
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

5-8-1992

A New Approach to the Decomposition of A New Approach to the Decomposition of

Incompletely Specified Functions Based on Graph Incompletely Specified Functions Based on Graph

Coloring and Local Transformation and Its Coloring and Local Transformation and Its

Application to FPGA Mapping Application to FPGA Mapping

Wei Wan
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Wan, Wei, "A New Approach to the Decomposition of Incompletely Specified Functions Based on Graph
Coloring and Local Transformation and Its Application to FPGA Mapping" (1992). Dissertations and
Theses. Paper 4698.
https://doi.org/10.15760/etd.6582

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4698
https://doi.org/10.15760/etd.6582
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Wei Wan for the Master of Science in Electrical

and Computer Engineering presented May 8, 1992.

Title: A New Approach to the Decomposition of Incompletely Specified Functions Based

on Graph Coloring and Local Transformation and Its Application to FPGA Map-

ping.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Marek A. Perko-wski, Chair
/

Martin Zwick

The thesis presents a new approach to the decomposition of incompletely specified

functions and its application to FPGA (Field Programmable Gate Array) mapping. Five

methods: Variable Partitioning, Graph Coloring, Bond Set Encoding, CLB Reusing and

Local Transformation are developed in order to efficiently perform decomposition and

FPGA (Lookup-Table based FPGA) mapping.

2

1) Variable Partitioning is a high quality hemistic method used to find the "best" parti-

tions, avoiding the very time consuming testing of all possible decomposition charts,

which is impractical when there are many input variables in the input function.

2) Graph Coloring is another high quality heuristic\ used to perform the quasi-optimum
\

don't care assignment, making the program possible to accept incompletely specified

function and pe1form a quasi-optimum assignment to the unspecified part of the func-

ti on.

3) Bond Set Encoding algorithm is used to simplify the decomposed blocks during the

process of decomposition.

4) CLB Reusing algorithm is used to reduce the number of CLBs used in the final

mapped circuit.

5) Local Transformation concept is introduced to transform nondecomposable functions

into decomposable ones, thus making it possible to apply decomposition method to

FPGA mapping.

All the above developed methods are incorporated into a program named TRADE,

which performs global optimization over the input functions. While most of the existing

methods recursively perform local optimization over some kinds of network-like graphs,

and few of them can handle incompletely specified functions. Cube calculus is used in

the TRADE program, the operations are global and very fast. A short description of the

TRADE program and the evaluation of the results are provided at the_ end of the thesis.

For many benchmarks the TRADE program gives better results than any program pub

lished in the literature.

A NEW APPROACH TO THE DECOMPOSITION OF INCOMPLETELY

SPECIFIED FUNCTIONS BASED ON GRAPH COLORING AND

LOCAL TRANSFORMATION AND ITS APPLICATION

TO FPGA MAPPING

by

WEI WAN

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1992

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Wei Wan

presented May 8, 1992.

APPROVED:

,

Marek A. PerXowski, Chair
I /{

.

Malgorzata C

Martin Zwick

Rolf Schaumann, Chair, Department of Electrical Engmbering

rovost for Graduate Studies and Research

ACKNOWLEDGEMENTS

A number of people have assisted me in the research reported in this thesis. I

would like to take this opportunity to thank them.

I would like to thank Marek A. Perkowski, Chair of the Committee, for his initial

inspiration and professional guidance throughout the research.

I would also like to thank other Committee members: Malgorzata Chrzanowska

Jeske and Martin Zwick for their assistance and numerous suggestions in the preparation

of the thesis.

I am grateful to Shirley Clark for her provision of all kinds of help during my

research period.

I am grateful to Ingo Schtifer for helping me to start the TRADE program.

I gratefully acknowledge the financial support of NSF and lastly,

I am deeply appreciative of the patience, encouragement and companionship of my

wife, Hui. Without her inspiration and love, motivation would be lacking to complete

this project.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS .. 111

LIST OF TABLES .. Vl

LIST OF FIGURES .. Vll

CHAPTER

I INTRODUCTION ... 1

II XILINX ARCHITECTURE ... 4

11.1. CLBs ... 4

11.2. IOBs .. 5

11.3. Interconnect .. 6

11.4. Combinatorial Functions ... 7

III CURRENT RESEARCH VERSUS OUR APPROACH 11

111.1. Current Research on Lookup-Table Based FPGA Mapping 11

111.2. Our Approach .. 14

IV BASIC DEFINITIONS .. 16

V HOW TO PERFORM DECOMPOSITIONS? ... 24

V.l. Decomposition of the Incompletely Specified Functions 24

V .2. Bond Set Encoding 29

VI THREE BASIC SPEEDUP APPROACHES ... 35

VI.1. Graph Coloring .. 35

VI.2. Variable Partitioning 41

VI.3. Local Transformation 50

v

VII PROGRAM TRADE AND ITS EVALUATIONS .. 59

VIl.1. Procedure of TRADE .. 59

VII.2. CLB Merging 62

VII.3. CLB Reusing ... 64

VII.4. Evaluation of the Results 70

VITI CONCLUSIONS AND FUTURE WORK ... 73

Vlll.l. Conclusions .. 73

Vlll.2. Future Work 7 4

REFERENCES .. 75

LIST OF TABLES

TABLE PAGE

I Time (T) vs. node Number (N) and edge Percentage (P) 38

II Comparisons among TRADE, MIS-PGA(phase 1) andMIS-PGA(new) 72

LIST OF FIGURES

FIGURE PAGE

1 Physical structure of a Xilinx chip 5

2 CLB internal logic ... 6

3 IOB internal logic .. 7

4 Interconnect resources 8

5 FGmode .. 9

6 F mode ... 9

7 FGM mode .. 10

8 Cubes and cube sets 19

9 Intersection operation 19

10 Decomposition 20

11 Karnaugh map and decomposition chart ... 22

12 Example of an incompatibility graph .. 23

13 Curtis decomposition .. 25

14 Application of the Curtis decomposition to FPGA mapping 26

15 Karnaugh map, decomposition chart and the expected decomposition 27

16 Incompatibility graph 28

17 Final don't care assignment 28

18 Similarity Factor Table 30

19 Decomposed Karnaugh maps 31

20 Pseudo-code of bond set encoding 34

21 Graph coloring using Color Influence Method ... 37

viii

22 Time vs. node Number and edge Percentage 39

23 Pseudo-code of graph coloring 40

24 Cube arrangements 42

25 Relative positions between two cubes 43

26 Karnaugh map of function f 43

27 Karnaugh maps for the 'best' partitions .. 45

28 Variable partitioning example 46

29 ON-Y, ON-N, OFF-Y and OFF-NTables .. 48

30 Partitions after variable partitioning 49

31 Pseudo-code of variable partitioning 50

32 1.ocal transformation 52

33 Application of local transformation to FPGA mapping 54

34 Four different columns 55

35 Modification Factor Table 56

36 Pseudo-code of local transformation 58

37 Before and after decomposition .. 60

38 Pseudo-code of TRADE program .. 61

39 Pseudo-code of CLB merging 64

40 CLB reusing concept 65

41 CLB reusing example 66

42 After graph coloring 67

43 The final coding 69

44 Pseudo-code of CLB reusing 70

45 Verifying example 71

CHAPTER I

INTRODUCTION

The modern digital logic designers have the opportunity to design a circuit from

any of the six categories: Standard SSIJMSI devices, Standard LSINLSI devices, Gate

array devices, Standard-cell devices, Full-custom devices and Programmable Logic Dev

ices (PLDs). A PLD is a digital integrated circuit capable of being programmed to pro

vide a variety of different logical functions. It offers a wide variety of complexities,

architectures and configurations. Since they function differently depending on how they

are programmed, PLDs belong to the Application-Specific Integrated Circuits (ASICs)

family. PLD NRE (Nonrecurring Engineering) charges are either nonexistent or very

small. Making design changes is very simple, fast and cost-free. PLD "tum-around"

time (the time from design completion to having usable devices available) is very short,

ranging from a few minutes to a few hours, which results in a significant reduction in the

time-to-market of a product All of those benefits have made the PLD technology

receive great expectations in the electronic industry. FPGA (Field Programmable Gate

Array) is one member of the PLD family, and it is the subject of this thesis.

PLDs have been around since the 1970's. In 1970 Harris introduced the first PLD

device, Programmable Read-Only Memory (PROM), which had a structure of a fixed

"AND" array followed by a programmable "OR" array. In 1975 Signetics introduced its

Programmable Logic Array (PLA), which was in a structure of a programmable "AND"

array followed by a programmable "OR" array. In 1978 MMI introduced its Programm

able Array Logic (PAL), in a structure of a programmable "AND" array followed by a

2

fixed "OR" array. In 1985 Lattice introduced its Generic Array Logic (GAL), which was

similar to a PAL, but had the electrically erasable capability. As the new devices

emerged, the new features, such as programmable output polarities, feed backs, registers,

buried registers, macro-cells, in-system programming, fold backs and so forth were intro

duced. There were so many kinds of PLD devices, and their architectures became so

complex that the universal and advanced design tools were greatly in demand. In 1983

Assisted Technology released version I.Ola of its CUPL (Universal Compiler for Pro

grammable Logic) PLD compiler. In 1984 Data 1/0 released its ABEL (Advanced

Boolean Expression Language) PLD compiler. Logic minimization and device simula

tion were standard features of both compilers.

In 1985 Xilinx introduced its Logic Cell Array (LCA), now called FPGA, which

had a very different architecture from the previous "AND-OR" array PLD architectures.

The LCA consisted of a matrix of Configurable Logic Blocks (CLBs) surrounded by a

ring of Input/Output interface Blocks (IOBs), and an interconnect network for connecting

blocks. A CLB can be configured to function as one or two Lookup Tables (LUTs).

With the introduction of the hardware, Xilinx released its own design tool XACT (Xilinx

Advanced CAD Technology). There was also a similar kind of FPGA introduced by

Actel. Instead of using LUTs, it used a multiplexer architecture in the basic logic blocks.

Later on, gate array-like and PAL-like complex devices were introduced, they were also

called J7PGAs. The purpose of this thesis is to present the technology mapping tech

niques for Xilinx' s lookup-table based FPGAs.

Good design tools can greatly improve the quality of the resulting circuit. For

instance, the very first FPGA mapping program produced the results that the number of

CLBs necessary for the MCNC benchmark examples alu2 and 9symml were 157 and 74

respectively, but the program based on the theories presented in this thesis results in 22

3

and 6 only. This is almost a ten times improvement. The benchmarks are same, Xilinx

architecture remains unchanged. But the inherent characteristics of the input function is

gradually unveiled, and the characteristics of the architecture of the chip is more per

fectly matched with those of the input function. It seems there is no universal architecture

that can fit all kinds of functions. Hopefully in the future there will be more new archi

tectures to match the various kinds of logic circuits.

The next chapter presents the features of Xilinx architecture. Chapter III addresses

the current research on FPGA mapping techniques and our approach. Chapter IV defines

some basic terminologies that will appear in later chapters. Chapter V presents the

decomposition method for incompletely specified functions and describes the bond set

encoding algorithm. Chapter VI introduces several techniques related to decomposition

and FPGA mapping problems. They include graph coloring, variable partitioning and

local transformation. Chapter VII describes the TRADE FPGA mapping program and the

CLB reusing algorithm used in the program, and gives the evaluation of the results.

Finally, Chapter VIII summarizes our work and addresses the future work.

CHAPTER II

XILINX ARCHITECTURE

FPGA combines the high density and the versatility of gate arrays with the time

to-market advantages and off-the-shelf availability of user programmable standard parts.

Xilinx's FPGA architecture [l] has an interior matrix of Configurable Logic Blocks

(CLBs) and a surrounding ring of I/O interface Blocks (IOBs). Interconnect resources

occupy the channels between the rows and columns of CLBs, and between the CLBs and

IOBs. The functions of the CLBs, IOBs and their interconnection are controlled by a

configuration program stored in an on-chip memory. The configuration program is

loaded automatically from an external memory on power-up or on command, or is pro

grammed by a microprocessor as a part of the system initialization. Figure 1 shows the

physical structure of a Xilinx chip.

11.1. CLBS

The core of the FPGA device is a matrix of identical CLBs as shown ~n Figure 2.

