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AN ABSTRACT OF THE THESIS OF Wei Wan for the Master of Science in Electrical 

and Computer Engineering presented May 8, 1992. 

Title: A New Approach to the Decomposition of Incompletely Specified Functions Based 

on Graph Coloring and Local Transformation and Its Application to FPGA Map-

ping. 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Marek A. Perko-wski, Chair 
/ 

Martin Zwick 

The thesis presents a new approach to the decomposition of incompletely specified 

functions and its application to FPGA (Field Programmable Gate Array) mapping. Five 

methods: Variable Partitioning, Graph Coloring, Bond Set Encoding, CLB Reusing and 

Local Transformation are developed in order to efficiently perform decomposition and 

FPGA (Lookup-Table based FPGA) mapping. 
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1) Variable Partitioning is a high quality hemistic method used to find the "best" parti-

tions, avoiding the very time consuming testing of all possible decomposition charts, 

which is impractical when there are many input variables in the input function. 

2) Graph Coloring is another high quality heuristic\ used to perform the quasi-optimum 
\ 

don't care assignment, making the program possible to accept incompletely specified 

function and pe1form a quasi-optimum assignment to the unspecified part of the func-

ti on. 

3) Bond Set Encoding algorithm is used to simplify the decomposed blocks during the 

process of decomposition. 

4) CLB Reusing algorithm is used to reduce the number of CLBs used in the final 

mapped circuit. 

5) Local Transformation concept is introduced to transform nondecomposable functions 

into decomposable ones, thus making it possible to apply decomposition method to 

FPGA mapping. 

All the above developed methods are incorporated into a program named TRADE, 

which performs global optimization over the input functions. While most of the existing 

methods recursively perform local optimization over some kinds of network-like graphs, 

and few of them can handle incompletely specified functions. Cube calculus is used in 

the TRADE program, the operations are global and very fast. A short description of the 

TRADE program and the evaluation of the results are provided at the_ end of the thesis. 

For many benchmarks the TRADE program gives better results than any program pub

lished in the literature. 
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CHAPTER I 

INTRODUCTION 

The modern digital logic designers have the opportunity to design a circuit from 

any of the six categories: Standard SSIJMSI devices, Standard LSINLSI devices, Gate 

array devices, Standard-cell devices, Full-custom devices and Programmable Logic Dev

ices (PLDs ). A PLD is a digital integrated circuit capable of being programmed to pro

vide a variety of different logical functions. It offers a wide variety of complexities, 

architectures and configurations. Since they function differently depending on how they 

are programmed, PLDs belong to the Application-Specific Integrated Circuits (ASICs) 

family. PLD NRE (Nonrecurring Engineering) charges are either nonexistent or very 

small. Making design changes is very simple, fast and cost-free. PLD "tum-around" 

time (the time from design completion to having usable devices available) is very short, 

ranging from a few minutes to a few hours, which results in a significant reduction in the 

time-to-market of a product All of those benefits have made the PLD technology 

receive great expectations in the electronic industry. FPGA (Field Programmable Gate 

Array) is one member of the PLD family, and it is the subject of this thesis. 

PLDs have been around since the 1970's. In 1970 Harris introduced the first PLD 

device, Programmable Read-Only Memory (PROM), which had a structure of a fixed 

"AND" array followed by a programmable "OR" array. In 1975 Signetics introduced its 

Programmable Logic Array (PLA), which was in a structure of a programmable "AND" 

array followed by a programmable "OR" array. In 1978 MMI introduced its Programm

able Array Logic (PAL), in a structure of a programmable "AND" array followed by a 
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fixed "OR" array. In 1985 Lattice introduced its Generic Array Logic (GAL), which was 

similar to a PAL, but had the electrically erasable capability. As the new devices 

emerged, the new features, such as programmable output polarities, feed backs, registers, 

buried registers, macro-cells, in-system programming, fold backs and so forth were intro

duced. There were so many kinds of PLD devices, and their architectures became so 

complex that the universal and advanced design tools were greatly in demand. In 1983 

Assisted Technology released version I.Ola of its CUPL (Universal Compiler for Pro

grammable Logic) PLD compiler. In 1984 Data 1/0 released its ABEL (Advanced 

Boolean Expression Language) PLD compiler. Logic minimization and device simula

tion were standard features of both compilers. 

In 1985 Xilinx introduced its Logic Cell Array (LCA), now called FPGA, which 

had a very different architecture from the previous "AND-OR" array PLD architectures. 

The LCA consisted of a matrix of Configurable Logic Blocks (CLBs) surrounded by a 

ring of Input/Output interface Blocks (IOBs), and an interconnect network for connecting 

blocks. A CLB can be configured to function as one or two Lookup Tables (LUTs). 

With the introduction of the hardware, Xilinx released its own design tool XACT (Xilinx 

Advanced CAD Technology). There was also a similar kind of FPGA introduced by 

Actel. Instead of using LUTs, it used a multiplexer architecture in the basic logic blocks. 

Later on, gate array-like and PAL-like complex devices were introduced, they were also 

called J7PGAs. The purpose of this thesis is to present the technology mapping tech

niques for Xilinx' s lookup-table based FPGAs. 

Good design tools can greatly improve the quality of the resulting circuit. For 

instance, the very first FPGA mapping program produced the results that the number of 

CLBs necessary for the MCNC benchmark examples alu2 and 9symml were 157 and 74 

respectively, but the program based on the theories presented in this thesis results in 22 
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and 6 only. This is almost a ten times improvement. The benchmarks are same, Xilinx 

architecture remains unchanged. But the inherent characteristics of the input function is 

gradually unveiled, and the characteristics of the architecture of the chip is more per

fectly matched with those of the input function. It seems there is no universal architecture 

that can fit all kinds of functions. Hopefully in the future there will be more new archi

tectures to match the various kinds of logic circuits. 

The next chapter presents the features of Xilinx architecture. Chapter III addresses 

the current research on FPGA mapping techniques and our approach. Chapter IV defines 

some basic terminologies that will appear in later chapters. Chapter V presents the 

decomposition method for incompletely specified functions and describes the bond set 

encoding algorithm. Chapter VI introduces several techniques related to decomposition 

and FPGA mapping problems. They include graph coloring, variable partitioning and 

local transformation. Chapter VII describes the TRADE FPGA mapping program and the 

CLB reusing algorithm used in the program, and gives the evaluation of the results. 

Finally, Chapter VIII summarizes our work and addresses the future work. 



CHAPTER II 

XILINX ARCHITECTURE 

FPGA combines the high density and the versatility of gate arrays with the time

to-market advantages and off-the-shelf availability of user programmable standard parts. 

Xilinx's FPGA architecture [l] has an interior matrix of Configurable Logic Blocks 

(CLBs) and a surrounding ring of I/O interface Blocks (IOBs). Interconnect resources 

occupy the channels between the rows and columns of CLBs, and between the CLBs and 

IOBs. The functions of the CLBs, IOBs and their interconnection are controlled by a 

configuration program stored in an on-chip memory. The configuration program is 

loaded automatically from an external memory on power-up or on command, or is pro

grammed by a microprocessor as a part of the system initialization. Figure 1 shows the 

physical structure of a Xilinx chip. 

11.1. CLBS 

The core of the FPGA device is a matrix of identical CLBs as shown ~n Figure 2. 

Each CLB contains a programmable combinatorial logic section and two storage regis

ters. The combinatorial logic section is capable of implementing any Boolean function 

of its input variables. The registers can be loaded from the combinatorial logic or 

directly from a CLB input. The register outputs can drive the combinatorial logic 

directly via an internal feedback path. 
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II.2. IOBS 

The periphery of the FPGA device is made up of user programmable IOBs as 

shown in Figure 3. Each block can be programmed independently to be an input, an out

put with 3-state control or a bidirectional pin. Inputs can be programmed to recognize 

either TTL or CMOS thresholds. Each IOB also includes flip-flops that can be used to 

buffer inputs and outputs. 

CLB IOB Interconnection 

D D D D D D D 
0 D D D D D D D D 0 

0
DDDDDD D

0 
0 DD DD DD D 0 D D D D D D D 
0 DD DD DD DD 0 

~DD DD DD DD D~ 
D D D D D D D D 

~DDDDDDDDD~ 
D D D D D D D D 

~DD DD DD DD D~ 
0 DD DD DD 0 D 0 

0 
D D D. D D D D D D 

0 D D 0 D D D 0 D 0
D DD DD DD D D

0 

0 D D D D D D D D 0 
0 D D D D D D D 0 

CJD CJD CJD DD DD DD DD DCJ 

Figure 1. Physical structure of a Xilinx chip [ 1]. 
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II.3. INTERCONNECT 

The flexibility of the FPGA devices is due to the programmable resources that con-

trol the interconnection of any two points on the chip. The FPGA interconnection 

resources, as is shown in Figure 4, include a two-layer metal network of lines that run 

horizontally and vertically in the rows and columns between the CLBs. Programmable 

switches connect the inputs and outputs of IOBs and CLBs to nearby metal lines. 

Crosspoint switches and interchanges at the intersections of rows and columns can switch 

the signal from one path to another. Long lines run the entire length or breadth of the 

chip, bypassing interchanges to provide the distribution of critical signals with minimum 

delay or skew. 

. .................................................................................................... . 

DATA IN 
d i 

~QX Fiii 1- I 1----r- I i-..;.._ x 

LOGIC COMBI- I I I I I I L-,= CLB 
VARIABLES NA TORIAL OUTPUTS FUNCTION 

G II ~y 
QY I 

D Q 

ENABLE : ec RD 
CLOCK 

"l"(ENABLE) 

CLOCK .k 

RESET ; rd 
DIRECT 

"O" (INHIBIT) 

(GLOBAL RESET 

Figure 2. CLB internal logic [1]. 

..._, 
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II.4. COMBINATORIAL FUNCTIONS 

The combinatorial logic portion of the CLB uses a 32 by 1 lookup-table to imple

ment Boolean function. AK-input (K = 5 for Xilinx architecture) lookup-table is a digi

tal memory with K address lines and a one-bit output. This memory contains 2K 

(25 = 32) bits and is capable of implementing any Boolean function of K input variables. 

3-STATE : t 

(OUTPUT ENABLE) 

0 

I 

PROGRAM-CONTROLLED MEMORY CELLS 

OUT 
INVERT 

3-STATE 
INVERT 

~1 
FLIP 
FLOP 

R 
I ~ 

OUTPU 
SELECT 

SLEW 
RATE 

OUTPUT 

BUFFER 

vcc 

l/OPAD 

DIRECTIN ~ 

REGISTERED IN E • I I D Q 

FLIP 
FLOP 

OR 
LATCH 
~ R 

TILOR 
CMOS 
INPUT 
THRESHOLD 

okl I ik ...._. --~~~---~~~~~~~(GLOBALRESET) 

_ _I [JJ-CKI 
u lh_CK2 
I I U---J 
Figure 3. IOB internal logic [l]. 
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The combinatorial logic can be configured into one of the three modes (FG, F and FGM 

modes). 

Interconnect Buffer CLB Switching Matrix 

" 111111 Ill - I I 11 II 

111111 Ill II I II I D 111111 1 e::- llllllJ L 
------------------

-J I 

~o 
-

er 
la=- -

------------------

D 
...---

111111 111 111111 Ill [ 

I I I I I I 111 --- 11 I 111 I II 

Figure 4. Interconnect resources [1]. 

