
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-30-1993

A Cognitively Motivated System for Software A Cognitively Motivated System for Software

Component Reuse Component Reuse

Michael Joseph Mateas
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Software Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mateas, Michael Joseph, "A Cognitively Motivated System for Software Component Reuse" (1993).
Dissertations and Theses. Paper 4699.
https://doi.org/10.15760/etd.6583

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4699
https://doi.org/10.15760/etd.6583
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Michael Joseph Mateas for the Master Of

Science in Computer Science presented July 30, 1993.

Title: A Cognitively Motivated System for Software Component Reuse

APPROVED BY THE MEMBERS OF THE THESIS COMMITIEE:

James Hein

Beatrice Oshika

Software reuse via component libraries suffers from the twin problems

of code location and comprehension. The Intelligent Code Object Planner

(ICOP) is a cognitively motivated system that facilitates code reuse by

answering queries about how to produce an effect with the library. It can plan

for effects which are not primitive with respect to the library by building a

plan that incorporates multiple components. The primary subsystems of ICOP

are a knowledge base which describes the ontology of the library, a natural

language interface which translates user queries into a formal effect language

(predicates), a planner which accepts the effect and produces a plan utilizing

2

the library components, and an explanation generator which accepts the plan

and produces example code illustrating the plan. ICOP is currently

implemented in Prolog and supports a subset of the Windows 3.0 APL

A COGNITIVELY MOTIVATED SYSTEM FOR
SOFIW ARE COMPONENT REUSE

by

MICHAEL JOSEPH MATEAS

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1993©

TO TI-IE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Michael Joseph

Mateas presented July 30, 1993.

APPROVED:

Chair

James Hein

Beatrice Oshika

Leonard Shapiro, Chair, Depar()'nent of Computer Science

Roy W. Koch, Vf4ce Provost for Graduate Studies and Research

DEDICATION

Dedicated to Anne Siegel, without whose loving support this work

would not have been accomplished.

ACKNOWLEDGEMENTS

I would like to acknowledge the guidance and friendship of my

advisor, Dr. Jean Scholtz.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS .. .iii

LIST OF FIGURES .. viii

CHAPTER

I PROBLEM STATEMENT ... 1

Introduction .. 1

Overview of Software Reuse ... 1

Pattern Reuse .. 2
Building Block Reuse .. 3

Supporting Building Block Reuse4

Library Components Interrelated 4
Knowledge Transfer .. 5

Motivated Design ... 6

II COGNITIVE MODEL OF PROGRAMMING 8

Introduction .. 8

Architecture of Cognition .. 9

Memory .. 9
Processor .. 9

Goal-Directed Model of Cognition 10

Programming Knowledge .. 11

Syntactic and Semantic Knowledge 11
Plans .. 11
Code Level Plan Structure ... 13

Design Know ledge ... 14

v

Rules of Discourse ... 14
Funnelling Control Strategy 15
Design Schema ... 16
Unified Model of Top-Down and Bottom-Up

Design ... 17
Design Executive .. 17
Domain and Algorithm Spaces 19
Unification of Design and Domain

Knowledge ... 19

Cognitively Motivated Systems .. 21

Cognitive Concerns of Software Reuse 21
Programmer's Apprentice ... 22
Bridge .. 23
Fischer's Systems ... 24
Motivated Redesign of the Smalltalk

Browser .. 26
Motivated Redesign of a Smalltalk Tutor 27
The Cognitive Browser ... 27

The Intelligent Code Object Planner 30

System Components ... 30
Design Motivation ... 30
Relationship to Other Cognitively Motivated

Systems ... 31

III THE KNOWLEDGE BASE ... 33

Frame System ... 33

Generic Frame System .. 33
Frame System for ICOP ... 36
Consistency Checking .. .40

Global Ontology .. 41

Routines ... 42
Predicates and Functors42
Objects ... 44
Distinction Between Sets and Members47

Routine Frames .. 48

Root Routine .. 48
Example Routine ... 50

VI
Example of Type Checking .. .53

IV NATURAL LANGUAGE INTERFACE .. 57

Syntax .. .-.............. 57

The ATN .. 57
The String Preprocessor. ... 61
Affix Stripper .. 61
The Interpreter ... 62

Semantics ... 62

Determining the Opera tor ... 62
Determining the Objects ... 63
Checking Semantic Validity 65
Examples .. 66

V THE PLANNER .. 70

Plan Representation .. 70

Routine Representation ... 70
Plan Representation .. 71

Searching for the Focus .. 73

Discrimination Tree .. 73
Search Example .. 73

Satisfying the Preconditions .. 75

Satisfying Arguments, Not State 75
Effect Rules .. 76
Recursively Satisfying Preconditions 78
Determining the Da taflow ... 78
Precondition Processing Example 79

Postcondition Processing .. 80

Concern Rules .. 80
Postcondition Processing Exarnple 81
Avoiding Plan Interactions 81

VI EXAMPLE GENERATOR ... 83

Unification Grammar ... 84

Functional Description ... 84
Grammar Specification ... 85

Vll

Prolog Implementation .. 87

Building the Example ... 89

Adding a Routine .. 89
Filling the Parameters ... 90

Building an Example for the Draw Icon Plan 92

VII CONCLUSIONS ... 99

VIII FUTURE WORK .. 102

Empirical Valida ti on ... 102

Enhancing Existing Functionality .. 103

Expanding the Know ledge Base 103
Generating Code Comments 103
Representing Plans .. 103

Designing New Functionality ... 104

Improving the Interface ... 104
Programmer Modification of Knowledge

Base ... 106
Intelligent Tutoring System 106

Supporting Different Domains ... 107

Libraries for New Domains 107
Object-Oriented Libraries .. 107

REFERENCES ... 109

APPENDIX ... 113

LIST OF FIGURES

FIGURE PAGE

1. The rules of programming discourse ... 15

2. Example of generic frame system35

3. Frame functor .. 36

4. Root frame of the routine hierarchy48

5. Frame representing the routine Draw Icon51

6. Four sentence types understood by A TN59

7. Registers filled by A TN .. 60

8. Registers produced during parse of the query

"How do I draw an Icon?" ... 66

9. Registers produced during parse of the query

"How is a bitmap added to user memory?" 68

10. Routine functor for Begin Paint ... 71

11. Representation of plan to draw an icon ... 72

12. First level of discrimination tree ... 73

13. Effect rules relevant during planning for drawing an icon 77

14. Plan to draw an icon after precondition processing 80

15. Example functional description for phrase "it hit" 84

16. Unification grammar rules for Windows examples

(excluding "list" rules) ... 86

17. Unification grammar "list" rules .. 86

18. Building W M_PAINT case with matches/2 87

lX

19. Adding a routine to the WM_PAINT case with matches/2 88

20. Adding a new case with matches/2 .. 88

21. Matches/2 failing due to specifying an illegal syntax tree 89

22. Routine/3 functor for BeginPaint ... 92

23. Routine/3 functor for Load Icon .. 94

24. Routine/3 functor for Draw Icon ... 95

25. Routine/3 functor for EndPaint .. 96

26. Syntax tree for Drawlcon example .. 97

27. Output of example generator for Drawlcon plan 98

CHAPTER I

PROBLEM STATEMENT

INTRODUCTION

The software crisis has been recognized since the late 1960's

[Sommerville, 1989]. Software systems tend to be delivered late, cost more

than originally predicted, and difficult to maintain. With demand for code

exceeding supply, it does not make sense to keep reimplementing the same

functionality. Yet a 1983 study indicates that of all code written in that year,

less than 15 percent was unique and specific to a particular application Uones,

1984]. The field of software reuse is concerned with standardizing the

remaining 85 percent of this code and providing tools to reuse it.

OVERVIEW OF SOFTWARE REUSE

Software reuse is not a new idea. The first compilers supported reuse of

common machine language patterns such as looping and branching. Now

these constructs could be reused by writing some short but understandable

symbol sequences (high level language) rather than rewriting the much

longer machine language pattern. The first operating systems provided

commonly needed services such as i/ o. The blocks of code necessary to

perform these services could now be reused by making operating system calls

rather than having to rewrite these blocks for every program. Biggerstaff and

Perlis' [1984] conceptual map for looking at the software reuse field shows that

2

these two approaches are still extensively used for delivering reusable

functionality. Work in the software reuse field can be divided into two

conceptual classes: the reuse of patterns (generation) and the reuse of building

blocks (composition).

Pattern Reuse

Pattern reuse is based on the idea of generation. The idea here is to

build a system which accepts some sort of terse yet easy to specify input and

produces a program as output. For example, imagine some system that could

take the natural language utterance "Give me a program that sorts strings"

and produces as output an executable program to perform such sorting. The

particulars of sorting strings (algorithms and data structures) are being reused,

but these particulars, rather than being stored as some atomic building block

(a sort routine) are stored as a potential pattern of activation of the generating

system. A compiler for a high level language can be thought of as a system for

reusing blocks of assembly code. A "while" loop, which is terse and easy to

read in the source, is turned into a much longer, standard block of assembly

code. Pattern reuse approaches can be divided into roughly three major

categories: language based generators, application generators and

transformation systems.

Lan2ua2e Based Generator. A language based generator extends the

idea of a high level language. A very high level language (VHLL) provides a

small set of semantically neutral components which are more abstract than

those provided by a standard high level language. Such an abstract language

can be used across a wide set of domains. Problem oriented languages (POL)

provide a rich set of semantics aimed at a particular application domain. By

providing constructs directly supporting a particular domain, the

programmer's job of mapping a domain problem into the language is much

easier. The programmer is reusing a domain analysis.

Application Generator. Application generators also encode domain

specific information, but store it in the generator rather than the language.

The input to an application generator is usually quite simple and does not

really qualify as a full fledged language. A 4GL which lets one construct

databases by describing the database fields and input screens, is an example of

an application generator.

Transformation System.Transformation systems are similar to

language based generators. They take some input written in a terse, easy to

understand, but highly inefficient notation and, by successive

transformations, turn it into an efficient but more difficult to read executable

form. The transformation system itself is simple and fairly generic. The rules

of transformation are stored as separate declarative knowledge (data) outside

of the transformation system. It is these rules which are being reused.

Building Block Reuse

The reuse of building blocks is probably what comes to most people's

minds when they think of code reuse. The idea is to compose preexisting

atomic components to produce a desired effect. An example of a typical

atomic component is a subroutine from a subroutine library. Modern object

oriented approaches are also a building block methodology. Here, many

separate pieces of reusable code can be localized in a single object.

Building block reuse is not without problems [Horowitz and Munson,

1984]. First, it is difficult to determine which pieces of functionality are

3

4

generally useful and can be described by a parameterized piece of code. This is

a domain analysis problem. Secondly, once a library of useful components

exists, how do you describe them in a manner that the user of the library will

find comprehensible? This is a code comprehension problem. Thirdly, should

the components be implemented in a standard programming language and be

made available in an object library, thus becoming language and machine

dependent, or should they be described by some sort of high level design

language? This is an implementation problem. Finally, how does the user

locate a particular component within a potentially large library? This is a code

location problem. Additional problems are raised if the user wants to modify

a reusable component to perform a slightly different task. Object oriented

languages, with their support for inheritance, are one approach to this

problem.

SUPPORTING BUILDING BLOCK REUSE

Library Components Interrelated

This thesis tackles the problems of code location and comprehension in

building block reuse. The libraries provided by today's increasingly complex

graphical environments present an interesting problem. Environments such

as the Macintosh, Windows or X-Windows provide a huge number of

routines, data types, macros and constants for use by the programmer. All of

the components of these libraries are richly intertwined. Generally, a

programmer's problem is not solved by locating a single routine. Rather, a

pattern of routines and other library components (data types, etc.) must be

used to accomplish the task. So a programmer must not only locate a single

routine out of a large library, but must also locate an interwoven set of

5

routines and other software objects. A programmer must not only

comprehend a single routine, but must also comprehend the interactions

between a set of routines and other software objects. A tool that supports use

of these libraries must support the location and comprehension of patterns of

use of these components.

Knowledge Transfer

These graphical environments have another property of interest. At a

conceptual level, they are quite similar. They all have concepts of windows,

controls, messages, etc. So someone with expertise in using one of these

libraries, say, the Macintosh Toolbox, should be able to use their mental

model of the library to transfer their skills to another, say the Windows APL

Yet at a lower level of detail, these libraries are dissimilar. The names of

routines are different, the routines are organized in a different manner, etc.

While the knowledge of the conceptual level of one of these libraries will aid

the programmer in transfering to another, the need to focus on low level

details of the new library might hinder this positive transfer effect. Also, in

places where two libraries may differ at a conceptual level, the programmer's

mental model of the first library may actually result in negative transfer,

hindering their ability to properly use the second library. A tool to support

use of these libraries should support transfer between libraries of similar

functionality, providing retrieval of collections of code objects from

conceptual descriptions in places where the libraries are conceptually similar,

and pointing out differences in places where the libraries are conceptually

different. With this basic idea of what capabilities a reuse support system

should provide, the task is now to design such a system.

6
MOTIVATED DESIGN

How should one go about designing a system to support reusability?

Traditional system design tends to be technologically motivated. This

technological motivation, and its place within the broad spectrum of

problems, is captured nicely by Lehman's S-P-E program classification scheme

[Lehman, 1991]. Sand E programs are the extremes at the ends of the

spectrum with P programs in the middle. S programs are those which need to

satisfy some pre-stated specification. The specification is complete; it is the

sole determinate of program correctness. The writer of an S program has no

concern for where the specification came from. Their design task consists

purely of making maneuvers within a technologically determined space (as

conditioned by the concepts made available in the language used). Formal

approaches to software engineering concern themselves with S type

programs. An E program attempts to solve a problem in a real world domain.

All consequences of the program's use, including its effectiveness in

communicating with human users, and the manner in which the use of the

program changes the very domain for which the program was written,

determine the acceptability of the program as a solution. These systems

always escape full formalizability. Berry [1992] argues that it is necessary to

consider nontechnical issues such as management, psychology and sociology

when developing E programs. Fischer laments that the traditional

overemphasis on technology has lead to systems which do not effectively

solve real world problems, cannot be adapted to changing conditions, and

impose unnecessary constraints on users [Fischer, 1987].

A system to support reusability will be used in the complex, real-world

domain of software development. Such a system is an example of an E

7

program. It should take account of the fact that fundamentally, programming

is a cognitive act engaged in by human beings. In Chapter II, a cognitive

model of programming is developed which serves as a framework to

motivate tool design. At the end of Chapter II, a cognitively motivated design

for a system which facilitates reuse is given. Chapters ill-VI describe the

components of this system, Chapter VII summarizes the results of this thesis,

and Chapter VIII describes prospects for future work.

CHAPTER II

COGNITIVE MODEL OF PROGRAMMING

INTRODUCTION

A cognitive model of human behavior starts with the premise that the

complexity of this behavior is a result of a simple architecture responding to a

complex environment, where the environment includes both sensory data

and memory [Simon, 1981]. Simon uses the analogy of an ant making its way

across a wind and wave tossed beach. The ant's trail is irregular, with many

twists and turns, though there is a general large scale direction to its

movements. If its path were drawn on a piece of paper, the path would be

quite complex and difficult to describe. But this complexity resides in the

environment (the twists and turns of the sand) rather than in the ant. A

simple behavioral repertoire can generate complex behavior in a complex

environment. To the extent that human behavior is analogous to that of an

ant, human behavior can be modeled with a simple cognitive architecture

interacting with a complex environment. This environment includes the

internal environment of memory. Starting with this model, the cognitive

structure of programming can be described in two stages: the invariant and

relatively simple human processing architecture, and the structure of the

internal (programming knowledge) and external (programming)

environment.

9
ARCHITECTURE OF COGNITION

Memory

Short Term Memory. There are two types of memory, short term and

long term. Short term memory (STM) can hold approximately 7 +- 2 chunks

of information [Miller, 1956]. These chunks tend to decay rather rapidly. Short

term memory stores the immediate context of cognition. The term "chunk" is

somewhat ambiguous. It is any piece of information that can be manipulated

as a unit. Chunking is a generic learning strategy. This is the process by which

smaller pieces of information which were at one time manipulated as

independent entities, become combined into a larger structure. Chunking can

increase the effective capacity of short term memory.

Long Term Memory. Long term memory (LTM) has a virtually

unlimited capacity. The information in LTM is often characterized as stored

in a highly elaborate network (semantic net). This net provides a large

number of associations through which stored data can be recalled. The unit of

LTM is called the schema [Curtis, 1989]. This is a knowledge structure that

bundles together the information necessary to manipulate a concept. The

construction of these schema is facilitated by the chunking process in STM.

Processor

The human processor is responsible for a complex interplay between

STM and LTM [Card, Moran and Newell, 1983] called the recognize-act cycle.

The chunks in STM associatively trigger chunks in LTM. These L TM chunks

are loaded into STM, where they prime the next cycle. The recognize-act cycle

is the fundamental unit of cognition. More complex acts such as planning are

built out of organized sequences of these cycles.

10
GOAL-DIRECTED MODEL OF COGNITION

The next level of specificity in cognitive modeling is a goal-directed

model of cognition which Simon calls design [1981]. Programming is a special

case of this cognitive activity. The basic recognize-act cycle has no constraints

on the type of associations that take place. The associations between STM and

L TM could result in a crazy chaotic jumble of chunks becoming present in

STM, or, at the other extreme, in a few chunks repeatedly firing each other ad

infinitum. In normal human behavior, however, this rarely happens.

Instead, thinking results in a relatively ordered movement towards a goal.

This general process of goal-directed thinking Simon calls design, where

design is construed most generally (eg. design of buildings, actions,

mathematical solutions, etc.). In design, search is in general necessary because

many chunks in LTM are associated with any given chunk in STM. Since a

limited number of these associations can actually be loaded into STM, they

will need to be explored serially. The search process is driven by two types of

domain knowledge, declarative knowledge (facts) about the domain, and

procedural knowledge that describes how to manipulate the facts in an

order! y manner. A domain expert is distinguished both by the number of

chunks of knowledge they have and the structure of the association web

linking these objects.

This general structure implies that a model of programming should

account for two types of knowledge: declarative and procedural. Declarative

knowledge schemas represent the "facts" of programming and procedural

design knowledge is used to guide the process of programming. The

programming and design models below are presented in increasing order of

complexity and specificity.