Each CLB contains a programmable combinatorial logic section and two storage regis

ters. The combinatorial logic section is capable of implementing any Boolean function

of its input variables. The registers can be loaded from the combinatorial logic or

directly from a CLB input. The register outputs can drive the combinatorial logic

directly via an internal feedback path.

5

II.2. IOBS

The periphery of the FPGA device is made up of user programmable IOBs as

shown in Figure 3. Each block can be programmed independently to be an input, an out

put with 3-state control or a bidirectional pin. Inputs can be programmed to recognize

either TTL or CMOS thresholds. Each IOB also includes flip-flops that can be used to

buffer inputs and outputs.

CLB IOB Interconnection

D D D D D D D
0 D D D D D D D D 0

0
DDDDDD D

0
0 DD DD DD D 0 D D D D D D D
0 DD DD DD DD 0

~DD DD DD DD D~
D D D D D D D D

~DDDDDDDDD~
D D D D D D D D

~DD DD DD DD D~
0 DD DD DD 0 D 0

0
D D D. D D D D D D

0 D D 0 D D D 0 D 0
D DD DD DD D D

0

0 D D D D D D D D 0
0 D D D D D D D 0

CJD CJD CJD DD DD DD DD DCJ

Figure 1. Physical structure of a Xilinx chip [1].

6

II.3. INTERCONNECT

The flexibility of the FPGA devices is due to the programmable resources that con-

trol the interconnection of any two points on the chip. The FPGA interconnection

resources, as is shown in Figure 4, include a two-layer metal network of lines that run

horizontally and vertically in the rows and columns between the CLBs. Programmable

switches connect the inputs and outputs of IOBs and CLBs to nearby metal lines.

Crosspoint switches and interchanges at the intersections of rows and columns can switch

the signal from one path to another. Long lines run the entire length or breadth of the

chip, bypassing interchanges to provide the distribution of critical signals with minimum

delay or skew.

. .. .

DATA IN
d i

~QX Fiii 1- I 1----r- I i-..;.._ x

LOGIC COMBI- I I I I I I L-,= CLB
VARIABLES NA TORIAL OUTPUTS FUNCTION

G II ~y
QY I

D Q

ENABLE : ec RD
CLOCK

"l"(ENABLE)

CLOCK .k

RESET ; rd
DIRECT

"O" (INHIBIT)

(GLOBAL RESET

Figure 2. CLB internal logic [1].

..._,

7

II.4. COMBINATORIAL FUNCTIONS

The combinatorial logic portion of the CLB uses a 32 by 1 lookup-table to imple

ment Boolean function. AK-input (K = 5 for Xilinx architecture) lookup-table is a digi

tal memory with K address lines and a one-bit output. This memory contains 2K

(25 = 32) bits and is capable of implementing any Boolean function of K input variables.

3-STATE : t

(OUTPUT ENABLE)

0

I

PROGRAM-CONTROLLED MEMORY CELLS

OUT
INVERT

3-STATE
INVERT

~1
FLIP
FLOP

R
I ~

OUTPU
SELECT

SLEW
RATE

OUTPUT

BUFFER

vcc

l/OPAD

DIRECTIN ~

REGISTERED IN E • I I D Q

FLIP
FLOP

OR
LATCH
~ R

TILOR
CMOS
INPUT
THRESHOLD

okl I ik_. --~~~---~~~~~~~(GLOBALRESET)

_ _I [JJ-CKI
u lh_CK2
I I U---J
Figure 3. IOB internal logic [l].

8

The combinatorial logic can be configured into one of the three modes (FG, F and FGM

modes).

Interconnect Buffer CLB Switching Matrix

" 111111 Ill - I I 11 II

111111 Ill II I II I D 111111 1 e::- llllllJ L

-J I

~o
-

er
la=- -

D
...---

111111 111 111111 Ill [

I I I I I I 111 --- 11 I 111 I II

Figure 4. Interconnect resources [1].

The FG mode, as is shown in Figure 5, generates two functions of four variables

each. One variable, A, must be common to both functions. The second and the third

variable can be any choice of B, C, Qx and Qy. The fourth variable can be any choice of

DorE.

The F mode, as is shown in Figure 6, generates any function of five variables: A,

D, E and two choices out of B, C, Cb and Qy.

The FGM mode, as is shown in Figure 7, allows variable E to select between two

functions of four variables: Both have common inputs A and D and any choice out of B,

9

C, <b. and Qy for the remaining two variables. This mode might then implement some

functions of six or seven variables. In Figure 7 ~ stands for a multiplexer.

···

c-:

D~
E .

A:
B; QX

c~

D~
E~

ANY FUNCTION

OFUPT04

VARIABLES

ANY FUNCTION

OFUPT04

VARIABLES

F

G :

. . ···

Figure 5. FG mode [l].

···

A F
B ; QX ANY FUNCTION

j OFUPT05

C ~ VARIABLES G

o:
E~~~~~~~~~-,_~~~~~__.

~

Figure 6. F mode [l].

We are concerned only with the F and FG modes in this thesis.

c-------i

o:

c~=-----f

ANY FUNCTION

OFUPT04

VARIABLES

ANY FUNCTION

OFUPT04

VARIABLES

o~·-------~

E~·----------------

F

G

··

Figure 7. FGM mode [1].

10

CHAPTER ill

CURRENT RESEARCH VERSUS OUR APPROACH

Technology mapping is a process of transfonning a technology independent

Boolean network (or function) into a technology-based circuit. For lookup-table based

FPGAs, the technology-based circuit is a network of basic logic blocks. The basic logic

block can implement any Boolean function of up to five input variables. The traditional

library-based technology mapping techniques can not be used because the size of the

library increases exponentially with the number of inputs of the component in the library.

For example, there will be 225 = 42,494,967,295 components in the library if the number

of inputs of each component is five.

III.l. CURRENT RESEARCH ON LOOKUP-TABLE BASED FPGA MAPPING

Several technology mapping approaches for lookup-table based FPGAs have been

reported.

MIS-PGA(new) [2] starts from a tree-like network. First, it applies a variety of

decomposition methods to decompose the input network into a feasible network. The

feasible network is a network in which the number of inputs of each node is limited. For

Xilinx architecture, this input number is up to five. Compared with its predecessor MIS

PGA (3], more decomposition techniques are incorporated. The decomposition methods

that MIS-PGA(new) employs include cube packing which works well for functions with

12

more or less mutually orthogonal cubes. Roth-Karp decomposition is suitable to sym-

metric functions but doesn't work with nondecomposable functions. AND-OR decompo

sition can break an infeasible node into several feasible nodes. The generated feasible

node is either an inverter, a two-input AND or a two-input OR gate. Cofactoring decom

position uses the concept of Shannon expansion to expand the network into a feasible

network, in which all nodes have up to three input variables. decomp -d* partitions the

cubes of the input network into a set of cubes having disjoint variable support, and

creates a node for each partition of cubes and a node which is the OR of all these parti

tions. The resulting subnetworks may not be feasible, and neither are those from the ker

nel extraction decomposition. Other decomposition techniques will be used to make the

network feasible. After decomposition, MIS-PGA(new) uses a maxflow algorithm to gen

erate all possible supernodes and solves the binate covering problem to minimize the car

dinality of the supernode set which covers the entire network. Finally, by solving the

maximum matching problem, it merges all possible nodes into the FG mode CLBs.

Hydra [4] uses an approach similar to MIS-PGA, but puts more attention on the FG

mode CLBs.

Chortle-elf [5] starts from a Directed Acyclic Graph (DAG). It first divides the

DAG into a forest of trees. Then, by using the dynamic programming approach, it carries

out technology mapping on each tree to find the minimum cost circuit. Several tech

niques are used, such as two _level decomposition which uses a bin packing algorithm,

multi-level decomposition, exploiting reconvergent paths and replication of logic at

fanout nodes. These make the C hortle-cif get a significant improvement over its prede-

cessor Chortle [6] in both the quality of solutions and the running time.

*There is no special name for this decomposition in [2].

13

X-map [7] converts Blif format into an if-then-else DAG, which is a network with

the number of inputs of each node less than or equal to three. Then it goes through a

marking and a reduction process to minimize the network. Finally, a simple merging

algorithm is applied to merge all possible nodes into the FG mode CLBs.

VISMAP [8] introduces the concept of invisible edges. The invisible edge is a edge

which doesn't appear in the resulting network after mapping. It starts from a feasible

network (in DAG format), partitions this network into several subgraphs of reasonable

size and goes through a pre-processing and a main processing step to determine the

invisible edges to reduce each subgraph. A merge algorithm is used to merge all possible

nodes into the FG mode CLBs.

The main objective of above FPGA technology mapping approaches is to minim

ize the area. There are several other approaches: MIS-PGA(d) [9], Chortle-d [10] [11]

and DAG-MAP [12] which aim at the delay optimization.

The FPGA mapping approaches mentioned above consist, in general, of four major

steps: graph construction, decomposition, reduction and packing. In the graph construc

tion step, the very first step, a special kind of network-like graph or a set of subgraphs is

created. The graph (or network) can be feasible or infeasible. Several specific FPGA

mapping techniques will be applied to it. In the decomposition step, the most important

step in the mapping process, a variety of decomposition methods are applied to transform

an infeasible network into a feasible one. During the process, the decomposition algo

rithms try to minimize the number of nodes in the decomposed network as well as the

number of input variables per node. In the Reduction step, generally more computation

ally expensive, some covering algorithms are applied in order to find a set of minimum

number of CLBs which can cover the entire network. In the Packing step, according to

14

the specific FPGA architecture, some algorithms are used to merge the possible nodes to

further decrease the area. Most of the operations used in the above four steps are local

operations. The dynamic programming algorithm ensures the local operation to traverse

across the network. The program is recursively invoked until a satisfactory result is

reached.

IIl.2. OUR APPROACH

We developed several FPGA mapping techniques which apply global operations.

We used a special memory storage technique to store ON and OFF sets and applied Cube

calculus to them. Our program accepts incompletely specified functions and performs a

quasi-optimum don't care (DC) outputs assignment. The don't care assignment is to

assign don't care outputs as 0 or 1 to make the function more simple. With respect to the

algorithms used in the program, only ON and OFF sets are stored and the DC set is not

needed to process. (ON set, OFF set, DC set and Cube calculus will be explained in the

next chapter). Our FPGA mapping techniques try to reconstruct the input network in

such a way that:

• the decomposed network is technology feasible (for Xilinx architecture, the

input variables of each node is up to five),

• the number of nodes in the network is as small as possible,

• the connections between the nodes are as simple as possible, and

• the path from the input to output, which is measured by the number of CLB

layers, is as short as possible.

15

This approach generates circuits which fit better to Xilinx technology and have less

CLBs, less connections and less layers. Thus the circuit is faster and easier to place and

route.

The presented methods have the following assets:

• The input data to the program is an incompletely specified Boolean function

described by the sets of ON and OFF cubes. It is the property of this method that the

more DC cubes exist, the more efficient the method becomes. This makes our

approach particularly powerful for strongly unspecified Boolean functions.

• The decomposition methods are specifically adapted to the lookup-table based FPGA

architecture.

• A fast variable partitioning method is used to quickly find the good quality partitions

for decomposition, avoiding the thorough test of all possible decomposition charts.

• In order to simplify the decomposed blocks, the column multiplicity minimization

and the quasi-optimum don't care assignment are performed, they are achieved

through a fast graph coloring algorithm. A bond set encoding algorithm is used to

further simplify the decomposed blocks.

• A local transformation method is used to make the decomposition possible for all

Boolean functions.

• A CLB reusing algorithm is used to decrease the number of CLB s used. in the final

mapped circuit.

CHAPTER IV

BASIC DEFINITIONS

Suppose that one intends to decompose an incompletely specified function consist

ing of twenty-five inputs and twenty outputs into several smaller logic blocks. This func-

tion is given in Espresso format as follows:

.i 25

.o 20

.ilb i1 i2 i3 i4 i5 i6 i7 i8 i9 ilO ill il2 i13 i14 i15
i16 il 7 i18 i19 i20 i21 i22 i23 i24 i25

.ob ol o2 o3 o4 o5 06 o7 08 o9 olO ol 1012013 014 015
016 017 018 019 020

.type fr

10-01-010101-01-01010-10-
1-11-111-1--1100000-0l-1-
00000001-01010101-11-0110

00100101010101010-------1

.end

10-10010-1010-01-10-
01-01-00101010-----1
01-0-1-010101-1101-0

1-110101001---010101

Espresso format is a two-level description of the Boolean function. It is a charac

ter matrix with keywords embedded in the input to specify the size of the matrix and the

logical format of the input function. In the above file:

.i 25 Specifies the number of input variables (25) .

