
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

6-9-1993

Performance Analysis of a Hierarchical, Cache-Performance Analysis of a Hierarchical, Cache-

Coherent, Shared Memory Based, Multi-processor Coherent, Shared Memory Based, Multi-processor

System System

Raman Nayyar
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Nayyar, Raman, "Performance Analysis of a Hierarchical, Cache-Coherent, Shared Memory Based, Multi-
processor System" (1993). Dissertations and Theses. Paper 4695.
https://doi.org/10.15760/etd.6579

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.6579
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Raman Nayyar for the Master of Science in

Electrical and Computer Engineering presented on June 09, 1993.

Title: Performance Analysis of a Hierarchical, Cache-Coherent, Shared Memory Based,

Multi-processor System.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Michael A. Driscoll, Chair

Andrew M. Fraser

Thomas Schubert

We have conducted a performance analysis of a large scale multiprocessor system

based on shared buses organized in a hierarchical fashion and employing an easy to

implement snoopy cache protocol. ·

This arrangement, named TREEBUS [5], presents a logical extension path for

multiprocessor systems based on a single shared bus whose scalability is limited by the

available system bus bandwidth [26]. The multiple, independent, hierarchical buses

overcome the bus bandwidth limitation and the architecture can scale to relatively large

siZes.

2

We have developed an easy to use, reasonably accurate and computationally

efficient analytic model for analyzing the performance of the memory hierarchy. Our

analysis presents a balanced view by incorporating cost and size of the memory sub

system, two parameters which can significantly impact the feasibility of this architecture.

The results indicate that the TREEBUS can deliver high performance for a

maximum of about 512 processors using available technology. For larger sizes, the

problem is not the limited system bus bandwidth but the unmanageable size of the main

memory and a deteriorating cost/performance ratio.

PERFORMANCE ANALYSIS OF A HIERARCHICAL, CACHE-COHERENT,

SHARED MEMORY BASED, MULTI-PROCESSOR SYSTEM

by

RAMAN NAYYAR

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1993

TO THE OFFICE OF THE GRADUATE STUDIES:

The members of the committee approve the thesis of Raman N ayyar presented on

June 09, 1993.

i

Michael A. Driscoll, Chairman

Andrew M. Fraser

Thomas Schubert

APPROVED:

Rolf Schaumann, Chair, Department of Electrical Ett'gineering

rovost for Graduate Studies and Research

TABLE OF CONTENTS

PAGE

LIST OF TABLES Vll

LIST OF FIGURES ... vnt

CHAPTER

I INTRODUCTION . 1

Thesis Organization . 4

II NEED FOR MULTI-LEVEL CACHES IN A
MULTIPROCESSOR SYSTEM 6

Multilevel Caches And System Performance 6

Match the processor and main memory speed 7
Match the processor and system bus bandwidth . . . 9
New buses with increased bandwidth 10
Reduce the heavy duty traffic on the

system bus . 12

Reduce Overall System Cost 14

Importance of simulation in reducing
overall system cost 16

Cache Coherence In Multiprocessor Systems 20

Important issues concerning coherence protocols . . . 21

Cache Coherence Solutions In Multiprocessor
Systems 22

Hardware-based protocols 23
Software-based protocols 27

lV

Multilevel Caches And Their Impact on
Cache Coherence 29

Multilevel Inclusion Principle (MLI) 30

Characteristics and Limitations of
Shared Bus Systems . 32

Evolution towards multi-level caches and
multiple bus based microprocessor
systems 32

III TREEBUS ARCHITECTURE AND CACHE COHERENCE
PROTOCOL . 34

TREEBUS Architecture . 35

Some definitions as applied to the
TREEBUS architecture 37

Cache coherence . 3 9
Data movement in the hierarchy --an overview ... 43

Cache Directory Organization 45

States of Cached blocks 45
Implementation of Cache directory 51

Cache Coherence Protocol (in detail) 53

State transitions . 53
Flow charts for the coherence protocol 59

Summary 75

IV MODEL DEVELOPMENT . 76

Overview . 7 6

Model for Read accesses . 7 6

Functions in Read.c 77
Variables used in Read.c 78
Timing equations . 79

v

Model for Write accesses . 83

Functions in Write.c . 83
Variables used 83
Timing equations for P _WRITE(1) 84

Cost Model 87

Mapping of High Level Parameters to Low
Level Parameters 89

Mapping 90

V RESULTS AND FINAL ANALYSIS . 92

Overview . 92

Performance analysis . 93

Send_data(i) and bus_access_time(i) 94
Supply _requesting_ cache(i) and

Update _parent_ cache 94
Effect of Hit_cache[1] and Hit_peer[1] 95
Effect of Hit_cache[1] and Hit_cache[2] 97
Effect of P _clean[1] and P _clean[2] on

P_write(1) 98
Effect of Peer_ consistent[2] and

Peer_ consistent[3] 101
Effect of bus_access_time[1] and

bus_access_time[2] 104
Effect of hit_ cache[1] on processor's

bandwidth requirements 1 08

Effect of MLI factor (a) on total memory
size, cost and Cost/Performance 109

VI CONCLUSIONS AND FUTURE WORK 117

Conclusions . 11 7

Maximize hit_cache[1] . 117
Maximize localization of data sharing 118
Cost of the memory hierarchy is a limiting factor . 119
TREEBUS still holds promise 119

Vl

VI CONCLUSIONS AND FUTURE WORK 117

Conclusions . 117

Maximize hit_ cache[1] . 117
Maximize localization of data sharing 118
Cost of the memory hierarchy is a limiting factor . 119
TREEBUS still holds promise 119

Validation . 120

Future Options for the Designer 121

Develop a model using principles of queuing
theory . 121

Simulate the model . 121
Build a prototype . 122

Future Work . 122

Incorporate memory contention 122
Model Bus access time accurately 123

Summary . 124

REFERENCES CITED . 126

APPENDICES

A READ.C 129

B WRITE.C 135

C HEADER FILES . 138

TABLES

I

II

III

IV

v

VI

LIST OF TABLES

PAGE

Bandwidth of Different High Performance Buses 11

Characteristics of TREEBUS Architecture in Figure 1 39

Size of Individual Caches at each level 41

Attributes Associated with Each State 49

Input Values to the Model: Set I . 93

Input Values to the Model: Set II (in bus cycles) 95

VII Topology for Graphs in Figures 24-25 111

LIST OF FIGURES

FIGURE PAGE

1. The TREEBUS architecture . 35

2. State diagram for a cached block at level i. 54

3. State diagram for a cached block at level 1. 55

4. Read request at level 1. 59

5. Bus read request at the level i bus . 60

6. Receive data from peer cache at level i . 62

7. Supply data to the requesting cache 63

8. Recall(i) .. 65

9. Block replacement at level i . 66

10. Send data to the level below 68

11. Overview of a P _write request . 69

12. Invalidate process at level i 71

13. Sending Invalid acknowledge signal to level below 73

14. Invalidating blocks in descendant caches 74

15. Effect of hit_cache[1] and hit_peer[2] on
average access time . 96

16. Effect of hit_cache[1] and hit_cache[2] on
average access time 98

lX

17. Read/Write access contribution to average
access time, for various hit_cache[1]
and hit_cache[2] 99

18. Effect of p_clean[1] and p_clean[2] on average
access time . 100

19. Effect of peer_ consistent[2] and peer_ consistent[3]
on Recall(3). 102

20. Effect of peer_consistent[2] and peer_consistent[3]
on average access time . 103

21. Effect of bus_access_time[1] and bus_access_time[2]
on average access time . 1 05

22. Effect of hit_cache[1] and bus_access_time[1] on
average access time . 1 06

23. The TREEBUS architecture . 107

24. Effect of hit_ cache[1] on bus bandwidth requirements 109

25. MLI factor versus Total memory size. 112

26. Effect of MLI factor on Cost ratio between unilevel
and multilevel memory hierarchy . 113

27. Effect of MLI factor on Cost/Performance ratio
comparison between unilevel and multilevel
memory hierarchy. 114

28. Cost/Performance ratio comparison between TREEBUS
and an architecture similar to Sequent's
Symmetry. 116

CHAPTER I

INTRODUCTION

Uniprocessor computer systems have reached a point where the performance

gains with continuing technological advancements are only incremental and not enough

to solve the large sized computing tasks, commonly referred to as the grand challenges

of computing [31}.

One of the most popular alternatives to substantially increase performance is by

distributing tasks among a group of processors and allowing them to work in parallel.

Multiprocessor systems based on the MIMD architecture (systems working on multiple

instruction and multiple data streams at the same time) are very popular because "a

system composed of ten one-MIPS processors is a much less formidable engineering

effort than a ten-MIPS uniprocessor and its associated memory system." [29]

Systems based on MIMD type architecture are designed using shared or

distributed memory. The salient features of the two types of systems are as follows:

Distributed memory: As the name suggests, the memory is distributed among the

processors. A task involving data sharing necessitates sending messages to the

processors involved in data sharing. The communication time (overhead) can easily

dwarf the execution time. Also, the time taken to send a message to different processors

is not the same. The further the processors are from each other, the higher the

communication time becomes. The performance gain is realized by using a large

2

number of processors (as much as 1 000) and partitioning the data so as to minimize the

communication overhead.

A strong point in favor of this architecture is that it can be scaled to very large

sizes as the size of the problem increases.

Shared memory: All the processors share the same main memory, thereby

eliminating the need of sending messages between the different processors. There is a

substantial saving in the communication overhead as compared to the distributed

memory case, which makes this an attractive alternative.

An obyious problem because of data sharing is data access synchronization, i.e.,

while one processor is writing to a shared piece of data, another processor that wants

to access it needs to wait until the write is completed. Also, since each processor has

its local memory (cache), we have to ensure coherency of data across the system.

The simplest example of a shared memory multiprocessor system is multiple

processors connected to a single common bus [26]. This system has limited scalability

due to the system bus. Several alternatives have been proposed in the research literature

to address this problem. A few of them are discussed in [2], [5], [6], [13], [19] [30],

etc.

A problem common to all large scale multiprocessor based systems is the

difficulty in analysis. There is limited or no history information available and traces

from one architecture are probably useless for another. Also, there is not a clear

understanding of the memory access patterns of parallel programs and besides, the

3

architecture itself influences the memory access pattern. Hence, a model proves to be

a valuable analytical tool to give a first cut estimate to the designer.

In our thesis, we have focussed on a shared memory based architecture, in

particular, the architecture discussed in [5]. The architecture is designed using a

hierarchy of buses, called TREEBUS. The cache coherent multiprocessors use a

hardware based cache coherence protocol.

In our opinion, the analysis in the original research for the TREEBUS

architecture presents an over optimistic picture and projects it as a very high

performance {commercially and practically feasible} system. We differ from this

viewpoint and our analysis presents a balanced and realistic scenario by considering not

only performance, but also practical (total memory size) and commercial feasibility

(cost of the memory hierarchy) aspects.

