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Symbolic execution is a powerful technique used to perform various activities 

such as program testing, formal verification of programs, etc. However, symbolic execution 

does not deal with indexed variables in an adequate manner. Integration of indexed variables 

such as arrays into symbolic execution would increase the generality of this technique. We 

present an original substitution technique that produces array-term-free constraints as a 

counterargument to the commonly accepted belief that symbolic execution cannot handle 

arrays. The substitution technique deals with constraints involving array terms with a single 

aggregate name, array terms with multiple aggregate names, and nested array terms. Our 

approach to solving constraints involving array terms is based on the analysis of the 

relationship between the array subscripts. 

Dataflow dependence analysis of programs involving indexed variables suffers 

from problems of undecidability. We propose a separation technique in which the array 
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subscript constraints are separated from the loop path constraints. The separation technique 

suggests that the problem of establishing data dependencies is not as hard as the general 

loop problem. In this respect, we present a new general heuristic program analysis technique 

which is used to presetve the properties of the relations between program variables. 
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CHAPTER I 

INTRODUCTION 

Many problems in program analysis consist of identifying data-flow depen

dencies in programs. Dataflow dependence information is needed for data-flow testing, 

program optimization, program slicing, program equivalence, etc. The analysis presented 

in this thesis examines the existence and identification of a single path that establishes data 

dependence between two program statements. Therefore, the analysis is useful for some 

variants of data-flow testing, program optimization, program slicing, etc. The analysis is 

not appropriate for problems such as program equivalence which require data-flow proper

ties for all the paths in a program 

The identification of data dependencies consists of showing that variable 

assignments propagate data between statements. In the case of indexed variables such as 

arrays, symbolic execution is used to remove execution-state differences between the vari

able indices, so that the indices can be tested for equality. Symbolic execution in a program 

text involving indexed references may result in constraints containing indexed terms. Our 

approach of solving constraints involving array terms is based on an original substitution 

technique that examines the relationship between the array subscripts. Depending on the 

outcome of the examination, different or the same simple variables are substituted for the 

indexed variables. The technique deals with constraints involving array terms of different 

kinds, nested terms, and multidimensional arrays. We present this technique as a counterar

gument to the commonly accepted belief that symbolic e:v,,.._rution cannot handle arrays. 

Software analysis of programs involving arrays suffers from problems of 

undecidability and unsolvability. In particular, a potential infi.ni~y ·~f paths i.hrough looping 
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constructs needs to be considered to detect data dependence between statements containing 

array terms; two array indices could be different on an arbitrary number of loop traversals, 

then tum up the same. To deal with the infmity of paths problem a technique that separates 

the array subscript constraint from the loop path constraints is proposed. This approach 

allows distinct techniques to be used to derive the constraints necessary for establishing 

data dependence. The array subscript constraints are obtained on simple paths, and the loop 

path constraints are obtained on complex paths. Finally, the separation technique suggests 

that the array data dependence problem is not as hard as the general loop problem. In par

ticular, rather than trying to obtain precise semantics of the loop, the loop is examined for 

paths that preserve data dependence. 

STATIC ARRAY DATA DEPENDENCE 

Program analysis involves identifying dependences between program 

statements. A particular type of program dependence is data-flow dependence. If there 

is a sequence of variable assignments that propagate data from S1 to S2, then the statement 

S2 is data-flow dependent on S1. The case involving simple variables requires the same 

variable name to occur in both of the statements. The case involving array data-flow ob

jects is more complex; it consists of showing that two array references (possibly in the same 

program statement) could represent the same array element In particular, the data depen

dence identification consists of determining whether the array subscripts can ever be the 

same. Consider the Selection sort routine given in Figure 1. Data could be propagated be

tween the statement at line 6 (S6) and the statement at line 8 (Ss); small acquires a value 

at line 6 and that value is used in the conditional statement at line 8. Therefore, the state

ment Ss is data-flow dependent on the statement S6. In the array case, S6 would be data 

dependent on S12 if A[i] and A[k] could represent the same array element, and therefore 

refer to the same location. To compare the subscripts i and k, the execution-state differ-
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ences between statements S6 and S 12 need to be removed so that both indices refer to a com-

mon state. First the indices are symbolically executed on a common path so that the sym

bolic subscript expressions refer to a common execution state, and then the subscripts are 

checked for equality. 

However, the constraints obtained by equating the symbolic expressions of 

the array indices appearing in some statements Si and Sj may contain array terms. Further

more, the path condition of the path connecting Si and Sj may also contain array tenns. For 

example, the path 12-13-4-5-6-7--8-9-10 in Figure 1 has AU]< smallAj ~ N "k ~ N-1 

as path condition. Before such constraints can be mechanically solved by a constraint solv

er, care needs to be taken to properly represent array terms. In this thesis we formalize a 

general substitution technique and give the substitution algorithm that produces array-free 

constraints. The technique is general in the sense that it treats array terms with the same 

aggregate names, array terms with different aggregate names, nested as well as multidi

mensional array tenns. Detecting data dependence between statements involving array 

terms consists of determining whether a set of array terms refers to the same memory loca

tion. With programs involving looping structures, this implies considering a potential in

fmity of paths through loops. Given an arbitrary program, the problem of detennining 

whether two array indices can ever be the same is undecidable. To deal with the infmity 

of paths problem, an approach in which the array subscript constraint is separated from the 

loop path constraint is proposed. The former constraint is obtained on simple paths, paths 

for which symbolic execution is effective. Unfortunately, the latter constraint is derived 

from complex path analysis which suffers from problems of undecidability and unsolvabil

ity. Two heuristic techniques that deal with complex paths, partial symbolic evaluation and 

explicit naming of paths, are investigated. Then we propose a new heuristic technique: 

loop forcing. 
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void SelectionSort(A, N) 

int *A, N; 

{ 

in t small, i, j, k; 

4 for(k = 1; k ~ N- 1; k+ +) { 

5 i = k; 

6 small= A[k]; 

7 for(j = k + 1; j ~ N; j + +) 

8 if(AUl < small) { 

9 i = j; 

10 small= AU]; 

11 } 

12 A[i] = A[k]; 

13 A[k] =small 

14 } 

15 } 

Fi~re 1. Selection sort [23], p. 25. 

DATA DEPENDENCE IN PROGRAMS INVOLVING POINTERS 

Treating arrays allocated at run time, or static arrays manipulated through 

pointers, raises difficult problems associated with pointers. Apart from the problems pres

ent in the static array analysis, additional complications result from anonymous dynamic 

arrays or static arrays manipulated through pointers. The difficulty arises from the fact that 

pointer variables are associated with a set of possible objects. In general, the exact object 

dereferenced through some pointer is not known because of the infinity of possible paths 
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through loops. Note that the object could be a collection of objects such as aggregate data 

structures. In this case, neither the exact collection nor the exact element in the collection 

is known. The sets of objects associated with different pointer variables are not disjoint. 

Therefore, a set of pointer variables could refer to the same object Furthermore, the set 

of objects referenced by a pointer, in general, cannot be statically determined. Figure 2 

shows a function that involves array manipulation through pointer arithmetic. To establish 

data dependence between St4 and Sta, the indicesj and i at lines 12 and 18 need to be equal; 

this is the same difficulty that occurs in the static array case. Statement S 18 is data depen

dent on S13 if p and q could not only have the same offset, but reference the same array 

-a case not present in the static array analysis. In particular, two distinct pointer variables, 

q (line 13) and p (line 18) could dereference the same object ifi andj at lines 7 and 12 could 

be equal on some feasible path that connects lines 13 and 18. This case does not occur in 

the static case because two distinct array aggregate names always reference distinct objects. 

Determining the exact set of objects associated with a pointer variable is undecidable be

cause it requires considering infinity of paths through loops. In the static case, the set of 

objects associated with an array variable is known, and determined at compile time rather 

than at run time. 

Existing data flow testing tools such as ASSET[21] are based on simplistic 

approaches in which pointer and array variables are treated in the same manner as simple 

variables. A more sophisticated approach has been implemented in TACTIC[22]. Rather 

than considering paths that exercise data dependencies, program points are identified with 

alias sets, sets of variables associated with pointer variables. The alias set of a pointer vari

able at some program point is an approximation of all the objects possibly referenced by 

that variable. Whenever some variable V belongs to an alias set of some pointer variable 

p, then dereferencing p is a possible use of V. 
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int fun(int_array) 

int *int_array; 

{ 

int *p, *q, 

i, j, done = TRUE; 

} 

scanf("%d %d", &i, &j); 

while(done) { 

if( i > j) { 

p = &int_array[i]; 

q = p; 

*p = j; 

} 

else { 

} 

p = &int_arrayU]; 

*q = i; 
*p = j; 

done = FALSE; 

i = p[i]; 

return int_array[i]; 

} 

Fimre 2. Pointer manipulation function. 

6 
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However, computing alias sets at individual lines causes spurious associations; variable 

pairs are identified as associations, but they are located on an infeasible path. Many of these 

associations could be detected and eliminated by solving path constraints. 

In this thesis, we do not address the issue of pointers in data dependence 

analysis. However, some of the techniques presented in this thesis are extensible to point

ers. For instance, the substitution technique described in Chapter m could be used to deal 

with the case of indexed pointer variables. The loop forcing technique described in Chapter 

V could be used to test whether certain relations between pointer variables hold. 

