
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

8-6-1993

Data Dependence in Programs Involving Indexed Data Dependence in Programs Involving Indexed

Variables Variables

Borislav Nikolik
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Nikolik, Borislav, "Data Dependence in Programs Involving Indexed Variables" (1993). Dissertations and
Theses. Paper 4688.
https://doi.org/10.15760/etd.6572

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4688
https://doi.org/10.15760/etd.6572
mailto:pdxscholar@pdx.edu

AN ABSTRACf OF THE THESIS OF Borislav Nikolik for the Master of Science in

Computer Science presented August 6, 1993.

Title: Data Dependence in Programs Involving Indexed Variables

APPROVED BY THE MEMBERS OF THE THESIS COMMI1TEE:

Richard Hamlet, Chair

7

Michael Driscoll

Symbolic execution is a powerful technique used to perform various activities

such as program testing, formal verification of programs, etc. However, symbolic execution

does not deal with indexed variables in an adequate manner. Integration of indexed variables

such as arrays into symbolic execution would increase the generality of this technique. We

present an original substitution technique that produces array-term-free constraints as a

counterargument to the commonly accepted belief that symbolic execution cannot handle

arrays. The substitution technique deals with constraints involving array terms with a single

aggregate name, array terms with multiple aggregate names, and nested array terms. Our

approach to solving constraints involving array terms is based on the analysis of the

relationship between the array subscripts.

Dataflow dependence analysis of programs involving indexed variables suffers

from problems of undecidability. We propose a separation technique in which the array

2

subscript constraints are separated from the loop path constraints. The separation technique

suggests that the problem of establishing data dependencies is not as hard as the general

loop problem. In this respect, we present a new general heuristic program analysis technique

which is used to presetve the properties of the relations between program variables.

DATA DEPENDENCE IN PROGRAMS

INVOLVING INDEXED VARIABLES

by

BORISLAV NIKOLIK

A thesis submitted in partial fulfillment of the
requirements for a degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University

1993

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Borislav Nikolik pres-

ented August 6, 1993.

APPROVED:

Richard Hamlet, Chair

Michael Driscoll

Leonard D. Shapiro, Chair, Department of Computer Science

Koy vv. ~ocn, v1ce l1"ovost for Graduate Studies and Research

TABLE OF CONTENTS

PAGE

LIST OF FIGURES .. v

CHAPTER

I

II

INTRODUCTION.. 1

Static Array Data Dependence ... 2

Data Dependence in Programs Involving Pointers............................ 4

Thesis Organization... 7

BACKGROUND... 8

Symbolic Execution... 8

Array Values in Symbolic Execution.. 10

Data Dependence Analysis .. 13

Input Constraints.. 16

Dataflow Testing.. 16

III SUBSTITUTION TECHNIQUE ... 19

Multiple Array TeilTls .. 21

Homogeneous Array TeilTls Constraints.................................... 21
Nested Homogeneous Array Terms ... 23
Heterogeneous Array Terms ... 25

IV ARRAY SUBSTITUTION .. 26

Evaluation of Expressions ~ 26
Array Substitution... 29

lV

Substitution Algorithm .. 29

V INFINITY OF PATHS ... 36

Anomalies in Constraints .. 36

Partial Symbolic Execution... 38
Explicit Naming of Paths.. 42

Partial Paths ... 46

Loop Forcing... 50

VI CONCLUSION ... 57

REFERENCES ... 60

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

LIST OF FIGURES

PAGE

Selection Sort[23], p. 25 ... 4

Pointer manipulation function.. 6

Program fragment with two execution paths .. 9

Path condition and functional description.. 9

Array term and array subscript constraint. .. 12

Array manipulation program.. 12

Program that exchanges two array elements .. 14

Bubble sort function[24], p. 66 .. 15

Array manipulation function .. 17

Predicate trans ... 28

Translation of atoms to CLP(R) variables .. 28

Substityte predicate ... 30

Eliminate array terms from a set of equations..................................... 30

Replacement predicate ... 31

Search predicate... 33

Auxiliary predicates .. 34

Array manipulation function.. 37

Partial symbolic execution.. 39

Deficiencies of PSE ... 40

vi

20. Deficiencies of PSE ... 41

21. Irrelevant complex paths .. 42

22. Irrelevant complex paths.. 43

23. Node repetition required for data dependence 45

24. Infeasible array data dependence ... 46

25. Complex paths resulting from a loop .. 48

26. Array manipulation function... 51

27. Bubble sort function[24], p.66 .. 53

28. Infeasible array subscripts.. 54

29. Program segment without satisfiable ASC ... 55

30. Bubble sort program... 55

CHAPTER I

INTRODUCTION

Many problems in program analysis consist of identifying data-flow depen

dencies in programs. Dataflow dependence information is needed for data-flow testing,

program optimization, program slicing, program equivalence, etc. The analysis presented

in this thesis examines the existence and identification of a single path that establishes data

dependence between two program statements. Therefore, the analysis is useful for some

variants of data-flow testing, program optimization, program slicing, etc. The analysis is

not appropriate for problems such as program equivalence which require data-flow proper

ties for all the paths in a program

The identification of data dependencies consists of showing that variable

assignments propagate data between statements. In the case of indexed variables such as

arrays, symbolic execution is used to remove execution-state differences between the vari

able indices, so that the indices can be tested for equality. Symbolic execution in a program

text involving indexed references may result in constraints containing indexed terms. Our

approach of solving constraints involving array terms is based on an original substitution

technique that examines the relationship between the array subscripts. Depending on the

outcome of the examination, different or the same simple variables are substituted for the

indexed variables. The technique deals with constraints involving array terms of different

kinds, nested terms, and multidimensional arrays. We present this technique as a counterar

gument to the commonly accepted belief that symbolic e:v,,.._rution cannot handle arrays.

Software analysis of programs involving arrays suffers from problems of

undecidability and unsolvability. In particular, a potential infi.ni~y ·~f paths i.hrough looping

2

constructs needs to be considered to detect data dependence between statements containing

array terms; two array indices could be different on an arbitrary number of loop traversals,

then tum up the same. To deal with the infmity of paths problem a technique that separates

the array subscript constraint from the loop path constraints is proposed. This approach

allows distinct techniques to be used to derive the constraints necessary for establishing

data dependence. The array subscript constraints are obtained on simple paths, and the loop

path constraints are obtained on complex paths. Finally, the separation technique suggests

that the array data dependence problem is not as hard as the general loop problem. In par

ticular, rather than trying to obtain precise semantics of the loop, the loop is examined for

paths that preserve data dependence.

STATIC ARRAY DATA DEPENDENCE

Program analysis involves identifying dependences between program

statements. A particular type of program dependence is data-flow dependence. If there

is a sequence of variable assignments that propagate data from S1 to S2, then the statement

S2 is data-flow dependent on S1. The case involving simple variables requires the same

variable name to occur in both of the statements. The case involving array data-flow ob

jects is more complex; it consists of showing that two array references (possibly in the same

program statement) could represent the same array element In particular, the data depen

dence identification consists of determining whether the array subscripts can ever be the

same. Consider the Selection sort routine given in Figure 1. Data could be propagated be

tween the statement at line 6 (S6) and the statement at line 8 (Ss); small acquires a value

at line 6 and that value is used in the conditional statement at line 8. Therefore, the state

ment Ss is data-flow dependent on the statement S6. In the array case, S6 would be data

dependent on S12 if A[i] and A[k] could represent the same array element, and therefore

refer to the same location. To compare the subscripts i and k, the execution-state differ-

3

ences between statements S6 and S 12 need to be removed so that both indices refer to a com-

mon state. First the indices are symbolically executed on a common path so that the sym

bolic subscript expressions refer to a common execution state, and then the subscripts are

checked for equality.

However, the constraints obtained by equating the symbolic expressions of

the array indices appearing in some statements Si and Sj may contain array terms. Further

more, the path condition of the path connecting Si and Sj may also contain array tenns. For

example, the path 12-13-4-5-6-7--8-9-10 in Figure 1 has AU]< smallAj ~ N "k ~ N-1

as path condition. Before such constraints can be mechanically solved by a constraint solv

er, care needs to be taken to properly represent array terms. In this thesis we formalize a

general substitution technique and give the substitution algorithm that produces array-free

constraints. The technique is general in the sense that it treats array terms with the same

aggregate names, array terms with different aggregate names, nested as well as multidi

mensional array tenns. Detecting data dependence between statements involving array

terms consists of determining whether a set of array terms refers to the same memory loca

tion. With programs involving looping structures, this implies considering a potential in

fmity of paths through loops. Given an arbitrary program, the problem of detennining

whether two array indices can ever be the same is undecidable. To deal with the infmity

of paths problem, an approach in which the array subscript constraint is separated from the

loop path constraint is proposed. The former constraint is obtained on simple paths, paths

for which symbolic execution is effective. Unfortunately, the latter constraint is derived

from complex path analysis which suffers from problems of undecidability and unsolvabil

ity. Two heuristic techniques that deal with complex paths, partial symbolic evaluation and

explicit naming of paths, are investigated. Then we propose a new heuristic technique:

loop forcing.

4

void SelectionSort(A, N)

int *A, N;

{

in t small, i, j, k;

4 for(k = 1; k ~ N- 1; k+ +) {

5 i = k;

6 small= A[k];

7 for(j = k + 1; j ~ N; j + +)

8 if(AUl < small) {

9 i = j;

10 small= AU];

11 }

12 A[i] = A[k];

13 A[k] =small

14 }

15 }

Fi~re 1. Selection sort [23], p. 25.

DATA DEPENDENCE IN PROGRAMS INVOLVING POINTERS

Treating arrays allocated at run time, or static arrays manipulated through

pointers, raises difficult problems associated with pointers. Apart from the problems pres

ent in the static array analysis, additional complications result from anonymous dynamic

arrays or static arrays manipulated through pointers. The difficulty arises from the fact that

pointer variables are associated with a set of possible objects. In general, the exact object

dereferenced through some pointer is not known because of the infinity of possible paths

5

through loops. Note that the object could be a collection of objects such as aggregate data

structures. In this case, neither the exact collection nor the exact element in the collection

is known. The sets of objects associated with different pointer variables are not disjoint.