The FG mode, as is shown in Figure 5, generates two functions of four variables 

each. One variable, A, must be common to both functions. The second and the third 

variable can be any choice of B, C, Qx and Qy. The fourth variable can be any choice of 

DorE. 

The F mode, as is shown in Figure 6, generates any function of five variables: A, 

D, E and two choices out of B, C, Cb and Qy. 

The FGM mode, as is shown in Figure 7, allows variable E to select between two 

functions of four variables: Both have common inputs A and D and any choice out of B, 
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C, <b. and Qy for the remaining two variables. This mode might then implement some 

functions of six or seven variables. In Figure 7 ~ stands for a multiplexer. 

··········································································· . . . . . . 

c-: 

D~ 
E . 

A: 
B; QX 

c~ 

D~ 
E~ 

ANY FUNCTION 

OFUPT04 

VARIABLES 

ANY FUNCTION 

OFUPT04 

VARIABLES 

F 

G : 

. . ··········································································· 

Figure 5. FG mode [l]. 

········································································· 

A F 
B ; QX ANY FUNCTION 

j OFUPT05 

C ~ VARIABLES G 

o: 
E~~~~~~~~~-,_~~~~~__. 

~ ....................................................................... . 

Figure 6. F mode [l]. 

We are concerned only with the F and FG modes in this thesis. 



c-------i 

o: 

c~=-----f 

ANY FUNCTION 

OFUPT04 

VARIABLES 

ANY FUNCTION 

OFUPT04 

VARIABLES 

o~·-------~ 

E~·----------------

F 

G 

················································································ 

Figure 7. FGM mode [ 1 ]. 
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CHAPTER ill 

CURRENT RESEARCH VERSUS OUR APPROACH 

Technology mapping is a process of transfonning a technology independent 

Boolean network (or function) into a technology-based circuit. For lookup-table based 

FPGAs, the technology-based circuit is a network of basic logic blocks. The basic logic 

block can implement any Boolean function of up to five input variables. The traditional 

library-based technology mapping techniques can not be used because the size of the 

library increases exponentially with the number of inputs of the component in the library. 

For example, there will be 225 = 42,494,967,295 components in the library if the number 

of inputs of each component is five. 

III.l. CURRENT RESEARCH ON LOOKUP-TABLE BASED FPGA MAPPING 

Several technology mapping approaches for lookup-table based FPGAs have been 

reported. 

MIS-PGA(new) [2] starts from a tree-like network. First, it applies a variety of 

decomposition methods to decompose the input network into a feasible network. The 

feasible network is a network in which the number of inputs of each node is limited. For 

Xilinx architecture, this input number is up to five. Compared with its predecessor MIS

PGA (3], more decomposition techniques are incorporated. The decomposition methods 

that MIS-PGA(new) employs include cube packing which works well for functions with 
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more or less mutually orthogonal cubes. Roth-Karp decomposition is suitable to sym-

metric functions but doesn't work with nondecomposable functions. AND-OR decompo

sition can break an infeasible node into several feasible nodes. The generated feasible 

node is either an inverter, a two-input AND or a two-input OR gate. Cofactoring decom

position uses the concept of Shannon expansion to expand the network into a feasible 

network, in which all nodes have up to three input variables. decomp -d* partitions the 

cubes of the input network into a set of cubes having disjoint variable support, and 

creates a node for each partition of cubes and a node which is the OR of all these parti

tions. The resulting subnetworks may not be feasible, and neither are those from the ker

nel extraction decomposition. Other decomposition techniques will be used to make the 

network feasible. After decomposition, MIS-PGA(new) uses a maxflow algorithm to gen

erate all possible supernodes and solves the binate covering problem to minimize the car

dinality of the supernode set which covers the entire network. Finally, by solving the 

maximum matching problem, it merges all possible nodes into the FG mode CLBs. 

Hydra [4] uses an approach similar to MIS-PGA, but puts more attention on the FG 

mode CLBs. 

Chortle-elf [5] starts from a Directed Acyclic Graph (DAG). It first divides the 

DAG into a forest of trees. Then, by using the dynamic programming approach, it carries 

out technology mapping on each tree to find the minimum cost circuit. Several tech

niques are used, such as two _level decomposition which uses a bin packing algorithm, 

multi-level decomposition, exploiting reconvergent paths and replication of logic at 

fanout nodes. These make the C hortle-cif get a significant improvement over its prede-

cessor Chortle [6] in both the quality of solutions and the running time. 

*There is no special name for this decomposition in [2]. 
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X-map [7] converts Blif format into an if-then-else DAG, which is a network with 

the number of inputs of each node less than or equal to three. Then it goes through a 

marking and a reduction process to minimize the network. Finally, a simple merging 

algorithm is applied to merge all possible nodes into the FG mode CLBs. 

VISMAP [8] introduces the concept of invisible edges. The invisible edge is a edge 

which doesn't appear in the resulting network after mapping. It starts from a feasible 

network (in DAG format), partitions this network into several subgraphs of reasonable 

size and goes through a pre-processing and a main processing step to determine the 

invisible edges to reduce each subgraph. A merge algorithm is used to merge all possible 

nodes into the FG mode CLBs. 

The main objective of above FPGA technology mapping approaches is to minim

ize the area. There are several other approaches: MIS-PGA(d) [9], Chortle-d [10] [11] 

and DAG-MAP [12] which aim at the delay optimization. 

The FPGA mapping approaches mentioned above consist, in general, of four major 

steps: graph construction, decomposition, reduction and packing. In the graph construc

tion step, the very first step, a special kind of network-like graph or a set of subgraphs is 

created. The graph (or network) can be feasible or infeasible. Several specific FPGA 

mapping techniques will be applied to it. In the decomposition step, the most important 

step in the mapping process, a variety of decomposition methods are applied to transform 

an infeasible network into a feasible one. During the process, the decomposition algo

rithms try to minimize the number of nodes in the decomposed network as well as the 

number of input variables per node. In the Reduction step, generally more computation

ally expensive, some covering algorithms are applied in order to find a set of minimum 

number of CLBs which can cover the entire network. In the Packing step, according to 
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the specific FPGA architecture, some algorithms are used to merge the possible nodes to 

further decrease the area. Most of the operations used in the above four steps are local 

operations. The dynamic programming algorithm ensures the local operation to traverse 

across the network. The program is recursively invoked until a satisfactory result is 

reached. 

IIl.2. OUR APPROACH 

We developed several FPGA mapping techniques which apply global operations. 

We used a special memory storage technique to store ON and OFF sets and applied Cube 

calculus to them. Our program accepts incompletely specified functions and performs a 

quasi-optimum don't care (DC) outputs assignment. The don't care assignment is to 

assign don't care outputs as 0 or 1 to make the function more simple. With respect to the 

algorithms used in the program, only ON and OFF sets are stored and the DC set is not 

needed to process. (ON set, OFF set, DC set and Cube calculus will be explained in the 

next chapter). Our FPGA mapping techniques try to reconstruct the input network in 

such a way that: 

• the decomposed network is technology feasible (for Xilinx architecture, the 

input variables of each node is up to five), 

• the number of nodes in the network is as small as possible, 

• the connections between the nodes are as simple as possible, and 

• the path from the input to output, which is measured by the number of CLB 

layers, is as short as possible. 



15 

This approach generates circuits which fit better to Xilinx technology and have less 

CLBs, less connections and less layers. Thus the circuit is faster and easier to place and 

route. 

The presented methods have the following assets: 

• The input data to the program is an incompletely specified Boolean function 

described by the sets of ON and OFF cubes. It is the property of this method that the 

more DC cubes exist, the more efficient the method becomes. This makes our 

approach particularly powerful for strongly unspecified Boolean functions. 

• The decomposition methods are specifically adapted to the lookup-table based FPGA 

architecture. 

• A fast variable partitioning method is used to quickly find the good quality partitions 

for decomposition, avoiding the thorough test of all possible decomposition charts. 

• In order to simplify the decomposed blocks, the column multiplicity minimization 

and the quasi-optimum don't care assignment are performed, they are achieved 

through a fast graph coloring algorithm. A bond set encoding algorithm is used to 

further simplify the decomposed blocks. 

• A local transformation method is used to make the decomposition possible for all 

Boolean functions. 

• A CLB reusing algorithm is used to decrease the number of CLB s used. in the final 

mapped circuit. 



CHAPTER IV 

BASIC DEFINITIONS 

Suppose that one intends to decompose an incompletely specified function consist

ing of twenty-five inputs and twenty outputs into several smaller logic blocks. This func-

tion is given in Espresso format as follows: 

.i 25 

.o 20 

.ilb i1 i2 i3 i4 i5 i6 i7 i8 i9 ilO ill il2 i13 i14 i15 
i16 il 7 i18 i19 i20 i21 i22 i23 i24 i25 

.ob ol o2 o3 o4 o5 06 o7 08 o9 olO ol 1012013 014 015 
016 017 018 019 020 

.type fr 

10-01-010101-01-01010-10-
1-11-111-1--1100000-0l-1-
00000001-01010101-11-0110 

00100101010101010-------1 

.end 

10-10010-1010-01-10-
01-01-00101010-----1 
01-0-1-010101-1101-0 

1-110101001---010101 

Espresso format is a two-level description of the Boolean function. It is a charac

ter matrix with keywords embedded in the input to specify the size of the matrix and the 

logical format of the input function. In the above file: 

.i 25 Specifies the number of input variables (25) . 

. o 20 Specifies the number of output functions (20). 
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.ilb i1 i2 ...... i25 

Gives the name of input variables. i1 is the name of the input variable 

corresponding to the first column of the input cube array (left matrix of the 

above file), i2 to the second column, and so forth . 

. ob ol o2 ...... 020 

Gives the name of output functions. o 1 is the name of the output function 

corresponding to the first column of the output array (right matrix of the above 

file), o2 to the second column, and so forth . 

. type fr Sets the logical interpretation of the character matrix of output array. fr 

specifies that: A 1 in the output array means that the corresponding cube in the 

input cube array belongs to the ON set. A 0 in the output array means that the 

corresponding cube in the input cube array belongs to the OFF set. The rest (

' s in the output array) means that the corresponding cube in the input cube 

array belongs to the DC set. 

.end Marks the end of the input logic. 

With respect to the algorithms used in the program, DC cubes are not needed to 

store at all in the program when the respective output function is minimized. This 

decreas~s the memory demand and becomes more efficient when there exist many DC 

cubes in the input function. 

How do we deal with such a decomposition problem? By now there are very few 

of CAE tools for the general Boolean decompositions [13] [14] [15] [16]. In most of the 

existing systems, during the process of constructing the Truth-Tables (or Boolean equa- · 

tions) from the practical problems, DC outputs are mistreated as O's (or 1 's) because of 
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the lack of the tools that can handle DC outputs. This happens anywhere, and leads to 

the results which are far from the optimum ones. Let's first give the fundamental 

definitions. 

Definition 1. Cube 

A Cube is a compact expression of a set of minterms. For example, minterms 

11010 and 11000 can be expressed as a cube 110-0. "-"means it takes the value of both 0 

and 1. 

Definition 2. ON Cube 

If the output of a cube is 1, it is called the ON cube. 

Definition 3. OFF Cube 

If the output of a cube is 0, it is called the OFF cube. 

Definition 4. DC Cube 

If the output of a cube is - (don't care. It can be either 0 or 1), it is called the DC 

cube. 

Definition 5. ON Set 

The ON set is the collection of all ON cubes. 

Definition 6. OFF Set 

The OFF set is the collection of all OFF cubes. 