We have analyzed the operation of the multilevel cache hierarchy and the cache

coherence protocol in great detail and developed an analytical model which gives a

good first cut estimate about the cost and performance aspects. The model is based on

low level system parameters, e.g., hit/miss ratios, the probability of cached data blocks

being in a particular state, etc. It is easy to use, reasonably accurate and computationally

very efficient. It was validated by analyzing a single common bus based multiprocessor

system and the results matched our expectations. The effect of all possible low level

parameters on the performance of the TREEBUS hierarchy were studied.

The model will enable the designer to have a tool which will help him/her

understand the worst case impact of different high level characteristics. For example,

4

if there is a high degree of data sharing (a high level characteristic), how is the average

access time affected? Which low level parameter is most critical in this particular

situation?

It is easy to figure out how all low level parameters will be affected by a

particular high level characteristic, but the tough part is to come up with the exact

nature of interdependencies among them. Using our model, the designer can bypass this

complicated step and instead sweep the value of all the affected parameters over a wide

range. Each iteration of the analysis can give the effect of two parameters on a certain

output parameter, e.g., average access time. This range could even include values that

normally would defy logic and intuition.

By following this approach, the designer can have an in depth understanding of

the system response to a particular type of program behavior even without knowing the

exact relationships between the different parameters. Each iteration of the model takes

a few seconds of CPU time.

THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 discusses the need for

multilevel caches in multiprocessor computer systems. The issues discussed are

mismatch between processor speed and bandwidth to that of main memory speed and

system bus bandwidth and reduction of overall system cost. We also discuss briefly the

important issues in solving the cache coherence problem and the various efforts

5

presented in the research literature to solve it. Finally, we introduce our architecture of

choice for this thesis.

Chapter 3 discusses the TREEBUS architecture and the cache coherence protocol

in great detail. Chapter 3 lays the groundwork for the development of the mathematical

model. The analytical model is developed in Chapter 4. We have focussed on

performance as well as the cost aspect. A simple cost model is developed to help us

analyze the cost/performance aspects. Chapter 5 covers the detailed analysis. The

performance measured by average access time is affected by many parameters. At

times, we also need to consider the impact of the same parameter at different levels in

the system.

Chapter 6 covers the key conclusions from our study, recommendations, possible

future work that can be done and a brief summary.

CHAPTER II

NEED FOR MULTI-LEVEL CACHES IN A MULTIPROCESSOR SYSTEM

The goal of every computer memory system designer is probably the same, i.e.,

Achieve maximum throughput at minimum possible cost. Caches help us meet this goal

by substantially enhancing the performance while keeping the cost to a reasonable level.

This chapter justifies the claim and addresses the various issues involved in designing

a multilevel cache hierarchy for a multiprocessor system.

The chapter is divided into four sections. The first one justifies the need for a

multi-level hierarchy and examines how the cache hierarchy improves the performance.

The second section addresses the second part of the goal, i.e., cost reduction. The first

two sections address the above mentioned goal directly. The third section discusses the

architectural implications (potential problems) of multilevel caches and the various

alternatives available to take care of the problems. There is a definite gain due to the

caches, but there is also a cost to pay. After discussing caches in detail, the fourth

section justifies our selection of a multilevel, hierarchical, cache-coherent multiprocessor

system as the architecture of choice for detailed study.

MULTILEVEL CACHES AND SYSTEM PERFORMANCE

Ideally, if all the requests of the processor can be satisfied in one cycle, it would

never have to wait for instructions or data. The processor in this case would be

7

performing at its theoretical best. In real life however, a vast disparity exists between

the processor speed and that of main memory and the system bus. The following sub

sections explain the problem in detail and suggest a solution.

Match the processor and main memory speed

The need for caches is very closely tied with the rapid advancement in the field

of microprocessor design over the last decade and a half and the slow pace of

improvement in performance of system buses and main memory chips.

The fastest DRAMS available as of late 1992 had cycle times of around 50 ns

[21] where as a 50-Mhz processor has a cycle time of only 20 ns. In other words, if a

50-Mhz processor was directly connected to a 50 ns DRAM, it would run with an

efficiency of 33.33%. This is because it would spend 30 ns just waiting for the data to

be made available from the main memory (2 wait states, if the Ready signal is sampled

at the end of the clock period). Similarly, a 100 Mhz processor will have a cycle time

of 10 ns, and hence an efficiency of only 20% (4 wait states are encountered).

Primary cache. A solution to the above problem is to have a primary (on-chip)

cache that can match the CPU speed. The cycle time of an on-chip cache is less than

that of the CPU. It can be a unified entity for both instruction and data or there can be

separate caches for instructions and data. The size of on-chip caches available on

present day microprocessors range from 4 Kbytes to 32 Kbytes.

It is not enough to just match the speed of the processor and cache, we must also

ensure that all the processor's requests are satisfied in its local cache (hits). In this

ideal situation, the requests would never need to go to the main memory via the slow

8

system bus for instructions or data. This would enable the processor to keep

performing at its peak.

In other words, the hit-ratio of the primary cache should be as high as possible.

If the hit ratio is low, the requests from the processor would need to go to the main

memory frequently, thereby reducing the positive impact of the primary cache. Since

the hit ratio is an increasing function of cache size, one is tempted to make it as large

as can be accommodated on the die. The primary cache design at this point is a trade

off between space available on the die and the performance desired, e.g., the hit-ratio

for the primary cache in Intel's 80486 processor is between 95-99% for DOS programs

and 92-94% for Unix programs [9].

Secondary cache. While we try to increase the size of the cache to the maximum

extent possible to achieve a high hit ratio, the access time of the cache also keeps on

increasing. The size of the cache can only be increased to a certain point for

performance reasons. Beyond this point, the increase in cache size adversely affects the

speed of the cache (access time). This, in tum, degrades the overall system

performance.

The cache designer resolves the trade-off issue of cache size and performance

by having a multi-level cache hierarchy in the system. The primary cache is kept just

large enough to match the CPU speed and provide a reasonable hit rate. A second level

cache, called the secondary cache or the off-chip cache, is connected to the primary

cache. The secondary cache is local to the CPU and is added to improve the overall

hit ratio and system performance.

9

The secondary cache is made large enough to increase the overall hit ratio.

Also, its access time is comparable to that of present day processors and thus it allows

them to operate in zero wait state mode. The secondary caches are implemented using

very fast SRAMs. The minimum access times of some currently available SRAMs are

as low as 2.5 ns [10]. There have been some very exciting developments in the design

of DRAMs. DRAMs are coupled with small SRAMs and can be used as cache

DRAMs. These cache DRAMs can substitute for secondary caches. They have very

low access times (15-20 ns) because of the SRAM at the forefront. The large size of

DRAM results in a high hit ratio (around 97%). This module can transfer data at a rate

of 1.66 Gbytes/sec, if connected to an on-chip cache via a 64 bit bus [24].

Thus, a two level cache memory hierarchy, local to the CPU, helps substantially

1n enhancing the performance of present day computer systems by matching the

processor speed and improving the overall hit ratio to extremely high levels.

Match the processor and system bus bandwidth

During the 1970's, there was a match between the bandwidth of the fastest

microprocessor and that of the bus. Bandwidth is defined as the maximum data transfer

rate, expressed as bytes/sec. As times have progressed, performance of microprocessors

has improved by leaps and bounds. However, the system buses have not kept pace with

the microprocessors. A single CPU board using any of the latest microprocessors, e.g.,

Intel 80486, Motorola 68040, Motorola 88010, etc. can easily saturate any of the

available system buses, e.g., Multibus, VME, ISA, etc.

10

By saturating the bus, we mean that another bus master connected to the same

bus would have to wait for a long time to get control of the bus. The system bus has

thus become a bottleneck. The examples below help clarify this very important point:

Example 1. If we take an 803 86 processor running at 20 Mhz, (cycle time = 50

ns) it takes two cycles in zero wait state mode to transfer 32 bits of data, i.e., 100 ns.

This means the processor takes 25 ns to transfer a byte of data, which equates to 40

Mbytes/sec bandwidth. A 32 bit VME implementation with a peak bandwidth of

around 40 Mbyte/sec would be just right for this case.

Example 2. A 80486 processor running at 50 Mhz, in a zero wait state, non burst

mode would have a bandwidth of 100 Mbytes/sec using the same principle as above.

This means for each access to the 32 bit VME bus, the 80486 processor will have to

wait for 60 ns. In this case, the 3 2 VME bus that was enough for a 20 Mhz 803 86

would prove insufficient. We need still higher performance buses to match the

bandwidth.

In a multiprocessor system implementation, except for the processor currently

using the bus, the rest would spend most of their time waiting for their bus arbiter to

get control of the bus. We thus have a serious problem to resolve. The following

alternatives are available to address the issue of mismatch 'between processor and bus

bandwidth:

New buses with increased bandwidth

If we could keep increasing the bandwidth of the available buses so as to

accommodate the ever increasing demands (bandwidth) of the new CPU's and the

11

peripherals connected to it, we would be fine. We are afraid that this is not going to

be the case.

We have come a long way from the days of Multibus [1], which had a

bandwidth of 10 Mbytes/sec. The new buses in the market not only have large data

buses (32 bits, expandable to 64 bits) as compared to 16 bits for Multibus but also

better electrical characteristics. This has resulted in a number of buses with very high

bandwidth.

Some of the high performance buses that are used in high performance

workstations [22] and have become popular in the recent past are S-bus from Sun

Microsystems, Turbochannel from DEC, Micro Channel Architecture bus from IBM and

Future Bus+. The maximum bandwidth possible for these are as follows:

TABLE I

BANDWIDTH OF DIFFERENT HIGH PERFORMANCE BUSES

------ -

I Name I Bandwidth (Mbytes/sec) I
S-bus 146 (64 bit version)

Turbo-channel 100 (32 bit version)

MCA 160 (64 bit version)

Future bus+ 100 (32 bit version, can go higher)

VME 80 (64 bit version)

The older 32 bit VME bus from Motorola has been upgraded to 64 bits thereby

increasing the bandwidth to 80 Mbytes/sec. Among the newer generation of buses, only

S-Bus can currently deliver very high bandwidth; but even it would fail to satisfy the

12

next generation of processors. The latest microprocessor prototype Alpha from DEC

runs at 200 Mhz and thus needs data every (11200 Mhz) 5 ns.

As mentioned earlier, the problem only worsens in a multiprocessing

environment. It is not possible for the system buses to keep pace with the bandwidth

requirements of the next generation processors due to mechanical and electrical reasons.

Thus, increasing the bus bandwidth alone is not going to solve the problem of finite

bus-bandwidth in a multiprocessor system.

Reduce the heavv duty traffic on the system bus

In any computer system, the data movement to/from 1/0 devices and instruction

fetches from the main memory are two main sources of traffic on the system bus. If

these fetches can· be completed before reaching the system bus and main memory, we

would have reduced the processor-memory traffic on the system bus considerably. This

would indirectly translate into a substantially higher bus bandwidth.