THESIS ORGANIZATION 

Chapter IT provides background about symbolic execution and data depen

dence. In Chapter ill, we firSt present our technique for solving constraints involving array 

references and then discuss homogeneous and heterogeneous array terms. The substitution 

algorithm used to eliminate array terms from equations is given in Chapter IV. Chapter V 

addresses the problems involved in identifying data dependencies in programs containing 

arrays, discusses the separation of partial paths from complex paths and considers two heu

ristic techniques that deal with complex paths. Chapter V ends with a discussion of separa

tion of satisfiable and unsatisfiable subscript constraints on simple paths and techniques 

to improve the data dependence analysis. Finally, our conclusions and suggestions for fur-

ther work are presented in Chapter VI. 



CHAPTER II 

BACKGROUND 

SYMBOLIC EXECUTION 

Symbolic execution is a powerful technique that is used to produce an alge

braic formula representing the output of a class of conventional executions. Instead of 

executing a program on individual inputs, symbolic inputs are given to the symbolic execu

tor which derives a formula describing the relationship between the input and the output 

variables. Symbolic execution of a given path P results in two pieces of information: a path 

condition and functional description. The path condition is a set of constraints that de

scribe how input variables are constrained by various control flow conditions along the 

path P. The functional description expresses output variables in terms of input variables 

for the given path P. For example, symbolic execution of the program fragment in Figure 

3 produces the result given in tabular form in Figure 4. 

Symbolic execution can be done in two ways: forward or backward chain

ing. Forward chaining starts with an expression at the top of the path and symbolically 

executes every statement along the path; conditional statements collected along the path 

affect the path condition, and assignment statements affect the functional description. 

Backward chaining is based on Hoare's axiom of assignment starting with an expression 

at the bottom of the path and symbolically executing only the statements that affect the ex

pression. Forward chaining allows early detection of infeasible paths, but requires that the 

intermediate symbolic values of all variables be computed and retained. 
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int x, z; 

l scanf("%d", &x); 

3 X= X+ 1; 

4 if(x > 0) { 

5 X= X+ 1; 

6 Z =X+ 1; 

7 } 

8 else { 

9 z = :x; 

10 } 

11 z=z+x; 

12 printf("%d" ,z); 

Fi~ 3. Program fragment with two execution paths. 

path path condition functional descr. 

2-3-4-5-6-11-12 x>-1 z=2 * x+5 
2-3-4-8-9-11-12 xS-1 z = 2 * (x + 1) 

Fiwe 4. Path condition and functional description. 

Symbolic execution can be used to perform various software analysis tasks. 

For instance, symbolic testing captures the intuition of experienced testers and aids in 

test-case generation and test-case coverage[12]. A test data generation system symbolical

ly executes a path and attempts to generate test data that would cause execution of the se

lected path[l4]. Symbolic execution can also be used in loop analysis and program correct

ness verification[13]. In data-flow testing of arrays, the execution state differences 
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between array subscripts are removed by symbolic execution[2]. However, symbolic 

execution tools either deal with arrays in an infeasible manner that requires extensive user 

involvement, intense computations or extensive usage of memory resources. Because of 

these problems, arrays have been excluded from symbolic execution or treated in an inap

propriate manner. What is needed is a general technique that would allow integration of 

arrays in symbolic execution. Such a technique would be able to handle arrays of different 

kinds, multidimensional arrays, and nested array terms. Dynamic data structures can also 

be incorporated in symbolic execution theory[&]. 

Array Yalues in Symbolic Execution 

Many attempts have been made to incorporate arrays in symbolic execu

tion. At one end of the spectrum, the solutions are purely static, and at the other end, they 

are a mixture of static and dynamic analysis. The static solutions require an actual value 

when an ambiguous reference is encountered [ 4]; or, N parallel computations are per

formed, where N is the size of the array [3]. In [3] an exhaustive case analysis is performed, 

similar to the unresolved IF statement, in which each time a symbolic reference is encoun

tered, each array element is involved in one of theN path and functional computations. Oth

er static approaches consist of representing the value of the array elements by conditional 

expressions[9], or considering the case in which the subscripts of the unresolved references 

are equal or not equal to the subscripts of previous array assignments[16]. In [9], for exam

ple, the value of some A[j] might be represented as "if j = 5 then y else if j = 0 then t else 

if j = t- k then k else m". Note thatj, t, k and m might involve array terms themselves. 

The main problem with the approach in [9] is that at some point, A(j] might be used to re

solve some conditional statement; the problem arises for the fact that (potential) array term 

expressions such as j, t, k and m would be parts of the path condition. The approach in [ 16] 

consists of imposing additional constraints (hypotheses) to the path condition so that the 

number of cases considered grows rapidly as substitution proceeds. Another problem with 
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the approach in [ 16] is the fact that the previous array assignment statements might have 

as right hand sides expressions involving (other) array terms. If that is the case, the result

ing path conditions are not array-term-free. 

The mixed solutions consist of delaying the substitution of the unresolved 

references until array subscripts are known[15]. The approach in [15] involves represent

ing the array references in a compact form, evaluating the subscripts with numeric values 

and considering previous assignments to that array element 

These solutions are, unfortunately, infeasible for arrays of large sizes. Be

cause of the infeasibility of these approaches, arrays have been widely excluded from sym

bolic execution. Array variables can be bound to a set that contains every symbolic value 

that the variable can have and the constraints under which each value will hold[8]. The 

constraints reflect the relationships between the array indices. Rather than keeping the state 

of all the symbolic values and the constraints under which array variables can have these 

values at each point in the program, symbolic execution can obtain path and functional 

constraints containing array terms. It is important to note that all the symbolic execution 

approaches described so far, except [ 4], involve array term constraints at some point. Once 

the constraints are obtained, they could be freed from array terms and given to an equation 

solver. 

In general, array references appear in constraints when expressions to be 

symbolically executed are calculated using array references. Such constraints present a 

problem since the relationship between the array terms is not known. For example, sym

bolic execution of the path 4-5-6-7~ in the code fragment of Figure 6 introduces the path 

constraint and the array subscript constraint presented in Figure 5. 

The presence of array terms makes the above constraint inadequate for solv

mg. The inadequacy arises from the fact that the array terms are not mat.h~.1"..'1tical vari

ables. But, the array terms could be eliminated by determining which array teHn!' !efer to 



arr[y+ 1] + 1 + arr[x] + arr[y] > arr[arr[y+ 1] + 1] 
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Fi2Jl!e 5. Array term and array subscript constraint. 

int x, y; 

int arr[lO]; 

scanf(''%d %d", &x, &y); 

x = arr[x] + arr[y]; 

y = arr[y+ 1] + 1; 

x=y+x; 

if(x > arr[y]) { 

y = y + 1; 

printf("%d" arr [y] ); 

} 

else { 

X= X+ 1; 

printf("%d", arr[x]); 

} 

Fi~ 6. Array manipulation program. 

For example, the array constraint from Figure 5, could be represented as: 

12 



J+l+K+L>M 

O:S:x:S:9 

0SyS9 

13 

The change of representation from constraints involving array tenns to array-free 

constraints is described in Chapter m. 

Array-reference-free constraints can be given to an equation solver. How

ever, solving a general system of equations is an unsolvable problem. Therefore, many 

constraints resulting from subscript comparisons and array-free constraints will be unsuc

cessfully attempted regardless of the equation-solving algorithm used. Some statistical 

techniques for solving general sets of constraints have been proposed; the constraint vari

ables are sampled and the samples are used to inspect the satisfiability of the constraints 

under consideration[ IS]. The probability that the set of constraints is not satisfiable is pro

portional to the number of unsuccessful samples tried, given that no success was observed. 

DATA DEPENDENCE ANALYSIS 

Much of the data dependence analysis work has been done in the field of 

parallel and vector processing. Optimizing compilers use data dependence graphs to detect 

parallelism in programs. Data dependence graphs represent data usage patterns in pro

grams and are a useful source of infonnation underlying program analysis and program 

testing techniques[ IS]. Data dependence analysis is necessary in order to perfonn various 

program transformations that would allow parallel execution of loop structures as well as 

taking advantage of architectural features such as cache memories. In order to carry out 

program restructuring transformations such as loop interchanging, loop skewing and loop 

rotation, data dependence analysis identifies the legal transformations that are semantically 

equivalent to the original program[l7]. 
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The data dependence problem for arrays can be characterized as follows: 

given two statements containing array references and a finite number of nested loops sur

rounding these statements, determine whether the array reference indices could be equal. 

Given that the array subscripts are linear combinations of the loop indices with constant 

coefficients, the data dependence problem consists of solving simultaneous diophantine 

equations[lO, 25], which is an unsolvable problem in general. For example, in the code 

fragment of Figure 7, data dependence between statements 5 and 6 is established if the dio

phantine equation: 

2+3 • i+4 • j+S • k=3+i+j+k 

has a solution in the integers. 

int A,~ j, k; 

2 

3 

4 

5 

6 

7 

8 

for(i = 0; i < N; i+ +) 

for(j = 0; j < M; j + +) 

for(k = 0; k < L; k + +) { 

} 

A[l + 3 • i + 4 • j + S • k] = AU]; 

AUl = A[3 + i + j + k]; 

A[3 + i + j + k] = A[2 + 3 • i + 4 • j + S • k]; 

Fi~ 7. Program that exchanges two array elements. 

However, in general, the loop structure is more complex, consisting of an infinity of paths 

through the loop, with array subscripts that are not linear combinations of the loop indices. 
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Consider the Bubble sort function in Figure 8 that sorts an array Arr of N elements in 

descending order. 