Definition 7. DC Set 

The DC set is the collection of all DC cubes. 
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Cube, ON cube, OFF cube, DC cube, ON set, OFF set and DC set are showed in 

Figure 8. 

Cube 
J, 

CN cube ~ 10110-
Drrn 1--000 set 

111010 

OFF cube ~ 0-1001 n rOFF set 01101-
0-1001 

oc cube ~ 01010-
: } rOC 0100-1 set 

--0101 

Figure 8. Cubes and cube sets. 

Definition 8. Cube Calculus 

The Cube calculus is a set of operations applied to cubes. The Intersection ( •) 

operation is used in our program. Figure 9 shows the rules of Intersection operation. 

The E is the result of the Intersection of 0 with 1 or 1 with 0. x has the same meaning as 

• 0 1 x 

0 0 E 0 

1 E 1 1 

x 0 1 x 

Figure 9. Intersection operation. 
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From Figure 9, the rules are: 0•0=0,0•1 = E, 0 • x = 0, 1 • 0 = E, 1•1 = 1, 1 • x 

= 1, x • 0 = 0, x • 1 = 1, and x • x = x. For example, 

1010xx 
lOOxlx 

lOeOlx 

Definition 9. Decomposition 

The decomposition means to decompose a large block of logic, which is difficult to 

analyze and implement, into several relatively smaller blocks which are easier to imple-

ment. 

Figure 10 shows a general diagram of decomposition. Boolean decomposition 

uses Boolean representation. In some cases, decomposition is a must. For instance, 

some kinds of decompositions must be done in order to get a feasible network. We are 

not aware of any efficient tools for the general Boolean decomposition of the incom-

pletely specified functions. 

Decomposition i 

Figure 10. Decomposition. 
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Unfortunately, not every function is decomposable. How can we test whether a 

function is decomposable or not? If it is, how can we decompose it? If not, how can we 

make it decomposable? These questions will be answered in this thesis. 

Definition 10. Decomposition Chart 

The decomposition chart [17] (18] is a chart that is similar to the Karnaugh map 

with the only difference being that the column and row indexes of the decomposition 

chart are in the straight binary order, while that of the Karnaugh map are in the Gray 

code order. 

Figure 11 (b) shows an example of a decomposition chart. The corresponding Kar

naugh map is shown in Figure ll(a). The column of the chart is denoted as a vector of 

its successive min terms. For example, column 1 in Figure 11 (b) is denoted as a vector [ 

1, 1, 0, 1 ]. Because there is no essential difference between the Karnaugh map and the 

decomposition chart, The Karnaugh map will be used instead of decomposition chart for 

illustration later in this thesis. 

Definition 11. Bond Set 

The bond set is a set of variables forming the columns of the decomposition chart. 

In Figure l l(b), { c, d, e } is a bond set. 

Definition 12. Free Set 

The free set is a set of variables forming the rows of the decomposition chart. In 

Figure 11 (b ), { a, b } is a free set. 

Definition 13. Column Multiplicity 

The column multiplicity, denoted by u(BIA), is the number of different columns in 

a decomposition chart. In u(BIA), B stands for the free set, A stands for the bond set. 



For example, in Figure ll{b), B = { a, b }, A= { c, d, e } and u(BIA) = u(ablcde) = 3. 

cde 

ab 

x 1 1 0 1 0 0 1 

x 1 x 1 x x 1 1 

x 1 x x x x x 0 

x 0 0 1 0 1 1 0 
f 

Column O 1 3 2 6 7 5 4 
(a) 

cde 

' ab 
' 

x 1 
x 1 

x 0 

x 1 

0 1 

1 x 

1 0 
x x 

1 0 1 0 

1 1 x x 

0 1 0 1 

0 x x x 
f 

Column O 1 2 3 4 5 6 7 

(b) 

Figure 11. Karnaugh map and decomposition chart 

Definition 14. Compatible and Incompatible 
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If the two horizontally corresponding cells in two columns of the decomposition 

chart are (0,0), (1,1), (0,x), (l,x), (x,O), (x,l) or {x,x), these two cells are called compati-

ble. If all the corresponding cells in two columns are compatible, these two columns are 

called compatible. Otherwise, incompatible. 

In Figure 1 l(b) columns 1 ( [1, 1, 0, 1] ) and 6 ( [l, x, 0, x] ) are compatible, while 

columns 5 ( [0, 1, 1, x] ) and 6 ( [l, x, 0, x] ) are incompatible. In the program, we use 

Cube calculus to test whether two columns are compatible or not. The formula [ 19] to 

test the compatibility of two columns ( columns i and j) is: 

ON(i) • OFFG) = <I> } 

& ==> i-th and j-th column are compatible 
ON(j) • OFF(i) = <I> 

The <I> stands for empty set. The formula states that if the Intersection of the ON set of 

column i and the OFF set of column j is empty, and the Intersection of the ON set of 

column j and the OFF set of column i is empty as well, these two columns are 
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compatible. Otherwise, they are incompatible. 

Definition 15. Incompatibility Graph 

The incompatibility graph is a graph which illustrates the relationship among 

columns of the decomposition chart. Each node in the incompatibility graph corresponds 

to a column in the decomposition chart. If two columns are incompatible, there is an 

edge between the corresponding nodes. If they are compatible, there is no edge. Figure 

12 shows a incompatibility graph corresponding to the decomposition chart in Figure 

1 l(b). 

Figure 12. Example of an incompatibility graph. 

In Figure 12, the number in each node (denoted by a circle) is the column number. 

The letter beside the circle is the color assigned to the node (column) after graph color

ing. Graph coloring will be discussed in Chapter VI. 



CHAPTER V 

HOW TO PERFORM DECOMPOSITIONS? 

In this chapter, the generalized Boolean decomposition of incompletely specified 

functions, and the bond set encoding algorithm are presented. The basic ideas follow 

(17] (18] [20] [21] and the general approach based on graph coloring is patterned after 

[19] [22]. 

V.1. DECOMPOSITION OF THE INCOMPLETELY SPECIFIED FUNCTIONS 

Curtis has described the decomposition of completely specified functions in (18] 

[20]. Curtis proved the fundamental theorem: 

u(BIA) ~2k 

<=> 

f (A, B) = F[ $i (A), $1 (A), · · · , $k (A), B ] 

It states that if the column multiplicity u(BIA) (under the partition of the bond set A and 

free set B) is less than 2k, then the function f(A, B) can be decomposed into the form: 

f(A, B) = F[ $i (A), $1 (A), · · · , $k (A), B ] 

The graph representation of this theorem is shown in Figure 13. From Figure 13 

we observe that, after decomposition, the big block f is broken into several smaller sub-
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blocks cf>1, cf>2, ... , cf>k and F. If we restrict the variable number in the bond set A to be less 

than or equal to five, cf>1, cf>2, ... , cf>k can be implemented by CLBs of the Xilinx chip. If 

we further decompose subblock F until the input variables of each subblocks are less than 

or equal to five, the function f would be realized by the Xilinx chip. This is shown in 

Figure 14. 

The generalization of the Ashenhurst decomposition for incompletely specified 

functions based on proper graph coloring was presented in [19]. Perkowski first used 

graph coloring to minimize the column multiplicity, then used multiplexers to realize the 

circuit. 

The essential problem of the decomposition of incompletely specified function is 

how to assign DC outputs as 0 or 1 to minimize the column multiplicity. Because the 

number of colors in a properly colored incompatibility graph is the same as the number 

of different columns (column multiplicity) in a decomposition chart [19], we can transfer 

A{ 
B{ 

A{ 
f(A, B) "\\ A { 

f ~ u(B I A) ~ 2k " 

A{ 
B{~~ 

Figure 13. Curtis decomposition. 

F[ cf>1, .•• , cf>k, B ] 
F 

= f(A, B) 

~ 



A{ 
B{ 

f 

IAl~5 

ICl~5 

A{ 
f(A, B) \., A { 

A{ 
B{ __ 

c{ 
c{ 

c{ 
o{---=--i~ 

F 

G 
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F[ <1>1, ... , <1>k, B] 

= f(A, B) 

G[ T\1, ..• , T\k, D] 

f 

Figure 14. Application of the Curtis decomposition to FPGA mapping. 

the problem of finding the smallest column multiplicity into the one of performing the 

proper graph coloring to find the smallest number of colors. We use the following cri-

terion: 

Set a expected number (n) of output variables from the bond set, n is less than the 

number of variables in the bond set. If the column multiplicity is equal to or less 
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than 2k, and k is less than or equal to n, the decomposition is successful (or the func-

tion is decomposable) for this bond set under this expected value of n. Otherwise, 

the function is nondecomposable for this bond set under this expected value of n. 

After a successful decomposition, the number of input variables of each subfunc-

tion (decomposed blocks, like <!> 1, <!>2, ••• , <l>k and F in Figure 13) is decreased, and the 

complexity of each subfunction is decreased as well. This will be illustrated with an 

example. Figure 15(a) is the Karnaugh map of function f with don't care outputs. We 

intend to decompose the function f into several subfunctions (may be L, M and N as 

shown in Figure 15(c)) with the input variables of each subfunction less than or equal to 

four. 

cde 

ab 

x 1 1 0 1 0 0 1 
x 1 x 1 x x 1 1 

x 1 x x x x x 0 

x 0 0 1 0 1 1 0 
f 

Column O 1 3 2 6 7 5 4 
(a) 

cde 

' ab ... 

x 

x 

I X 

x 

1 

1 

0 

1 

0 1 1 0 

1 x 1 1 

1 0 0 1 
x x 0 x 

Column O 1 2 3 4 5 

(b) 

a------
b------- f 
c d-yQ-:1 
e 

1 0 

x x 

0 1 

x x 
f 

6 7 

Figure 15. Karnaugh map, decomposition chart and the expected decomposition. 
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According to the rules presented above, the incompatibility graph is created as 

shown in Figure 16. After graph coloring, three colors (which means u = 3) which group 

nodes as A = { 0, 1, 3, 6}, B = { 2, 5, 7} and C = { 4} are obtained. The columns with the 

same color are combined horizontally by the rules: (0, 0) ~ 0, (0, x) ~ 0, (x, 0) ~ 0, (1, 

1) ~ 1, (1, x) ~ 1, (x, 1) ~ 1 and (x, x) ~ x. For example, columns 0, 1, 3 and 6 in 

Figure 15(a) are combined and replaced by a new vector [ 1, 1, 1, 0 ] as shown in the 

final don't care assignment in Figure 17. 

Figure 16. Incompatibility graph. 

cde 

ab 
" 

1 1 1 0 1 0 0 1 

1 1 1 1 1 1 1 1 

1 1 1 x 1 x x 0 

I 0 0 0 1 0 1 1 0 
f 

Column O 1 3 2 6 7 5 4 
Color A A A B A B B C 

Figure 17. Final don't care assignment. 
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In the above example, we have chosen the variables a and b as the free set and 

variables c, d and e as the bond set. This partition results in a successful decomposition in 

sense of the column multiplicity less than or equal to three. How to chose the partition 

will be discussed in Chapter VI. In Figure 15( c ), x and y are the encoded outputs of the 

bond set, two variables are enough for three different columns ( 3 $; 22 = 4). 

