate CPU workloads from gaming 

workloads and idle break events separate idle scenarios from streaming, CPU, and 

gaming. Further, the analysis yielded the optimal number of features to be 116, which is 

significantly reduced from the thousands in the initial data collection phase. 

 

Figure 2: This graph demonstrates the importance of each feature in the random forest that was evaluated 

in Table 1. The most important features involve GPU utilization, CPU transitions, and idle break events.  



14 

 

2.3 Proposed Approach 

 Due to the reduction in complexity, the non-linearity of the data, and the lack of 

feature independence, a non-linear ensemble classifier (composed of a neural network, 

random forest, and bagged decision tree) is the proposed solution for the usage 

identification problem. Upon continued analysis of the data with the ensemble model, the 

feature set was further reduced to 47 features without loss of accuracy. Of those 47 

features, 23 of them are dynamic and the remaining are static. The full list can be found 

in Appendix I.  



15 

 

Chapter 3: Results and Use Cases 

 This chapter discusses the finalized method, the results of the approach, and 

potential use cases for this model, providing more detail than chapter 2 and focusing on 

how this model will be useful in different domains. 

3.1 Further Complexity Reduction 

 Up until this point, the feature complexity has been reduced to the optimal 116 

feature count as rendered by the random forest. However, the final model has been 

reduced to 47 features, with only 23 of them being from the original 116 dynamic 

features. This reduction was due to an evaluation of the accuracy vs. feature count 

organized by highest significance. As can be seen in Figure 3, the significant gain in 

benefit ends after using approximately the most significant 25 features. While 116 

features were found to yield the optimal accuracy, it was apparent that using less features 

would improve the overall complexity and performance of the model without 

significantly degrading accuracy. The top 23 features can be found in Appendix I. 

 While the 23 dynamic features were found to yield high accuracy on the device, 

they were not enough to scale across unseen devices. Further, no amount of these 

dynamic features would scale this algorithm across different types of systems. This issue 

stems from the difference in usage across systems of varying capacities. For example, a 

3D game being played on a properly tuned gaming laptop uses significantly less power 

than the same game being played on a Chromebook or other lightweight computer. Thus, 

when scaling across systems, the dynamic feature values were not consistent. This  



16 

 

 

Figure 3: Number of selected features vs accuracy. While 116 features had the highest accuracy, the most 

significant gain ended after 25 features. Thus, the dimensionality of the data could be further reduced 

without significantly affecting the performance of the model. 

confused the model greatly. To accommodate for this, static information about the system 

needed to be included. By doing so, the algorithm can make a relation between the type 

of hardware the system had and the values of the dynamic features. Thus, 24 more 

features were added that give information about the processor type, graphics type, 

memory storage type, and power limits, amongst others. The full list can also be found in 

Appendix I. 

 

 



17 

 

3.2 Results 

 The final model (ensemble classifier) utilizing the 47 features resulted with 

approximately 99.99% training accuracy and 99.83% testing accuracy. The confusion 

matrix is as follows: 

 CPU Gaming Idle Streaming 

CPU 714 0 0 5 

Gaming 0 719 0 0 

Idle 1 0 718 0 

Streaming 0 0 0 1438 

 

Figure 4: Confusion matrix for ensemble classifier. Note that gaming and streaming are perfectly 

classified whereas idle and CPU are not. Further, note that streaming has 2 times as many samples as the 

other three scenarios. This is due to the fact that streaming engines behaved differently on a telemetric 

level and using more data provided more concrete separation between the other classes. 

As it is seen above, all mistakes made by the model are narrowed down to two 

types of misclassification: CPU occasionally misclassifying as streaming and idle 

occasionally misclassifying as CPU. This means that gaming workloads and streaming 

workloads are correctly identified 100% of the time with this model. The other 

inconsistencies are explained by the following reasons: 

1. CPU misclassified as streaming: Occasionally, this occurs when the CPU 

workload is not as large as it would normally expect. Since streaming involves 

the CPU but not as heavily as a CPU-specific workload, lighter CPU loads 

misclassify as streaming. However, in practical situations and use cases, this 

may not be an issue. 