3 

4 

s 
6 

7 

8 

9 

10 

void BubbleSort(Arr, N) 

int *Arr, N; 

{ 

int temp, i, j; 

for(i = 2; i < N; i++) 

for(j = N; j < i; j-) 

} 

if( Arrij] < ArrU + 1]) { 

temp= ArrUl; 

} 

ArrUJ = ArrU + 1]; 

ArrU + 1] = temp; 

Fiwe 8: Bubble sort function[24], p. 66. 

Suppose we want to determine if AU] and A[j + 1] at line 7 are data dependent. The array 

subscripts are linear combinations of the loop indices. Equating the indices and satisfying 

the equation is not sufficient since data dependence is not only a function of the loop in

dices, but of the conditional and assignment statements as well. The approach of testing 

indices for equality without considering the loop details does well when the loop has no 

additional conditional structures and no assignment statements of the subscript relevant 

variables. This approach amounts to disregarding the control structure within the loop 

which could potentially restrict the dependence equation. Furthermore, the assignment 

statements that appear within the loop body affect the subscripts, and could invalidate the 

subscript equation. 
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Input Constraints 

The variables from the input domain are constrained by the various program 

control structures. In particular, for the execution to follow a path through the program, 

some constraints involving input variables need to be satisfiable in order for the path to be 

executed. Subscript comparisons involve the equality operator. In this thesis, we are con

cerned with constraints consisting of symbolic values of program variables and source lan

guage (C) operators. Since the dependence analysis is concerned with array subscript com

parisons, the solutions to these constraints are searched for in the integers - some of the 

constraints may be over the reals (the ones involving array terms of type real), but most 

involve the more difficult integer domain. 

DATAFLOW TESTING 

Data-flow testing is a path testing strategy in which the paths to be covered 

are chosen in such a way that they exercise interesting dataflow properties of programs. 

A path is covered if a test case causes the execution to follow that path. Instead of covering 

all the paths in a program (full path testing), in data-flow testing the paths are variants of 

def-use paths for variables. 

The precise data flow definitions used in this document are taken from[ 1]. 

A path is a sequence ofnodes(nt, ... ,nj),j~, such that there is an edge from ru to ru.t, where 

i= 1 , ... ,j-1. In this definition the path is defined with respect to an uninterpreted control 

flow graph. A simple path is a loop-free path(no node repetitions), but nt and nj may be 

the same. A complex path is a nonsimple path which allows node repetitions. A def-use 

association for some variable V connects a node in which Vis assigned a value(def) and 

a node(possibly the same one) in which Vis used. A def-clearpath does not allow redefmi

tion of V in some intermediate node. Given a predicate node p that contains a statement 

of the form condition(xt, X2, ••• ,Xn), where condition is a conditional predicate involving 
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variables xt through Xn, and two successor nodes ofp, i andj, the edges (p, i) and (p,j) con-

tain p-uses of xt, ... ,Xn. Array subscript relevant variables of some array term A[i] are pro

gram variables that affect the subscript expression i. 

Data flow testing systems usually treat arrays as aggregate objects in which 

differentiation between distinct array elements has not been made. In this approach, defini

tions and uses of distinct array elements are treated as references to the same object. For 

example, in the code fragment of Figure 9 aggregate array analysis would detect def-use 

dependence between the array pairs 4-5, 4-6 and 7-8. In fact, the only correct def-use de

pendence pair is 4-8 which is not identified by the aggregate analysis since the path falsely 

appears as interrupted by the assignment statement at line 7. 

int *A, x, y; 

3 scanf("%d", &x); 

4 A[x] = y; 

s y = A[x + 1]; 

6 z = A[x + l]; 

7 A[x- 1] = y; 

8 printf("lf'od", A[x] ); 

9 

Fimre 9. Array manipulation function. 

Aggregate data-flow testing suffers from problems of false path inclusion 

when there are no data dependent paths, and from problems of correct path omission when 

a path appears to be interrupted by an intermediate assignment when, in fact, it is not. These 

problems can be eliminated by element-wise analysis. Extensive element-wise analysis is 
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CHAPTER ill 

SUBSTITIJTION TECHNIQUE 

Symbolic execution does not do well with indexed variables and looping 

structures. In this Chapter we present a solution to the indexed variable problem. The sub

stitution technique handles array constraints produced by symbolic execution of any ftxed 

path through a program. 

Array terms are eliminated from constraints by analyzing the relationship 

between the array term indices. The relationships detennine the kind of mathematical vari

ables needed for the substitution. 

The simplest case involves constraints containing a single array term T. 

Then Tis itself unconstrained (except for subscript bounds), and the substitution ofT with 

a variable that does not occur in the equation gives the correct constraint. 

Constraints with multiple array tenns with the same aggregate name com

plicate the substitution. 

Let~ be a constraint containing two array terms A[<l>1] and A[<l>2], where 

4>t and 4>2 are arbitrary expressions. To carry out the substitution, two cases need to be 

considered: 

1) 4>t ~ 4>2 is satisfiable. In this case the array terms might represent different memory 

locations, and so might hold different values. Therefore the array terms are substituted with 

distinct simple variables. 

2) <1>1 = <1>2 is satisfiable. In this case the array terms might represent the same memory 
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location, and hence must have a single value. Therefore the array tenns must be substituted 

with the same simple variable. 

H case 1) holds, distinct simple variables should be substituted for both 

terms. If case 1) does not hold and case 2) holds, the same simple variables should be substi

tuted for the array terms. It is important to note that the solution set of the substituted 

constraint in case 2) forms a subset of the solution set of the substituted constraint in case 

1 ). Considering case 2) when case 1) is satisfiable might introduce an unsatisfiable substi

tuted constraint when, in fact, case 1) produces a satisfiable substituted constraint. Since 

every solution that satisfies the constraint in case 1) satisfies the constraint in case 2), the 

more general case 1) is used, and case 2) need not be tried. For example, given the 

constraint 

brr[i] + 1 = brrU], where i andj are symbolic values, 

the constraint I = j is satisfiable, so brr[i] and brrU1 might be substituted with the same 

simple variable I. The substituted constraint 

I+ 1 =I 

has no integer solutions. The case 1) substitution constraint I ;~t J is satisfiable, and the sub

stituted constraint 

I+ 1 = K 

is satisfiable, where I is substituted for brr[i] and K for brr[j]. 
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MULTIPLE ARRAY TERMS 

Constraints that involve array terms with a single aggregate array name are 

called homogeneous array term constraints. Heterogeneous array tenn constraints are 

constraints with multiple aggregate array name tenns. For example, the constraint 

A[i] + BUJ- A[BU11 = C[k] 

is a heterogeneous array tenn constraint, whereas the constraint 

A[i] + A[AU]] > A[k] 

is a homogeneous array term constraint 

This section describes proper substitution of homogeneous, heterogeneous 

and nested array tenns. 

Homo~eneous ArraY Tenus Constraints 

Constraints that involve array tenns with identical aggregate array names 

are called homogeneous array tenn constraints. As the number of array terms in an equa

tion increases, the correct substitution is detennined by considering whether all the sub

scripts may differ, in which case all the array terms are substituted with distinct variables. 

If all the subscripts may not be different, the ones that may not be different, but may be the 

same, are identified and substituted with the same variable. Given n array tenns A[cl>1 ], 

A[cl>2], ... , A[cl>n] contained in some array equation, where cl>1, cl>2, ..• ,cl>n are arbitrary expres

sions, two cases need to be considered: 

1) The term A[cl>i] is given a distinct simple variable iff or allcl>j, i ;II! j, cl>i ;II! cl>j is a satisfi-
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able constraint In this case the array term A[ <l>i] might represent different memory location 

than the rest of A(<l>j] terms in the equation, and so might hold a different value. Therefore 

the array term is substituted with a distinct simple variable; one not used to substitute any 

of the A(cl>j] tenns. Each array term A[cl>i] for which case 1) holds is substituted with a 

distinct simple variable. In the extreme situation in which the constraint <l>t ;at ••• ;at <l>n is 

satisfiable, A[<l>1], A[<l>2], ... , A[<l>n] are substituted with distinct variables and no further analy

sis is needed. 

2) The term A[<l>i] is given some simple variable V used to substitute some A[<l>j], i ;at j, 

if <l>i ;at <l>j is not satisfiable, but cl»i = <l>j is satisfiable. The array tenns A[cl»i] and A[<l>j] 

whose subscripts may be the same, but not different are substituted with the same simple 

variable. Each array term A[<l>i] for which case 2) holds is substituted with a variable used 

to substitute some other A[ cl>j] term. 

Giving a distinct variable to some A[<l>t] requires that all the possible pairs 

of subscripts are compared, because of the non transitivity of the ;at operator. In general, 

4>t ;at <1>2A cf>2 ;at 4>3 => <l>t ;at 4>3 is a false implication. For example, given the array equa

tion: 

A[i] + AU] = A[i), where I and j are symbolic values, 

i ;at j A j ;at i ~ i ;at i is a false implication. 

Giving a same simple variable to some A[<l>i] does not require that all the 

possible pairs are compared. Since equality is transitive, there is no need to compare each 

pair; considering only one pair of array terms with subscripts that must be the same and not 

differen~ determines the substitution outcome for the pair. For example, consider the fol-
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lowing array equation in which the homogeneous array terms are numbered for easier iden-

tification. The substitution analysis of the array equation: 

At[i + 1] - Al[j] + AJ[j] + A4[i] = As[j] 

where I and J are symbolic values. 

