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(/ 

The estimation of sinewave parameters has many practical applications in test and 

data processing systems. Measuring the effective bits of an analog-to-digital converter 

and linear circuit identification are some typical examples. If a sinew ave's frequency is 

known, there is an established linear method to estimate the other parameters. But when 

none of the parameters are known (which is usually the case in practical situations), the 

estimation problem becomes more difficult. 

Traditional approaches to this task applied an iterative, sinewave curve-fit algo

rithm. Two problems with this technique are that convergence is often slow and not 

always guaranteed and the results of different trials may be inconsistent due to trapping 

at a local minimum. 
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Recently, a non-iterative algorithm has been developed which computes all four 

sine wave parameters directly. The algorithm combines a nonlinear technique and win

dowing to compute the estimates. Although this method is faster and more consistent 

than the curve-fit approach, one disadvantage is that the accuracy of some estimates tends 

to deteriorate rapidly if the sinusoid is corrupted by a high level of noise distortion. 

This study presents an improved algorithm to extract the four parameters of an 

unknown sinusoid from a sampled data record even though the samples may be distorted 

by a high level of noise. Given this record, the proposed method first computes the FFf 

(Fast Fourier Transform) of the data. Analysis of the resulting frequency spectrum pro

vides a rough estimate of the sinewave's fundamental frequency. Next, a bandpass filter 

designed around this frequency is used to eliminate much of the noise from the samples. 

Applying the existing four-parameter estimation algorithm to the filtered data, yields a 

more accurate frequency estimate. Finally, this new value, together with the original 

(noisy) data record is input to the three-parameter estimation algorithm to determine the 

remaining sinewave parameters. 

Simulation results indicate this proposed (new) algorithm not only shows substantial 

improvement in the accuracy of parameter estimates, but also produces consistent results 

for higher levels of noise distortion than previous methods have achieved. 
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CHAPTER I 

INTRODUCI'ION 

SINEW AVE PARAMETER ESTIMATION 

Estimating the parameters of a sinewave is a basic function in many test and data 

processing systems. From an accurate knowledge of the values of these four parameters: 

amplitude, de offset, frequency, and phase angle, the original sinewave can be com

pletely reconstructed. Because many signal processing tasks are carried out in the digital 

domain to take advantage of the power and speed of digital computers, most of the 

"waveforms" dealt with in practice are merely records of digitized data values. There

fore, parameter estimation is often required to extract the actual waveform characteristics 

from the available data record. 

Circuit identification is one important application of parameter estimation. The goal 

of this process is to identify the unique transfer function which correctly describes a 

circuit's performance. For "linear" circuits, this task is somewhat simplified because of a 

special property they possess. A linear circuit can be completely characterized by input

ting a sinewave and measuring the parameters of the output signal. However, if only a 

record of samples is available for the output, the parameters must be "estimated." Any 

differences between the known input sinewave and the measured output reflect the 

circuit's impact on the data and determine its unique transfer function. 

Parameter estimation is also involved in measuring the effective bits of a waveform 

digitizer or ADC (analog to digital converter). The number of effective bits is a figure of 

merit which indicates how much an ADCs nonlinearity has impaired its usefulness at a 

given frequency [ 1]. This value measures the average noise power introduced during the 
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digitizing process and is used to determine the actual resolution of the ADC. A com

monly used definition of effective bits is [4, 5]: 

_ RMSE = lo FullScale ) 
B - N -log2 (Ideal Noise) g2 ( -{IT · RMSE (1.1) 

where B = the number of effective bits, N = bits of the digitizer, FullScale = the 

digitizer's full scale value and RMSE = root mean square error of the digitized signal. In 

practice, one has only the digitized sinewave record (and not the original input signal) to 

work with. Therefore, some type of parameter estimation algorithm is required. Once 

this process is completed, the estimated sinewave is used (as if it were the actual 

sinewave) in (1.1), to compute the effective bits of the digitizer. The accuracy of this 

calculation depends on how closely the sinewave can be reconstructed from estimates of 

its four parameters. 

WHY SINUSOIDS 

This study focuses on the process of estimating the four parameters of a sinusoid: 

amplitude, de offset, frequency and phase angle. Sinewaves are emphasized because of 

their importance in test and measurement systems. Signal processing applications com-

monly use sinusoids as their stimulus. This is due to several unique qualities these 

waveforms possess. One primary factor is that sinewaves are relatively easy to generate 

in practice at the frequencies of interest with adequate fidelity. Also, sinewaves have a 

simple mathematical model which simplifies the algorithms used for data analysis. 

Another advantage, is that many other signals can be broken into a sum of sinusoids and 

worked with in terms of these simpler components. Finally, sinusoids are mathemati

cally related to complex exponentials (phasors) which makes them important in fre-

quency domain analysis. For these reasons, parameter estimation is targeted toward 

sinusoids for most practical applications. 
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DEGREE OF PRECISION 

With the continual advances in electronic technology, the precision of digital pro

cessing systems is steadily increasing. To be of any use in the previous applications 

mentioned, th~ accuracy of the sine parameter estimation algorithm must also keep pace. 

For example, in calculating the number of effective bits of an ADC, the goal is to deter

mine the average noise power introduced by the converter. For this application, any error 

resulting from the parameter estimation process must be considerably smaller than that 

introduced by the converter in order not to distort the results. Considering that 12-bit 

ADCs (with corresponding resolution down to 0.0002) are not uncommon, estimation 

algorithms must have a high degree of precision. 

DEGREE OF ROBUSTNESS 

In addition to being very accurate, modern applications demand an estimation algo

rithm that is able to perform reliably in the presence of distortion as well. Most of the 

digital data available for analysis is acquired through some form of sampling. This pro

cess inevitably introduces a degree of quantization error which distorts the original data. 

Given this distorted version of the data as input, a parameter estimation algorithm must 

be able to extract, as accurately as possible, the true parameters of the original analog 

signal. 

SCOPE OF STUDY 

The primary purpose of this study is to develop an improved algorithm for sinewave 

parameter estimation. In the course of this development, two previously derived algo

rithms will be examined in some depth, based on the success of their approaches, to dis

cover potential areas for improvement. Numerous simulations, to represent a range of 

input conditions, will be used to characterize their performance. Any weakness revealed 
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by the results of these tests will assist in forming a hypothesis for improvement. After 

the proposed algorithm has been described, it will be tested with simulations identical to 

those applied to the previous methods. The results will provide an empirical comparison 

of estimation accuracy. The following chapter presents a more detailed description of 

the actual parameter estimation problem. 



CHAPTER II 

THE PARAMETER ESTIMATION PROBLEM 

A sinewave can be completely characterized by its four parameters: amplitude (A), 

de offset (D), frequency (t), and phase angle (8). Mathematically, it is usually 

represented as a continuous function of time by: 

s(t) =A · sin(2 1t f t + 8) + D (2.1) 

However, in most practical parameter estimation problems, the original analog 

waveform is neither accessible nor convenient for analysis. Instead, a record of digital 

values, obtained by sampling and quantizing the continuous sinewave, is more com-

manly dealt with. 

Sk = s(k/fs) =A· sin(k27tf/fs + 8) + D, k = 0, 1, ... ,N-1 (2.2) 

where k = sequence index 

f =fundamental frequency of the sinewave 

fs = system sampling rate 

N =number of data points in the record 

This type of record represents the typical input to a parameter estimation algorithm. 

The data it contains may be collected from a variety of signal processing sources -- one 

of the most likely being some type of waveform digitizer, or ADC. Therefore, to gain a 

better understanding of the data that the estimation algorithm will have to utilize, it is 

useful to explore the basic characteristics of ADC operation. 
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IDEAL ADC OPERATION 

A block diagram of the circuit for an ideal analog to digital converter (ADC) is 

shown in Figure 1. 

AID Converter 
r------------------------. 
I I 

~-~ampler H Quantizer ~ Coder ~ 
11. . 

ll-------~--------~-------J 1 
Analog 
Signal 

Discrete-Time 
Signal 

Quantized 
Signal 

Figure 1. Block diagram of a basic ADC (analog-to-digital converter). 

Digital 
Signal 

By standard definition, an analog signal is defined at every instant in time and can 

assume an infinite number of values within any continuous range specified. Mathemati-

cally, such signals can be described by functions of a continuous variable (typically 

"time"). A digital signal, by contrast, is defined only at discrete instants in time and can 

assume only one of a finite set of discrete values. Digital signals are usually represented 

by a sequence of binary values of finite word length. The purpose of analog to digital 

conversion is to generate a sequence of binary values which adequately represents the 

original analog input. 

To accomplish this task, the analog input signal is first sampled at (ideally) uniform 

time intervals. Sampling consists of monitoring the analog waveform at specified inter-

vals (tsampie) and recording the value of the waveform at each instant. Then, the sampled 

data is quantized. The "quantizer" takes the sampled values and maps them onto one of a 

finite set of digital values to generate a sequence of output data points. The transfer func-

tion of a 3-bit ADC, shown in Figure 2, illustrates the ideal staircase-shaped performance 
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characteristic. For an ideal ADC, connecting the mid-points of the staircase, should pro-

duce a straight line passing through the origin with a 45 degree ~ngle. This requires both 

a linear transfer characteristic and uniform transition levels (Ll). 

8 v 1 8 
=' 

~ 1 Ill 
~ 8 c: 

.g 3 6 110 
~ 4 8 
'~ 

"0 5 101 
~ 8 
G) 

-g 1 4 100 
~ 2 8 
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.: 1 2 010 
~ 4 8 ·o-o 
:a l 001 .... 8 
& ~o 
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8 
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AID 

conversion 

1 l 
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1 
2 
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quantized 
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(± ~ LSB) 

5 l 
8 4 

Normalized analog input 

7 
8 

Figure 2. Transfer characteristic of an ideal 3-bit ADC. 
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After the conversion process is completed, assuming a sampling rate of 

fs (samples/sec)= 1/tsample and a record length of N data points, the resulting output sig

nal will have a form similar to the sequence described by (2.2). 

NON-IDEAL CHARACfERISTICS 

Up to this point, the discussion has focused on the "ideal" analog-to-digital conver-

sion process (i.e. assuming a perfectly linear transfer characteristic and uniform digital 



8 

transition levels or steps). Therefore, the output sequence generated is free of any distor

tion except that which is inherent in the quantization process itself. However "practical" 

ADCs are subject to several types of errors that can distort the original input signal even 

further. For a more realistic example of the type of data input to a parameter estimation 

algorithm, it is necessary to look at some characteristics of practical ADCs. 

Transfer characteristics of several practical ADCs are shown Figure 3. Each exhi

bits a different type of error which causes distortion to the original data. As mentioned 

previously, a straight line with a 45 degree angle passing through the origin should inter

sect the mid-points of the staircase transfer function of a peifect ADC. Any deviation 

from this ideal indicates the presence of some sort of error in the ADC. For example, if 

the line does not pass through the origin, we say that the ADC has an "offset" error. 

Offset error occurs when the digital signal does not match the analog signal by a fixed 

offset value. If the angle of the line is not 45 degrees, then we say the ADC has a "gain" 

error. Gain error occurs when the output reaches saturation either sooner or later than it 

should. If the transfer function is not a straight line at all, then we say that the ADC has a 

nonlinearity error. This type of error can occur if the quantizer levels are not uniformly 

spaced, which means that all of the ~' s are not equal. 

QUANTIZATION ERROR 

Even if none of the specific error types described above are present, the digital out

put signal produced by the ADC is not a perfect representation of the analog input. 

When an analog sample is converted to a digital word, a small amount of error is intro

duced as the continuous input value is "quantized" or mapped onto one of a discrete set 

of digital values. The distortion introduced by this process is called "quantization error" 

or "quantization noise." Assuming FS refers to the full scale (or maximum expected) 
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Figure 3. Transfer characteristics of practical ADCs. 
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value of the input signal and n to the number of bits of the ADC, the amount of quantiza

tion error (eq) will be in the range of + ~ :s; eq :s;- ~, where .1. = FS . If it is assumed 
2 2 2n 

that the quantizer is both ideal and uniform (all of the .1-'s are equal) and that the input 

signals are bounded by the valid input range of the quantizer, then all of the noise sources 

can be eliminated except quantization noise. 
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NOISE SOURCES 

The most common method used in the analysis of distorting effects of an ADC is to 

model these effects (such as quantization error) with an additive noise source. Figure 4 

illustrates the basic model. 

Quantizer I • xq(n) 
x(n) Q[x(n)) 

Actual system 

x(n) ... r 

eq(n) 

Mathen1atical model 

.xq(n) = x(n) + eq(n) 

Figure 4. Modeling distorting effects of a practical ADC. 

This model can be described mathematically by the following equation: 

y(n) = x(n) + e(n) (2.3) 

The model reflects how each sample of the input sinewave is distorted by the analog-to

digital conversion process. The error signal (e) can represent the effect of several practi-

cal transfer characteristics. 

Since the purpose of this study is to determine an improved method for parameter 

estimation and not to examine details of ADC behavior, the principle types of distortion 
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introduced by ADCs will be represented by one of two broad categories -- linear or non

linear. "Linear" includes the effects of quantization error, offset error, and gain error 

(discussed earlier). "Nonlinear" represents both integral and differential nonlinearities, 

such as those which occur when transition levels are not uniform. For modeling purposes 

in this study, each of the two broad categories of distortion will be treated as a separate 

type of additive noise source. 

After accounting for these errors introduced by the process of analog-to-digital 

conversion, the actual input data available to a sinewave parameter estimation algorithm 

generally resembles either: 

y[n] = A· sin [2 1t f n + 8] + D + elin [n] (2.4) 

when linear distortion ( elin) is present, or 

y[n] = A· sin [2 1t f n + 8] + D + ah · sin ([ h 2 1t f n] + 8h [n]) (2.5) 

for nonlinear error sources, 

where h =harmonic frequency (a multiple of the sinewave's fundamental frequency), 

ah = amplitude of the harmonic and eh =random phase angle of the harmonic. 

After describing the estimation problem and clarifying the type of input data that is 

available to work with, the next step is to examine some previously-developed methods 

for extracting the sine parameters. Studying the existing methods can provide some 

insight to the most successful techniques and their expected level of performance. 

Because the sinewave has such a well-defined mathematical representation, traditional 

approaches to the parameter estimation problem have employed a curve-fitting technique. 