. o 20 Specifies the number of output functions (20).

17

.ilb i1 i2 i25

Gives the name of input variables. i1 is the name of the input variable

corresponding to the first column of the input cube array (left matrix of the

above file), i2 to the second column, and so forth .

. ob ol o2 020

Gives the name of output functions. o 1 is the name of the output function

corresponding to the first column of the output array (right matrix of the above

file), o2 to the second column, and so forth .

. type fr Sets the logical interpretation of the character matrix of output array. fr

specifies that: A 1 in the output array means that the corresponding cube in the

input cube array belongs to the ON set. A 0 in the output array means that the

corresponding cube in the input cube array belongs to the OFF set. The rest (

' s in the output array) means that the corresponding cube in the input cube

array belongs to the DC set.

.end Marks the end of the input logic.

With respect to the algorithms used in the program, DC cubes are not needed to

store at all in the program when the respective output function is minimized. This

decreas~s the memory demand and becomes more efficient when there exist many DC

cubes in the input function.

How do we deal with such a decomposition problem? By now there are very few

of CAE tools for the general Boolean decompositions [13] [14] [15] [16]. In most of the

existing systems, during the process of constructing the Truth-Tables (or Boolean equa- ·

tions) from the practical problems, DC outputs are mistreated as O's (or 1 's) because of

18

the lack of the tools that can handle DC outputs. This happens anywhere, and leads to

the results which are far from the optimum ones. Let's first give the fundamental

definitions.

Definition 1. Cube

A Cube is a compact expression of a set of minterms. For example, minterms

11010 and 11000 can be expressed as a cube 110-0. "-"means it takes the value of both 0

and 1.

Definition 2. ON Cube

If the output of a cube is 1, it is called the ON cube.

Definition 3. OFF Cube

If the output of a cube is 0, it is called the OFF cube.

Definition 4. DC Cube

If the output of a cube is - (don't care. It can be either 0 or 1), it is called the DC

cube.

Definition 5. ON Set

The ON set is the collection of all ON cubes.

Definition 6. OFF Set

The OFF set is the collection of all OFF cubes.

Definition 7. DC Set

The DC set is the collection of all DC cubes.

19

Cube, ON cube, OFF cube, DC cube, ON set, OFF set and DC set are showed in

Figure 8.

Cube
J,

CN cube ~ 10110-
Drrn 1--000 set

111010

OFF cube ~ 0-1001 n rOFF set 01101-
0-1001

oc cube ~ 01010-
: } rOC 0100-1 set

--0101

Figure 8. Cubes and cube sets.

Definition 8. Cube Calculus

The Cube calculus is a set of operations applied to cubes. The Intersection (•)

operation is used in our program. Figure 9 shows the rules of Intersection operation.

The E is the result of the Intersection of 0 with 1 or 1 with 0. x has the same meaning as

• 0 1 x

0 0 E 0

1 E 1 1

x 0 1 x

Figure 9. Intersection operation.

20

From Figure 9, the rules are: 0•0=0,0•1 = E, 0 • x = 0, 1 • 0 = E, 1•1 = 1, 1 • x

= 1, x • 0 = 0, x • 1 = 1, and x • x = x. For example,

1010xx
lOOxlx

lOeOlx

Definition 9. Decomposition

The decomposition means to decompose a large block of logic, which is difficult to

analyze and implement, into several relatively smaller blocks which are easier to imple-

ment.

Figure 10 shows a general diagram of decomposition. Boolean decomposition

uses Boolean representation. In some cases, decomposition is a must. For instance,

some kinds of decompositions must be done in order to get a feasible network. We are

not aware of any efficient tools for the general Boolean decomposition of the incom-

pletely specified functions.

Decomposition i

Figure 10. Decomposition.

21

Unfortunately, not every function is decomposable. How can we test whether a

function is decomposable or not? If it is, how can we decompose it? If not, how can we

make it decomposable? These questions will be answered in this thesis.

Definition 10. Decomposition Chart

The decomposition chart [17] (18] is a chart that is similar to the Karnaugh map

with the only difference being that the column and row indexes of the decomposition

chart are in the straight binary order, while that of the Karnaugh map are in the Gray

code order.

Figure 11 (b) shows an example of a decomposition chart. The corresponding Kar

naugh map is shown in Figure ll(a). The column of the chart is denoted as a vector of

its successive min terms. For example, column 1 in Figure 11 (b) is denoted as a vector [

1, 1, 0, 1]. Because there is no essential difference between the Karnaugh map and the

decomposition chart, The Karnaugh map will be used instead of decomposition chart for

illustration later in this thesis.

Definition 11. Bond Set

The bond set is a set of variables forming the columns of the decomposition chart.

In Figure l l(b), { c, d, e } is a bond set.

Definition 12. Free Set

The free set is a set of variables forming the rows of the decomposition chart. In

Figure 11 (b), { a, b } is a free set.

Definition 13. Column Multiplicity

The column multiplicity, denoted by u(BIA), is the number of different columns in

a decomposition chart. In u(BIA), B stands for the free set, A stands for the bond set.

For example, in Figure ll{b), B = { a, b }, A= { c, d, e } and u(BIA) = u(ablcde) = 3.

cde

ab

x 1 1 0 1 0 0 1

x 1 x 1 x x 1 1

x 1 x x x x x 0

x 0 0 1 0 1 1 0
f

Column O 1 3 2 6 7 5 4
(a)

cde

' ab
'

x 1
x 1

x 0

x 1

0 1

1 x

1 0
x x

1 0 1 0

1 1 x x

0 1 0 1

0 x x x
f

Column O 1 2 3 4 5 6 7

(b)

Figure 11. Karnaugh map and decomposition chart

Definition 14. Compatible and Incompatible

22

If the two horizontally corresponding cells in two columns of the decomposition

chart are (0,0), (1,1), (0,x), (l,x), (x,O), (x,l) or {x,x), these two cells are called compati-

ble. If all the corresponding cells in two columns are compatible, these two columns are

called compatible. Otherwise, incompatible.

In Figure 1 l(b) columns 1 ([1, 1, 0, 1]) and 6 ([l, x, 0, x]) are compatible, while

columns 5 ([0, 1, 1, x]) and 6 ([l, x, 0, x]) are incompatible. In the program, we use

Cube calculus to test whether two columns are compatible or not. The formula [19] to

test the compatibility of two columns (columns i and j) is:

ON(i) • OFFG) = <I> }

& ==> i-th and j-th column are compatible
ON(j) • OFF(i) = <I>

The <I> stands for empty set. The formula states that if the Intersection of the ON set of

column i and the OFF set of column j is empty, and the Intersection of the ON set of

column j and the OFF set of column i is empty as well, these two columns are

23

compatible. Otherwise, they are incompatible.

Definition 15. Incompatibility Graph

The incompatibility graph is a graph which illustrates the relationship among

columns of the decomposition chart. Each node in the incompatibility graph corresponds

to a column in the decomposition chart. If two columns are incompatible, there is an

edge between the corresponding nodes. If they are compatible, there is no edge. Figure

12 shows a incompatibility graph corresponding to the decomposition chart in Figure

1 l(b).

Figure 12. Example of an incompatibility graph.

In Figure 12, the number in each node (denoted by a circle) is the column number.

The letter beside the circle is the color assigned to the node (column) after graph color

ing. Graph coloring will be discussed in Chapter VI.

CHAPTER V

HOW TO PERFORM DECOMPOSITIONS?

In this chapter, the generalized Boolean decomposition of incompletely specified

functions, and the bond set encoding algorithm are presented. The basic ideas follow

(17] (18] [20] [21] and the general approach based on graph coloring is patterned after

[19] [22].

V.1. DECOMPOSITION OF THE INCOMPLETELY SPECIFIED FUNCTIONS

Curtis has described the decomposition of completely specified functions in (18]

[20]. Curtis proved the fundamental theorem:

u(BIA) ~2k

<=>

f (A, B) = F[$i (A), $1 (A), · · · , $k (A), B]

It states that if the column multiplicity u(BIA) (under the partition of the bond set A and

free set B) is less than 2k, then the function f(A, B) can be decomposed into the form:

f(A, B) = F[$i (A), $1 (A), · · · , $k (A), B]

The graph representation of this theorem is shown in Figure 13. From Figure 13

we observe that, after decomposition, the big block f is broken into several smaller sub-

25

blocks cf>1, cf>2, ... , cf>k and F. If we restrict the variable number in the bond set A to be less

than or equal to five, cf>1, cf>2, ... , cf>k can be implemented by CLBs of the Xilinx chip. If

we further decompose subblock F until the input variables of each subblocks are less than

or equal to five, the function f would be realized by the Xilinx chip. This is shown in

Figure 14.

The generalization of the Ashenhurst decomposition for incompletely specified

functions based on proper graph coloring was presented in [19]. Perkowski first used

graph coloring to minimize the column multiplicity, then used multiplexers to realize the

circuit.

The essential problem of the decomposition of incompletely specified function is

how to assign DC outputs as 0 or 1 to minimize the column multiplicity. Because the

number of colors in a properly colored incompatibility graph is the same as the number

of different columns (column multiplicity) in a decomposition chart [19], we can transfer

A{
B{

A{
f(A, B) "\\ A {

f ~ u(B I A) ~ 2k "

A{
B{~~

Figure 13. Curtis decomposition.

F[cf>1, .•• , cf>k, B]
F

= f(A, B)

~

A{
B{

f

IAl~5

ICl~5

A{
f(A, B) \., A {

A{
B{ __

c{
c{

c{
o{---=--i~

F

G

26

F[<1>1, ... , <1>k, B]

= f(A, B)

G[T\1, ..• , T\k, D]

f

Figure 14. Application of the Curtis decomposition to FPGA mapping.

the problem of finding the smallest column multiplicity into the one of performing the

proper graph coloring to find the smallest number of colors. We use the following cri-

terion:

Set a expected number (n) of output variables from the bond set, n is less than the

number of variables in the bond set. If the column multiplicity is equal to or less

27

than 2k, and k is less than or equal to n, the decomposition is successful (or the func-

tion is decomposable) for this bond set under this expected value of n. Otherwise,

the function is nondecomposable for this bond set under this expected value of n.

After a successful decomposition, the number of input variables of each subfunc-

tion (decomposed blocks, like <!> 1, <!>2, ••• , <l>k and F in Figure 13) is decreased, and the

complexity of each subfunction is decreased as well. This will be illustrated with an

example. Figure 15(a) is the Karnaugh map of function f with don't care outputs. We

intend to decompose the function f into several subfunctions (may be L, M and N as

shown in Figure 15(c)) with the input variables of each subfunction less than or equal to

four.

cde

ab

x 1 1 0 1 0 0 1
x 1 x 1 x x 1 1

x 1 x x x x x 0

x 0 0 1 0 1 1 0
f

Column O 1 3 2 6 7 5 4
(a)

cde

' ab ...

x

x

I X

x

1

1

0

1

0 1 1 0

1 x 1 1

1 0 0 1
x x 0 x

Column O 1 2 3 4 5

(b)

a------
b------- f
c d-yQ-:1
e

1 0

x x

0 1

x x
f

6 7

Figure 15. Karnaugh map, decomposition chart and the expected decomposition.

28

According to the rules presented above, the incompatibility graph is created as

shown in Figure 16. After graph coloring, three colors (which means u = 3) which group

nodes as A = { 0, 1, 3, 6}, B = { 2, 5, 7} and C = { 4} are obtained. The columns with the

same color are combined horizontally by the rules: (0, 0) ~ 0, (0, x) ~ 0, (x, 0) ~ 0, (1,

1) ~ 1, (1, x) ~ 1, (x, 1) ~ 1 and (x, x) ~ x. For example, columns 0, 1, 3 and 6 in

Figure 15(a) are combined and replaced by a new vector [1, 1, 1, 0] as shown in the

final don't care assignment in Figure 17.

Figure 16. Incompatibility graph.

cde

ab
"

1 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1

1 1 1 x 1 x x 0

I 0 0 0 1 0 1 1 0
f

Column O 1 3 2 6 7 5 4
Color A A A B A B B C

Figure 17. Final don't care assignment.