The substitution analysis of the array equation detennines that I in A4[ij and I + 1 in A1[l + 

1] can be different from the rest of the subscripts, so A4[i] and A1[l + 1] are given variables 

that are not used for substituting any other array term in the equation. To substitute the A:t[D 

term, the subscript in the A3[D term need only be compared to either one of the subscripts 

in the A2[D orAsU] term, because of the transitivity of the = operator. 

Nested Homo~eoeous Array Tenus 

In the case where the symbolic expression has array terms as subscripts to 

arrays, the substitution technique is applied recursively. In particular, let A[ct>] be an array 

term such that the subscript expression <l> is a function of n nested expressions, cl>t, ... , <l>n-1, 

where each <l>i, i = l, ... ,n-1, is an arbitrary (proper) expression containing an array term 

whose subscript is cl>i+l, and cl>n is an array-term-free expression. An expression is proper 

if it contains a single array term. The technique first substitutes the most nested array term 

A[<l>n], substituting it with a simple variable that becomes part of the array index expression 

<1>~1 of the nesting array term A[<l>~1 ]. The array-free expression <l>n-I is constrained to the 

array bounds and used for further subscript comparisons. Consider the following 

constraint in which the homogeneous array terms are numbered for easier identification: 

1 + Arn[Arn[i + 1]] = 1 + p 
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where I is symbolic value, ~ = Arr1[~1] and ~~ = i + 1. 

Initially, the most deeply nested array term Arn[i + 1] is substituted with some I. The 

cons~tbeconnes 

1 + Arn [I] = 1 + p 

with I being the subscript of the nesting array term Arr1. An additional constraint stating 

that I is in array bounds is added to the set of constraints. Next, I~ i + 1 is added to the 

set of constraints, indicating that Arr1 and Arr1 could represent different memory loca

tions, and Arrt [l] is substituted with K, giving 

1+K=1+p 

which has K = p as a solution. 

Substituting an array equation that has both nested and multiple array terms 

does not complicate the technique since extensions of cases 1) and 2) from the previous 

section are used. Whenever some A[<l>i] is to be substituted, cases 1) and 2) are considered 

with respect to the whole substitution state; Cl>i is compared to the rest of the subscripts until 

either sonne Cl>j, i ;!If j, is found for which Cl>i = Cl>j holds and Cl>i ;111! Cl>j does not hold, or there 

is no ~j for which Cl>i = cl>j holds. Because the substitutions involve considering the whole 

substitution state, the satisfiability of the substituted equation is independent of the order 

of the substitution. 
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Hetero2eneous Array Tenus 

Array terms with distinct aggregate array names (array terms of different 

kinds) are treated independently from array terms with same aggregate array names (array 

terms of one kind). Care needs to be taken not to confuse simple variables used for substitu

tion of one kind with variables used for another kind. The same independent treatment ap

plies to any combination of heterogeneous terms such as nested terms of different kinds. 

A substitution variable set is a collection of simple variables used for substitution of array 

terms of one kind. Given two nonempty sets of substitution variables Svt and Sv2, and an 

array equation (to be substituted) with two array kinds A and B, the substituted constraint 

could be unsatisfiable if Svt and Sv2 are not disjoint; substituting with the same variable, 

when in fact, distinct variables could be substituted, could make a satisfiable constraint no

satisfiable. Since the elements of distinct array kinds represent different memory loca

tions, different substitution variables could always be given. Note that there are cases in 

which Svt and Sv2 are not disjoint and the resulting substituted constraint is satisfiable. For 

example, A[i] + 1 = B[j]] + 1 becomes I+ 1 =I+ 1 when A[i] and B[j] are substituted with 

the same variable I. However, the substitution sets of variables should always be disjoint. 

In one-dimensional array equations for which the total number of array 

terms (n) is greater that the size of the array (N), N substitution variables are needed in the 

worst case, the case where N subscripts may differ. The case in which all the subscripts may 

differ requires O(n2) comparisons, exactly (n2- n) /2 comparisons. 
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ARRAY SUBSTITUTION 

The goal of array substitution is to produce equations free from array terms. 

The substitution description consists of two parts, a set of substitution pairs called the sub

stitution state and a predicate called the substitution predicate. Each <Ter, Var> pair in the 

substitution state represents a binding of an array term Ter with a variable Var. Ter consists 

of two parts: the array name A, and the array subscript of A, Asub. Var is a simple variable 

used to substitute Ter. Let; be a set of constraints describing the relationship between Asu

bi and Asubj, i ~ j, for all the <Ter, Var> pairs in the substitution state. Let E be a set of 

equations to be substituted. The substitution space is the Cartesian product a = E x ; x 

fl, where '1 is the substitution state. The substitution predicate is a transformation 't: a--+ 

a. 

This Chapter describes the implementation of the substitution predicate in 

a constraint Prolog. 

EVALUATION OF EXPRESSIONS 

Solving a set of constraints requires a constraint solver. Constraint Logic 

Programming (over the field of Real numbers) combines logic programming with a 

constraint solving engine. Symbolic execution can be carried out by logic programming, 

and the constraints produced during symbolic execution can be solved by CLP(R)[5]. The 

array subscript constraints require solutions in the integer domain. An algorithm that deter

mines whether a set of linear equations has any solutions, and gives a way to enumerate 

the solutions is needed[ 11]. 
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Each equation in the set of constrains is considered as a collection ofProlog 

data objects; variables are treated as atoms and the operators are modified in order to avoid 

interpretation as Prolog operators. The modification is accomplished by inserting the -

symbol in front of the Prolog operators. This serves as guard against premature solving 

of the parts of the equations. After the array terms are eliminated from the set of constraints, 

the substituted constraints are converted to CLP(R) variables and operators, which CLP(R) 

attempts to satisfy. 

The equations given to the substitution predicate have a data form like 

a::b -+ a::b-+1-=a::a::b (::is the array subscript operator). The corresponding array equa

tion expressed inC-like syntax is a[b] + a[b + 1] = a[a[b]]. The substitution predicate re

turns substituted equations that do not contain the array subscript operator(::); i-+ i-+ 1-= 

j, where a::b and a::a::b are substituted with i andj respectively. CLP(R) can solve the cor

responding real equation I+ I+ 1 = J. To obtain the array free equation, the predicate sub

stitute(E, Res, State) is used, where Eisa set of constraints, Res is the substituted set of 

constraints and State is the substitution space. 

The transformation from the meta constraints to the CLP(R) constraints is 

accomplished by the trans(L, E, Tequ) predicate. E is array tenn free equation. Tequ is 

the CLP(R) constraint created during the evaluation of E. During the evaluation ofE, the 

meta operators are replaced by CLP(R) operators and the interpreted equations are at

tempted for satisfiability. The L argument holds the CLP(R) variables used to represent 

program variables. The transformation predicate is given in Figure 10. The first predicate 

in Figure 10 describes how to evaluate expressions that contain the-+ operator; the expres

sions on both sides of the equality operator are translated recursively, forming a CLP(R) 

equality between the translated expressions. The second rule considers the (->)constraint. 

The third and the fourth rules translate variables and constants, respectively. The trans 

predicate in the third rule binds constraint variables to CLP(R) variables. A constraint set 

involving three variables: low, medium and equal would have the predicates of Figure 11. 



trans(L, A- +B, Out):

trans(L, A, AA), 

trans(L, B, BB), 

Out= AA + BB. 

trans(L, A- >B, Out):

trans(L, A, AA), 

trans (L, B, BB). 

Out= AA > BB. 

trans(L, A, Out):

atom(A), 

translate(L, A, Out). 

trans(L, A, A):

reai(X). 

Fi~re 10. Predicate trans. 

translate([Varl, Var2, Var3], low, Varl). 

translate([Varl, Var2, Var3], medium, Var2). 

translate([Varl, Var2, Var3], high, Var3). 

Fiwe 11. Translation of atoms to CLP(R) variables. 

The frrst predicate in Figure 11 associates the CLP(R) variable Varl to the constraint vari

able low. Similarly, the other two predicates bind medium and high to Var2 and Var3, 

respectively. The query: 

28 
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?- trans([A, B, C], medium - > low -- high, Res). 

causes the CLP(R) constraint A > B - C to be attempted for satisfiability, and returns the 

same constraint in Res. 

ARRAYSUBS~ON 

The predicate substitute(E, Res, State) describes the transformation of 

equation E to the resulting, substituted equation Res. During the transformation process, 

the substitution state (T}) and the set of array subscript constraints ~),which are kept inter

nally by CLP(R), change. Initially, 11 and~ are both empty. To substitute an equation El 

= E2, the resulting equation is obtained by concatenating the substituted lefthand side, 

equal sign and the substituted righthand side. In general, the result from substituting the 

expression El op E2is concat(Resl, concat(op, Res2), where Resl and Res2 are obtained 

from substitute(El, Rest, S) and substitute(E2, Res2, S), respectively. To .substitute an 

expression arr[x], first xis substituted, and then the whole array term arr[Res] is substituted, 

where Res is the result of the subscript substitution. 

The substitution state contains the bindings of simple variables to array 

terms. Whenever an array term Afj] is to be substituted, the substitution state is searched 

for an array term A[i] such that the constraint i = j is satisfiable and i ;.t j is not. H the search 

succeeds, A[j] is substituted with Van where <A[i], Van> is an element of the substitution 

state. An unsuccessful search causes A[j] to be substituted with some Varj such that Varj 

~ fl. 