CHAPTER Til 

TRADITIONAL APPROACHES TO THE PROBLEM -- ITERA TNE ALGORITHMS 

Traditional attempts at sinewave parameter estimation usually resorted to some 

form of iterative algorithm. This technique was usually quite slow, due to its basic 

"trial-and-error" approach. In addition, the errors which occurred could not be expressed 

readily in closed form and therefore, were difficult to control. 

CURVE FITTING 

A typical example of these earlier estimation algorithms is the so-called "curve-fit" 

method, described in [1]. This algorithm employs an iterative, "gradient search" tech

nique to determine each of the sine parameters. The motivation behind this algorithm 

was finding a means to characterize the dynamic performance of an ADC. "The result of 

this [curve fit] test is a figure of merit called the number of effective bits for the ADC" 

[1]. 

The basic curve-fit process consists of the following steps. First, a record of data is 

selected for analysis (often collected from the output of an ADC). Then, a sinewave is 

generated in software that is a best fit to the data record. The process of generating this 

best-fit sinewave for comparison gives the method its "curve fit" title. The accuracy of 

this key step governs the ultimate accuracy of the parameters calculated. 

The basis for computing the best-fit sinewave is the formula for actual RMS (root 

mean squared) error. This is simply the square root of the sum of the squared errors 

between the measured data points and the fitted sinewave. 



The actual RMS error is calculated from: 

m 
E = L [xk- Acos(rotk + P)- C]2 

k=l 

13 

(3.1) 

where E is the error, xk and tk are data points, m is the total number of data points in the 

record, and the fitted sinewave parameters are: 

A - amplitude 

ro- frequency 

C- offset 

P- phase 

Although the curve-fit equations are derived with cosines, the process is valid for all 

sinusoids. Using this formula, the curve-fit algorithm attempts to find the best-fit 

sinewave by minimizing the error E. 

First, the partial derivative of "E" is taken with respect to each of the four sinewave 

parameters. Then, all four of the derivatives are set equal to zero (which defines the 

point of minimum error). Performing some substitutions and rearranging terms eventu

ally yields two nonlinear equations. These are solved simultaneously by iteratively 

adjusting the fit parameters (frequency, phase, gain, and offset), until a solution is 

achieved within the specified tolerance. Any difference between the data record and the 

best-fit sinewave is assumed to be error. 

This approximation algorithm requires initial guesses for frequency and phase, 

which are close to the actual solution values, to ensure convergence to the best-fit 

sine wave. For the initial frequency estimate, the frequency of the generator output is typ

ically used. The initial phase value is usually based on an examination of the data record 

by a software routine [1]. 
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ADVANTAGES 

The curve-fit algorithm will detect error components in the ADC such as harmonic 

distortion, white noise, and aperture uncertainty [1]. Gain, offset, and phase errors do not 

affect the results. Harmonic distortion is usually a nonlinear function of amplitude and 

frequency. The amplitudes of harmonics or aliased harmonics present in the error residue 

can be extracted with this technique by fitting the error with best-fit sinewaves of the 

major harmonic frequencies. 

DISADVANTAGES 

The greatest pitfall of the curve-fit test is the potential for selecting an initial input 

frequency that is a submultiple of the sample frequency. This could cause a false con

vergence. Other disadvantages of this method range from slow convergence to complete 

lack of convergence (when data is poor or computational resolution is inadequate). Also, 

the initial guesses for frequency and phase required by this algorithm severely limit its 

usefulness for sinewaves which are completely unknown. 

A RECENT SOLUTION 

A more recent approach to the problem of sinewave parameter estimation attempts 

to overcome some of these difficulties with a completely different procedure [4]. By 

combining a nonlinear method to determine sinewave frequency and phase angle, with a 

windowing technique to detennine amplitude and de offset, the iterative process is 

replaced by "closed form" equations. Before proceeding with a further description of this 

non-iterative algorithm, the next chapter outlines the methodology that will be used 

throughout this study to compare the performance of estimation algorithms. 



CHAPTER IV 

A METHODOLOGY TO COMPARE THE ALGORITHMS 

Before proceeding to investigate some of the more recently developed algorithms 

for sinewave parameter estimation, a means for comparing their performance must be 

established. The means adopted for this study consist of software simulations and empir

ical conclusions drawn from the results. This approach was found to be more suitable 

than complex theoretical predictions for the following reasons: 

1) Although several of the existing algorithms have accompanying formulas for the 

expected error, these equations are usually derived assuming pure sinewave inputs 

(no distortion). For practical applications, where some distortion is inevitable, the 

theoretical equations no longer characterize actual performance. 

2) With simulations, it is possible to model and test a broad range of input conditions. 

These results offer a direct performance comparison, without the additional pro

cess of deriving equations to match the responses. 

A fair comparison requires a uniform test (or tests) which can be applied to each 

algorithm and a consistent set of assumptions governing the process. The following dis

cussion presents each of the key assumptions made for the purpose of this study and the 

justification for each one. 

THE TEST SINEW AVE 

Since the goal of this study is improved sinewave parameter estimation, a pure 

sinusoid is chosen as the basic test signal. Unit amplitude, zero DC offset and zero phase 

angle were chosen for the analog sinewave parameters. These values were selected both 
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to simplify the analysis, and to remain consistent with assumptions established for Jenq's 

frequency and phase estimation technique [2]. The fourth '!lld final parameter, fre

quency, is allowed to vary over a specified range of values. This range will be deter

mined from constraints described in the next chapter. 

Mathematically, the basic analog test signal is described by: 

where A= amplitude 

D =de offset 

f =frequency 

e = phase angle 

s(t) =A · sin (2 1t f t + 9) + D 

Figure 5 depicts this basic test signal. 

xa (t) =A sin (2rrFr + 8) 

Figure 5. Analog sinewave. 

(4.1) 

t 
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SAMPLING 

As discussed in Chapter II, the typical input to parameter estimation algorithms is a 

record of digital values. Converting practical analog test signals into the necessary digi

tal sequence involves sampling. To ensure a consistent performance comparison, the 

input data (and thus the sampling process) must be the same for each algorithm. 

There are two bounds to establish for this process: the "length" (in sample points) of 

the data record, and the "rate" at which the data is recorded. In general, if it were possi

ble to store an unlimited number of samples, the higher the sampling rate (more samples 

per cycle), the better the digital representation will be. However, practical records are 

limited to a finite length, so lower sampling rates (fewer samples per cycle) acquire data 

over more cycles of the waveform. The resulting record will be a better average of the 

entire signal and provide better parameter estimates. For this study, the length of the data 

record is fixed at 1024 points to balance the advantages of a large record for better signal 

representation, with a shorter length for faster data processing. Furthermore, since this 

value is an even power of two (specifically 210), it permits the use of the Fast Fourier 

Transform (FFf) -- an efficient algorithm for computing the discrete Fourier transform of 

the data. 

The sampling rate chosen for the simulations is 1024 samples per second. Actually, 

the "exact numerical" value of this rate is not as critical as its value "relative" to the fre

quency of the analog waveform being sampled. For instance, a 1 Hz (Hertz) sinewave 

sampled at 4 Hz, or a 1 GHz sinewave sampled at 4 GHz, has the same relative effect 

(i.e. the same number of samples per cycle). The most important factor in choosing the 

sampling rate is satisfying the well-known Nyquist Sampling Theorem. Briefly, this 

theorem requires that an analog signal must be sampled at a rate of at least twice the 

highest frequency component of the input signal to allow reconstruction of the original 

signal from the discrete samples without aliasing. The judicious selection of the range of 



18 

frequencies for the sinusoidal test signal will ensure that the chosen sampling rate (1024) 

satisfies the Nyquist criteria. 

NOISE MODELS 

The previous sections established assumptions for the analog sinewave and its digi

tal processing. However, practical signals usually suffer some distortion from this pro

cess. For a realistic test of parameter estimation performance, this distortion must be 

incorporated into the model for input sinewave. Chapter II described a common model 

for the distortion (using an additive noise source) that will be adopted for this analysis 

(see Figure 4 and equation (2.3)). In order to apply this additive noise model, the error 

signal (e) must be defined for each type of distortion represented. The principle types of 

distortion imposed on an input signal by a practical ADC can be divided roughly into two 

categories -- linear and nonlinear. The next step is to determine what type of signal best 

represents each general category. 

Linear Noise 

Beginning with linear distortion (such as quantization noise), a common model for 

this type of error is uniformly distributed white noise [6, 7]. "White" implies a random 

mix of frequencies is present in the signal (this assures "unbiased" distortion for a wide 

range of test signal frequencies). Uniformly distributed means that the possible range of 

noise levels is uniform -- centered about the origin with values constrained between ± 1/2 

of the mean amplitude chosen. 

Nonlinear Noise 

The second distortion category, "nonlinear," is often modeled with harmonics of the 

input signal. For simplicity, the model in this study is based on the primary harmonics -

second and third. The basic harmonic parameters were selected as follows. "Zero" de 
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offset is chosen to be compatible with the input sinewaves. The harmonic "frequencies" 

are relative to the fundamental frequency of the input test signal (2fo and 3f0 ). To avoid 

biased data, harmonics are generated with random phase angles. The final harmonic 

parameter, "amplitude," varies over a range of values. The following sections describe 

how this range was selected. 

Average Power 

A realistic analysis of parameter estimation algorithms involves testing their perf or-

mance with practical input signals. Practical signals may contain linear and nonlinear 

distortion. In this study, the effect of each type of distortion (on estimation accuracy) is 

considered separately. To ensure a consistent performance comparison, roughly 

equivalent levels of each type of distortion should be tested. The problem is determining 

what is equivalent. Because linear distortion is represented by a random signal (white 

noise), and nonlinear by deterministic signals (harmonics), equal amplitudes does not 

imply equal distortion. Instead, the average signal power provides a common reference 

for these incompatible types. In the statistical approach commonly adopted, average sig-

nal power refers to the mean-square power or variance. 

The power of uniformly distributed white noise (representing linear distortion), is 

calculated from this random signal's Probability Density Function (PDF). Figure 6 

shows the PDF for this signal. 

By definition, the average power (or variance) of a uniform random variable equals 

the integral of its PDF. The total area under the PDF equals one (shown in Figure 6). For 

consistent derivations, let qn = ~ = the peak-to-peak noise amplitude, and e = error. 

Then, 

1 1 1 3 = fk/2 e2 . - de = - - e 
[ ]

fk/2 

P e = ~12 !In !In 3 -<J,/2 

computes the power of the random noise signal. 

q~ 
12 

(4.2) 
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Figure 6. PDF for a uniform random variable. 
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The corresponding result for sinewaves can be derived as follows. Letting 't = one 

sinewave period, As = sinewave amplitude and Qs = peak-to-peak amplitude, the 

sinewave power (variance) is given by: 

[ ]

2 

1 ~ 
Ps =- 't • 2 't f o (A. sm 0Jot)2 dt = A, _ 2 2 -

q~ 
8 

(4.3) 

Finally, the signal-to-noise ratio (SNR) for the test sinewave signal combined with 

uniformly distributed random noise is: 

q; 
SNR = sine power Ps g 

noise power = p = -2- = 

Converting to decibels (dB): 

S~B = 10 log(SNR) 

3 q; 
= 10 log(--) 

2 q~ 

3 Qs 
= 10 log(2) + 20 log(~) 

e Qn 

12 

qs = 1.760913 + 20 log(-) dB 
~ 

3 q; 
2 q~ 

(4.4) 

(4.5) 
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where the "q's" can represent either peak, or peak-to-peak amplitude; as long as the 

interpretation is consistent. 

Next, an equivalent result will be derived for nonlinear distortion. Harmonics are 

deterministic signals with the same characteristics as the test sinewave. This simplifiers 

A2 
the SNR calculation. From equation (4.3) the power of a sinusoid is given by: P5 = -;f-, 

where As = sinewave amplitude. Since a harmonic is another sinewave, its power can 

A2 
also be represented by: Ph= 

2
h, where Ah = harmonic amplitude. So, the SNR for 

sinewave signals with nonlinear (harmonic) distortion is: 

A2 s 

SNR = sine power = Ps = _2_ = 
harmonic power Ph A~ 

2 

or expressed in dB: 

A2 s 

A2 h 

A; As 
S~B = 10 log(SNR) = 10 log(-2 ) = 20 log(-) dB 

Ah Ah 

(4.6) 

(4.7) 

Using equations (4.5) and (4.7) for comparison, the next step is to select a reason-

able range of linear distortion levels and compute equivalent harmonic levels to test. 

Noise Levels 

The objective of the simulations is to represent practical conditions for testing the 

estimation algorithms. Therefore, levels of distortion in the input sinewave should be 

similar to levels that could occur in actual test signals. Since ADCs commonly introduce 

some distortion into practical signals, their effects will provide bounds for the simulated 

noise range. 

In the worst case (poorest resolution), an ideal one-bit ADC would have a maximum 

quantization error equal to 1/2 of the input signal's full scale amplitude (or SNR = 2.0). 

At the opposite end of the scale, ADCs with greater resolution (more bits) would 
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generate much smaller quantization errors (producing higher SNR). From these general 

guidelines, the selected amplitude range for white noise (linear distortion) is: [0.05, 0.1, 

0.2, 0.3, 0.4, 0.5]. Table I compares the amplitudes with their equivalent signal-to-noise 

ratios computed from (4.5). 

TABLE I 

COMPARING SIGNAL STRENGTHS: SINE AND WHITE NOISE 

SINE AMPLITUDE NOISE AMPLITUDE SIGNAL-TO- NOISE-TO-
(Constant) (Variable) NOISE RATIO SIGNAL RATIO 

(SNR) (NSR) 
PEAK PEAK-TO-PEAK PEAK PEAK -TO-PEAK 
(PK) (P-P) (PK) (P-P) AMPLITUDE dB AMPLITUDE dB 
1.0 2.0 0.05 0.1 20.00 27.78 0.05 -24.26 
1.0 2.0 0.10 0.2 10.00 21.76 0.10 -18.24 
1.0 2.0 0.20 0.4 5.00 15.74 0.20 -12.22 
1.0 2.0 0.30 0.6 3.33 12.22 0.30 -8.70 
1.0 2.0 0.40 0.8 2.50 9.72 0.40 -6.20 
1.0 2.0 0.50 1.0 2.00 7.78 0.50 -4.26 
1.0 2.0 0.75 1.5 1.33 4.26 0.75 -0.74 
1.0 2.0 1.00 2.0 1.00 1.76 1.00 1.76 

Corresponding levels of nonlinear distortion were calculated by equating signal-to-

noise ratios (equations (4.5) and (4.7)) and determining the required harmonic amplitude. 