Therefore, a set of pointer variables could refer to the same object Furthermore, the set

of objects referenced by a pointer, in general, cannot be statically determined. Figure 2

shows a function that involves array manipulation through pointer arithmetic. To establish

data dependence between St4 and Sta, the indicesj and i at lines 12 and 18 need to be equal;

this is the same difficulty that occurs in the static array case. Statement S 18 is data depen

dent on S13 if p and q could not only have the same offset, but reference the same array

-a case not present in the static array analysis. In particular, two distinct pointer variables,

q (line 13) and p (line 18) could dereference the same object ifi andj at lines 7 and 12 could

be equal on some feasible path that connects lines 13 and 18. This case does not occur in

the static case because two distinct array aggregate names always reference distinct objects.

Determining the exact set of objects associated with a pointer variable is undecidable be

cause it requires considering infinity of paths through loops. In the static case, the set of

objects associated with an array variable is known, and determined at compile time rather

than at run time.

Existing data flow testing tools such as ASSET[21] are based on simplistic

approaches in which pointer and array variables are treated in the same manner as simple

variables. A more sophisticated approach has been implemented in TACTIC[22]. Rather

than considering paths that exercise data dependencies, program points are identified with

alias sets, sets of variables associated with pointer variables. The alias set of a pointer vari

able at some program point is an approximation of all the objects possibly referenced by

that variable. Whenever some variable V belongs to an alias set of some pointer variable

p, then dereferencing p is a possible use of V.

4

s
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

int fun(int_array)

int *int_array;

{

int *p, *q,

i, j, done = TRUE;

}

scanf("%d %d", &i, &j);

while(done) {

if(i > j) {

p = &int_array[i];

q = p;

*p = j;

}

else {

}

p = &int_arrayU];

*q = i;
*p = j;

done = FALSE;

i = p[i];

return int_array[i];

}

Fimre 2. Pointer manipulation function.

6

7

However, computing alias sets at individual lines causes spurious associations; variable

pairs are identified as associations, but they are located on an infeasible path. Many of these

associations could be detected and eliminated by solving path constraints.

In this thesis, we do not address the issue of pointers in data dependence

analysis. However, some of the techniques presented in this thesis are extensible to point

ers. For instance, the substitution technique described in Chapter m could be used to deal

with the case of indexed pointer variables. The loop forcing technique described in Chapter

V could be used to test whether certain relations between pointer variables hold.

THESIS ORGANIZATION

Chapter IT provides background about symbolic execution and data depen

dence. In Chapter ill, we firSt present our technique for solving constraints involving array

references and then discuss homogeneous and heterogeneous array terms. The substitution

algorithm used to eliminate array terms from equations is given in Chapter IV. Chapter V

addresses the problems involved in identifying data dependencies in programs containing

arrays, discusses the separation of partial paths from complex paths and considers two heu

ristic techniques that deal with complex paths. Chapter V ends with a discussion of separa

tion of satisfiable and unsatisfiable subscript constraints on simple paths and techniques

to improve the data dependence analysis. Finally, our conclusions and suggestions for fur-

ther work are presented in Chapter VI.

CHAPTER II

BACKGROUND

SYMBOLIC EXECUTION

Symbolic execution is a powerful technique that is used to produce an alge

braic formula representing the output of a class of conventional executions. Instead of

executing a program on individual inputs, symbolic inputs are given to the symbolic execu

tor which derives a formula describing the relationship between the input and the output

variables. Symbolic execution of a given path P results in two pieces of information: a path

condition and functional description. The path condition is a set of constraints that de

scribe how input variables are constrained by various control flow conditions along the

path P. The functional description expresses output variables in terms of input variables

for the given path P. For example, symbolic execution of the program fragment in Figure

3 produces the result given in tabular form in Figure 4.

Symbolic execution can be done in two ways: forward or backward chain

ing. Forward chaining starts with an expression at the top of the path and symbolically

executes every statement along the path; conditional statements collected along the path

affect the path condition, and assignment statements affect the functional description.

Backward chaining is based on Hoare's axiom of assignment starting with an expression

at the bottom of the path and symbolically executing only the statements that affect the ex

pression. Forward chaining allows early detection of infeasible paths, but requires that the

intermediate symbolic values of all variables be computed and retained.

9

int x, z;

l scanf("%d", &x);

3 X= X+ 1;

4 if(x > 0) {

5 X= X+ 1;

6 Z =X+ 1;

7 }

8 else {

9 z = :x;

10 }

11 z=z+x;

12 printf("%d" ,z);

Fi~ 3. Program fragment with two execution paths.

path path condition functional descr.

2-3-4-5-6-11-12 x>-1 z=2 * x+5
2-3-4-8-9-11-12 xS-1 z = 2 * (x + 1)

Fiwe 4. Path condition and functional description.

Symbolic execution can be used to perform various software analysis tasks.

For instance, symbolic testing captures the intuition of experienced testers and aids in

test-case generation and test-case coverage[12]. A test data generation system symbolical

ly executes a path and attempts to generate test data that would cause execution of the se

lected path[l4]. Symbolic execution can also be used in loop analysis and program correct

ness verification[13]. In data-flow testing of arrays, the execution state differences

10

between array subscripts are removed by symbolic execution[2]. However, symbolic

execution tools either deal with arrays in an infeasible manner that requires extensive user

involvement, intense computations or extensive usage of memory resources. Because of

these problems, arrays have been excluded from symbolic execution or treated in an inap

propriate manner. What is needed is a general technique that would allow integration of

arrays in symbolic execution. Such a technique would be able to handle arrays of different

kinds, multidimensional arrays, and nested array terms. Dynamic data structures can also

be incorporated in symbolic execution theory[&].

Array Yalues in Symbolic Execution

Many attempts have been made to incorporate arrays in symbolic execu

tion. At one end of the spectrum, the solutions are purely static, and at the other end, they

are a mixture of static and dynamic analysis. The static solutions require an actual value

when an ambiguous reference is encountered [4]; or, N parallel computations are per

formed, where N is the size of the array [3]. In [3] an exhaustive case analysis is performed,

similar to the unresolved IF statement, in which each time a symbolic reference is encoun

tered, each array element is involved in one of theN path and functional computations. Oth

er static approaches consist of representing the value of the array elements by conditional

expressions[9], or considering the case in which the subscripts of the unresolved references

are equal or not equal to the subscripts of previous array assignments[16]. In [9], for exam

ple, the value of some A[j] might be represented as "if j = 5 then y else if j = 0 then t else

if j = t- k then k else m". Note thatj, t, k and m might involve array terms themselves.

The main problem with the approach in [9] is that at some point, A(j] might be used to re

solve some conditional statement; the problem arises for the fact that (potential) array term

expressions such as j, t, k and m would be parts of the path condition. The approach in [16]

consists of imposing additional constraints (hypotheses) to the path condition so that the

number of cases considered grows rapidly as substitution proceeds. Another problem with

11

the approach in [16] is the fact that the previous array assignment statements might have

as right hand sides expressions involving (other) array terms. If that is the case, the result

ing path conditions are not array-term-free.

The mixed solutions consist of delaying the substitution of the unresolved

references until array subscripts are known[15]. The approach in [15] involves represent

ing the array references in a compact form, evaluating the subscripts with numeric values

and considering previous assignments to that array element

These solutions are, unfortunately, infeasible for arrays of large sizes. Be

cause of the infeasibility of these approaches, arrays have been widely excluded from sym

bolic execution. Array variables can be bound to a set that contains every symbolic value

that the variable can have and the constraints under which each value will hold[8]. The

constraints reflect the relationships between the array indices. Rather than keeping the state

of all the symbolic values and the constraints under which array variables can have these

values at each point in the program, symbolic execution can obtain path and functional

constraints containing array terms. It is important to note that all the symbolic execution

approaches described so far, except [4], involve array term constraints at some point. Once

the constraints are obtained, they could be freed from array terms and given to an equation

solver.

In general, array references appear in constraints when expressions to be

symbolically executed are calculated using array references. Such constraints present a

problem since the relationship between the array terms is not known. For example, sym

bolic execution of the path 4-5-6-7~ in the code fragment of Figure 6 introduces the path

constraint and the array subscript constraint presented in Figure 5.

The presence of array terms makes the above constraint inadequate for solv

mg. The inadequacy arises from the fact that the array terms are not mat.h~.1"..'1tical vari

ables. But, the array terms could be eliminated by determining which array teHn!' !efer to

arr[y+ 1] + 1 + arr[x] + arr[y] > arr[arr[y+ 1] + 1]

O~x~9

0~ y~9

4

5

6

7

8

9

10

11

12

13

14

15

16

Fi2Jl!e 5. Array term and array subscript constraint.

int x, y;

int arr[lO];

scanf(''%d %d", &x, &y);

x = arr[x] + arr[y];

y = arr[y+ 1] + 1;

x=y+x;

if(x > arr[y]) {

y = y + 1;

printf("%d" arr [y]);

}

else {

X= X+ 1;

printf("%d", arr[x]);

}

Fi~ 6. Array manipulation program.

For example, the array constraint from Figure 5, could be represented as:

12

J+l+K+L>M

O:S:x:S:9

0SyS9

13

The change of representation from constraints involving array tenns to array-free

constraints is described in Chapter m.

Array-reference-free constraints can be given to an equation solver. How

ever, solving a general system of equations is an unsolvable problem. Therefore, many

constraints resulting from subscript comparisons and array-free constraints will be unsuc

cessfully attempted regardless of the equation-solving algorithm used. Some statistical

techniques for solving general sets of constraints have been proposed; the constraint vari

ables are sampled and the samples are used to inspect the satisfiability of the constraints

under consideration[IS]. The probability that the set of constraints is not satisfiable is pro

portional to the number of unsuccessful samples tried, given that no success was observed.