Substitution Al ~orithm 

The substitution algorithm describes how sets of array term constraints are 

transformed in to array-free constraints. The main predicates used are: substitute, elimi

nate_arr, replace and find_ var. The auxiliary predicates are: simple_ var, trans, trans

late, in_bounds and append. 



30 

The equations to be manipulated by the substitution predicates contain mo

dified operators so that CLP(R) will not attempt to prematurely solve parts of the equation. 

The substitute predicate from Figure 12 takes a set of array term equations E, the resulting, 

substituted equation set Res and the substitution state State. 

substitute(E, Res, State) :-

simple var(Symbols), 

eliminate_arr(E, Res, [],State, Symbols). 

Fi~re 12. Substitute predicate. 

The simple_ var predicate binds the CLP(R) variable Symbols to a list of 

simple variable symbols used to replace array terms. The eliminate_ arr predicate from 

Figure 13 takes a list of data object equations E, a list of substituted equations Res, empty 

state space, state space after the substitution of E and a set of simple variables. 

eliminate_ arr([], 0, State, State,_). 

eliminate arr([EITE], [ResiTres], State, NewState, Symbols) :

replace(E, Res, State, MState, Symbols, Not_used_Symb), 

eliminate arr(TE, TRes, MState, NewS tate, Not used Symb ). - - -
Fi~ 13. Eliminate array terms from a set of equations. 

First the head equation is replaced with simple variables, then the array elimination predi-

cate is applied to the tail equations. 

The replace predicate takes an equation of data objects E, the substituted 

equation Res, list of initial state bindings BState, list of final state bindings FState, source 

of initial substitution symbols BSymb and a list of remaining simple variables after the sub-
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stitution FSymb. The first predicate in Figure 14 is the base case of variables and constants; 

atoms need not be substituted. The third predicate constructs the resulting equation by sub

stituting array tenns in the left and right subexpression recursively. The second predicate 

recursively replaces nested arrays, and searches the substitution space for a simple variable. 

The = .. Prolog operator is used to decompose the array equation E into operator Op, left 

subexpression Land right subexpression R. After Land R have been substituted recursive

ly, the resulting equation Res is constructed by= .. operator. 

replace(E, E, S, S, Symb, Symb) :

atomic(E). 

replace(A::X, Res, BState, FState, BSymb, FSymb) :

replace(X, Xsub, BState, MState, BSymb, MSymb), 

find_ var(A::Xsub, Res, MState, FState, MSymb, FSymb). 

replace(E, Res, BState, FState, Bsymb, FSymb) :

E = .. [Op, L, R], 

replace(L, LRes, BState, LState, BSymb, LSymb), 

replace(R, RRes, LState, FState, LSymb, FSymb), 

Res = .. [Op, LRes, RRes], !. 

Fi~re 14. Replacement predicate. 

The find_ var predicate takes the array to be substituted A::X, the resulting 

simple variable Simple_ var, list of initial bindings, list of final bindings, list of initial sim

ple variables and a list of final simple variables. The frrst predicate in Figure 15 is consider

ing the case in which the state space is empty; then the array term M::X is substituted with 

a fresh symbol Simple_ Var from the symbol list. The new state space contains the pair 
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<M::X, Simple_ Var>. The second rule checks if all the subscripts may differ, in which 

case M: :X is given a symbol that has not been previously used for substituting some array 

term. The third predicate substitutes M::X with a variable that has already been used to 

substitute some M::Y since X= Yis a satisfiable constraint The fourth predicate handles 

the case of multiple heterogeneous array terms; the subscripts are not compared since the 

memory locations of distinct arrays are disjoint. 

A CLP(R) query with multiple homogeneous terms like: 

?- substitute([a::(b- + 1)- + 1- >a::b- +2- •a::b], Res, State). 

returns with yes and gives the following result: 

Res= [i~+1">j.._.*k] 

State= [a::b~+1,i , a::b-+2J, a::b,k]. 

The query with multiple heterogeneous terms: 

?- substitute([(a::b-+1)~+1.._.>a::c.ow+2.._.*b::a], Res, State). 

returns with yes and gives the following result: 

Res = [i.._.+ 1 "> j.ow*k] 

State= [a::b-+1,i, a::~+2J, b::a,k]. 

The nested array query: 

?- substitute([ a: :(a: :b.._.+ 1).._.+ 1 .._.>a: :c). 

returns with yes and gives: 

Res = U.._.>k] 

State= [a::b-+1,i, a::i~+1J, a::c,k]. 
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find_ var(M::X, Simple_ var, [], FState, [Simple_ VariT], T) :

append([M::X, Simple var], D, FState). 

find_ var(M: :X,Sipmle _ var,[M:: Y,VariT],[M:: Y,VariFState],BSymb,FSymb) :

trans(L, X, Xeval), 

trans(L, Y, Yeval), 

in_ bounds(M, Xeval), 

X<> Y, 

find var(M::X, Simple var, T, FState, BSymb, FSymb). - -

find_ var(M::X, Simple_ var, [M::Y, Simple_ variT], FState, FSymb, FSymb) :

trans(L, X, Xeval), 

trans(L, Y, Yeval), 

in_ bounds(M, Xeval), 

Xeval = Yeval, 

append([M::XlSimple_ var], [M::Y, Simple_ variT], FState). 

find_var(M::X, Simple_var, [D::Y, VariT], FState, BSymb, FSymb) :

find var(M::X, Simple var, T, MState, BSymb, FSymb), - -
append([D::Y, Var], MState, FState). 

Fi2Jlre 15. Search predicate. 
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The auxiliary predicates are given in Figure 16. The in_ bounds predicate 

requires a fact size( Array, N) to be present in the knowledge base; Array is the array name 

and N is the size of Array. The append(Listl, List2, ResList) predicate is true if Listl 

concatenated to List2 gives ResList. The <> operator is the "not equality" operator. The 



34 

semantics of the CLP(R) "negation as failure" predicate does not allow its use as a disequ-

ality ( ~) operator. For example, the query: 

?- not(l = 1). 

returns no as expected, but the query: 

? - not(I = J). 

returns no as well, when the constraint I ~ J is satisfiable. 

in_bounds(Array, Subscript):

size(Array, N), 

Subscript > = 0, 

Subscript < N. 

append([], List, List). 

append([HITJ, L, £HIZ1) :

append(T, L, Z). 

Subl < >Sub2 :

not_equai(Subl, Sub2). 

not_equai(Subl, Sub2) :

Subl > Sub2. 

not_equai(Subl, Sub2) :

Subl < Sub2. 

Fi~re 16. Auxiliary predicates. 
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In this Chapter we presented the substitution algorithm that describes how 

array terms are eliminated from constraints. The algorithm deals with constraints involv

ing array terms of the same kind, array terms of different kinds and nested array terms. 



CHAPTER V 

INFINITY OF PATHS 

ANOMALIES IN CONSTRAINTS 

The deficiencies of symbolic execution and path analysis for loops carry 

over to the substitution technique. The array indices, after being symbolically executed, 

are expressed in terms of input variables, which could assume any value in the input do

main. But, the symbolic index expressions might be incorrect depending on the technique 

used to eliminate the infmity of possible paths through loops. Consider the code segment 

in Figure 17. The symbolic expression fork at line 12 should be 0, but if the paths through 

the loop are restricted to simple paths[l] then a symbol anomaly occurs at line 12. 

Informally, a simple path is a sequence of nodes such that all the nodes in the sequence are 

distinct except, possibly, the starting and the tenninating node. A symbol anomaly occurs 

when a symbol is falsely treated as unconstrained. A data dependence anomaly occurs 

when a variable is used without being first assigned a value[2]. When symbolic execution 

produces constraints with data dependence or symbol anomalies, the confusion with input 

variables can invalidate the substitution analysis described in Chapter m. For example, 

to determine def-use dependence between the defmition of A[j] at line 7 and the use of 

A[x] at line 13, on the simple path 7-8-9-10-11-12, the following constraint is checked 

for satisfiability: 

A[O] + l = A[k] + 1, where k is a symbolic value. 
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int • A, i, j, k, x, y; 

j = 0; 

J = AUl + 2; 

AUl = 0; 

for(i = 0; i < S; i++,j++) { 

if(i==4) 

k= 0; 

} 

X= A[k] + 1; 

y = A[x]; 

FiMe 17. Array manipulation function. 
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The subscript k falsely appears as an unconstrained input symbol. The substitution 

constraint 0 ~ k is satisfiable resulting in substitution of different simple variables for A[O] 

and A[k]. The substituted constraint I+ 2 = K + 1 where A[O] and A[k] are substituted 

with I and K respectively, is satisfiable, and a false data dependence between statements 

at lines 7 and 13 is identified by the simple path data-flow analysis. Considering the loop 

the correct number of traversals leads to the the correct constraint 

A[O] + 2 = A[O] + 1 

for which the substituted constraint I + 2 = I + 1 has no solutions in the integers. 

In programs involving arrays, the usual simple path data-flow approach is 

inadequate. For establishing data dependence in the array case, simple paths do not suffice 

in data dependence analysis. In general, all the paths (simple and complex) through loops 
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need to be considered to determine the correct data dependence. However, for programs 

with infinite exectution trees the number of paths is infmite. With the goal of improving 

the data dependence analysis, we investigate two previously proposed heuristic techniques: 

partial symbolic execution and explicit naming of nodes. Then we propose a new heuristic 

technique: loop forcing. 