V.2. BOND SET ENCODING 

There are many methods [23] [24] to implement the decomposed blocks (blocks L, 

Mand Nin Figure 15(c)). Here the author introduces an algorithm to encode the bond 

set. This algorithm aims at simplifying the block N. Block L and M will be imple

mented by CLBs. It doesn't matter then how complex these two blocks are as long as the 

number of their input variables are less than or equal to four (we assume that the CLBs 

have up to four inputs for this example). The encoding algorithm assigns adjacent codes 

(Gray code) to the similar columns. This increases the number of large cubes in the 

block N. The similarity between two columns is measured by the so-called Similarity 

Factor. The more similar the two columns, the lower the value of the Similarity Factor. 

The Similarity Factor is the number of minterms which cause the two columns not ident

ical. The Similarity Factor between the i-th and j-th columns is: 

Similarity Factor = minterm( ON(i) • OFFG) ) + minterm( OFF(i) •ONG) ) 

In equation, "mintermO" calculates the number of minterms. "ON(i) • OFFG)'' is the 

Intersection of array of ON cubes of i-th column with array of OFF cubes of j-th column. 

"OFF(i) • ON(j)" is the Intersection of array of OFF cubes of i-th column with array of 

ON cubes of j-th column. 
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In this example, bond set { c, d, e} forms eight columns as shown in Figure 15(a). 

After graph coloring, it is found that there are only three different columns out of these 

eight columns. These three columns are with the vector p, 1, 1, O] corresponding to 

color A, [~corresponding to color B and ~]~ding to color C as 

shown in Fig~e 17. We introduce two new variables .f and y to encode the bond set { c, 

d, e}. First calculate the Similarity Factors. The Similarity Factor between columns 

corresponding to color A and B has a value of 2. The value of the Similarity Factor 

between columns corresponding to color A and C is 1. And the value of the Similarity 

Factor between columns corresponding to color B and C is 2. A Similarity Factors Table 

is created as shown in Figure 18. 

B C 

A-B A-C 
A 

2 1 

B-C 
B 

2 

Figure 18. Similarity Factor Table. 

Because the Similarity Factor between columns corresponding to color A and C is 

smaller (with a value of 1), these two columns are put in adjacent position as shown in 

Figure 19(c). Code the column corresponding to color C as(oo:' the column correspond-
~('(11 I/-, 

ing to color A as~~1; the column corresponding to color B. ~ '1 \ ~s /~own in Figure 

19( c ), which is the Karriaugh map of the block N. Color A has the cod@ this means 

that x is equal to 0 and y is equal to 1 for all columns with the color A. These columns 

are 000, 001, 011 and 110 in Figure 17, therefore the cells 000, 001, 011 and 110 of the 

Karnaugh map in Figure 19(a), which is the Karnaugh map of the block L, are filled with 
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0 because xis equal to 0. The same cells in Figure 19(b), which is the Karnaugh map of 

the block M, are filled with 1 because y is equal to 1. The same way, color B has the 

code 11, this means that both x and y are equal to 1. Columns 010, 111, and 101 

correspond to color B, therefore the cells 010, 111 and 101 of the Karnaugh maps in both 

Figure 19(a) and (b) are filled with 1. Color Chas the code 00, both x and y are equal to 

0, column 100 correspond to color C, the cell 100 of the Karna ugh maps in both Figure 

19(a) and (b) are filled with 0. 

de 
c " 00 01 11 10 

0 l 0 I 0 I 0 !CD 
1 I 0 0 ___ ___...____..____..... x 

(a) Block L 

I I I =:=t=: I f 
Color C A B 

(c) Block N 

y 

(b) Block M 

.____.__......___....____. f 
Color A B C 

(d) Block N 

Figure 19. Decomposed Karnaugh maps. 

Two variables can encode up to four columns (22 = 4). There are only three 

columns, corresponding to color A, B and C, that need to be encoded in our example. 

We fill the remaining column (column 10 in Figure 19(c)) with don't cares (DC column). 

The existence of this newly introduced DC column will further simplify the block N. 

This example illustrated that even the input function is completely specified, our algo-
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rithm may introduce DCs in the middle of the process, which are very useful for the 

simplification of the later stages. 

Figure 19(d) shows a Karnaugh map of an alternative implementation for the func

tion f. Which uses the natural order of the colors. Clearly, the Karnaugh map in Figure 

19( c) is more simple than that in Figure 19( d). The pseudo-code for bond set encoding is 

shown in Figure 20. The Blif format of the result is as follows: 

.model example 

.inputs a b c d e 

.outputs f 

.names cdex 
1-1 1 
010 1 

.names c de y 
0- - 1 
- - 1 1 
-1- 1 

.names a b x y f 
0-0- 1 
-1-1 1 
1-1- 1 

.end 

Blif format is a multi-level description of the Boolean network. Each node in this 

representation has a single output. Therefore, each net (or signal) has only a single 

driver, and one can therefore name either the signal or the gate which drives the signal 

without ambiguity . 

. model example Specifies the name of the model (example) . 

.inputs ab c de Gives the name of the input variables (a, b, c, d, e) . 

. outputs f Gives the name of the output function (f). 



.names c de x 

.names c de x 
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With the following ON set describes the logic of a node (subblock L 

in Figure 15(c)). The input variables to this node are c, d, e, and the 

output variable is x. 

With the following ON set describes the logic of a node (subblock M 

in Figure 15(c)). The input variables to this node are c, d, e, and the 

output variable is y . 

. names a b x y f With the following ON set describes the logic of a node (subblock N 

in Figure 15(c)). The input variables to this node are a, b, x, y, and 

the output variable is f . 

. end Marks the end of this model. 



bond set encoding( ) 
{ - -

} 

create Similarity Factor Table; 
sort Similarity Factor Table in increasing order; 

l_c =one column of the column pair at position 0 of the queue; 
mark l c as used; 
r - c = another column of the column pair at position 0 of the queue; 
mark r c as used; 
put l_c-and r _c in line; !* l_c at left, r _cat right *! 
c_n = 2; 

while ( c n < column multiplicity ) 

{ fi -( . 
1 

. ~olumn multiplicity*( column multiplicity - 1) . ) 

} 

or z = · z < · z++ ' 2 ' 
{ 

} 

if ( ( c _i = one of the pair at position i) = = l _ c ) 
{ 

mark c i as used; 
put c rat the left of I c; 
l_c =-c_i; -
c n++; 
break; 

} else if ( (c_i =one of the pair at position i) == r _c) 
{ 

mark c i as used; 
put c i-at the right of r c; 
r_c~c_i; -
c n++; 
break; 

} 

Figure 20. Pseudo-code of bond set encoding. 
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CHAPTER VI 

THREE BASIC SPEEDUP APPROACHES 

There are three fundamental problems in the efficient implementation of the FPGA 

mapping program which is based on the Boolean decomposition of incompletely 

specified function: 

• How to chose the bond set to minimize the column multiplicity? 

• How to minimize the column multiplicity for a given bond set and 

• how to transform a nondecomposable function into a decomposable one? 

These questions will be discussed in this chapter. 

VI. l. GRAPH COLORING 

We have reduced the problem of finding the smallest column multiplicity to the 

one of performing proper graph coloring with the minimum number of colors. Graph 

coloring [25] [26] [27] [28]. is one in which every two nodes linked by an edge are 

assigned different colors. Minimum graph coloring is one with the minimum number of 

colors. 

Graph coloring is an NP-hard problem. There has been a substantial research on it 

in order to find the algorithms for a quasi-optimum solution with the fastest possible 

speed. The author presents here a fast graph coloring method. This method has been 
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programmed and tested on many examples, it resulted in excellent colorings. The 

method found exact colorings for graphs in [25], and even found better coloring than that 

that was claimed to be minimal in the book. We call our method the "Color Influence 

Method". 

The main idea of this method is to evaluate the influence of the color assignment to 

a node over the entire graph, and chose the color which results in a minimum influence. 

The minimum influence means that the color assignment to a node will produce a 

minimum increase of color-in-bar's. The color-in-bar's (restrictions) are the colors that 

the node cannot be assigned with, which are denoted by A, B. .. , AB,AC, ... as in Figure 

21. After each color assignment to a node, the complexity of the graph is decreased. 

This is a greedy method with global evaluation. The next example is used to illustrate 

this method. 

Figure 2l(a) shows a graph that need to be colored. Start from the node with the 

most number of edges, that is node 2, assign color A to it. This color assignment results 

in that nodes 1, 3, 5 and 6 cannot be assigned with color A, denote this restriction on 

those nodes by color-in-bar A's, and remove all corresponding edges as shown in Figure 

21(b). Then, color the node with the most number of color-in-bar's. If there are more 

than one node with the same number of color-in-bar's, chose the node with the most 

number of edges. If there are still more than one node, evaluate the influence of each 

color assignment, and assign the node with a color which results in a minimum influence. 

If a node can be assigned with more than one color, the evaluation of the influence of 

each color assignment is also required. According to the rules stated above, nodes 5 and 

6 are selected because they have the same number of color-in-bar's and the same number 

of edges. Assigning color B to node 6 will result in a restriction AB on node 1 and a res-

triction AB on node 5. While assigning color B to node 5 will result in a restriction AB 
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on node 6 and a restriction B on node 4. Because one AB restriction and one B restric-

tion result in less influence than two AB restrictions, assigning a color to node 5 produces 

less influence than assigning a color to node 6. Node 5 is selected, give it color B as 

shown in Figure 2l(c). The same way, assign color C to node 6 as shown in Figure 

2l(d), color B to node 1 as shown in Figure 2l(e). Nodes 3 and 4 are in the same condi

tion, and have the same influence to the graph. If node 3 is assigned with color B, node 4 

can be assigned with color A or C. The final color assignment is shown in Figure 2l(f). 

A~A AG)-G)AB 

AG) Cf A AG) G) B 

AG)-Q AG)-QB 

(a) (b) (c) 

ACG) G) c BG) G)c BG) G)c 

AG) G) B AG) G)B AG) G) B 

AG)-Qi3 AG)-QB BG) QA 

(d) (e) (f) 

Figure 21. Graph coloring using Color Influence Method. 

The above algorithm was incorporated into a program, named COLOR, and was 

run on a networked SUN 4/670MP Workstation. The results are listed in Table I. The 

program was tested on graphs with different number of nodes (N = 100 ~ 1000) and 

~ 
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different edge percentages (P = 10% ~ 90% ). The maximum number of edges in a 

graph is N(N - _l), N is the number of nodes in the graph. The edge percentage (P) is 
2 

simply the percentage of this maximum number of edges. Edges in the graph are ran-

domly generated. 

TABLE I 

TIME (T) VS. NODE NUMBER (N) AND EDGE PERCENTAGE (P) 

N~ 
100 200 300 400 500 600 700 800 900 1000 J,p 

T 0.3 1.9 5.2 10.4 18.6 28.6 42.9 59.9 81.8 107.9 
10% 

c 6 9 12 14 16 19 21 23 25 28 

T 0.5 3.0 8.0 16.9 29.2 45.5 68.2 97.2 132.3 170.4 
20% 

c 9 15 19 22 28 32 36 41 44 48 

T 0.7 4.0 10.7 22.1 39.2 62.9 93.6 133.7 181.4 238.1 
30% 

c 12 20 26 34 39 45 51 58 63 69 

T 0.9 4.9 14.5 28.4 51.0 80.7 123.8 174.7 232.1 300.5 
40% 

c 16 24 36 44 52 61 70 76 84 91 

T 1.1 6.1 16.6 35.6 62.1 100.6 154.4 213.1 294.5 393.5 
50% 

c 20 33 44 56 67 77 88 97 108 117 

T 1.3 7.5 20.9 43.4 78.8 122.9 186.5 268.0 368.8 480.6 
60% 

c 23 37 52 68 81 94 107 120 135 147 

T 1.5 9.0 25.0 52.2 93.9 148.9 222.1 322.5 441.8 579.0 
70% 

c 27 47 67 84 104 118 136 154 164 186 

T 1.9 11.2 31.3 66.9 116.4 194.8 295.3 413.5 558.0 748.5 
80% 

c 34 61 85 104 129 149 172 194 212 231 

T 2.4 14.7 42.8 86.0 164.3 262.7 389.1 561.3 766.2 1003.2 
90% 

c 45 79 111 136 169 198 230 255 279 306 
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In Table I, N is the number of nodes in the graph. P is the edge percentage. T is 

the running time of the program which is measured by time command of UNIX system. 