Example. An 80486 processor is connected to the bus and the bandwidth of both

is 100 Mbytes/sec. So long as we have only one processor connected to this bus, no

wait states are introduced when the processor accesses the system bus. But, if 10

processors were connected to the same bus, a bus with a bandwidth of 1000 Mbytes/sec

is needed to match the bandwidth. This is practically impossible without a great

expense.

Instead, if we can reduce the traffic contribution from each processor by 90%,

the effective bus bandwidth required for each processor would be 10 Mbytes/sec. The

13

10 processors would now need an effective bandwidth of only 100 Mbytes/sec which

is within the means of the bus.

Local buses and memory (caches) help us accomplish the task of increasing the

effective bus bandwidth.

Local bus and memory. The local bus and memory, as the name suggests, is

local to the CPU. The local memory bus between the CPU and its memory 1s

extremely fast and can match the CPU's bandwidth requirements. For I/0 operations,

we have a local I/0 expansion bus which helps in keeping I/0 transfers local to the I/0

master. This also helps in reducing the demands on the system bus and freeing up

precious bandwidth.

Primary and Secondary caches. These two caches are the local memory for the

processor. The caches, by storing the processors' most recent memory accesses,

substantially reduce the processor-memory traffic thereby increasing the effective bus

bandwidth, as explained in the example above.

The primary cache, because of its small size, helps in matching the CPU

bandwidth, but does not solve the problem of mismatch between the CPU and system

bus bandwidth. We need a very high hit ratio cache in between the bus and the

processor. This need is fulfilled by the secondary cache.

"If one chip uses 50 percent of the bus, a five-chip multiprocessor system should

spend most of its time waiting for bus cycles - hardly ideal. It's absolutely essential to

use secondary caches with the 486 in multiprocessor configurations, says Gelsinger."

[8]

14

Secondary copy back caches reportedly have scored average hit ratios of 97%

for Unix programs and 99% for DOS programs (9]. This has helped manage the

demands on bus bandwidth in common bus, shared memory systems.

The two-level private cache hierarchy between the processor and the system bus

has thus successfully addressed the two primary performance related concerns of a

computer system designer, namely matching the processor speed to that of main

memory and also matching the processor and system bus bandwidth.

REDUCE OVERALL SYSTEM COST

The last section covered the details of achieving a high level of performance

from the memory system in a computer. The designer has to ensure that this high

performance is made available at a reasonable cost. Needless to say, this is not an easy

task.

For performance reasons (very low access times), the designer would want the

entire memory implemented on the same die as the processor. In this ideal situation,

the cycle times are the fastest and also the critical timing paths are very small.

However, it would be extremely difficult and expensive to manufacture such a product.

One might want to use only SRAMs instead of DRAMs so as to increase the

performance of the memory subsystem. SRAMs are very expensive and the cost of the

entire system would thus become prohibitive, if the designer were to use only SRAMs.

15

Caches once again come to the rescue of the memory system designer. They not

only help increase the performance as explained above but also reduce the overall

memory system cost by allowing the use of slow speed DRAMs. The two level

memory hierarchy, by providing high hit ratios (95-99%), captures most of the CPU's

1/0 and memory accesses, thereby allowing it to run at near zero average wait states.

An example should make this point clear.

Example. The two level cache hierarchy provides an overall hit ratio of 98%.

A hit in the cache does not result in a wait state for the processor. A cache miss, i.e.,

the reference has to go to the main memory, incurs 4 wait states. The average number

of wait states introduced is

(0.98 X 0) + (0.02 X 4) = 0.08,

which is close to 0.00. An 80386 processor takes two cycles to access a byte in non

pipeline zero wait state mode. It would take (2 + 0.08) 2.08 cycles if it were operating

in one wait state mode. The degradation in performance due to a cache-DRAM

memory hierarchy is only 4% ((2.08-2) I 2). The DRAMs introduced a slight

deterioration in performance. Thus, a memory system composed of SRAMs alone

would have at best provided us with a 4% performance advantage in comparison with

a memory system designed using SRAMs & DRAMs.

A typical 66 Mhz Intel-80386 based workstation will have 256-512 Kbyte of

cache and 6-8 Mbyte of DRAM. To ensure zero wait state performance, we would

need to have 8 Mbyte of SRAMs with a cycle time of around 15 ns. A byte of 15 ns

SRAM is much more expensive than a byte of 60 ns DRAM. An SRAM is roughly

16

an order of magnitude costlier than DRAM according to our preliminary cost

comparison (by calling the local distributors). One can easily imagine the substantial

cost savings that can be realized by having a SRAM-DRAM memory hierarchy instead

of SRAMs.

Importance of simulation in reducing overall system cost

So far, in our discussion about caches, we have given the impression that the

designer just needs to connect two levels of caches between the processor and the main

memory to solve all the problems associated with processor and memory. Design of

a cache sub-system is not as easy as we might have led you to believe. There are a lot

of parameters that need to be carefully considered and analyzed with respect to the

target computer system and the programs that will be run on it.

The issue here is not just performance but cost/performance ratio. There are

several parameters that need to be considered together to arrive at the lowest ratio for

a given system. We have talked a great deal about cache size. The size is no doubt

one of the key parameters but there are others as well, namely placement policy,

replacement policy, line size, write strategy, etc. that are part of an effective cache

organization.

At times there is a bias towards a certain design parameter, e.g., cache size.

Some designers approach this issue with an attitude that the larger the cache size, the

higher the performance and thus the better it is, as long as the CPU is running at zero

wait states. One is easily tempted to implement the largest zero-wait state cache

possible using this approach. Since caches are implemented using extremely fast

17

SRAMs which are always much more expensive ($/bit) than DRAMs, implementing the

largest cache can prove financially exorbitant.

Also, the largest cache need not necessarily translate into highest overall system

performance. This is especially true in multiprocessor systems where "A big but dumb

cache can perform poorly." [16] It is important that the designer should simulate using

all the parameters together and using the software that the target system will eventually

execute. This helps in making intelligent decisions. This approach is of immense help

in balancing the tricky issue of performance and cost. Let us study a case where

simulation proves helpful.

Multi-way vs Direct mapped cache [12]. How does a cache memory designer

decide whether to implement a direct mapped cache or ann-way set-associative cache?

This is another difficult decision that has to be made and only simulation can provide

the answer. There is an inherent bias to design ann-way set associative cache because

it offers a higher hit ratio as compared to a direct mapped cache of the same size. But

ann-way set associative cache is costlier and more complicated than a direct mapped

cache. The reasons are as follows:

n-way (n > 1) consumes more memory board space. If n = 1, we have the

special direct mapped case. For a direct mapped cache, we need only 1 set of cache-tag

and cache-data RAM. But, for a 2 way set associative case, 2 sets of cache-tag RAMs

and cache-data RAMs are required. Similarly, for a 4 way set-associative cache, 4 sets

of cache-tag RAMs are required. Consider, for example, a 4 kbyte main memory, 512

byte cache and line size = 4 bytes.

18

A direct mapped cache needs 7 address bits (512/4 = 128 sets, i.e., 27
) to index

to a block, 2 bits to index a byte within the block and finally 3 bits in the cache tag to

identify if the right data address is occupying the block. In a direct mapped case, one

set houses only one block. We need a 128x3 (384 bits) cache tag RAM.

A 2-way set associative cache needs 6 address bits (512/4 = 128, 128/2 = 64

sets, i.e., 26
) to index to a set, 4 bits in each of the two cache tag RAMs to identify if

the right data address is occupying one of the two possible blocks in the set and finally

2 bits to index a byte within the block. We need two sets of 64x4 (512 bits) cache tag

RAM.

Similarly, a 4-way set associative cache needs 5 address bits (512/4 = 128,

128/4 = 32 sets, i.e., 25
) to index to a set, 5 bits in each of the four cache tag RAMs

to identify if the right data address is occupying one of the four possible blocks in the

set and finally 2 bits to index a byte within the block. We need four sets of 3 2x5 (640

bits) cache tag RAM.

Thus, a two way cache tag implementation requires two chips (double the

memory board space) and a four-way cache tag implementation requires 4 chips (4

times the memory board space) as compared to a direct mapped case. More board

space can lead to additional boards and that translates directly to higher costs.

Also, additional boards would lower the performance because of increased delays

in the critical system paths. More cache-tag RAMs and cache-data RAMs means more

loading on the CPU address pins. A buffer might be needed to prevent the CPU pins

from getting loaded, which means that the cache-tag RAM must now be faster by about

19

7 - 9 ns. The faster the SRAMs, the higher their cost. A direct mapped design

implementation does not need additional buffers and the access times of cache tag

RAMs are lower than the ones used in theN-way set-associative implementation. This

further adds to the cost of anN-way set-associative implementation.

The following passage from [10] should make this point very clear:

"But that doesn't necessarily mean that a 30-ns access time SRAM will work

with a 33-Mhz processor," says Sam Orr, SRAM marketing manager for Cypress

semiconductor. "The propagation time in the logic to set up and latch the information

takes between 7 and 9 ns, so a 25-ns part will just barely squeeze by for a 33-Mhz

processor."

A direct mapped cache may be just enough for the performance desired or may

be more appealing when compared with the costlier n-way alternative during

simulation of the target system. Simulation runs would definitely help in answering

questions like: "is the incremental performance using ann-way implementation worth

the complexity and additional cost," etc. Only a thorough analysis and simulation can

help the designer in striking a good balance between cost and performance and making

an intelligent decision.

Example. The caches on Intel 80486 and Motorola 68040 were designed after

studying the simulation data that was taken from the customer code. Both the caches

are four-way set associative. The end result is very different in that the 80486

processor has 8 kbytes of a unified cache but 68040 has a separate cache for instruction

and data.

20

Caution. While simulating, one must be careful in using traces from an

architecture that bears little or no resemblance to the architecture under consideration.

Different architectures would probably need two completely distinct cache designs to

reach the same goal of lowest cost/performance ratio.

Thus, a multilevel cache hierarchy helps the cache designer strike the right

balance between performance and cost. Primary and secondary caches placed between

the CPU and system bus increase the throughput and reduce the overall system cost by

allowing the use of economical, lower speed DRAMs. A good cache design along with

DRAMs would allow the CPU to run at speeds very close to zero-wait state on a

sustained basis.

CACHE COHERENCE IN MULTIPROCESSOR SYSTEMS

By providing private (local) memory to each microprocessor we have created a

very serious problem. At any given instant of time, multiple processors connected to the

same bus would maintain local cached copies of a unique shared memory location.

Each processor would then modify its local copy at one time or another. As a result,

an inconsistent view of this particular shared memory location is projected across the

system. This is commonly referred to as the cache coherence problem.

Cache coherence schemes (protocols) ensure that each request from a processor

gets the most up-to-date copy of the block. There are a lot of different ways one can

achieve this end result. Each strategy has distinct advantages and limitations. Some

21

of these cache coherence enforcement schemes are ideally suited for a particular

architecture while others may not work at all.

The section below discusses the most important issues that a designer needs to

consider before choosing a protocol.