The resulting range of nonlinear distortion levels is shown in Table II. 

TABLE II 

COMPARING SIGNAL STRENGTHS: SINE AND HARMONICS 

SINE AMPLITUDE HARMONIC AMPLITUDE SIGNAL-TO- HARMONIC-TO-
(Constant) (Variable) HARMONIC RA 110 SIGNAL RATIO 

(SHR) (HSR) 
PEAK PEAK-TO-PEAK PEAK PEAK-TO-PEAK 
(PK) (P-P) (PK) (P-P) AMPUTUDE dB AMPLITUDE dB 
1.0 2.0 0.05 0.1 20.00 26.02 0.05 -26.02 
1.0 2.0 0.10 0.2 10.00 20.00 0.10 -20.00 
1.0 2.0 0.20 0.4 5.00 13.98 0.20 -13.98 
1.0 2.0 0.30 0.6 3.33 10.46 0.30 -10.46 
1.0 2.0 0.40 0.8 2.50 7.96 0.40 -7.96 
1.0 2.0 0.50 1.0 2.00 6.02 0.05 -6.02 
1.0 2.0 0.75 1.5 1.33 2.50 0.75 -2.50 
1.0 2.0 1.00 2.0 1.00 0.00 1.00 0.00 
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At this point, some comments are in order regarding the simulation data. 

1) Throughout the remaining text (in tables, graphs and discussion) the following 

terms will be used interchangeably: 

- SNR (signal-to-noise ratio) and NSR (noise-to-signal ratio). These are merely 

inverse ratios and although graphs may plot estimation errors versus increasing 

noise levels (NSR), results are usually described in terms of SNR for familiarity. 

SHR (signal-to-harmonic ratio) and HSR (harmonic-to-signal ratio). These terms 

are the equivalent of SNR and NSR (and may be used interchangeably), but refer 

specifically to nonlinear distortion. Results will be presented generically in terms 

of SNR, but tables and figures may use SHR or HSR to distinguish nonlinear dis

tortion. 

2) The analysis of parameter estimation algorithms is based on their performance for 

the levels of distortion described above. However, results of simulations with 

noise levels as high as 2.0 or 3.0 peak-to-peak may be listed in later tables. These 

additional simulations were only run to clarify performance trends. The levels are 

unrealistic for practical signals and will not be incorporated in the final evalua

tions. 

EXPERIMENTAL PROCEDURE 

Software 

Simulations were performed using the MA TLAB software package. MA TLAB is a 

general purpose tool for mathematics computation. In addition, it features several built

in functions adapted specifically for circuit analysis and signal processing tasks. 

MA TLAB also allows users to create their own customized code for special applications 
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not covered by the built-in functions. Custom code was written to implement each of the 

parameter estimation algorithms studied. 

Trials 

The majority of simulations in this study represent "sensitivities" (or the effect of 

changing only one variable on the algorithm's performance). In these tests, as one of the 

input parameters is varied incrementally through a range of values, the results of the 

algorithm being tested, are recorded for each increment. Due to the random component 

of the noise distortion which is present in most practical signals, several simulations (or 

"trials") using the same range of input conditions, are required to obtain representative 

results. Taking the "average" of the outcomes helps to "cancel out" the effects of random 

noise. Determining an adequate number of trials to accomplish this, is influenced by two 

conflicting requirements. There should be enough trials to obtain a representative range 

of values, but not so many that computation time for the necessary iterations becomes 

prohibitive. With this tradeoff in mind, five trials per experiment was selected as a rea

sonable number. 

Error Analysis 

Once the simulations are completed, the accuracy of parameter estimation algo

rithms is evaluated empirically by comparing how closely the estimated parameters 

approximate the actual analog values. Any differences represent errors. For perfor

mance comparisons, a consistent method must be determined for calculating this estima-

tion "error." 

There are several standard definitions to choose from, but a basic one, sufficient for 

this study, is relative error. Given an estimated quantity (e) determined from simula-
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tions, and an actual value (a) which is assumed to be "known," the relative error of the 

estimated value compared to the actual value is: 

e-a 
EREL = -a 

which can also be expressed as a percentage: 

e-a 
E%REL = EREL X 100 =--X 100 

a 

(4.8) 

(4.9) 

There are two exceptions to this chosen reference which arise in the course of this 

study. In some instances, the actual value (a) is equal to "zero" (such as the test 

sinewave's de offset or phase angle). For these special cases, applying the formula for 

relative error results in an illegal division by zero. Instead, the equation for absolute 

error <EABs = e- a) is used for comparisons. The other special case occurs when the 

actual value (a) is equal to "one" (such as the test sinewave's amplitude). Here, the rela-

tive error formula reduces to the equation for absolute error by default since the divisor is 

"one." 

SUMMARY 

Now that the key assumptions and the simulation process have been defined, we 

have the means to gather data to compare the performance of various parameter estima-

tion algorithms. This analysis begins with an algorithm recently developed by Jenq [4], 

which is a non-iterative technique for parameter estimation. 



CHAPTER V 

THE FOUR-PARAMETER ALGORITHM 

A different approach to the sinewave parameter estimation problem, developed by 

Jenq [4], overcomes several of the disadvantages of traditional curve-fit methods. It suc

cessfully combines two separate techniques for partial parameter estimation into a com

plete four-parameter sinewave estimator. One component of this method is a high .per

formance frequency and phase estimator based on a weighted least squares method [2]. 

However, the uniqueness of this method lies in the process of applying a window to the 

digitized data preparatory to estimating the amplitude and de offset. The combination of 

this windowing technique with the results of the previous frequency and phase estimator 

produces a method capable of estimating all four parameters of an unknown sinusoid. 

The following sections describe how this algorithm was derived. This description is 

presented in the following order. First, an intuitive explanation of the process and the 

logic behind it. Then, a more rigorous mathematical derivation is presented. This expla

nation is a summary; the full description is contained in [ 4]. 

ESTIMATING AMPLITUDE AND DC OFFSET 

Intuitive 

Since the four-parameter algorithm is, by definition, a method for estimating all of 

the parameters of an unknown sinewave, it is assumed that the only data available to 

work with is a record of samples obtained from the analog test signal. Given only this 
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input, the most straightforward parameter to compute is the sinusoid's "de offset" (or 

average value). A rough estimate could be obtained by summing the values of all the 

data points in the record and dividing this sum by the total number of samples in the 

record. The four-parameter algorithm modifies this basic procedure by first windowing 

the data record for increased accuracy. The next section will detail this process. 

The process for estimating a sinewave's "amplitude" follows similar reasoning. The 

first step is to subtract the previously-estimated de offset from each windowed sample in 

the data record. The result is a new record with de offset adjusted to zero. The square 

root of the sum of the squares of these values is computed to determine the data's aver

age magnitude independent of the sign of the samples. This completes the first phase of 

the four-parameter estimation algorithm. 

Derivation 

From an intuitive understanding of the process used by the four-parameter algo-

rithm, a more rigorous derivation can be developed. The initial input to the algorithm is 

typically a digitized data record of the form: 

S = sk = s(k/f5 ) =A · sin (k21tf/fs + 9) + D, k = 0, l, ... ,N-1 (5.1) 

This record consists of a sequence of data points obtained from sampling and quantizing 

the original test sinewave: 

s(t) =A· sin(21tft + 9) + D (5.2) 

at the rate of fs samples per second. 

Next, a window sequence is defined by sampling the four-term Blackman-Harris 

window: { } W = wk , k = 0, 1, ... , N-1 , 
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where wk is computed by the following equation: 

wk = 0.35875-0.48829 cos (k21t/N) + 0.14128 cos (k47t/N)-

0.01168 cos (k61t/N), k = 0, ... , N- 1 (5.3) 

The windowing process is what distinguishes this algorithm from other four-

parameter estimators. For a better understanding of this step, it would be instructive to 

pause temporarily from the derivation and explore the advantages of windowing. 

If the input data record contained an infinite number of sinewave samples, it would 

be relatively straightforward theoretically to determine the amplitude and de offset from 

the Fowier transform of the data. Figure 7 shows how the value of these parameters 

could be measured directly since all of the spectral energy is located at a single frequency 

(or bin). 

/ 
0 

de offset 
e.ompo\')ent 

CAYnf \it-v.de... 
/ ~0\"r\ 1>0 Vle.Vl"t 

fo 

Figure 7. Frequency spectrum of a typical input sinewave. 

f 

However, the actual data available is contained in a finite record of fixed length. 

Applying the Fast Fourier Transformer (FFf) to this data will compute its frequency 

spectrum. However, there are some complexities involved in working with a limited 
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amount of data. In computing the FFf (or any discrete Fourier transform), the samples 

are assumed to be periodic, which produces a periodic frequency spectrum. The n sam

ples input to the FFf can be thought of as an infinite sequence of samples to which a rec

tangular window has been applied -- resulting in a truncated data record. However, this 

windowing has some adverse effects on the frequency spectrum of the input data. 

One of these effects is due to the shape of the window's main lobe. It is called 

"spectral smearing" because a spectrum that would normally be an impulse located at a 

specific frequency, will have its power spread or "smeared" across the surrounding bins 

after windowing. This results in a loss of resolution in the frequency spectrum. The 

extent of the smearing is proportional to the width of the window's main lobe. the other 

effect, called "spectral leakage," is due to the properties of the window's sidelobes. 

Spectral leakage occurs when frequency components of the input signal do not fall 

exactly on one of the bin frequencies of the FFT. When that happens, the spectral energy 

of those components will leak out to the surrounding bins, distorting their true magni

tudes. 

Clearly, windowing affects the input data, and working with a finite record of sam

ples introduces rectangular window characteristics -- wide main lobe and large sidelobes 

(see Figure 8). 

However, these inevitable negative effects can be offset somewhat by the proper 

choice of a window function to apply before estimating the sinewave' s parameters. With 

this choice, spectral smearing can be confined to to a narrow range of bins and spectral 

leakage can be limited to distant bins. There are many windows available to choose 

from, each with slightly different properties. Figure 9 shows the time domain and Figure 

10, the frequency domain characteristics for a variety of common window functions. 
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From the available functions, the Blackman-Harris window was chosen for a some 

of its unique properties. Figure 11 depicts its magnitude spectrum [4]. First, it is evident 

from the figure that the window has a clearly defined main lobe confined between the fre-

quency bins 0 to 4. This limits spectral smearing of an impulse to a width of nine bins 

(the original bin with smearing of ± 4 bins around it). Secondly, this window is 

designed for very small sidelobes which do not exceed -92 dB after the fifth bin. This 

reduces spectral leakage by 92 dB within 5 bins from an impulse. So, the Blackman-
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Harris window achieves a good compromise between the slight loss of resolution for fre-

quency components occurring exactly at bins and excellent reduction of spectral leakage 

for all other components. 

Blackmon Harris tv1in. 4-T errn 
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Figure 11. Magnitude spectrum of the Blackman-Harris window. 

What this means in terms of improvement to the parameter estimates is illustrated in 

Figure 12. As this figure shows, when the condition that the data record (S) contains 

more than 4 cycles of the sinewave is met, the frequency component (impulse) represent-

ing the sinewave's amplitude falls outside the main lobe of the Blackman-Harris window. 

This reduces the spectral leakage from this component by 92 dB, insuring minimal dis-

tortion to the de offset component after windowing. Consequently, the true value of the 

sinewave's de offset will be determined more accurately. The amplitude estimate will be 

similarly improved. 
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~f > 4 fs/N 

0 ~~ ~f----?> fo fsiN 

Figure 12. Windowing the sinewave spectrum. 

Returning to the derivation, applying the Blackman-Harris window (wk) to the data 
,.. 

record (sk) yields the de offset estimator (D): 

N-1 
L wk sk 

,.. k=O 
D=N-=-

L wk 
k=O 

,.. 

and the equation for the amplitude estimator (A) follows: 

A= 12 

N -1 t1/2 

L wk(sk- D)2 

k=O 
N-1 
L wk 

k=O 

ESTIMATING FREQUENCY AND PHASE ANGLE 

(5.4) 

(5.5) 

With estimates for amplitude and de offset calculated, the remaining two sinewave 

parameters (frequency and phase) must be determined to complete the algorithm. 
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Intuitive 

A method known as "phase unwrapping" is used to extract the frequency and phase 

parameters from the sinewave data record. This process will be described in greater 

detail in the following section, but the result is a sequence of phase values computed 

from the sample points. These phase angles (in radians) can be plotted versus the sample 

points in an ever-increasing plot like Figure 13. This figure shows that the frequency of 

the sinusoid (or "rate of change" of the phase angle graph) is estimated by calculating the 

derivative (slope) of the linear plot. The point where this graph intercepts the vertical 

axis provides an estimate of the sinewave's phase. 
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To express the "phase unwrapping" process mathematically, some additional 

sequences must be defined. Starting with the original data sequence (sk), subtracting the 

estimated value for de offset and dividing by the estimated amplitude, yields a new 
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sequence (sk) defined by: 

A 

sk = 
(sk- D) 

- k=0,1, ... ,N-1 (5.6) 
A 

with de offset adjusted to zero and amplitude normalized to unity. 

The next step is to "unwrap" the phase of the sequence just created. The results of 

this process provide the data necessary for estimating the sinewave' s frequency and 

phase angle. In order to accomplish this critical step, it is first necessary to understand 

exactly what is meant by the term "unwrapping." The term is illustrative of the effect of 

computing the angular argument of each sinusoid sample, plotting these angles succes-

sively around the unit circle, and then "unwrapping" this wound string of values to form a 

linear graph. Figure 14 illustrates this concept. 
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Figure 14. Phase Unwrapping. 
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Since the digitized sequence (sk) represents a sinusoid, the value of each data point 

in the sequence is the sine of some angle (9). To "unwrap" the phase angles from this 

sequence requires reversing the computation to determine the associated angle, or 

arcsine, of the data. 