PROGRAMMING KNOWLEDGE

Syntactic and Semantic Knowledge

Shneiderman and Mayer [1979] divided the declarative knowledge of

programming into two categories, syntactic and semantic. Syntactic

knowledge is knowledge of the mechanics of programming languages. It is

acquired essentially by rote. New knowledge will often interfere with

previous knowledge since new syntactic knowledge tends to be additive

rather than integrative. For example, knowledge of the syntax of the

assignment operators in C and Pascal ("=" and ":=") can't be integrated; the

syntactic difference must be memorized.

11

Semantic knowledge consists of language independent programming

concepts. This knowledge exists at several levels of abstraction. At the low

abstraction end are concepts like the "actions" of assignment and conditional

statements. At an intermediate level are concepts like looking for a

maximum value in an array or swapping the contents of two variables. At a

high level of abstraction are concepts like searching and sorting methods.

Plans

Soloway et al [1984a, 1984c] present a refined model of the declarative

knowledge. They argue that this knowledge is structured in a hierarchy of

plan types. Strategic plans describe a global decomposition strategy for an

algorithm, such as a process/read looping strategy. Tactical plans describe

more concrete operations, such as a running total loop. Finally,

implementation plans specify the manner in which the more abstract plans

are implemented in the code of some particular programming language. For

example, a while loop in Pascal that is used to repeatedly read in numbers and

12

add them to a running total until a stop number is entered is using both the

strategic plan read/process (abstract structure of the loop) and the tactical plan

running total (particular processing to be performed by loop). The strategic

and tactical plans are language independent; the implementation plans are

language dependent. In addition to the various levels of plan knowledge, line

level semantic and syntactic knowledge of the language used are also

necessary in order to carry out the low level implementation of the plans.

There are interactions between the implementation plans and the

more abstract plans. Different languages make different abstract plans more

difficult to implement than others. Proper use of a language involves

learning the abstract plans which are most elegantly implemented in the

language. However, since the abstract plans are stored as separate chunks of

knowledge from the implementation plans, the abstract plans are not

automatically adjusted by switching to a new language with new

implementation plans [Scholtz, in press]. Scholtz showed that Pascal

programmers writing code in Ada and Icon tended to use Pascal-like plans in

both languages, even though Pascal-like abstract plans are not the ones most

readily expressed in Icon (a string processing language). To the extent that the

same abstract plans are readily supported across two languages, positive

transfer will be seen. To the extent that the new language facilitates a different

set of abstract plans, negative transfer will be seen. Since plans are built by a

process of chunking, it makes sense that the lower level semantic features of a

language, which serve as the building blocks, will influence the structure of

the abstract plans.

13
Code Level Plan Structure

Rist [in press] argues that the deep structure of a program is its plan

structure. The particular ordering of code statements in any given program is

its surface (or shallow) structure. The surface structure is generated by

applying an organizational scheme to the deep structure. The three

organizational schemas he presents are procedural, functional and object

schemas. His definition of plan structure is different from Soloway's. For Rist,

the plan structure is the control and data flow graph of the program. The

nodes of this graph are individual lines of code. A plan is a branch of this

plan structure. What Soloway calls a plan, Rist calls a plan schema. Plan

schemas are known solutions to common programming problems. A plan

(branch of the graph) may or may not be a plan schema. A tool called PARE

has been written by Rist to extract the plan structure automatically from the

program code. Functional, procedural and object-oriented programming

paradigms can be explained in terms of an organizational schema applied to a

deep structure. A problem with this approach is that it is knowledge poor. By

looking just at the program code, deep structure contains only lines of

program code connected by control and data flow links. The plan schema

captured by this representation will only be at the implementation level. As

Scholtz [in press] showed, more abstract plan schemas do influence

implementation plans across programming paradigms. Further, different

abstract plans are more appropriate in different languages. The deep structure

contains none of this more abstract knowledge. So while this view of plan

structure is certainly well-defined and useful for talking about

implementation level plans, it does not appear to suffice as a cognitive model

of programming knowledge.

14
DESIGN KNOWLEDGE

The hierarchy of plan types and the syntactic/ semantic knowledge of a

programming language serves as a model of declarative programming

knowledge. This section presents a model of the declarative and procedural

knowledge of the design process and the relationship between the application

domain (where the problem that needs to be solved resides) and the

programming domain (where the solution artifact resides). Most of the

models below describe some aspect of the global design process. As with the

programming knowledge models above, they are presented in increasing

order of complexity and specificity. The first model presented, however,

describes the local composition of plans rather than the global design process.

Rules of Discourse

At a low level of design cc;mtrol, there are rules which determine how

plans are composed together. Soloway and Ehrlich [1984b] call this knowledge

the rules of programming discourse. These rules are shown in Figure 1.

Programs that follow these rules are called planlike and programs that break

these rules un-planlike.

Soloway and Ehrlich performed two experiments to test the rules of

discourse hypothesis. In the first, a group of novices and a group of experts

were given both planlike and un-planlike programs which had a missing

line. With the planlike programs, experts were able to correctly supply the

missing line much more often then novices. With the un-planlike programs,

experts and novices performed about the same. In the second experiment,

experts were given both planlike and un-planlike programs to study. They

were then asked to reproduce the programs they had studied. Their recall was

1) Variable names should reflect function.

2) Do not include code that will not be used.

2a) If there is a test for a condition, then the condition must have
the potential of being true.

3) A variable that is initialized via an assignment statement
should be updated via an assigrunent statement.

4) Do not do double duty with code in a non-obvious way.

5) An IF should be used when a statement body is guaranteed to
be executed only once, and a WHILE used when a statement
body may need to be repeatedly executed.

Figure 1. The rules of programming discourse.

significantly higher with the planlike programs. Both of these experiments

support the hypothesis that rules of discourse are a part of an experienced

programmer's knowledge.

15

These discourse rules are low level. This design knowledge is at a level

of abstraction similar to tactical plans. There must be more abstract knowledge

to drive the design process.

Funnelling Control Strategy

Shneiderman and Mayer (1979] describe the control strategy of design as

a "funnelling" from the abstract to the concrete. The programmer's internal

representation of the program starts out general and becomes progressively

more concrete until specific code details are worked out. This working out of

a detailed representation of the code can proceed in a top-down or bottom-up

manner. Top-down design requires that the more general aspects of the

internal representation are worked out before the more particular aspects.

16

Bottom-up design starts with language statements and builds up more

abstract structures. Shneiderman and Mayer have no model of when top

down or bottom-up design will occur. They mention that perhaps some types

of problems are suited more to one technique than the other.

Design Schema

Jeffries, Turner, Polson, and Atwood (1981] describe a design schema

which controls the recursive decomposition of a problem. A problem is

broken down into smaller and smaller components until recognized solution

components (plans) are found. They provide a list of 11 abstract productions

which characterize the design schema. A list of unsolved subproblems is

maintained and stored in sorted order of priority. A highest priority

subproblem is pulled off of the list, and evaluated. Either it is a problem for

which a solution is readily available, or it is not. If not, a solution model is

created for the problem. A search is done for a solution matching the solution

model. If none is found, the solution model is decomposed into subproblems

and the subproblems are placed on the list.

This model of the design process adds specificity to the funnelling

model. However, there are some questions which still need to be answered.

When will top-down and bottom-up design processes be seen? During the

decomposition process, some internal representation must be used before the

program (or pieces of the program) has reached the level of specificity of the

strategic plan. What is this representation? How does knowledge of the

application domain (real world) and specific knowledge in CS (such as

space/time efficiency) interact with the decomposition process? The next

three models provide answers for these questions.

17
Unified Model of Top-Down and Bottom-Up Design

Rist [1989, in press] provides a unified model of top-down and bottom

up processes at the level of tactical plans. Every plan has a goal and a focus.

The goal is what the plan is supposed to achieve. The focus is the primary

line of code which achieves the goal. The rest of the plan is support for the

focus. For example, a counting plan has the goal of counting the number of

times something occurs. The focus line is "count := count + l." The rest of the

plan (a loop plus an initialization of count to 0), supports the focus. Top

down development takes place when the plan is already known. The goal is

used to retrieve the plan. If a plan to accomplish the goal is not known,

however, the plan must be constructed. This starts from the focus line since

this line is most directly related to the goal. Development then proceeds

outwards from the focus in a bottom-up manner. The newly created plan is

stored, and, with repeated use, becomes automatic.

Design Executive

Adelson and Soloway [1985] provide a model of the design process in

which six behaviors occur: mental model formation, systematic mental

model expansion, mental model simulation, constraint representation, plan

label retrieval, and note making. The mental model is a representation of the

design in progress. This mental model must support simulation of the

design. Simulation is used to compare the problem statement with the

design. The problem statement is generally given as a desired behavior for an

artifact. The design model is not a behavior; it is a partially designed

mechanism. By simulating the design model, the resulting behavior can be

compared with the desired behavior and steps taken to reduce the differences.

As time progresses, the design model becomes more specific. This expansion

18

takes place systematically across the design. Systematic expansion is required

in order to maintain a simulateable model. In order to produce a simulation,

the i/ o of the components of a model must be at the same level of

description. The constraint representation of a design is an alternative

representation which supports property assertion and the deduction of

implications. A runable mental model cannot be constructed until the design

has reached a certain level of specificity. The constraint model is used to

constrain the allowable simulation models and thus aid in achieving the

requisite specificity. Constraint activity is seen most often in the early part of a

design. Plan labels are retrieved when elements of the design already have

solutions stored in memory. They serve as place holders; later they will be

used as an index to look up the plan. Note making behavior is seen when

concerns are raised that are not at the current level of detail of the mental

model. When the model has been expanded to a level matching that of the

concerns, the notes are used to remind the designer of things to consider at

that level.

Adelson and Soloway's design model provides an internal

representation used during the decomposition process. Decomposition is

driven by a simulateable model of the design. This model serves as the

representation at levels of detail more abstract than that of plans. Domain

knowledge still needs to be incorporated into the process. Adelson and

Soloway found that some design behaviors change for a designer in an

unfamiliar domain. In particular, global models are not built and

consequently global simulation is not performed. This leads to errors in

systematic expansion. Thus domain knowledge certainly seems important in

design.

Domain and Algorithm Spaces

Kant [1985] describes a model which explicitly takes account of the

domain knowledge. Design is seen to take place in two main search spaces

and two auxiliary search spaces. The main search spaces are the domain and

algorithm spaces. The algorithm space contains knowledge of

19

implementation issues and the domain space contains knowledge of domain

issues. The design model in her paper is motivated by protocols of experts

developing a convex hull algorithm. In this case the domain space contains

geometry and visual reasoning knowledge. The algorithm execution space

and the example generation space are extensions of the algorithm space and

domain space respectively. The algorithm execution space is where design

simulation takes place. The example generation space is used to generate

standard, degenerative, and counter-examples. These examples are used to

test the algorithm in the execution space. Design is accomplished by

performing searches in the various spaces. For example, if a component needs

to be expanded and it is supposed to give a known output, construct an

example of this output study and its properties. The example would be

generated in the example space, and studied in the domain space. Properties

in the domain space might trigger plans in the algorithm space. The design

would be expanded and then executed (to test it) in the execution space.

Kant's model directly accounts for the role of domain knowledge in design.

Unification of Design and Domain Knowledge

The most complete model of design to be presented here is Guindon's

[1990]. Seven knowledge categories are used to guide design: domain

knowledge, inferred and added constraints, external design notation, design

methodology, design schema, problem solving and design heuristics, and

20

preferred evaluation criteria. The domain knowledge is similar to Kant's

domain space, with the exception that simulation can take place here as well.

Domain simulations lead to discovery not only of solution knowledge but

also of problem goals and evaluation criteria. Inferred and added constraints

are used to constrain and disambiguate the problem specification. Inferred

constraints are not given directly in the requirements but can be deduced

from the requirements and domain knowledge. Added constraints are chosen

by a designer to limit the range of possible solutions. For example, the

protocol study performed by Guindon involved the design of an elevator

control system. One designer chose early on to use a distributed control

scheme to a void having a single point that results in global breakdown.

Though such a constraint appears nowhere in the specification, it serves to

limit the allowed designs. External notations are used to support design

simulation, which would otherwise be too cognitively taxing to perform.

They also provide a set of operators for design expansion. Search during

design can include searching for a good notation. Design methods provide a

set of operators and their applicability tests for transforming the requirements

into a solution. An example of a design method is the Jackson System

Development Method. Design schemas are problem decompositions that are

applicable to a set of problem types. For example, one of the designers

recognized the elevator problem as a special case of resource allocation

systems. Drawing on memories of a film controller design he'd done, he

quickly sketched out a high-level solution decomposition including

alternative solutions for sub-systems and evaluation criteria for these

alternatives. Design heuristics guide the search process. Two example

heuristics are 1) divide the system into nearly independent subsystems, and 2)

solve a simplified version of a problem and expand the solution to

encompass more complex situations. Finally, preferred criteria are used to

limit the size of the search space. These criteria go hand in hand with the

added constraints above. For example, the criterion of high reliability goes

with the added constraint that there should be no single point of failure.

This last design model explicit! y accounts for the role of domain

know ledge as well as the effect of design methodologies and generic design

heuristics, while retaining the basic pattern of design as a movement from

the abstract to the concrete.

21

The cognitive model of programming builds on the generic

architecture of the human information processor by detailing the declarative

and procedural knowledge used during software design. Now this cognitive

model can be used as a framework within which to study cognitively

motivated systems for software reuse.

COGNITIVELY MOTIVATED SYSTEMS

Other research has focused on building systems based on cognitive

principles to support software reuse. This section reviews some of these

systems. After describing general cognitive concerns of software reuse, several

systems are described which attempt to alleviate these problems. The next

section describes the system developed in this thesis. This system builds on

the ideas found in the cognitively motivated systems described below.

Cognitive Concerns of Software Reuse

Curtis [1989] points out that designers are already reusing knowledge

when they design. Everything from the low level implementation plans to

22

high level design schema can be view as reusable components. This implies

that one approach to software reuse is to externalize the plans and schemas in

a development environment. This would accomplish two goals. Novices

could progress more rapidly towards expert performance by having the expert

knowledge directly available for study and use. Experts could design more

rapidly by having the knowledge structures they use directly available in a

machine executable format, thus bypassing the need to physically translate the

mental structures into machine structures. Curtis also mentions the

importance of indexing the components in a manner that matches the

programmer's model of the domain. When the structure of a component

library matches the programmer's domain model, they can more easily

switch between the domain space in which high level goals might be stated

and the application space in which components exist. Fischer et al [1991] have

listed six problems that programmers have in reusing software: they do not

have well-formed goals or plans, do not know of the existence of

components, do not know how to access components, do not know when to

use components, do not understand the results produced by components, and

do not know how to combine, adapt, and modify components. Several

cognitively motivated systems have been built which attempt to alleviate

some or all of these problems.

Programmer's Apprentice

Rich and Waters' Programmers Apprentice [1989, 1990] contains a

knowledge base of reusable implementation plans called cliches. The plans

are stored using a language independent knowledge representation scheme

called the plan calculus. The plans are accessed using an an extension of the

23

EMACS editor called KBEmacs. By using a special plan editing and description

language, a relatively short description in the plan language is turned into a

program in the target language. The Programmer's Apprentice can be viewed

as a very high level language as described in the first section. It provides

leverage by taking a small set of high level descriptions (plan labels) and

turning them into a detailed program. In addition, it supports the creation of

plans using the target language with some machine readable annotations.

These are converted into the language neutral plan calculus. Rich and Waters

do not explicitly motivate their system from cognitive grounds. Yet from the

general cognitive model of software design, we can see that the Programmer's

Apprentice works by reifying implementation plans.

Brid~e

Bonar and Liffick [1991] describe an alternative method for reusing

plans in their Pascal tutor called Bridge. They also use a high level

programming approach, but for them a high level language means the vague,

heuristic sort of specifications used by humans while talking to each other

rather than the more algebraic formalisms demanded by automatic

programming systems. The Bridge tutor leads a novice through a problem in

three steps. First the user specifies high level informal plans in natural

language. The system then leads the user through specifying more detailed

plans using an iconic language. Finally, the iconic plans are implemented in

Pascal code. At each level of abstraction, Bridge can detect buggy plans. There

are facilities for the user to add new plans by means of an iconic (visual)

programming language. Besides making available a library of plans for reuse,

Bridge guides the user through the design stages from abstract, vague

specification to detailed code.

Fischer's Systems

24

Architecture. Fischer (1987] describes a generic architecture for

intelligent design environments. Such environments are intended to support

incremental, evolutionary reuse and redesign. The 8 major components of

this architecture are the visualization system, design kits, documentation

system, analysis system, critics, help system, instructional system, and

explanation system. The visualization system provides a graphic

representation of a design, a design kit provides a set of components useful

within a domain, the documentation system supports design rational and

argumentation among multiple designers, the analysis system runs design

simulations, critics are knowledge based agents which comment on a growing

design, the help system provides online help about the design system and its

domain, the instructional system provides tutoring about the design system

and its domain, and the explanation system aids in comprehension of the

components available in the design kit. The functionality provided by the

design kit and explanation system are described in more detail below, since

these two systems most closely provide the code location and comprehension

facilities being focused on in this thesis.

Desi~n Kits. Design kits support what Fischer calls human problem

domain communication [Fischer and Lemke, 1988]. By communicating with a

computer tool in the language of the problem domain, the user is relieved of

the burden of translating goals and operators in the problem domain into the

system domain. This reduces (or eliminates) the difference between the

25

domain space and application space, thus simplifying the design process. The

construction kits Fischer describes generally involve direct manipulation of a

palette of tools. Design environments provide further aid via knowledge

based systems such as critics, which offer advice as a design progresses [Fischer

et al, 1992]. Reusable component comprehension is aided via the explanation

system, which presents annotated examples of components in use [Fischer et

al, 1991]. A design kit can include a query system to locate reusable

components. This becomes necessary as the number of reusable components

increases; direct manipulation of component palettes becomes unwieldy. The

Codefinder system [Fischer et al, 1991] supports query by reformulation. A

semantic network is used to describe the components. Spreading activation is

used to locate components near the first set of query keywords. In response to

a query, a list of components sorted in order of activation strength and a list of

related (activated) keywords is presented. Keywords and components can be

added to the query. By iterating in this manner, the system helps the user

narrow an initially vague query. The spreading activation helps alleviate

problems with indexing inconsistency.

Explanation System. Fischer's explanation system makes use of

examples to facilitate component comprehension. Other workers have found

this to be an effective technique [Neal, 1990, Rosson and Carroll, in press].