Important issues concerning coherence protocols

The issues listed here are the fundamental ones involved in the design and

selection of a cache coherence protocol [19]:

Correctness of the protocol. This is the most important issue concerning a

coherence protocol. How does one ensure that a read request by one processor returns

the most up-to-date copy of the data in the system.

This is not an issue in the case of a single bus based multi-processor system,

because the bus allows only one processor to access the data, in other words, the bus

is the serializing point. However, in the case of systems designed around inter

connection networks, multiple processors are simultaneously reading or writing into the

same block, making it very difficult to ensure correctness.

Protocol complexity. The protocol should not be very complex in its

implementation. The complexity, performance and correctness issues are very closely

related. The protocol can become increasingly complex to ensure correctness, as in the

case of systems based on inter-connection networks.

If the protocol is too complex, it means that it is also very difficult to

implement. A complex implementation results in poor performance because the latency

of memory requests would increase to ensure correctness.

22

A protocol should be simple, which translates to ease of implementation and

higher performance. This finally translates into lower cost of implementation. Snoopy

cache protocols on bus-based systems are relatively simple, easy to implement and

hence the most popular on commercial machines.

Overall system performance. The memory latency or miss penalty and bandwidth

are the big factors in controlling overall system performance.

The protocol should be scalable when more processor-memory pairs are added

to the system. The bandwidth should not become the limiting factor when the size of

the system becomes large, as in the case of a single bus based system.

Whenever the processor reference encounters a miss in its cache, the protocol

should ensure that the time required to service the miss is as small as possible. Large

multilevel caches and hierarchical cache hierarchies play a big role in reducing the miss

penalty.

CACHE COHERENCE SOLUTIONS IN MULTIPROCESSOR SYSTEMS

The solutions can be categorized as hardware or software-based. The software

based solutions (protocols) do need some hardware support to maintain consistency.

Hardware-based protocols ensure that the software always sees a coherent view of the

data block across the system.

The hardware and software-based protocols differ primarily in how they

determine whether the block is shared, how they find out where the blocks reside, and

how they invalidate or update copies in the caches and main memory.

23

Hardware-based protocols

Snoopy cache protocol CSCP). In a snoopy cache protocol, each cache controller

monitors the transactions of all other caches on the system bus. In other words, each

cache controller snoops the bus to detect any coherence related activity. If a bus

transaction threatens the consistency of a locally cached data block, the controller can

take appropriate action, e.g., invalidate its copy of the data.

This protocol generates a lot of traffic on the network. This brings to life the

issue of bus bandwidth. As the number of processors connected to the bus increase, so

does the traffic on the network. The bus should be able to handle the increased demand

on bandwidth as more processors are added. Since the buses have a fixed bandwidth,

this does limit the scalability of the design [4].

SCP is better suited for a single bus based system (with processors and memory

sharing the same bus). It is easy to broadcast the message on a common shared bus and

also easier to monitor the bus activity.

A good example of a commercial system using this approach is the Sequent

Computer Systems' Symmetry. The Symmetry system allows up to 30 processors, each

with 64 Kbytes of 2-way set associative, write-back cache connected over the shared

system bus. The cache controllers snoop the bus to maintain cache coherence [2].

Snoopy protocols' ease of implementation has made them one of the most

popular in the industry and this can be seen from the number of commercial

implementations adopting this strategy.

24

Directory based schemes CDBS). Snoopy protocols have two serious limitations,

i.e., limited bandwidth and scalability. These limitations must be overcome if one has

to design larger systems delivering very high performance.

Instead of using a common bus as an interconnection network, one can use other

forms of inter-connection networks whose bandwidth is scalable, e.g., multi-stage

networks. The network traffic generated by the snoopy protocol due to broadcasts made

at times of invalidation or updates needs to be eliminated or at least minimized. .h

the case of directory based schemes [2], an attempt is made to eliminate the broadcasts.

The need for broadcasts in the case of SCP arose because the initiating cache did not

have any information about the location of cached data blocks that had to be updated

or invalidated. To eliminate broadcasts, the cache must know the precise location of

the cached data blocks in the system. Then the communication can be limited to the

caches that have a copy of the block.

The location information, along with the state of the cached data blocks, is

stored in an entity known as the directory. Directory based schemes keep a separate

directory associated with main memory that stores the state and location of each cached

data block in the system. This directory may be kept in a centralized location or

distributed along with the different memory modules in the system.

The location information points to the caches that contain the data. For one of

the implementations, known as the full map directory scheme the presence information

is typically a bit map, where each bit corresponds to a processor in the system. If the

25

bit is set, the cache associated with this processor has a copy of the data block and vice-

versa.

In the full map scheme, any cache can store any copy of the block. This is

because of the one bit per processor entry in the directory. The cost one pays for this

is that the size of the directory grows as the number of processors increase.

The rate of growth of the directory can be checked by limiting the number of

cached copies that can reside in the system. This is called the limited directory scheme.

If a system has 'n' processors (n is a power of 2), each pointer in the directory would

need logln) bits. If we have a 16 processor system, each pointer would need four bits,

and say we can have 3 copies in the system. If a fourth processor wants to cache the

block, the main memory invalidates the contents of one of the 3 caches and then the

block is loaded. The directory based approach is significantly different from the snoopy

cache protocol, in that the location of the caches that have a copy of the shared data is

known. Instead of broadcasting messages, directed messages are sent to only the caches

that have the particular data block in them.

The advantages of this design are as follows:

a. one has the flexibility of choosing an inter-connection network as compared

to a Snoopy protocol which forces one to use a common bus.

b. it is possible to scale cache coherent multi-processors to a large number of

processors-memory pairs, e.g., the Stanford Dash multiprocessor is a scalable

architecture and employs a distributed directory scheme. [19]

26

c. network traffic is significantly reduced because of the directed messages to

only the caches that have a copy of the block in question.

The disadvantages of using this approach are as follows:

a. the size of the directory memory reaches unmanageable proportions in the

case of a full map scheme if the number of processors increase beyond a certain point.

b. the design is scalable only to a point. Once the design is completed, it is not

possible to add more processor memory pairs.

For example, if the system is designed using the full map scheme for 48

processors, then there are 48 presence bits associated with each block in the main

memory. Now, if we had to upgrade the system to a 60 processor machine, the memory

cards will have to be changed to reflect 60 bits in the directory memory. Additional

wiring will be needed, too.

The same is true for the limited directory scheme, the pointer size changes when

the number of processors increase, i.e., for 9-16 processors, we need four bits in the

pointer but for 17-32 bits, we need 5 bits.

Cache coherent network architectures (CCNA). Cache coherent network

architectures hold the most promise for very large scale, shared memory, multi

processor based systems. The reason is they address the weaknesses of both the single

bus based and directory based designs. The directory based systems, even though

scalable, have problems in implementing the design when the number of processors is

too large. The hardware becomes too complex to design and implement on that large

a scale.

27

Cache coherent network architectures [2] employ a hierarchical bus structure.

Snoopy coherence protocols are employed because of their ease of implementation. The

hierarchical cache/bus architecture reduces the network traffic due to the protocol but

at the same time is easy to implement as compared to DBS. The architecture is also

scalable to a very large number of processor-memory pairs, but to a finite limit.

The scalability of the CCNA architecture is limited by the system bus bandwidth

and the electrical loading characteristics. In the case of a full map directory scheme,

the scalability is limited by the hardware design; the number of bits in the presence

vector at the time of design decides the number of processor memory pairs we can have

in the system.

The hierarchical architectures use Multi-level caches which also helps in

reducing the network traffic. Later in the chapter, we discuss more about the impact

of multilevel caches on coherence. Multilevel caches should prove a big help for the

cache coherent architectures. These architectures are still in the research and

development phase and it remains to be seen whether they would provide a meaningful

improvement over the existing designs in a real life environment.

Software-based protocols

Software-based protocols [2] attempt to reduce the network traffic and also

provide an economical solution to the cache-coherence problem. These protocols do

need limited hardware support, but the hardware required is much simpler as compared

to hardware-based protocols.

28

In the section on hardware-based protocols, we discussed the need of a

coherence protocol to take care of inconsistent copies of data blocks in the caches.

Inconsistent copies arise because these data blocks are shared read/write in nature and

all processors are allowed to update them.

However, if the blocks in the caches are never inconsistent, we would never

need any of the hardware-based coherence protocols discussed earlier. This is the

principle behind the software-based coherence schemes. The compiler ensures that an

inconsistent copy of a block would never reside in the memory system.

The compiler needs hardware support to ensure that the caches never have an

inconsistent data block. It decides which cached data blocks need to be invalidated or

declared uncacheable to maintain coherence across the system. This decision is made

prior to run time, i.e., during compilation. This is the main difference as compared to

hardware-based protocols.

Limit caching of shared read/write data blocks [2]. The compiler analyzes the

program and marks the data as cacheable or non-cacheable. During safe times, all the

processors are only going to read the cached read/write data block .or it is going to be

updated by only one processor. Under these circumstances, it is safe to declare this

block as cacheable.

An example of a safe time would be the execution interval of a critical section;

during this period only one processor can update a shared read/write data block, making

it safe to be cached. After the execution is over, other processors might want to write

29

to this block, hence the main memory is updated (can use write-through) and the block

is invalidated from the cache to ensure that main memory is consistent.

Another method to determine Cacheability [2]. The compiler determines the

cacheability of blocks by statically partitioning the data structure into different

computational units. The reference marking is based on the partitioning process.

Access to a shared variable is determined by the computational unit to which it belongs.

For example, if the data block belongs to a computational unit described as read

only by an arbitrary number of processors, it can be safely cached. On the other hand,

if it belongs to a computational unit that is read-write for an arbitrary number of

processors, then the block should not be marked cacheable.

The compiler's task is to analyze the data dependencies and generate appropriate

cache instructions to control the cacheability and invalidation of shared data.

The performance of the system depends on the performance of the compiler.

This implementation needs very simple hardware support. It does not generate heavy

network traffic. However, there is no commercial implementation to date that employs

this principle.

MULTILEVEL CACHES AND THEIR IMP ACT ON CACHE COHERENCE

A multilevel cache hierarchy helps in improving the overall hit ratio of the

system and also the average access time. But it complicates the issue of cache

coherence. With multi level caches, we need to maintain a coherent copy in all the

levels of the memory hierarchy.

30

For instance, when there is a bus-write cycle on the bus in progress, which

means a processor (the current bus master) is updating its copy of a shared read/write

block, all caches except the one that belongs to this bus master need to invalidate their

copy, if present. Since there is no way of knowing whether a cache at a certain level

has the copy or not, the simplest way would be to send invalidation request all the way

down to the lowest level in the hierarchy, i.e., to the cache connected to the processor.

The primary cache would now be exposed to all invalidation cycles appearing

on the system bus. This means that whenever there is an invalidation cycle in progress,

the processor will have to be stopped until the invalidation is over. Worse still, the

processor may have to stop even though its cache does not has a copy of the particular

data block.