The unit of T is second. C is the number of colors after graph coloring. Figure 22 shows 

a graphical representation of this table. 

T 

lOOOt 
Ip= 90% 

900 T oc N2.5 

800 
I I 

P=80% 
I I I 

700 

600t 

500 

I I ;P=10% 

P=60% 

400~ 
300 //&:::: 

P=30% 
200~ / / / / / / _.,,/ P=20% 

lOOt I 

I 

p~:% 
0 100 200 300 400 500 600 700 800 900 1000 N 

Figure 22. Time vs. node Number and edge Percentage. 
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By statistic analysis, it is found that the time (T) is proportional to the number of 

nodes (N) in a polynomial form T oc N2·5 . So, we solve the graph coloring problem in 

polynomial time (not in exponential time). For small graphs, we are able to verify that 

the algorithm gives the minimum solutions. Therefore we hope that it gives good results 

for larger graphs as well. But we are not able to verify this claim since we couldn't 

access an exact minimal optimizer. The pseudo-code for graph coloring is shown in Fig-

ure 23. 

graph_ coloring() 
{ 

} 

sort nodes in decreasing order by the number of edges; 

color first node; 
remove it; 
mark restrictions; 
remove edges; 

while ( ( cib _set = largest_ number_ color _in_ bar( node_ queue ) ) I= empty ) 
{ 

} 

e _set = largest_ number_ edge( cib _set); 

if ( I e set I > 1 ) 
]_ n = minimum influence( e set ); - - -

else 
f_n = e_set; 

color f n; 
remove/ n; 
mark restrictions; 
remove edges; 

Figure 23. Pseudo-code of graph coloring. 
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VI.2. VARIABLE PARTITIONING 

Variable partitioning is the separation of the input variables into two sets, the bond 

set and the free set. Each partition corresponds to an individual decomposition chart 

which is going to be used to calculate the column multiplicity. In order to find the 

decomposition that corresponds to the smallest column multiplicity, one needs to go 

through all possible decomposition charts. If there are total m input variables and n vari-

ables in the bond set, the number of all possible partitions is (~). For example, if m = 64 

and n = 5, then <65
4) = 7,624,512. If the time required to calculate the column multipli

city of a decomposition chart is 0.01 second, one would need more than 20 hours to com

plete all calculations. This 20 hours will be repeated thousands of times to get the FPGA 

mapping done. Therefore, it is impractical to try all possible partitions to find the best 

one. 

Here the author presents a method called the Pair Weighting Method to quickly 

find the "best" partitions. This heuristic method will produce as many as four "best" par

titions which are to be used for decomposition. 

The basic idea of this method is to arrange cubes (minterms) in the Karnaugh map 

in such a way that they become more concentrated in either certain columns or rows, like 

the arrangements in Figure 24(a) and (b), but not like that in Figure 24(c). 

For a given function, the number of minterms is fixed, the number of cubes after 

minimization is fixed as well. There are six minterms in Figure 24(a). Under that parti

tion, the min terms are concentrated in two columns. In Figure 24(b) it is the same func

tion. Under that partition, the min terms are concentrated in two rows. In Figure 24( c) it 

is the same function again, but the minterms are diverged across the Karnaugh map. 
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Clearly, the column multiplicities under the partitions shown in Figure 24(a) and (b) are 

less than that in Figure 24( c ). 

0 0 0 0 0 
0 0 
0 0 0 0 0 

f f 

(a) (b) 

0 0 
0 0 

0 
0 f 

(c) 

Figure 24. Cube arrangements. 

How can we put more cubes in some certain columns or rows? We first analyze 

the relative positions between two cubes in the Kamaugh map. There are four possible 

relative positions between two cubes as shown in Figure 25. The rectangles stand for 

cubes. 

The shaded areas from both cubes are the possible parts that can be put into the 

same columns or rows in the Karnaugh map. The question then arises, under what parti

tion do the shaded areas from both cubes reside in the same columns or rows? The next 

example is used to show how to find that partition. The ON set of function f in Figure 26 

is: 



abed 
cubel O-O-
cube2 1110 

The remaining cubes belong to the OFF set. 

D 
-- :·:~~::·:::·:~~::r~:~~~:~::;~: :>:>::.--::.·1 ..... r:.::~:~:~:~::::~~:· 

noe onee more than one e all e's 

(a) (b) (c) (d) 

Figure 25. Relative positions between two cubes. 

cd 
ab~ 
ool~ ... 1 1 cubel 

111 I I l<DI~ cube2 

10 
f 

Figure 26. Karnaugh map of function f. 
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D 

The column multiplicity is three under this partition (ablcd, bond set { c, d}, free 

set {a, b} ). The Intersection of the two cubes results in the "Intersection Cube" cubeO. 
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abed 
cubel O-O-
cube2 1110 

cubeO £1£0 

Because there are two £' s, these two cubes have the relative position as shown in 

Figure 25(c). The comparisons of the cubeO with cubel and the cubeO with cube2 result 

in the Partition Cubes Cl and C2, respectively: 

cubeO 
cubel 

Cl 

abed 
£1£0 
0-0-

NNNN 

cubeO 
cube2 

C2 

abed 
£1£0 
1110 

NYNY 

The Partition Cube is formed as follows: 

If the corresponding bits of the two cubes are the same, there is a Y in the Partition 

Cube. Otherwise N. 

Next, according to the Partition Cubes form the partitions which try to put as many 

shaded areas from both cubes into the same columns or rows as possible. We ignore the 

Partition Cubes if they have the value of all Y's or all N's because they have nonsense. 

Therefore, Cl is ignored. Group variables corresponding to Yin C2 into a group, group 

{b, d}, forming a partition aclbd. Under this partition, part of cubel and part of cube2 

reside in column 10 ( b = 1, d = 0) of the Karnaugh map. These are minterms 0010 and 

1110 as shaded in Figure 27(a). This is just what we want that both cubes have a part in 

one column. Group variables corresponding to N in C2 into a group, group {a, c}, form

ing another partition bdlac. Under this partition, part of cubel and part of cube2 reside in 

row 10 ( b = 1, d = 0) of the Karnaugh map. They are minterms 1000 and 1011 (shaded 

as well) in Figure 27 (b ). Again, this is what we want that both cubes have a part in one 

row. 
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ac 00 01 11 10 
~ 
1 

If-
01 

f If 
(a) (b) 

Figure 27. Kamaugh maps for the 'best' partitions. 

Clearly, the bond set { b, d} is a better partition which produces a column multipli

city of two, while bond set {a, c} results in a column multiplicity of three. In summary, 

we first calculate all Partition Cubes for each pair of variables. Each Partition Cube will 

form a partition. We count the appearance number of each pair and according to this 

number form the final partitions. 

Next is a more complex example used to show the detailed procedure of variable 

partitioning. Figure 28 shows the Karnaugh map of function f with the column multipli

city u(ablcde) of five. Its Espresso format input file is as follows: 

.I 5 

.o 1 

.ilb ab c de 

.ob f 

.type fr 

00-01 1 
-0101 1 
01-11 1 
-1111 1 
----0 0 
1-0-- 0 
-0-1- 0 
-1-0- 0 

.end 
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cde 
ab 

' 
0 1 0 0 0 0 1 0 

0 0 1 0 0 1 0 0 

0 0 0 0 0 1 0 0 
I 0 0 0 0 0 0 1 0 

f 

Figure 28. Variable partitioning example. 

(1) Calculate the Intersection Cubes. For ON set, they are: 

00-01 00-01 00-01 -0101 -0101 01-11 
-0101 01-11 -1111 01-11 -1111 -1111 
----- ----- ----- ----- ----- -----
00101 Oe-el Oelel Oelel -elel 01111 

For OFF set, they are: 

----0 ----0 ----0 1-0-- 1-0-- -0-1-
1-0-- -0-1- -1-0- -0-1- -1-0- -1-0-
----- ----- ----- ----- ----- -----
1-0-0 -0-10 -1-00 1001- 1100- -E-E-

(2) Calculate the Partition Cubes. For ON set, they are: 

00101 00101 Oe-el Oe-el Oelel Oelel 
00-01 -0101 00-01 01-11 00-01 -1111 
----- ----- ----- ----- ----- -----
YYNYY NYYYY YNYNY YNYNY YNNNY NNYNY 

Oelel Oelel -elel -elel 01111 01111 
-0101 01-11 -0101 -1111 01-11 -1111 
----- ----- ----- ----- ----- -----
NNYNY YNNNY YNYNY YNYNY YYNYY NYYYY 

For OFF set, they are: 

1-0-0 1-0-0 -0-10 -0-10 -1-00 -1-00 
----0 1-0-- ----0 -0-1- ----0 -1-0-
----- ----- ----- ----- ----- -----
NYNYY YYYYN YNYNY YYYYN YNYNY YYYYN 
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1001- 1001- 1100- 1100- -E-E- -E-E-
1-0- - -0-1- 1-0-- -1-0- -0-1- -1-0-
----- ----- ----- ----- ----- -----
YNYNY NYNYY YNYNY NYNYY YNYNY YNYNY 

(3) Calculate the Relationship Factors. Create four triangle tables as shown in Figure 29, 

call them ON-Y Table, ON-N Table, OFF-Y Table and OFF-N Table. Initiate all their 

cells to zero. The value in each cell represents a weighted Relationship Factor between 

the variables corresponding to the row and column labels of the table. Later on, we will 

sort the Relationship Factor Table. In order to keep the correct correspondence between 

the value and the variable pair it represents, we attach two more storage units to each cell 

to store the two variables that the Relationship Factor corresponds to. So the Relation

ship Factor Table is, in fact, ·a 3-tuple list. For example, the ON-Y Table in Figure 29 is 

a list: {(a, b, 2), (a, c, 4), (a, d, 2), (a, e, 8), (b, c, 2), (b, d, 4), (b, e, 4), (c, d, 2), (c, e, 8), 

(d, e, 4)}. Weight the Partition Cubes obtained in the second step in the following way: 

Group variables corresponding to Y's in the Partition Cube. Select a pair of vari

ables in the group and increase the value of the corresponding cell of the ON-Y 

Tables by 1. Group variables corresponding to N's in the Partition Cube, select a 

pair of variables in the group and increase the value of the corresponding cell of the 

ON-N Tables by 1. Execute the calculations for all pairs in the group. Perform the 

same operations for the OFF-Y and OFF-N Tables. The formula of Relationship 

Factor is: 

Relationship Factor = L ( (pair between variables i and j) ? 1 : 0) 

The summation is over all Partition Cubes and all pairs of variables in the Partition 

Cubes. "(pair between variables i and j)? 1 : O" in the equation means that if vari

ables i and j are a pair, take the value 1. Otherwise 0. 