DATA DEPENDENCE ANALYSIS

Much of the data dependence analysis work has been done in the field of

parallel and vector processing. Optimizing compilers use data dependence graphs to detect

parallelism in programs. Data dependence graphs represent data usage patterns in pro

grams and are a useful source of infonnation underlying program analysis and program

testing techniques[IS]. Data dependence analysis is necessary in order to perfonn various

program transformations that would allow parallel execution of loop structures as well as

taking advantage of architectural features such as cache memories. In order to carry out

program restructuring transformations such as loop interchanging, loop skewing and loop

rotation, data dependence analysis identifies the legal transformations that are semantically

equivalent to the original program[l7].

14

The data dependence problem for arrays can be characterized as follows:

given two statements containing array references and a finite number of nested loops sur

rounding these statements, determine whether the array reference indices could be equal.

Given that the array subscripts are linear combinations of the loop indices with constant

coefficients, the data dependence problem consists of solving simultaneous diophantine

equations[lO, 25], which is an unsolvable problem in general. For example, in the code

fragment of Figure 7, data dependence between statements 5 and 6 is established if the dio

phantine equation:

2+3 • i+4 • j+S • k=3+i+j+k

has a solution in the integers.

int A,~ j, k;

2

3

4

5

6

7

8

for(i = 0; i < N; i+ +)

for(j = 0; j < M; j + +)

for(k = 0; k < L; k + +) {

}

A[l + 3 • i + 4 • j + S • k] = AU];

AUl = A[3 + i + j + k];

A[3 + i + j + k] = A[2 + 3 • i + 4 • j + S • k];

Fi~ 7. Program that exchanges two array elements.

However, in general, the loop structure is more complex, consisting of an infinity of paths

through the loop, with array subscripts that are not linear combinations of the loop indices.

15

Consider the Bubble sort function in Figure 8 that sorts an array Arr of N elements in

descending order.

3

4

s
6

7

8

9

10

void BubbleSort(Arr, N)

int *Arr, N;

{

int temp, i, j;

for(i = 2; i < N; i++)

for(j = N; j < i; j-)

}

if(Arrij] < ArrU + 1]) {

temp= ArrUl;

}

ArrUJ = ArrU + 1];

ArrU + 1] = temp;

Fiwe 8: Bubble sort function[24], p. 66.

Suppose we want to determine if AU] and A[j + 1] at line 7 are data dependent. The array

subscripts are linear combinations of the loop indices. Equating the indices and satisfying

the equation is not sufficient since data dependence is not only a function of the loop in

dices, but of the conditional and assignment statements as well. The approach of testing

indices for equality without considering the loop details does well when the loop has no

additional conditional structures and no assignment statements of the subscript relevant

variables. This approach amounts to disregarding the control structure within the loop

which could potentially restrict the dependence equation. Furthermore, the assignment

statements that appear within the loop body affect the subscripts, and could invalidate the

subscript equation.

16
Input Constraints

The variables from the input domain are constrained by the various program

control structures. In particular, for the execution to follow a path through the program,

some constraints involving input variables need to be satisfiable in order for the path to be

executed. Subscript comparisons involve the equality operator. In this thesis, we are con

cerned with constraints consisting of symbolic values of program variables and source lan

guage (C) operators. Since the dependence analysis is concerned with array subscript com

parisons, the solutions to these constraints are searched for in the integers - some of the

constraints may be over the reals (the ones involving array terms of type real), but most

involve the more difficult integer domain.

DATAFLOW TESTING

Data-flow testing is a path testing strategy in which the paths to be covered

are chosen in such a way that they exercise interesting dataflow properties of programs.

A path is covered if a test case causes the execution to follow that path. Instead of covering

all the paths in a program (full path testing), in data-flow testing the paths are variants of

def-use paths for variables.

The precise data flow definitions used in this document are taken from[1].

A path is a sequence ofnodes(nt, ... ,nj),j~, such that there is an edge from ru to ru.t, where

i= 1 , ... ,j-1. In this definition the path is defined with respect to an uninterpreted control

flow graph. A simple path is a loop-free path(no node repetitions), but nt and nj may be

the same. A complex path is a nonsimple path which allows node repetitions. A def-use

association for some variable V connects a node in which Vis assigned a value(def) and

a node(possibly the same one) in which Vis used. A def-clearpath does not allow redefmi

tion of V in some intermediate node. Given a predicate node p that contains a statement

of the form condition(xt, X2, ••• ,Xn), where condition is a conditional predicate involving

17

variables xt through Xn, and two successor nodes ofp, i andj, the edges (p, i) and (p,j) con-

tain p-uses of xt, ... ,Xn. Array subscript relevant variables of some array term A[i] are pro

gram variables that affect the subscript expression i.

Data flow testing systems usually treat arrays as aggregate objects in which

differentiation between distinct array elements has not been made. In this approach, defini

tions and uses of distinct array elements are treated as references to the same object. For

example, in the code fragment of Figure 9 aggregate array analysis would detect def-use

dependence between the array pairs 4-5, 4-6 and 7-8. In fact, the only correct def-use de

pendence pair is 4-8 which is not identified by the aggregate analysis since the path falsely

appears as interrupted by the assignment statement at line 7.

int *A, x, y;

3 scanf("%d", &x);

4 A[x] = y;

s y = A[x + 1];

6 z = A[x + l];

7 A[x- 1] = y;

8 printf("lf'od", A[x]);

9

Fimre 9. Array manipulation function.

Aggregate data-flow testing suffers from problems of false path inclusion

when there are no data dependent paths, and from problems of correct path omission when

a path appears to be interrupted by an intermediate assignment when, in fact, it is not. These

problems can be eliminated by element-wise analysis. Extensive element-wise analysis is

. (z] U! (mU~S~Jd

81

CHAPTER ill

SUBSTITIJTION TECHNIQUE

Symbolic execution does not do well with indexed variables and looping

structures. In this Chapter we present a solution to the indexed variable problem. The sub

stitution technique handles array constraints produced by symbolic execution of any ftxed

path through a program.

Array terms are eliminated from constraints by analyzing the relationship

between the array term indices. The relationships detennine the kind of mathematical vari

ables needed for the substitution.

The simplest case involves constraints containing a single array term T.

Then Tis itself unconstrained (except for subscript bounds), and the substitution ofT with

a variable that does not occur in the equation gives the correct constraint.

Constraints with multiple array tenns with the same aggregate name com

plicate the substitution.

Let~ be a constraint containing two array terms A[<l>1] and A[<l>2], where

4>t and 4>2 are arbitrary expressions. To carry out the substitution, two cases need to be

considered:

1) 4>t ~ 4>2 is satisfiable. In this case the array terms might represent different memory

locations, and so might hold different values. Therefore the array terms are substituted with

distinct simple variables.

2) <1>1 = <1>2 is satisfiable. In this case the array terms might represent the same memory

20

location, and hence must have a single value. Therefore the array tenns must be substituted

with the same simple variable.

H case 1) holds, distinct simple variables should be substituted for both

terms. If case 1) does not hold and case 2) holds, the same simple variables should be substi

tuted for the array terms. It is important to note that the solution set of the substituted

constraint in case 2) forms a subset of the solution set of the substituted constraint in case

1). Considering case 2) when case 1) is satisfiable might introduce an unsatisfiable substi

tuted constraint when, in fact, case 1) produces a satisfiable substituted constraint. Since

every solution that satisfies the constraint in case 1) satisfies the constraint in case 2), the

more general case 1) is used, and case 2) need not be tried. For example, given the

constraint

brr[i] + 1 = brrU], where i andj are symbolic values,

the constraint I = j is satisfiable, so brr[i] and brrU1 might be substituted with the same

simple variable I. The substituted constraint

I+ 1 =I

has no integer solutions. The case 1) substitution constraint I ;~t J is satisfiable, and the sub

stituted constraint

I+ 1 = K

is satisfiable, where I is substituted for brr[i] and K for brr[j].

21

MULTIPLE ARRAY TERMS

Constraints that involve array terms with a single aggregate array name are

called homogeneous array term constraints. Heterogeneous array tenn constraints are

constraints with multiple aggregate array name tenns. For example, the constraint

A[i] + BUJ- A[BU11 = C[k]

is a heterogeneous array tenn constraint, whereas the constraint

A[i] + A[AU]] > A[k]

is a homogeneous array term constraint

This section describes proper substitution of homogeneous, heterogeneous

and nested array tenns.

Homo~eneous ArraY Tenus Constraints

Constraints that involve array tenns with identical aggregate array names

are called homogeneous array tenn constraints. As the number of array terms in an equa

tion increases, the correct substitution is detennined by considering whether all the sub

scripts may differ, in which case all the array terms are substituted with distinct variables.

If all the subscripts may not be different, the ones that may not be different, but may be the

same, are identified and substituted with the same variable. Given n array tenns A[cl>1],

A[cl>2], ... , A[cl>n] contained in some array equation, where cl>1, cl>2, ..• ,cl>n are arbitrary expres

sions, two cases need to be considered:

1) The term A[cl>i] is given a distinct simple variable iff or allcl>j, i ;II! j, cl>i ;II! cl>j is a satisfi-

22

able constraint In this case the array term A[<l>i] might represent different memory location

than the rest of A(<l>j] terms in the equation, and so might hold a different value. Therefore

the array term is substituted with a distinct simple variable; one not used to substitute any

of the A(cl>j] tenns. Each array term A[cl>i] for which case 1) holds is substituted with a

distinct simple variable. In the extreme situation in which the constraint <l>t ;at ••• ;at <l>n is

satisfiable, A[<l>1], A[<l>2], ... , A[<l>n] are substituted with distinct variables and no further analy

sis is needed.

2) The term A[<l>i] is given some simple variable V used to substitute some A[<l>j], i ;at j,

if <l>i ;at <l>j is not satisfiable, but cl»i = <l>j is satisfiable. The array tenns A[cl»i] and A[<l>j]

whose subscripts may be the same, but not different are substituted with the same simple

variable. Each array term A[<l>i] for which case 2) holds is substituted with a variable used

to substitute some other A[cl>j] term.

Giving a distinct variable to some A[<l>t] requires that all the possible pairs

of subscripts are compared, because of the non transitivity of the ;at operator. In general,

4>t ;at <1>2A cf>2 ;at 4>3 => <l>t ;at 4>3 is a false implication. For example, given the array equa

tion:

A[i] + AU] = A[i), where I and j are symbolic values,

i ;at j A j ;at i ~ i ;at i is a false implication.