Because a sinewave s(t) is a periodic function, it is characterized by the following 

property: 

s(t + t) = s(t) 

where tis the fundamental period of the sinewave. This property describes how the sine 

function repeats the same sequence of values at intervals separated by one period (t). 

Attempting to extract the phase angles from the data record by computing the arcsine of 

each sample directly, results in a periodic sequence of angles constrained between 

[- ~ :5: sin-1 (9) :5: ~ ]. Values within this range are known as the "principal" values of 

the arcsine. However, the four-parameter algorithm's formulas are based on the "abso

lute" value of arcsine (which ranges over the unit circle [0, 21t]). 

To determine the absolute arcsine of a sample (and not merely the principal value) 

requires two separate equations depending on which portion of the sinewave cycle the 

sample was taken from. As Figure 15 illustrates, each cycle of a sinewave can be 

roughly divided into two regions-- one of increasing (or positive) slope, and the other of 

decreasing (negative) slope. 

Within the region of positive slope, the principal value of the arcsine equals the 

absolute value. However, within the region of negative slope, the principal value must 

be subtracted from 1t to obtain the correct angle. Table III shows the need for this correc

tion. 
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Figure 15. Regions of a sinewave cycle. 

TABLE Ill 

PHASE UNWRAPPING 

FUNCTION VALVES 
( s in radians) 

FUNCTION 
Positive Slope Negative Slope 

(Sa= Sp) (Sa= 1t- SP) ••• 

y = sin (8) -12 ~ ~ -12 -1 --0- 1 -0-- -1 ••• 2 2 2 2 

Sp = sin-1 (y) I 

Principal Value 
-1t -1t 1t 1t 1t -1t -1t 
---0-- -0-- ••• 2 4 4 2 4 4 2 

< -1t :::; s < ~) 
2 p - 2 

Sa = sin-1 (y) 

Absolute Value 
-1t -1t 1t 1t 31t 51t 31t --0-- -1t-- ••• 2 4 4 2 4 4 2 

(0 :::; Sa :::; 21t) 

---- --- ---~~·---------- __ I 
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In order to apply the appropriate arcsine formula, the next task is to detect which 

region of the sinewave, each sample was taken from. In the software simulations, this is 

accomplished with three pointers into the data record: 

• x [n - 1] - the previous sample 

• x [n] - the current sample 

• x [n + 1] - the next sample 

where n is an index into the record. Advancing through the record, the relative positions 

of these three points (measured by the sine amplitude of the particular samples) identify 

the region of the sinewave and correspondingly, which arcsine formula to apply. 

After the phase unwrapping process is complete, the resulting angles (in radians) are 

plotted; starting with the first value and adding successive values to the cumulative total 

in an ever-increasing function. Figure 16 shows the result. 
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Figure 16. Plot of unwrapped phase angles. 
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This entire "unwrapping" process can be summed up mathematically by the condi-

tional sequence: xk = sin-1 (sk), k = 0, l, ... ,N- 1, subject to the monotonic condition. 

Defining two further sequences: 

uk = 1- (sk)2 , k=0,1, ... ,N -1 

tk = k/fs, k = 0, 1, ... ,N- 1 

completes the terms necessary for the following summations. 

Sum U=.Luk 

Sum UT = .L uktk 

Sum UTI= .L uktktk 

Sum UX = .L ukxk 

Sum UTX = .L uktkxk 

and L\ = Sum U · Sum UTI- Sum UT · Sum UT 

Finally, the formulas for estimating frequency and phase are expressed by: 

f = _1_ [ Sum U · Sum UTX - Sum UT · Sum UX] 
2~ L\ J 

(j = [Sum UX · Sum UTI~ Sum UT · Sum UTX j 

(5.7) 

(5.8) 

The estimation formulas derived in [ 4] for amplitude (5.5), de offset (5.4), fre-

quency (5.7), and phase angle (5.8) combine to form the complete four-parameter estima-

tion algorithm. 
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SIMULATIONS 

Now that the basic procedure for the four-parameter algorithm has been described, 

this section is devoted to characterizing its performance through a series of software 

simulations. The results of these simulations will be used to identify potential areas for 

improving the algorithm. The following sensitivities: 

• Performance with respect to increasing levels of "linear" distortion. 

• Performance with respect to increasing levels of "nonlinear" distortion. 

were investigated to characterize the algorithm's performance with input signals com-

monly encountered in practical applications. 

In setting up the simulations, the general assumptions established in Chapter IV 

(Methodology) will be applied. However, that chapter deferred the selection of a specific 

range of frequencies for the sinusoidal test signal. Before proceeding further, this selec-

tion must be made. 

Since the sampling rate is already established (1024 points per second), the upper 

bound for the frequency range is limited by the Nyquist criteria. To satisfy the criteria 

f 
with the given sampling rate, the maximum sinusoid frequency must not exceed sample 

or 512 Hz (Hertz). To comply with this restriction, 200 Hz was selected as the 

sine wave's upper frequency bound. At the opposite end of the scale, the lower bound for 

the range of test frequencies is determined by the Blackman-Harris windowing function. 

It is a property of the Blackman-Harris window that if the data record (S) contains more 

than four complete cycles of the input sinewave, de offset estimates will have negligible 

error (ilD < IAix 10-4·6) [4]. Applying the same restriction will achieve the minimum 

error for the amplitude estimator (normalized error M/ A< 10-23 ) [4]. To satisfy this 
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requirement, the lowest allowable frequency for the test sinewave is: 

1024 samples X 1 record X 4 cyclesmin. 4 1 
d (H rt ) · = eye es per secon e z . 

second 1024 samples record 

Choosing 5 Hz as the minimum frequency will remain within this lower limit imposed by 

windowing. After selecting these upper and lower limits, the range of simulation fre-

quencies chosen for the test sinewave becomes [200, 100, 50, 25, 10 and 5] Hz. 

LINEAR SIMULATIONS 

Initial simulations were made to test the algorithm's "linear" sensitivity --the accu-

racy of parameter estimates when the input sinewave is distorted by varying levels of 

uniformly distributed white noise). This type of distortion represents the inevitable 

quantization errors. The following process is repeated for each sequence of simulations. 

Given a user-defined time interval (t = [0, 1.024] seconds), MATLAB is used to 

generate a sinewave sequence with unit amplitude, zero de offset, zero phase angle, and 

variable frequency selected from the established range: [200, 100, 50, 25, 10, 5]. Using 

the same time interval, MA TLAB also generates a sequence of uniformly distributed ran-

dom noise values with zero mean and a peak-to-peak amplitude from the range: [0.1, 0.2, 

0.4, 0.6, 0.8, 1.0]. Combining these two sequences models the effect of processing a 

sine wave with a practical ADC. Figure 17 shows the stages in creating this model. 

Next, this noisy sinewave is input to the four-parameter algorithm and the resulting 

estimates are recorded and averaged. Estimation errors are calculated from these aver-

ages. Then, a new (higher amplitude) random noise sequence is generated and the esti-

mates repeated. This process continues until all combinations of sine frequencies and 

noise levels have been tested. 
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LINEAR RESULTS 

In this and all successive discussion of simulation results, distortion levels will be 

stated in terms of the standard reference, SNR (signal-to-noise ratio). Figures and graphs 

however, are plotted with respect to the inverse relation NSR (noise-to-signal ratio) to 

emphasize errors increasing with distortion. 

Beginning with amplitude estimates, average errors using the four-parameter algo

rithm were on the order of 1 o-2
. Table A .I shows the range of amplitude estimation 

errors for the various input combinations tested. As expected, estimation errors increase 

with higher noise levels (Figure A.1), but show no recognizable trend with respect to 

sampling rate. 

DC offset estimates follow similar trends, but are more accurate than amplitude esti

mates overall. Average errors are on the order of 10-3 for noise levels below 10 dB 

SNR. At higher levels of distortion, errors increase up to a factor of 10. Table A.ll lists 

the exact values. Figure A.2 shows the relation between de offset estimation errors and 

noise levels. There is no definite relation between these errors and sampling rates. 

The accuracy of sinewave frequency estimates follows two distinct trends. Errors 

increase not only with the level of noise distortion in the test sinewave (Figure A.3), but 

also with the applied sampling rate (Figure A.4. The latter trend reveals the principle 

weakness of the four-parameter algorithm -- a sudden breakdown in frequency estimates. 

At low noise levels (below 12 dB SNR) and relatively coarse sampling rates (less than 40 

samples per cycle), the error of frequency estimates remains at a respectable level of 

10-3 (or 0.1 %). As noise levels rise (with fixed sampling rate), estimation errors rise by 

as much as two factors of 10. However, the degradation is even more dramatic for 
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increasing sampling rates (referred to as finer sampling). As sampling rates rise above 40 

samples per cycle, errors rise sharply to values on the order of 101 or more. Table A.Ill 

lists the range of average errors measured. 

Following the same trends, phase estimates decline in accuracy for both high noise 

levels and sampling rates. At low noise levels (below 12 dB SNR) and sampling rates 

below 40 samples per cycle, average errors are on the order of 1 o-1 . Higher noise levels 

increase the error by approximately one factor of 10 (Figure A.5). However, for the com

bined increase of distortion and sampling rate, errors grow up to the order of 102 (Figure 

A.6). Table A.IV lists the average errors. 

NONLINEAR SIMULATIONS 

These simulations test the four-parameter algorithm's performance when the input 

sinewave is corrupted by nonlinear distortion (modeled by harmonics). This scenario 

represents the effect of using a practical ADC, with differential or integral nonlinearities, 

to generate the test signal. The basic procedure used for these simulations is the same as 

described under the "Linear Simulations" section. The only difference is the additive 

noise model. To model nonlinear distortion, a MA TLAB-generated harmonic sequence 

is added to the original sinewave sequence before applying the estimation algorithm. 

Figure 18 shows the stages to create this model. Both second and third harmonics of the 

original sine were tested. For consistency, all harmonics shared common parameters: 

zero de offset, random phase and variable peak-to-peak amplitude. 
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NONLINEAR RESULTS 

Errors in estimating sinewave amplitude in the presence of nonlinear distortion, 

show one consistent trend. As Figure A. 7 reveals, estimation errors increase solely with 

the level of nonlinear distortion present in the input signal regardless of the sinewave or 

harmonic frequency tested. The average error magnitude is on the order of 10-2 • Table 

A. V lists all of the simulation averages. 

Estimates of the sinew ave's de offset are extremely accurate (errors on the order of 

10-14) throughout the range of input signals tested. Table A.VI lists these error values. 

Figure A.8 reveals a general trend of slight error increases with rising noise levels. The 

erratic nature of the relation is due primarily to imprecision in measuring such small 

differences ( 1 o-14 or below) rather than inconsistency in computing the estimates. 

Frequency estimates once again reveal the four-parameter algorithm's weakness. 

Table A.VII shows average estimation errors on the order of 10-3 for harmonic levels 

below 10.5 dB SNR. As harmonic levels rise, average errors increase by a factor of 10. 

In Figure A.9, errors that jump rapidly to 100% near the end of the simulation range, do 

not represent a complete breakdown of the algorithm. Actually, that is the point where 

the magnitude of the distortion exceeds half the strength of the input test signal and thus 

becomes the dominant signal to the estimation algorithm. The large error occurs, 

because the algorithm is now estimating the frequency of the "harmonic" rather than the 

original sinewave. This magnitude of nonlinear distortion is unrealistic in practical situa

tions, but simulation results were plotted to confirm dominant trends. 

Phase estimates also deteriorate at high distortion levels. Errors on the order of 

10-1 (for distortion levels below 10.5 dB SNR), climb to the order of 10° as distortion 

rises. The effect is accelerated for higher frequency input sinewaves. Table A.VIII lists 
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average errors for phase estimates. Figures A.lO illustrates performance trends. 

CONCLUSIONS 

The results of simulations reveal that the four-parameter algorithm provides quite 

accurate estimates under most conditions. Its major weakness is the rapid breakdown of 

the frequency estimator for certain input conditions. The critical conditions are: 

- very high sampling rates relative to the sinewave frequency 

- high levels of noise distortion present in the input sinewave 

Problems resulting from the first condition can be avoided by careful selection of the 

sampling rate. To correct the second condition, one possibility is to eliminate some of 

the distortion present in the input before proceeding with the estimates. This idea will 

serve as the fundamental hypothesis for developing an improved estimation algorithm. 

However, before investing a lot of effort to reduce distortion, it seems prudent to 

determine whether this plan will yield measurable improvement. Fortunately, another 

algorithm has been developed which can provide some idea. Chapter VI explores the 

performance of this "three-parameter algorithm." 



CHAPTER VI 

THE THREE-PARAMETER ALGORITHM 

The Three-Parameter (or Known Frequency) Sine-Wave Curvefit Algorithm is a 

well-documented technique for estimating three sinewave parameters (amplitude, de 

offset and phase) assuming the sinewave frequency is known and input to the algorithm 

[3]. This method's performance will indicate how much accuracy can be expected for 

the remaining estimates when the frequency is as accurate as possible (i.e. "known pre

cisely"). This method has some important advantages. First, it yields a "closed form" 

solution for sinewave curve fitting in cases where the frequency of the recorded data is 

known. Second, unlike the four-parameter algorithm, it is a "linear" technique (i.e. esti

mates are computed entirely with linear functions such as "sums") which increases its 

accuracy. The performance of this algorithm will justify whether or not it is worthwhile 

to pursue improving the frequency estimate of the four-parameter method. In addition, 

the results of this algorithm will establish a benchmark against which the accuracy of the 

proposed (new) algorithm can be compared. 

The following section presents a brief derivation of the three-parameter algorithm. 

A complete description is given in [3]. 

THE PROCESS 

The input to the three-parameter algorithm consists of a data record containing M 

samples of an input sinusoid measured at times tn. The solution to the curve-fit problem 
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is assumed to have the form [3]: 

y' n =A cos (rotn) + B sin (rot0 ) + C (6.1) 

where ro = known angular input frequency and tn = sample times. 