This approach is understandably very inefficient and needs to be modified. The

primary caches' responsibility is to keep the processor fed with data and stop it only

when the cache indeed has a copy of the block that needs to be invalidated. Also, the

secondary cache stays relatively idle (it is used for 4 - 8% of the references that suffer

a miss in the primary cache). If the secondary cache can somehow filter the incoming

invalidation signals and send only the genuine ones to the primary cache below, it

would lead to a big improvement in performance.

Multilevel inclusion principle (MLI)

"The principle of inclusion is a method by which a secondary cache can be used

to screen invalidation cycles, thereby limiting the number of bus invalidations which

are passed through to the primary cache." [12]

31

The basic operation can be described as follows: A reference made by the

processor is satisfied by the cache closest to the processor that had a hit. When this

cache is supplying data to the processor, it also supplies a copy of the data to all the

caches that lie in between itself and the processor.

"On the basis of this model, we say that a multilevel cache hierarchy has the

inclusion property if the contents of a cache at level i+ 1, Li+l, is a super set of the

contents of all its children caches, L i, at level i." [6]

Impact of MLI on. Cache coherence protocols. If MLI is implemented in a

multilevel cache hierarchy, the cache coherence protocol will become easier to

implement. This is because each of the local secondary level caches will have a copy

of the data present in the primary cache. Thus only the secondary caches need to be

snooping.

This helps in two ways: [25]

a. The processor-onchip cache pair is shielded from the invalidation traffic

except for the genuine case, where the onchip cache does contain a shared block that

needs to be invalidated.

b. Since the intelligence for implementing the coherence protocol now lies at the

secondary cache, the design of the onchip cache becomes simple resulting in faster

access time.

The disadvantages of enforcing MLI in the system are:

a. the size of higher level caches grows very large.

32

b. as the size of the caches increase, so does their access times, making them

slow.

c. the hit ratio at the higher levels goes down, because of the restrictions placed

due to MLI.

CHARACTERISTICS AND LIMITATIONS OF SHARED BUS SYSTEMS

The shared bus is a very attractive type of inter-connection network because of

its simplicity. It is also easy to implement cache coherence protocols on a shared bus

system. All the cache controllers can monitor the activities of each other and take action

in response to a bus transaction, if warranted.

However, this implementation strategy has the drawback of limited bandwidth

and scalability. This means we can only connect a certain number of processors. The

electrical characteristics, e.g., bus loading due to multi dropping are directly responsible

for the limited scalability of this approach. We need to consider the alternatives

suggested earlier in the section on cache coherent network architectures, if we have to

move towards larger and higher performance systems. These are covered in the section

below.

Evolution towards multi-level caches and multiple bus based microprocessor systems

One solution to overcome the limitations mentioned above can be to incorporate

several parallel, independent buses in the system. This implementation will be capable

of handling several memory requests concurrently. The independent buses coupled with

multi-level caches would help us match the processor speed to the main memory speed,

33

match the processor bandwidth to system bus bandwidth, reduce the overall system cost

while providing high performance.

Also, there does not seem to be much more room for architectural improvement

in the design of a single shared bus based multi-processor system. What we mean is

the system architect does not have the luxury of making significant changes to the basic

architecture itself. The improvements in performance can come only by upgrading the

system with faster processors, memory chips and system buses.

We have chosen a multi-level, multiple bus based, hierarchical shared memory

system as the architecture of choice for my thesis. The architecture is defined and

explained in great detail in the next chapter. The reasons for choosing this type of an

architecture are:

a. intuitive appeal and simplicity of this architecture [5]

b. extension of shared common bus architecture

c. snoopy cache coherence protocols are simple and efficient in their

implementation [2]

d. has more room for modularity and scalability as compared to a single

bus-based design

e. provides an elegant programming model [19]

f. capable of delivering very high performance [5]

CHAPTER III

TREEBUS ARCHITECTURE AND CACHE COHERENCE PROTOCOL

The last section in Chapter 2 briefly outlined the reasons for selecting a

hierarchical, shared memory multiprocessor system as the architecture of choice for this

thesis. The main reasons are that this is a scalable architecture, capable of delivering

very high performance and is also easy to program (due to the shared main memory).

"The shared-memory paradigm has the advantage that the programmer is not burdened

with the issues of data partitioning, and accessibility of data from all processors

simplifies the task of dynamic load distribution." [19]

Several shared memory based multiprocessor systems have been discussed 1n

current literature [5,6,13] but we will focus on the architecture first proposed by Wilson

[13] and later analyzed by Jog [5]. This architecture is called TREEBUS [5,15]. The

main memory is at the root of the tree, the branches are the buses, and the processor

cache pairs form the leaves.

Another salient feature of this architecture is that it uses an efficient snoopy

cache protocol to maintain coherence across the caches in the system. The buses in the

system enable us to use this easy to implement cache coherence scheme.

This chapter consists of three major parts, the first section explains the

TREEBUS architecture in detail, the second section covers the implementation of the

cache directory and the last section covers the coherence

protocol in detail.

Main Memory

Level3 Bus

Level 3 Cache

Level2 bus

Level 2 cache

Level1 bus

Level1 cache

Processors

35

Figure 1. The TREEBUS architecture.

TREEBUS ARCHITECTURE

The TREEBUS architecture is shown in Figure 1. There are multiple buses

arranged in a hierarchical fashion. All the buses operate independently of each other.

Buses at two consecutive levels, say level one and two or level two and three, are

connected to each other using caches. In other words, we also have a hierarchical cache

memory organization.

The architecture can be defined using the following variables:

1. L, number of levels in the hierarchy. Level refers to the depth of the

tree structure.

2. i, a level in the hierarchy, under consideration at a particular instant

3. Ni, the number of buses at level i

36

4. (i,j), bus j at level i in the hierarchy,

5. nij' the number of caches connected to bus j at level i

6. Ci,q, a cache connected to the (i,j) bus, where i, j, and q are defined in

equation 1.

1 ~ i ~ L
1 ~ j ~ Ni

1 ~ q ~ (nij x Ni)

(1)

The processors P are connected to their own private caches which are at level

one. The boxes with Ci, q represent the caches in the system. Each bus (i,j) is

connected to caches at two different levels, i.e., i and i+ 1. A level 1 bus is connected

to a group of C1,q caches and a level 2 cache, C2,q. The main memory M is connected

to the bus at level L and can also be thought of as a level L + 1 cache. Each group of

processor-memory pairs connected to the level 1 bus is referred to as a cluster [13] or

a super-processor [5].

These clusters form the building blocks of the TREEBUS architecture. The

cluster architecture is the same as a standard shared memory, common bus,

multiprocessor system, e.g., Sequent Balance or Symmetry [2]. The difference here is

that each cluster is connected to other clusters in the system via a cache memory at the

next higher level in the hierarchy instead of being connected directly to the main

memory as in the case of a Sequent system.

37

A level 1 cluster connected to the level 1 bus is connected to a level 2 cache.

A number of these clusters are connected to the level 2 bus via their respective level

2 caches. This bigger block can be called a super cluster or a level 2 cluster. In our

example, we have 4 super clusters at level 2 and 2 super clusters at level 3. The

process of making bigger clusters is recursive and we can continue until we reach the

highest level in the hierarchy.

Note: Throughout this chapter, all examples on TREEBUS architecture will refer

to Figure 1 unless otherwise stated.

Some definitions as applied to the TREEBUS architecture

Tree, root and leaves: A treebus system is a tree with main memory at its root.

The entire system, complete with processors, caches, buses and main memory forms the

tree. The processors are the leaves.

Sub-tree: A sub tree is a part of the tree with a cache as the root instead of main

memory, e.g., a cluster with a level 2 cache, C2,1 as the root is a sub-tree. We have

2 sub-trees at level 3 and 4 at level 2 in the system.

Branches: The buses at different levels are the branches. The maximum number

of branches at level i is Ni.

Branching factor: The number of caches connected to the bus j, at level i, is

called the branching factor ~.j' e.g., the branching factor for each of the buses at level

3 is 2.

Symmetric system: The number of caches connected to all the buses at a

particular level i is the same in a symmetric system, i.e., nij for all j is a constant. The

38

architecture in Figure 1 represents a symmetric system. There are two buses at level

2 and they both have a branching factor of 2. All the level one buses have 3 caches

connected to them.

Peer cache: For any cache Ci,q, connected to bus j at level i, all the remaining

1\,j-t caches are referred to as peer caches, e.g., a cache connected to the level 3 bus has

1 peer cache.

Descendant caches: For a sub-tree at level i with cache Ci,q as the root, all the

caches at levels lower than i that consider this cache as the root are its descendants,

e.g., for cache C2, 1 which is the root of a sub-tree at level 2, all the caches at level 1

that consider C2, 1 as their root (3 in all), are descendants of C2, 1.

Parent cache: In the explanation for descendant caches above, the cache that is

at the root of the sub-tree is also referred to as the parent cache. C2, 1 is the parent

cache for the sub tree consisting of C 1, 1, C 1,2 and C 1,3 caches. C2, 1 is at the root of

this sub-tree. Similarly, main memory M is the parent of all caches in the system.

Block size: The size of the block at level i, bi, over which coherency 1s

maintained is the block size. The block size is kept the same as the transfer size. This

simplifies the management of the coherence protocol and also the data transfer process.

The architectural details for the symmetric TREEBUS architecture shown in

Figure 1 are summarized in the table below:

39

TABLE II

CHARACTERISTICS OF TREEBUS ARCHITECTURE IN FIGURE 1

Number of buses at level 1, N 1 4

Number of buses at level 2, N2 2

Number of buses at level 3, N3 1

Branching factor at level 1, n1,j 3

Branching factor at level 2, n2J 2

Branching factor at level 3, n3,j 2

Number of levels, L 3

Number of clusters at level 2 4

Number of clusters at level 3 2

Cache coherence

The protocol that maintains coherence across all levels of the hierarchy is based

on the Snoopy-cache principle. The TREEBUS architecture employs the Multi Level

Inclusion principle to simplify the implementation of the coherence protocol and

increase the efficiency of the entire system. Without MLI, the implementation of this

architecture would be highly inefficient.

A large level i+ 1 cache would be able to satisfy most of the memory requests

(high hit ratio) from levels below. A very high hit rate at level i+ 1 means lower

network traffic on the (i+ 1, j) bus which leads to higher effective bus bandwidth. This

allows more processors to be connected to the bus and finally all these factors

contribute towards still higher performance.

Effect of Hit_ cache [1] and bus_ access
_time[1] on average access time

-m 14
�~�
0
>
0
(f)
:::J

..0

�~�
........
(f)
(f)
�~�
0
0 ro
�~�
�~� ro
�~�

�~�
�~� �2�~�~�r�-�-�-�-�-�-�+�-�-�-�-�-�-�~�-�-�-�-�-�-�r�-�-�-�-�-�-�+�-�-�-�-�-�-�,�_�-�-�-�-�~�~�-�-�-�-�-�+�-�-�~�

1.00 6.00 11 .00 16.00 21 .00 26.00 31 .00 36.00

bus_access_time(1) (bus cycles)

----- hit_cache[1]=0.85 --+-- hit_cache[1]=0.88 ----.- hit_cache[1]=0.91

-a- hit_cache[1]=0.94 ----w--- hit_cache[1]=0.97 __,.__ hit_cache[1]=1.00

Figure 22. Effect of hit_cache[l] and bus_access_time[l] on average
access time.