Partial Symbolic Execution 

Program verification techniques deal with infmite execution trees by insert

ing inductive assertions at certain program points, allowing proof of correctness using sym

bolic execution[l3]. However, these assertions are often quite difficult to discover. Only 

for a limited set of programs can generation of inductive assertions be automated[l9, 20]. 

Symbolic execution does not handle loops well; in general, the algebraic description of the 

loop cannot be produced. To handle loops a more general technique is needed. 

Partial symbolic execution is a heuristic technique that constructs a regular 

expression representing possible program paths. Then, a generalized form of symbolic 

execution is applied to the regular path expression. This generalized form of symbolic 

execution derives a generalized algebraic description of the function corresponding to the 

regular path expression. The algebraic description is generalized in the sense that loop de

tails are sacrificed, but a necessacy condition for some path to be executed is derived. In 

general, partial symbolic execution detennines: 

1) The conditions under which a set of paths P will be executed (partial path condition). 

2) The constraints on the relationship between the initial and final states when any p E 

P is executed. 

Consider the code fragment in Figure 18. 
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int x, y; 

X= 0; 

y = 1; 

while(y ! = 0) { 

scanf("%d", &y); 

x=x+y; 

} 

if(y > 20) 

printf("%d", x); 

else 

printf("%d", x + S); 

Fi~ 18. Partial symbolic execution. 
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The path condition derived by partial symbolic execution for the path expression 

(3-4-(5--6-7)*-8-9-10) is Y > 20, where the subexpression (5--6-7)* identifies zero or 

more occurrences of the subpath 5--6-7, and Y is a fresh symbol corresponding to y. Path 

computation relates the symbol representing y (yi) in its initial state, at line 4, to the symbol 

representing y (yf) in the fmal state, at line 9 through the fresh symbol Y. Since Y > 20 and 

yc = Y, it can be concluded that y > 20. 

Partial symbolic evaluation of a path expression which represents a simple 

path is identical to symbolic execution of that path. During the evaluation of path expres

sions that represent more than one path(paths through loops), fresh symbols are assigned 

to any variable that is potentially redefined on any of the paths represented by the path ex

pression. At the end of the loop sub-path expression, the redefined variables appear uncon

strained when, in fact, they might be constrained depending on the loop details. These 
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falsely unconstrained variables when involved in constraints might invalidate the substitu-

tion technique described in Chapter m. For example, consider the code fragment in Figure 

19. 

int •A, x, y, n; 

2 scanf("%d", &x, &y); 

3 y = A[1]; 

4 A[y] = x; 

5 for(i = 0; i < n; i + +) { 

6 

7 X= 1; 

8 } 

9 if(A[x] > A[1]) 

10 

Fi~ure 19. Deficiencies of PSE. 

If combined with array conditions such as "if(A[x] > A[1])" and used to derive the path 

condition for the path (3-4-(5-6-7)*-8-9-10), partial symbolic execution would produce 

the constraint A[x] > A[1] instead of the correct constraint A[1] > A[1]. The incorrect 

constraint would lead the substitution technique to give distinct simple variables to both 

array terms since x falsely appears as an unconstrained variable. In general, whenever un

constrained variables appear in constraints, the substitution technique might be invali

dated. 

Partial symbolic evaluation is further complicated by path expressions rep

resenting loops involving array terms. Assigning a fresh symbol to an array tenn appearing 

on some path from the path expression is inadequate because it accounts to treating the ar-
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rays as aggregates instead of element-wise. For example, in the code segment of Figure 

20, the array references A[x] and A[y] at lines 4 and 9 respectively, could represent both 

the same or different memory locations depending on the path chosen. 

int x, y, *A; 

3 scanf("%d", &x, &y); 

4 A[x] = y; 

s while(x > 0) { 

6 if(x > y) 

7 y = x; 

8 else 

9 A[y] = x; 

10 } 

11 printf("o/od", A[A[y]]); 

12 

FiMe 20. Deficiencies of PSE. 

Given two array references A[<l>t] and A[<l>2] in a complex path expression, the decision 

whether to give distinct or the same variables depends on the relationship between <1>1 and 

t%>2. To determine the relationship between <1>1 and <1>2, a fixed path needs to be chosen, and 

this is exactly what partial symbolic evaluation does not do. 

Partial symbolic execution appears to be of limited help when dealing with 

derivation of path constraints for programs involving array terms in an element-wise man

ner. The necessary path conditions given by partial symbolic execution may contain falsely 

unconstrained symbols, which might invalidate the substitution technique of Chapter m. 

Furthermore, partial symbolic execution is not well suited for deriving path conditions of 
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path expressions representing paths involving array terms. Since the array indices are po-

tentially different on each loop iteration, different paths through a loop could involve dif

ferent array elements. Therefore, assigning fresh symbols to array tenns is inappropriate. 

Explicit Namin~ of Paths 

The static analysis of data dependencies for programs with simple variables 

requires only simple paths to be considered. Complex paths need not be considered since 

they either cause redefinition of the variables in consideration, or they introduce paths irrel

evant to the data dependence association. To illustrate the fonner case consider the code 

segment in Figure 21 and a possible def-use of y between line 5 and 12. Paths obtained 

by multiple iteration through the loop are not definition clear for y. An example of the latter 

case is given Figure 22; the def-use ofx between lines 5 and 12 is not affected by the loop. 

int x, y; 

s scanf("%d %d", &x, &y); 

6 while(x) { 

7 scanf("%d", &x); 

8 y=y+x; 

9 } 

10 X= X+ 1; 

11 X= y + 2; 

12 printf("%d", &y); 

13 

Fi&nre 21. Irrelevant complex paths. 
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int x, y, N, i; 

X= X+ 1; 

y =X+ 1; 

for(i = 0; i < N; i + +) { 

scanf("%d", &y); 

y = 2 • y; 

} 

if (y != 0) 

y =X+ 1; 

Fi~ 22. Irrelevant complex paths. 
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In general, considering only simple paths gives rise to an intuitive anomaly. 

Static analysis would fmd no data dependent paths when, in fac~ complex paths exist that 

establish data dependence[?]. This anomaly occurs because a simple path connecting a du 

association is not feasible, and there is a complex feasible path that connects the du associa

tion. The problem, in this case, is to detennine the number of loop traversals that would 

make two references of some variable lie on some feasible nonsimple path. The problem 

of detennining whether two array indices can ever be the same is an extension of the infeasi

ble simple path problem - how many loop traversals are needed for the subscripts to be 

equal? In general, both of these problems are unsolvable. 

To deal with the infeasible simple path problem, a technique that explicitly 

names data dependent paths has been suggested[?]. From the program control flow graph, 

the static analysis names sequences of nodes which represent potential du paths through 

loops. For example in Figure 23, the sequences of nodes Seq1 = 12 3 4 56 7 4 12 13 and 

Seq2 = 1 2 3 4 5 6 7 4 5 6 7 4 12 13 are paths for the same dupath from "x = 0;" to 



44 

"printf("%d" ,x);". The identification is easy since they both contain a cycle with the 

same start and end node 4. The sequence name for the dupath designated by Seq 1 and Seq2, 

"1. .. 4 ... 13" is obtained by excising the cycle. Dynamic counting involves noting a def of 

a variable at node 1, accumulating the node sequence until control is in the loop at loop 

point 4 and discarding the sequence, collecting sequences of tail nodes until the use of the 

same variable is encountered at node 13. Then the dupath "1. .. 4 .. .13" is identified as cov

ered. The dupath names are created statically and counted dynamically. Redundant loops 

such as 4 5 6 7 4 5 6 7 4 in Seq2 are excised by a check sum function that hashes the se

quences named to different numerical path names. The check sum function has the proper

ty that two sequences representing the same dupath, such as Seq 1 and Seq2, have the same 

numerical check sum value. The precis<? counting of dupaths is sacrificed (the dupaths are 

undercounted) because of the collisions occurring from the check sum function. However, 

this is a deficiency associated with the implementation of the sequence naming approach, 

rather than with the approach itself. 

This technique amounts to assuming that the variable under consideration 

is on a complex data dependent path which is to be identified statically and covered dynam

ically. This approach suffers from the infeasible path problem which is, in general, intrac

table. In particular, there might not be a data dependent path between two variable refer

ences regardless of the number of loop traversals. If this technique were used to determine 

whether a du pair is on some dupath, semi-decidable problems arise: a potential infinity 

of test points could be given that exercise arbitrary paths through loops, and it is hoped that 

some of the dynamically accumulated sequences would match the statically established se

quence of nodes. Whenever a data dependence between some pair A[<%>1] and 

A[<%>2] that occurs on a complex path is to be detected, not only must some complex path 

be found that connects them, but assurance that the same memory locations are involved 

is needed. The array indices for the array pair could be dynamically checked for equality. 
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int x, y; 

1 X= 0; 

2 positive = 0; 

3 scanf("%<1", &y); 

4 while(y ! = 0) { 

s if(y > 0) { 

6 scanf("%d", &y); 

7 positive++; 

8 } 

9 else 

10 y = -y; 

11 } 

12 if(positive > 0) 

13 printf("%d", x); 

14 

Fi~ 23. Node repetition required for data dependence. 