29

In the above example, we have chosen the variables a and b as the free set and

variables c, d and e as the bond set. This partition results in a successful decomposition in

sense of the column multiplicity less than or equal to three. How to chose the partition

will be discussed in Chapter VI. In Figure 15(c), x and y are the encoded outputs of the

bond set, two variables are enough for three different columns (3 $; 22 = 4).

V.2. BOND SET ENCODING

There are many methods [23] [24] to implement the decomposed blocks (blocks L,

Mand Nin Figure 15(c)). Here the author introduces an algorithm to encode the bond

set. This algorithm aims at simplifying the block N. Block L and M will be imple

mented by CLBs. It doesn't matter then how complex these two blocks are as long as the

number of their input variables are less than or equal to four (we assume that the CLBs

have up to four inputs for this example). The encoding algorithm assigns adjacent codes

(Gray code) to the similar columns. This increases the number of large cubes in the

block N. The similarity between two columns is measured by the so-called Similarity

Factor. The more similar the two columns, the lower the value of the Similarity Factor.

The Similarity Factor is the number of minterms which cause the two columns not ident

ical. The Similarity Factor between the i-th and j-th columns is:

Similarity Factor = minterm(ON(i) • OFFG)) + minterm(OFF(i) •ONG))

In equation, "mintermO" calculates the number of minterms. "ON(i) • OFFG)'' is the

Intersection of array of ON cubes of i-th column with array of OFF cubes of j-th column.

"OFF(i) • ON(j)" is the Intersection of array of OFF cubes of i-th column with array of

ON cubes of j-th column.

30

In this example, bond set { c, d, e} forms eight columns as shown in Figure 15(a).

After graph coloring, it is found that there are only three different columns out of these

eight columns. These three columns are with the vector p, 1, 1, O] corresponding to

color A, [~corresponding to color B and ~]~ding to color C as

shown in Fig~e 17. We introduce two new variables .f and y to encode the bond set { c,

d, e}. First calculate the Similarity Factors. The Similarity Factor between columns

corresponding to color A and B has a value of 2. The value of the Similarity Factor

between columns corresponding to color A and C is 1. And the value of the Similarity

Factor between columns corresponding to color B and C is 2. A Similarity Factors Table

is created as shown in Figure 18.

B C

A-B A-C
A

2 1

B-C
B

2

Figure 18. Similarity Factor Table.

Because the Similarity Factor between columns corresponding to color A and C is

smaller (with a value of 1), these two columns are put in adjacent position as shown in

Figure 19(c). Code the column corresponding to color C as(oo:' the column correspond-
~('(11 I/-,

ing to color A as~~1; the column corresponding to color B. ~ '1 \ ~s /~own in Figure

19(c), which is the Karriaugh map of the block N. Color A has the cod@ this means

that x is equal to 0 and y is equal to 1 for all columns with the color A. These columns

are 000, 001, 011 and 110 in Figure 17, therefore the cells 000, 001, 011 and 110 of the

Karnaugh map in Figure 19(a), which is the Karnaugh map of the block L, are filled with

31

0 because xis equal to 0. The same cells in Figure 19(b), which is the Karnaugh map of

the block M, are filled with 1 because y is equal to 1. The same way, color B has the

code 11, this means that both x and y are equal to 1. Columns 010, 111, and 101

correspond to color B, therefore the cells 010, 111 and 101 of the Karnaugh maps in both

Figure 19(a) and (b) are filled with 1. Color Chas the code 00, both x and y are equal to

0, column 100 correspond to color C, the cell 100 of the Karna ugh maps in both Figure

19(a) and (b) are filled with 0.

de
c " 00 01 11 10

0 l 0 I 0 I 0 !CD
1 I 0 0 ___ ___...____..____..... x

(a) Block L

I I I =:=t=: I f
Color C A B

(c) Block N

y

(b) Block M

.____.__......___....____. f
Color A B C

(d) Block N

Figure 19. Decomposed Karnaugh maps.

Two variables can encode up to four columns (22 = 4). There are only three

columns, corresponding to color A, B and C, that need to be encoded in our example.

We fill the remaining column (column 10 in Figure 19(c)) with don't cares (DC column).

The existence of this newly introduced DC column will further simplify the block N.

This example illustrated that even the input function is completely specified, our algo-

32

rithm may introduce DCs in the middle of the process, which are very useful for the

simplification of the later stages.

Figure 19(d) shows a Karnaugh map of an alternative implementation for the func

tion f. Which uses the natural order of the colors. Clearly, the Karnaugh map in Figure

19(c) is more simple than that in Figure 19(d). The pseudo-code for bond set encoding is

shown in Figure 20. The Blif format of the result is as follows:

.model example

.inputs a b c d e

.outputs f

.names cdex
1-1 1
010 1

.names c de y
0- - 1
- - 1 1
-1- 1

.names a b x y f
0-0- 1
-1-1 1
1-1- 1

.end

Blif format is a multi-level description of the Boolean network. Each node in this

representation has a single output. Therefore, each net (or signal) has only a single

driver, and one can therefore name either the signal or the gate which drives the signal

without ambiguity .

. model example Specifies the name of the model (example) .

.inputs ab c de Gives the name of the input variables (a, b, c, d, e) .

. outputs f Gives the name of the output function (f).

.names c de x

.names c de x

33

With the following ON set describes the logic of a node (subblock L

in Figure 15(c)). The input variables to this node are c, d, e, and the

output variable is x.

With the following ON set describes the logic of a node (subblock M

in Figure 15(c)). The input variables to this node are c, d, e, and the

output variable is y .

. names a b x y f With the following ON set describes the logic of a node (subblock N

in Figure 15(c)). The input variables to this node are a, b, x, y, and

the output variable is f .

. end Marks the end of this model.

bond set encoding()
{ - -

}

create Similarity Factor Table;
sort Similarity Factor Table in increasing order;

l_c =one column of the column pair at position 0 of the queue;
mark l c as used;
r - c = another column of the column pair at position 0 of the queue;
mark r c as used;
put l_c-and r _c in line; !* l_c at left, r _cat right *!
c_n = 2;

while (c n < column multiplicity)

{ fi -(.
1

. ~olumn multiplicity*(column multiplicity - 1) .)

}

or z = · z < · z++ ' 2 '
{

}

if ((c _i = one of the pair at position i) = = l _ c)
{

mark c i as used;
put c rat the left of I c;
l_c =-c_i; -
c n++;
break;

} else if ((c_i =one of the pair at position i) == r _c)
{

mark c i as used;
put c i-at the right of r c;
r_c~c_i; -
c n++;
break;

}

Figure 20. Pseudo-code of bond set encoding.

34

CHAPTER VI

THREE BASIC SPEEDUP APPROACHES

There are three fundamental problems in the efficient implementation of the FPGA

mapping program which is based on the Boolean decomposition of incompletely

specified function:

• How to chose the bond set to minimize the column multiplicity?

• How to minimize the column multiplicity for a given bond set and

• how to transform a nondecomposable function into a decomposable one?

These questions will be discussed in this chapter.

VI. l. GRAPH COLORING

We have reduced the problem of finding the smallest column multiplicity to the

one of performing proper graph coloring with the minimum number of colors. Graph

coloring [25] [26] [27] [28]. is one in which every two nodes linked by an edge are

assigned different colors. Minimum graph coloring is one with the minimum number of

colors.

Graph coloring is an NP-hard problem. There has been a substantial research on it

in order to find the algorithms for a quasi-optimum solution with the fastest possible

speed. The author presents here a fast graph coloring method. This method has been

36

programmed and tested on many examples, it resulted in excellent colorings. The

method found exact colorings for graphs in [25], and even found better coloring than that

that was claimed to be minimal in the book. We call our method the "Color Influence

Method".

The main idea of this method is to evaluate the influence of the color assignment to

a node over the entire graph, and chose the color which results in a minimum influence.

The minimum influence means that the color assignment to a node will produce a

minimum increase of color-in-bar's. The color-in-bar's (restrictions) are the colors that

the node cannot be assigned with, which are denoted by A, B. .. , AB,AC, ... as in Figure

21. After each color assignment to a node, the complexity of the graph is decreased.

This is a greedy method with global evaluation. The next example is used to illustrate

this method.

Figure 2l(a) shows a graph that need to be colored. Start from the node with the

most number of edges, that is node 2, assign color A to it. This color assignment results

in that nodes 1, 3, 5 and 6 cannot be assigned with color A, denote this restriction on

those nodes by color-in-bar A's, and remove all corresponding edges as shown in Figure

21(b). Then, color the node with the most number of color-in-bar's. If there are more

than one node with the same number of color-in-bar's, chose the node with the most

number of edges. If there are still more than one node, evaluate the influence of each

color assignment, and assign the node with a color which results in a minimum influence.

If a node can be assigned with more than one color, the evaluation of the influence of

each color assignment is also required. According to the rules stated above, nodes 5 and

6 are selected because they have the same number of color-in-bar's and the same number

of edges. Assigning color B to node 6 will result in a restriction AB on node 1 and a res-

triction AB on node 5. While assigning color B to node 5 will result in a restriction AB

37

on node 6 and a restriction B on node 4. Because one AB restriction and one B restric-

tion result in less influence than two AB restrictions, assigning a color to node 5 produces

less influence than assigning a color to node 6. Node 5 is selected, give it color B as

shown in Figure 2l(c). The same way, assign color C to node 6 as shown in Figure

2l(d), color B to node 1 as shown in Figure 2l(e). Nodes 3 and 4 are in the same condi

tion, and have the same influence to the graph. If node 3 is assigned with color B, node 4

can be assigned with color A or C. The final color assignment is shown in Figure 2l(f).

A~A AG)-G)AB

AG) Cf A AG) G) B

AG)-Q AG)-QB

(a) (b) (c)

ACG) G) c BG) G)c BG) G)c

AG) G) B AG) G)B AG) G) B

AG)-Qi3 AG)-QB BG) QA

(d) (e) (f)

Figure 21. Graph coloring using Color Influence Method.

The above algorithm was incorporated into a program, named COLOR, and was

run on a networked SUN 4/670MP Workstation. The results are listed in Table I. The

program was tested on graphs with different number of nodes (N = 100 ~ 1000) and

~

38

different edge percentages (P = 10% ~ 90%). The maximum number of edges in a

graph is N(N - _l), N is the number of nodes in the graph. The edge percentage (P) is
2

simply the percentage of this maximum number of edges. Edges in the graph are ran-

domly generated.

TABLE I

TIME (T) VS. NODE NUMBER (N) AND EDGE PERCENTAGE (P)

N~
100 200 300 400 500 600 700 800 900 1000 J,p

T 0.3 1.9 5.2 10.4 18.6 28.6 42.9 59.9 81.8 107.9
10%

c 6 9 12 14 16 19 21 23 25 28

T 0.5 3.0 8.0 16.9 29.2 45.5 68.2 97.2 132.3 170.4
20%

c 9 15 19 22 28 32 36 41 44 48

T 0.7 4.0 10.7 22.1 39.2 62.9 93.6 133.7 181.4 238.1
30%

c 12 20 26 34 39 45 51 58 63 69

T 0.9 4.9 14.5 28.4 51.0 80.7 123.8 174.7 232.1 300.5
40%

c 16 24 36 44 52 61 70 76 84 91

T 1.1 6.1 16.6 35.6 62.1 100.6 154.4 213.1 294.5 393.5
50%

c 20 33 44 56 67 77 88 97 108 117

T 1.3 7.5 20.9 43.4 78.8 122.9 186.5 268.0 368.8 480.6
60%

c 23 37 52 68 81 94 107 120 135 147

T 1.5 9.0 25.0 52.2 93.9 148.9 222.1 322.5 441.8 579.0
70%

c 27 47 67 84 104 118 136 154 164 186

T 1.9 11.2 31.3 66.9 116.4 194.8 295.3 413.5 558.0 748.5
80%

c 34 61 85 104 129 149 172 194 212 231

T 2.4 14.7 42.8 86.0 164.3 262.7 389.1 561.3 766.2 1003.2
90%

c 45 79 111 136 169 198 230 255 279 306

39

In Table I, N is the number of nodes in the graph. P is the edge percentage. T is

the running time of the program which is measured by time command of UNIX system.