Giving a same simple variable to some A[<l>i] does not require that all the

possible pairs are compared. Since equality is transitive, there is no need to compare each

pair; considering only one pair of array terms with subscripts that must be the same and not

differen~ determines the substitution outcome for the pair. For example, consider the fol-

23

lowing array equation in which the homogeneous array terms are numbered for easier iden-

tification. The substitution analysis of the array equation:

At[i + 1] - Al[j] + AJ[j] + A4[i] = As[j]

where I and J are symbolic values.

The substitution analysis of the array equation detennines that I in A4[ij and I + 1 in A1[l +

1] can be different from the rest of the subscripts, so A4[i] and A1[l + 1] are given variables

that are not used for substituting any other array term in the equation. To substitute the A:t[D

term, the subscript in the A3[D term need only be compared to either one of the subscripts

in the A2[D orAsU] term, because of the transitivity of the = operator.

Nested Homo~eoeous Array Tenus

In the case where the symbolic expression has array terms as subscripts to

arrays, the substitution technique is applied recursively. In particular, let A[ct>] be an array

term such that the subscript expression <l> is a function of n nested expressions, cl>t, ... , <l>n-1,

where each <l>i, i = l, ... ,n-1, is an arbitrary (proper) expression containing an array term

whose subscript is cl>i+l, and cl>n is an array-term-free expression. An expression is proper

if it contains a single array term. The technique first substitutes the most nested array term

A[<l>n], substituting it with a simple variable that becomes part of the array index expression

<1>~1 of the nesting array term A[<l>~1]. The array-free expression <l>n-I is constrained to the

array bounds and used for further subscript comparisons. Consider the following

constraint in which the homogeneous array terms are numbered for easier identification:

1 + Arn[Arn[i + 1]] = 1 + p

24

where I is symbolic value, ~ = Arr1[~1] and ~~ = i + 1.

Initially, the most deeply nested array term Arn[i + 1] is substituted with some I. The

cons~tbeconnes

1 + Arn [I] = 1 + p

with I being the subscript of the nesting array term Arr1. An additional constraint stating

that I is in array bounds is added to the set of constraints. Next, I~ i + 1 is added to the

set of constraints, indicating that Arr1 and Arr1 could represent different memory loca

tions, and Arrt [l] is substituted with K, giving

1+K=1+p

which has K = p as a solution.

Substituting an array equation that has both nested and multiple array terms

does not complicate the technique since extensions of cases 1) and 2) from the previous

section are used. Whenever some A[<l>i] is to be substituted, cases 1) and 2) are considered

with respect to the whole substitution state; Cl>i is compared to the rest of the subscripts until

either sonne Cl>j, i ;!If j, is found for which Cl>i = Cl>j holds and Cl>i ;111! Cl>j does not hold, or there

is no ~j for which Cl>i = cl>j holds. Because the substitutions involve considering the whole

substitution state, the satisfiability of the substituted equation is independent of the order

of the substitution.

25

Hetero2eneous Array Tenus

Array terms with distinct aggregate array names (array terms of different

kinds) are treated independently from array terms with same aggregate array names (array

terms of one kind). Care needs to be taken not to confuse simple variables used for substitu

tion of one kind with variables used for another kind. The same independent treatment ap

plies to any combination of heterogeneous terms such as nested terms of different kinds.

A substitution variable set is a collection of simple variables used for substitution of array

terms of one kind. Given two nonempty sets of substitution variables Svt and Sv2, and an

array equation (to be substituted) with two array kinds A and B, the substituted constraint

could be unsatisfiable if Svt and Sv2 are not disjoint; substituting with the same variable,

when in fact, distinct variables could be substituted, could make a satisfiable constraint no

satisfiable. Since the elements of distinct array kinds represent different memory loca

tions, different substitution variables could always be given. Note that there are cases in

which Svt and Sv2 are not disjoint and the resulting substituted constraint is satisfiable. For

example, A[i] + 1 = B[j]] + 1 becomes I+ 1 =I+ 1 when A[i] and B[j] are substituted with

the same variable I. However, the substitution sets of variables should always be disjoint.

In one-dimensional array equations for which the total number of array

terms (n) is greater that the size of the array (N), N substitution variables are needed in the

worst case, the case where N subscripts may differ. The case in which all the subscripts may

differ requires O(n2) comparisons, exactly (n2- n) /2 comparisons.

CHAPTER IV

ARRAY SUBSTITUTION

The goal of array substitution is to produce equations free from array terms.

The substitution description consists of two parts, a set of substitution pairs called the sub

stitution state and a predicate called the substitution predicate. Each <Ter, Var> pair in the

substitution state represents a binding of an array term Ter with a variable Var. Ter consists

of two parts: the array name A, and the array subscript of A, Asub. Var is a simple variable

used to substitute Ter. Let; be a set of constraints describing the relationship between Asu

bi and Asubj, i ~ j, for all the <Ter, Var> pairs in the substitution state. Let E be a set of

equations to be substituted. The substitution space is the Cartesian product a = E x ; x

fl, where '1 is the substitution state. The substitution predicate is a transformation 't: a--+

a.

This Chapter describes the implementation of the substitution predicate in

a constraint Prolog.

EVALUATION OF EXPRESSIONS

Solving a set of constraints requires a constraint solver. Constraint Logic

Programming (over the field of Real numbers) combines logic programming with a

constraint solving engine. Symbolic execution can be carried out by logic programming,

and the constraints produced during symbolic execution can be solved by CLP(R)[5]. The

array subscript constraints require solutions in the integer domain. An algorithm that deter

mines whether a set of linear equations has any solutions, and gives a way to enumerate

the solutions is needed[11].

27

Each equation in the set of constrains is considered as a collection ofProlog

data objects; variables are treated as atoms and the operators are modified in order to avoid

interpretation as Prolog operators. The modification is accomplished by inserting the -

symbol in front of the Prolog operators. This serves as guard against premature solving

of the parts of the equations. After the array terms are eliminated from the set of constraints,

the substituted constraints are converted to CLP(R) variables and operators, which CLP(R)

attempts to satisfy.

The equations given to the substitution predicate have a data form like

a::b -+ a::b-+1-=a::a::b (::is the array subscript operator). The corresponding array equa

tion expressed inC-like syntax is a[b] + a[b + 1] = a[a[b]]. The substitution predicate re

turns substituted equations that do not contain the array subscript operator(::); i-+ i-+ 1-=

j, where a::b and a::a::b are substituted with i andj respectively. CLP(R) can solve the cor

responding real equation I+ I+ 1 = J. To obtain the array free equation, the predicate sub

stitute(E, Res, State) is used, where Eisa set of constraints, Res is the substituted set of

constraints and State is the substitution space.

The transformation from the meta constraints to the CLP(R) constraints is

accomplished by the trans(L, E, Tequ) predicate. E is array tenn free equation. Tequ is

the CLP(R) constraint created during the evaluation of E. During the evaluation ofE, the

meta operators are replaced by CLP(R) operators and the interpreted equations are at

tempted for satisfiability. The L argument holds the CLP(R) variables used to represent

program variables. The transformation predicate is given in Figure 10. The first predicate

in Figure 10 describes how to evaluate expressions that contain the-+ operator; the expres

sions on both sides of the equality operator are translated recursively, forming a CLP(R)

equality between the translated expressions. The second rule considers the (->)constraint.

The third and the fourth rules translate variables and constants, respectively. The trans

predicate in the third rule binds constraint variables to CLP(R) variables. A constraint set

involving three variables: low, medium and equal would have the predicates of Figure 11.

trans(L, A- +B, Out):

trans(L, A, AA),

trans(L, B, BB),

Out= AA + BB.

trans(L, A- >B, Out):

trans(L, A, AA),

trans (L, B, BB).

Out= AA > BB.

trans(L, A, Out):

atom(A),

translate(L, A, Out).

trans(L, A, A):

reai(X).

Fi~re 10. Predicate trans.

translate([Varl, Var2, Var3], low, Varl).

translate([Varl, Var2, Var3], medium, Var2).

translate([Varl, Var2, Var3], high, Var3).

Fiwe 11. Translation of atoms to CLP(R) variables.

The frrst predicate in Figure 11 associates the CLP(R) variable Varl to the constraint vari

able low. Similarly, the other two predicates bind medium and high to Var2 and Var3,

respectively. The query:

28

29

?- trans([A, B, C], medium - > low -- high, Res).

causes the CLP(R) constraint A > B - C to be attempted for satisfiability, and returns the

same constraint in Res.

ARRAYSUBS~ON

The predicate substitute(E, Res, State) describes the transformation of

equation E to the resulting, substituted equation Res. During the transformation process,

the substitution state (T}) and the set of array subscript constraints ~),which are kept inter

nally by CLP(R), change. Initially, 11 and~ are both empty. To substitute an equation El

= E2, the resulting equation is obtained by concatenating the substituted lefthand side,

equal sign and the substituted righthand side. In general, the result from substituting the

expression El op E2is concat(Resl, concat(op, Res2), where Resl and Res2 are obtained

from substitute(El, Rest, S) and substitute(E2, Res2, S), respectively. To .substitute an

expression arr[x], first xis substituted, and then the whole array term arr[Res] is substituted,

where Res is the result of the subscript substitution.

The substitution state contains the bindings of simple variables to array

terms. Whenever an array term Afj] is to be substituted, the substitution state is searched

for an array term A[i] such that the constraint i = j is satisfiable and i ;.t j is not. H the search

succeeds, A[j] is substituted with Van where <A[i], Van> is an element of the substitution

state. An unsuccessful search causes A[j] to be substituted with some Varj such that Varj

~ fl.

Substitution Al ~orithm

The substitution algorithm describes how sets of array term constraints are

transformed in to array-free constraints. The main predicates used are: substitute, elimi

nate_arr, replace and find_ var. The auxiliary predicates are: simple_ var, trans, trans

late, in_bounds and append.