Although the method was derived with cosines, the algorithm is valid for all 

sinusoids. The variables A, B, and C are used to solve for the three unknown parameters 

of the sinusoid (amplitude, phase angle and de offset). From the sampled data record and 

the assumed closed-form solution, the total residual error of the measured data relative to 

the best-fit sine is given by: 

M M 
e = L [Yn - X 0 ]

2 = L [Yn - Acos(rot0 )- Bsin(rot0 )- C]2 (6.2) 
n=l n=l 

To minimize this total error, the partial derivatives are taken with respect to each 

unknown variable (A, B, and C). Then, each of the partial derivatives is set equal to zero 

and the three equations are solved simultaneously for the variables of interest (A, B, and 

C). The results are given below: 

where 

AN 
A= An 

M M 

L Yn <ln - Y L <ln 
n=l n=l 

AN= M 

L <ln ~n - ~ L <ln 
n=l n=l 

M 
2 

_ M 

I, an -a I, an 
n=l n=l 

An= M - M 

L ao ~n - ~ L ao 
n=l n=l 

(6.3) 

M M 
L Yn~n -y L ~n 
n=l n=l 

M 
2 

_ M 

L ~n- ~ L ~n 
n=l n=l 

M _M 

L an~n- a L ~n 
n=l n=l 

M 
2 

_ M 

L ~n- ~ L ~n 
n=l n=l 
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where 

and 

BN 
B= Bo 

M M 
L Yneln -y Leln 
n=l n=l 

BN= M M 
2 -L an- a }:an 

n=l n=l 

M _M 

Leln~n-~Leln 
n=l n=l 

Bo = M - M 

:La~- a :L Un 
n=l n=l 

M M 
L Yn ~n -y L~n 
n=l n=l 
M _M 

Leln ~n- a L~n 
n=l n=l 

M 
2 

_ M 

L ~n- ~ L ~n 
n=l n=l 

M _M 

L Cln ~n - a L ~n 
n=l n=l 

- -
C=y-A a-B ~ 

where the component terms are defined by: 

Un = cos( rot0 ) 

~n = sin ( Wt0 ) 

- 1 M 
y= M L Yn 

n=l 

- 1 M 
a=-:L Un 

M n=l 

- 1 M 
~=- L ~n 

M n=l 
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(6.4) 

(6.5) 

Substituting the variables into the curve-fit equation assumed earlier, yields the 

solution in the form: 



Finally, the equations: 

y' n = Acos(rotn) + Bsin(rot0 ) + C 

Acos = (A2 + B2)1/2 

B e = tan-1 c-"A) 
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(6.6) 

will convert the solution into the more familiar form of amplitude, phase, and de offset: 

Yn =A cos (rot0 + 9) + C (6.7) 

ALGORITHM PERFORMANCE 

The Experiments 

The key sensitivities used to analyze the three-parameter algorithm's performance 

are: 

• The algorithm's accuracy for increasing levels of white noise distortion in the input 

sinewave. 

• The algorithm's accuracy for incremental variations in the input frequency. 

Results of the first sensitivity will reveal the accuracy of a "linear" estimation algorithm. 

If the results are favorable (i.e. low estimation errors), the results of the second sensi-

tivity will determine how accurate the input frequency needs to be to utilize this algo-

rithm. This algorithm was not tested for input sinewaves with nonlinear (or harmonic) 

distortion. The dominant effect of harmonic distortion is to corrupt the frequency of the 

original sinewave. Since, the original sinewave' s frequency is an input to the algorithm, 

this test would be trivial. 
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Sensitivity to Linear Distortion 

The first sensitivity was tested by adding varying levels of white noise (to simulate 

quantization error from a practical ADC) to each sinusoidal test signal. To ensure a con

sistent comparison, the tests are identical to those described for the four-parameter algo

rithm (see Chapter V --Linear Simulations). 

Linear Results 

The three-parameter algorithm yields consistent estimates even with increasing lev

els of noise distortion in the input sinewave. Errors in amplitude estimates remained on 

the order of 10-3 for SNR down to 8 dB. Table B.I shows the range of amplitude estima

tion errors for all noise levels and sampling rate combinations tested. Figure B.l plots 

these errors with respect to increasing noise levels. Although there is no clear trend with 

respect to sampling rate, estimation errors increase gradually with increased sinewave 

distortion. 

DC offset estimates with the three-parameter algorithm also show consistent accu

racy. Once again, errors remain on the order of 10-3 for most input conditions (see Table 

B.ll). Furthermore, the maximum error for de offset estimates is only half the error mag

nitude of amplitude estimates. The errors grow as distortion increases (Figure B.2), but 

vary independent of sampling rates. 

There are no frequency estimates to evaluate because this parameter is input to the 

algorithm. 

Finally, phase estimates follow trends similar to the other parameters -- errors 

increasing with noise distortion (Figure B.3), and relatively independent of sampling 

rates. Average errors remain on the order of 10-3• Table B.III lists all of the phase esti-
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mation errors from simulations. 

Sensitivity to Input Frequency Variation 

To test the algorithm's sensitivity with respect to variations in the input frequency, 

the initial input value is not critical. Only the relative variations about this value are 

important. However, to ensure a representative characterization, variations about two 

separate sinewave frequencies were tested -- one (50 Hz) from the lower end and one 

(200Hz) from the upper end of the designated range of test frequencies. Various incre-

ments of these values were added or subtracted and the result used as the input frequency 

for the three-parameter algorithm. These increments ranged in factors of 10 from 

± 0.00001 to ± 0.1 of the original frequency. Table IV shows how these increments 

translate into actual frequency inputs. 

TABLE IV 

INCREMENTAL FREQUENCY VARIATIONS 

Original Frequency 
I 200Hz 50Hz 

Incremental Actual Input Actual Input 
Variation fl f2 

+0.00001 200.002 50.0005 
+0.0001 200.02 50.005 
+0.001 200.2 50.05 
+0.01 202.0 50.5 
+0.1 220.0 55 I 

-0.00001 199.998 49.9995 
-0.0001 199.98 49.995 
-0.001 199.8 49.95 
-0.01 198 49.5 
-0.1 180 45 I 

-- -- ---- -L.... -
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Each frequency input was tested with two levels of linear distortion (8 dB and 2 dB 

SNR). This avoids biasing the results with one particular noise level. 

Results 

Tables B.IV, B.V and B.VI list the results of sensitivities to input frequency for 

amplitude, de offset and phase estimates respectively. In these tables, the first column 

shows the incremental frequency variation tested. The remaining columns are grouped 

into two sets -- the first shows results of variations about an original sine frequency of 50 

Hz and the second, 200 Hz. Within each group, the first column lists the actual fre

quency input to the three-parameter algorithm. The second and third columns show the 

error of the particular parameter estimate assuming fixed SNR of 8 and 2 dB respec

tively. 

The results of these sensitivities show some decrease in accuracy (or increase in 

estimation errors) for increasing variations about the input frequency. However, these 

error differences are generally quite small (less than 1% ). This indicates that the three

parameter algorithm's performance is not extremely sensitive to small variations in the 

input frequency. What it means for this study is that the frequency estimate from the 

four-parameter algorithm needs improvement, but the three-parameter algorithm can 

tolerate some inaccuracy and still yield reliable estimates. 

CONCLUSIONS 

The accuracy of parameter estimates using a "linear" estimation technique (such as 

the three-parameter algorithm) is more consistent than "nonlinear" methods manage to 

achieve. However, to take advantage of this linearity, the frequency of the test sinewave 
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must be input to the algorithm -- hence, it must be known in advance. For an unknown 

sinusoid, it is not always possible to determine its exact frequency. However, after inves

tigating the three-parameter algorithm's sensitivity to variations in the input frequency, it 

appears that the input frequency can vary significantly from the signal's actual value 

without serious degradation of the other three estimates. Based on this analysis, it seems 

worthwhile to proceed with improving the four-parameter algorithm's frequency esti

mate. The improved estimate will become the required input to the three-parameter algo

rithm to take advantage of its consistent accuracy. The following chapter presents the 

development of an improved four-parameter estimation algorithm which incorporates 

linear estimation formulas. 



CHAPTER VII 

THE PROPOSED ALGORITHM 

Chapter V revealed that the basic weakness inherent to the four-parameter algorithm 

is the breakdown of frequency estimates under low sampling rates and/or high noise lev

els. Chapter VI demonstrated that more consistent parameter estimates could be obtained 

with a linear technique such as the three-parameter algorithm. The disadvantage of this 

method is that it requires the frequency of the test sinewave as an input. In typical test 

situations with unknown sinewaves as input, this is one of the parameters we are trying to 

find. 

Previous simulations in this study have revealed basic characteristics of some exist

ing techniques for parameter estimation. Armed with this information, one way to 

develop an improved algorithm is to build on their best features. It would be especially 

beneficial to utilize the linearity of the three-parameter algorithm by finding a way to 

provide the initial frequency input. Since the existing four-parameter algorithm can esti

mate the frequency of an unknown sinusoid, this estimate could serve as the required 

input. The proposed method adopts this approach. Therefore, the first step is to improve 

the four-parameter algorithm's frequency estimate. 

FILTER DESIGN AND APPLICATION 

With the four-parameter method, the distorting effects of additive noise (found in 

practical test signals) degraded the accuracy of the frequency estimate. One way to 
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improve this estimate is to eliminate some of the distortion by filtering. Then, the four-

parameter algorithm can be applied to the filtered signal to obtain a better frequency esti-

mate. 

The type of filter needed for this purpose can be determined by taking a look at the 

characteristics of the signal we want to preserve. Figure 19 shows the frequency spec-

trum of a sinusoid. Although only one is shown, the symmetrical spectrum consists of 

two impulses centered at the sinewave's fundamental frequency (f0 ); one on the positive 

and the other on the negative axis. Since negative frequencies have no physical meaning, 

it is common practice to plot only the positive half of the spectrum. This is the desired 

spectrum to preserve by filtering. 
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Figure 19. Frequency spectrum of the basic test sinewave. 
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Figure 20 shows the characteristics of some typical frequency selective filters. 

Based on the shape of the sine wave spectrum, a bandpass filter seems most appropriate. 
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Figure 20. Characteristics of some common frequency selective filters. 

A bandpass filter is designed to pass all frequency components of the input signal within 

a certain range (the passband), and eliminate all frequency components outside of this 

range. This type of filter will preserve the narrow band of frequencies surrounding the 

sinewave impulses while eliminating any extraneous frequency components (due to 

noise) around them. 

In order to design a bandpass filter, some basic parameters must be chosen. First, a 

value must be selected for the center of the passband, so the shape of the bandpass filter 

can be designed around this central point. Given only the data record for the original 
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noisy signal, there is a way to obtain a rough estimate of the sinewave' s fundamental fre-

quency. Applying the Fast Fourier Transform (FFf) to the noisy data, yields a spectrum 

similar to Figure 21. 
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Figure 21. Frequency spectrum of a practical test sinewave (including distortion). 

Although the spectrum has many components due to noise distortion, the impulse 

representing the sinewave is distinct The location of this impulse provides a rough ini-

tial frequency estimate for bandpass filter design. 

To keep design computations to a minimum, a basic Butterworth bandpass filter was 

chosen and simulated with MATLAB. The next step is to select values for the filter's 

order, bandwidth, and cutoff frequencies. In the following sections, the effect of each 

parameter will be considered individually. 

The filter's order basically determines its shape in the frequency domain (the sharp-
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ness of its cutoff). Figures 22 and 23 show Butterworth bandpass filters of different ord-

ers which were generated with MA TLAB. These figures illustrate how lower-order 

filters lose the desirable sharp cutoff. 
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However, using MA TLAB required a compromise in the ideal filter shape. With 

this software, the time required to generate a higher order filter of the desired length, 

(number of points), soon became prohibitively long for the iterative simulations required. 

Since the main goal is to improve the four-algorithm's frequency estimate and not 
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optimal filter design, a fourth order filter was chosen as a reasonable compromise. This 

value is high enough to ensure an adequate cutoff, yet low enough to generate rapidly 

with MATLAB. 

Next, the bandwidth of the filter must be chosen. There are two main factors to con-

sider in this choice. Narrow bandwidths, have the advantage that more of the distorting 

frequency components are outside of the passband, and therefore eliminated. However, 

since frequency and time are inverse quantities, a narrow frequency domain response has 

the disadvantage of causing a longer transient response in the time domain. The filtering 

process imposes these transients onto the original sinewave. Eliminating this interfer-

ence requires truncating the transient samples from the data. Since a filter is applied to 

reduce distortion, the process itself shouldn't introduce unwanted components. The best 

compromise is to design the bandwidth as narrow as possible, without producing exces-

sive time domain transients. In MATLAB, all filter design functions operate with "nor-

malized frequencies" so that the system sampling rate is not required as an additional 

input argument. With this convention, frequencies in Hertz are normalized to half the 

f 
sampling frequency (divide by sa:ple ). For consistency throughout the remaining dis-

cussion, all filter parameters are assumed to be normalized (unit-less) values. 

After experimenting with several bandwidth/truncation combinations, a normalized 

bandwidth of 20 was selected ( ± 10 about the sinewave's fundamental frequency). Fig-

ures 24, 25 and 26 compare the frequency and time domain responses for a fourth order 

bandpass filter with a variety of bandwidths (from± 0.001 to± 100). The selected width 

ensures that the impulses in the sinew ave spectrum will fall within the filter's passband, 

even if the central frequency estimate (from the FFf) is slightly off. Figure 27 shows the 

magnitude and impulse response of the final filter design. 
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Figure 26. Magnitude (upper) and impulse (lower) responses for a bandpass 
filter with a bandwidth of± 100. 

Eliminating filtering transients generated with the chosen bandwidth requires trun-

eating roughly 100 sample points from each end of the filtered waveform to avoid cor-

rupting the data. However, over 80% of the original data is preserved, with much less 

distortion present. Figure 28 compares the frequency spectrums of: the original (noisy) 

test sinewave, the signal after filtering, and after truncating filter transients. Filtering 

eliminates unwanted frequency components due to distortion and truncation eliminates 

any remaining sidelobes to produce the final smooth spectrum. 

THE PROCESS 

After designing the bandpass filter, the next step is to apply it to eliminate some dis-

tortion from the original test signal. Using the filtered signal as input to the four-

parameter estimation algorithm, yields an improved estimate of the original sinewave' s 
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frequency. This value, together with the original (noisy) data record, are input to the 

three-parameter algorithm and values for the three remaining sinewave parameters 

(amplitude, de offset, and phase), are computed. 

This completes the description of the proposed algorithm. Figure 29 illustrates the 

process with a flowchart. The following section documents the results of simulations 

with this method. 