The unit of T is second. C is the number of colors after graph coloring. Figure 22 shows

a graphical representation of this table.

T

lOOOt
Ip= 90%

900 T oc N2.5

800
I I

P=80%
I I I

700

600t

500

I I ;P=10%

P=60%

400~
300 //&::::

P=30%
200~ / / / / / / _.,,/ P=20%

lOOt I

I

p~:%
0 100 200 300 400 500 600 700 800 900 1000 N

Figure 22. Time vs. node Number and edge Percentage.

40

By statistic analysis, it is found that the time (T) is proportional to the number of

nodes (N) in a polynomial form T oc N2·5 . So, we solve the graph coloring problem in

polynomial time (not in exponential time). For small graphs, we are able to verify that

the algorithm gives the minimum solutions. Therefore we hope that it gives good results

for larger graphs as well. But we are not able to verify this claim since we couldn't

access an exact minimal optimizer. The pseudo-code for graph coloring is shown in Fig-

ure 23.

graph_ coloring()
{

}

sort nodes in decreasing order by the number of edges;

color first node;
remove it;
mark restrictions;
remove edges;

while ((cib _set = largest_ number_ color _in_ bar(node_ queue)) I= empty)
{

}

e _set = largest_ number_ edge(cib _set);

if (I e set I > 1)
]_ n = minimum influence(e set); - - -

else
f_n = e_set;

color f n;
remove/ n;
mark restrictions;
remove edges;

Figure 23. Pseudo-code of graph coloring.

41

VI.2. VARIABLE PARTITIONING

Variable partitioning is the separation of the input variables into two sets, the bond

set and the free set. Each partition corresponds to an individual decomposition chart

which is going to be used to calculate the column multiplicity. In order to find the

decomposition that corresponds to the smallest column multiplicity, one needs to go

through all possible decomposition charts. If there are total m input variables and n vari-

ables in the bond set, the number of all possible partitions is (~). For example, if m = 64

and n = 5, then <65
4) = 7,624,512. If the time required to calculate the column multipli

city of a decomposition chart is 0.01 second, one would need more than 20 hours to com

plete all calculations. This 20 hours will be repeated thousands of times to get the FPGA

mapping done. Therefore, it is impractical to try all possible partitions to find the best

one.

Here the author presents a method called the Pair Weighting Method to quickly

find the "best" partitions. This heuristic method will produce as many as four "best" par

titions which are to be used for decomposition.

The basic idea of this method is to arrange cubes (minterms) in the Karnaugh map

in such a way that they become more concentrated in either certain columns or rows, like

the arrangements in Figure 24(a) and (b), but not like that in Figure 24(c).

For a given function, the number of minterms is fixed, the number of cubes after

minimization is fixed as well. There are six minterms in Figure 24(a). Under that parti

tion, the min terms are concentrated in two columns. In Figure 24(b) it is the same func

tion. Under that partition, the min terms are concentrated in two rows. In Figure 24(c) it

is the same function again, but the minterms are diverged across the Karnaugh map.

42

Clearly, the column multiplicities under the partitions shown in Figure 24(a) and (b) are

less than that in Figure 24(c).

0 0 0 0 0
0 0
0 0 0 0 0

f f

(a) (b)

0 0
0 0

0
0 f

(c)

Figure 24. Cube arrangements.

How can we put more cubes in some certain columns or rows? We first analyze

the relative positions between two cubes in the Kamaugh map. There are four possible

relative positions between two cubes as shown in Figure 25. The rectangles stand for

cubes.

The shaded areas from both cubes are the possible parts that can be put into the

same columns or rows in the Karnaugh map. The question then arises, under what parti

tion do the shaded areas from both cubes reside in the same columns or rows? The next

example is used to show how to find that partition. The ON set of function f in Figure 26

is:

abed
cubel O-O-
cube2 1110

The remaining cubes belong to the OFF set.

D
-- :·:~~::·:::·:~~::r~:~~~:~::;~: :>:>::.--::.·1 r:.::~:~:~:~::::~~:·

noe onee more than one e all e's

(a) (b) (c) (d)

Figure 25. Relative positions between two cubes.

cd
ab~
ool~ ... 1 1 cubel

111 I I l<DI~ cube2

10
f

Figure 26. Karnaugh map of function f.

43

D

The column multiplicity is three under this partition (ablcd, bond set { c, d}, free

set {a, b}). The Intersection of the two cubes results in the "Intersection Cube" cubeO.

44

abed
cubel O-O-
cube2 1110

cubeO £1£0

Because there are two £' s, these two cubes have the relative position as shown in

Figure 25(c). The comparisons of the cubeO with cubel and the cubeO with cube2 result

in the Partition Cubes Cl and C2, respectively:

cubeO
cubel

Cl

abed
£1£0
0-0-

NNNN

cubeO
cube2

C2

abed
£1£0
1110

NYNY

The Partition Cube is formed as follows:

If the corresponding bits of the two cubes are the same, there is a Y in the Partition

Cube. Otherwise N.

Next, according to the Partition Cubes form the partitions which try to put as many

shaded areas from both cubes into the same columns or rows as possible. We ignore the

Partition Cubes if they have the value of all Y's or all N's because they have nonsense.

Therefore, Cl is ignored. Group variables corresponding to Yin C2 into a group, group

{b, d}, forming a partition aclbd. Under this partition, part of cubel and part of cube2

reside in column 10 (b = 1, d = 0) of the Karnaugh map. These are minterms 0010 and

1110 as shaded in Figure 27(a). This is just what we want that both cubes have a part in

one column. Group variables corresponding to N in C2 into a group, group {a, c}, form

ing another partition bdlac. Under this partition, part of cubel and part of cube2 reside in

row 10 (b = 1, d = 0) of the Karnaugh map. They are minterms 1000 and 1011 (shaded

as well) in Figure 27 (b). Again, this is what we want that both cubes have a part in one

row.

45

ac 00 01 11 10
~
1

If-
01

f If
(a) (b)

Figure 27. Kamaugh maps for the 'best' partitions.

Clearly, the bond set { b, d} is a better partition which produces a column multipli

city of two, while bond set {a, c} results in a column multiplicity of three. In summary,

we first calculate all Partition Cubes for each pair of variables. Each Partition Cube will

form a partition. We count the appearance number of each pair and according to this

number form the final partitions.

Next is a more complex example used to show the detailed procedure of variable

partitioning. Figure 28 shows the Karnaugh map of function f with the column multipli

city u(ablcde) of five. Its Espresso format input file is as follows:

.I 5

.o 1

.ilb ab c de

.ob f

.type fr

00-01 1
-0101 1
01-11 1
-1111 1
----0 0
1-0-- 0
-0-1- 0
-1-0- 0

.end

46

cde
ab

'
0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0
I 0 0 0 0 0 0 1 0

f

Figure 28. Variable partitioning example.

(1) Calculate the Intersection Cubes. For ON set, they are:

00-01 00-01 00-01 -0101 -0101 01-11
-0101 01-11 -1111 01-11 -1111 -1111
----- ----- ----- ----- ----- -----
00101 Oe-el Oelel Oelel -elel 01111

For OFF set, they are:

----0 ----0 ----0 1-0-- 1-0-- -0-1-
1-0-- -0-1- -1-0- -0-1- -1-0- -1-0-
----- ----- ----- ----- ----- -----
1-0-0 -0-10 -1-00 1001- 1100- -E-E-

(2) Calculate the Partition Cubes. For ON set, they are:

00101 00101 Oe-el Oe-el Oelel Oelel
00-01 -0101 00-01 01-11 00-01 -1111
----- ----- ----- ----- ----- -----
YYNYY NYYYY YNYNY YNYNY YNNNY NNYNY

Oelel Oelel -elel -elel 01111 01111
-0101 01-11 -0101 -1111 01-11 -1111
----- ----- ----- ----- ----- -----
NNYNY YNNNY YNYNY YNYNY YYNYY NYYYY

For OFF set, they are:

1-0-0 1-0-0 -0-10 -0-10 -1-00 -1-00
----0 1-0-- ----0 -0-1- ----0 -1-0-
----- ----- ----- ----- ----- -----
NYNYY YYYYN YNYNY YYYYN YNYNY YYYYN

47

1001- 1001- 1100- 1100- -E-E- -E-E-
1-0- - -0-1- 1-0-- -1-0- -0-1- -1-0-
----- ----- ----- ----- ----- -----
YNYNY NYNYY YNYNY NYNYY YNYNY YNYNY

(3) Calculate the Relationship Factors. Create four triangle tables as shown in Figure 29,

call them ON-Y Table, ON-N Table, OFF-Y Table and OFF-N Table. Initiate all their

cells to zero. The value in each cell represents a weighted Relationship Factor between

the variables corresponding to the row and column labels of the table. Later on, we will

sort the Relationship Factor Table. In order to keep the correct correspondence between

the value and the variable pair it represents, we attach two more storage units to each cell

to store the two variables that the Relationship Factor corresponds to. So the Relation

ship Factor Table is, in fact, ·a 3-tuple list. For example, the ON-Y Table in Figure 29 is

a list: {(a, b, 2), (a, c, 4), (a, d, 2), (a, e, 8), (b, c, 2), (b, d, 4), (b, e, 4), (c, d, 2), (c, e, 8),

(d, e, 4)}. Weight the Partition Cubes obtained in the second step in the following way:

Group variables corresponding to Y's in the Partition Cube. Select a pair of vari

ables in the group and increase the value of the corresponding cell of the ON-Y

Tables by 1. Group variables corresponding to N's in the Partition Cube, select a

pair of variables in the group and increase the value of the corresponding cell of the

ON-N Tables by 1. Execute the calculations for all pairs in the group. Perform the

same operations for the OFF-Y and OFF-N Tables. The formula of Relationship

Factor is:

Relationship Factor = L ((pair between variables i and j) ? 1 : 0)

The summation is over all Partition Cubes and all pairs of variables in the Partition

Cubes. "(pair between variables i and j)? 1 : O" in the equation means that if vari

ables i and j are a pair, take the value 1. Otherwise 0.

For example, if a Partition Cube Cl from the ON set is

abcdefg
Cl = YNYNNYY

48

the cells a-c, a-f, a-g, c-f, c-g andf-g of the ON-Y Table and the cells b-d, b-e and

d-e of the ON-N Table will be increased by 1.

According to above rules, we fill the ON-Y, ON-N, OFF-Y and OFF-N Tables as

shown in Figure 29.

b c d e b c d e

a a-b a-c a-d a-e a a-b a-c a-d a-e

2 4 2 8 2 0 2 0

b b-c b-d b-e b b-c b-d b-e

2 4 4 2 8 0

c c-d c-e c c-d c-e

2 8 2 0

d-e d-e
d

4 ON-YTable
d

ON-NTable 0

b c d e b c d e

a a-b a-c a-d a-e a a-b a-c a-d a-e

3 9 3 6 0 4 0 0

b b-c b-d b-e b b-c b-d b-e

3 6 3 0 5 0

c c-d c-e c c-d c-e

3 6 0 0
d-e d-e

d d
OFF-YTable 3 OFF-NTable 0

Figure 29. ON-Y, ON-N, OFF-Y and OFF-N Tables.

49

(4) Form the "best" partitions. Sort Relationship Factor Table in decreasing order by the

value of the Relationship Factors. Collect variable pairs with larger values in the ON-Y

Table until the required number of variables for the bond set is reached. Both cells a-e

and c-e have the values of 8, so select these two pairs and form the bond set {a, c, e }.

For the ON-N Table, cell b-d has the largest value of 8. All the rest are with the same

value of 2. Cell a-b has the value of 2 and it shares the common variable b with set {b,

d}, so chose a, b and d as bond set {a, b, d}. Perform the same operations for the OFF-Y

and OFF-N Tables to obtain another two bond sets {a, c, e} and {b, d, e}. The Karnaugh

maps under these four partitions are shown in Figure 30. In fact, we have only three Kar

naugh maps because there are only three different partitions out of this four partitions.

Partition bdjace and acfbde result in a column multiplicity of two. While partition celabd

results in a column multiplicity of three.

ace

" bd ..

1

1

1

1

bde

a '
1 1 1

1 1

1 1 1
I

f f

abd
c ...

1 1

1 1 1 1
I

f

Figure 30. Partitions after variable partitioning.