This means that the same node naming technique could be used for establishing data depen

dence between array variables, but it would correspond to an unbound search for a complex 

path that establishes data dependence. Unfortunately, there is no assurance that such a 

search would ever terminate, since a pair of array terms might not represent the same 

memory location. For example, consider the code segment in Figure 24. There are complex 

paths such as 2-3-4-5-6-7-8-5-6-7-8-9 that connect the pair A[x] at line 3 and A[1] 

at line 9, but none of these paths establishes data dependence between the pair. Apart from 

the problem of the infeasible path problem, inclusion of arrays introduces an additional 
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problem of infeasible subscript constraints. Explicit naming of paths if used to determine 

data dependence suffers from semi-decidable problems. Potential paths are identified stati

cally, and it is hoped that the test points cover the statically identified paths. When there 

are no feasible paths, a potential infinity of test points must be tried. Array tenns further 

complicate the technique; not only paths that connect two array terms should be covered, 

but covered with the right values - the ones that cause the same array element to be in

volved. If no such values exist (infeasible array subscripts), then potential infinity of test 

points need to be tried to establish infeasible array subscripts. 

2 

3 

4 

s 
6 

7 

8 

9 

int *A, x; 

X= 0; 

A[x] = 0; 

x++; 

while(i ! = 0) { 

x++;} 

if(x > 1) 

X= A[l]; 

Fi&Jlfe 24. Infeasible array data dependence. 

PARTIAL PATHS 

Symbolic execution is effective for simple paths, the paths that are 

considered in def-use analysis of simple variables. However, simple paths are not 

sufficient for analysis of programms with arrays[2]. In programs with loops, the problem 

of determining whether two array indices can ever be the same is undecidable. The 

problem arises from the fact that the array indices might be equal after an arbitrary number 
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of loop traversals, and determining the number of loop traversals needed for two indices 

to be equal is, in general, undecidable. Compiler optimization and parallelization 

techniques introduce restrictions on the loop structure and array indices so that the 

existance of loop indices that lie within index limits such that the array subscript 

expressions are simultaneosly equal can be detennined[ 1 0]. Rather than ignoring the loop 

control structure and loop path details, and imposing severe restrictions on the loop 

structure and the array indices, we consider partial paths through loop structures and array 

subscript constraints obtained on such partial paths. 

In general, obtaining the correct data dependencies requires considering all 

the paths in a program. However, some programs require only a subset of the possible paths 

to be considered in order to establish precise data dependence. These programs contain 

redundant paths with respect to data dependence. Identifying redundant paths, as well as 

the minimal set of paths needed to assure certain semantic properties, is in general 

undecidable. We expect to improve the precision of the data dependence analysis over one 

that does not take any such paths into consideration, by separating array subscript 

constraints from the loop path constraints. In this section, we introduce the necessary 

vocabulary, and the implications of this approach are considered in the next section. 

A loop path constraint(LPCp) is a constraint obtained by symbolic 

execution of some path though a loop that has p as a subpath. Partial paths( P P) are all the 

simple paths that connect two array references. A partial path constraint(PPCp) is a path 

constraint produced by symbolic execution of some partial path p. An array subscript 

constraint(ASCp) is a constraint obtained by equating two array indices normalized on 

some path p. Two array indices~~ and ~2 are normalized on path p when the execution 

state differences between ~~and 4>2 are removed by symbolically executing the indices on 

p. For example, the analysis of the code fragment in Figure 25 produces the following 

constraints: 



PPCJ-...4-S-6-7 =X> 0 A X> y 

ASCS+-7 = X = X 

LPC-4-S-6-7-11-4-5 = X > 0 A X > y 

where x and y are symbolic values. 
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int *A, x, y, z; 

scanf("%d %d", &x, &y); 

while(x > 0) { 

A[x] = x; 

if(x > y) 

z = A[x] + 1; 

else { 

} 

z = A[x + 1] + 1; 

A[x + 1] = z; 

if(x > y) 

z = A[x + 1]; 

Fi~ 25. Complex paths resulting from a loop. 
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Given two array references A[~t] and A[~2] and the set PP of simple paths connecting 

them, three cases are considered: 

1) Both, PPCp, and the ASCp ~~ = 4>2 are satisfiable for some p e PP. 

2) There is no p e PP for which PPCp is satisfiable. 

3) There is some p e PP for which PPCp is satisfiable, but the ASCp ~~ = <1>2 is not satisfi-
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able. 

Case 1) establishes the data dependence between A[<l>t] and A[<l>2] on some 

partial path p. Case 2) establishes non-existence of some feasible partial path connecting 

the array references A((f)1} and A[(f)2]. Case 3) indicates that the subscript constraint is not 

satisfiable on any partial path, but there might be some complex path on which A[<l>1] and 

A[<l>2] are data dependent. Consider the example in Figure 25. Case 1) holds for the path 

3-4-5-6-7 and array terms at statements 5 and 7: the constraints PPC3-4-~7 and 

ASC3-4-S+7 are simultaneously satisfiable. Case 2) does not hold for the association A[x 

+ 1] at lines 10 and 13. In particular, the only simple path through the loop that connects 

lines 10 and 13 has unsatisfiable PPC6-i-9-t0-11-12-13 :x > y Ax S y, and therefore there is 

no simple feasible path connecting statements 10 and 13. The path 5-6-8-9 establishes 

case 3); PP~ x S y is satisfiable, but AS~ x = x + 1 is not satisfiable. If case 

1) holds, it could happen that the corresponding LPC invalidates case 1) by imposing addi

tional contradictory constraints to ASC and PPC constraints. 

The array subscript constraint obtained by symbolic execution of array sub

scripts on partial paths between two array references can be separated from the loop path 

constraints. Techniques for solving PPC and ASC on partial paths do not suffer from the 

undecidable problems, and they are different from the techniques used for solving LPC. 

Equating the normalized array indices produces array subscript constraints, symbolic 

execution produces partial path constraints, and good loop path constraints could be 

obtained through a technique called loop forcing. 

Separating the constraints obtained on simple paths, ASC and PPC from the 

LPC could potentially improve the data dependence analysis. Having a satisfiable ASC 

and PPC is an indication of potential data dependence. But, satisfutble ASC and PPC do 

not guarantee correct data dependence identification; the interaction between ASC, PPC 

and LPC could invalidate the satisfiable ASC and PPC constraints. Therefore, when ASCp 
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and PPCp are satisfiable, a satisfiable LPCp that does not invalidate ASC and PPC is needed. 

Such LPCp could be obtained through loop forcing. 

LoQp Forcin~ 

Both partial symbolic execution and explicit naming of nodes do not deal 

with loops well; they ignore loop details and produce approximations of the LPC which 

could invalidate the dependence associations. The problem of establishing array term 

dependence, in general, requires precise semantic analysis of loops. However, we think 

that the problem of establishing data dependence in programs with arrays is not as hard as 

the general loop problem. In particular, the separation of ASC and PPC from LPC suggests 

that the LPC could be forced not to be inconsistent with a satisfiable ASC and PPC. Rather 

than obtaining general statements about what loops do (such as loop formula or path 

condition for exit), the loop could be forced to do what is required. Of course, what is 

required must be a subset of what the loop actually does. 

The problem of identifying data flow dependencies in statements 

containing array references can be broken into two cases which allow independent 

treatment One of the cases requires general loop statements, but the other is much easier. 

Therefore the problem of identifying data dependencies in programs with arrays is not as 

hard as the general loop problem. As an illustration consider the code fragment in Figure 

26. Suppose we want to investigate whether the assignment statement 53 and the output 

statement S9 at lines 3 and 9 respectivally, are data flow dependent If the while loop were 

not there, S3 and S9 would be data dependent since the array subscript equation x = :.t is 

satisfiable. The elimination of the loop prevents further restrictions of the subscript 

relevant variables to be imposed by the loop details which could make the subscript 

equation unsatisfiable. Similarly, if the loop did not contain any definitions of x than S3 

and S9 would be data dependent regardless of the number of loop traversals. 
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int *A, i, x; 

2 scanf("%d, %d", &i, &x); 

3 A[x] = i + 1; 

4 while(i) 

5 if(x<10) 

6 X= X+ 1; 

7 else 

8 i = i + 1; 

9 printf("%d\n", A[x]); 

10 

Fiwe 26. Array manipulation function. 

Furthermore, the path 2-3-4-5-7-8-4-9 does not contain a defmition of x and therefore 

establishes data dependence. 

In general, given two array references A[ cl> 1] and A[ cl>2] and a loop L placed 

between them, cl>t and cl>2 are nonnalized on some simple paths that lead to the loop bound

aries, producing normalized subscript expressions E 1 (at top) and £2 (at end). For example, 

in Figure 24, the normalized subscript expression for the array subscript x in A[x] at line 

3, normalized to line 4 (upper loop boundary), is x. Similarly, the normalized subscript 

expression for the array subscript x in A[x] at line 9, normalized to line 8 (lower loop 

boundary), is x. Given two normalized array subscript expressions, El and £2, two cases 

need to be considered: 

1) El = £2 is satisfiable. If L does not contain defmitions of variables in £2 then A[cl>t] and 

A[ cl>2] are data flow dependent Furthermore, the existence of any path through Lon which 
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variables of cl>2 are not defmed, establishes data dependence. The existence of any path 

through L includes the important special case when the path avoids L altogether. 

2) E 1 ~ E2 is satisfiable. This case requires determining a path through L that would elimi

nate this disparity. 

When array references appear within a loop, then paths on which PPC and 

ASC are satisfiable is searched for. H such a path exists, the LPC is forced to preserve the 

satisfiability of the original ASC and PPC constraints. 