106

Example: Consider a three level memory hierarchy with 4 buses at level 1, 2 at

level 2 and 1 at level 3 as shown in figure 23. Ideally, we should partition the task into

four parts such that all the shared data was localized to each bus, e.g. , processors

connected to bus (1,1) do not share any data with buses (1,2) through (1,4).

If we achieve the above goal, then except for the first write access to the block,

level 3 bus would not see a invalidation for any subsequent writes to the same block.

107

This is because the copy at level 3 will always be in state dirty after the first write till

it is replaced to make room for another incoming block.

Main Memory

Level3 Bus L (i,j) = (3, 1}

Level 3 Cache

Level2 bus

Level 2 cache

Level1 bus

Level 1 cache

Processors

Figure 23. The TREEBUS architecture.

By following a typical course of events, the above paragraph should become

absolutely clear.

1. Assume at first, the processor connected to C1, 12 suffers a write miss. A copy

of the block comes in (C1,12), (C2,4) and in (C3,2) in state clean during the Read part

of the Read-Mod operation.

2. During the modification phase of the Read-Mod operation, The invalidate

request is sent all the way to the top and the state of the same block in (C1, 12), (C2,4)

and (C3,2) is now Qiny.

3. Next, one of the peer caches of (C1,12) cache, connected to (1,4) bus suffers

a read miss. C1, 12 supplies a copy and the state of the block in C1, 12 and peer cache

108

is in state clean. Also, the copy in C2,4 gets updated and the state changes to clean.

Please note that the block in C3.2 is still in state dirty. and this is the point we were

trying to put across.

4. Finally, the processor connected to C1,12 issues a write command to the same

block for the second time. The invalidate process has only to go till (2,2) bus because

it finds that the block in C3,2 is in state dirty and hence gets completed at the level2 bus

itself.

If this block was shared with the caches connected to say (1,2) bus, then this

block in C3 ,2 cache would have been in state clean, causing the invalidate to go all the

way to the top, i.e., (3,1) bus. We have saved some very valuable bus cycles here

because of localized data sharing.

Effect of hit cachefll on processor's bandwidth requirements

The 80386 processor running at 16 Mhz will need a word of data every 2 cycles

(minimum) when running in the pipeline mode. This is a very pessimistic estimate in that

the processor completes fetching, decoding and executing the instruction every two

cycles. However, this allows us to put more load on the bus and test its response. In

reality, the processor would never use the bus so frequently.

In Figure 24, we increase the value of hit_ cache[1] and see the effect on the

processor's bandwidth demand. Increasing the hit ratio at level 1 reduces the number of

times the processor needs to use the bus per unit time. Thus, the processor's net

bandwidth demand is reduced.

Effect of Hit_cache[1] on bus bandwidth
requirements

.-. 1 .6 . .
G'l

............
G'l (D • • • • • • •

1 ~ :: ::::::: _____________ T::::::··:::r:::::::::::r::::::::::::r::::·::::::::r:::::::::::::r::::::::::.r::::

(o.: . ____ ... :::::::::::::I:::::::::::: ::i :::::: .. ::: :::~ :::·· :::::::::.::::::::::::::I:.::::::::::::.:::::::::::::: I::::::
~ 0.6 i..! L;. L !.. L

I I I I I I I

0 l l l 1 1 1 1
~ 0. 4 ------- -------------~---------------~--------------~---------------~------------- ~ --------------~--------------~-------
=5 1 1 1 1 1 1 1
-~ : : : : : : :

~ o.2 ------- --------------:--------------:--------------r-------------1"------------r---------- -i--------------r------
00 0 : : : : :

0.80 0.83 0.86 0.89 0.92 0.95 0.98 0.99

Hit_cache[1]

Figure 24. Effect of hit_cache[l] on bus bandwidth requirements.

109

This suggests that we should have as large a cache as possible before the Ievell

bus, so as to increase the effective available bus bandwidth and also reduce the average

access time.

EFFECT OF MLI FACTOR (a) ON TOTAL MEMORY SIZE, COST AND
COST/PERFORMANCE

The TREEBUS topology being considered for this part of the analysis is as shown

in table VII. This translates in to a system with 1024 processors. The authors in [5] have

110

stated that they have modelled the performance of a system with 2048 processors and are

satisfied with the performance. But, even with only 1024 processors the effect of MLI

factor is significant on memory size and overall cost. Hence we have used this midway

configuration in an attempt to drive home the point that performance is not the only issue

that needs to be analyzed. Cost is equally important in our opinion.

At first, we study the effect of a on the total system memory size. This is shown

in figure 25.

With an a value of 10, the total size of the memory in the system is

approximately 0.8 Terra bytes, out of which the main memory alone occupies 0.610

Terra bytes. As can be clearly seen from the graph, the rate of increase is exponential.

Increasing a from 1 to 10 takes the total size to 0.8 Terra bytes, but increasing from 10

to 18 takes the size from 0.8 Terra bytes to approximately 6.8 Terra bytes, an eight fold

increase.

The next graph in figure 26 compares the cost ratio of the TREEBUS architecture

with that of a system similar to the Sequent Symmetry. If the cost of DRAM is $ x/byte,

the cost of SRAMs is assumed to be $ lOx/byte. For a particular value of a = 10, a

TREEBUS system consisting of 1024 processors costs approximately 3000 times more

than a Sequent Symmetry with 30 processors. A 34 times increase in the number of

processors results in a 3000 times increase in the cost of the memory hierarchy for the

TREEBUS system. Also, the rate of cost increase accelerates as the number of

processors and number of levels increase.

111

TABLE VII

TOPOLOGY FOR GRAPHS IN FIGURES 24-25

Number of buses at level 1, N 1 64

Number of buses at level 2, N2 8

Number of buses at level 3, N3 2

Number of buses at level 4, N4 1

Branching factor at level 1 , n1 ,j 16

Branching factor at level 2, n2,j 8

Branching factor at level 3, n3,j 4

Branching factor at level 4, I4,j 2

Figure 27 shows a cost/performance ratio comparison between the TREEBUS

architecture and a Sequent Symmetry system for different values of a and Hit_ cache[1].

The performance is actually the Speedup, defined as:

Speedup = (1/t_average_access_time) x Number of processors in the system

(24)

Ideally, the value of Speedup should be as large as possible and the value of

cost/performance ratio should be as small as possible.

MLI factor versus Total memory
size in a multilevel memory hierarchy

7~~----~----~----~--~~--~----------~------------~ -G'l

i 6 ----- -r- ---------- -r- ----------1------------1------------ ~- --------- --~---- -------- t··---------- t· -------- ---r-- ----- ---r- ----
ro : : : : : : : : : :

~ 5 ----- -~----------- -~----------- i------------ i------------ i------------ i------------t------------t------------~-- ------- -~-----

-~ 4l l L L. L. l l l......... -~·-······· .. l
> : : : : : : : : :
L.. I I I I I I I I I

0 : : : : : : : : : E

~ 3 ·····-r···-·······t···········r·········r········l·········-r·········r··········t·· ·······l·········-r···
~ 2 ---- --~- --------- --~- -------- --~-- -------- --~-- ---------- ~---- -------- ~---- -------- ~ ------ ----- ~- --------- --~ ---------- --~-----

! ~ ~ ~ ~ ~ ~ ; ~ ~ ~ ca 1 ----- ·r- -------- ···r· ------ ····i·· ---------- i·· ---------- ~---- -------- ~---- ------ ~---- -------- ~- --------- ·+ --------.- ··r- ----
~ ~ ~ ~ ~ l ~ ~ ~ ~ 0 . . . : : : :

1.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MLI factor

Figure 25. MLI factor versus Total memory size.

112

A very small fraction would mean that the TREEBUS architecture can deliver

higher performance at a lower cost as compared with Symmetry. If the value of both the

cost/performance ratios were 1, then the architectures would have been considered equal

in terms of cost/performance comparison. A value of half would mean that the

TREEBUS architecture can deliver twice the performance as compared to the Sequent

Symmetry system.

,........,
(1)
>
(1)

J:
c
:::J

-+-'
G'l
0
u ...__
,........,
a;
>
Q

I

:e
:::J
~
-+-'
G'l
0
u

,........,
G'l

"'0
c
(tj
G'l
:::J
0

...c
I-..........

Effect of MLI factor on Cost ratio
in a unilevel/multilevel memory system.

::1. .. nnoon•• mnmn mnnm nnnnn nnmm mnmn mmnn nmmn,onm.nn••...J

20·+···· ········· ·········· ········· ·········· ··········i· .. ········-~-----

1 5-l····· ········· ·········· ···········-·····

1 O·+•••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• ••••••• "•••••••••• •••••••••••r•••••

5-l····· ·········· ·········· ········---~---··

0~~------~~==~--~--~----+---~---+----~
1 .00 2.00 4.00 6.00 8.00 1 0.00 12.00 14.00 16.00 18.00

MLI factor

Figure 26. Effect of MLI factor on Cost ratio between unilevel and
multilevel memory hierarchy.

113

The values used for bus access time at different levels in the hierarchy are the

lowest possible, i.e., the analysis is based on the most optimistic figures. The

performance figures are overstated (lower average access times) and thus

the cost/performance ratio is understated.

The value of Hit_cache[1] is varied from 0.80 to 0.99. We have taken very high

values for hit_ cache[1] to demonstrate that a dominates the cost _performance comparison

figures. Even for Hit_cache[1] = 0.99, this ratio is around 100 for a= 10. For a= 18,

114

this value shoots to around 900. It seems like that we are not getting a good return on

our investment.

Effect of MLI factor on Cost/Pert .
............

~ ratio comparison.
::J

j" 1800 . . . :~· 1 600 ··········· ········---~---·······+··········+·········· ·········· ·······---~--~---·· . '

~ ~ :~ ::::: ::::::::::: ::::::::::. ::::::::::L:::::::::::::::::::::t:::::::::: :::::::::: ::::::::::!:-:?~::::
0 : : : l'fi
........... 1 000 ··········+··········+··········+··········

w 800 ····· ··········-~---·······-~---·······-~---·······
....... . . .
__.) I I t

ffi 600 ----- ----------- ---------- ---------··r···------··r··-------··r··-------- -. ----------{-----
~ 400 ··········+··········+··········+·········· . ···----~---·······-~---··

!2 200 ··········-~------····-~---·······1 ······---~---·······-~---·······-~---··
(p : . : : : :

()_ 0 . . : : : :

1? 1.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

8 MLI~c~r

---- Hit_cache[1]=0.80 --+- Hit_cache[1]=0.84 ~ Hit_cache[1]=0.88

--E3- Hit_cache[1]=0.92------ Hit_cache[1]=0.96 __.._ Hit_cache[1]=0.99

Figure 27. Effect of MLI factor on Cost/Performance ratio comparison
between unilevel and multilevel memory hierarchy.