50

We have checked that only partitions bdlace and aclbde can produce the minimum

column multiplicity of two. There are ten ((~) = 10) possible partitions out of these five

input function. The pseudo-code for variable partitioning is shown in Figure 31.

variable _partitioning()
{

}

repeat for ON-Y, ON-N, OFF-Y and OFF-N Tables
{

}

create Relationship Factor Table;
sort Relationship Factor Table in decreasing order;
bond _set= first pair in the queue;

while (I bond set I < maximum bond set number)
bond set= bond set u pair in the next position; - -

Figure 31. Pseudo-code of variable partitioning.

VI.3. LOCAL TRANSFORMATION

The known decomposition methods are passive in the sense that they only test

whether a function is decomposable or not. If it is, the decomposition is carried out. But

what do we do if the function is not decomposable?

Here the author presents a new approach to the decomposition. It is called the

Local Transformation Method. This method can transform a nondecomposable function

into several decomposable ones.

The basic idea of this method is to transform some columns in the original Kar

naugh map to make them identical to some other columns in order to decrease the

51

column multiplicity. It is carried out in two steps:

(1) The output values of the Conflict Cubes in one column are complemented in order

to make two columns identical, creating the Modified and Modifying Karnaugh

Maps.

(2) EXOR operation of the functions described by the Modified Karnaugh Map and the

function described by the Modifying Karnaugh Map is executed, creating the origi

nal function described just by the original Karnaugh map.

An attempt is made at the first step to make the Modified Cubes as big as possible,

and at the same time keep the number of the Modified Cubes as small as possible. The

Conflict Cubes are the cubes that make the two columns different. Like the cube -1 in

columns 000 and 001 in Figure 32(a), it makes these two columns different. The formula

for calculating the Conflict Cubes between i-th andj-th columns is:

Conflict Cube Set = ON(i) • OFFG) u ONG) • OFF(i)

ON(i) and OFF(i) are the ON and OFF sets of i-th column. ONG) and OFF(j) are the ON

and OFF sets of j-th column. The formula states that the Conflict Cubes between the i-th

and j-th column are the union of the Intersection of the ON set of i-th column with the

OFF set of j-th column and the Intersection of the ON set of j-th column with the OFF set

of i-th column.

The following example is used to illustrate this method and above terminologies.

Figure 32(a) is an original Karnaugh map with the bond set { c, d, e} and a column multi

plicity of four. We intend to decompose this function into two subfunctions, and each of

them has a column multiplicity of no more than two.

52

We perform the local transformation to decrease the column multiplicity. First, the

output value of the cube -10-1 and -1101 in Figure 32(a) are complemented. These cubes

are called Modified Cubes (they are the same as the Conflict cubes). After modification,

the resultant Karnaugh map is called the Modified Karnaugh Map (Modified Function

fec1) as shown in Figure 32(b). Now the column multiplicity of the Modified Karnaugh

Map is two.

cde

ab
'

1 1 0 0 1 0 0 1

1 ~=~~:~ ~=~~:~ 1 1 1 ~=~~:~ 1
·.·.·.· •.·.·.· ·.·.·.·

0 :::J: :::::r 0 0 0 ···r·· 0 .· · .. ·.
0 0 0 0 0 0 0 0

A B C D A D C A

The original Karnaugh map

1 1 0 0 1 0 0 1 0 0 0
1 =·:t= =·:t= 1 1 1 :-·-r 1 0):f)(........ ·.·.· .·.··.· E9 .· ·.. .· ...
o ~:~~:~ jf o o o ~:~K o 0 }:()(

(a)

f

0 0 0 0 0
0 0 0 :::=t 0 .·.·.··
0 0 0):(0

o I o I o I o I o I o I o I o I fed

The Modified Karnaugh Map
o I o I o I o I o I o I o I o I f ing

The Modifying Karnaugh Map

(b) (c)

Figure 32. Local transformation.

Next, because the output value of the Modified Cubes have been complemented,

the compensation must be made. To achieve this, another Karnaugh map is created with

the positions corresponding to the Modified Cubes in the original Karnaugh map set to

53

1 's and the others set to O's. This is shown in Figure 32(c). It is called the Modifying

Karnaugh Map (Modifying Function fing). Notice that in this case the column multipli

city of the Modifying Karnaugh Map is two as well. If there are DC cubes in the original

Karnaugh map, we keep them unchanged in both the Modified and Modifying Karnaugh

Maps, because they will make both of these maps as amenable as possible for further

minimization.

Finally, the EXOR operation of the function described by the Modified Karnaugh

Map and the function described by the Modifying Karnaugh Map results in the function

described by the original Kamaugh map. That is:

f = fed {!) fing

The presented method changes a nondecomposable function (in sense of the

column multiplicity less than or equal to two) into two decomposable functions (with the

column multiplicities of both equal to two). The method is called local transformation,

but this local transformation is based on the global view of the entire function to make

both the Modified and Modifying Karnaugh Maps more simple.

The application of local transformation to the general implementation of FPGA

mapping is shown in Figure 33. If a function is nondecomposable, it will be transformed

into two functions, a Modified and a Modifying function. If the Modified or Modifying

function is nondecomposable (in a more restricted condition), the local transformation

should be applied again. -

Next, we use the function f in Figure 32(a) again as an example to show the

detailed procedure of local transformation. In Figure 32(a) there are only four different

columns as shown in Figure 34. We denote these four columns by letter A, B, C and D,

54

and call them (letter) column A, column B, column C and column D.

CLBs

CLBs

f > '----~f

fing

~
CLBs

Figure 33. Application of local transformation to FPGA mapping.

55

Column A (letter column) includes three real columns: columns 000, 110 and 100

in the original Karnaugh map. Column B includes one column, column 001. Column C

includes two columns: columns 011and101. Column D includes two columns: columns

010 and 111. "Number" in Figure 34 is the number of real columns that a letter column

includes.

aB

00 1 1 0 0

01 1 0 0 1

11 0 1 1 0

10 0 0 0 0

Column AB CD

Number 3 1 2 2

Figure 34. Four different columns.

(1) Create the Modification Factor Table as shown in Figure 35 and initiate all its cells to

zero. The value in each cell is a weighted Modification Factor of the column pair

corresponding to the row and column labels of the table. Cell A-7B stores the

Modification Factor of complementing the output value of all Conflict Cubes in the

column A in order to make columns A and B identical. Cell B-7A stores the

Modification Factor of complementing the output value of all Conflict Cubes in the

column B in order to make columns B and A identical. Later on, we will sort the

Modification Factor Table. In order to keep the correct correspondence between the

value and the column pair it represents, we attach two more storage units to each cell to

store the two columns that the Modification Factor corresponds to. So the Modification

Factor Table is, in fact, a 3-tuple list. For example, the Modification Factor Table in

Figure 35 is a list: {(A, B, 12), (A, C, 24), (A, D, 15), (B, A, 4), (B, C, 5), (B, D, 8), (C, A,

56

16), (C, B, 10), (C, D, 8), (D, A, 10), (D, B, 16), (D, C, 8)}. The Modification Factors are

calculated in the following way:

If the Conflict Cube is a minterm, increase the value of the corresponding cell in the

table by amount of the number of input variables. If the Conflict Cube is composed

of two mintenns, increase the value of the corresponding cell in the table by amount

of the number of input variables minus one. This is because a larger cube can sim

plify to a greater extent both the Modified and Modifying Karnaugh Maps. If the

Conflict Cube is composed of four mintenns, increase the value of the correspond

ing cell in the table by amount of the number of input variables minus two, and so

forth. That is:

Modification Factor

= L, (number of input variables - number of-' s in the Conflict Cube)

The summation is over all Conflict Cubes in the modified column. "-'s" in the equa

tion is the dashes in the Conflict Cube. For example, the cube 10--1 has two dashes.

A B C D

A r / ,,-1 - - -- ' A~c I A~D
24 15

_ B~D

BI c.~J(~ ;Jc.~

:~
Figure 35. Modification Factor Table.

57

Let's fill the Modification Factor Table in Figure 35 now. The Conflict Cube

between column A and B is the cube -1. If we change column A to make it identical to

column B, we need to complement the output value of the Conflict Cube (cube -1 in

column A). That is to change the output value of minterm 01 of column A in Figure 34

from 1 to 0 and the output value of minterm 11 from 0 to 1. Column A will have the vec

tor [1, 0, 1, 0] after complementation of the Conflict Cube. This vector is the same as

that of the column B. Cube -1 has one - (dash), the Modification Factor would be the

number of input variables minus 1, that is four. Further more, column A includes three

columns, columns 000, 110 and 100. All these three columns need to be modified. So

the Modification Factor must be multiplied by three. Therefore the final Modification

Factor is twelve as shown in cell A~B of the Modification Factor Table in Figure 35.

Another way to make column A and B identical is to complement the output value of the

Conflict Cube, cube -1 in column B. That is to change the output value of minterm 01 of

column B in Figure 34 from 0 to 1 and the output value of minterm 11 from 1 to 0, so

both columns have the same vector [l, 1, 0, O] after the modification. Column B includes

only one column which is column 001, the Modification Factor is four as shown in Figure

35. Using the same reasoning, we can complete the Modification Factor Table.

(2) Sort the Modification Factor Table in increase order by their Modification Factors.

Modify the columns which have smaller Modification Factors until the required column

multiplicity is reached. Cell B~A is selected because it has the smallest value of four.

Complement the output value of Conflict Cube, cube -1 in column 001 of the Karnaugh

map in Figure 32(a), The vector of column 001 is changed from [1, 0, 1, O] to (1, 1, 0, 0].

At the same time, set the output value of cube -1001 of the Modifying Karnaugh in Fig

ure 32(c) to 1. After modifying column B, the column multiplicity of the Modified Kar

naugh Map is reduced to three. Our aim is to reduce it to two, so another modification

will be carried out. The next smaller Modification Factor is five in cell B~C. But we

58

cannot change column B to column C because we have changed column B to column A.

The next smaller value is eight in cell C~D. Complement the output value of Conflict

Cubes, cube -1 in both columns 011 and 101 of the Karnaugh map in Figure 32(a), The

vectors of the columns 011 and 101 are changed from [O, 0, 1, 0] to [O, 1, 0, 0]. At the

same time, set the output value of cubes -1011 and -1101 of the Modifying Karnaugh in

Figure 32(c) to 1. After this modification, the column multiplicity of the Modified Kar-

naugh Map is reduced to two.

(3) We have transformed the function f with a column multiplicity of four into two func

tions: fed and fing, both of them have a column multiplicity of two. The relation between

them is:

f = fed (±) fing

The pseudo-code for local transformation is shown in Figure 36.

local transformation()
{ -

}

create Modification Factor Table;
sort Modification Factor Table in increasing order;
modify column at the beginning of the queue;
change Modified Karnaugh Map;
fill Modifying Karnaugh Map;

while (column_ multiplicity > required_ column_ multiplicity)
{

}

modify column at the next position
change Modified Karnaugh Map;
fill Modifying Karnaugh Map;

Figure 36. Pseudo-code of local transformation.

CHAPTER VII

PROGRAM TRADE AND ITS EVALUATIONS

The techniques presented in the previous sections have been incorporated into a

program named TRADE (TRAnsformation and DEcomposition) which reads in the input

file in Espresso (.type fr) format and outputs in B /if format with the input variables of

each node less than or equal to five. Cube calculus is used in TRADE for all operations.

VII.1. PROCEDURE OF TRADE

The basic steps of TRADE are as follows:

(1) Read in the input file written in Espresso ".type fr" format.

(2) Select an output. Perform partition analysis (the number of bond set variables is fixed

to five) to obtain the "best" partitions and Additional Partitions. Additional Partitions are

the partitions whose bond sets consist of the variables that are the input variables of some

CLBs in the CLB Pool, and thes~ variables are also in the range of the input variables of

the current decomposition. The CLB Pool is a list of all CLBs previously generated by

the program. For example, if the input variables of the current decomposition are a, b, c,

d, e,f, g, h, i, and in the CLB Pool there are three CLBs with the input variables of each:

{a, b, c, d, e}, {c, d, g, h, i} and {a, h, k, I, m} respectively. Then the variable sets {a, b,

c, d, e} and {c, d, g, h, i} can be used as the additional partitions, while {a, h, k, l, m} can

not be used because there are no variables k, I and m in the current decomposition.