For example, if a Partition Cube Cl from the ON set is 

abcdefg 
Cl = YNYNNYY 
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the cells a-c, a-f, a-g, c-f, c-g andf-g of the ON-Y Table and the cells b-d, b-e and 

d-e of the ON-N Table will be increased by 1. 

According to above rules, we fill the ON-Y, ON-N, OFF-Y and OFF-N Tables as 

shown in Figure 29. 

b c d e b c d e 

a a-b a-c a-d a-e a a-b a-c a-d a-e 

2 4 2 8 2 0 2 0 

b b-c b-d b-e b b-c b-d b-e 

2 4 4 2 8 0 

c c-d c-e c c-d c-e 

2 8 2 0 

d-e d-e 
d 

4 ON-YTable 
d 

ON-NTable 0 

b c d e b c d e 

a a-b a-c a-d a-e a a-b a-c a-d a-e 

3 9 3 6 0 4 0 0 

b b-c b-d b-e b b-c b-d b-e 

3 6 3 0 5 0 

c c-d c-e c c-d c-e 

3 6 0 0 
d-e d-e 

d d 
OFF-YTable 3 OFF-NTable 0 

Figure 29. ON-Y, ON-N, OFF-Y and OFF-N Tables. 
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(4) Form the "best" partitions. Sort Relationship Factor Table in decreasing order by the 

value of the Relationship Factors. Collect variable pairs with larger values in the ON-Y 

Table until the required number of variables for the bond set is reached. Both cells a-e 

and c-e have the values of 8, so select these two pairs and form the bond set {a, c, e }. 

For the ON-N Table, cell b-d has the largest value of 8. All the rest are with the same 

value of 2. Cell a-b has the value of 2 and it shares the common variable b with set {b, 

d}, so chose a, b and d as bond set {a, b, d}. Perform the same operations for the OFF-Y 

and OFF-N Tables to obtain another two bond sets {a, c, e} and {b, d, e}. The Karnaugh 

maps under these four partitions are shown in Figure 30. In fact, we have only three Kar

naugh maps because there are only three different partitions out of this four partitions. 

Partition bdjace and acfbde result in a column multiplicity of two. While partition celabd 

results in a column multiplicity of three. 

ace 

" bd .. 

1 

1 

1 

1 

bde 

a ' 
1 1 1 

1 1 

1 1 1 
I 

f f 

abd 
c ... 

1 1 

1 1 1 1 
I 

f 

Figure 30. Partitions after variable partitioning. 
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We have checked that only partitions bdlace and aclbde can produce the minimum 

column multiplicity of two. There are ten ((~) = 10) possible partitions out of these five

input function. The pseudo-code for variable partitioning is shown in Figure 31. 

variable _partitioning( ) 
{ 

} 

repeat for ON-Y, ON-N, OFF-Y and OFF-N Tables 
{ 

} 

create Relationship Factor Table; 
sort Relationship Factor Table in decreasing order; 
bond _set= first pair in the queue; 

while ( I bond set I < maximum bond set number ) 
bond set= bond set u pair in the next position; - -

Figure 31. Pseudo-code of variable partitioning. 

VI.3. LOCAL TRANSFORMATION 

The known decomposition methods are passive in the sense that they only test 

whether a function is decomposable or not. If it is, the decomposition is carried out. But 

what do we do if the function is not decomposable? 

Here the author presents a new approach to the decomposition. It is called the 

Local Transformation Method. This method can transform a nondecomposable function 

into several decomposable ones. 

The basic idea of this method is to transform some columns in the original Kar

naugh map to make them identical to some other columns in order to decrease the 
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column multiplicity. It is carried out in two steps: 

(1) The output values of the Conflict Cubes in one column are complemented in order 

to make two columns identical, creating the Modified and Modifying Karnaugh 

Maps. 

(2) EXOR operation of the functions described by the Modified Karnaugh Map and the 

function described by the Modifying Karnaugh Map is executed, creating the origi

nal function described just by the original Karnaugh map. 

An attempt is made at the first step to make the Modified Cubes as big as possible, 

and at the same time keep the number of the Modified Cubes as small as possible. The 

Conflict Cubes are the cubes that make the two columns different. Like the cube -1 in 

columns 000 and 001 in Figure 32(a), it makes these two columns different. The formula 

for calculating the Conflict Cubes between i-th andj-th columns is: 

Conflict Cube Set = ON(i) • OFFG) u ONG) • OFF(i) 

ON(i) and OFF(i) are the ON and OFF sets of i-th column. ONG) and OFF(j) are the ON 

and OFF sets of j-th column. The formula states that the Conflict Cubes between the i-th 

and j-th column are the union of the Intersection of the ON set of i-th column with the 

OFF set of j-th column and the Intersection of the ON set of j-th column with the OFF set 

of i-th column. 

The following example is used to illustrate this method and above terminologies. 

Figure 32(a) is an original Karnaugh map with the bond set { c, d, e} and a column multi

plicity of four. We intend to decompose this function into two subfunctions, and each of 

them has a column multiplicity of no more than two. 
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We perform the local transformation to decrease the column multiplicity. First, the 

output value of the cube -10-1 and -1101 in Figure 32(a) are complemented. These cubes 

are called Modified Cubes (they are the same as the Conflict cubes). After modification, 

the resultant Karnaugh map is called the Modified Karnaugh Map (Modified Function 

fec1) as shown in Figure 32(b ). Now the column multiplicity of the Modified Karnaugh 

Map is two. 

cde 

ab 
' 

1 1 0 0 1 0 0 1 

1 ~=~~:~ ~=~~:~ 1 1 1 ~=~~:~ 1 
·.·.·.· •.·.·.· ·.·.·.· 

0 :::J: :::::r 0 0 0 ···r·· 0 .· ... . · .. ·. 
0 0 0 0 0 0 0 0 

A B C D A D C A 

The original Karnaugh map 

1 1 0 0 1 0 0 1 0 0 0 
1 =·:t= =·:t= 1 1 1 :-·-r 1 0 ):f )( ........ ·.·.· .·.··.· E9 .· ...... ·.. .· ... 
o ~:~~:~ jf o o o ~:~K o 0 }:( )( 

(a) 

f 

0 0 0 0 0 
0 0 0 :::=t 0 .·.·.·· 
0 0 0 ):( 0 

o I o I o I o I o I o I o I o I fed 

The Modified Karnaugh Map 
o I o I o I o I o I o I o I o I f ing 

The Modifying Karnaugh Map 

(b) (c) 

Figure 32. Local transformation. 

Next, because the output value of the Modified Cubes have been complemented, 

the compensation must be made. To achieve this, another Karnaugh map is created with 

the positions corresponding to the Modified Cubes in the original Karnaugh map set to 
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1 's and the others set to O's. This is shown in Figure 32(c). It is called the Modifying 

Karnaugh Map (Modifying Function fing). Notice that in this case the column multipli

city of the Modifying Karnaugh Map is two as well. If there are DC cubes in the original 

Karnaugh map, we keep them unchanged in both the Modified and Modifying Karnaugh 

Maps, because they will make both of these maps as amenable as possible for further 

minimization. 

Finally, the EXOR operation of the function described by the Modified Karnaugh 

Map and the function described by the Modifying Karnaugh Map results in the function 

described by the original Kamaugh map. That is: 

f = fed {!) fing 

The presented method changes a nondecomposable function (in sense of the 

column multiplicity less than or equal to two) into two decomposable functions (with the 

column multiplicities of both equal to two). The method is called local transformation, 

but this local transformation is based on the global view of the entire function to make 

both the Modified and Modifying Karnaugh Maps more simple. 

The application of local transformation to the general implementation of FPGA 

mapping is shown in Figure 33. If a function is nondecomposable, it will be transformed 

into two functions, a Modified and a Modifying function. If the Modified or Modifying 

function is nondecomposable (in a more restricted condition), the local transformation 

should be applied again. -

Next, we use the function f in Figure 32(a) again as an example to show the 

detailed procedure of local transformation. In Figure 32(a) there are only four different 

columns as shown in Figure 34. We denote these four columns by letter A, B, C and D, 
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and call them (letter) column A, column B, column C and column D. 

CLBs 

CLBs 

f > '----~f 

fing 

~ 
CLBs 

Figure 33. Application of local transformation to FPGA mapping. 
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Column A (letter column) includes three real columns: columns 000, 110 and 100 

in the original Karnaugh map. Column B includes one column, column 001. Column C 

includes two columns: columns 011and101. Column D includes two columns: columns 

010 and 111. "Number" in Figure 34 is the number of real columns that a letter column 

includes. 

aB 

00 1 1 0 0 

01 1 0 0 1 

11 0 1 1 0 

10 0 0 0 0 

Column AB CD 

Number 3 1 2 2 

Figure 34. Four different columns. 

(1) Create the Modification Factor Table as shown in Figure 35 and initiate all its cells to 

zero. The value in each cell is a weighted Modification Factor of the column pair 

corresponding to the row and column labels of the table. Cell A-7B stores the 

Modification Factor of complementing the output value of all Conflict Cubes in the 

column A in order to make columns A and B identical. Cell B-7A stores the 

Modification Factor of complementing the output value of all Conflict Cubes in the 

column B in order to make columns B and A identical. Later on, we will sort the 

Modification Factor Table. In order to keep the correct correspondence between the 

value and the column pair it represents, we attach two more storage units to each cell to 

store the two columns that the Modification Factor corresponds to. So the Modification 

Factor Table is, in fact, a 3-tuple list. For example, the Modification Factor Table in 

Figure 35 is a list: {(A, B, 12), (A, C, 24), (A, D, 15), (B, A, 4), (B, C, 5), (B, D, 8), (C, A, 
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16), (C, B, 10), (C, D, 8), (D, A, 10), (D, B, 16), (D, C, 8)}. The Modification Factors are 

calculated in the following way: 

If the Conflict Cube is a minterm, increase the value of the corresponding cell in the 

table by amount of the number of input variables. If the Conflict Cube is composed 

of two mintenns, increase the value of the corresponding cell in the table by amount 

of the number of input variables minus one. This is because a larger cube can sim

plify to a greater extent both the Modified and Modifying Karnaugh Maps. If the 

Conflict Cube is composed of four mintenns, increase the value of the correspond

ing cell in the table by amount of the number of input variables minus two, and so 

forth. That is: 

Modification Factor 

= L, (number of input variables - number of-' s in the Conflict Cube) 

The summation is over all Conflict Cubes in the modified column. "-'s" in the equa

tion is the dashes in the Conflict Cube. For example, the cube 10--1 has two dashes. 

A B C D 

A r / ,,-1 - - -- ' A~c I A~D 
24 15 

_ B~D 

BI c.~J(~ ;Jc.~ 

:~ 
Figure 35. Modification Factor Table. 
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Let's fill the Modification Factor Table in Figure 35 now. The Conflict Cube 

between column A and B is the cube -1. If we change column A to make it identical to 

column B, we need to complement the output value of the Conflict Cube (cube -1 in 

column A). That is to change the output value of minterm 01 of column A in Figure 34 

from 1 to 0 and the output value of minterm 11 from 0 to 1. Column A will have the vec

tor [ 1, 0, 1, 0] after complementation of the Conflict Cube. This vector is the same as 

that of the column B. Cube -1 has one - (dash), the Modification Factor would be the 

number of input variables minus 1, that is four. Further more, column A includes three 

columns, columns 000, 110 and 100. All these three columns need to be modified. So 

the Modification Factor must be multiplied by three. Therefore the final Modification 

Factor is twelve as shown in cell A~B of the Modification Factor Table in Figure 35. 