Considering case 1) before approximating case 2) would improve the data 

dependence analysis. Case 1) suggests an approach where a search is made for a def-clear 

path with respect to the subscript relevant variables. Before attempting to force a def-clear 

path through the loop, the program flow graph is inspected for defmitions of the subscript 

relevant variables. H the inspection shows that the subscript variables are defmed on each 

simple path through the loop then the search is not attempted. For example, the simple path 

7--8-4-~ 7 in Figure 27 is a du-path between the array terms at line 7. The program data

flow graph would show that all the paths taking the false branch at conditional 5, are 

def-clear with respect to j. Therefore, a search for a feasible def-clear path should be at

tempted. The simple paths that are not def-clear would be identified from the program 

data-flow graph, and whenever the path condition implies taking a path that is not def-clear, 

the path is abandoned and the loop is tried for alternate paths. Intermediate array appear

ances do not complicate the matter since symbolic execution can handle arrays. This tech

nique is successful when there exists at least one feasible path on which the subscript rele

vant variables are not defined. Hit were known that such a path existed in advance, then 

an unbound search could find it However, there is no assurance that such a path exists, 

and finding out is an undecidable problem. 
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void BubbleSort(A, N) 

int *A, N; 

{ 

int i, j, temp; 

for( i = l; i < N; i++) 

for(j = N; j< i; j-) 

} 

if(AU] < AU + 1]) { 

temp= AU]; 

AU]= AU+ 1]; 

AU + 1) = temp; 

} 

Fi~ 27. Bubble sort function[24], p.66. 
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Therefore, it could happen that the loop is forced through an arbitrary se

quence of simple paths that do not redefme subscript relevant variables, and then the path 

condition implies taking a path that further constraints the original subscript constraint. 

Consider the code segment in Figure 28. The subscript constraint between A[i] at lines 

4 and 12 is i = i. However, after 51 iterations of the loop, the true branch at line 8 is taken 

redefining the subscript relevant variable i at line 9. 

Another serious problem is an unsatisfiable ASC. Since the ASC is ob

tained on simple paths, it could happen that the ASC is not satisfiable on any simple path. 

The importance of this problem lies in the fact that if there exists no path p for which ASCp 

and PPCp are satisfiable for some du association that lies on p, then the loop forcing tech

nique will not succeed. 



54 

inti, j, k; 

3 

4 A[i] = 0; 

5 k = 0; 

6 for(j = O;j < 100; j+ +) 

7 k = k + 1;. 

8 if( k >50) 

9 i = i + 1; 

10 else 

11 printf("%d", k); 

12 printf("o/Dd", A[i]); 

13 

Fi~re 28. Infeasible array subscripts. 

In particular, ASC is not satisfiable if either the unnonnalized subscripts cannot be equal, 

or they can be equal, but every path that connects them redefmes (modifies) the subscript 

relevant variables. For example, in Figure 29, neither the ASCs.+7 nor the ASD--S-4-s is 

satisfiable. Therefore, the loop forcing technique fails; there is no subscript relevant 

def-clear path that connects lines 5 and 7. Despite of the problems inherent in this tech

nique, it improves the precision of the du analysis in some cases. We analyzed the Bubble 

sort program given in Figure 30. There are total of 13 simple du-paths. The aggregate view 

falsely omits 7 and falsely includes 10 du-paths. The loop forcing technique gets all13 of 

them right. 

The ASC and PPC constraints are necessary conditions for the loop forcing 

technique to succeed. Whenever there is no path through the loop for which both ASC and 

PPC are simultaneously satisfiable, loop forcing is not attempted. 
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inti, j, k; 

j = 1; 

for(i = 2; i < N; i + +) { 

A[i] = i; 

j = i + N; 

k =AU]; 

} 

Fiwe 29. Program segment without satisfiable ASC. 

int i,j, temp, •A, N; 

for(i = 0; i < N; i + +) 

scanf("%d", A[i]); 

for( i = 2; i < N; i+ +) 

for(j = N; j < i; j- -) 

if(A[j] < AU + 1]) { 

temp= A[j]; 

} 

AUJ =AU+ 1]; 

AU + 1] = temp; 

for(i = 0; i < N; i + +) 

printf("%d", A[i]); 

Fi~re 30. Bubble sort program. 
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Loop forcing is a general software analysis technique. Given that two pro-

gram variables x andy are related with some relation R such as "equal to", loop forcing 

searches for a path on which the relation R is preserved. This technique could be used to 

improve data dependence analysis in programs involving arrays, as well as to partially lift 

the simple path restriction present in data-flow testing. Rather than merely considering 

simple paths through loops which suffer from problems of infeasibility, loop forcing could 

be used to establish feasible du-paths. The infeasible simple variable du-path problem is 

easier to deal with than the array du-path problem, because the subscripts might not be 

equal, whereas two simple variables are always equal. 



CHAPTER VI 

CONCLUSION 

The generally accepted belief that symbolic execution cannot handle arrays 

is false. Symbolic execution tools either deal with arrays in an infeasible manner or they 

avoid arrays altogether. However, arrays can be handled in a general way by the 

substitution technique that eliminates array terms from constraints. This approach is based 

on the examination of the relationships between the array term indices. The relationships 

determine the kind of matematical variables needed for the substitution. This substitution 

technique deals with constraints containing homogeneous array terms, heterogeneous 

array terms, and nested array terms. The substitution technique has quadratic 

computational complexity with respect to the number of subscript comparisons for 

constraints involving one-dimensional array terms. The array-term-free constraints could 

be given to an equation solver which could attempt to solve them up to its capabilities. The 

substitution technique solves the problem of indexed variables in symbolic execution 

without introducing any additional undecidable problems. Utilizing the substitution 

technique, symbolic execution can handle indexed variables on any fixed path through a 

program. However, symbolic execution does not do well with looping structures. Except 

for special cases, neither the formula resulting from a loop nor the the path condition for 

exit can be computed. Special problems with loops arise for programs containing indexed 

variables-a potential infmity of paths need to be considered through loops to establish 

data dependence. We solved the problem of indexed variables in symbolic execution, but 

the loop problem must remain intractable. 
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The inclusion of arrays in program analysis introduces generally 

undecidable problems of detennining whether two array subscript can ever be the same. 

The problem arises from the fact that a potential infmity of paths through loop structures 

needs to be considered in order to determine data dependence. Separating the array 

subscript constraints from the path constraints resulting from looping constructs allows 

different treatment of array subscript constraints from loop path constraints. The array 

subscript constraints are produced by symbolic execution of simple paths, whereas loop 

path constraints are derived by heuristic symbolic execution techniques. The sucessful 

treatment of array subscript constraints comes from the fact that these constraints are 

obtained by symbolic execution of simple paths, the paths for which symbolic execution 

is effective. Unfortunatelly, the loop path constraints require consideration of infmite 

number of paths through loops. 

The partial symbolic execution heuristic technique that deals with complex 

paths is unsuitable for analysing data dependencies in programs involving arrays. The 

approach of explicit naming of paths suffers from semi-decidable problems and does not 

involve the necessary precision when applied to programs containing array terms. 

Identifying data dependencies requires precise information about the 

semanitcs of the loops. Except for special cases, this information cannot be obtained. 

However, the data dependence problem in programs with loops is not as hard as the general 

loop problem. Many array association would be identified if the problem of array data 

dependence is broken in two cases: 1) the array subscript equality constraint is satisfiable 

and 2) the array subscript equality constraint is not satisfiable. Establishing data 

dependence when case 1) holds is not as hard as when case 2) holds. For dependence to 

be established in case 1 ), the loop is searched for a path whose path constraint does not 

invalidate case 1 ). Establishing dependence when case 2) holds is a harder problem since 

a path is needed which makes the subscripts equal. 

We presented a general loop forcing technique that could be used to 
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perserve certain properties of relations between program variables. The loop forcing 

technique, in the context of data dependence, is used when the subscript equality constraint 

is satisfiable. The loop is then forced through a path that perserves the properties of the 

equality relation. If such an equality perserving path exists through the loop, data 

dependence is established. We think that this technique could contribute to partial lifting 

of the simple path restriction present in data-flow testing. In particular, rather than 

introducing infeasible simple du-paths, when in fact, there exist feasible complex du paths, 

a def-clear path could be forced through the loop which interrupts du associations. We also 

described the necessary constraint for the loop forcing technique to succeede: ASC. 

Unatisfiable ASC for all the simple paths connecting a du association are indication that 

the loop forcing technique will not succeed. 

Arrays have been treated inadequatelly in the past. The aggregate array 

analysis suffers from the problems of false path inclusion and correct path omission. 

Treating arrays element-wise can correct both of these mistakes, but introduces 

undecidable problems. By considering arrays as element-wise data-flow objects on a 

limited subset of the total paths in programs, the precision of data dependence could 

drastically improve. Symbolic execution can be used for analysis of simple paths 

connecting array references, and loop forcing for perserving data dependencies. 

We have not conducted a study of the second case ( Chapter V ) in which 

the array subscript equality constraint is not satisfiable. The question of unsatisfiable 

subscript equality constraints raises the issue of redundant paths with respect to the array 

subscript relevant variables. These redundant paths which do not affect the array subscript 

relevant variables could be removed from the collection of possible paths considered for 

establishing data dependence between two array references. 

A more elaborate study of the loop forcing technique is needed. The effect 

of the integration of loop forcing, partial symbolic execution and explicit naming of paths 

needs to be further examined. 
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