60

(3) Execute decompositions using the "best" and Additional Partitions. Encode the bond

set and try to use as many CLBs from the CLB Pool as possible. The way to efficiently

resue CLBs will be discussed later in this chapter. Graph coloring technique is applied at

this stage to get a quasi-optimum don't care assignment. Select a partition which results

in the smallest Cover Ratio. The Cover Ratio is a ratio of the number of newly created

CLBs over the difference of the input variables before and after decomposition, that is:

c r R t. _ number_of_newly_created CLBs
ove a io - . be.c d . . . f d .. . mputs_ iore_ ecompos1t10n - mputs_a ter_ ecompos1t10n

For example, in Figure 37, if CLB x and y exist in the CLB Pool, CLB z is a newly

created one, then Cover Ratio = 1/(8 - 6) = 0.5.

Before ------------------,
r - - - A After '
I I

B
--CLBs

x

c

I I

L---------------------J

Figure 37. Before and after decomposition.

If the function is nondecomposable, perform the local transformation to make it

decomposable.

(4) Repeat steps 2 to 3 for the blocks left (block C in Figure 37) until all decomposed

blocks are with five or less inputs.

61

(5) Repeat steps 2 to 4 for all Modifying Functions which were created by local transfor-

mations.

(6) Repeat steps 2 to 5 for all outputs.

(7) Merge all possible nodes into the FG mode CLBs. The way to merge the nodes is

discussed in the next section.

The pseudo-code for TRADE program is shown in Figure 38.

TRADE()
{

}

read _input _file() ; !* read in input file *!

for (i = 0; i <number _of _primary_outputs; i++)
{

!* loop for all
output functions *!

}

do
{

variable _partitioning() ;
create _incompatibility _graph();

graph_ coloring();

if (decomposable ! = true)
local transformation();

bond set encoding() ;
CLB ~reusing() ;

I* find best partition *!
!* create incompatibility
graph *!
!* quasi-optimum don't
care assignment *I

!* make decomposable *!

!* encode bond set *!
!* use CLBs in CLB
Pool *!

} while (function(s) from local transformation = = true)
I* if there is function from local
transformation, repeat *!

CLB _merging();
output _result();

!* merge nodes into FG mode CLBs *I
!* output results *I

Figure 38. Pseudo-code of TRADE program.

62

VII.2. CLB MERGING

We have explained the FG mode CLB of Xilinx architecture in Chapter II. If two

nodes satisfy the condition that each has no more than four input variables, and the total

number of input variables in these two nodes is no more than five, these two nodes can be

combined into a FG mode CLB. We use the following procedure to merge the nodes:

Collect all nodes with no more than four input variables, put them in a queue and

sort them in decreasing order by the number of their inputs. Pick the node at the

beginning of the queue, call it the Master Node, then pick another one next to it.

Test if these two nodes can be combined into one FG mode CLB. If they can be

combined, combine and remove them from the queue. If not, pick another node in

the next position, and perform the combining test again. If, until the end of the

queue, no node can be combined with the Master Node, remove the Master Node

from the queue. Pick the node at the beginning of the queue as a new Master Node

and repeat above operations until the queue is empty.

Next example is used to show the detailed merging procedure. There are six nodes

in the queue.

Node Number l 2
Inouts {aoca {aoce

Pick node 1 as the Master Node. Test to see if it can be combined with the next

node which is node 2. They can be combined because the number of inputs of each node

is four, {a, b, c, d} and {a, b, c, e}, and the number of total variables out of these two

nodes is five {a, b, c, d, e}. Combine them and give them a name, CLB A, and remove

them from the queue. Now there are four nodes left in the queue.

,,.-

63

Node Number 4 5 6
Inouts I (abed {a&ef) {efiJJ {befu)

Pick node 3 as the Master Node. Test to see if it can be combined with the next

node which is node 4. It cannot be combined because the number of inputs out of these

two nodes is six {a, b, c, d, e, f}. It should be no more than five if the two are combined.

Test again to see if it can be combined with node 5. The answer is no once more. Do the

test with node 6. It fails again. So, no node can be combined with node 3. Give node 3

a name, CLB B, and remove it from the queue. The queue turns out to be:

I NodeNumber I 4
Inputs (<elj) I ~fh) I

Pick node 4 as the Master Node. Test to see if it can be combined with node 5.

The test fails. Test it with node 6. This time success. Combine these two nodes into a

new node, CLB C, and remove them from the queue. Now, only node 5 is left in the

queue. Give it a name, CLB D, and remove it from the queue. The queue is empty. The

final merging result is as follows:

CLB
Node Number

A I B
r,:z--r-3 rnJ
~

Nodes 1 and 2 are combined into a FG mode CLB, CLB A. Nodes 4 and 6 are

combined into another FG mode CLB, CLB C. Nodes 3 and 5 remain as they were. The

pseudo-code for CLB merging is shown in Figure 39.

·--. ,..-.~

CLB merging()
{ -

}

while (queue I= empty)
{

}

m n = Master Node;
n ~n = next node;

do
{

if (merge(m n, n n) ==true)
{ - -

combine m n and n n into a FG mode CLB;
remove m n and n n;
break; - -

} else {
n_n =next node;

}
} while (n n !=last node)
else { -

remove m_n;
}

Figure 39. Pseudo-code of CLB merging.

VIl.3. CLB REUSING

64

In the previous section, we have presented the encoding algorithm for the bond set,

but we didn't mention the possibility that some CLBs in the CLB Pool might be reused.

In TRADE, each previously generated CLB is recorded in a 32-bit long word, called a

CLB frame. Because there can be up to five inputs to each CLB, thirty two bits are

required to store all possible combinations of the inputs (25 = 32). For example, the

logic of CLB h:

is stored in the program as:

.names a b c d e h
10-01 1
11101 1
01-0- 1

31 0 Minterm position
lgq 11qqggggg llQQQ 11gqq ll llqQ ll llqggggggol CLB h

65

Each position in the above frame corresponds to a mintenn. For example, mintenn

11101 resides in the position 29. If a min term belongs to the ON set, there is a 1 in the

corresponding position of the frame. Otherwise 0. By proper coding it is possible to

reuse CLBs in the CLB Pool.

The basic idea of CLB Reusing is originated from the following facts:

Suppose that the column multiplicity of a Karnaugh map is four (it is the same as

saying that there are four colors). We would need two (4 ~ 22 = 4) variables (x and y as

shown in Figure 40(a)) to encode the bond set.

Color Color Color
-e-- 4E-- -e--

3 2 1 0 3 2 1 0 3 2 1 0

I I I I Ix ~i 1l 1lol olx +iolol1l 1lx
Codei Code Code

I I I I IY lol1l1loly I 1lol 1lolY

(a) (b) (c)

Figure 40. CLB reusing concept.

We can code variables xy as 00, 01, 11, 10 as shown in Figure 40(b). There are 4!

= 24 possible ways to code .xy. But, if in the CLB Pool there is a CLB that can imple-

~

66

ment the pattern [QI]![] (call it x, this is the pattern for coding as shown in Figure 40(c),

not the internal storage frame). If we code y as [illlill] (y is a newly created CLB) as

shown in Figure 40(c), we have realized the coding of .xy by using one CLB in the CLB

Pool and a newly created one. The y is coded in such a way that no two xy Codes are

identical. Next example is used to show the detailed procedure of CLB Reusing algo

rithm.

Suppose that we have a function with seven input variables {a, b, c, d, e, f, g} as

shown in Figure 41.

?
•

r································~·························· .. ·= ~~

b : :
a= R Y: e,ll11.~i I i ~~ d i x i

f .
g

. . ..

Figure 41. CLB reusing example.

CLB Pool

After graph coloring, six colors are obtained as shown in Figure 42. In Figure 42,

columns 0, 1, 3, 4, 7, 9, 12, 14, 15 and 17 belong to color 0, columns 18, 19, 22, 23, 25,

26 and 27 belong to color 1, and so forth. A careful reader will find that columns 20 and

29 are missing. They are DC columns and can be put in any color position.

abcde

f:
'

Color ~ 0 0 0 2 2 0 2 0 0 3 0 0 3 4 0 3 4 1 1 1 3 2 x 2 x 3 1 1 1 1 0 5

Color
...:---

j 5j4j3l2l1lol

16 11 8 2 18 0 icolumn
24 10 5 19 1

13 6 22 3
21 28 23 4
30 31 25 7

26 9
27 12

14
15
17

Figure 42. After graph coloring.

67

Because there are six colors (column multiplicity is six as well), we need three

CLBs (3 > log2 6 = 2.585) to encode the bond set. Suppose that in the CLB Pool there

are three CLBs which have the same input variables as that in the current bond set, they

are CLBs w, x andy.

IOJ OJ OJ ll OJ OJ Q OJ II OJ 11<~ ll OJ OJ ll OJ OJ ll OJ ll OJ OJ OJ OJ OJ OJ OJ 11<~ 1111 w

IOI 11 OJ OJ 111111 OJ 111111 OJ 111111 g 11111111 OJ 11111111 OJ oi 1111 OJ 1111 x

111 OJ OJ 11111111 OJ 1111 OJ OJ 1111OJOJ010101 OJ OJ OJ OJ OJ OJ 1111 OJ OJ 11 OJ o I y

68

We try to use as many CLBs in the CLB Pool as possible. If the CLBs in the CLB

Pool can fully cover the columns in some colors, they might be reused. The term ''fully

cover the columns in some colors" means that in the CLB frame all positions correspond

ing to the columns included in some colors must be exactly 1, while all the other posi

tions must be 0. We test if the CLBs w, x and y can fully cover the columns in some

colors in Figure 42. It is found that the CLB x can fully cover the colors 0, 1 and 3,

because in the CLB x frame all positions correspond to the columns included in the color

0, 1 and 3 are 1, all the others are 0. CLB x can fully cover the colors 0, 1 and 3, the bits

corresponding to the colors 0, 1 and 3 in the CLB x pattern are 1, the others are 0. CLB x

has the pattern IQPIIPllll I as shown in Figure 43. The same test results in that CLB y can

fully cover the colors 1 and 2, and it has the pattern IQPPlllIPI as shown in Figure 43.

While CLB w can cover the columns 0, 1 and 3 in the color 0, but it cannot cover the

columns 4, 7, 9, 12, 14, 15 and 17 in the color 0, this is not a full cover. Therefore CLBs

x and y can be reused, but CLB w can not be reused. We add a new CLB (CLB z) and

code it in such a way that each color has a different Code bit. The procedure for coding

the newly added CLB is as follows:

Start from the color position 0 in Figure 43. CLB y and CLB x give the bits 0 and 1

(Code 01. Code is read vertically, not horizontally), respectively. Put a 0 at the

color position 0 of CLB z as shown in Figure 43. In the color position 1, the

corresponding bits from CLB y and CLB x are 1 and 1 (Code 11) respectively.

Because Code 11 is different from Code 01 in the color position 0, put a 0 again at

the color position 1 of CLB z. The same way, put a 0 at the color position 2 of CLB

z. In the color position 3, the Code is 01, it is the same as that in the color position

0. Increase the Code put in the color position 0 of CLB z (that is 0) by 1, this leads

to a 1. So put a 1 at the color position 3 of CLB z. Perform the same operation for

the color positions 4 and 5. The final coding of CLB z is I lPJlPPP I as shown in

Figure 43.

Color
~

5 4 3 2 1 0
Code ~ j 1 J o j 1 J o j O j O j CLB z

I 0 I 0 I 0 I 1 f 1 I 0 I CLB y

I 0 I 0 I 1 I 0 I 1 I 1 j CLB x

16 11 8 2 18 O +column
24 10 5 19 1

13 6 22 3
21 28 23 4
30 31 25 7

26 9
27 12

14
15
17

Figure 43. The final coding.

The newly generated CLB z has the internal storage frame as:

1g II OJ Of Of Of Of Of OJ Of 11 OJ OJ OJ Of 11 OJ Of 11 OJ OJ *~ II OJ OJ Of Of OJ OJ Of 0 I z

69

It is formed according to the pattern I lPllPPP I of CLB z. The color position 3 is 1 in

the pattern of CLB z. Columns 8, 10, 12, 21 and 30 correspond to this color, so in the

CLB z frame, the positions 8, 10, 12, 21 and 30 are filled with 1. The same 9peration is

performed for the color position 5, and the internal storage frame of CLB z is obtained.