Neal created a base of Pascal examples. The programmers in her study used

the examples both for code reuse (at a plan level) and to understand

Macintosh specific language features and procedures. Rosson and Carroll

seeded a Smalltalk environment with application examples. The subjects in

their study not only reused the components they found in the example

applications, they also reused the patterns of component use. That is, code

26

from the example applications served as templates for their own application.

This again shows reuse of plan level knowledge embedded in the example as

well as reuse of the components used in the example.

Motivated Redesign of the Smalltalk Browser

Another approach to the cognitively motivated design of software

environments is to analyze pre-existing environments and use the analysis to

suggest improvements. Bellamy [in press] takes this approach by applying

strategy analysis to the Smalltalk environment. Strategy analysis is an

extension of claims analysis. In claims analysis, one attempts to articulate the

psychological theory implicit in a tool. This psychological theory is making

claims about the way people work; by examining these claims, the tool can be

redesigned to embody a more truthful psychological theory. Strategy analysis

extends claims analysis by offering a specific methodology for producing

analyses by looking at strategies of tool use. The primary problem Bellamy

found was the difficulty of locating reusable components in the Smalltalk

hierarchy. The browsing approach supports serendipitous discovery of new

classes, but distracts the user from the original task, sometimes to the point

that the user loses track of the original task. The class names are not always a

good indicator of function. Examining a working application suggests reuse

possibilities, but it can be difficult to map application behavior into specific

classes and methods. Tracing code in the debugger places a heavy load on

short term memory, as the user has to maintain the context of many classes

and methods spread throughout the hierarchy. By providing an enhanced

browser which supports multiple views of the hierarchy, and a project

organizer which maintains a context for all the Smalltalk tools (including the

browser) within a particular application, Bellamy was able to mitigate many

of these problems.

Motivated Redesign of a Smalltalk Tutor

27

Singley, Carroll, and Alpert [1991] take a similar approach with the

design of a Smalltalk tutor motivated through claims analysis. They found

that users had trouble managing goals, finding classes, and comprehending

code. The goal management problems are related to the serendipitous

browsing supported by the environment. Both low and high level goals can

be forgotten during this browsing process. The Goalposter maintains a list of

goals which the system has inferred from user activities. It is acting as an

externalization of part of short term memory. The Adaptive Index adds a

query mechanism to the browser. Only those classes and methods related to

the query are shown. The comprehension process is aided by a commentator,

which provides hypertext help on selected pieces of code. Finally, the need for

a Guru is hypothesized. The Guru performs a post-mortem analysis of the

user's project, both clarifying the design process and offering suggestions for

improvement.

The Cognitive Browser

Green et al [in press] have designed a cognitive browser for object

oriented programming systems. They analyze object oriented programming

in terms of 5 cognitive dimensions: viscosity, hidden dependencies,

premature commitment, perceptual cueing, and role expressiveness.

Viscosity is resistance to change. It disturbs working memory by requiring the

user to manually manage some complex change operation. Hidden

dependencies are links between entities which are not readily apparent. These

28

dependencies include links which are important to the user, not just those

deemed important by the environment designer (usually the dependencies

which are technically easy to show). The larger the number of dependencies

(hidden or not), the greater the viscosity of the system. Premature

commitment occurs when the user must make decisions too early in the

design process. This occurs in object oriented systems which force the design

of class structures in a top-down manner. If the system has high viscosity,

premature commitment is a big problem, since decisions made early in the

design process are going to be difficult to change. Perceptual cueing is the

redundant coding of important attributes in a notational system. An example

is the coding of functional grouping in the layout of an electronics schematic.

Role expressiveness is the ease with which a user can comprehend

meaningful structure. Unlike the other dimensions, which are structural, this

is a mentalistic dimension. Role expressiveness is a function of how easily

the user can translate between the notational system provided by the

environment and some internal mental representation. For example, if

programming plans are taken to be an internal mental structure (as described

above), then the systems which reify plan structures in their notational

system (such as the Bridge tutor) should exhibit high role expressiveness.

In terms of these cognitive dimensions, Green et al find that Smalltalk

like environments exhibit extensive premature commitment, high viscosity,

and poor role-expressiveness. This leads them to the following requirements

for a cognitive browser: code location support, code comprehension support,

design rational, and support for modification of entire class structures. The

basis for providing this support is a description level. They note that program

code does not express all of the programmer's knowledge about the program.

The description level is a place to store this knowledge. This description can

be used to support location, changes and comprehension.

The description level supports code location by allowing three query

styles: attribute searching, query by effect, and query by analogy. Attribute

searching is the most straightforward. The user can invent attributes and

relations and place them in the description level. Queries take the form

"Show me all the components with attributes A, B, C." Effectively, the

description level supports the user in creating dynamic indexing schemes.

29

Search by effect allows the user to specify a desired effect for a piece of

code. The browser searches for code which satisfies the effect. The problem is

how to specify the desired effect. One approach is to use a formal, declarative

specification language. Green et al provide an example of such a specification

for a stack. This formal approach, however, has several problems. For large

chunks, such as a text editing window, the formal specification becomes

unwieldy. Further, the specification may not match the user's domain model.

The user probably does not think of a stack as a set of preconditions,

postconditions and operators, but rather as an entity labeled by the term

"stack." This label can of course be expanded, but this requires a cognitive

effort that may be equivalent to writing the code. In plan terms, a formal

specification of a stack is a description of the plan rather than a plan label. As

Adelson and Soloway [1985] showed, designers retrieve plans by label.

The third search modality, search by analogy, uses some kind of

similarity measure to answer queries of the form "Find something similar to

A." Computational models of analogical reasoning can be used as a basis for

such functionality.

THE INTELLIGENT CODE OBJECT PLANNER

The system developed in this thesis, the Intelligent Code Object

Planner (ICOP), supports code location and comprehension in complex

libraries. To make this problem concrete, ICOP has been instantiated to

support a subset of the Windows 3.0 Application Program Interface (API).

System Components

30

ICOP consists of four main components: a limited natural language

interface, a knowledge base, a planning system and an example generation

system. The natural language interface accepts English queries regarding a

library and translates them into a semantic formalism. The knowledge base

uses a frame language to describe the components of the library. The planning

system accepts the semantic representation of the query returned by the

natural language interface and attempts to find a set of library objects

(routines, etc.) which satisfy the query. Finally, the example generation system

constructs example code out of the plan returned from the planning system.

Each of these components is described in greater detail in the next chapter.

Design Motivation

Programmers working with a complex library want to create specific

effects. For example, with a windowing library, a programmer may want to

create a window. This requires the use of more than one atomic library

component. A plan utilizing multiple library components is needed. Since

programmers move from goal, to plan focus, to plan generation, ICOP

facilitates library reuse by accepting a focal goal and returning the detailed

plan. ICOP effectively supports the recall of plans by label, where the label

expresses the goal of the plan. The limited natural language interface allows

31

the programmer to use their natural model of the domain. In the case of a

windowing system, common domain objects are windows, controls and

messages. ICOP allows the programmer to talk directly in terms of these

words rather than having to learn some formal specification language. If

experimental protocols reveal that programmers wish to refer to certain

effects in a manner different than that supported by the current interface, it is

easy to add synonyms to the interface by expanding the vocabulary. This

decoupling of the the domain model from the library details supports transfer

between libraries in the same domain. The know ledge base can be expanded

to describe the new library while queries are still made using the same

vocabulary. Once ICOP has understood a natural language domain query and

found a library plan which performs the desired effect, it must communicate

this plan to the programmer. Examples are an effective way to communicate

to programmers. By expressing the plan directly in example code, the

programmer does not have to understand some intermediate formalism and

then translate this into program code.

Relationship to Other Cognitively Motivated Systems

ICOP builds on ideas found in the cognitively motivated systems

described in the previous section. It uses the concept of plans, which is found

in The Programmer's Apprentice [Rich and Waters, 1989, 1990] and Bridge

[Bonar and Liffick, 1991]. However, rather than having a plan base of explicitly

stored plans, ICOP builds plans from the atomic components represented in

its knowledge base. The example systems developed by Neal [1990], Rosson

and Carroll [in press] and Fischer, Henninger and Redmiles [1991] all use

examples to facilitate both component level and plan level comprehension.

32

ICOP also uses examples to facilitate comprehension, but rather than storing

these examples explicitly in an example base, the examples are constructed

dynamically using knowledge about the general form that examples should

take. The automatic construction of plans and examples frees the knowledge

engineer from having to explicitly represent examples for all possible user

queries. ICOP allows the user to query by effect as suggested in the Cognitive

Browser project [Green et al, in press]. Rather than using a formal effect

language, however, the user can communicate the desired effect in the

natural language of the domain.

CHAPTER ill

THE KNOWLEDGE BASE

FRAME SYSTEM

Generic Frame System

Frames and Slots. A frame is a collection of fields, called slots, which

describe some entity in the world. The slots hold values. In addition, the slots

can have an internal structure of subfields (called facets) which describe

properties of the slot such as default value or the type of values allowed.

When a slot holds a value which is the name of another frame, this

represents some relationship between the two frames. The primary actions

that one performs on slots are getting and setting values. Two relationships

are considered quite important: isA and instanceOf. lsA relates a frame which

represents a set or class to its superset. lnstanceOf relates a frame which

represents some non-set entity to the set to which it belongs. Both of these

relationships have their inverses which can be explicitly represented as slots.

A form of default reasoning called inheritance takes place along the isA and

instanceOf slots. When a value is requested from a slot which has none, a

frame system will check the corresponding slot on the frame pointed to by the

isA or instanceOf slot. In this way, default values for slots can be stored in

frames representing general things.

Attachments and Methods. Procedural knowledge can be attached to

frames in the form of slot attachments and methods. Slots attachments are

34

pieces of procedural code which are activated when the slot is accessed in

particular ways. Two common attachments are the get-attachment and the

put-attachment. These pieces of code fire when a get or put is performed on

the value of a slot, respectively. A get-attachment can be useful for calculating

a value which depends on the values of multiple slots.

A method is a named piece of procedural code which is attached to a

frame, but not to any particular slot. It corresponds to the idea of method in

object-oriented programming. Both methods and procedural attachments can

be inherited.

Figure 2 illustrates some of these ideas. The Person frame is a subset

(isA) of Mammal and an instanceOf Class. Class is a frame which stores

general information about frames which represent classes. This shows that a

frame can simultaneously represent both a set (in this case the set of people)

and a thing (in this case the thing that is the set of people). The Age slot

contains a default age for people. This slot demonstrates the idea of facets. Age

has two facets, a value and a type. The type can be used by the frame system to

insure that objects of the right type are used to fill the value of the slot. The

Computer-Scientist frame is also a set and a thing. It is a subset of the set of

people and a member of the set of professions. The Michael-Mateas frame

describes a particular person. This person belongs to two sets (Adult-Male and

Computer-Scientist). The isA and instanceOf relationships do not have to be

filled by only a single frame. If these relationships are limited to single

frames, the system is single inheritance; the frames are organized in an

inheritance hierarchy. If multiple frames are allowed to fill these slots (as in

this example), the system exhibits multiple inheritance. The frames are

arranged in an inheritance graph (directed acyclic graph, or DAG). The Age

Person
isA: Mammal
instanceOf:Class
Age:{ value:40, type:integer }

Adult-Male
isA:Person
sex: Male

Com pu ter-Scie ntis t
isA:Person
instanceOf :Profession
personalSty le: nerd

Michael-Ma teas
instanceOf:{Computer-Scientist, Adult-Male}
Age:{ value:27, type }
personalSty le:wired

Figure 2. Example of generic frame system.

35

slot has a value which overrides the value of 40 which would normally be

inherited all the way from Person. The type of the age slot, however, is

inherited from Person. The personalStyle slot overrides the value that would

be inherited from Computer-Scientist.

Reifying Slots. The basic frame representation can be extended by

representing slots as frames. This extends the idea of giving slots an internal

structure with facets. Where the facets of a slot must be repeated every time

the slot is used, a frame describing a slot allows one to create a single localized

description of the slot. It makes the slot into a thing. The kinds of slots one

might find on a frame describing a slot are domain (the kind of frames this

slot can legally be attached to), range (the kinds of values that can fill the slot),

and of course isA and instanceOf. By including a slot transfersThrough which

is filled by a list of slots through which this slot can acquire default values by

inheritance, one effectively places a frame containing this slot within

multiple DAGs. Now any arbitrary relation can have the power of isA as an

organizing relation for a set of frames.

Frame System for ICOP

36

The frame system used in this thesis is written in Prolog. The core of

this system was written by David Novick at the Oregon Graduate Institute. It

has been enhanced with type checking capabilities.

Note on Terminolo~y. In the rest of this thesis, any symbolic names

which refer to any piece of the Windows library or some part of ICOP appear

in italics. In addition, predicates and functors are distinguished by following

them with a "/"and the number of arguments. Thus, an arity two predicate

my_predicate is written as my_predicate/2. Generally, the number of

arguments is not important; the "/"notation is used to distinguish predicate

and functor names from other names in the text.

Frames. A frame is represented by the arity four functor shown in

Figure 3.

frame(name: <fr ame_name>,
parent:<parent_name>,
children:[<child_l>, <child_n>],
slots:[<slot_l>:facets([<facet_l>, <facet_n>]),

<slot_n>:facets([<facet_l>, <facet_n>])]).

Fi~ure 3. Frame functor.

Any name in angle brackets is a metavariable. In a real frame, these names

will be replaced by names chosen by the user. The":" has been defined as a

Prolog infix operator. The first argument in the frame functor is the name of

the frame. The second argument is the name of the parent frame. Inheritance

37

flows through this argument. Only one parent is allowed, making this a

single inheritance system. The third argument is a list of children frames.

These frames lie below the given frame in the inheritance hierarchy. Finally,

the last argument is a list of slots belonging to this frame. Each slot has list of

facets. By convention, one of these facets should be called value. This facet

actually holds the value which fills the slot. The rest of these facets describe or

modify the value in some way.

Operations on Frames.The primary functions supported by the frame

system are getting the value of a slot facet and setting the value of a slot facet.

While the names chosen for facets are arbitrary, the frame system provides

special semantics for two facet names. The name value is the value of the

slot. If one gets or sets a slot without specifying a particular facet, the facet

accessed is the value facet. The default facet provides the value for a slot in

the event that the value facet is empty.

Procedural Attachments.The system also supports procedural

attachments and methods. The procedural attachments are attached to a slot

as a special facet named either get_value or set_value. The value of this facet

is a conjunction of Prolog goals. When a get or set is performed on the value

facet of a slot, the appropriate attachment is called after performing the get or

set. In addition to the conjunction of goals, an attachment facet also stores an

unbound variable (by convention named Caller) which is bound to the name

of the frame the get or set was performed upon at call time. The predicates in

the conjunction of goals can refer to the Caller variable. Since an attachment

might be stored on a frame high in the inheritance hierarchy, the Caller

variable allows the attached code to properly determine the context of the call

when a frame lower in the hierarchy is manipulated.

38

Methods. Methods are stored as slots named method having a special

structure, rather than the normal list of facets. This structure is built using the

":" and ":-" operators and includes the name of the method, an unbound

variable to hold the call context (in the same manner as described above for

attachments), and a conjunction of Prolog goals. If there are several methods

attached to a frame, there will be several slots named method. Normally, one

would not want to put multiple slots having the same name on a frame. But

the method slot has been given special semantics so that methods are

distinguished by their names, which are part of the internal structure of the

slot. The frame system provides a special predicate to allow the user of the

system to call a method on a frame. In the case of a call to either an

attachment or method, the frame system attempts to satisfy the goals

constituting the attachment or method through the use of the built in control

predicate call/1.

Properties of the Frame System. There are several interesting things to

note about this frame system. First it is single inheritance. Each frame sits

somewhere in an inheritance tree rather than an inheritance DAG. Second,

inheritance only flows along the parent link. In general, inheritance links can

be view as just another slot. The isA and instanceOJ slots just happen to be

two which are widely used. Here, the parent and children links have been

distinguished from the rest of the slots. So not only is the system single

inheritance, each frame sits in a single tree, rather than in multiple trees

coordinated by multiple slots. In the example in Figure 2 (page 35), a

Computer-Scientist isA Person (indicating a superset relationship) and is an

instanceOJ Profession (indicating a membership relationship). Inheritance

flows along both of these links. Such a structure is not possible in the frame

39

system used in this thesis. An ambiguity that then arises is whether the

Parent relationship indicates superset or membership. This is a problem that

will be discused in the section describing the knowledge base. Finally, the slots

are structured by facets, but have not been reified as independent frames.

Type Checking. To help maintain knowledge base coherence, a type

system was added to the core frame system described above. Every slot can

have an additional facet named type. The value of this facet describes the type

of the filler that the value facet can take. The types currently recognized by the

type system are frame, atom, integer, string, none, list_of(<type>) (where

<type> is any of the recognized types), and a name that is the name of some

frame. A value is checked for conformance with the atom, integer, and string

types through the use of built-in predicates. Any value conforms to the type

none. A value conforms to the frame type if this value is the name of some

frame. A value conforms to list_oj(<type>) if the value is a list and each

member of the list conforms to <type> (which is checked by recursively

calling the type checker on each member of the list). A value conforms to a

type which is the name of some frame if the value is the name of a frame

which is subsumed by the type in the inheritance hierarchy. For example, if

Computer-Scientist is a child of Profession, Computer-Scientist can legally fill

the value facet of a slot whose type is Profession. A value facet can also be

filled with a name that takes arguments (a predicate or functor). The

predicates and functors used to describe relationships in the knowledge base

are themselves represented as frames. These frames describe the number and

type of objects that can be taken as arguments, and, in the case of functors, the

type of object returned. If the value of a slot is a predicate, it conforms to the

type (which is the name of some frame) if the predicate name is subsumed by

the type, and each argument of the predicate is subsumed by the

corresponding type found in the list of valid arguments in the predicate

frame. If the value of a slot is a functor, it conforms to the type if the return

object of the functor is subsumed by the type and each argument of the

functor is subsumed by the corresponding type found in the list of valid

arguments in the functor frame. Whenever an attempt is made to set the

value of a slot, type checking is performed. The set will fail if the type check

fails. The type check is defined to succeed for slots which do not have a type

facet or for slots whose type facet is empty.