SIMULATIONS 

To compare the performance of the proposed algorithm with Jenq's existing four

parameter method, the previous sensitivities were repeated with the new method. 

• Performance with respect to increasing levels of "linear" distortion 

• Performance with respect to increasing levels of "nonlinear" distortion 

Chapter V discussed how these simulations were performed and presented the results for 

the four-parameter algorithm. The following sections present corresponding results for 

the proposed method. Chapter VIII will compare their performance. 

Linear Simulations 

The first sensitivity was tested by applying the proposed algorithm to sinewaves 

with varying levels of uniformly distributed random noise added (to represent linear dis

tortion). There is one difference between these simulations and those testing the four

parameter algorithm. Due to the filtering step in the proposed algorithm, input sinewaves 

with frequencies of either 10 or 5Hz were not tested. The chosen bandpass filter design 

(bandwidth = 20) is too wide to filter sinewaves with these fundamental frequencies. 

Adequate data is provided by the other simulations to characterize the proposed 

algorithm's performance without testing sinew aves of these particular frequencies. 
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Furthermore, altering the filter design for these two cases would result in larger time

domain transients and inconsistent comparisons with results of previously filtered 

waveforms. 

Linear Results 

Amplitude estimates with the proposed algorithm remain fairly consistent over the 

range of noise leveVsampling rate combinations tested. Average errors were on the order 

of 10-3 . Table C.l lists the resulting errors from each simulation. Estimation errors 

increase gradually with rising noise levels (Figure C.1), but show no distinct trend with 

respect to varying sampling rates (Figure C.2). 

DC offset estimates show even greater precision. Errors remain on the order of 10-3 

or lower throughout the simulations (Table C.II). Estimation errors vary independently of 

sampling rates (Figure C.4) and increase even more gradually than those of amplitude 

estimates, as noise levels rise (Figure C.3). 

Frequency estimates obtained with the proposed algorithm show significant 

improvement from using a linear technique. Average estimation errors remained on the 

order of 10-3 , increasing only gradually for either increased sampling rates (Figures C.6) 

or noise levels (Figure C.5). Table C.III lists average error values. 

Phase estimates still show some inconsistency in performance. Average errors 

(Table C.IV) ranged from magnitudes of 1 o-l to 10° and showed rather erratic trends 

with respect to increasing sampling rates (Figure C.8) or noise levels (Figure C. 7). This 

behavior for the proposed algorithm could be expected since trends are similar to those 

observed for the three-parameter method. 
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Nonlinear Simulations 

Next, the proposed algorithm is applied to sinewaves with varying levels of second 

or third harmonics added. The added harmonics represent nonlinear distortion (or non

linear error) often present in practical test signals generated by an ADC. This will test 

the proposed method's sensitivity to nonlinear distortion present in the input test signal. 

Nonlinear Results 

Amplitude estimates for sinewaves with nonlinear distortion were very accurate, 

with average errors between 10-7 and 10-5 . Table C.V shows the complete listing of 

simulation results. Errors remained fairly consistent until harmonic levels exceeded 

about 5 dB SNR, then gradually increased. Amplitude estimates decreased in accuracy 

with lower frequency input. sinew aves. Reducing the frequency by one quarter of the 

previous value increased average errors by a factor of 10. Figure C. 9 plots the results of 

each simulation. 

DC offset estimates show similar accuracy. Average errors gradually rise from 10-5 

(for harmonic levels of 20 dB SNR or less) to 10-4 (above 20 dB). Table C. VI lists these 

values. Errors show a definite increase with harmonic levels, but no distinct trends with 

respect to input sinewave frequencies (Figure C.10). 

Frequency estimates are affected by both harmonic levels and test signal frequen

cies. Average errors are on the order of 10-2 for an input sine frequency of 25Hz, 10-4 

for 100Hz frequency, and 10-5 for 400Hz. Table C. VII shows these values. Frequency 

estimations errors increase gradually with higher levels of nonlinear distortion in the 

input sinewave. Figure C.ll graphs the simulation results. 
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Phase estimates remain fairly consistent, with errors on the order of 10-3 (Table 

C.VIll). Errors increase slightly with higher harmonic levels, but have no apparent rela

tion to the frequency of the input sine. Figure C.12 plots these results. 

In most cases, distortion from the second harmonic causes slightly larger estimation 

errors in cases where: the second harmonic amplitude is large, or the frequency of the 

input sinewave is high. 

CONCLUSIONS 

The proposed algorithm attempts to combine the best features of the existing three 

and four-parameter methods with an additional filtering step to develop an improved 

technique for estimating all four parameters of an unknown digitized sinewave. The 

result is an algorithm which produces consistent estimates even for sinewaves corrupted 

by linear or nonlinear types of distortion. With the proposed method, estimation errors 

are quite low (suitable for effective bits measurement) and do not exhibit the extreme 

sensitivity to system sampling rate that the existing four-parameter method does. 



CHAPTER Vill 

COMPARISON OF ALGORITHMS 

Each of the three preceding chapters focused on the performance of a specific algo

rithm for sinewave parameter estimation. After gathering data from many simulations 

and averaging the results, it is possible to compare the performance of the previous and 

proposed four-parameter algorithms empirically. This chapter presents a quantitative 

comparison with particular emphasis on the following issues: 

( 1) The improvement in performance of the proposed algorithm over the previous 

four-parameter method. 

(2) How closely the accuracy of the proposed algorithm approaches the reference 

performance of the three-parameter algorithm. 

This comparison is organized as follows. First, the performance of the existing and 

proposed four-parameter algorithms will be compared for input sinewaves corrupted by 

linear distortion (to evaluate issues (1) and (2)). Then, the same analysis will be repeated 

with nonlinear distortion present in the input sinewaves (to further evaluate issue (1)). 

LINEAR DISTORTION 

As described in Chapter IV (Methodology), each algorithm was simulated using an 

input sinewave with varying levels of uniformly distributed white noise added. The 

added distortion represents quantization errors which are inevitably introduced into the 

original sinusoid during the process of generating a digital data record. 
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COMPARISONS 

The proposed algorithm performed consistently better than the existing four

parameter method for sinewave amplitude estimates. Figure 30 shows that errors are 

lower with the proposed method at all noise levels. On average, errors are reduced by a 

full factor of 10 from the previous method. This accuracy approaches the three

parameter algorithm's performance (which represents the maximum expected from 

improved frequency estimates). 

For estimates of de offset, the proposed algorithm again displays lower errors 

overall. Figure 31 illustrates this comparison. In this case, the improvement is on the 

order of 0.01 and average errors are nearly at the level achieved by the three-parameter 

method. In fact, for noise levels below 12 dB SNR, estimates with the proposed method 

are slightly more accurate (differences on the order of 10-3). 

Frequency estimates exhibit mixed results. As Figure 32 shows, the existing four

parameter algorithm shows greater accuracy (lower errors) for distortion levels below 

about 6 dB SNR. However, there is a crossover around that point, and as distortion lev

els increase, the existing algorithm begins to break down while the proposed method's 

errors remain consistently lower (differences up to 104
). 

Figure 33 compares phase estimation errors for all of the algorithms. Again the 

results are mixed. At low distortion levels, the existing four-parameter method exhibits 

lower errors. However, this algorithm eventually breaks down as noise levels exceed 4 

dB, while the proposed method maintains its initial accuracy (an improvement up to two 

factors of 10 over the existing method). 
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NONLINEAR DISTORTION 

In addition to analyzing each algorithm's performance in the presence of linear dis

tortion, similar tests were also run assuming the test signals were corrupted by various 

levels of nonlinear distortion (represented by harmonics of the input sinewave). These 

simulations model the second major type of distortion that may occur to signals pro

cessed by practical ADCs. Because the principal distorting effect of harmonics comes 

from their frequency component, this type of distortion is not a meaningful test to charac

terize the performance of the three-parameter algorithm -- since the signal's true fre

quency is an input to the algorithm. Therefore, in the following discussion, only results 

from the four-parameter and proposed algorithms will be compared. 

COMPARISONS 

Beginning with amplitude estimates, the proposed algorithm exhibits lower errors at 

every noise level tested. Figure 34 illustrates this comparison. Average errors with the 

proposed method are on the order of 10-7 to 10-5 ; an improvement up to four factors of 

10 over the existing four-parameter algorithm. 

For de offset estimates, the existing four-parameter algorithm maintains an edge 

over the proposed method. As Figure 35 reveals, the existing algorithm produces lower 

errors at all noise levels tested, but both algorithms exhibit relatively low errors overall 

(magnitudes of 10-4 for the proposed method and 10-14 for the existing). The difference 

is caused by the filtering stage in the proposed method. Since the existing four

parameter algorithm does not impose filter transfer functions on the input signal, and har

monics with zero de offset offer no corruption, extremely accurate de offset estimates are 

achieved. 
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Frequency estimates follow a pattern similar to results from linear sensitivities. For 

nonlinear distortion below about 6 dB SNR, Figure 36 reveals that the existing and pro

posed four-parameter algorithms have similar accuracy (the maximum error difference 

being 0.0004 or less). At higher distortion levels (above 6 dB SNR), estimates with the 

existing four-parameter method deteriorate rapidly. The proposed algorithm does not 

break down at these levels and errors are on the order of 10-4 to 10-6 lower. 

The proposed method's phase performance shows improvement over the existing 

four-parameter algorithm at all distortion levels (see Figure 37). Phase estimation errors 

from the proposed algorithm are consistently lower (on average by 10-3) than those from 

the existing method. 

WRAPPING UP 

This chapter was devoted to a relatively detailed "quantitative" comparison of the 

various algorithms' accuracy. The following chapter "qualitatively" summarizes this 

study's basic findings and suggests some topics for future research in this area. 
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CHAPTER IX 

CONCLUSIONS 

This study's main objective was to develop an improved algorithm for sinewave 

parameter estimation. The general process starts with a finite record of digitized data 

(obtained by sampling an unknown sinewave) and determines from it, the four parame

ters of the original analog signal -- amplitude, de offset, frequency and phase angle. To 

accomplish this for the ideal case (where the input signal is a pure sinewave) is not easy, 

but the problem becomes even more complicated for practical applications in a noisy 

environment. 

The sampling process (used to acquire the data record), is usually performed by an 

ADC. This device can introduce several types of distortion (errors) into the input signal 

depending on the way its transfer function deviates from the ideal 45 degree linear 

characteristic. The various types of distortion which may be present in the output of the 

ADC may be roughly divided into two categories (linear and nonlinear), and represented 

by an additive noise source. A good parameter estimation algorithm should produce 

accurate results even when the sinewave being analyzed suffers from some distortion. 

Several approaches to the parameter estimation problem have been developed. 

Traditional methods used an iterative sinewave curve-fit process. These algorithms 

required accurate initial guesses to ensure convergence. A more recent approach applies 

a non-iterative, nonlinear technique which is quite accurate for low noise levels and rela

tively coarse (low) sampling rates. However, this method's estimates of sinewave fre-
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quency (and associated phase angle) deteriorate rapidly in the presence of high distortion 

levels and/or sampling rates. An existing linear algorithm for parameter estimation 

avoids this problem, but requires advance knowledge of the sinew ave's frequency for 

one of its inputs. The proposed algorithm attempts to combine the best features of the 

latter two techniques into a full four-parameter estimator. The new method is non

iterative, which eliminates difficulties in convergence and maintains a more consistent 

level of accuracy for increasing distortion in the input sinewave. 

The proposed algorithm's process can be summarized as follows. The initial input 

is a finite record of digitized data obtained by sampling a practical sinewave (typically 

generated by an ADC). After this processing, the original data may be corrupted by vari

ous levels of linear or nonlinear distortion. Next, the discrete Fourier transform of the 

data is computed (via the FFT), which yields a rough estimate of the original sinewave's 

fundamental frequency. This value is used as the center of the passband for designing a 

Butterworth bandpass filter. Then, the noisy data is bandpass filtered to eliminate some 

of the distortion. The four-parameter algorithm is applied to the filtered data and yields 

an improved estimate of the sinewave's frequency. Finally, this value, together with the 

original data record, are input to the three-parameter algorithm which computes the 

remaining sinewave parameters. 

SUMMARY OF RESULTS 

For sinewaves distorted with linear noise, the proposed algorithm's performance 

shows consistent improvement over the existing four-parameter method. Amplitude and 

de offset estimates from the proposed algorithm exhibit lower errors at all noise levels. 

Frequency and phase estimates with the proposed algorithm are as accurate as the exist-
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ing four-parameter method at low levels of distortion, and show significant improvement 

at higher levels. 

When the sinewave distortion is nonlinear, the proposed algorithm continues to 

yield improved results. Amplitude and phase estimates are more accurate than the previ

ous method at all distortion levels. While both algorithms provide adequate de offset esti

mates, the existing four-parameter algorithm is more accurate. This is not surprising, 

since the filtering process involved in the proposed algorithm introduces distorting com

ponents into the sinewave which are not imposed by the nonlinear method. Frequency 

estimates with the proposed algorithm show distinct improvement over the existing 

method for increasing levels of distortion. 

These results verify the improvement achieved by the proposed method over the 

existing four-parameter estimator. For several parameters, the estimation errors are 

lower with the proposed method at every noise level tested. For others, the improvement 

becomes evident at higher levels of distortion where the proposed method displays more 

consistent estimation accuracy. For input combinations where the existing estimation 

algorithm displayed a sudden breakdown in accuracy, the proposed algorithm not only 

produced reliable estimates over a broader range of test inputs, but also achieved a more 

gradual decline in accuracy at the limits of its useful range. 

From these simulation results, it is possible to determine whether the proposed 

method's performance is adequate for real test situations. For practical applications, such 

as testing the effective bits of an ADC, the principal source of noise distortion comes 

from the digitizer. As a general rule, the output quality of an ADC (expressed as a 

signal-to-noise ratio) increases by approximately 6 dB for each additional bit of resolu

tion. According to this rough guide, the resolution expected from an ADC can vary from 
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a minimum of 6 dB (for a 1-bit ADC), to 72 dB or better (for ADCs with 12 or more 

bits). Typical estimation errors from the proposed algorithm ren1ain on the order of 

10-3 (or 60 dB SNR) throughout the range of distortion levels tested (30 to 0 dB SNR). 