30

The equations to be manipulated by the substitution predicates contain mo

dified operators so that CLP(R) will not attempt to prematurely solve parts of the equation.

The substitute predicate from Figure 12 takes a set of array term equations E, the resulting,

substituted equation set Res and the substitution state State.

substitute(E, Res, State) :-

simple var(Symbols),

eliminate_arr(E, Res, [],State, Symbols).

Fi~re 12. Substitute predicate.

The simple_ var predicate binds the CLP(R) variable Symbols to a list of

simple variable symbols used to replace array terms. The eliminate_ arr predicate from

Figure 13 takes a list of data object equations E, a list of substituted equations Res, empty

state space, state space after the substitution of E and a set of simple variables.

eliminate_ arr([], 0, State, State,_).

eliminate arr([EITE], [ResiTres], State, NewState, Symbols) :

replace(E, Res, State, MState, Symbols, Not_used_Symb),

eliminate arr(TE, TRes, MState, NewS tate, Not used Symb). - - -
Fi~ 13. Eliminate array terms from a set of equations.

First the head equation is replaced with simple variables, then the array elimination predi-

cate is applied to the tail equations.

The replace predicate takes an equation of data objects E, the substituted

equation Res, list of initial state bindings BState, list of final state bindings FState, source

of initial substitution symbols BSymb and a list of remaining simple variables after the sub-

31

stitution FSymb. The first predicate in Figure 14 is the base case of variables and constants;

atoms need not be substituted. The third predicate constructs the resulting equation by sub

stituting array tenns in the left and right subexpression recursively. The second predicate

recursively replaces nested arrays, and searches the substitution space for a simple variable.

The = .. Prolog operator is used to decompose the array equation E into operator Op, left

subexpression Land right subexpression R. After Land R have been substituted recursive

ly, the resulting equation Res is constructed by= .. operator.

replace(E, E, S, S, Symb, Symb) :

atomic(E).

replace(A::X, Res, BState, FState, BSymb, FSymb) :

replace(X, Xsub, BState, MState, BSymb, MSymb),

find_ var(A::Xsub, Res, MState, FState, MSymb, FSymb).

replace(E, Res, BState, FState, Bsymb, FSymb) :

E = .. [Op, L, R],

replace(L, LRes, BState, LState, BSymb, LSymb),

replace(R, RRes, LState, FState, LSymb, FSymb),

Res = .. [Op, LRes, RRes], !.

Fi~re 14. Replacement predicate.

The find_ var predicate takes the array to be substituted A::X, the resulting

simple variable Simple_ var, list of initial bindings, list of final bindings, list of initial sim

ple variables and a list of final simple variables. The frrst predicate in Figure 15 is consider

ing the case in which the state space is empty; then the array term M::X is substituted with

a fresh symbol Simple_ Var from the symbol list. The new state space contains the pair

32

<M::X, Simple_ Var>. The second rule checks if all the subscripts may differ, in which

case M: :X is given a symbol that has not been previously used for substituting some array

term. The third predicate substitutes M::X with a variable that has already been used to

substitute some M::Y since X= Yis a satisfiable constraint The fourth predicate handles

the case of multiple heterogeneous array terms; the subscripts are not compared since the

memory locations of distinct arrays are disjoint.

A CLP(R) query with multiple homogeneous terms like:

?- substitute([a::(b- + 1)- + 1- >a::b- +2- •a::b], Res, State).

returns with yes and gives the following result:

Res= [i~+1">j.._.*k]

State= [a::b~+1,i , a::b-+2J, a::b,k].

The query with multiple heterogeneous terms:

?- substitute([(a::b-+1)~+1.._.>a::c.ow+2.._.*b::a], Res, State).

returns with yes and gives the following result:

Res = [i.._.+ 1 "> j.ow*k]

State= [a::b-+1,i, a::~+2J, b::a,k].

The nested array query:

?- substitute([a: :(a: :b.._.+ 1).._.+ 1 .._.>a: :c).

returns with yes and gives:

Res = U.._.>k]

State= [a::b-+1,i, a::i~+1J, a::c,k].

.•

find_ var(M::X, Simple_ var, [], FState, [Simple_ VariT], T) :

append([M::X, Simple var], D, FState).

find_ var(M: :X,Sipmle _ var,[M:: Y,VariT],[M:: Y,VariFState],BSymb,FSymb) :

trans(L, X, Xeval),

trans(L, Y, Yeval),

in_ bounds(M, Xeval),

X<> Y,

find var(M::X, Simple var, T, FState, BSymb, FSymb). - -

find_ var(M::X, Simple_ var, [M::Y, Simple_ variT], FState, FSymb, FSymb) :

trans(L, X, Xeval),

trans(L, Y, Yeval),

in_ bounds(M, Xeval),

Xeval = Yeval,

append([M::XlSimple_ var], [M::Y, Simple_ variT], FState).

find_var(M::X, Simple_var, [D::Y, VariT], FState, BSymb, FSymb) :

find var(M::X, Simple var, T, MState, BSymb, FSymb), - -
append([D::Y, Var], MState, FState).

Fi2Jlre 15. Search predicate.

33

The auxiliary predicates are given in Figure 16. The in_ bounds predicate

requires a fact size(Array, N) to be present in the knowledge base; Array is the array name

and N is the size of Array. The append(Listl, List2, ResList) predicate is true if Listl

concatenated to List2 gives ResList. The <> operator is the "not equality" operator. The

34

semantics of the CLP(R) "negation as failure" predicate does not allow its use as a disequ-

ality (~) operator. For example, the query:

?- not(l = 1).

returns no as expected, but the query:

? - not(I = J).

returns no as well, when the constraint I ~ J is satisfiable.

in_bounds(Array, Subscript):

size(Array, N),

Subscript > = 0,

Subscript < N.

append([], List, List).

append([HITJ, L, £HIZ1) :

append(T, L, Z).

Subl < >Sub2 :

not_equai(Subl, Sub2).

not_equai(Subl, Sub2) :

Subl > Sub2.

not_equai(Subl, Sub2) :

Subl < Sub2.

Fi~re 16. Auxiliary predicates.

35

In this Chapter we presented the substitution algorithm that describes how

array terms are eliminated from constraints. The algorithm deals with constraints involv

ing array terms of the same kind, array terms of different kinds and nested array terms.

CHAPTER V

INFINITY OF PATHS

ANOMALIES IN CONSTRAINTS

The deficiencies of symbolic execution and path analysis for loops carry

over to the substitution technique. The array indices, after being symbolically executed,

are expressed in terms of input variables, which could assume any value in the input do

main. But, the symbolic index expressions might be incorrect depending on the technique

used to eliminate the infmity of possible paths through loops. Consider the code segment

in Figure 17. The symbolic expression fork at line 12 should be 0, but if the paths through

the loop are restricted to simple paths[l] then a symbol anomaly occurs at line 12.

Informally, a simple path is a sequence of nodes such that all the nodes in the sequence are

distinct except, possibly, the starting and the tenninating node. A symbol anomaly occurs

when a symbol is falsely treated as unconstrained. A data dependence anomaly occurs

when a variable is used without being first assigned a value[2]. When symbolic execution

produces constraints with data dependence or symbol anomalies, the confusion with input

variables can invalidate the substitution analysis described in Chapter m. For example,

to determine def-use dependence between the defmition of A[j] at line 7 and the use of

A[x] at line 13, on the simple path 7-8-9-10-11-12, the following constraint is checked

for satisfiability:

A[O] + l = A[k] + 1, where k is a symbolic value.

s
6

7

8

9

10

11

12

13

int • A, i, j, k, x, y;

j = 0;

J = AUl + 2;

AUl = 0;

for(i = 0; i < S; i++,j++) {

if(i==4)

k= 0;

}

X= A[k] + 1;

y = A[x];

FiMe 17. Array manipulation function.

37

The subscript k falsely appears as an unconstrained input symbol. The substitution

constraint 0 ~ k is satisfiable resulting in substitution of different simple variables for A[O]

and A[k]. The substituted constraint I+ 2 = K + 1 where A[O] and A[k] are substituted

with I and K respectively, is satisfiable, and a false data dependence between statements

at lines 7 and 13 is identified by the simple path data-flow analysis. Considering the loop

the correct number of traversals leads to the the correct constraint

A[O] + 2 = A[O] + 1

for which the substituted constraint I + 2 = I + 1 has no solutions in the integers.

In programs involving arrays, the usual simple path data-flow approach is

inadequate. For establishing data dependence in the array case, simple paths do not suffice

in data dependence analysis. In general, all the paths (simple and complex) through loops

38

need to be considered to determine the correct data dependence. However, for programs

with infinite exectution trees the number of paths is infmite. With the goal of improving

the data dependence analysis, we investigate two previously proposed heuristic techniques:

partial symbolic execution and explicit naming of nodes. Then we propose a new heuristic

technique: loop forcing.

Partial Symbolic Execution

Program verification techniques deal with infmite execution trees by insert

ing inductive assertions at certain program points, allowing proof of correctness using sym

bolic execution[l3]. However, these assertions are often quite difficult to discover. Only

for a limited set of programs can generation of inductive assertions be automated[l9, 20].

Symbolic execution does not handle loops well; in general, the algebraic description of the

loop cannot be produced. To handle loops a more general technique is needed.

Partial symbolic execution is a heuristic technique that constructs a regular

expression representing possible program paths. Then, a generalized form of symbolic

execution is applied to the regular path expression. This generalized form of symbolic

execution derives a generalized algebraic description of the function corresponding to the

regular path expression. The algebraic description is generalized in the sense that loop de

tails are sacrificed, but a necessacy condition for some path to be executed is derived. In

general, partial symbolic execution detennines:

1) The conditions under which a set of paths P will be executed (partial path condition).

2) The constraints on the relationship between the initial and final states when any p E

P is executed.

Consider the code fragment in Figure 18.

3

4

5

6

7

8

9

10

11

12

int x, y;

X= 0;

y = 1;

while(y ! = 0) {

scanf("%d", &y);

x=x+y;

}

if(y > 20)

printf("%d", x);

else

printf("%d", x + S);

Fi~ 18. Partial symbolic execution.