Consistency Checking

40

In building a knowledge base of even this small size, it becomes

important to automate some consistency checks, especially since frames are

richly related, causing a change in one part of the knowledge base to propagate

to other parts of the knowledge base. The consistency checker checks that the

frames are syntactically well formed, every frame is mentioned in the child

list of its parent, every frame in a child list exists, every slot has a value, every

slot has a type, and that the value of every slot conforms to its type. A frame is

considered well formed if it has the form frame(name:_/ parent:_/ children:_,

slots:_) where the "_" matches any string. The next two checks make sure

that the parent-child links are consistent. The value check is more of a

warning than an error. Many frames may have slots without values (because

they represent an abstract entity), but it is a good idea to look at a list of these

slots to make sure that some slot which should have a value has not been

overlooked. A slot without a type is an error; every slot should have a type.

The type check is performed in the same manner as described above. The

41

consistency checker calls predicates in the frame system to perform this check.

In addition, the method check_type (described below in the section on

routine frames) is called on frames for which the other checks fail. The

iterative construction of ICOP's knowledge base was greatly simplified by

utilizing this semantic consistency checker.

GLOBAL ONTOL<:X;Y

ICOP's knowledge base currently describes a subset of the Windows 3.0

APL The description of the knowledge base is divided into two parts. First, the

ontology of the knowledge base is described. This gives a global map of its

structure. Then, a detailed description of the frame type used to describe

routines is given. Routine frames are the most complicated frames in the

knowledge base. Since most other entities in the knowledge base support the

expression of routines, a detailed description of routine frames should

provide a good understanding of other parts of the knowledge base as well.

An ontology for a domain describes the existent entities for that

domain. The decision to make something a "thing" is arbitrary. The final test

of an ontology is adequacy; is the ontology's way of chopping up the domain

adequate to the task at hand? Each domain entity is described by a frame in

the knowledge base. ICOP's ontology for Windows 3.0 is motivated both by

the need to support code location and comprehension, and by the desire to

construct a deep model of the domain. It is hoped that this deep model will

allow ICOP to be more easily extended to handle other domains (both other

windowing systems and other types of libraries entirely) as well as support an

intelligent tutoring system. Thus, there may be parts of the knowledge base

that seem deeper than strictly necessary to support a code location system.

42

Some frames have no slot structure. For the kind of planning currently

supported by ICOP, the mere existence of certain named frames suffices. To

support an intelligent tutoring and documentation system, these frames

would be given a more complex structure. For example, frames describing

memory resources do not currently have any slots. These frames could be

enriched by adding slots which describe the actual memory structure of the

resource. The idea is that the global ontology is deep enough to support these

more complex reasoning processes. The structureless frames provide

locations ("hooks") where more detailed knowledge can be entered.

Routines

The primary entities in the knowledge base are routines. After all, ICOP

supports the reuse of code objects, and in procedural libraries routines are the

primary objects available for reuse. These routines are organized in their own

hierarchy. The principal of organization of this hierarchy is that routines with

similar effects are siblings in the hierarchy. Their parent will be a generic

routine frame which does not actually describe a routine in the library, but

rather describes the similarities that the children share. This will become

clearer when the details of the structure of the routine frame are given and

the planning algorithm is described. The effect of each routine is described by

a slot filled with a list of predicates. These predicates are the fundamental

domain operators recognized by ICOP.

Predicates and Functors

The predicates and functors used within the knowledge base are

themselves described explicitly by frames. Predicate frames describe the

predicate's arity and the legal types of its arguments. Functor frames include

43

this same information and, in addition, describe a return type for the functor.

Predicates are mappings from domain objects (in the knowledge base) to truth

values. A functor is a mapping from domain objects (in the knowledge base)

to another domain object.

Predicates. The predicate types found in the predicate hierarchy are

operator, constraint, state and source. Operators are the fundamental actions

recognized by ICOP. For example, add_object(<container>, <memory_object>)

expresses that it is true that some object has been placed in some container.

Containers and objects are other members of the ontology which will be

described later. The effects of routines are described in terms of these

operators. The user's query regarding a domain action is also translated into

this operator language.

Constraints indicate that some constraining relationship exists between

the arguments. For example, assoc_type(<atom>, <frame_name>) indicates

that the type indicated by the <frame_name> (meaning that frame and all of

its children) should be associated with an atom, where an atom is an arbitrary

sequence of characters. In other words, some name has been given a type. The

primary difference between constraints and operators is one of interpretation.

Operators are intended to represent domain actions, while constraints

represent static relationships.

State predicates indicate some relationship regarding the state of the

system. For example, received(<message>) means that the message indicated

by the argument has been received by a window.

Source predicates indicate the default source for a routine parameter.

For example, user _source(<user _source_object>) expresses that a parameter

will be provided by the user and that this parameter should be a

44

<user _source_object>. If the planning system had added some routine to its

current plan, and user _source was indicated for one of its parameters, the

planner would look no further to satisfy the parameter.

Functors. Just as in the predicate calculus, functors are used to describe

composed objects. Some things in the world are best described by naming

their parts. A functor is a function which takes as its arguments the parts of

something and returns (constructs) the thing. An example is

iconJunc(<icon>, <x>, <y>) which takes an icon (meaning the actual piece of

memory describing a bitmap which is an icon), a screen x coordinate and a

screen y coordinate and returns a drawable_icon (mean the actual pattern of

light which is placed on the screen). One can clearly see that the icon (piece of

memory) and drawable_icon (screen object) are different objects by looking at

their attributes. It makes no sense to talk about the screen location, height,

and width of a piece of memory, while these attributes are valid for a pattern

on the screen. Conversely, the pattern on the screen does not occupy a given

number of bytes, while the memory pattern certainly does. Functors allow

one to point to an object in the domain (in this case a pattern on the screen)

by pointing to other objects (in this case a bitmap and a coordinate pair) out of

which the first object can be built.

Objects

The predicates and functors express relationships between objects.

These objects are themselves represented within a hierarchy of the

knowledge base. The first level of objects is container, memory_object,

screen_object, and user _source_object.

45

Containers. Containers are things that can contain other objects.

Memory and file are containers. System_memory and user _memory are

recognized as two subtypes of memory, and executableJile is recognized as a

subtype of file. Currently, containers have no slots. These frames could be

made richer by including such information as capacity, the type of objects

stored in system memory vs. user memory, the fact the files have names, etc.

Memory Objects. Memory objects are objects which can occupy space in

containers. The main types of memory objects are referenceable objects,

declareable objects, state objects and values. Referenceable objects are objects

which cannot be directly examined by a programmer. In the Windows

domain, for example, a window is a memory object which contains all of the

system information about a screen window. The contents and structure of

this memory object cannot be directly examined. Instead, this object is passed

to system routines indirectly by means of a handle. The referenceable object

frames do not have any slots. These frames could be made richer by including

information about the actual memory structure.

Declareable objects are typed memory objects which the user can

manipulate in a manner similar to language built-in types. They can be

declared, assigned to, examined, etc. Under declareable_object are

fundamental_type and library_type. Fundamental types are the C built in

types. Library types are defined by the library (in this case Windows). Subtypes

of the library types are library defined structures, handles, pointers and simple

types (simple typedefs of built-in types).

State objects contain some system state. For example, a device context

contains information about the current pen, brush, background, color,

clipping rectangle, etc. for a graphic device. State objects are similar to

46

referenceable objects in that they cannot be directly examined by a

programmer. Unlike referenceable objects, they cannot be pointed at

indirectly by a handle. To gain state information, a programmer must usually

make special calls which copy some aspect of a state object into a declareable

object where it can be examined.

Value objects are values which declareable objects can take on. Many

value objects are integer constants which have been #defined by Windows.

These constant names can be used as arguments to various routines. For

example, the background mode constants opaque and transparent are passed

to SetBkMode and returned by GetBkMode, Windows routines which get and

set the drawing background mode. By representing the concept of a

background mode constant as a separate frame, it allows the argument and

return values of routines which manipulate the background mode to be

expressed accurately. Without the concept of this constant, one would have to

express the values used by SetBkMode and GetBkMode as integer. Yet is is not

the case that these routines accept or return any integer. Only those specific

integers which have been given background mode names by Windows are

valid for these routines.

Screen Objects. Screen objects represent actual patterns of color on the

display screen or objects which are intimately involved in the display process.

The three kinds of screen objects are device coordinates, drawable objects, and

window parts. Device coordinates are the various coordinate systems that can

be used to locate points on the screen. Drawable objects are the screen pattern

associated with a memory representation. As explained in the description for

icon_func above, the memory representation of an object and the

corresponding pattern on the screen should be represented as distinct things

because they have distinct sets of properties. Window parts are entities like

scroll bar, title bar, and client area (the drawable area of a window). In

addition to being patterns of color, a user can interact with a window part

using the mouse or keyboard.

47

User Source Objects. User source objects are values that a user can

supply to a routine. For example, x_coord represents an x coordinate that a

user should supply. Memory_object_name represents a string which names

some other memory object (eg. a resource) which the user should supply.

These objects are the arguments to user _source/1.

Distinction Between Sets and Members

The isA and instanceOf slots express the distinction between sets and

members. Though one could put slots with these names on frames in ICOP's

. knowledge base, the frame system does not give them their usual semantics.

In ICOP, this distinction is made by location in the hierarchy. Leaves are

individual things, anything else is implicitly a set (the set of all leaf frames

which are below a given frame in the hierarchy). This is not a clean way to

handle this distinction. For one thing, the distinction is made implicitly by

the way the knowledge base is manipulated rather than in some explicit,

declarative manner. Another problem is that it is not possible to express that

something is both a set and a thing (like C~mputer-Scientist in the example).

Finally, it is not possible to express that something is a set without also

representing at least one member of the set (ie. placing at least one child in

the child list). In future versions of ICOP, this representational deficiency

should be remedied by giving inheritance semantics to slots named isA and

instanceOJ.

ROUTINE FRAMES

Root Routine

The root of the routine frame hierarchy is root_routine. This frame

appears in Figure 4.

frame(name:root_rou tine,
parent:[],
children:[draw _icon,

get_device_context,
release_device_context,
load_resource_abstract],

slots:[routine_name:facets([value,type:atom]),
parameter_list:facets([value,type:list_of(declareable_object),

min:l]),
default_source:facets([value, type:list_of(source), min:O]),
return_normal:facets([value, type:declareab le_ object]),
return_ error: facets([value:null, type:value]),
main_effect:facets([value, type:list_of(operator), min:l]),
micro_effect:facets([value, type:list_of(operator), min:O]),
constraint:facets([value, type:list_of(constraint), min:O]),
preconditions:facets([value, type:list_of(state), min:O])]).

Fi~ure 4. Root frame of the routine hierarchy.

48

The parent value is the empty list []. This indicates that the frame has no

parent; it is the root of a hierarchy. The children slot contains a list of the

immediate children frames. These frames should partition the set of effects

that can be produced by routines in the library. Each of their children should

partition the set of effects represented by their parent and so on, until one

comes to a leaf frame which represents an actual library routine producing a

specific effect. The slots describe the properties of a particular library routine

or of some abstract routine (not actually available in the library) which

represent a set of effects. These abstract frames are useful both for searching

(as will be describe below in the section on the planner) and as a location to

place slot values which should be inherited by multiple routine frames. Most

49

slots in the root_routine have no value. There is no default value that makes

sense at that level of abstraction. However, the type facet of every slot does

have a value. All other routine frames will inherit these types.

The routine_name slot contains the actual library name of a routine.

Its type is atom, meaning that the routine name can be any arbitrary sequence

of characters. The parameter _list contains the list of parameter types which

the routine takes. Its type is list_oj(declareable_object). If any atom is used in

the parameter _list which is not the name of some frame in the

declareable_object subhierarchy, a type error will be detected. The

default_source is a list of sources for the parameters of the routine. This list is

always the same length as parameter _list, with the sources in one-to-one

correspondence with the parameters (that is, there should be one source for

every parameter). If no default sources exist for a parameter (meaning that the

planner should not assume that the value for a routine argument is going to

come from some specific place), then the arity zero source predicate

no_default/O is placed in the default_source list. The type of the

default_source is list_oj(source), where source is a type of predicate.

Return_normal and return_error describe the library routine return type in

the event of normal termination and the return value in the event of error

termination respectively. The return_error slot has a default value of null, as

this is a common error return value for routines. The main_effect slot

contains a list of operators which describe the main effect of the routine.

Currently, the planner assumes that the main effect is described by a single

operator. The micro_effect is a list of operators which describe in detail what

the routine does. The planner does not currently access the micro_effect. It is

intended to be used by the natural language generator of an intelligent

50

tutoring and documentation system to describe the operation of a routine.

The example given below of a leaf routine frame which describes an actual

library routine should make the idea behind the micro_effect clearer. The

constraint slot holds a list of constraints which pertain to objects mentioned

in the main and micro effect slots. Currently, the only type of constraint used

is assoc_type/2, which associates an atom with a type. If it does not prove

useful to include any other type of constraint which pertains to the effect in

this slot, the next version of the knowledge base could change the name of

this slot to associated_type and change the type facet to list_oj(assoc_type)

rather than list_oj(constraint). The preconditions slot contains a list of state

conditions which must hold in order for the routine to be called. For

example, in the Windows API, the routine BeginPaint should only be called if

the window to which BeginPaint refers has received a paint message. The

preconditions slot allows this kind of information to be expressed.

Example Routine

The frame in Figure 5 describes the Drawlcon routine which draws an

icon on the device associated with a device context (ie. screen, printer, etc.).

The routine_name slot holds the library name of the Drawlcon routine. The

parameter _list expresses that Drawlcon takes four parameters: a handle to a

device context, two integers (which are coordinates) and a handle to an icon.

The default_source expresses that the handle to the device context and the

handle to the icon have no default source, while the two integers are x and y

coordinates and should be supplied by the user. The return_normal and

return_error slots express that Drawlcon normally returns a boolean (which

an examination of the micro_effect reveals takes the value true) and that a

frame(name:draw _icon,
parent:root_rou tine,
children:[],
slots:[routine_name:facets([value:'Drawlcon', type]),

parameter_list:facets([
value:[hdevice_context, integer, integer, hicon],
type, min]),

default_source:facets([value:[no_source,
user_source(x_coord),
user_source(y _coord),
no_source],
type, min]),

return_normal:facets([value:boolean, type]),
return_error:facets([value:false, type]),
main_effect:facets([value:[

draw(device_l, icon_func(param_2, param_3, icon_l))
], type, min]),

micro _effect:facets([value:
[dereference(param_l, system_memory_l, device_l),
dereference(param_4, user_memory _l, icon_l),
draw(device_l, icon_func(param_2, param_3, icon_l)),
return(true)],
type, min]),

constraint:facets([value:
[assoc_type(system_memory _l, system_memory),
assoc_ type(device_ I, device_ context),
assoc_type(user_memory _l, user_memory),
assoc_type(icon_l, icon)], type, min]),

precondi tions:facets([value:[
has_state(context_mapping_mode, mm_text,device_l)
], type, min])]).

Fiii!ure 5. Frame representing the routine Drawlcon.

51

value of false is returned if an error occurs. The main_effect expresses that

the main effect of the Drawlcon routine is to draw on some device context the

drawable_icon which is described by an icon and two coordinates, the

coordinates being supplied by the second and third parameters.

The micro_effect expresses that the total operation of the routine involves

dereferencing the first parameter (which is a handle to a device context) to

retrieve the device context pointed to by the handle in system memory. The

fourth parameter (which is a handle to an icon) is dereferenced to retrieve the

52

icon in user memory. The icon is then drawn on the device context (this

operator is the same one which occurs in the main effect) and the value true

returned. Now it is clear what type of information is captured by the micro

effect which is not captured in the main effect. Imagine a system which

answers natural language queries regarding particular routines. A query such

as "Which icon is drawn?" or "What is the first parameter used for?" is not

answerable based only on the main effect. All one can say from the main

effect is that some icon is drawn on some device context at the coordinates

given by the second and third parameter. The micro_effect provides the

richer knowledge which would be needed by a system which can answer such

questions.

In the main and micro effects, arbitrary atoms are used as arguments to

operators rather than the names of frames which describe objects. This will

cause the predicate type checking procedure described above to fail. The

assoc_type/2 constraints which appear in the constraint slot solve this

problem. Each of the atoms which appear in the effects slot is bound to some

object which is described by a frame. Why not include the names of these

objects directly in the effect operators rather than using this indirection?

Direct use of object names would not work if more than one instance of an

object is referred to in the micro effect. For example, an operation which

copies some information between two device contexts will have to refer to

two different device contexts in the micro effect. The indirection provided by

assoc_type/2 allows these two device contexts to be distinguished by choosing

an arbitrary atom to name them. (eg. source_context, destination_context).

The symbol param_ <number> also appears as an argument to predicates and

functors in the effect slots. This symbol has special semantics. It refers to the

53

object which must be passed to the <number> parameter of the routine. The

last slot, preconditions, expresses that the mapping mode of device context on

which the icon is drawn must have the value mm_text (meaning that the x

and y coordinates indicate the number of pixels in the x and y direction from

the origin).

Example of Type Checking

Now that the meanings of the routine frame slots have been described

and a particular routine frame has been examined, type checking on each slot

can be stepped through, both to provide an example of the type checking

algorithm described above, and to motivate some methods that are attached

to the root_routine (and thus available to all routines).

The routine_name value of Drawlcon satisfies the type of atom, since

Prolog considers any expression an atom if it consists of lowercase

alphanumeric characters or appears in single quotes. The parameter value is

the list [hdevice_context, integer, integer, hicon]. The type is

list_oj(declareable_object), meaning that the value facet must take a list

where each element of the list is a frame subsumed by declareable_object in

the frame hierarchy. In this case, each of the four parameters is indeed a

declareable object (an object which can be directly declared, modified, and

inspected by the programmer). The value of the default_source is [no_source,

user _source(x_coord), user _source(y_coord), no_source] and the type is

list_of(source). The source frame is the parent frame of predicates which

express the relationship of some object serving as a default value for a routine

parameter. The no_source/0 predicate is a child of source and thus satisfies

the type. The user _source/1 predicate takes an argument which must be a

54

user _source_object (this is expressed in the user _source/1 frame). X_coord

and y_coord are found to be the names of frames which are subsumed by the

user _source_object frame. The arguments to user _source/1 thus satisfy their

type requirements, while user _source/1 is found to be a child of source (and

is thus subsumed by source), satisfying the source type requirement. Finally,

the value of default_source is indeed a list, each element of which satisfies

source. The return_normal and return_error slots are checked by simple

frame subsumption. The remaining slots all contain lists of predicates and are

checked in the same manner as the default_source slot. A point of interest is

that the checking of the main_effect will descend through one more level of

recursion due to the presence of the iconJunc/3 functor as the second

argument to the draw/2 predicate.