This degree of accuracy (similar to a 10-bit ADC), suggests that the new technique can 

be applied to test a range of practical ADCs by ensuring that estimation errors will not 

mask the digitizer's inherent perfonnance characteristics. 

TOPICS FOR FURTHER STUDY 

The proposed algorithm attempts to improve parameter estimates by utilizing linear 

computations (avoiding the inaccuracies of nonlinear methods). In order to do this, 

bandpass filtering is used to improve the frequency estimate of the four-parameter algo

rithm to provide an input to the linear three-parameter method. Although this approach 

proved quite successful, there are some additional possibilities for improvement which 

were not investigated in this study. 

• Enhancing the phase unwrapping process to use more pointers into the sampled 

data (possibly 5 instead of 3). This would help identify more precisely which por

tion of the sinewave cycle the data point is from, to ensure the correct arcsine for

mula is applied for unwrapping. Using more points to specify location would also 

decrease the chance of errors from trapping at a local extreme point (introduced by 

the noise). This could reduce estimation errors resulting from high sampling rates. 

• Experimenting with different filter types to find the optimal combination of filter 

type, order, and bandwidth for the most effective elimination of distortion. 

• Completely characterizing the method proposed in this study (i.e. more trials to 

test each sensitivity) and possibly improving its performance when high levels of 
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nonlinear distortion (harmonics) are present in the input test signal. 

• Determining an effective method to handle statistical II outliers, II or data points 

which fall outside the normal range of input values for the estimation algorithm. 

In practical situations, noise sources are not as well-controlled as assumed for the 

simulations. Individual samples with an unusually high level of noise could 

severely distort the estimates unless handled appropriately by the algorithm. 

• Deriving closed form statistical equations to predict the estimation errors (for each 

parameter) from the proposed algorithm. 

Each of these items could furnish topics for further study in the area of sinew ave parame

ter estimation. 
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TABLEA.I 

AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE S l~ t1 F' I C'Y'C 
F'k-F'k NSR-dB 5. 1 :· 10.24 20.48 40.96 102.4 204.8 

2(l(J 100 5<) .-.c 10 • ._! ....:.:._) 

o. 1 -24.26 0.001675 0.001865 0.002276 0.001370 0.001989 0.002425 
0.2 -18.24 0.005023 0.006278 0.005783 0.004763 0.002927 0.003661 
0.4 -12.22 0.010033 0.013174 0.013436 0.012705 0.010963 0.015357 
0.6 -8.70 0.037664 0.028283 0.036646 0.018956 0.037585 0.025260 
(i. 8 -6.20 0.058057 0.050906 0.061417 0.060568 0.046813 0.051409 
1 . 0 -4.26 0.089493 0.092439 0.079409 0.076829 0.065565 0.098652 
1.5 -0.74 0.168713 0.179512 0.172894 0.165056 0.1.97578 0.1682(l4 
2.0 1.76 0.284031 0.290341 0.258931 0.282813 0.295897 0.287568 

TABLE A.II 

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAMF'/CYC 
F'k-Pk NSR-dB 5. 12 10.24 20.48 40.96 102.4 204.8 

200 100 50 .-.c:- 10 r= 
L'-' d 

0. 1 -24.26 1.22E-03 1.35E-03 1.83E-03 8.49E-04 1.28E-03 8.06E-04 
0.2 -18.24 0.003187 0.003179 0.002879 0.002439 0.002043 0.001601 
0.4 -12.22 0.005789 0.004916 0.003156 0.006214 0.003925 0.006368 
0.6 -8.70 0.005981 0.005245 0.004155 0.009061 0.009999 0.008031 
0.8 -6.20 0.006965 0.01274 0.006797 0.009458 0.011007 0.009374 
1 . 0 -4.26 0.008883 0.016121 0.009514 0.009720 0.016690 0.014385 
1.5 -0.74 0.013971 0.017133 0.017224 0.018069 0.020827 0.023528 
2.0 1.76 0.017529 0.017484 0.026926 0.026846 0.03139 0.028275 
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TABLE A.III 

FREQUENCY ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAt1F'/CYC 
F'k-F'k NSR-dB ~ •. 1 =· 10.24 20.48 40.96 102.4 204.8 

200 100 50 .-,c::- 10 5 L·-• 

0. 1 -24.26 0.000258 0.000577 0.001280 0.002100 0.010192 0.341787 
0.2 -18.24 0.000250 0.001078 0.004248 0.011432 0.966693 19.28833 
0.4 -12.22 0.001222 0.001360 0.004716 0.022632 25.26522 122.38::::.3 
0.6 -8.70 0.001390 0.002965 0.012556 2.851880 104.0710 211.8960 
0.8 -6.20 0.002675 0.006046 0.094688 13. 24:::::07 121.0387 312.2141 
1. 0 -4.26 0.005027 0.011213 2.233324 25.38568 180.4460 440.2042 
1.5 -0.74 0.005938 0.018252 10.75156 77.64162 337.1073 785.7622 
2.0 1. 76 1 .. ~,978:2 7.71202 38.63786 160.6356 433.1292 1048.981 

TABLEA.IV 

PHASE ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAI'1F'/CYC 
F'k-F'k NSR-dB 5. 12 10.24 20.48 40. 9.~. 102.4 204.8 

::::oo 1 (H) 50 •;c::- 10 c::-
k~' ~· o. 1 -24.26 0.098373 0.124345 0.161906 0.121944 0.234452 2.352660 

0.2 -18.24 0.172661 0.187510 0.399560 0.108320 1.332236 149.5141 
0.4 -12.22 0.228545 0.465847 0.466393 1.638737 6.417197 384.2696 
0.6 -8.70 0.263395 0.544429 0.488016 37.35872 129.4184 453.2766 
0.8 -6.20 1.289828 0.813523 1.100384 128.6215 255.5338 508.363 
1 . 0 -4.26 2.225773 1.418073 109.1053 361.0451 308.6359 592.9817 
1.5 -0.74 2.938592 87.6211 271.2254 393.291 393.0224 593.9628 
2.0 1.76 172.9296 272.9335 402.7372 518.6275 525.5458 621.6342 



TABLEA.V 

AMPLITUDE ESTIMATION ERRORS: NONLINEAR DISTORTION 

HARMONIC HARMONIC FREQUENCY 
Pk-Pk HSR-dB FS = 25 FS = 25 FS = 100 FS = 100 FS = 400 FS = 400 

fh = 50 fh = 75 fh = 200 fh = 300 fh = BOO fh = 1200 
0.0 -26.02 0.133582 0.042602 0.022642 0.031555 0.009270 0.1175~7 
0.2 -20.00 0.246859 0.187069 0.045213 0.091039 0.032766 0.336577 
0.4 -13.98 0.428400 0.375476 0.089846 0.216425 171.2468 3.402295 
0.6 -10.46 0.559966 0.854182 0.148506 0.257115 642.074 4.338813 
0.8 -7.96 0.637311 1.271314 0.212988 0.380102 208.3974 5.030159 
1.0 -6.02 0.756585 1.421948 0.286147 0.424261 520.9202 5.631276 
1.5 -2.50 1.197534 1.821767 0.940583 0.626762 1245.452 6.205044 
2.0 0.00 1.670169 2.077714 0.933747 0.756606 411.6644 5.794618 

TABLEA.VI 

DC OFFSET ESTIMATION ERRORS : NONLINEAR DISTORTION 

HARMONIC HARMONIC FREQUENCY 
Pk-Pk HSR-dB FS = 25 FS = 25 FS = 100 FS = 100 FS = 400 FS = 400 

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 
0.1 -26.02 0.002933 0.000880 0.000110 0.000050 0.000000 0.000000 
0.2 -20.00 0.005440 0.002680 0.000190 0.000170 0.000025 0.000000 
0.4 -13.98 0.009440 0.008400 0.000280 0.000320 5.957925 24.00470 
0.6 -10.46 0.012320 0.018400 0.000460 0.000520 15.26103 55.99994 
0.8 -7.96 0.014040 0.027480 0.000710 0.000680 29.91667 56.00029 
1.0 -6.02 0.016720 0.032040 0.001090 0.000900 36.56061 56.00010 
1.5 -2.50 100.1110 0.041040 99.9992 0.001700 47.89495 56.00010 
2.0 0.00 99.9982 0.046760 99.9987 0.002100 46.1467 56.00008 
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TABLE A.VII 

FREQUENCY ESTIMATION ERRORS :NONLINEAR DISTORTION 

HARMONIC HARMONIC FREQUENCY 
Pk-Pk HSR-dB Fr-· - ~.o:::- FS = 2::.; FS = 100 FS = 100 FS = 400 FS = 400 .::- - ,L.,_I 

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 0. 1 -26.02 3.08E-14 9.2E-15 1.17E-14 8.91E-15 4.37E-15 3.27E-15 
0.2 -20.00 6.57E-14 2.17E-14 5.93E-15 2E-14 4.22E-15 4.29E-15 
0.4 -13.98 7.25E-14 3.05E-14 1. 14E-14 1.91E-14 5.99E-15 3.1E-15 
0.6 -10.46 9.25E-14 6.05E-14 1.82E-14 1.87E-14 6.53E-15 8.47E-15 
0.8 -7.96 2.64E-14 1.06E-13 1.95E-14 1.55E-14 5.24E-15 5.98E-15 
1. 0 -6.02 5.09E-14 5.95E-14 1.88E-14 9.63E-15 7.43E-15 5.86E-15 
1.5 -2.50 5.34E-14 7.08E-14 1.56E-14 2.2E-14 8.99E-15 1E-14 2.0 0.00 5.15E-14 4.82E-14 1. 35E-14 1.81E-14 8.99E-15 9.2E-15 

TABLEA.VIll 

PHASE ESTIMATION ERRORS :NONLINEAR DISTORTION 

HARMONIC HARMONIC 
F'k -F'k HSR-dB FS = 25 FS = 25 FS = 100 FS = 100 FS = 400 FS = 400 

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 o. 1 -26.02 0.001249 0.001249 0.001249 0.001249 0.001249 0.001249 
0.2 -20.00 0.004988 0.004988 0.004988 0.004988 0.004988 0.004988 
0.4 -13.98 0.019804 0.019804 0.019804 0.019804 0.019804 0.019804 
0.6 -10.46 0.044031 0.044031 0.044031 0.044031 0.044031 0.044031 
0.8 -7.96 0.077033 0.077033 0.077033 0.077033 0.077033 0.077033 
1.0 -6.02 0.118034 0.118034 0.118034 0.118034 0.118034 0.118034 
1.5 -2.50 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 
2.0 0.00 0.414214 0.414214 0.414214 0.414214 0.414214 0.414214 
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Figure A.l. Plot of amplitude estimation errors for increasing linear distortion. 
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Figure A.9. Plot of phase estimation errors for increasing nonlinear distortion. 
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TABLE B.I 

AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION 

NOI ~;E~ ~-.10 I SE SAI'1F'/CYC 
F'k-F'k NSR-dB 5. 12 10.24 20.48 40.96 102.4 204.8 

200 100 50 '""lo:::" 10 c .O::....J ...J 
(l. 1 -24.26 0.001142 0. (H)125 0.00091 0.001143 0.001263 0.001282 
0. :~ -18.24 0.001226 0.002566 0.001704 0.002459 0.001321 0. (H)1837 
0.4 -12.22 0.004170 0.004986 0.004298 0.002824 0.005478 0.005220 
0.6 --8. 70 0. 002800 0. 006129 0. 005458 o. 008945 0. 006482 (l. 004628 
0.8 -6.20 0.007318 0.006019 0.006941 0.007941 0.004782 0.009915 
1 . (l -4.26 0.010135 0.012248 0.008476 0.013556 0.007015 0.011524 
1.5 -0.74 0.016574 0.018500 0.013630 0.017019 0.019140 0.024558 
:? • <) 1. 76 0.01839 0.023004 0.024223 0.034375 0.009376 0.018412 

TABLEB.ll 

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAMP/CYC 
Pk-F'k NSR--dB 5. 12 10.24 20.48 40.96 102.4 204.8 

200 1 (H) 50 ~.o:::- 10 c 
~--' ...J 

o. 1 -24.26 0.000762 0.000979 0.000304 0.000868 0.000713 0.000587 
0.2 -18.24 0.001834 0.001740 0.001524 0.002458 0.001427 0.000641 
0.4 -12.22 0.002608 0.003917 0.003922 0.001692 0.002780 0.001687 
0.6 -8.70 0.004251 0.001825 0.001822 0.006545 0.003028 0.003928 
0.8 -6.20 0.006796 0.006944 0.006940 0.003983 0.003123 0.003858 
1. 0 -4.26 0.008003 0.007141 0.007137 0.008967 0.004860 0.002880 
1.5 -0.74 0.009915 0.014688 0.004556 0.013023 0.010702 0.008801 
2.0 1.76 0.011424 0.011734 0.011730 0.016620 0.015514 0.014564 

TABLE B.III 

PHASE ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAMP/CYC 
Pk-F'k NSF~-dB 5. 12 10.24 20.48 40.96 102.4 204.8 

200 1 (H) 50 .-,o:::- 10 c 
L'-' ~· 

0. 1 -24.26 0.000674 0.001044 0.000705 0.000846 0.001262 0.000440 
(j. 2 -18.24 0.002863 0.001517 0.001411 0.001531 0.002758 0.003268 
0.4 -12.22 0.004707 0.006095 0.003323 0.003328 0.005743 0.003833 
0.6 -8.70 0.004201 0.007330 0.003054 0.003324 0.008409 0.006336 
l). 8 -6.20 0.006497 0.008974 0.006193 0.012014 0.014509 0.006844 
1 • (l -4.26 0.006321 0.012888 0.010747 0.003959 0.005857 0.012781 
1.5 -0.74 0.010191 0.018694 0.007605 0.012991 0.014669 0.013888 
""' (l 1.76 0.020383 0.023245 0.013648 0.024115 0.010699 0.035851 
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TABLE B.IV 