An alternate way of defining performance could be the maximum number of

processors that the designer can attach to the level 1 bus without saturating it. This is

because, the more processors, the greater the value of Speedup.

115

The sustained bus bandwidth for the Symmetry's system bus is 53.33 Mbytes/sec.

For hit_cache[l] = 0.92, each processor's bus bandwidth demand is 0.64 Mbytes/sec,

which translates into a maximum of (53.33 I 0.64) = 83 processors that can be

connected to the system bus, assuming that there is no 110 traffic on the bus. If the value

of hit_cache[l] is increased to 0.98, the processor's bandwidth demand falls to 0.16

Mbytes/sec, which translates into a maximum of 333 processors that can be connected

to the level 1 bus without saturating it.

Figure 28 shows the results using this approach to compare the Sequent Symmetry

and TREEBUS architectures. The only time the TREEBUS performs better than the

Symmetry is when the value of MLI factor, a, is less than 3. A rule of thumb is that

value of a should be at least 10 to have high hit ratios for the caches at all levels. The

Symmetry outperforms the TREEBUS in this comparison too.

.Q

........ cu
!.....

Q)
0
c
cu
E
!.....

0 -!..... Q)
CL ..._
........
G'J
0
0

Cost/Performance ratio comparison
for TREEBUS and Sequent architecture

14~~------~----~----~~----~----~--~

I
0.750 0.800 0.850 0.900 0.950 0.990

Hit_cache[1]

Figure 28. Cost/Performance ratio comparison between TREEBUS and
an architecture similar to Sequent's Symmetry.

116

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, we have analyzed the TREEBUS architecture in great detail. At

the same time, we have presented a balanced view of the TREEBUS architecture, in

that we have not allowed ourselves be carried away by the performance metrics alone.

We looked at the cost ratio and cost/performance ratio and it is surprising that the cost

aspect has been totally absent in the research conducted so far.

The model that we have developed is reasonably accurate and compuatationally

efficient, allowing us to analyze the architecture in great detail within a very small

period of time.

CONCLUSIONS

Maximize hit cache[ll

The designer of a TREEBUS memory system should primarily focus on

maximizing the hit ratio in the private caches. A high value of hit_cache[l] can shield

the average access time from the adverse effect of most of the other parameters, e.g.,

bus access times at higher levels, etc.

The private cache for each microprocessor could be a single level or two-level

hierarchy. For today's high performance microprocessors, a two level private cache

hierarchy is an absolute must.

118

This key conclusion is intuitively obvious to every memory system designer but

we have reached this decision after detailed and extensive analysis, considering many

different parameters that could have adversely affected the system performance.

Figure 16 clearly demonstrates that hit cache[1] dominates hit cache[2]. Figure - -

19 shows how expensive a recall operation can be, but Figure 20 shows that this does

not impact the average access time. The effect of bus access time at level 1 and level

2 are shown in figure 21 and Figure 22 shows how increasing hit_ cache[1] can mitigate

the impact.

Maximize localization of data sharing

This will help us maximize the performance of the TREEBUS architecture. We

know that write accesses to a clean block and write misses can wreak havoc on the

average access time (shown in Figures 17 and 18). The probability of write misses can

be reduced by large caches, but the invalidation process depends solely on the degree

of sharing of data, i.e., the invalidation process has to traverse as high as there are

clean blocks in the hierarchy.

If a copy exists in state clean, the invalidation request goes all the way to the

top and then traverses down, which make it the most expensive operation performed

in the system. Localization will ensure that the invalidation request has to go up only

a few levels, thereby reducing the average access time.

119

Cost of the memory hierarchy is a limiting factor

We feel that this is one factor that can easily limit the popularity of the

TREEBUS architecture. The size of the main memory virtually explodes beyond

manageable proportions for a large size system (1024- 2048 processors).

As a rule of thumb, MLI factor, a should be equal to 10; using this value for

a, the total memory size is around 0.8 Terra bytes. With a= 18, the size approaches

7 Terra bytes. Ideally, the designer would like a to be as high as possible to maximize

the hit ratio at a particular level, but with this architecture the designer's hands are tied.

To decrease the total memory size, a should be lowered. This action would

increase the invalidations in the system as a result of increased replacements of blocks

from the higher levels to make room for the incoming new blocks. Please note, to

enforce MLI, whenever a block is replaced from a cache connected to the level (i,j)

bus, all the copies in its descendants need to be invalidated.

TREEBUS still holds promise

All the analysis should not discourage a designer from designing systems around

this architecture.

a. It is obvious that TREEBUS cannot compete with distributed memory

architecture systems because of the explosion in the size and hence the cost of main

memory, but there is a wide performance gap between a single, common bus based,

multiprocessor system (e.g., Sequent's Symmetry) and the large scale commercial

distributed memory systems, e.g., Intel's Paragon. A niche market definitely exists for

the TREEBUS architecture.

120

b. A very strong point in the TREEBUS 's favor is that even for very high bus

access times at levels 1 and 2 (bus_ access_ time(1) = 71 bus cycles and

bus_access_time(2) = 51 bus cycles), the average access time is around 20 bus cycles

using the values as indicated in tables V and VI.

By using the high performance buses available today, 20 bus cycles translate into

an average access time of only 600 ns (using a 33 Mhz bus). The new local buses, e.g.,

PCI from Intel and VL-bus from VESA [28] can run at rates as high as 66 Mhz. An

average access time of around half a micro-second for a multi-level, multi-processor

architecture is indeed impressive when compared with average access times of message

passing architectures.

c. This is also an attractive architecture from a programmer's point of view

because it is easy to parallelize applications written on shared memory machines or

transfer applications and programs written for common bus based

systems.

VALIDATION

We first tested the model with realistic numbers that were taken from the

Sequent Symmetry Technical Summary book. The results matched our expectations

totally and only then was the model scaled up for a multi-level multi-processor system.

The results from the scaled up version match our intuition and they were also validated

by doing manual calculations for a particular set of values. There is no doubt about the

121

accuracy and correctness of the model, but the way we have generated data for some

variables needs further attention in the future. This is discussed in the

Future work section.

FUTURE OPTIONS FOR THE DESIGNER

After running the model, the designer has a reasonably fair idea about the

characteristics of the system. To get more detailed information, the designer has

basically three other options, which are discussed in the following sub-sections.

Develop a model using principles of queuing theory

This would involve mapping the higher level parameters to lower level

parameters. In our opinion, the results would not be much more accurate than the ones

presented in our model. The researchers in [5] did model using principles of queuing

theory and higher level parameters.

Presently, there are no means of measuring these parameters and the designer

has to take the best guess approach or sweep the parameters just as we did with lower

level parameters.

Simulate the model

The next option would be to simulate the entire system. This is no easy task

either, because of the number of processors and the size of the caches and main

memory. The designer would need vast computing resources to perform the simulation.

122

At best, one could simulate a small size system, e.g., a 12 processor

configuration as shown in figure 1 to have a better understanding and then extrapolate

the results.

Build a prototype

This would be the last option. The researchers at University of Wisconsin,

Madison obtained initial results from an analytical model of the Wisconsin Multicube

[30] and then started developing a prototype of the system. The reason being that there

is very little information available regarding memory reference behavior of parallel

programs.

FUTURE WORK

This model lays a solid groundwork for more thorough analysis of the

TREEBUS architecture in the future. The model is a good first step and there is scope

for further improvement.

Incorporate memory contention

In our model, the memory accesses are assumed to be contention free, i.e. , no

two write requests are assumed to come to the same cache at the same time. This is

never the case in a multi-processor system.

At present, we address this issue by increasing the value of bus access time at

various levels and attributing this extra time to contentions while accessing the bus or

accessing the same block in the cache.

123

In case of a conflict, only one processor's request is allowed to proceed, the

other processor reissues the request and suffers more delay in accessing the bus.

Model Bus access time accurately

The model in its current state treats Bus access time as a sweep variable, but - -

to have a robust model, we should have an accurate equation for deriving its value.

Map higher level input parameters to low level parameters. The higher level

parameters would relate closely to the application program characteristics, e.g.,

frequency of processor reads to a block between writes, frequency of invalidations from

processors connected to a different bus at different levels, etc. Using this approach, the

results from the model would be easy to interpret.

With our model, the designer would have to do some thinking to interpret the

results, i.e., what are the factors that can lead to higher values for p _ clean[i]? The

answer would be low frequency of writes (because the block always comes in state

clean in response to the read request) to the block or high frequency of reads by peer

caches between writes.

Make the coherence protocol efficient. The coherence protocol as suggested in

[5] can be modified. In the existing protocol, a write hit to a clean block in level i

cache generates invalidations on the level i bus, even though this cache could be the

only one with a copy. The processor directory as implemented can incorporate an

additional state without increasing the implementation overhead and eliminate the

unnecessary invalidation cycle.

124

Include a second level private cache. The proposed TREEBUS architecture [5]

has been designed around a single level private cache. A second level private cache is

an absolute must for a high performance system to perform at its best. This large

secondary cache will not only improve the hit ratio but also reduce the overall access

time. This architecture needs larger, faster and smarter memory sub systems that will

serve as the level 2 private cache.

Proposed solution: Cache-DRAMs are commercially available today [27] and

have a small, extremely fast SRAM in front of a large DRAM. In case of a hit, the

SRAM (cache hit reads = 10 ns) can match the CPU cycle time, but in case of a miss,

only one normal DRAM access (70 ns- 80 ns) is needed for a cache line fill operation.

In the very next cycle, the chip can supply the data at 10 ns. The worst case scenario

of two back-to-back cache misses takes 280 ns, because of the DRAM cycle time.

Cache-DRAMs can help in reducing the overall memory cost, reducing the

average access time and increasing the available bus bandwidth, thereby allowing the

use of more processors and also freeing up bandwidth for input output operations.

SUMMARY

The TREEBUS architecture beyond doubt has the potential to deliver high

performance with a reasonable cost tag (cost/performance) for medium sized systems

(128 - 256 processors).

The recent developments in the memory technology can be used very effectively

in the TREEBUS design to maximize the performance (deliver very high hit ratios)

while keeping the overall cost of the memory sub-system to a reasonable level. T h e

125

model developed is an effective and a reasonably accurate one (provides a great first

cut estimate) and can be made more robust with the proposed improvements and

modifications. It can also be used as a teaching tool in a case-study context, to show

and explain the interaction of multiple parameters on the overall system performance.

REFERENCES CITED

1. Ron Wilson, Senior Editor, "Intel 80486 carries complex instruction set to ruse
speeds," Computer Design, 11 18-22, May 1, 1989.

2. P. Stenstrom, "A Survey of Cache Coherence Schemes for ,~
Multiprocessors, "Computer, Vol. 23, No. 6, June 1990,
pp. 12-24.

3. H. Cheong and A. Veidenbaum, "A Cache coherence Scheme With Fast
Selective Invalidation," Proc. 15thlnt'l Symp. Computer Architecture, 1988, pp.
299-307.