The effect slots do present a problem for type checking, however. The

arguments present in these predicates are not the names of frames, but rather

are arbitrary atoms which are bound to frame names by assoc_type/2. Two

methods are attached to the root routine to bind the associated types to the

atoms which appear in the effect predicates. The check_type method takes the

name of a slot as an argument, though the only two slots for which it could

possibly succeed are main_effect and micro_effect. This method gets the

value of an effect slot, constructs a new effect list with the appropriate

substitution of a type (frame name) for each predicate argument as described

by the assoc_type/2 predicates in the constraint slot, and then performs the

type check on this newly constructed list. The bind_main_effect method

constructs a new main effect with the appropriate types and returns this new

main effect. This method is used by the planner. Both check_type and

bind_main_effect will search up through the inheritance hierarchy to find

55

type bindings for effect arguments if a binding cannot be found on the local

frame. The situations in which this occurs can be illustrated with two

examples. If the value of one effect slot is inherited and the other is not, then

the local constraints slot will contain the assoc_type/2 bindings for the non

inherited effect, while the bindings for the inherited effect will be found on

the same frame as this effect. If the bindings of some inherited effect operators

within an effect slot are changed while the other effect operator bindings stay

the same, the bindings of the unchanged operators will be found on the frame

on which they reside. In both of these cases, the basic idea is that when

inherited type bindings need to be overridden, just those bindings which

have changed are placed in the constraint slot. The unchanged bindings will

be inherited even though the local constraint slot has a value.

Most type checks are performed by the frame system whenever a slot

value is set. The type check on the main and micro effects, however, is not

performed during a set for two reasons. First, the semantics for these slots are

peculiar to this particular application. The frame system is designed to

support generic operations useful for any knowledge base. Supporting

explicitly defined predicates and functors is a general enough operation to

support in the frame language. The binding of types to atoms in the routine

frames, however, is particular to this application. Of course, the frame system

could always attempt to call a check_type method on any slot for which all

other checks failed, thus providing a hook for an application developer to

implement application dependent semantics. In general, this is a good idea.

The second problem here, however, is that the correctness of the value of an

effect slot depends on the value of the constraint slot. Making changes to

either one of these slots could potentially require making coordinated

56

changes to both slots. If the constraints were changed first, it could make the

effects become illegal. If the effects are changed first, this could introduce new

atoms that are not yet mentioned in the constraint slot. For this reason, the

type check is not performed during a set for the effect slots. This is not a

problem for this particular application because the values of the slots on the

routine frames are not changed while the system is running. These frames

statically describe the routines available in a library. The consistency checker,

which performs syntax checks and semantic consistency checks on the

knowledge base, does call the check_type method on the effect slots.

CHAPTER IV

NATURAL LANGUAGE INTERFACE

The natural language interface accepts an English query and translates

it into an operator describing a desired main effect. There are two main stages

in this processing: syntactic processing in which an augmented transition

network (ATN) is used to locate the main verb and the object of the verb, and

semantic processing in which an attempt is made to build a valid operator

from the verb and verb object.

SYNTAX

The syntactic subsystem accepts a sentence input by the user and

produces a register structure representing the sentence. The primary

components of the syntactic processor are an ATN grammar, the string

preprocessor, an affix stripper, and an interpreter. Each of these components is

described below.

The ATN

Transition Networks. A transition network consists of a set of states

and a set of directed arcs connecting the states. The arcs are labeled by input

symbols and input symbol categories. Some set of states is distinguished as

start states and some set of states is distinguished as terminal states. As input

symbols arrive, transitions can take place from one state to another along an

outward arc whose label matches the input symbol. Such networks have the

58

same generative power as regular grammars. Recursive transition networks

(RTN) augment the basic transition network by allowing arcs to represent

entire networks. Traversing such an arc in a network is legal only if the

transition network associated with the arc can be traversed from a start state

to a terminal state. RTNs have the same generative power as context free

grammars. An augmented transition network (ATN) further augments RTNs

by associating a register structure with the network. A register consists of

features dimensions and roles, where feature dimensions can take a value

from some primitive set of dimensions and roles can be filled by some other

register. A word or set of words from the input sentence is associated with

each register. The arcs of an A TN are labeled by conditions and actions in

addition to symbols and symbol categories, where conditions can test the

current state of a register and actions can modify a register. Basically, an ATN

provides an RTN with a modifiable memory and rules for modifying the

memory. ATNs have the generative power of context sensitive grammars.

The ATN for ICOP is expressed in Prolog as a definite clause grammar.

Definite clause grammars are similar to context free grammars except that

arbitrary Prolog expressions can appear on the right hand side in addition to

grammar symbols. This provides the ability to perform tests and actions, the

two necessary features for an ATN.

The Grammar. ICOP answers questions about how to achieve an effect

using a library. This type of question takes the form of asking how to perform

an action on an object ("How do I <verb> an <object>?"). In the future, ICOP

may handle information requests as well ("Tell me about <object>?").

Though none of ICOP's other subsystems currently knows how to handle

such a request, the syntactic processing stage can correctly parse this kind of

59

sentence. The four types of sentences currently understood by the grammar

are shown in Figure 6.

How <swallow> <verb> <noun phrase>?
Eg. "How do I create a window?"

How is/are <noun phrase>(s) <verbed>?
Eg. "How are windows created?"

Tell <swallow> about <noun phrase>s?
Eg. "Tell me about windows?"

Tell <swallow> about verbing <noun phrase>(s)?
Eg. "Tell me about creating a window?"

Figure 6. Four sentence types understood by A TN.

The <swallow> grammar symbol is special. It matches any number of

any kind of word. Words are swallowed until a sentence that the grammar

recognizes is found or the entire sentence is swallowed (and recognition fails).

This allows the grammar to recognize sentences which have been

embellished with words which do not add to the meaning of the sentence.

For example, "How do I draw an icon?" and "How in the world is it possible

to draw an icon?" are both reduced to "How draw an icon?" which is

recognized by the grammar. This does have the side effect of allowing

ungrammatical sentences such as "How draw an icon?" to be recognized.

However, ICOP's grammar is not motivated by the desire to reject

ungrammatical sentences but rather by the desire to assign meaning to as

wide a range of sentence as possible within the domain.

ICOP's natural language interface currently handles an extremely

limited subset of English, even though the A TN formalism is capable of

representing a much richer subset. Using a formalism more powerful than

strictly needed by the current interface provides a rich foundation on which

ICOP's interface can grow.

60

The Re~ister Structure. Given the simple form of the sentences

handled, the registers have a simple structure. The two registers filled by the

ATN are shown in Figure 7.

Sentence Register
Object -
Action -
Type-

filled by a noun phrase register
filled by the verb in infinitive form
filled by "plan" or "info"

Noun Phrase Register
Head - filled by noun in singular form
Describers - filled by list of adjectives and nouns in

singular form

Fi~ure 7. Registers filled by ATN.

No attributes other than the sentence type are included. Any attributes

needed during parsing (verb form, number) are passed as arguments in the

definite clause grammar. The slot structure is influenced by the semantic

form of the queries. All queries are either requests for a plan or requests for

information (this is stored in the sentence type slot). Plan requests are always

requests for some action on an object. Information requests are always

requests for information about some particular object. If an object can be

described in one word (eg. menu), it will be in the head slot of the noun

phrase. If the object takes several words to describe (eg. handle to an

application instance), the base word (handle) will appear in the head and the

other words (application, instance) will appear in the list of describers.

Currently, only one noun phrase is ever created during the processing of a

query. This noun phrase is always the object of the sentence. The code has

61

been made general enough (register names are passed as arguments) so that if,

in the future, multiple registers of the same type are needed, it will not

require a major code revision. The registers are implemented using frames

managed by the frame system.

The String Preprocessor

The string preprocessor takes the string typed by the user, which is

represented as a list of characters in Prolog, and converts it into a list of atoms

where each word becomes an atom. During this process, all characters are

converted to lower case and extraneous punctuation is removed. The list of

atoms is then processed by the ATN.

Affix Stripper

The action verb is stored in the register in its infinitive form and

nouns are stored in their singular form. This simplifies later processing of the

register structure by the semantics subsystem. The affix stripper converts

plural nouns to singular nouns and past participle and present participle verb

tenses to the infinitive tense. Regular plural nouns and verbs with regular

present and past participles are constructed automatically by this component.

Only irregular forms need to be explicitly represented in the lexicon. Since so

many verbs take either -en (eg. given) or -ed (eg. dropped) for the past

participle form, the system tries both forms while looking for the infinitive in

the lexicon. This means that incorrect forms like "droppen" will be accepted

by the parser. However, as mentioned above, the motivation of the parser is

to try an extract meaning from sentences rather than to reject ungrammatical

sentences.

62
The Interpreter

To facilitate debugging of the parser, a special Prolog interpreter that

produces ATN specific trace messages was written. The grammar actually

runs in this interpreter rather than directly in Prolog. With a debug switch

on, the interpreter produces trace messages when processing particular

predicates. Since the meta-language understood by the interpreter is precisely

Prolog (the object language), the interpreter can be removed and the grammar

run direct! y in Prolog when debugging is complete.

SEMANTICS

The semantics analyzer accepts the sentence register produced by the

ATN and attempts to construct an operator that represents the desired effect

expressed in the query. There are three phases in this process: matching the

verb of the sentence to an operator, matching the head and describers of a

sentence to objects in the knowledge base, and testing the arguments of the

operator for semantic validity. In this last stage, any arguments needed by the

operator which were not explicitly given by the user are filled in.

Determining the Operator

The main verb is a valid operator if there is an operator frame with the

same name as the verb. For example, the query "How do I draw an icon?"

contains the verb "draw". There is an operator frame with the name draw,

therefore draw/2 will be selected as the operator. If there is no frame whose

name is the same as the verb, an attempt is made to map the verb to operator.

Mappings from verbs to operators are represented by the predicate

map_action(<verb>, <operator>). A map_action/2 fact expresses that some

verb should be considered a synonym for some operator. For example, the

63

query "How do I load an icon?" contains the verb "load." There is no operator

frame with the name "load," so that condition for converting a verb to an

operator fails. Next, an attempt is made to map "load" to an operator. It so

happens that there is a map_action/2 fact map_action(load, add_object)

which expresses the fact the "load" should be considered a synonym for the

operator add_object/2. If the verb "load" can have more than one meaning in

the context of using a code library, these multiple meanings can be

represented by multiple map_action/2 facts containing "load" as the first

argument. In the event that another attempt is made to map the verb to an

operator (perhaps due to the objects of the verb not meeting the operator

argument constraints), the next operator mapping will be tried.

Determining the Objects

The next stage in semantics processing is to convert the head and

describers obtained from the A TN into an object or list of objects. Before

attempting to map the head and describers to objects, the head is appended to

the end of the describers. In the query "How do I get a handle to an

application instance?", the head is "handle" and the describers are

[application, instance]. The new list formed for object mapping is

[application,instance,handle]. Of course, if the describers are empty (as in the

query "How do I draw an icon?"), then the new list still contains one word.

The predicate find_object/2 performs the mapping from a list of one or

more words to a list of one or more objects. There are four ways for

find_object/2 to succeed. If there is only one word in the list (meaning there

was only a head with no describers), then there is an object corresponding to

this word if there is an object frame whose name is this word. If the frame has

64

children, meaning that the frame actually describes a set of objects, then the

actual object returned will be a leaf in the subtree whose root is this frame.

This accommodates user queries which are at a more general level than the

primitive objects represented in the system. For example, a user may ask the

query "How do I load a resource?" Now it so happens that there is a frame

named resource whose children include all of the resource objects known by

ICOP. However, if the object mapping stage returned the object resource, the

query that would be constructed is add_object(user _memory, resource). This

query would fail because there is no particular routine described in the

knowledge base that loads resources in general, though there are routines

which load particular resources. However, instead of returning resource, the

object mapper will find the resource frame in the knowledge base and begin

searching the resource subtree for leaf frames. If the first leaf frame it found

was system_icon, then the object mapper would return system_icon. Now

there is a routine for loading a system icon; an example will successfully be

constructed. If the user asks the system to generate another example,

find_object/2 will be tried again (after the example generator has tried to

construct a different example for the plan to load a system icon, and the

planner has tried to construct an alternate plan to load a system icon). This

time, find_object/2 might return the object menu. Now an example for

loading a menu will be created. This mapping of non-primitive (set) objects to

primitive objects is one way in which ICOP attempts to provide specific

examples in response to general information needs.

The second way in which find_object/2 succeeds is if there is only one

word in the list and a map _object/2 fact can be found for the word. The

map _object/2 facts are analogous to the map _action/2 facts. They allow

65

natural language words to serve as synonyms for some object. An attempt is

still made to find a primitive object if the object indicated by map_object/2 is

non-primitive. This allows words to serve as synonyms for abstract (non

primi ti ve) objects.

The third way in which find_object/2 succeeds is by concatenating a

multiple word list (the describers are not empty) into a single atom and

recursively checking whether this single atom satisfies one of the first two

cases. The single atom created through concatenation consists of each word in

the list separated by an underbar ("_"). Thus the list [application, instance,

handle] becomes application_instance_handle.

The final way in which find_object/2 succeeds is by finding some

partition of the list of words such that each piece of the partition recursively

satisfies find_object/2. This is the only way in which a list of words can be

mapped to a list of objects rather than a single object. The examples at the end

of this chapter will make each of these four cases for matching words to

objects more clear.

Checking Semantic Validity

After the head and describers have been converted into a list of objects

which serve as potential arguments for the operator, these arguments are

tested for semantic consistency with the operator. This processing deals with

the problem that sentences which are syntactically valid may be semantically

invalid. For example, the utterance "I want to drink a rock" has proper

syntactic form, but is invalid because the object of the verb does not "fit" the

verb (rock is not a legal argument of the drink operator). The frame describing

each operator has a slot containing the legal arguments for that operator. Each

66

object in the object list is compared against the legal arguments. If there is

some argument which subsumes the object, the object is valid. This step also

orders the objects. For example, if there are two objects in the object list, and

the first object is subsumed by the second argument and the second object is

subsumed by the first argument, then order of the objects will be switched. If

no argument subsumes an object, a check is made to see if some functor can

map the object to an object which is subsumed by an argument. If a functor is

found with an argument that subsumes the object and whose return value is

subsumed by an operator argument, the return value of the functor is placed

in the ordered list of objects. After the object list has been ordered, any

operator arguments which were not given explicitly in the query are filled

with the appropriate value from the list of legal arguments. The next section

gives some examples of query processing.

Examples

Example l.Consider the query "How do I draw an icon?" The ATN

grammar recognizes this sentence and produces the register shown in Figure

8.

Sentence Register
Object: Noun Phrase 1
Action: draw
Type: plan

Noun Phrase 1
Head: icon
Describers:

Figure 8. Registers produced during parse of the query "How do I
draw an Icon?".

67

The first step in semantic processing is mapping the verb to an operator. An

operator frame named draw does indeed exist, so the operator corresponding

to the action "draw" is draw/2. The next step is mapping the noun phrase to a

list of objects. The describers are empty, so the word list to be mapped is [icon].

A non-primitive frame named icon is found. The first primitive child located

beneath icon is defined_icon (meaning an icon defined by the user, as

opposed to a system icon), so "icon" maps to defined_icon. Now the test is

performed to check if defined_icon is subsumed by an argument of draw/2.

Draw/2's legal arguments are [device_context, gdi_drawable_object]. Neither

of these arguments subsumes defined_icon, so this test fails. However, there

is a functor iconJunc/3 taking an icon as one of its arguments (subsuming

defined_icon) which maps to the object drawable_icon. Drawable_icon is

subsumed by the second argument of draw/2 (gdi_drawable_object), so

drawable_icon fills the second argument. Finally, the first argument, which

was not filled by any object mentioned in the query, is filled by the first object

in draw/2's valid argument list (device_context). The final operator produced

after semantic processing is draw(device_context, drawable_icon).

Example 2. As a second example, consider the query "How is a bitmap

added to user memory?" The register structure produced by the ATN is

shown in Figure 9. There is no operator frame named "add," so the first case

for mapping a verb to an object fails. However, there is a map _action/2 rule

mapping "add" to add_object/2. Now the head is appended to the end of the

describers producing the list [user,memory,bitmap]. The first find_object/2

case which handles lists containing multiple words attempts to

mapuser_memory _bitmap to an object. This attempt fails. The final

find_object/2 clause partitions the list as [user], [memory,bitmap] and tries to

Sentence Register
Object:
Action:
Type: plan

Noun Phrase 1
Head:
Describers:

Noun Phrase 1
add

bitmap
[user ,memory]

Figure 9. Registers produced during parse of the query "How is a
bitmap added to user memory?".

68

map each of these to a list of objects. The attempt to find an object

corresponding to [user] fails, so the attempt to call find_object/2 on

[memory,object] is never even tried. The next partition tried is [user,memory],

[bitmap]. The first list is mapped to the object user _memory by the second

find_object/2 clause. The second list maps to bitmap, because there is a

primitive frame named bitmap. So the object list produced from the word list

[user,memory,bitmap] is [user _memory, bitmap]. Finally, these objects are

checked for semantic validity with add_object/2. The valid arguments of

add_object/2 are [container, memory_object]. Container subsumes

user _memory and memory_object subsumes bitmap, so the test succeeds.

The final operator representation of the query is add_object(user _memory,

bitmap).

Syntax vs. Semantics. The final clause of find_object/2, which

attempts to find a partition of the list which can be mapped to objects, is

necessary because the ATN represents multiple objects as single objects. In the

example above, the noun phrase in " ... add a bitmap to user memory" was

described in the register structure as the single entity "bitmap" modified by

the describers "user memory." Actually, these are two separate objects, where

69

the preposition "to" relates an object to a location. The semantics processing

had to break this back into two separate objects. However, the noun phrase in

" ... get a handle to an application instance" is correctly represented as a single

object "handle" modified by "application instance"; this will not need to be

broken into separate objects during semantic processing. This inconsistency is

caused by the fact that the ATN does not currently distinguish between

transitive and bitransitive verbs. "Get" is transitive and thus takes only one

object. "Add" is bitransitive, therefore the object of the preposition becomes

the second object of the verb rather than describers of the first object. Since the

ATN does not make these distinctions, they have to be unraveled in the

semantics.