Another way to make column A and B identical is to complement the output value of the 

Conflict Cube, cube -1 in column B. That is to change the output value of minterm 01 of 

column B in Figure 34 from 0 to 1 and the output value of minterm 11 from 1 to 0, so 

both columns have the same vector [l, 1, 0, O] after the modification. Column B includes 

only one column which is column 001, the Modification Factor is four as shown in Figure 

35. Using the same reasoning, we can complete the Modification Factor Table. 

(2) Sort the Modification Factor Table in increase order by their Modification Factors. 

Modify the columns which have smaller Modification Factors until the required column 

multiplicity is reached. Cell B~A is selected because it has the smallest value of four. 

Complement the output value of Conflict Cube, cube -1 in column 001 of the Karnaugh 

map in Figure 32(a), The vector of column 001 is changed from [1, 0, 1, O] to (1, 1, 0, 0]. 

At the same time, set the output value of cube -1001 of the Modifying Karnaugh in Fig

ure 32(c) to 1. After modifying column B, the column multiplicity of the Modified Kar

naugh Map is reduced to three. Our aim is to reduce it to two, so another modification 

will be carried out. The next smaller Modification Factor is five in cell B~C. But we 
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cannot change column B to column C because we have changed column B to column A. 

The next smaller value is eight in cell C~D. Complement the output value of Conflict 

Cubes, cube -1 in both columns 011 and 101 of the Karnaugh map in Figure 32(a), The 

vectors of the columns 011 and 101 are changed from [O, 0, 1, 0] to [O, 1, 0, 0]. At the 

same time, set the output value of cubes -1011 and -1101 of the Modifying Karnaugh in 

Figure 32( c) to 1. After this modification, the column multiplicity of the Modified Kar-

naugh Map is reduced to two. 

(3) We have transformed the function f with a column multiplicity of four into two func

tions: fed and fing, both of them have a column multiplicity of two. The relation between 

them is: 

f = fed (±) fing 

The pseudo-code for local transformation is shown in Figure 36. 

local transformation() 
{ -

} 

create Modification Factor Table; 
sort Modification Factor Table in increasing order; 
modify column at the beginning of the queue; 
change Modified Karnaugh Map; 
fill Modifying Karnaugh Map; 

while ( column_ multiplicity > required_ column_ multiplicity ) 
{ 

} 

modify column at the next position 
change Modified Karnaugh Map; 
fill Modifying Karnaugh Map; 

Figure 36. Pseudo-code of local transformation. 



CHAPTER VII 

PROGRAM TRADE AND ITS EVALUATIONS 

The techniques presented in the previous sections have been incorporated into a 

program named TRADE (TRAnsformation and DEcomposition) which reads in the input 

file in Espresso (.type fr) format and outputs in B /if format with the input variables of 

each node less than or equal to five. Cube calculus is used in TRADE for all operations. 

VII.1. PROCEDURE OF TRADE 

The basic steps of TRADE are as follows: 

(1) Read in the input file written in Espresso ".type fr" format. 

(2) Select an output. Perform partition analysis (the number of bond set variables is fixed 

to five) to obtain the "best" partitions and Additional Partitions. Additional Partitions are 

the partitions whose bond sets consist of the variables that are the input variables of some 

CLBs in the CLB Pool, and thes~ variables are also in the range of the input variables of 

the current decomposition. The CLB Pool is a list of all CLBs previously generated by 

the program. For example, if the input variables of the current decomposition are a, b, c, 

d, e,f, g, h, i, and in the CLB Pool there are three CLBs with the input variables of each: 

{a, b, c, d, e}, {c, d, g, h, i} and {a, h, k, I, m} respectively. Then the variable sets {a, b, 

c, d, e} and {c, d, g, h, i} can be used as the additional partitions, while {a, h, k, l, m} can 

not be used because there are no variables k, I and m in the current decomposition. 
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(3) Execute decompositions using the "best" and Additional Partitions. Encode the bond 

set and try to use as many CLBs from the CLB Pool as possible. The way to efficiently 

resue CLBs will be discussed later in this chapter. Graph coloring technique is applied at 

this stage to get a quasi-optimum don't care assignment. Select a partition which results 

in the smallest Cover Ratio. The Cover Ratio is a ratio of the number of newly created 

CLBs over the difference of the input variables before and after decomposition, that is: 

c r R t. _ number_of_newly_created CLBs 
ove a io - . be.c d . . . f d .. . mputs_ iore_ ecompos1t10n - mputs_a ter_ ecompos1t10n 

For example, in Figure 37, if CLB x and y exist in the CLB Pool, CLB z is a newly 

created one, then Cover Ratio = 1/(8 - 6) = 0.5. 

Before ------------------, 
r - - - A After ' 
I I 

B 
--CLBs 

x 

c 

I I 

L---------------------J 

Figure 37. Before and after decomposition. 

If the function is nondecomposable, perform the local transformation to make it 

decomposable. 

(4) Repeat steps 2 to 3 for the blocks left (block C in Figure 37) until all decomposed 

blocks are with five or less inputs. 
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(5) Repeat steps 2 to 4 for all Modifying Functions which were created by local transfor-

mations. 

( 6) Repeat steps 2 to 5 for all outputs. 

(7) Merge all possible nodes into the FG mode CLBs. The way to merge the nodes is 

discussed in the next section. 

The pseudo-code for TRADE program is shown in Figure 38. 

TRADE() 
{ 

} 

read _input _file( ) ; !* read in input file *! 

for ( i = 0; i <number _of _primary_outputs; i++) 
{ 

!* loop for all 
output functions *! 

} 

do 
{ 

variable _partitioning( ) ; 
create _incompatibility _graph(); 

graph_ coloring( ); 

if ( decomposable ! = true ) 
local transformation(); 

bond set encoding( ) ; 
CLB ~reusing( ) ; 

I* find best partition *! 
!* create incompatibility 
graph *! 
!* quasi-optimum don't 
care assignment *I 

!* make decomposable *! 

!* encode bond set *! 
!* use CLBs in CLB 
Pool *! 

} while (function( s) from local transformation = = true ) 
I* if there is function from local 
transformation, repeat *! 

CLB _merging( ); 
output _result(); 

!* merge nodes into FG mode CLBs *I 
!* output results *I 

Figure 38. Pseudo-code of TRADE program. 
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VII.2. CLB MERGING 

We have explained the FG mode CLB of Xilinx architecture in Chapter II. If two 

nodes satisfy the condition that each has no more than four input variables, and the total 

number of input variables in these two nodes is no more than five, these two nodes can be 

combined into a FG mode CLB. We use the following procedure to merge the nodes: 

Collect all nodes with no more than four input variables, put them in a queue and 

sort them in decreasing order by the number of their inputs. Pick the node at the 

beginning of the queue, call it the Master Node, then pick another one next to it. 

Test if these two nodes can be combined into one FG mode CLB. If they can be 

combined, combine and remove them from the queue. If not, pick another node in 

the next position, and perform the combining test again. If, until the end of the 

queue, no node can be combined with the Master Node, remove the Master Node 

from the queue. Pick the node at the beginning of the queue as a new Master Node 

and repeat above operations until the queue is empty. 

Next example is used to show the detailed merging procedure. There are six nodes 

in the queue. 

Node Number l 2 
Inouts {aoca {aoce 

Pick node 1 as the Master Node. Test to see if it can be combined with the next 

node which is node 2. They can be combined because the number of inputs of each node 

is four, {a, b, c, d} and {a, b, c, e}, and the number of total variables out of these two 

nodes is five {a, b, c, d, e}. Combine them and give them a name, CLB A, and remove 

them from the queue. Now there are four nodes left in the queue. 
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Node Number 4 5 6 
Inouts I (abed {a&ef) {efiJJ {befu) 

Pick node 3 as the Master Node. Test to see if it can be combined with the next 

node which is node 4. It cannot be combined because the number of inputs out of these 

two nodes is six {a, b, c, d, e, f}. It should be no more than five if the two are combined. 

Test again to see if it can be combined with node 5. The answer is no once more. Do the 

test with node 6. It fails again. So, no node can be combined with node 3. Give node 3 

a name, CLB B, and remove it from the queue. The queue turns out to be: 

I NodeNumber I 4 
Inputs ( <elj) I ~fh) I 

Pick node 4 as the Master Node. Test to see if it can be combined with node 5. 

The test fails. Test it with node 6. This time success. Combine these two nodes into a 

new node, CLB C, and remove them from the queue. Now, only node 5 is left in the 

queue. Give it a name, CLB D, and remove it from the queue. The queue is empty. The 

final merging result is as follows: 

CLB 
Node Number 

A I B 
r,:z--r-3 rnJ 
~ 

Nodes 1 and 2 are combined into a FG mode CLB, CLB A. Nodes 4 and 6 are 

combined into another FG mode CLB, CLB C. Nodes 3 and 5 remain as they were. The 

pseudo-code for CLB merging is shown in Figure 39. 
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CLB merging( ) 
{ -

} 

while (queue I= empty) 
{ 

} 

m n = Master Node; 
n ~n = next node; 

do 
{ 

if ( merge(m n, n n) ==true) 
{ - -

combine m n and n n into a FG mode CLB; 
remove m n and n n; 
break; - -

} else { 
n_n =next node; 

} 
} while ( n n !=last node) 
else { -

remove m_n; 
} 

Figure 39. Pseudo-code of CLB merging. 

VIl.3. CLB REUSING 
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In the previous section, we have presented the encoding algorithm for the bond set, 

but we didn't mention the possibility that some CLBs in the CLB Pool might be reused. 

In TRADE, each previously generated CLB is recorded in a 32-bit long word, called a 

CLB frame. Because there can be up to five inputs to each CLB, thirty two bits are 

required to store all possible combinations of the inputs ( 25 = 32 ). For example, the 

logic of CLB h: 



is stored in the program as: 

.names a b c d e h 
10-01 1 
11101 1 
01-0- 1 

31 0 Minterm position 
lgq 11qqggggg llQQQ 11gqq ll llqQ ll llqggggggol CLB h 
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Each position in the above frame corresponds to a mintenn. For example, mintenn 

11101 resides in the position 29. If a min term belongs to the ON set, there is a 1 in the 

corresponding position of the frame. Otherwise 0. By proper coding it is possible to 

reuse CLBs in the CLB Pool. 

The basic idea of CLB Reusing is originated from the following facts: 

Suppose that the column multiplicity of a Karnaugh map is four (it is the same as 

saying that there are four colors). We would need two (4 ~ 22 = 4) variables (x and y as 

shown in Figure 40(a)) to encode the bond set. 

Color Color Color 
-e-- 4E-- -e--

3 2 1 0 3 2 1 0 3 2 1 0 

I I I I Ix ~i 1l 1lol olx +iolol1l 1lx 
Codei Code Code 

I I I I IY lol1l1loly I 1lol 1lolY 

(a) (b) (c) 

Figure 40. CLB reusing concept. 

We can code variables xy as 00, 01, 11, 10 as shown in Figure 40(b). There are 4! 

= 24 possible ways to code .xy. But, if in the CLB Pool there is a CLB that can imple-

~ 
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ment the pattern [QI]![] (call it x, this is the pattern for coding as shown in Figure 40( c ), 

not the internal storage frame). If we code y as [illlill] (y is a newly created CLB) as 

shown in Figure 40(c), we have realized the coding of .xy by using one CLB in the CLB 

Pool and a newly created one. The y is coded in such a way that no two xy Codes are 

identical. Next example is used to show the detailed procedure of CLB Reusing algo

rithm. 