18 

 

2. Idle misclassified as CPU: This occurs on occasion when there are a lot of 

background applications running. Since idle refers to user idle and not CPU 

idle, many items can be running in the background (or foreground) even 

though the user is not present. If a background app uses the CPU in a 

significant manner, it can fool the algorithm. However, this issue will be 

rectified with more refined data in future work. 

Upon evaluating the runtime performance of the model within the real-time 

application, the amount of time used for both real-time data collection and inference 

totaled less than 100ms, yielding on average 0.5% CPU utilization on a machine. This 

means that the user’s experience is not affected by performing this evaluation locally on 

their system. Thus, despite the inaccuracies, the model performs well enough to be 

effective in other applications. 

3.3 Use Cases 

 Now that the system has reliably given this information, what is next? One 

possibility is using this information to directly benefit the user of the device. By 

understanding what the user is doing at a high level, an application on the system can 

give statistical information to the user about how the device is used on a daily basis. With 

this information, the user could modify their habits or use the information to better 

understand how they truly use their machine. Also, if the user is concerned about 

spending too much time on a particular activity, messages can be sent to them notifying 

when they passed a particular threshold. 



19 

 

 A second example of a use case steps away from the end user and is left in the 

hands of the manufacturer. If the manufacturer understands the real-time identification of 

a system, they can provide low-level control of the power and thermal performance of a 

system targeted for the generalized usage. By doing this, the user will get an experience 

that is optimized toward their benefit, whether that be to preserve battery life or improve 

performance. Further, by knowing the use case, the preference and system levels could 

change depending on the current usage of the machine, providing a new level of 

optimization.  



20 

 

Chapter 4: Future Work and Conclusions 

4.1 Future Work 

Up until now, this work has almost solved the problem of usage identification at a 

small scale. This means that under the circumstances the model has been trained on or 

similar circumstances, four scenarios are able to be differentiated. But how can this 

expand? There are two main ways this work will progress to improve the model: 

improving data diversity and increasing usage scenarios. 

First, consider data diversity. In order to make the model more general, diverse 

data needs to be added to the dataset. By adding diversity in the data, the model will more 

likely recognize situations it has not seen before with greater confidence than it does 

currently. While it is able to recognize sources that comfortably fit in the scenarios (like 

YouTube or Netflix for streaming, high-performing games, etc.), some of the more 

nuanced cases are easily misclassified because the model has not yet been exposed 

enough to more nuanced cases. Thus, by increasing the diversity of the data and including 

data from different sources and in different scenarios, the model will gain generality and 

become more confident in situations where it encounters nuanced data sources. 

Second, consider the amount of usage scenarios currently considered in these 

experiments. For the purposes of this thesis, only four scenarios were considered: 3D 

gaming, CPU intensive workloads, video streaming, and user idle. These four scenarios 

were chosen partly because of their known impact in various use cases but also because 

of their contrasting workloads. By strategically choosing these four scenarios, less data 



21 

 

was needed to get higher performing results. Now that this model has been verified to 

work, it is important to continue to add usage cases to give the model more generality and 

finer-grained information that will be more beneficial in use cases as described 

previously. 

4.2 Conclusion 

 From surfing the web to playing our favorite games, we spend hours every day on 

devices. Sometimes, we wonder where our day has gone. Other times, we just wish our 

machines would work better when performing a specific task. By showing how high-

level usage identification can be unobtrusively classified without the use of personal 

information, we proposed a high accuracy tool to solve this problem. By knowing the 

current usage of a system, an app could tell users how many hours of their day were spent 

playing games or streaming movies as opposed to work-related items. Further, this 

information can enhance the user experience by changing settings on a system to improve 

whatever is most valuable, may it be battery life, performance, device temperature, or 

even noticeably audible effects. By asking the questions about the data that can be 

received only from the system and what can be accomplished with said data, we make 

progress toward solving problems without invading the privacy of the user. This, coupled 

with future research, provides an invaluable step toward protecting, customizing, and 

enhancing the daily user experience.   