39

The path condition derived by partial symbolic execution for the path expression

(3-4-(5--6-7)*-8-9-10) is Y > 20, where the subexpression (5--6-7)* identifies zero or

more occurrences of the subpath 5--6-7, and Y is a fresh symbol corresponding to y. Path

computation relates the symbol representing y (yi) in its initial state, at line 4, to the symbol

representing y (yf) in the fmal state, at line 9 through the fresh symbol Y. Since Y > 20 and

yc = Y, it can be concluded that y > 20.

Partial symbolic evaluation of a path expression which represents a simple

path is identical to symbolic execution of that path. During the evaluation of path expres

sions that represent more than one path(paths through loops), fresh symbols are assigned

to any variable that is potentially redefined on any of the paths represented by the path ex

pression. At the end of the loop sub-path expression, the redefined variables appear uncon

strained when, in fact, they might be constrained depending on the loop details. These

40

falsely unconstrained variables when involved in constraints might invalidate the substitu-

tion technique described in Chapter m. For example, consider the code fragment in Figure

19.

int •A, x, y, n;

2 scanf("%d", &x, &y);

3 y = A[1];

4 A[y] = x;

5 for(i = 0; i < n; i + +) {

6

7 X= 1;

8 }

9 if(A[x] > A[1])

10

Fi~ure 19. Deficiencies of PSE.

If combined with array conditions such as "if(A[x] > A[1])" and used to derive the path

condition for the path (3-4-(5-6-7)*-8-9-10), partial symbolic execution would produce

the constraint A[x] > A[1] instead of the correct constraint A[1] > A[1]. The incorrect

constraint would lead the substitution technique to give distinct simple variables to both

array terms since x falsely appears as an unconstrained variable. In general, whenever un

constrained variables appear in constraints, the substitution technique might be invali

dated.

Partial symbolic evaluation is further complicated by path expressions rep

resenting loops involving array terms. Assigning a fresh symbol to an array tenn appearing

on some path from the path expression is inadequate because it accounts to treating the ar-

41

rays as aggregates instead of element-wise. For example, in the code segment of Figure

20, the array references A[x] and A[y] at lines 4 and 9 respectively, could represent both

the same or different memory locations depending on the path chosen.

int x, y, *A;

3 scanf("%d", &x, &y);

4 A[x] = y;

s while(x > 0) {

6 if(x > y)

7 y = x;

8 else

9 A[y] = x;

10 }

11 printf("o/od", A[A[y]]);

12

FiMe 20. Deficiencies of PSE.

Given two array references A[<l>t] and A[<l>2] in a complex path expression, the decision

whether to give distinct or the same variables depends on the relationship between <1>1 and

t%>2. To determine the relationship between <1>1 and <1>2, a fixed path needs to be chosen, and

this is exactly what partial symbolic evaluation does not do.

Partial symbolic execution appears to be of limited help when dealing with

derivation of path constraints for programs involving array terms in an element-wise man

ner. The necessary path conditions given by partial symbolic execution may contain falsely

unconstrained symbols, which might invalidate the substitution technique of Chapter m.

Furthermore, partial symbolic execution is not well suited for deriving path conditions of

42
path expressions representing paths involving array terms. Since the array indices are po-

tentially different on each loop iteration, different paths through a loop could involve dif

ferent array elements. Therefore, assigning fresh symbols to array tenns is inappropriate.

Explicit Namin~ of Paths

The static analysis of data dependencies for programs with simple variables

requires only simple paths to be considered. Complex paths need not be considered since

they either cause redefinition of the variables in consideration, or they introduce paths irrel

evant to the data dependence association. To illustrate the fonner case consider the code

segment in Figure 21 and a possible def-use of y between line 5 and 12. Paths obtained

by multiple iteration through the loop are not definition clear for y. An example of the latter

case is given Figure 22; the def-use ofx between lines 5 and 12 is not affected by the loop.

int x, y;

s scanf("%d %d", &x, &y);

6 while(x) {

7 scanf("%d", &x);

8 y=y+x;

9 }

10 X= X+ 1;

11 X= y + 2;

12 printf("%d", &y);

13

Fi&nre 21. Irrelevant complex paths.

s
6

7

8

9

10

11

12

13

int x, y, N, i;

X= X+ 1;

y =X+ 1;

for(i = 0; i < N; i + +) {

scanf("%d", &y);

y = 2 • y;

}

if (y != 0)

y =X+ 1;

Fi~ 22. Irrelevant complex paths.

43

In general, considering only simple paths gives rise to an intuitive anomaly.

Static analysis would fmd no data dependent paths when, in fac~ complex paths exist that

establish data dependence[?]. This anomaly occurs because a simple path connecting a du

association is not feasible, and there is a complex feasible path that connects the du associa

tion. The problem, in this case, is to detennine the number of loop traversals that would

make two references of some variable lie on some feasible nonsimple path. The problem

of detennining whether two array indices can ever be the same is an extension of the infeasi

ble simple path problem - how many loop traversals are needed for the subscripts to be

equal? In general, both of these problems are unsolvable.

To deal with the infeasible simple path problem, a technique that explicitly

names data dependent paths has been suggested[?]. From the program control flow graph,

the static analysis names sequences of nodes which represent potential du paths through

loops. For example in Figure 23, the sequences of nodes Seq1 = 12 3 4 56 7 4 12 13 and

Seq2 = 1 2 3 4 5 6 7 4 5 6 7 4 12 13 are paths for the same dupath from "x = 0;" to

44

"printf("%d" ,x);". The identification is easy since they both contain a cycle with the

same start and end node 4. The sequence name for the dupath designated by Seq 1 and Seq2,

"1. .. 4 ... 13" is obtained by excising the cycle. Dynamic counting involves noting a def of

a variable at node 1, accumulating the node sequence until control is in the loop at loop

point 4 and discarding the sequence, collecting sequences of tail nodes until the use of the

same variable is encountered at node 13. Then the dupath "1. .. 4 .. .13" is identified as cov

ered. The dupath names are created statically and counted dynamically. Redundant loops

such as 4 5 6 7 4 5 6 7 4 in Seq2 are excised by a check sum function that hashes the se

quences named to different numerical path names. The check sum function has the proper

ty that two sequences representing the same dupath, such as Seq 1 and Seq2, have the same

numerical check sum value. The precis<? counting of dupaths is sacrificed (the dupaths are

undercounted) because of the collisions occurring from the check sum function. However,

this is a deficiency associated with the implementation of the sequence naming approach,

rather than with the approach itself.

This technique amounts to assuming that the variable under consideration

is on a complex data dependent path which is to be identified statically and covered dynam

ically. This approach suffers from the infeasible path problem which is, in general, intrac

table. In particular, there might not be a data dependent path between two variable refer

ences regardless of the number of loop traversals. If this technique were used to determine

whether a du pair is on some dupath, semi-decidable problems arise: a potential infinity

of test points could be given that exercise arbitrary paths through loops, and it is hoped that

some of the dynamically accumulated sequences would match the statically established se

quence of nodes. Whenever a data dependence between some pair A[<%>1] and

A[<%>2] that occurs on a complex path is to be detected, not only must some complex path

be found that connects them, but assurance that the same memory locations are involved

is needed. The array indices for the array pair could be dynamically checked for equality.

45

int x, y;

1 X= 0;

2 positive = 0;

3 scanf("%<1", &y);

4 while(y ! = 0) {

s if(y > 0) {

6 scanf("%d", &y);

7 positive++;

8 }

9 else

10 y = -y;

11 }

12 if(positive > 0)

13 printf("%d", x);

14

Fi~ 23. Node repetition required for data dependence.

This means that the same node naming technique could be used for establishing data depen

dence between array variables, but it would correspond to an unbound search for a complex

path that establishes data dependence. Unfortunately, there is no assurance that such a

search would ever terminate, since a pair of array terms might not represent the same

memory location. For example, consider the code segment in Figure 24. There are complex

paths such as 2-3-4-5-6-7-8-5-6-7-8-9 that connect the pair A[x] at line 3 and A[1]

at line 9, but none of these paths establishes data dependence between the pair. Apart from

the problem of the infeasible path problem, inclusion of arrays introduces an additional

46

problem of infeasible subscript constraints. Explicit naming of paths if used to determine

data dependence suffers from semi-decidable problems. Potential paths are identified stati

cally, and it is hoped that the test points cover the statically identified paths. When there

are no feasible paths, a potential infinity of test points must be tried. Array tenns further

complicate the technique; not only paths that connect two array terms should be covered,

but covered with the right values - the ones that cause the same array element to be in

volved. If no such values exist (infeasible array subscripts), then potential infinity of test

points need to be tried to establish infeasible array subscripts.

2

3

4

s
6

7

8

9

int *A, x;

X= 0;

A[x] = 0;

x++;

while(i ! = 0) {

x++;}

if(x > 1)

X= A[l];

Fi&Jlfe 24. Infeasible array data dependence.

PARTIAL PATHS

Symbolic execution is effective for simple paths, the paths that are

considered in def-use analysis of simple variables. However, simple paths are not

sufficient for analysis of programms with arrays[2]. In programs with loops, the problem

of determining whether two array indices can ever be the same is undecidable. The

problem arises from the fact that the array indices might be equal after an arbitrary number

47

of loop traversals, and determining the number of loop traversals needed for two indices

to be equal is, in general, undecidable. Compiler optimization and parallelization

techniques introduce restrictions on the loop structure and array indices so that the

existance of loop indices that lie within index limits such that the array subscript

expressions are simultaneosly equal can be detennined[1 0]. Rather than ignoring the loop

control structure and loop path details, and imposing severe restrictions on the loop

structure and the array indices, we consider partial paths through loop structures and array

subscript constraints obtained on such partial paths.

In general, obtaining the correct data dependencies requires considering all

the paths in a program. However, some programs require only a subset of the possible paths

to be considered in order to establish precise data dependence. These programs contain

redundant paths with respect to data dependence. Identifying redundant paths, as well as

the minimal set of paths needed to assure certain semantic properties, is in general

undecidable. We expect to improve the precision of the data dependence analysis over one

that does not take any such paths into consideration, by separating array subscript

constraints from the loop path constraints. In this section, we introduce the necessary

vocabulary, and the implications of this approach are considered in the next section.