CHAPTER V

THE PLANNER

The planner accepts an effect and produces a list of routines which

have the desired effect. There are three major stages in the planning process:

find a routine which produces the desired effect (the plan focus in Rist's

terminology), satisfy any preconditions of this routine by recursively finding a

focus routine for each precondition and satisfying the preconditions of this

new focus routine, and satisfy any postconditions for all routines present after

the second step. To aid in understanding the planning process, the general

description of each processing step will be accompanied with an example of

plan generation. Before understanding the processing, however, it is

important to understand the plan representation.

PLAN REPRESENTATION

Routine Representation

Each routine in a plan is represented with the routine/3 functor. This

functor has the form routine(<routineJrame_name>, return(Unbound),

<list_of _sources>). The <routine_frame_name> is the name of the frame

which describes the library routine. Return(Unbound) is a functor

representing the return value of the routine. The unbound Prolog variable in

the argument of return/1 will be bound to a name during the example

generation stage. The list of sources is a list of source predicates describing

where each parameter of the routine should come from. The routine/3

71

functor in Figure 10 describing the Windows BeginPaint procedure illustrates

these ideas.

[routine(begin_paint, return(_B),
[code_source(window _procedure,hwnd),
user_source(user_declareable_object,_A)])

Figure 10. Routine functor for BeginPaint.

Begin_paint is the name of the frame describing the BeginPaint

routine. The B in the return/1 functor is the unbound variable which will

be bound during the example generation stage to the name of the variable

which accepts BeginPaint's return value. The list of two sources describes

how BeginPaint's two arguments will be satisfied. The

code_source(window_procedure, hwnd) predicate expresses that the first

argument is satisfied by the hwnd argument of the window _procedure code

object. The user _source(user _declareable_object, _A) predicate indicates that

the second argument is satisfied by a variable declared by the user. The

unbound variable _A will be bound to the actual name of this user declared

variable during the example generation stage.

Plan Representation

A plan consists of a list of routine/3 functors. A plan to draw an icon is

shown in Figure 11. This plan consists of the four Windows routines

BeginPaint, Loadlcon, Draw/con and EndPaint. Looking at an entire plan, the

purpose of the unbound variables in the return/1 functor and the source

predicates becomes clear. They are used to express the dataflow dependencies

of the plan. The unbound variables for values which should be shared

between routines are unified. For example, the first argument to Drawlcon

[routine(begin_paint, return(_B),
[code_source(window _proced ure,hwnd),
user _source(user_declareable_object,_A)]),

routine(load_icon_resource, return(_D),
[code _source(main_ en try ,hlns tance),
user_source(memory _object_name,_C)]),

routine(draw _icon, return(_G),
[routine_source(begin_paint,O,_B),
user_source(x_coord,_E), user_source(y _coord,_F),
routine_source(load_icon_resource,O ,_D)]),

routine(end_paint, return(_H),
[routine_source(begin_paint,l,hwnd),
routine_source(begin_paint,2,_A)])]

Figure 11. Representation of plan to draw an icon.

should come from the return value of BeginPaint. This is expressed by the

first source predicate in draw _icon's source list and begin_paint's retu rn/1

functor. The first source predicate for Drawlcon is

72

routine_source(begin_paint, 0, _B). This expresses that the first argument for

Drawlcon should come from the zeroth argument of BeginPaint; the zeroth

argument means the return value. The variable in the return/1 functor for

BeginPaint has been unified with the variable in the routine_source/3

predicate, as is indicated by the shared name "_B." When the example

generator first creates a name for a return value or an argument, the pattern

of unification in the plan ensures that this name will be shared properly

among the elements of the plan. With this understanding of the plan

representation, it is now time to look at the stages of plan production.

73
SEARCHING FOR THE FOCUS

Discrimination Tree

The first stage in the planning process is finding the routine which

produces the desired effect. This is done by performing a depth first search of

the routine frame hierarchy. When a frame is found which has no children

and whose main_effect subsumes the query effect, the routine represented by

this frame satisfies the query. The main_effect slot of the routine frames is

used by the planner to prune branches off the search tree. Subtrees are only

searched if the main effect at the root of the subtree subsumes the query effect.

The routine hierarchy can be seen as a discrimination tree, in which nodes on

the same level describe effects of the same generality, and children describe

less general effects.

Search Example

For example, the query that would have produced the plan shown

above to draw an icon is draw(device_context, drawable_icon). Assume that

the immediate children of the root routine are draw_object, load_resource

and get_device_context. This first level of routine frames with their effect are

shown in the Figure 12.

Name: draw _object
Effect:
draw(device_ context,
gdi_drawable_object)

Name: root_routine

Name: load_resource
Effect:
add_object(user_memory,
resource)

Name: get_device_context

Effect:
retum(hdevice_context)

Figure 12. First level of discrimination tree.

74

The search to satisfy the query draw(device_context, drawable_icon)

begins with the child list of the root routine. Since the search is performed left

to right, the first frame examined is the draw_object frame. In this case, the

main effect of draw _object, draw(device_context, gdi_drawable_object),

subsumes the query, since the predicates subsume each other (draw/2

subsumes draw/2), the first arguments subsume each other (device_context

subsumes device_context) and the second arguments subsume each other

(gdi_drawable_object subsumes drawable_icon). The search would then

proceed down into this subtree. Suppose, however, that draw_object was the

rightmost frame. Then load_resource and get_device_context would be

checked first. In each case, subsumption would fail, because add_object/2 and

return/1 do not subsume draw/2 (this is checked by looking at the relative

positions of these predicates in the predicate hierarchy). The subtrees below

load_resource and get_device_context have been pruned from the search.

Once the search descends into the draw_object hierarchy, the subsumption

check process is repeated until a routine frame is found which has no

children and whose effect subsumes the query. Once a routine is found, a

routine/3 functor is built by placing the name of the located frame in the first

argument, a return/1 functor with a new unbound variable in the second

argument, and an empty list (which will eventually become the list of

sources) in the third argument. For this query, the routine/3 functor

produced is routine(draw_icon, return(_G), []).

75
SATISFYING THE PRECONDITIONS

Satisfying Arguments, Not State

Once the focus of the plan has been found, an attempt is made to satisfy

the preconditions of the focus. In order to use a routine, one must have the

proper arguments to pass to the routine. Satisfying the preconditions of the

focus means satisfying the arguments of the focus routine. Note that this has

nothing to do with the preconditions slot on the routine frames. The

preconditions slot describes states that must be true in the world in order to

use a routine. Some of these states may not be under programmer control,

such as whether a window has received a paint message. Other states are

under programmer control, such as the coordinate mapping mode of the

device context. Unlike many planners, ICOP's planner does not know the

state of the world prior to plan execution; ICOP assumes that state

preconditions have been met. The preconditions list was included on frames

to be used, along with the micro effect, by a natural language generator in

producing comments, tutorials, answers ·to questions, etc. The preconditions

could also be used to produce alternate examples. One can envision a user

making a query, getting a commented example in reply, then requesting a

plan showing what to do if the preconditions are not met. It would not be

complicated to add a new predicate to the planner which processes the

preconditions list as well as the parameter list while planning. The current

implementation of ICOP, however, does not do this. As will be seen in the

description of the example generator, some preconditions do effect the

example being produced.

76
Invoking Effect Rules

To satisfy the routine arguments, the default source list is examined.

Any source which is not no_source is added to the source list in the routine/3

functor with no change. When no_source is encountered, this means that no

default is specified for the corresponding argument. The planner must find a

way to satisfy this argument. The type of the unsatisfied argument is found in

the parameter list. Then, effect rules are used to determine the effect of a

routine which could satisfy these arguments. What is needed is a routine

which returns the required type either directly as a return value or indirectly

through an argument pointer. Since the main effect indexes the routines, the

only way to search for a routine without a main effect would be to examine

the parameters and return value of every routine with no children. In the

event that a parameter was found which is a pointer to the correct type, the

micro effect would need to be examined to determine whether this routine

was actually altering the value of the object pointed at by the pointer.

Altogether, this would be a highly inefficient way to proceed. One alternative

would be to assume that the main effect of a routine which produces a value

of type <type> is return(<type>). In building the knowledge base, however,

this alternative constrains the selection of the main effect. Other processing

components of ICOP may find it more convenient to have a different effect

hilighted as the main effect. For example, the Loadlcon routine loads an icon

into memory and returns a handle to this icon. Should it's main effect be

return(hicon) or add_object(user _memory, icon)? The effect rule allows

maximum flexibility in choosing the main effect by providing a mapping

between a parameter need and the main effect of the routine which satisfies

such a parameter. The form of an effect rule is effect(<type>, <effect>) if

77

<condition> where the <type> is some argument type, the <effect> is some

effect, and the <condition> is a conjunction of Prolog goals. The conjunction

of Prolog goals allows an arbitrary condition to be tested before choosing an

effect as the proper effect to look for to satisfy an argument of type <type>. In

the example plan, the current plan focus is draw_icon. In examining the

default source list, two no_source predicates are found, one for the first

argument and one for the fourth argument. The type of the first argument is

hdevice_context (handle to a device context). The type of the fourth

argument is hicon (handle to an icon). The effect rules relevant in these two

cases are shown in Figure 13.

effect(hdevice_context, return(hdevice_context)).
effect(Resource_handle, add_ object(user_rnernory, Object)) :

subs umes(Resource_handle, handle),
ask(Resource_handle, get-referenced_object:Object),
subsurnes(Object, resource).

Figure 13. Effect rules relevant during planning for drawing an
icon.

The first effect rule is applicable to the hdevice_context argument. This

rule states that if a handle to a device context is needed, the appropriate effect

to look for is indeed the return of a handle to a device context. The second

effect rule is applicable to the hicon argument. This rule states that if the

required argument is a handle, and this handle references a resource, then the

appropriate effect to look for is adding this resource to user memory. In the

case of hicon, hicon is a type of handle, the referenced_object slot on the

hicon frame is filled by icon, and icon is a type of resource. Therefore, the

appropriate effect to look for is add_object(user _memory, icon).

78
Recursively Satisfying Preconditions

Once an effect has been found by firing the effect rules, a focal routine

for this effect is found and the preconditions of this new routine are satisfied.

Routines are added to the plan to satisfy the preconditions of this new focus.

As each routine is added to the plan, it becomes the focus; it's preconditions

are recursively satisfied. This continues until no unsatisfied preconditions

remain. All postconditions are deferred until the precondition processing

phase has been completed. Note that this does not involve recursively calling

the entire planner. If the entire planner were called, the focus would be

found, preconditions satisfied, and postconditions satisfied for each routine as

it was processed. This can create goal interaction problems in which satisfying

the postcondition undoes the effect of a routine before the user of some data

object produced by the routine has a chance to use it. An example of this

problem will be described below in the section on postcondition processing.

Determining the Da taflow

As each argument is satisfied, the last routine in the satisfying subplan

(this will be the routine which immediately satisfies the argument) is

examined. A new routine source/3 functor is created with the name of the

immediate satisfier in the first argument. The satisfier is then examined to

determine which of its arguments produces the desired object. If its return

type is the same type as the argument, it is assumed that the return value is

the needed value; the second argument of routine_source/3 is set to 0 and the

third is an uninstantiated variable which is unified with the return variable

of the satisfier. If the return value is not the same type as the argument, each

of the satisfier's arguments is examined in turn. The first one which matches

the desired type is assumed to be the source. The last argument of the

79

matching source predicate is unified with the third argument of the

routine_source/3 predicate. The second argument of routine_source/3 is set

to the number of the satisfying argument. In this way, the dataflow through

the plan is expressed.

Precondition Processing Example

In the example plan, the current focus is Draw/con. The first no_source

source encountered is for the hdevice_context argument (argument one). The

effect rules are fired and the corresponding effect found is

return(hdevice_context). The search through the routine tree retrieves

BeginPaint. Its source list is searched and no no_source sources are found.

Since BeginPaint is the last (and only) routine in the subplan which satisfies

hdevice_context, it is examined to determine how it produces an

hdevice_context. Its return value has this type; the return value is unified

with the third argument of routine_source/3 and the second argument is set

to 0 (return value is source). The second no_source source found in Draw/con

is for the fourth argument hicon. The effect rules are fired and the

corresponding effect found is add_object(user _memory, icon). The routine

tree is searched and the routine Loadlcon is found. It's source list contains no

no_source sources. Again the satisfying subplan consists of one routine. It is

found that Load/con returns an hicon; the routine_source/3 for the fourth

argument of Drawlcon is set accordingly. There are no more unsatisfied

preconditions. The plan at this stage is show in Figure 14.

[routine(begin_paint, return(_B),
[code_source(window _procedure ,h wnd),
user_source(user_declareable_object,_A)]),

routine(load_icon_resource, return(_D),
[code_source(main_entry ,hlnstance),
user_source(memory_object_name,_C)]),

routine(draw _icon, return(_G),
[routine _source (be gin_ paint, 0, _ B),
user_source(x_coord,_E), user_source(y _coord,_F),
rou tine_source(load_icon_resource ,0 ,_D)])]

Fi~ure 14. Plan to draw an icon after precondition processing.

POSTCONDITION PROCESSING

Concern Rules

The last stage of plan processing satisfies any postconditions.

80

Postconditions "clean up" the plan. Determining the postconditions is done

by firing concern rules. Concerns have the form

concern(<routine_frame_name>, <effect>) if <condition> where the

<condition> is a conjunction of Prolog goals. A concern is a way of saying that

a certain effect should always occur at the end of a plan in which a certain

routine occurs. A routine satisfying the effect is found and it is placed at the

end of the plan. No attempt is made to satisfy the preconditions of a routine

added because of a concern. It is assumed that such a routine will have default

sources for all of it's arguments. After a routine is found, an attempt is made

to bind any routine_source/3 sources. Cleanup routines may refer to specific

routines and arguments which they use to satisfy their own arguments. The

plan prior to the concern is searched for any such explicitly mentioned

81

routines, and the appropriate variables are unified. Every routine in the plan

is given the chance to fire a concern.

Postcondition Processing Example

In the example, the only relevant concern is concern(begin_paint,

end_paint). Note that the concern rule is returning a routine frame name

rather than an effect. If the search system of the planner is given a routine

name rather than an effect, it immediately returns with the routine as the

plan. In other words, the plan for a routine is the routine itself. This concern

expresses that if a plan contains begin_paint, then end_paint should be placed

on the end of the plan. End_paint's default source list contains two

routine_source/3 sources: routine_source(begin_paint, 1, _A), and

routine_source(begin_paint, 2, _B). Begin_paint is found in the plan, and _A

and _B are unified with the appropriate variables in Begin_paint's source list.

No other concerns match for the plan. The final plan is shown in Figure 11

on page 72.

A voiding Plan Interactions

In the section describing precondition processing, it was mentioned

that postcondition processing should be deferred until all preconditions have

been satisfied, rather than recursively calling the entire planner and thus

satisfying postconditions as each new routine is added. The draw~icon

example shows what happens if postconditions are not deferred. If

begin_paint's postconditions were processed immediately after begin_paint

was added to the plan, end_paint would be added between begin_paint and

load_icon_resource. This would invalidate the device context handle before

82

draw_icon got a chance to use it. Deferring postconditions until the end of the

plan are an attempt to avoid this type of negative interaction.

CHAPTER VI

EXAMPLE GENERATOR

The example generator accepts a plan produced by the planning

component and produces example code illustrating the plan. For many

reusable code libraries, the example code could be as simple as a linear

ordering of the plan routines preceded by the appropriate variable

declarations. However, in a message based windowing system such as

Windows (the Macintosh toolbox and X windows have this same

architecture), various pieces of user code are called asynchronously by the

operating system in response to system activity such as the mouse being

clicked or a window being opened. This means that the routines in the p Ian

may be scattered nonlocally in the example. In order to accomplish this, the

example generator uses a grammar of Windows examples to build up a syntax

tree for the example. As each routine in the plan is encountered, the syntax

tree is modified according to rules which take into account the current

routine being added to the example and the current structure of the example.

There are three steps involved in adding each routine to the example: placing

the routine name in the appropriate location in the example, adding the

routine parameters (and making the appropriate variable declarations), and

adding the return value (and its variable declaration). Once the syntax tree for

the example has been built, the actual text of the example is written by

walking along the example tree.

84
UNIFICATION GRAMMAR

Functional Description

The grammar for Windows examples is expressed as a unification

grammar [Mellish, 1990]. In unification grammar, a phrase is expressed by a

functional description. A functional description states the attributes and

values of a phrase. For example, the functional description for the phrase "it

hit" might be expressed as shown in Figure 15 [Mellish, 1990].

[s,
subj=[person_number=(3+sing), text=[root=it]],
pred=[first=[

main verb= [root= hit],
compls=[

first=[np]]]]]

Figure 15. Example functional description for phrase "it hit".

The functional description in Figure 15 says that the phrase "it hit" is a

sentence with the third person singular subject "it" and a predicate consisting

of the main verb "hit" and a noun phrase.

Any expression of the form X=Y in the functional description indicates

that attribute X takes the value Y, where Y is either itself a functional

description or an atom. Single atoms (such as "s") indicate additional

properties of the phrase. Whether a functional description is legal or not

depends on the grammar. Given a partial functional description for a phrase,

such as the one above, it is possible in general to match this description

against the grammar in order to test grammaticallity and fill in additional

attributes which can be computed from those explicitly given. It is also

possible to match two functional descriptions to test whether they

85

consistently describe different attributes of the the same phrase. In the process

of matching these descriptions, attributes missing in one description but

present in the other will be filled. It is this property of successively matching

consistent functional descriptions to build an ever more complex phrase

which is used in the example generator to build up a functional description of

the entire example.

Grammar Specification

A specification of a unification grammar generally consists of three

parts: descriptions of the categories of phrases and the attributes of these

phrases, sharing rules between attributes which constrain attributes of some

phrases to match attributes of other phrases, and finally computed properties

which serve as abbreviations for combinations of attributes. The grammar of

Windows examples only makes use of the first part of this grammar

specification. The example grammar, with English explanations of each

grammar specification, appears in Figures 16 and 17. The symbols on the left

hand side of the grammar rules are the legal phrase types. The right hand

sides indicate the attributes of a phrase type. The "**" symbol should be read

as "and"; the list of properties on the right hand side are all of the properties

of a given phrase. A property may be a simple atom or may be followed by a

":" and a phrase type. If a property is a simple atom, this property can be filled

by anything; this is a primitive property. Properties with phrase types can only

be filled with phrases of that type. The "list" phrases in Figure 17 always have

two properties: first and rest. First will be filled by some phrase type (or may

be primitive); rest must be filled by a list of the same type. A list phrase is

composed of an arbitrary number of some other type of phrase.

fu.!kj_. program <--> forward:forward_list ** global:decl_list **
main:winmain ** proc:winproc

A program consists of some number of forward declarations, some number of
global variable declarations, a main procedure and a window procedure.