4. Per Stenstrom, "Reducing contention in Shared_ memory Multi-processors,"
IEEE Computer, November 1988, pp 26-37.

5. Mary K. Vernon, Rajeev Jog and Gurindar S. Sohi, "Performance Analysis of
Hierarchical Cache Consistent Multiprocessors," Performance evaluation 9,
1988/89, pp. 287-302.

6. Jean-Loup Baer and Wen-Hann Wang, "Multilevel cache hierarchies:
Organizations, Protocols and Performance," Journal of parallel and distributed
computing 6, 1989, pp. 451-476.

7. Digital Bus Handbook, Joseph DiGiacomo, McGraw Hill Publishing Company,
1990.

8. The Multibus Design Guidebook, James B. Johnson and Steve Kassel, McGraw
Hill Publishing Company, 1984.

9. Ron Wilson, "Intel 80486 carries complex instruction set to ruse speeds,"
Computer Design, pp 18-22, May 1, 1989.

10. Warren Andrews, "Static RAMs race to keep up with ruse, Computer Design,"
pp 59-66, April1, 1989.

11. Ron Wilson, "68040 moves toward ruse camp with redesigned pipelines
caches," Computer Design, pp 22, May 1, 1989.

127

12. Jim Handy, "Practical design techniques for today's RISC and CISC CPU's,"
Electro International Conference Record, pp 283-289, April16-18, 1991.

13. A. W. Wilson, "Hierarchical Cache/Bus architecture for Shared Memory 1
Multiprocessors," in Proc. 14th Annual Symposium on Computer Architecture,
Pittsburgh, PA, pp. 244-252, June 1987.

14. BiCMOS and CMOS Data book, Cypress Semiconductor, pp. 9.152-9.157,
March 1992

15. Rajeev Jog, G. S. Sohi, and M. K. Vernon, "The Treebus architecture and its
analysis," Computer Sciences Tech. Rep. #747, University of Wisconsin
Madison, Madison, WI 53706, 1988.

16. Ron Wilson, "Cache controllers tread a rocky path toward integration,"
Computer Design, pp 99-108, November 1, 1990.

17. David Chaiken Craig Fields, Kiyoshi Kurihara and Anant Agarwal, "Directory
Based Cache Coherence in Large-Scale Multiprocessors," IEEE Computer, pp.
49-58, June 1990.

18. Hoichi Cheong and Alexander V. Veidenbaum, "Compiler-Directed Cache
Management in Multiprocessors," IEEE Computer, pp. 39-47, June 1990.

19. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and J. Hennessy, "The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor,~·
Proc. 17th Int'l Symp. Computer Architecture, pp. 148-159, May 1990.

20. ParagonTM XP/S Product£verview, Intel Corporation, 1991

21. George Watson, "The main event," IEEE Spectrum, pp 30, January 1991.

22. Warren Andrews, "Will performance win over sophistication in workstation
buses?" Computer Design, pp. 78-89, February 1, 1991.

23. Betty Prince, Roger Norwood, Joe Hartigan and Wilbur C. Vogley,
"Synchronous dynamic DRAM," IEEE Spectrum, pp. 44-47, October 1992.

24. Charles A. Hart, "Dynamic RAM as secondary cache," IEEE Spectrum, pp 48,
October 1992.

25. Jean-Loup Baer and Wen-Hann Wang, "Architectural choices for Multi-Level
Cache Hierarchies," Technical Report 87-01-04, University of Washington,
Seattle, January 14, 1987.

;.,--

128

26. Symmetry Technical Summary, Sequent Computer Systems, Inc., 1987.

27. Richard Quinnell, "4-Mbit DRAM integrates SRAM cache for 10-nsec cache-hit
access," EDN, pp 77, March 16, 1992.

28. Bob Francs, "Should IS ride the local bus?," Datamation, pp 47-49, March 15,
1993.

29. C. P. Thacker, L. C. Stewart and E. H. Satterthwaite, Jr., "Firefly: a
Multiprocessor Workstation," IEEE Transactions on Computers, 37, 8 (August
1988)' 909-920.

30. James R. Goodman and Philip J. Woest, "The Wisconsin Multicube: A New
Large-Scale Cache-Coherent Multiprocessor," in Proc. 15th Annual Symposium
on Computer Architecture, 1988, pp 422-431.

31. Eugene Levin, "Grand Challenges to Computational Science," Communications
of the ACM, December 1989, Volume 32, Number 12, pp 1456-1457.

'

:>·avffil

V XIQNtlddV

#include < stdio .h >
#include "header .h"
#include "data.h"

float P _readG)
int j;
{

float x, y, z = 0;

I* If we are at the top of memory hierarchy, then
main memory supplies data and the function
send_ data() is called. *I

if(j = = LIMIT)
z = send_dataG);

else {

I* Normal flow of operations, since not at the
top of memory hierarchy yet.
HIT TIMINGS *I

y = send_ dataG) ;
z = (hit_ cache[j-1] * y) ;

I* if we have a miss, the request appears on the
level 'j' bus in the memory hierarchy.
MISS TIMINGS *I

if(hit_ cache[j-1] ! = 1){

I* This if logic is to ensure that when the request is
coming down with the block of data, we have taken care
of the additional bus delay involved. *I

if G > 1)

else

x = B_ReadG) + send_dataG) +
bus_ access_ timeG-1);

x = B _ ReadG) + send_ dataG) ;

I* Mean access time at level j *I

z + = ((1 -hit cache[j-1]) * x) ;

130

}
}

return z;
}

float send_ data(k)
int k;
{

if(k > 1)
return 4.00;

else
return 1.25 ;

}

float Block_replacement(l)
int 1;
{

return ((1 - p_clean[l-1]) * T_write[l]);

}

float B _ Read(n)
int n;

{
float x = 0;

if(hit_peer[n-1] ! = 0){

}

x = get_from _peer(n) ;
x *= hit_peer[n-1];

if(hit_peer[n-1] ! = 1){

131

x + = (P _read(n + 1)) * (1 - hit_peer[n-1]) ;
}

x + = (bus_access_time(n) + Block_replacement(n));

return x;

}

float get_ from _peer(o)
into;
{

}

float x, z;
float y = 0;

x = supply _requesting_ cache(o) ;

if(peer _consistent[o-1] ! = 1)
y = recall(o); I* If inconsistent, we need to

perform a recall *I

z = (peer_ consistent[o-1] * x) + (
(1 - peer_consistent[o-1]) * (y + x));

return z;

float recall(tex)
int tex;
{

float val = 0;

I* This is done because recall(2) must find a consistent
copy of the block at level 1. Level 1 is the closest
to the processor and the data at this level is most
updated or in state "consistent." Reca11(1) makes no sense,
because such a thing will never happen. We are fine from
the highest level to level 2 for recall purposes as
explained above. *I

132

if (tex > 1) {

I* There is an extra term for bus_access_time() in the
formula below This is because we access the bus once while
going down to fetch the updated block and when we are going
up to update the parent cache, we again need to access the
bus. We cannot hold on to the bus till the complete of
an operation as this would slow operations down considerably. *I

I* The first assignment to val is for the case when the peer
cache has a consistent copy *I

133

val = (UPDATE_PARENT_CACHE + bus_access_time(tex- 1));

I* The second part deals with a peer cache with an inconsistent copy *I

val + = (1 - peer_ consistent[tex-2]) * recall(tex-1) ;

I* The last part adds the one extra bus access that we have to
take care of *I

val + = bus_access_time(tex);

return val;

}

else

return (val = 0);

}

float supply _requesting_ cache(q)
int q;
{

return 3.00;
}

float bus_ access_ time(s)
int s;

~ 00.9 Wtll~J

t£1

{

}

a XIGNHddV

#include < stdio.h>
#include "header.h"
#include "data.h"

main()
{

}

int bus _level = 1 ;
float t_read _access, t_ write_ access;
float t _average_ access_ time;

t_read _access = P _read(bus _level) * p _read;
t_write_access = P _write(bus_level) * (1 - p_read);
t _average_ access_ time = t _read_ access + t _write_ access;

printf("t _read_ access_ time: %5.4 f. \n \n", t _read_ access);
printf("t_ write_ access _time: %5 .4f. \n\n", t_ write_ access);
printf("t_average_ access_time: %5.4f. \n\n\n",

t_ average_ access _time);

float P _ write(j)
int j;
{

float temp, t_ write_ hit_ clean, t_ write_ hit_ dirty;
float temp1, t_write_miss;

temp = Invalidate(j);
temp1 = P _read(j);

t write hit clean = (hit cache[j-1] * p clean[j-1]) * - - - - -
(temp + t_ write[j-1]);

t_write_hit_dirty = (hit_cache[j-1] * (1- p_clean[j-1]) *
t_ write[j-1]);

t_write_miss = (1 - hit_cache[j-1]) * (temp1 +temp +
t_ write[j-1]);

printf("P _ read(%d): %f\n", J, temp1);

136

}

printf("Invalidate(1) = % f\n", temp);
printf("twm = % f\n", t _write_ miss);
printf("t whc= %f\n", t write hit clean); - - - -
printf("twhd = %f\n", t write hit dirty); - - -

temp = t_ write_ hit_ clean + t_ write_ hit_ dirty +
t_ write_ miss;

return temp;

float lnvalidate(k)
int k;
{

}

float temp = 0;

I* If we are at the top of the hierarchy, we do not
need to go up any further. That's what this "if"

statement ensures. *I

if ((k > = 1) && (k < L))
temp + = (p clean[k] * (bus access time(k) + - - -
Invalidate(k + 1))) ;

else
temp = 0;

temp + = Invalid ack(k) + bus access time(k) + t invalidate; - - - -
return temp;

float Invalid_ ack(l)
int 1;
{

if (1 > 1)
return 1.00;

I* The time needed is to just send a signal to the lower
level cache, hence 1 bus cycle is enough *I

else
return 0;

}

137

S3'lltl "M3GV3H

J XIGN3ddV

Data.h

#define LIMIT 4 /*LIMIT = L + 1; L = 3, a 3 level hierarchy */
#define UPDATE PARENT CACHE 3 - -
#define t invalidate 1
#define p _read 0. 80
#define L (LIMIT - 1)
float hit_cache[LIMIT] = { 0.91, 0.95, 0.99, 1.0};
float hit_peer[LIMIT] = { 0.80, 0.75, 0.75, 0.75};
float peer_ consistent[LIMIT] = { 1. 00, 0. 85, 0. 85, 0. 85};
float p_clean[LIMIT] = {0.30, 0.60, 0.60, 0.60};
float t_ write[LIMIT] = { 1.25, 4, 4, 4};

Header.h

float send_ data(), B _Read();
float bus_ access_ time() ;
float block_ replacement(), get_ from _peer();
float P _read();
float recall();
float bus_ access _time();
float supply _requesting_ cache();
float update _parent_ cache();
float P _write();
float Invalidate();
float Invalid_ ack();

139