SENSITIVITY OF AMPLITUDE ESTIMATES TO INPUT FREQUENCY VARIATION 

FREQUENCY 
CHANGE ACTUAL FS = 200 FS = 200 

N=0.5 p-pN=1.0 p-p 
+VE 

lE-05 200.0020 0.003717 0.010476 
0.0001 200.0200 0.004263 0.005725 

0.001 200.2000 0.003510 0.015648 
0.01 202.0000 0.005497 0.012885 

0. 1 220.0000 0.003412 0.009606 

-VE 

-1E-05 199.9980 0.002898 0.013646 
-0.0001 199.9800 0.002661 0.014457 

-0.001 199.8000 0.007456 0.010627 
-0.01 198.0000 0.006573 0.008792 

-0.1 180.0000 0.005109 0.010429 

TABLE B.V 

ACTUAL FS = 50 FS = 50 
N=0.5 p-pN=1.0 p-p 

50.0005 0.005375 0.0121 
50.0050 0.004582 0.010811 
50.0500 0.004425 0.009560 
50.5000 0.003560 0.007631 
55.0000 0.005865 0.010692 

49.9995 0.004249 0.015492 
49.9950 0.007703 0.012068 
49.9500 0.002415 0.0138~9 
49.5000 0.003503 0.009033 
45.0000 0.006288 0.012016 

SENSITIVITY OF DC OFFSET ESTIMATES TO INPUT FREQUENCY VARIATION 

FREQUENCY 
CHANGE ACTUAL 

+VE 

FS = 200 FS = 200 
N=0.5 p-pN=1.0 p-p 

1E-05 200.0020 0.003894 0.005327 
0.0001 200.0200 0.003732 0.008971 

0.001 200.2000 0.003857 0.00497 
0.01 202.0000 0.004901 0.010907 

0.1 220.0000 0.001521 0;004226 

-VE 

-1E-05 199.9980 0.004338 0.006953 
-0.0001 199.9800 0.003568 0.005051 

-0.001 199.8000 0.002932 0.009804 
-0.01 198.0000 0.006151 0.003033 
-0.1 180.0000 0.002117 0.008693 

ACTUAL 

50.0005 
50.0050 

FS = 50 FS = 50 
N=0.5 p-pN=1.0 p-p 

0.004903 0.005865 
0.001519 0.009805 

50.0500 0.004335 0.003036 
50.5000 0.003577 0.008656 
55.0000 0.002933 0.007137 

49.9995 0.003569 0.012298 
49.9950 0.006149 0.005865 
49.9500 0.005454 0.012296 
49.5000 0.002504 0.004276 
45.0000 0.004482 0.0109 



105 

TABLE B.VI 

SENSITIVITY OF PHASE ESTIMATES TO INPUT FREQUENCY VARIATIONS 

FREQUENCY 
CHANGE ACTUAL FS = 200 FS = 200 

N=0.5 p-pN=1.0 p-p 
+VE 

1E-05 200.0020 0.004612 0.009990 
0. 0(H) 1 200.0200 0.003241 0.004542 

0.001 200.2000 0.007998 0.005752 
0.01 202.0000 0.003257 0.010413 

0. 1 220.0000 0.003553 0.009045 

-VE 

-1E-05 199.9980 0.003587 0.015329 
-0.0001 199.9800 0.001294 0.013773 

-0.001 199.8000 0.004889 0.008571 
-0.01 198.0000 0.006447 0.013553 

-0. 1 180.0000 0.00596 0.012921 

ACTUAL FS = 50 FS = 50 
N=0.5 p-pN=1.0 p-p 

50.0005 0.004152 0.006814 
50.0050 0.002454 0.008244 
50.0500 0.003517 0.004254 
50.5000 0.004679 0.011582 
55.0000 0.004636 0.010470 

49.9995 0.005353 0.00899 
49.9950 0.004574 0.006908 
49.9500 0.007488 0.01098 
49.5000 0.006763 0.009938 
45.0000 0.002531 0.010462 
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Figure B.l. Plot of amplitude estimation errors for increasing linear distortion. 
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TABLE C.I 

AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAt1F'/CYC 
F'k-F'k NSR-dB 5. 12 10.24 20.48 40.96 

200 1 (H) 50 --.o= 
L.....J 

0. 1 -24.26 0.001552 0.001093 0.001075 0.001048 
0.2 -18.24 0.002635 0.002074 0.001730 0.002678 
0.4 -12.22 0.004023 0.004046 0.003401 0.003175 
0.6 -8.70 0.005934 0.008769 0.005379 0.006856 
0.8 -6.20 0.006867 0.010431 0.007202 0.010212 
1. 0 -4.26 0.009401 0.010972 0.009902 0.010488 
1.5 -0.74 0.014476 0.018461 o. 012389 0.-o12115 
2. (; 1.76 0.030058 0.020366 0.023755 0.022867 

TABLE C.ll 

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAMF'/CYC 
F'k-F'k NSR-dB 5. 12 10.24 20.48 40.96 

200 1 (H) 50 25 
0. 1 -24.26 3.05E-04 7.62E-04 9.81E-04 3.03E-04 
<). 2 -18.24 0.001671 0.000862 0.001735 0.001793 
0.4 -12.22 0.004271 0.004126 0.002855 0.002132 
0.6 -8.70 0.002203 0.004525 0.003519 0.004277 
0.8 -6.20 0.005258 0.006095 0.004230 0.005052 
1.0 -4.26 0.007616 0.007618 0.009839 0.005562 
1.5 -0.74 0.008195 0.014694 0.009908 0.005842 
2.0 1.76 0.024258 0.006081 0.01636 0.009722 
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TABLE C.III 

FREQUENCY ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NOISE SAMP/CYC 
Pk-Pk NSR-dB 5. 12 10.24 20.48 40.96 

200 100 50 .-,c:-
L·.J 

0. 1 -24.26 0.003757 0.000805 0.002385 0.009562 
0.2 -18.24 0.003830 0.000814 0.002894 0.012167 
0.4 -12.22 0.003837 0.003284 0.004192 0.017837 
0.6 -8.70 0.003954 0.005084 0.006948 0.028422 
0.8 -6.20 0.004093 0.006204 0.008356 0.028675 
1.0 -4.26 0.005859 0.007748 0.010718 0.030702 
1. ~i -0.74 0.005923 0.012398 0.026887 0.067389 
2.0 1.76 0.008074 0.020667 0.037305 0.074778 

TABLEC.IV 

PHASE ESTIMATION ERRORS : LINEAR DISTORTION 

NOISE NO I t:•E SA1'1P/CYC 
Pk-Pk NSR-dB 5. 12 10.24 20.48 40.96 

200 100 50 .-.c:-
.L-.1 

0. 1 -24.26 3.117054 0.629871 0.631905 0.008227 
0.2 -18.24 3.117375 1.257482 1.885958 0.636940 
0.4 -12.22 3.115572 2.511933 2.513090 1.885963 
0.6 -8.70 3.114840 1.884759 0.639282 1.259761 
0.8 -6.20 3.109703 1.880916 1.269318 0.651838 
1 . 0 -4.26 2.498787 1.879471 1.884199 1.878634 
1.5 -0.74 2.483510 1.843857 1.861251 0.675416 
2.0 1.76 3.083767 1.895717 1.272621 1.277250 
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TABLEC.V 

AMPLITUDE ESTI1v1ATION ERRORS: NONLINEAR DISTORTION 

HARMONIC HARMONIC 
F'k-F'k HSR-dB FS = 25 FS == 25 FS = 1 (H) F~: = 100 FS = 400 FS ~ 400 

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 
0. 1 -26.02 3.58E-05 3.73E-05 1 . 60E --Ot:. l.t:.BE-06 9.85E-07 9. l?E-07 
0.2 -20.00 3.31E-05 3.57E-05 1.47E-06 1.62E-06 1.03E-06 8.99E-07 
0.4 -13.98 2.55E-05 3.20E-05 1.15E-06 1.46E-06 1.15E-06 8.63E-07 
0.6 --10.46 1.97E-05 2.65E-05 7.35E-07 1.18E-06 1.23E-06 7.46E-07 
0.8 -7.96 2.33E-05 2.40E-05 8.51E-07 1.25E-06 1.40E-06 8.94E-07 
1.0 -6.02 2.09E-05 1.68E-05 1.26E-06 1.40E-06 1.54E-06 8.54E-07 
1. 5 --2.50 4.48E-05 l.BlE-05 1.62E-06 7.69E-07 1. 68E--06 7. 03E-·07 
2.0 0.00 7.70E-05 3.34E-05 4.20E-06 2.64E-05 1.97E-06 7.24E-07 

TABLEC.VI 

DC OFFSET ESTIMATION ERRORS :NONLINEAR DISTORTION 

HARMONIC HARMONIC FREQUENCY 
Pk-Pk HSR-dB FS = 25 F~: = 25 Fe- - 100 FS = 100 FS = 400 FS = 400 ...., -

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 
0. 1 -26.02 3.71E-05 3.71E-05 3.18E-05 3.18E-05 2.86E-05 2.86E-05 
0.2 -20.00 6.35E-05 7.41E-05 7.41E-05 6.87E-05 6.35E-05 6.35E-05 
0. /j. --13.98 1.48E-04 l. 27E-04 1.27E-04 1.23E-04 1 . 15E --·04 l. 15E-O,~ 
0.6 -10.46 1.90E-04 1.72E-04 1.72E-04 1.53E-04 2.22E-04 1.72E-04 
0.8 -7.96 2.29E-04 2.54E-04 2.30E-04 1.99E-04 2.54E-04 2.54E-04 
1. 0 -6.02 2.87E-04 2.86E-04 2.30E-04 3.51E-04 2.86E-04 2.86E-04 
1.5 -2.50 4.76E-04 4.30E-04 5.90E-04 3.01E-04 4.31E-04 3.99E-04 
2.0 0.00 5.73E-04 4.59E-04 5.94E-04 5.55E-04 5.51E-04 4.31E-04 
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TABLE C.Vll 

FREQUENCY ESTIMATION ERRORS : NONLINEAR DISTORTION 

HARMONIC HARMONIC Ft':EQUENCY 
Pk-Pk HSR-d8 FS = 25 FS = 2::. FS = 100 FS = 100 FS = 400 FS = 400 

fh = 50 fh = 75 fh = 200 fh = 300 fh = 800 fh = 1200 
0. 1 -26.02 l.OOE-02 1.00E-02 5.01E-04 4.97E-04 7.13E-05 7.29E-05 
0.2 -20.00 1.04E-02 1.02E-02 5.09E-04 5.02E-04 7.08E-05 7.37E-05 
0.4 -13.98 1.05E-02 1.04E-02 5.15E-04 5.07E-04 6.99E-05 7.63E-05 
0.6 -10.46 1.13E-02 1.05E-02 5.26E-04 5.08E-04 6.62E-05 1. 72E--04 
0.8 -7.96 1.13E-02 1.06E-02 5.83E-04 5.13E-O~ 6.81E-05 7.96E-05 
1 • (l -6.02 1 . 20E -02 l.OBE-02 5.87E-04 5.37E-04 6.71E-05 8.32E-05 
1.5 -·2. 50 1. 31E-02 1.13E-02 5.97E-04 5.60E-04 4.55E-05 7.25E-05 
2.0 i). (H) 1 . 45E -02 1. 18E-02 6.82E-04 39.9988 8.8000 22. 4()()() 

TABLE C.VIII 

PHASE ESTIMATION ERRORS : NONLINEAR DISTORTION 

HARMONIC HARMONIC FREOUENCY 
Pk-F'k HSR-dB F~:; == 2~; FS = 25 FS = 100 FS = 100 FS = 400 FS = 400 

f h = =i(i fh = 75 fh = 200 fh = 300 fh = 800 fh = •1200 
0. 1 -26.02 0.007884 0.007860 0.001600 0.001589 0.000862 0.000882 
0.2 -20.00 0.008263 0.007969 0.001588 0.001457 0.000834 0.000871 
0.4 -13.98 0.008112 0.008290 0.001727 0.001513 0.000743 0.000824 
0.6 -10.46 0.009035 0.008466 0.001648 0.001632 0.000866 0.001190 
0.8 -7.96 0.009675 0.008543 0.001452 0.001745 0.000635 0.000780 
1. 0 -6.02 0.008825 0.008828 0.001858 0.001895 0.000506 0.000708 
1.5 -2.50 0.010692 0.008177 0.001672 0.001742 0.001282 0.001622 
2.0 0.00 0.012049 0.009291 0.001676 0.012800 0.273937 0.462516 



I 
I, 

II 
II 

II li 
il 
't I• 
I 

AMPLITUDE PERFORMANCE (NEW) 
A=1~ DC=D~ PHASE=O 

0.035~~~~~~~~~~~~~~~~~~~~~--~ 

I . . . . 
0. 0 3 i················i················· ····················:················:···· ··--·-:--r········· 

I . . . . . 
gs o.o25 r··········--····t············ .. ···;···················:··················-~---···········-~--T- -~·-········ 
cr I : : : : : /:' 
eJ 0.02 ~1 ---··············-~·-·················!···················(····-··········+············-····:·k ......... . 
w : : : : ': 

~o.o15 .... L .. :. L L/~-· . 
0.. I : : : : /~l 

~ 0.01 ~-···············:········································~#'--··l··················· 
I . . ·-~/. . 

0.005 i······~;;·~············!·······--l···············j 
I.- : . ' : : : : I 

0 I . . . . . 
I I l t J I 

---F=200 Hz (5.12/r-v) 
--+-

. F=1 00 Hz (1 0.24/,...,) 
---?+E-

( I ' F=50 Hz ,20.48/""') 
--e--

1 F=25 Hz (40.96/N) 

-25 -20 -15 -10 -5 0 5 
NOISE/SIGNAL RATiO (dB) 

Figure C.l. Plot of amplitude estimation errors for increasing linear distortion. 
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Figure C.3. Plot of de offset estimation errors for increasing linear distortion. 
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Figure C.4. Plot of de offset estimation errors for increasing sampling rate: 
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Figure C.5. Plot of frequency estimation errors for increasing linear distortion. 
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Figure C.6. Plot of frequency estimation errors for increasing sampling rate: 
(a) low and (b) higher noise levels. 
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Figure C.8. Plot of phase estimation errors for increasing sampling rate: 
(a) low and (b) higher noise levels. 
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Figure C.lO. Plot of de offset estimation errors for increasing nonlinear distortion. 
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Figure C.ll. Plot of frequency estimation errors for increasing nonlinear distortion. 
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Figure C.12. Plot of phase estimation errors for increasing nonlinear distortion. 
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