Suppose that we have a function with seven input variables {a, b, c, d, e, f, g} as 

shown in Figure 41. 

? 
• 

r································~·························· .. ·= ~~ 

b : : 
a= R Y: e,ll11.~i I i ~~ d i x i 

f . 
g 

. . .................................................................. 

Figure 41. CLB reusing example. 

CLB Pool 

After graph coloring, six colors are obtained as shown in Figure 42. In Figure 42, 

columns 0, 1, 3, 4, 7, 9, 12, 14, 15 and 17 belong to color 0, columns 18, 19, 22, 23, 25, 

26 and 27 belong to color 1, and so forth. A careful reader will find that columns 20 and 



29 are missing. They are DC columns and can be put in any color position. 

abcde 

f: 
' 

Color ~ 0 0 0 2 2 0 2 0 0 3 0 0 3 4 0 3 4 1 1 1 3 2 x 2 x 3 1 1 1 1 0 5 

Color 
...:---

j 5j4j3l2l1lol 

16 11 8 2 18 0 icolumn 
24 10 5 19 1 

13 6 22 3 
21 28 23 4 
30 31 25 7 

26 9 
27 12 

14 
15 
17 

Figure 42. After graph coloring. 
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Because there are six colors (column multiplicity is six as well), we need three 

CLBs ( 3 > log2 6 = 2.585 ) to encode the bond set. Suppose that in the CLB Pool there 

are three CLBs which have the same input variables as that in the current bond set, they 

are CLBs w, x andy. 

IOJ OJ OJ ll OJ OJ Q OJ II OJ 11<~ ll OJ OJ ll OJ OJ ll OJ ll OJ OJ OJ OJ OJ OJ OJ 11<~ 1111 w 

IOI 11 OJ OJ 111111 OJ 111111 OJ 111111 g 11111111 OJ 11111111 OJ oi 1111 OJ 1111 x 

111 OJ OJ 11111111 OJ 1111 OJ OJ 1111OJOJ010101 OJ OJ OJ OJ OJ OJ 1111 OJ OJ 11 OJ o I y 
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We try to use as many CLBs in the CLB Pool as possible. If the CLBs in the CLB 

Pool can fully cover the columns in some colors, they might be reused. The term ''fully 

cover the columns in some colors" means that in the CLB frame all positions correspond

ing to the columns included in some colors must be exactly 1, while all the other posi

tions must be 0. We test if the CLBs w, x and y can fully cover the columns in some 

colors in Figure 42. It is found that the CLB x can fully cover the colors 0, 1 and 3, 

because in the CLB x frame all positions correspond to the columns included in the color 

0, 1 and 3 are 1, all the others are 0. CLB x can fully cover the colors 0, 1 and 3, the bits 

corresponding to the colors 0, 1 and 3 in the CLB x pattern are 1, the others are 0. CLB x 

has the pattern IQPIIPllll I as shown in Figure 43. The same test results in that CLB y can 

fully cover the colors 1 and 2, and it has the pattern IQPPlllIPI as shown in Figure 43. 

While CLB w can cover the columns 0, 1 and 3 in the color 0, but it cannot cover the 

columns 4, 7, 9, 12, 14, 15 and 17 in the color 0, this is not a full cover. Therefore CLBs 

x and y can be reused, but CLB w can not be reused. We add a new CLB (CLB z) and 

code it in such a way that each color has a different Code bit. The procedure for coding 

the newly added CLB is as follows: 

Start from the color position 0 in Figure 43. CLB y and CLB x give the bits 0 and 1 

(Code 01. Code is read vertically, not horizontally), respectively. Put a 0 at the 

color position 0 of CLB z as shown in Figure 43. In the color position 1, the 

corresponding bits from CLB y and CLB x are 1 and 1 (Code 11) respectively. 

Because Code 11 is different from Code 01 in the color position 0, put a 0 again at 

the color position 1 of CLB z. The same way, put a 0 at the color position 2 of CLB 

z. In the color position 3, the Code is 01, it is the same as that in the color position 

0. Increase the Code put in the color position 0 of CLB z (that is 0) by 1, this leads 

to a 1. So put a 1 at the color position 3 of CLB z. Perform the same operation for 

the color positions 4 and 5. The final coding of CLB z is I lPJlPPP I as shown in 



Figure 43. 

Color 
~ 

5 4 3 2 1 0 
Code ~ j 1 J o j 1 J o j O j O j CLB z 

I 0 I 0 I 0 I 1 f 1 I 0 I CLB y 

I 0 I 0 I 1 I 0 I 1 I 1 j CLB x 

16 11 8 2 18 O +column 
24 10 5 19 1 

13 6 22 3 
21 28 23 4 
30 31 25 7 

26 9 
27 12 

14 
15 
17 

Figure 43. The final coding. 

The newly generated CLB z has the internal storage frame as: 

1g II OJ Of Of Of Of Of OJ Of 11 OJ OJ OJ Of 11 OJ Of 11 OJ OJ *~ II OJ OJ Of Of OJ OJ Of 0 I z 
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It is formed according to the pattern I lPllPPP I of CLB z. The color position 3 is 1 in 

the pattern of CLB z. Columns 8, 10, 12, 21 and 30 correspond to this color, so in the 

CLB z frame, the positions 8, 10, 12, 21 and 30 are filled with 1. The same 9peration is 

performed for the color position 5, and the internal storage frame of CLB z is obtained. 

By proper coding, we have reused two CLBs in the CLB Pool. The pseudo-code for 

CLB reusing is shown in Figure 44. 



CLB reusing( ) 
{ -

} 

collect reusable CLBs; 
fully cover testing; 

for ( i = 0; i < total_color; i++) 
{ 

if ( reused CLB code repeat( i) = = true ) 
cod"i{i)++-,· -

new_CLB_code(i) = code(i); 
} 

Figure 44. Pseudo-code of CLB reusing. 

Vll.4. EVALUATION OF THE RESULTS 
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We ran TRADE on a networked SUN 4/670MP Workstation. The results are listed 

in Table II. All results are verified by "verify" command of MIS-II system. The pro

cedure of verifying is: 

\* execute TRADE program 
MCNC _file_ name: The name of the example file 
from the MCNC benchmark; 

TRADE MCNC_file_name m n 

m: The maximum number of inputs to each CLB as 
shown in Figure 45; 
n: The maximum number of bond set outputs as 
shown in Figure 45. 
The output will be put in a file named wad.out. *\ 

misll \* enter misII program *\ 

read_pla MCNC _file_ name \* read in the MCNC benchmark example file *\ 

verify wad.out \* verify *\ 

The results listed under MIS-PGA(phase 1) are from [9], The results listed under 

MIS-PGA(new) are from[2]. Both of them were run on a DEC5500. There is no delay 
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information provided in [2]. The examples root, bench, fout and testl are taken from the 

Espresso package, and all of them are incompletely specified functions except root. t-00 

is obtained by changing all DC outputs in testl to OFF outputs, therefore, it is a com

pletely specified function. t-10 is obtained by randomly changing 10 percent of the OFF 

outputs in t-00 to DC outputs. The same way, t-20 to t-90 is obtained by randomly 

changing 20 to 90 percent of the OFF outputs in t-00 to DC outputs, respectively. 

Because we were not able to access the MIS_PGA(phase 1) and MIS_PGA(new) pro

grams, we couldn't make comparisons of incompletely specified functions. 

n 

Figure 45. Verifying example. 

In Table II, E/N is the name of the example. l/N is the number of input variables. 

0/N is the number of output functions. CLBs is the number of CLBs in the final mapped 

circuit. Time is the running time of the program which is measured by time command of 

UNIX system. The unit of the Time is second. Lev is the longest path (number of 

CLBs) that a signal must go from the primary input to the primary output in the final 

mapped circuit. From Table II, we observe that if the DC outputs are maintained, the 

number of CLBs can be greatly decreased. However, even for the completely specified 

functions, our program found better results than MIS-PGA(phase 1) and MIS-PGA(new) 

with respect to both the delay and area minimization. 
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TABLE II 

COMPARISONS AMONG TRADE, MIS-PGA(PHASE 1) AND MIS-PGA(NEW) 

TRADE MIS-PGA(phase 1) MIS-PGA(new) 

E/N l/N OJN CLBs Lev Time CLBs Lev Time CLBs Time 
alu2 10 8 22 3 12.2 122 6 42.6 109 773.8 
9sym 9 1 6 3 4.9 7 3 15.2 7 339.7 
9symml 9 1 6 3 4.7 7 3 9.9 7 127.2 

rd73 7 3 5 2 3.7 8 2 4.4 6 24.0 

rd84 8 4 8 3 11.6 13 3 9.8 10 73.7 

f5lm 8 8 9 3 2.3 23 4 5.9 17 14.4 

5xpl 7 10 11 2 4.3 21 2 3.5 18 22.4 

z4ml 7 4 4 2 2.0 10 2 2.1 5 5.0 

sao2 10 4 27 3 13.8 45 5 9.5 28 41.9 

bw* 5 28 27 1 0.3 28 1 8.3 28 17.3 

misexl 8 7 14 2 3.4 17 2 1.7 11 2.7 

clip 9 5 29 4 12.1 54 4 3.7 28 58.4 

b9 16 5 29 4 28.7 47 3 2.3 39 27.6 

misex2 25 18 31 4 17.0 37 3 1.4 28 3.4 

duke2 22 29 159 6 370.7 164 6 16.4 110 203.7 

root 8 5 21 3 9.8 

bench* 6 8 16 2 1.0 

fout* 6 10 26 2 4.3 

testl* 8 10 66 3 21.1 

t-00 8 10 166 5 81.6 

t-10* 8 10 152 5 64.6 

t-30* 8 10 125 5 50.6 

t-50* 8 10 83 5 32.8 

t-70* 8 10 76 4 18.l 

t-90* 8 10 46 3 10.2 

*Incompletely specified function. 



CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

VIII.I. CONCLUSIONS 

A new general approach to the decomposition of incompletely specified functions 

and its application to FPGA mapping [29) [30] have been presented. Variable Partition

ing, Graph Coloring, Bond Set Encoding, Local Transformation and CLB Reusing are 

the outstanding features of this approach. One of the main advantages of this approach is 

that it is intended for incompletely specified functions, thus giving for such kind of func

tions much better results than the existing methods. 

Compared with the existing FPGA mapping approach, our method is totally new. 

We developed a fast graph coloring method for the don't care assignment, so the pro

gram can accept incompletely specified functions and perform a quasi-optimum assign

ment to the unspecified part of the function. We developed a high quality heuristic 

method to chose the "best" partitions, avoiding the thorough test of all possible decompo

sition charts which is impractical when there are many input variables. We introduced 

the local transformation concept, which can transform nondecomposable functions into 

decomposable ones, making it possible to apply decomposition method to FPGA map

ping. Finally, the Cube calculus is used entirely in the TRADE program, the operation is 

global and very fast. 
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VIIl.2. FUTURE WORK 

The program has been successfully verified and benchmarked on several MCNC 

examples and some incompletely specified functions. There are still several opportuni

ties to further improve both its speed and quality of the generated solutions. Currently 

we work on two-dimensional Karnaugh maps. A possible extension would be to develop 

the algorithms to operate on three-dimensional or multi-dimensional Karnaugh maps, to 

incorporate the FGM mode CLBs of Xilinx 3000 series and take advantage of the Xilinx 

4000 series. 

' 
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