R.ulLJ.decl <--> type ** name

A variable declaration consists of a type and a variable name.

RY.ILJ. winmain <--> var:decl_list ** create:create_window **
routines:routine_list **message

A main procedure consists of some number of variable declarations, a piece of
code which creates a window, some number of routines, and a message loop.

R!J.lti. create_ window <--> register** create ** show

The creation of a window consists of window registration, window creation and
setting window visibility.

E..y,U. routine <--> return ** name ** parameters:param_list

A routine consists of a return variable, a routine name, and a parameter list.

.B..llif__Q. winproc <--> var:decl_list ** case:case_list

A window procedure consists of some number of variable declarations and some
number of message cases.

RY..lf_Z. case <--> name ** routines:routine_list

A message case consists of a message name and some number of routines.

Figure 16. Unification grammar rules for Windows examples
(excluding "list" rules).

forward_list <--> first ** rest:forward_list
decl_list <--> first:decl ** rest:decl_list
case_list <--> first:case ** rest:case_list
routine_list <--> first:routine** rest:routine_list
param_list <--> first ** rest:param_list

Fi~ure 17. Unification grammar "list" rules.

86

87
Prolog Implementation

In Prolog, each of the phrase types is represented by a functor with the

same number of arguments as the phrase has attributes. For example, a

program phrase with no attributes specified is represented by program(_A,

_B, _C, _D). A program with nothing else specified except that it has some

window procedure would look like program(_A, _B, _C, winproc(_D, _E)).

The primary operation performed on functional descriptions is matching.

The predicate to perform matching (called matches/2) was implement by

Chris Mellish [1990] and is used with minor modifications in this thesis.

Matching is used to build up complex phrases. For example, the call to

matches/2 in Figure 18 produces a phrase in which the window procedure

has a variable declaration of type HDC and a case for the W M_P A INT

message.

I ?- X matches [winproc=[var=+[type='HDC'],
case=+[name='WM_P AINT']]].

X = program(_G,_F,_E,winproc(decl_list(decl('HDC',_D),_C),
case_list(case('WM_PAINT',_B),_A))) ?

yes
I ?-

Fi~ure 18. Building WM_PAINT case with matches/2.

The variable on the left hand side of matches/2 is unified with the

minimally instantiated phrase structure which satisfies the functional

description on the right hand side. If one then wanted to give the name hdc

to the variable of type HDC and add the routine Loadlcon to the WM_PAINT

case, this X can be unified with an additional functional description. This is

shown in Figure 19.

I ?- X matches [winproc=[var=+[type='HOC'],
case=+[name='WM_P AINT']]],
X matches (winproc=[var=+[type='HDC', name=hdc],
case=+ [name='WM_P AINT', routine=+[name='Loadlcon']]]].

X = program(_H,_ G,_F, winproc(decl_list(decl('HDC' ,hdc),_E),
case_list(case('WM_P AINT',
routine_list(routine(_D,'Loadlcon',_C),_B)),_A))) ?

yes
I ?-

Figure 19. Adding a routine to the WM_PAINT case with
matches/2.

88

The two functional descriptions above make use of an additional

operator "=+". This operator is used to add structures to a list of structures.

The functional description on the right hand side of the "=+" is unified with

the first phrase in the list which satisfies the description. If no existing phrase

in the list satisfies a description, a new phrase which satisfies the description

is added to the end of the list. The example in Figure 20 uses this operator to

add a new case to the list of cases in the window procedure.

I ?- X matches [winproc=[var=+[type='HOC'],
case=+[name='WM_PAINT']]],
X matches [winproc=[case=+[name='WM_CREATE']]].

X = program(_H,_G,_F,winproc(decl_list(decl('HDC',_E),_D),
case_list(case('WM_P AINT',_C),
case_list(case('WM_CREATE',_B),_A)))) ?

yes
I ?-

Figure 20. Adding a new case with matches/2.

89

The functional description can be thought of as specifying a path

through a syntax tree. Thus one can use functional descriptions to pinpoint

specific places on the syntax tree where a new structure should be added. Of

course, if the path specified by the functional description is illegal, the

matches/2 predicate fails. This occurs in Figure 21 in the attempt to declare a

global variable in the window procedure.

I ?- X matches [winproc=[global=+[name=foo, type='FOO']]].

no
I ?-

Figure 21. Matches/2 failing due to specifying an illegal syntax
tree.

In the example generator, the matches/2 predicate is used to build a

syntax tree for the example.

BUILDING THE EXAMPLE

Adding a Routine

The example generator calls transform_example/2 on each routine in

the plan to build the example tree. Transform_example/2 takes a routine/3

functor and an example tree. Since the example tree is modified by unifying

some uninstantiated variable in the tree with a structure, there is no need to

include a third parameter to return the transformed tree. The right hand side

of each transform_example/2 clause consists of some number of tests of the

properties of the routine and the structure of the current example tree and

some calls to matches/2 which transform the tree. As new cases involving

routines and current tree structures are discovered, they can be handled by

adding new clauses to the transform_example/2 predicate.

Filling the Parameters

90

Fill_parameters/5 is called by transform_example/2 to fill in the

parameters of a routine. Filling the parameters can require declaring a local

variable or even copying a value into a global variable in addition to placing a

variable name in the parameter list of a routine. The five arguments to

fill_parameters/5 are the list of parameter types, the list of sources, a routine

phrase which has been matched with the routine added by

transform_example/2, a procedure phrase which has been matched with

winproc or winmain, whichever was modified by transform_example/2, and

the entire current example tree. Since the example contains the routine and

procedure (winproc or winmain) being modified, it would appear there is no

reason to pass the routine and procedure separately. They are passed

separately to tell fill_parameters/5 exactly which routine to fill the

parameters of, and which procedure to add any variable declarations to.

Without some indication of the procedure begin modified, fill_parameters/5

would have to look in both winmain and winproc for the routine to modify.

If both procedures happened to contain the routine in their routine list,

fill_parameters/5 would have to do more work to determine which should

be modified. With the routine and procedure phrases, fill_parameters/5 can

refer directly to the appropriate structures with no search; since the phrases

have been matched with the current example tree, any changes to these

phrases will automatically occur in the example tree through the unified

uninstantiated variables in the local phrases and example tree. Some clauses

of fill_parameters/5 make changes to other parts of the example besides the

procedure in which the routine occurs and the parameter list of the current

routine. For this reason, the entire example tree is passed as well. Like

transform_example/2, new clauses can be added to fill_parameters/5 to

handle new combinations of parameter types and sources. Each clause of

fill_parameters/5 recursively calls itself on the rest of the parameter and

source list.

91

As each parameter is processed, the uninstantiated variable in the

corresponding source predicate is unified with the name of the variable added

to the example. Because of the pattern of unification in the plan expressing

the dataflow, this variable name will propagate to the appropriate consumers

of the data object. For every combination of parameter type and source, there

are usually two fill_parameters/5 clauses; one for when the parameter being

processed involves adding a new variable to the example, and another when

the name of the variable has already been instantiated due to a variable being

added earlier during example processing.

Filling the return value is quite simple. Since it is guaranteed that

there is no previous source for the return, all that has to be done is making a

declaration of the appropriate type, matching the new variable with the

return attribute of the routine phrase in the syntax tree, and unifying the new

variable with the return/1 functor in the appropriate routine/3 functor of the

plan (to ensure proper dataflow).

92
BUILDING AN EXAMPLE FOR THE ORA W ICON PLAN

Now that the general stages of building an example have been seen, the

details of this process are examined by stepping through the processing of the

plan to draw an icon. The first routine processed is shown in Figure 22.

routine(begin_paint, return(_B),
[code_source(window _procedure,hwnd),
user_source(user_declareable_object,_A)]).

Fi)!ure 22. Routine/3 functor for BeginPaint.

One of the transform_example/2 clauses looks at the preconditions of a

routine and checks if there is the precondition that the window must have

received a message. This condition is satisfied for the begin_paint routine.

The routine BeginPaint is placed in the WM_PAINT case of the window

procedure. Fill_parameters/5 is called to add the parameters for BeginPaint to

the example. One of the fill_parameters/5 clauses includes the condition that

the source for the current parameter is an argument of the window

procedure. This is true for the first parameter of BeginPaint. The atom hwnd

is added to BeginPaint's parameter list phrase. Another fill_parameters/5

clause contains the condition that the source of a parameter is a user declared

variable and that the type of the parameter is a pointer to some type. As for

any fill_parameters/5 condition which involves a source predicate with a

potentially uninstantiated variable, there are two paired clauses, one where

the variable is instantiated and one where it is not. In this case, the variable is

not instantiated. A variable name is created and the declaration for this new

variable is added to the declaration list of the window procedure. Since the

type of the declared variable, PAINTSTRUCT, is in all capitals, the variable

93

name created is paintstruct (all lower case). If this was the second

PAINTSTRUCT variable declared in the example, the new variable would

take the name paintstructl and so on. Since BeginPaint's second parameter is

actually a pointer to a PAINTSTRUCT (indicated by the functor

pointer June(<frame_name_of _type>) in the parameters slot of the

begin_paint frame), the string &paintstruct is added to the parameter list of

BeginPaint. The last step in filling this parameter is unifying the variable in

the user _source/2 predicate with the name paintstruct. Incidentally, ICOP can

express the difference between a parameter in which the pointer should point

to a declared piece of memory and a pointer which should not point to a

declared piece of memory. Suppose that BeginPaint allocates the space for the

PAINTSTRUCT. Then one should pass an unallocated pointer. Both versions

of Begin Paint would have pointer Junc(paint_structure) in their parameter

slot. But in the default source slot, the version which needs an allocated

pointer (as is the case here) would have the source predicate

user _source(user _declareable_object, _A), while the other version of

BeginPaint would have the source user _source(user _pointer, _A).

Back in transform_example/2, the return value is filled by creating the

name hdc (the type of the return value of BeginPaint is HDC), declaring the

variable in the window procedure, adding the name to the routine phrase,

and unifying hdc with the uninstantiated variable in the return/1 functor.

The next routine processed is shown in Figure 23. The

transform_example/2 clause applying in this instance contains the condition

that the main effect of a routine is adding an object into user memory. This

clause adds the routine to the WM_CREATE case of the window procedure.

This captures the rule that if the effect of a routine is to add something to

routine(load_icon_resource, return(_D),
[code_source(main_entry,hlnstance),
user_source(memory _object_name,_ C)]).

Figure 23. Routine/3 functor for Load/con.

94

memory, then this should occur only once at some point before any possible

use of the object. The WM_CREATE message is sent to a window when it is

first created. In this case, the Load/con routine is added to the routine list of

the WM_CREATE case. Now the parameters are added. The

fill_parameters/5 clause applying for the first parameter is the one which

contains the condition that the source be a parameter of the program's main

entry routine (WinMain) and that the use of this parameter takes place in the

window procedure. In this case, a global variable is declared which holds a

copy of the hlnstance parameter, an assignment is added to the list of routines

in the main procedure (functional description [name='=',

param=+'hinstance', return='hlnstance_copy']), and the global variable is

added to the list of parameters of Loadlcon. The fill_parameters/5 clause

applying for the second parameter contains the condition that the source be

user _source(memory_object_name, _A). The predicate filler

memory_object_name indicates that the argument is satisfied by a string.

This source is placed in the default source slot of routines which accept a

string naming the object on which they operate. In this case, the string names

some icon resource in an executable file. Fill_parameters/5 creates the name

name, places this in Loadlcon's parameter list, and unifies this string with the

variable in the user _source predicate. Back in transform_example/2, a return

variable name is created (hicon), the variable is added to the declaration list

95

(static HICON hicon;), matched with the return attribute of the routine

phrase, and unified with the variable in the return/1 functor. The only

interesting aspect of this processing is the "static" declaration. This particular

clause of transform_example/2 declares the return value static. This captures

the rule that if an object is loaded at window creation, the handle to this

object must be static so that future invocations of the window procedure

(called by the operating system in response to events) will still have a valid

handle.

The third routine processed is shown in Figure 24.

routine(draw _icon, return(_G),
[rou tine_source(begin_paint,0 ,_ B),
user_source(x_coord,_E),
user_source(y _coord,_F),
rou tine_source(load_icon_resource,O ,_D)]).

Figure 24. Routine/3 functor for Drawlcon.

The transform_example/2 clause applying here contains the condition that

the main effect of the routine is drawing some drawable object on a display

context and that the example already contains a WM_PAINT case. This clause

expresses the rule that if a WM_PAINT case is already present (perhaps

because of an earlier routine with a paint message received precondition, as

in this example), then any routine which draws should also be added to the

WM_PAINT case. In this case, Drawlcon is added to the WM_PAINT case.

Now the parameters for Drawlcon are added. For the first parameter, the

fill_parameters/5 clause which applies contains the condition that the source

be a routine and that the variable in the routine_source predicate be bound.

The variable name is added to the parameter list. This is the same variable

96

name which accepts the return value from BeginPaint. The next two

parameters are handled by a clause which tests whether the source is a

coordinate value supplied by the user. An integer constant is added to the

parameter list in each case. The final parameter is handled the same as the

first one. The variable name which accepts the return value for Load/con is

added to the parameter list. The return value for Drawlcon is a boolean which

indicates whether the icon was drawn successfully or not. A boolean

declaration is added to the declaration list of the window procedure, the

newly declared variable is matched to the return attribute of the routine

phrase, and the variable name is unified with the variable in the return/1

functor.

The final routine processed is shown in Figure 25.

routine(end_paint, return(_H),
[routine_source(begin_paint,l,_A),
rou tine_source(begin_paint,2,_B)]).

Figure 25. Routine/3 functor for EndPaint.

The preconditions slot on the end_paint frame contains the precondition that

a paint message has been received. End_paint is added to the example by the

same transform_example/2 clause as begin_paint, resulting in EndPaint

being added to the end of the WM_PAINT case. Both parameters of EndPaint

are supplied by a routine_source/3 source. Since the third argument of both

sources contains a value (an atom in one case and an instantiated variable in

the other), they are both handled by the fill_parameters/5 clause which adds a

preexisting value to a parameter list. EndPaint does not return a value (as

indicated by a return type of void in the return_normal slot of the end_paint

97

frame), so nothing is matched with the return attribute of the routine phrase.

The example has now been built. The final example tree is shown in Figure

26.

program(_P,
decl_list(decl('HANDLE',hlnstance_copy),_0),
main{_N,_M,

rou tine_list(rou tine(hlnstance_copy ,=,
param_list(hlnstance,_L)),_K),_J),

winproc(
decl_list(decl('P AINTSTRUCT' ,paintstruct),
decl_list(decl('HDC',hdc),
decl_list(decl('static HICON',hicon),
decl_list(decl('BOOL' ,bool),_I)))),
case_list(case('WM_P AINT',

routine_list(routine(hdc,'BeginPaint',
param_list(hwnd,
param_list(' &paintstruct' ,_H))),

routine_list(routine(bool,'Drawlcon',
param_list(hdc,param_list(lO,
param_list(lS,
param_list(hicon,_G)))),

routine_list(routine(_F,'EndPaint',
param_lis t(hwnd,
param_list(&paintstruct,_E))) ,_D)))),

case_list(case('WM_CREATE',
routine_list(routine(hicon,'Loadlcon',
param_list(hlnstance_copy,
param_list('"name"' ,_C))),_B)) ,_A))))

Figure 26. Syntax tree for Draw/con example.

Write_tree/1 walks through this tree in a depth-first manner writing

out the example program. Any uninstantiated variables in the tree are

skipped. The output of write_tree/1, which is the output of the example

generator, is show in Figure 27.

HANDLE hlnstance_copy;

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance
LPSTR lpszCmdLine, int nCmdShow)

hlnstance_copy = hlnstance;

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam,
LONG IParam)

P AINTSTRUCT paintstruct;
HOC hdc;
static HICON hicon;
BOOL bool;

switch (message)
{

WM_PAINT:
hdc = BeginPaint (hwnd, &paintstruct);
bool = Drawlcon (hdc, 10, 15, hicon);
EndPaint (hwnd, &paintstruct);
retum(O);

WM_CREATE:
hicon = Loadlcon (hlnstance_copy, "name");
retum(O);

return DefWindowProc(hwnd, message, wParam, IParam);

Figure 27. Output of example generator for Drawlcon plan.

98

CHAPTER VII

CONCLUSIONS

ICOP serves as a proof of concept model for a system which facilitates

software reuse by providing support for code location and comprehension.

Chapter II describes a psychological model of programming. Three aspects of

this model are most important to consider in building a system to support

location and comprehension. First, programmers think in terms of domain

goals, moving from a domain space to an application (artifact) space. Second,

plans are used as an internal representation scheme to store pieces of artifact

which accomplish goals. Finally, examples are an effective means of

communicating information to programmers. These three cognitive

considerations lead to the design of ICOP. The system uses a limited natural

language interface to accept queries expressed directly in the domain

language, not forcing the programmer to translate their request into the

language of the library. The planner then constructs a plan to satisfy the

desired effect. This plan includes multiple components from the library,

conveying both plan level knowledge (patterns of use) as well as detailed

knowledge regarding the use of particular components (eg. parameters and

return values). Finally, the plan is illustrated with example code, taking

advantage of the programmer's ability to successfully extract information

from an example.

ICOP builds on ideas found in other cognitively motivated systems. It

uses the concept of plans, which is found in The Programmer's Apprentice

100

[Rich and Waters, 1989, 1990] and Bridge [Bonar and Liffick, 1991]. However,

rather than having a plan base of explicitly stored plans, ICOP builds plans

from the atomic components represented in its knowledge base. The example

systems developed by Neal [1990], Rosson and Carroll [in press] and Fischer,

Henninger and Redmiles [1991] all use examples to facilitate both component

level and plan level comprehension. ICOP also uses examples to facilitate

comprehension, but rather than storing these examples explicitly in an

example base, the examples are constructed dynamically using knowledge

about the general form that examples should take. The automatic

construction of plans and examples frees the knowledge engineer from

having to explicitly represent examples for all possible user queries. ICOP

allows the user to query by effect as suggested in the Cognitive Browser

project [Green et al, in press]. Rather than using a formal effect language,

however, the user can communicate the desired effect in the natural language

of the domain.