A loop path constraint(LPCp) is a constraint obtained by symbolic

execution of some path though a loop that has p as a subpath. Partial paths(P P) are all the

simple paths that connect two array references. A partial path constraint(PPCp) is a path

constraint produced by symbolic execution of some partial path p. An array subscript

constraint(ASCp) is a constraint obtained by equating two array indices normalized on

some path p. Two array indices~~ and ~2 are normalized on path p when the execution

state differences between ~~and 4>2 are removed by symbolically executing the indices on

p. For example, the analysis of the code fragment in Figure 25 produces the following

constraints:

PPCJ-...4-S-6-7 =X> 0 A X> y

ASCS+-7 = X = X

LPC-4-S-6-7-11-4-5 = X > 0 A X > y

where x and y are symbolic values.

3

4

s
6

7

8

9

10

11

12

13

int *A, x, y, z;

scanf("%d %d", &x, &y);

while(x > 0) {

A[x] = x;

if(x > y)

z = A[x] + 1;

else {

}

z = A[x + 1] + 1;

A[x + 1] = z;

if(x > y)

z = A[x + 1];

Fi~ 25. Complex paths resulting from a loop.

48

Given two array references A[~t] and A[~2] and the set PP of simple paths connecting

them, three cases are considered:

1) Both, PPCp, and the ASCp ~~ = 4>2 are satisfiable for some p e PP.

2) There is no p e PP for which PPCp is satisfiable.

3) There is some p e PP for which PPCp is satisfiable, but the ASCp ~~ = <1>2 is not satisfi-

49

able.

Case 1) establishes the data dependence between A[<l>t] and A[<l>2] on some

partial path p. Case 2) establishes non-existence of some feasible partial path connecting

the array references A((f)1} and A[(f)2]. Case 3) indicates that the subscript constraint is not

satisfiable on any partial path, but there might be some complex path on which A[<l>1] and

A[<l>2] are data dependent. Consider the example in Figure 25. Case 1) holds for the path

3-4-5-6-7 and array terms at statements 5 and 7: the constraints PPC3-4-~7 and

ASC3-4-S+7 are simultaneously satisfiable. Case 2) does not hold for the association A[x

+ 1] at lines 10 and 13. In particular, the only simple path through the loop that connects

lines 10 and 13 has unsatisfiable PPC6-i-9-t0-11-12-13 :x > y Ax S y, and therefore there is

no simple feasible path connecting statements 10 and 13. The path 5-6-8-9 establishes

case 3); PP~ x S y is satisfiable, but AS~ x = x + 1 is not satisfiable. If case

1) holds, it could happen that the corresponding LPC invalidates case 1) by imposing addi

tional contradictory constraints to ASC and PPC constraints.

The array subscript constraint obtained by symbolic execution of array sub

scripts on partial paths between two array references can be separated from the loop path

constraints. Techniques for solving PPC and ASC on partial paths do not suffer from the

undecidable problems, and they are different from the techniques used for solving LPC.

Equating the normalized array indices produces array subscript constraints, symbolic

execution produces partial path constraints, and good loop path constraints could be

obtained through a technique called loop forcing.

Separating the constraints obtained on simple paths, ASC and PPC from the

LPC could potentially improve the data dependence analysis. Having a satisfiable ASC

and PPC is an indication of potential data dependence. But, satisfutble ASC and PPC do

not guarantee correct data dependence identification; the interaction between ASC, PPC

and LPC could invalidate the satisfiable ASC and PPC constraints. Therefore, when ASCp

50

and PPCp are satisfiable, a satisfiable LPCp that does not invalidate ASC and PPC is needed.

Such LPCp could be obtained through loop forcing.

LoQp Forcin~

Both partial symbolic execution and explicit naming of nodes do not deal

with loops well; they ignore loop details and produce approximations of the LPC which

could invalidate the dependence associations. The problem of establishing array term

dependence, in general, requires precise semantic analysis of loops. However, we think

that the problem of establishing data dependence in programs with arrays is not as hard as

the general loop problem. In particular, the separation of ASC and PPC from LPC suggests

that the LPC could be forced not to be inconsistent with a satisfiable ASC and PPC. Rather

than obtaining general statements about what loops do (such as loop formula or path

condition for exit), the loop could be forced to do what is required. Of course, what is

required must be a subset of what the loop actually does.

The problem of identifying data flow dependencies in statements

containing array references can be broken into two cases which allow independent

treatment One of the cases requires general loop statements, but the other is much easier.

Therefore the problem of identifying data dependencies in programs with arrays is not as

hard as the general loop problem. As an illustration consider the code fragment in Figure

26. Suppose we want to investigate whether the assignment statement 53 and the output

statement S9 at lines 3 and 9 respectivally, are data flow dependent If the while loop were

not there, S3 and S9 would be data dependent since the array subscript equation x = :.t is

satisfiable. The elimination of the loop prevents further restrictions of the subscript

relevant variables to be imposed by the loop details which could make the subscript

equation unsatisfiable. Similarly, if the loop did not contain any definitions of x than S3

and S9 would be data dependent regardless of the number of loop traversals.

51

int *A, i, x;

2 scanf("%d, %d", &i, &x);

3 A[x] = i + 1;

4 while(i)

5 if(x<10)

6 X= X+ 1;

7 else

8 i = i + 1;

9 printf("%d\n", A[x]);

10

Fiwe 26. Array manipulation function.

Furthermore, the path 2-3-4-5-7-8-4-9 does not contain a defmition of x and therefore

establishes data dependence.

In general, given two array references A[cl> 1] and A[cl>2] and a loop L placed

between them, cl>t and cl>2 are nonnalized on some simple paths that lead to the loop bound

aries, producing normalized subscript expressions E 1 (at top) and £2 (at end). For example,

in Figure 24, the normalized subscript expression for the array subscript x in A[x] at line

3, normalized to line 4 (upper loop boundary), is x. Similarly, the normalized subscript

expression for the array subscript x in A[x] at line 9, normalized to line 8 (lower loop

boundary), is x. Given two normalized array subscript expressions, El and £2, two cases

need to be considered:

1) El = £2 is satisfiable. If L does not contain defmitions of variables in £2 then A[cl>t] and

A[cl>2] are data flow dependent Furthermore, the existence of any path through Lon which

52

variables of cl>2 are not defmed, establishes data dependence. The existence of any path

through L includes the important special case when the path avoids L altogether.

2) E 1 ~ E2 is satisfiable. This case requires determining a path through L that would elimi

nate this disparity.

When array references appear within a loop, then paths on which PPC and

ASC are satisfiable is searched for. H such a path exists, the LPC is forced to preserve the

satisfiability of the original ASC and PPC constraints.

Considering case 1) before approximating case 2) would improve the data

dependence analysis. Case 1) suggests an approach where a search is made for a def-clear

path with respect to the subscript relevant variables. Before attempting to force a def-clear

path through the loop, the program flow graph is inspected for defmitions of the subscript

relevant variables. H the inspection shows that the subscript variables are defmed on each

simple path through the loop then the search is not attempted. For example, the simple path

7--8-4-~ 7 in Figure 27 is a du-path between the array terms at line 7. The program data

flow graph would show that all the paths taking the false branch at conditional 5, are

def-clear with respect to j. Therefore, a search for a feasible def-clear path should be at

tempted. The simple paths that are not def-clear would be identified from the program

data-flow graph, and whenever the path condition implies taking a path that is not def-clear,

the path is abandoned and the loop is tried for alternate paths. Intermediate array appear

ances do not complicate the matter since symbolic execution can handle arrays. This tech

nique is successful when there exists at least one feasible path on which the subscript rele

vant variables are not defined. Hit were known that such a path existed in advance, then

an unbound search could find it However, there is no assurance that such a path exists,

and finding out is an undecidable problem.

3

4

s

6

7

8

9

10

void BubbleSort(A, N)

int *A, N;

{

int i, j, temp;

for(i = l; i < N; i++)

for(j = N; j< i; j-)

}

if(AU] < AU + 1]) {

temp= AU];

AU]= AU+ 1];

AU + 1) = temp;

}

Fi~ 27. Bubble sort function[24], p.66.

53 ,

Therefore, it could happen that the loop is forced through an arbitrary se

quence of simple paths that do not redefme subscript relevant variables, and then the path

condition implies taking a path that further constraints the original subscript constraint.

Consider the code segment in Figure 28. The subscript constraint between A[i] at lines

4 and 12 is i = i. However, after 51 iterations of the loop, the true branch at line 8 is taken

redefining the subscript relevant variable i at line 9.

Another serious problem is an unsatisfiable ASC. Since the ASC is ob

tained on simple paths, it could happen that the ASC is not satisfiable on any simple path.

The importance of this problem lies in the fact that if there exists no path p for which ASCp

and PPCp are satisfiable for some du association that lies on p, then the loop forcing tech

nique will not succeed.

54

inti, j, k;

3

4 A[i] = 0;

5 k = 0;

6 for(j = O;j < 100; j+ +)

7 k = k + 1;.

8 if(k >50)

9 i = i + 1;

10 else

11 printf("%d", k);

12 printf("o/Dd", A[i]);

13

Fi~re 28. Infeasible array subscripts.

In particular, ASC is not satisfiable if either the unnonnalized subscripts cannot be equal,

or they can be equal, but every path that connects them redefmes (modifies) the subscript

relevant variables. For example, in Figure 29, neither the ASCs.+7 nor the ASD--S-4-s is

satisfiable. Therefore, the loop forcing technique fails; there is no subscript relevant

def-clear path that connects lines 5 and 7. Despite of the problems inherent in this tech

nique, it improves the precision of the du analysis in some cases. We analyzed the Bubble

sort program given in Figure 30. There are total of 13 simple du-paths. The aggregate view

falsely omits 7 and falsely includes 10 du-paths. The loop forcing technique gets all13 of

them right.

The ASC and PPC constraints are necessary conditions for the loop forcing

technique to succeed. Whenever there is no path through the loop for which both ASC and

PPC are simultaneously satisfiable, loop forcing is not attempted.