22 

 

References 

1. K.-R. Muller, C. W. Anderson, G. E. Birch, "Linear and nonlinear methods for 

brain-computer interfaces", IEEE Trans. Neural Systems Rehab. Eng., vol. 11, no. 

2, pp. 165-169, Jun. 2003. 

2. T. Yairi, Y. Kawahara, R. Fujimaki, Y. Sato, and K. Machida, "Telemetry-

mining: a machine learning approach to anomaly detection and fault diagnosis for 

space systems, " in 2nd IEEE International Conference on Space Mission 

Challenges for Information Technology SMCIT06, 2006, pp. 466-476. 

3. Martin McCreesh and Joseph Stockton, “Monitoring of Computer Usage.” U.S. 

Patent US6978303B1, issued Dec 20, 2005. 

4. Tarkoma, S. (2014). Overview of CPU Power Consumption and Management in 

Smartphones. 

5. Chedid W, Yu C (2005) “Power analysis and optimization techniques for energy 

efficient computer systems.” Adv Comput 63:129–164. 

  



23 

 

Appendix I: Final Feature Set 

Dynamic Features: 

1. GPU Engine (pid_*_*_3D)\\Utilization Percentage 

2. GPU Engine (pid_*_*_VideoDecode)\\Utilization Percentage 

3. GPU Engine (pid_*_*_VideoProcessing)\\Utilization Percentage 

4. GPU Engine (pid_*_*_Copy)\\Utilization Percentage 

5. Processor Information(_Total)\\C2 Transitions/sec 

6. Processor Information(_Total)\\C3 Transitions/sec 

7. Processor Information(_Total)\\Clock Interrupts/sec 

8. Processor Information(_Total)\\DPCs Queued/sec 

9. Processor Information(_Total)\\Idle Break Events/sec 

10. Processor Information(_Total)\\Interrupts/sec 

11. Synchronization(_Total)\\Exec. Resource Boost Excl. Owner/sec 

12. Synchronization(_Total)\\Exec. Resource Boost Shared Owners/sec 

13. Synchronization(_Total)\\Exec. Resource Recursive Excl. Acquires 

AcqExclLite/sec 

14. Synchronization(_Total)\\IPI Send Broadcast Requests/sec 

15. Synchronization(_Total)\\IPI Send Software Interrupts/sec 

16. SynchronizationNuma(_Total)\\Exec. Resource Boost Excl. Owner/sec 

17. SynchronizationNuma(_Total)\\Exec. Resource Boost Shared Owners/sec 

18. SynchronizationNuma(_Total)\\Exec. Resource Recursive Excl. Acquires 

AcqExclLite/sec 



24 

 

19. SynchronizationNuma(_Total)\\IPI Send Broadcast Requests/sec 

20. SynchronizationNuma(_Total)\\IPI Send Software Interrupts/sec 

21. System\\File Data Operations/sec 

22. System\\File Write Operations/sec 

23. System\\System Calls/sec 

Static Features: 

1. Processor Type 

a. Ivy Bridge 

b. Haswell 

c. Broadwell 

d. Skylake 

e. Kaby Lake 

f. Coffee Lake 

2. Number of Threads 

3. TDP Limit 

4. Stock Frequency 

5. Max Frequency 

6. Memory Size 

7. Storage Type 

a. NVMe 

b. RAID 

c. SATA 



25 

 

8. Graphics Type 

a. Intel® HD Graphics 515 

b. Intel® HD Graphics 615 

c. Intel® HD Graphics 620 

d. Intel® UHD Graphics 620 

e. Intel® Iris® Plus Graphics 640 

f. NVIDIA GeForce MX130 

g. NVIDIA GeForce 940MX 

h. NVIDIA GeForce GTX 1050 

 


	Knowing Without Knowing: Real-Time Usage Identification of Computer Systems
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - 623831_pdfconv_8D55C402-E89C-11E8-8ADA-B44E59571AF4.docx