By proper coding, we have reused two CLBs in the CLB Pool. The pseudo-code for

CLB reusing is shown in Figure 44.

CLB reusing()
{ -

}

collect reusable CLBs;
fully cover testing;

for (i = 0; i < total_color; i++)
{

if (reused CLB code repeat(i) = = true)
cod"i{i)++-,· -

new_CLB_code(i) = code(i);
}

Figure 44. Pseudo-code of CLB reusing.

Vll.4. EVALUATION OF THE RESULTS

70

We ran TRADE on a networked SUN 4/670MP Workstation. The results are listed

in Table II. All results are verified by "verify" command of MIS-II system. The pro

cedure of verifying is:

* execute TRADE program
MCNC _file_ name: The name of the example file
from the MCNC benchmark;

TRADE MCNC_file_name m n

m: The maximum number of inputs to each CLB as
shown in Figure 45;
n: The maximum number of bond set outputs as
shown in Figure 45.
The output will be put in a file named wad.out. *\

misll * enter misII program *\

read_pla MCNC _file_ name * read in the MCNC benchmark example file *\

verify wad.out * verify *\

The results listed under MIS-PGA(phase 1) are from [9], The results listed under

MIS-PGA(new) are from[2]. Both of them were run on a DEC5500. There is no delay

71

information provided in [2]. The examples root, bench, fout and testl are taken from the

Espresso package, and all of them are incompletely specified functions except root. t-00

is obtained by changing all DC outputs in testl to OFF outputs, therefore, it is a com

pletely specified function. t-10 is obtained by randomly changing 10 percent of the OFF

outputs in t-00 to DC outputs. The same way, t-20 to t-90 is obtained by randomly

changing 20 to 90 percent of the OFF outputs in t-00 to DC outputs, respectively.

Because we were not able to access the MIS_PGA(phase 1) and MIS_PGA(new) pro

grams, we couldn't make comparisons of incompletely specified functions.

n

Figure 45. Verifying example.

In Table II, E/N is the name of the example. l/N is the number of input variables.

0/N is the number of output functions. CLBs is the number of CLBs in the final mapped

circuit. Time is the running time of the program which is measured by time command of

UNIX system. The unit of the Time is second. Lev is the longest path (number of

CLBs) that a signal must go from the primary input to the primary output in the final

mapped circuit. From Table II, we observe that if the DC outputs are maintained, the

number of CLBs can be greatly decreased. However, even for the completely specified

functions, our program found better results than MIS-PGA(phase 1) and MIS-PGA(new)

with respect to both the delay and area minimization.

72

TABLE II

COMPARISONS AMONG TRADE, MIS-PGA(PHASE 1) AND MIS-PGA(NEW)

TRADE MIS-PGA(phase 1) MIS-PGA(new)

E/N l/N OJN CLBs Lev Time CLBs Lev Time CLBs Time
alu2 10 8 22 3 12.2 122 6 42.6 109 773.8
9sym 9 1 6 3 4.9 7 3 15.2 7 339.7
9symml 9 1 6 3 4.7 7 3 9.9 7 127.2

rd73 7 3 5 2 3.7 8 2 4.4 6 24.0

rd84 8 4 8 3 11.6 13 3 9.8 10 73.7

f5lm 8 8 9 3 2.3 23 4 5.9 17 14.4

5xpl 7 10 11 2 4.3 21 2 3.5 18 22.4

z4ml 7 4 4 2 2.0 10 2 2.1 5 5.0

sao2 10 4 27 3 13.8 45 5 9.5 28 41.9

bw* 5 28 27 1 0.3 28 1 8.3 28 17.3

misexl 8 7 14 2 3.4 17 2 1.7 11 2.7

clip 9 5 29 4 12.1 54 4 3.7 28 58.4

b9 16 5 29 4 28.7 47 3 2.3 39 27.6

misex2 25 18 31 4 17.0 37 3 1.4 28 3.4

duke2 22 29 159 6 370.7 164 6 16.4 110 203.7

root 8 5 21 3 9.8

bench* 6 8 16 2 1.0

fout* 6 10 26 2 4.3

testl* 8 10 66 3 21.1

t-00 8 10 166 5 81.6

t-10* 8 10 152 5 64.6

t-30* 8 10 125 5 50.6

t-50* 8 10 83 5 32.8

t-70* 8 10 76 4 18.l

t-90* 8 10 46 3 10.2

*Incompletely specified function.

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

VIII.I. CONCLUSIONS

A new general approach to the decomposition of incompletely specified functions

and its application to FPGA mapping [29) [30] have been presented. Variable Partition

ing, Graph Coloring, Bond Set Encoding, Local Transformation and CLB Reusing are

the outstanding features of this approach. One of the main advantages of this approach is

that it is intended for incompletely specified functions, thus giving for such kind of func

tions much better results than the existing methods.

Compared with the existing FPGA mapping approach, our method is totally new.

We developed a fast graph coloring method for the don't care assignment, so the pro

gram can accept incompletely specified functions and perform a quasi-optimum assign

ment to the unspecified part of the function. We developed a high quality heuristic

method to chose the "best" partitions, avoiding the thorough test of all possible decompo

sition charts which is impractical when there are many input variables. We introduced

the local transformation concept, which can transform nondecomposable functions into

decomposable ones, making it possible to apply decomposition method to FPGA map

ping. Finally, the Cube calculus is used entirely in the TRADE program, the operation is

global and very fast.

74

VIIl.2. FUTURE WORK

The program has been successfully verified and benchmarked on several MCNC

examples and some incompletely specified functions. There are still several opportuni

ties to further improve both its speed and quality of the generated solutions. Currently

we work on two-dimensional Karnaugh maps. A possible extension would be to develop

the algorithms to operate on three-dimensional or multi-dimensional Karnaugh maps, to

incorporate the FGM mode CLBs of Xilinx 3000 series and take advantage of the Xilinx

4000 series.

'

REFERENCES

1. Xilinx, Inc., Xilinx Programmable Gate Array Data Book, 1992.

2. Rajeev Murgai, Narendra Shenoy, Robert K. Brayton, and Alberto Shangiovanni
Vincentelli, ''Improved Logic Synthesis Algorithms for Table Look Up Architec
tures," ICCAD 1991, pp. 564-567, Santa Clara, CA, Nov. 1991.

3. Rajeev Murgai, Yoshihito Nishizaki, Narendra Shenoy, Robert K. Brayton, and
Alberto Sangiovanni-Vincentelli, ''Logic Synthesis for Programmable Gate
Arrays," Proc. 27th ACM/IEEE Design Automation Conj., pp. 620-625, Orlando,
FL, June 1990.

4. D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, ''Technology Mapping for a
Two-Output RAM-based Field-Programmable Gate Array,'' European Design
Automation Conf, pp. 534-538, February 1991.

5. Robert Francis, Jonathan Rose, and Zvonko Vranesic, ''Chortle-crf: Fast Technol
ogy Mapping for Lookup Table-Based FPGAs," Proc. 28th ACM/IEEE Design
Automation Conf, pp. 227-233 , San Francisco, CA, June 1991.

6. Robert J. Francis, Jonathan Rose, and Kevin Chung, "Chortle: A Technology
Mapping Program for Lookup Table-Based Field Programmable Gate Array,"
Proc. 27th ACM/IEEE Design Automation Conj., pp. 613-619, 1990.

7. Kevin Karplus, "Xmap: A Technology Mapper for Table-lookup Field
Programmable Gate Arrays," Proc. 28th ACM/IEEE Design Automation Conj., pp.
240-243, San Francisco, CA, June 1991.

8. Nam-Sung Woo, "A Heuristic Method for FPGA Technology Mapping Based on
the Edge Visibility," Proc. 28th ACM/IEEE Design Automation Conj., pp. 248-
251, San Francisco, CA, June 1991.

9. Rajeev Murgai, Narendra Shenoy, Robert K. Brayton, and Alberto Shangiovanni
Vincentelli, "Performance Directed Synthesis for Table Look Up Programmable
Gate Arrays," ICCAD 1991, pp. 572-575, Santa Clara, CA, Nov. 1991.

10. R. J. Francis, J. Rose, and Z. Vranesic, "Technology Mapping for Delay Optimiza
tion of Lookup Table-Based FPGAs,'' MCNC Logic Synthesis Workshop, 1991.

11. R. J. Francis, J. Rose, and Z. Vranesic, "Technology Mapping of Lookup Table
Based FPGAs for Performance," Proc. ICCAD, pp. 568-571, Nov. 1991.

76

12. Jason Cong, Andrew Kahng, Peter Trajmar, and Kuang-Chien Chen, "Graph
Based FPGA Technology Mapping for Delay Optimization," Proc. First Int' l
ACMISIGDA Workshop on Field Programmable Gate Arrays, pp. 77-82, Berkeley,
CA, February, 1992.

13. S. Lee Hight, ''Complex Disjunctive Decomposition of Incompletely Specified
Boolean Functions," IEEE Trans. on Computers, vol. c-22, no. 1, pp. 103-110,
Jan. 1973.

14. V. Yun-shen and Archie C. Mckellar, "An Algorithm for the Disjunctive Decom
position of Switching Functions," IEEE Tran. on Computer, vol. c-19, no. 3, pp.
239-248, March 1970.

15. Devadas Varma and E. A. Trachtenberg, "Design Automation Tools for Efficient
Implementation of Logic Functions by Decomposition," IEEE Trans. CAD , vol.
8, no. 8, pp. 901-916, August 1989.

16. J. Vasudevamurthy and J. Rajski, "A Method for Concurrent Decomposition and
Factorization of Boolean Expressions," Proc. IEEE ICCAD, vol. 7, no. 12, pp.
1290-1300, December 1988.

17. R. L. Ashenhurst, "The Decomposition of Switching Functions," Proc. Int' l
Symp. Theory of Switching Function, pp. 7 4-116, 1959.

18. H. Allen Curtis, "A Generalized Tree Circuit," J. ACM, vol. 8, pp. 484-496, 1961.

19. Marek A. Perkowski and James E. Brown, "A Unified Approach to Designs
Implemented with Multiplexers and To the Decomposition of Boolean Functions,"
Proc. ASEE Annual Conf, pp. 1610-1618, 1988.

20. H. Allen Curtis, "Generalized Tree Circuit-The Basic Building Block of an
Extended Decomposition Theory," J. ACM, vol. 10, pp. 562-581, 1963.

21. J. P. Roth and R. M. Karp, "Minimization over Boolean Graphs," IBM J. of
Research and Development, vol. 6, no. 2, pp. 227-238, April, 1962.

22. Loe Bao Nguyen, Marek A. Perkowski, and Nahum B. Goldstein, ''PALMINI -
Fast Boolean Minimizer for Personal Computers," Proc. 24th ACM/IEEE Design
Automation Conf, pp. 615-621, 1987.

23. Saeyang Yang and Maciej J. Ciesielski, ''A Generalized PLA Decomposition with
Programmable Encoders," Proc. Int' l Workshop on Logic Synthesis, MCNC, pp.
1-13, 1989.

24. Saeyang Yang and Maciej J. Ciesielski, "Optimum and Suboptimum Algorithms
for Input Encoding and Its Relationship to Logic Minimization,'' IEEE Trans.
CAD, vol. 10, no. 1, pp. 9-12, Jan. 1991.

77

25. Nicos Christofides, Graph Theory, Academic Press, New York, 1975.

26. M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley & Sons, New
York, 1984.

27. Ronald C. Read, Graph Theory and Computing, Academic Press, New York, 1972.

28. Frank Harary and John S. Maylee, "Graph and Applications," Proc. First
Colorado Symp. on Graph Theory, John Wiley & Sons, New York, 1985.

29. Wei Wan and Marek A. Perkowski, "A New Approach to the Decomposition of
Incompletely Specified Functions Based on Graph-coloring and Local Transforma
tions and Its Application to FPGA Mapping,'' Proc. European Design Automation
Conj., Hamburg, Germany, Sept. 1992.

30. Wei Wan and Marek A. Perkowski, "TRADE: A Lookup Table FPGA Mapper
Based on a Generalized Boolean Decomposition,'' Submitted to IC CAD, Santa
Clara, CA, Nov. 1992.

	A New Approach to the Decomposition of Incompletely Specified Functions Based on Graph Coloring and Local Transformation and Its Application to FPGA Mapping
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1549324431.pdf.8_Kaz