3

4

s
6

7

8

9

3

4

s
3

4

s
6

7

8

9

10

11

inti, j, k;

j = 1;

for(i = 2; i < N; i + +) {

A[i] = i;

j = i + N;

k =AU];

}

Fiwe 29. Program segment without satisfiable ASC.

int i,j, temp, •A, N;

for(i = 0; i < N; i + +)

scanf("%d", A[i]);

for(i = 2; i < N; i+ +)

for(j = N; j < i; j- -)

if(A[j] < AU + 1]) {

temp= A[j];

}

AUJ =AU+ 1];

AU + 1] = temp;

for(i = 0; i < N; i + +)

printf("%d", A[i]);

Fi~re 30. Bubble sort program.

55

56

Loop forcing is a general software analysis technique. Given that two pro-

gram variables x andy are related with some relation R such as "equal to", loop forcing

searches for a path on which the relation R is preserved. This technique could be used to

improve data dependence analysis in programs involving arrays, as well as to partially lift

the simple path restriction present in data-flow testing. Rather than merely considering

simple paths through loops which suffer from problems of infeasibility, loop forcing could

be used to establish feasible du-paths. The infeasible simple variable du-path problem is

easier to deal with than the array du-path problem, because the subscripts might not be

equal, whereas two simple variables are always equal.

CHAPTER VI

CONCLUSION

The generally accepted belief that symbolic execution cannot handle arrays

is false. Symbolic execution tools either deal with arrays in an infeasible manner or they

avoid arrays altogether. However, arrays can be handled in a general way by the

substitution technique that eliminates array terms from constraints. This approach is based

on the examination of the relationships between the array term indices. The relationships

determine the kind of matematical variables needed for the substitution. This substitution

technique deals with constraints containing homogeneous array terms, heterogeneous

array terms, and nested array terms. The substitution technique has quadratic

computational complexity with respect to the number of subscript comparisons for

constraints involving one-dimensional array terms. The array-term-free constraints could

be given to an equation solver which could attempt to solve them up to its capabilities. The

substitution technique solves the problem of indexed variables in symbolic execution

without introducing any additional undecidable problems. Utilizing the substitution

technique, symbolic execution can handle indexed variables on any fixed path through a

program. However, symbolic execution does not do well with looping structures. Except

for special cases, neither the formula resulting from a loop nor the the path condition for

exit can be computed. Special problems with loops arise for programs containing indexed

variables-a potential infmity of paths need to be considered through loops to establish

data dependence. We solved the problem of indexed variables in symbolic execution, but

the loop problem must remain intractable.

58

The inclusion of arrays in program analysis introduces generally

undecidable problems of detennining whether two array subscript can ever be the same.

The problem arises from the fact that a potential infmity of paths through loop structures

needs to be considered in order to determine data dependence. Separating the array

subscript constraints from the path constraints resulting from looping constructs allows

different treatment of array subscript constraints from loop path constraints. The array

subscript constraints are produced by symbolic execution of simple paths, whereas loop

path constraints are derived by heuristic symbolic execution techniques. The sucessful

treatment of array subscript constraints comes from the fact that these constraints are

obtained by symbolic execution of simple paths, the paths for which symbolic execution

is effective. Unfortunatelly, the loop path constraints require consideration of infmite

number of paths through loops.

The partial symbolic execution heuristic technique that deals with complex

paths is unsuitable for analysing data dependencies in programs involving arrays. The

approach of explicit naming of paths suffers from semi-decidable problems and does not

involve the necessary precision when applied to programs containing array terms.

Identifying data dependencies requires precise information about the

semanitcs of the loops. Except for special cases, this information cannot be obtained.

However, the data dependence problem in programs with loops is not as hard as the general

loop problem. Many array association would be identified if the problem of array data

dependence is broken in two cases: 1) the array subscript equality constraint is satisfiable

and 2) the array subscript equality constraint is not satisfiable. Establishing data

dependence when case 1) holds is not as hard as when case 2) holds. For dependence to

be established in case 1), the loop is searched for a path whose path constraint does not

invalidate case 1). Establishing dependence when case 2) holds is a harder problem since

a path is needed which makes the subscripts equal.

We presented a general loop forcing technique that could be used to

59

perserve certain properties of relations between program variables. The loop forcing

technique, in the context of data dependence, is used when the subscript equality constraint

is satisfiable. The loop is then forced through a path that perserves the properties of the

equality relation. If such an equality perserving path exists through the loop, data

dependence is established. We think that this technique could contribute to partial lifting

of the simple path restriction present in data-flow testing. In particular, rather than

introducing infeasible simple du-paths, when in fact, there exist feasible complex du paths,

a def-clear path could be forced through the loop which interrupts du associations. We also

described the necessary constraint for the loop forcing technique to succeede: ASC.

Unatisfiable ASC for all the simple paths connecting a du association are indication that

the loop forcing technique will not succeed.

Arrays have been treated inadequatelly in the past. The aggregate array

analysis suffers from the problems of false path inclusion and correct path omission.

Treating arrays element-wise can correct both of these mistakes, but introduces

undecidable problems. By considering arrays as element-wise data-flow objects on a

limited subset of the total paths in programs, the precision of data dependence could

drastically improve. Symbolic execution can be used for analysis of simple paths

connecting array references, and loop forcing for perserving data dependencies.

We have not conducted a study of the second case (Chapter V) in which

the array subscript equality constraint is not satisfiable. The question of unsatisfiable

subscript equality constraints raises the issue of redundant paths with respect to the array

subscript relevant variables. These redundant paths which do not affect the array subscript

relevant variables could be removed from the collection of possible paths considered for

establishing data dependence between two array references.

A more elaborate study of the loop forcing technique is needed. The effect

of the integration of loop forcing, partial symbolic execution and explicit naming of paths

needs to be further examined.

REFERENCES

[1] S. Rapps and E. J. Weyker, "Selecting Software Tests Using Data Flow Information,"

IEEE Trans. Software En~. SE-ll (April, 1985), 367-375.

[2] D. Hamlet, B. Gifford and B. Ni.kolik, "Exploring Dataflow Testing of Arrays," leSE
ll, (May, 1993), 118-129.

[3] J. C. King, "Symbolic Execution and Program Testing," CACM 19. (July, 1976),

385-394.

[4] W. Howden, "Symbolic Testing and the DISSECT Symbolic Evaluation System,"

IEEE Iran Softw, En~n~. 4, (1976), 266-278.

[5] J. Jaffar and J-L. Lassez, "Constraint Logic Programming," POPL. Munich,

January, 1987.

[6] Phyllis G. Frankl, "Partial Symbolic Evaluation of Path Expressions," Polytechnic

University Department of Computer Science Technical Report

PUCS-110-90, July, 1990.

[7] J. R. Horgan and S. London, "Data Flow Coverage and C Language," A.CM, 1991,

87-97.

[8] A. Coen-Posisini and F. De Paoli, "Array Representation in Symbolic Execution,"

Computer Lan~a2es 18 (1993), 197-216.

[9] Kemerer, R. and Eckmann, S. "UNISEX a UNix-based Symbolic EXecutor for

Pascal," Soft. Prac. Exper. 15. 439-457, 1985.

[10] Michael Wolfe, Chen-Wen Tseng, "The Power Test for Data Dependence," IEEE
Trans. Distr. Sys, 5, (1992), 591-<iOl.

[11] D.E. Knuth, ''The Art of Computer Programming," Vol. 2, Seroinumerical

AJ~oritbms, Seconded. Reading, MA: Addison-Wesley, 1981.

[12] John A. Darringer, James C. King, "Applications of Symbolic Execution to
Program Testing," IEEE Trans. Softw. En~n&., April, 1978, pp . .51-60.

61

[13] S. L. Hantler and J. C. King, "An Introduction to Proving The Correctness of
Programs," ACM Computin& SuiYeys, Vol. 8, No.3, September 1976, pp.

331-353.

[14] L.A. Qarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Traps. Soft. En~. SE-2 (September, 1976), 215-222.

[15] C. V. Ramamoorthy, Siu-Bun F. Ho, W. T. Chen, "On the Automated Generation

of Program Test Data," IEEE Trans. Soft En&. SE-2 (December, 1976),

293-300.

[16] R. S. Boyer, B. Elpas and K. N. Levitt, "SELECI'- A Formal System for Testing

and Debugging Programs by Symbolic Execution," Proc. Int. Conf.

Reliable Software, 1975.

[17] Michael Wolfe, "Data Dependence and Program Restructuring," Department of

Computer Science, Oregon Graduate Institute, Technical Rep. No CS/E

90-007.

[18] Mary J. HarrolcL Brian Malloy and Gregg Rothermel, "Efficient Construction of

Program Dependence Graphs," Proc. Int. Symp. on Soft. Iestin~ and

Analysis, June, 1993, 160-170.

[19] Katz, S. M and Manna Z., "A Heuristic Approach to Program Verification,"~

Third Inti. Joint Conf. on Artificial Intelli&ence, SRI Publications Dept.

Stanford Calif., 1973, pp. 500-512.

[20] Wegbreit, B., "The synthesis of loop predicates," Comro. ACM 17, 2, (Feb. 1974),
pp. 102-112.

[21] P. G. Frankl, S. N. Weiss, and E. J. Weyuker, "ASSET: A System to Select and

Evaluate Tests," Proc. IEEE Conf. Software Tools, New York, (April
1985).

62

[22] Thomas J. Ostrand, and E. J. Weyuker, "Data Flow-based Test Adequacy Analysis for

Languages with Pointers," ACM SIGSOFf Symposium on Software

Iestini and Verification, October 1991, Victoria, B. C., Canada.

[23] C. William Gear, "Computer Applications and Algorithms," Science Research

Associates, Inc. 1986.

[24] N. Wuth, "Algorithms+ Data structures= Programs," Prentice-Hall, Inc., 1976.

[25] U. Banerjee, "Dependence Analysis for Supercomputing," Norwell, MA: Kluwer

Academic, 1988

	Data Dependence in Programs Involving Indexed Variables
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1548793668.pdf.1sKxs