ICOP's design is intended to be extendible to other library domains.

This is facilitated by the explicit representation of predicates and by the deep

ontology. By representing predicates and functors explicitly in the knowledge

base, the limited natural language interface and the planner become

independent of the library domain. All references to domain specific predicate

and functors are made by exploring the predicates and functors in the

knowledge base rather than through explicit use in the procedural code. The

explanation generator is domain dependent, since the structure of examples

in a given domain does depend upon the domain. The deep ontology used in

the know ledge base is intended to make transfers to other domains easier in

two ways. First, some aspects of the ontology should be directly reusable. For

101

example, the concept of containers such as memory and files and objects

which take up space in these containers should be useful in many library

domains. Second, the Windows specific pieces of the ontology should serve as

an example for building deep ontologies of other domains.

...

CHAPTER VIII

FUTURE WORK

There are many research directions suggested by ICOP. The areas for

future research work can be divided into four categories: empirical validation,

extending the current functionality, designing new functionality, and

exploring applicability of ICOP's design to other domains.

EMPIRICAL VALIDATION

Since the design of ICOP was strongly motivated by cognitive

considerations of the programming process, it is essential that ICOP be

empirically validated. The programmer populations of interest are

programmers who do not have experience in Windows but have written

applications for windowing systems with a similar architecture (eg,

Macintosh, X Windows), intermediate to expert programmers who have not

written programs for a windowing environment but have used a windowing

environment at some point (so they know what a window and a mouse is),

and programmers with experience in Windows development. The initial set

of experiments would divide each population into two groups, one of which

has access to printed material and the standard Windows on-line help, and

the other which has access to this plus ICOP. Each group is given a small

Windows program to write and asked to talk aloud while writing it. In the

talk aloud protocols, problems in program development caused by

unresolved information needs are of particular interest. The impact of ICOP

103

on the program development process will be analyzed. The protocols can also

suggest future functionality that !COP should have (new kinds of queries,

different ways of phrasing existing queries, etc.).

ENHANCING EXISTING FUNCTIONALITY

Expanding the Know ledge Base

The first area of existing functionality that must be expanded is the

knowledge base. It currently represents a small subset of the Windows library.

As new library routines are represented, it will be interesting to watch what

happens to the size of the effect language (predicates). The ideal behavior is

that the effect language grows at a much slower rate than the number of new

routines. What has been seen so far is that adding a new routine can

sometimes require additions to the operators, states, functors, and object

hierarchy, with these additions then supporting many new routines.

Generating Code Comments

The micro effect slot on routine frames was included to support the

generation of natural language describing the routine. The simplest way to

incorporate natural language describing routines into the existing design is to

generate comments for the example code.

Representing Plans

Currently, ICOP does not represent plans in its ontology, only

individual routines. The knowledge representation should be extended to

represent plans as well. Such plans could be used to hilight standard or

preferred ways of achieving effects. Currently, all plans that ICOP's planner

can construct for achieving an effect are considered of equal desirability. Plans

104

could also be used as an alternate way to represent postconditions. The

postcondition processing in the planner generates "clean up" code for the

plan. For example, if the routine BeginPaint appears in a plan, then EndPaint

should appear at the end of the plan. An alternate way of representing this

dependency is with a noncontiguous plan that states that drawing is

accomplished by calling BeginPaint, some number of routines, and EndPaint.

This has the advantage that the dependency between BeginPaint and

EndPaint is represented locally (in one frame) rather than implicitly in the

planner. Plan languages such as the Programmer's Apprentice plan calculus

[Rich & Waters, 1989, 1990] should be explored.

DESIGNING NEW FUNCTIONALITY

New functionality of interest includes improving the interface,

supporting transfer across libraries, supporting programmer modifiability of

the knowledge base, and providing intelligent tutoring.

Improving the Interface

Coupling ICOP with a Development Environment. The current

interface for ICOP consists of a natural language interface with queries typed

from within Prolog. ICOP should be more strongly coupled with a

programming environment so that working examples can be directly copied

from ICOP to an editor window. In addition, such strong coupling could

support context sensitive queries, in which clicking on a routine or data object

within the editor generates an example using the routine or object, thus

providing an alternative query mechanism to the natural language interface.

105

Supporting Natural Language Queries. Additional interface elements

should support the natural language interface. A thesaurus browser, which

lets the user explore what types of terms and concepts are known by the

knowledge base, would facilitate querying. Such a browser was found useful

in the medical information retrieval system Coach [Kingsland, Harbourt,

Syed, Schuyler, 1993].

Supportin~ Multiple Aspects of Queries. Finally, the interface should

support exploring different aspects of a query. After the query "How do I draw

an icon?" produces the example, the user might want to explore how an icon

is represented in memory, the structure of the PAINTSTRUCT data object, or

a plan which tests whether Loadlcon succeeded. One way of handling this

would be to provide a menu after every query which contains common

queries for additional information. A more integrated way of handling this is

to produce a small hypertext in response to each query. The example for

drawing an icon would have buttons. for common additional queries (such as

error testing) as well as links from every word in the example which denotes

an object in the knowledge base to a screen describing that object. ICOP would

become an intelligent documentation system. Instead of writing

documentation for a library in the traditional way, a knowledge base rich

enough to support natural language generation would be written for the

library. This has the advantage over English prose that the knowledge base

can be mechanically checked for semantic consistency. When the user types a

query, a small custom hypertext answering the query is constructed by the

system. Such a system provides intelligent access to information, alleviate the

hypertext navigation problem. When the library is changed, those frames

representing the changed library objects are updated. New answers to queries

will now be automatically produced; the technical writers (who are now

knowledge engineers) do not have to worry about explicitly updating

examples and cross references in a text.

Programmer Modification of Knowledge Base

106

Ideally, ICOP should support reuse for custom libraries used internally

by a company as well as large libraries sold commercially. Since libraries used

internally may be constantly changing and not be budgeted for knowledge

engineers to maintain a knowledge base, it is important that the

programmers themselves be able to make changes to the knowledge base

when they change the library. Issues involving interfaces which support

knowledge updates by people who are not professional knowledge engineers

should be explored.

Intelligent Tutoring System

When a library for an entirely new domain is first used, the

programmer will not know the domain concepts well enough to articulate

queries. In such a case, an intelligent tutoring system (ITS) can assist the

programmer in gaining the new domain knowledge. An ITS must be able to

to direct the presentation of knowledge when the user requests general

information (such as "Tell me about programming in Windows"). An

attempt has been made to make ICOP's knowledge base general enough to

support the reasoning processes of an ITS.

107
SUPPORTING DIFFERENT DOMAINS

Libraries for New Domains

ICOP's knowledge base currently supports a subset of the Windows

APL A windowing library was chosen because the rich intertwining between

components of such a library makes for an interesting reuse problem. There

are other domains, however, which also have complex libraries that must be

reused. Since the planner and semantic processor only refer to domain

concepts via the explicitly defined predicates and objects in the knowledge

base, the knowledge base is the main component which would have to be

changed to support a different domain. How easy will it be to develop a

knowledge base for ICOP for another domain? Some parts of the ontology

should be reusable. For example, the concepts of containers (memory), objects

which can be placed in containers (various types of variables), and objects

which indirectly refer to another object (handles), should be useful in many

domains.

Object-Oriented Libraries

ICOP can be extended to object-oriented libraries as well. Methods

would be represented in the same manner as routines, with a new kind of

frame representing classes. This frame would have slots with lists of method

frames and member frames. The really new aspect would be handling queries

where there is currently no object with a method satisfying the query

precisely. Now a subclassing algorithm would have to determine which class

is closest to producing the desired effect. The plan would then consist of

defining a subclass of this class and changing one or more of the inherited

methods. A procedural library does not have this concept of plans which

involve modifying some library object.

108

REFERENCES

Adelson, B., & Soloway, E. (1985). The role of domain experience in software
design. IEEE Transactions on Software Engineering, ll, 1351-1360.

Bellamy, R. (in press). Redesigning Programming Strategies: An Approach
and an Example. In R. Winder (Ed.), Proceedings of the NATO
advanced research workshop: User centered requirements for software
engineering environments. Springer-Verlag.

Berry, D. (1992). Academic legitimacy of the software engineering discipline
(Tech. Rep. No. CMU/SEI-92-TR-34). Pittsburgh: Carnegie Mellon
University.

Biggerstaff, T., & Perlis, A. (1984). Forward to the special issue on software
reuse. IEEE Transactions on Software Engineering, ill 474-476.

Bonar, J., & Liffick, B. (1991). Communicating with high level plans. In J.
Sullivan & T. Sherman (Eds.), Intelligent user interfaces (pp. 129-156).
New York, NY: ACM Press.

Card, S., Moran, T., & Newell, A. (1983). The human information-processor.
In The Psychology of Human-Computer Interaction (pp. 23-97).
Hillsdale, NJ: Erlbaum.

Curtis, B. (1989). Cognitive issues in reusing software artifacts. In T. Biggerstaff
& A. Perlis (Eds.), Software reusability Yol. 2. Applications and
experience (pp. 269-287). New York, NY: ACM Press.

Fischer, G. (1987). Cognitive view of reuse and redesign. IEEE Software, July,
67-70.

Fischer, G., & Lemke, A. (1988). Construction kits and design environments:
Steps toward human problem-domain communication. Human
Computer Interaction, i 179-222.

Fischer, G., Henninger, S., & Redmiles, D. (1991). Cognitive tools for locating
and comprehending software objects for reuse. In Proceedings of the
13th International Conference on Software Engineering, May, Austin
TX.

110

Fischer, G., Grudin, J., Lemke, A., McCall, R., Ostwald, J., Reeves, B., &
Shipman, F. (1992). Supporting indirect collaborative design with
integrated knowledge-based design environments. Human-Computer
Interaction. Z, 281-314.

Green, T. R. G., Gilmore, D. J., Blumenthal, B. B., Davies, S. & Winder, R. (in
press). Towards a Cognitive Browser for OOPS. International Journal
on Human-Computer Interaction.

Guindon, R. (1990). Knowledge exploited by experts during software system
design. International Journal of Man-Machine Studies, a3., 279-304.

Horowitz, E., & Munson, J. (1984). An expansive view of reusable software.
IEEE Transactions on Software Engineering, 1Q, 477-487.

Jeffries, R., Turner, A., Polson, P. & Atwood., M. (1981). The Processes
involved in designing software. In J. R. Anderson (Ed.), Cognitive
skills and their acquistion (pp. 255-283). Hillsdale, NJ: Erlbaum.

Jones, T. (1984). Reusability in programming: A survey of the state of the art.
IEEE Transactions on Software Engineering, lQ, 488-493.

Kant, E. (1985). Understanding and automating algorithm design. IEEE
Transactions on Software Engineering, 11, 1361-1374.

Kingsland, LC., Harbourt, A.M., Syed, E.J. & Schuyler, P.L. (1993). Coach:
applying UMLS Knowledge Sources in an expert searcher
environment. Bulletin of the Medical Library Association, ~ 178-183.

Lehman, M. (1991). Software engineering, the software process and their
support. IEE Software Engineering Journal, Q, 243-257.

Mellish, C. (1990). Generating natural language explanations from plans. In L.
S. Sterling (Ed.), The practice of Prolog (pp. 181-223). Cambridge MA:
The MIT Press.

Miller, G. (1956). The magical number seven, plus or minus two.
Psychological Review.~ 81-97.

Neal, L. (1990). Support for software design, development, and reuse through
an example-based environment. In Proceedings of the Fifth Annual
RADC Knowledge-Based Software Assistant Conference (KB5A-5),
Sept. 24-28, 1990. Syracuse, NY.

111

Rich, C., & Waters, R. (1989). Formalizing reusable software components in
the programmer's apprentice. In T. Biggerstaff & A. Perlis (Eds.),
Software reusability Vol. 2. Applications and experience (pp. 269-287).
New York, NY: ACM Press.

Rich, C., & Waters, R. (1990). The programmer's apprentice. New York, NY:
ACM Press.

Rist, R. (1989). Schema creation in programming. Cognitive Science, U, 389-
414.

Rist, R. (in press). Search through multiple representations. In R. Winder
(Ed.), Proceedings of the NATO advanced research workshop: User
centered requirements for software engineering environments.
Springer-Verlag.

Rosson, M. & Carroll, J. (in press). Active programming strategies in reuse. In
European Conference on Object-Oriented Programming. Springer
Verlag.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in
programmer behavior: A model and experimental results.
International Journal of Computer and Information Sciences, 8., 219-
238.

Scholtz, J. (in press). The effect of the mental representation of programming
knowledge on transfer. In R. Winder (Ed.), Proceedings of the NATO
advanced research workshop: User centered requirements for software
engineering environments. Springer-Verlag.

Simon, H. (1981). The sciences of the artificial. Cambridge, MA: MIT Press.

Singley, M., Carroll, J., & Alpert, S. (1991). Psychological design rationale for
an intelligent tutoring system for smalltalk. In J. Koenemann
Belliveau, T. Moher, & S. Roherton (Eds.), Empirical Studies of
Programmers: Fourth Workshop (pp. 196-209). Norwood, NJ: Ablex.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. (1984a). What do novices
know about programming?. In A. Badre & B. Shneiderman (Eds.),
Directions in Human-Computer Interaction (pp. 27-54). Norwood, NJ:
Ab lex.

Soloway, E. & Ehrlich, K. (1984b). Empirical studies of programming
know ledge. IEEE Transactions on Software Engineerin~, lQ., 595-609.

112

Soloway, E., & Ehrlich, K. (1984c). An empirical investigation of the tacit plan
knowledge in programming. In J. Thomas, & M. Schneider (Eds.),
Human Factors in Computer Systems (pp. 113-133). Norwood, NJ:

Ab lex.

Sommerville, I. (1989). Software Engineering (p. 3). Addison-Wesley.

APPENDIX

The appendix contains sample frames from the knowledge base.

Functor mapping two integers and an icon to drawable_icon

frame(name:icon_func,
parent:arity _3_functor,
children:[],
slots:[arity:facets([value, type]),

arg_constraint:facets([value: [integer, integer, icon], type,
number]),

return:facets([value:drawable_icon, type])]).

Frame representing action (predicate) of drawing on a device context

frame(name:draw,
parent:arity _2_operator,
children:[],
slots: [arity:facets([value,type]),

arg_constraint:facets([value: [device_ context, gdi_drawable_object],
type, number])]).

Frame representing a memory container

frame(name: memory,
parent:container,
children: [user _memory,

system_memory],
slots:[]).

Frame representing a referenceable object (a type of memory object)

frame(name:referenceable_object,
parent: memory _object,
children: [gdi_object,

region,
resource,
window,
a pplica tion_instance],

slots:[]).

Frame representing a handle (a type of declarable object)

frame(name:handle,
parent:windows_type,
children: [hbi tma p,

hcursor,
hdevice_context,
hi con,
hinst,
hmenu,
hwindow,
pointer],

slots: [library _name:facets([value:'HANDLE', type]),
referenced_ object:fa cets([val ue:ref erenceab le_object,

type:referenceable_object])]).

114

Frame representing a device context (a type of state object)

frarne(narne:device_context,
parent:state_object,
children:[],
slots: [owner: facets([value: window, type]),

attributes:facets([value: [
attrib(context_mapping_mode, mm_text, mapping_mode),
attrib(window _origin, point_func(O, 0), point),
attrib(viewport_origin, point_func(O, 0), point),
attrib(window _extents, point_func(l, 1), point),
attrib(viewport_extents, point_func(l, 1), point),
attrib(context_pen, pen_func(black_pen_const), pen),
attrib(context_brush, brush_func(white_brush_const), brush),
attrib(context_font, font_func(system_font_const), font),
attrib(context_bitmap, no_val, bitmap),
attrib(current_pen_pos, point_func(O, 0), point),
a ttrib(context_ba ckground_mode, opaque, integer),
attrib(background_color, rgb_func(255, 255, 255),

color_specification),
attrib(text_color, rgb_func(O, 0, 0), color_specification),
attrib(context_drawing_mode, r2_copypen, integer),
attrib(context_stretching_mode, black_on_white, integer),
attrib(context_pol ygon_fill_mode, alternate, integer),
attrib(context_intercharacter_spacing, int_func(O), integer),
a ttrib (brush_ origin,

device_coords_func(point_func(O,O),screen_coord), point),
attrib(context_clipping_region, no_val, region)], type, min])]).

Parent of stock brush hierarchy (integer constants)

frame(name:stock_brush_const,
parent:integer_constant,
children:[black_brush_const,

dark_gray _brush_const,
gray _brush_const,
hollow _brush_const,
light_gra y _brush_const,
null_brush_const,
w hi te_brush_ const],

slots:[library _name:facets([value, type]),
object_type:facets([value, type])]).

115

Parent of drawable object hierarchy

frame(name:gdi_drawable_object,
parent:screen_object,
children: [drawable_arc,

draw able_ chord,
drawable_ellipse,
draw able_icon,
drawable_line,
drawable_pie,
drawable_point,
draw able_pol ygon,
drawable_pol yline,
drawable_poly _polygon,
drawable_rectangle,
drawable_roundrect],

slots:[]).

Parent of user _source_objects

fr a me(name: user _source_ object,
parent:object,
children: [memory _object_name,

user_declareable_object,
coord],

slots: [source_type:facets([value, type:declareable_object])]).

116

Frame representing BeginPaint routine (inherits some properties from
get _device_con text)

frame(name: begin_paint,
parent:get_device_context,
children:[],
slots: [routine_name:facets([value:'BeginPaint', type]),

parameter_list:facets([value:[hwindow, pointer_func(paint_struct)],
type, min]),

117

default_source:facets([value: [code_source(window _procedure, hwnd),
user_source(user_declareable_object, Vall)], type, min]),

return_normal:facets([value, type]),
return_error:facets([value, type]),
main_effect:facets([value, type, min]),
micro_effect:facets([value:[

dereference(param_l, memory _I, window _I),
associated([window _1], device_context_l),
associated([window _l], paint_info_l),
get_attribute(invalid_rectangle, invalid_rect_l, paint_info_l),
make_rect_region(invalid_rect_l, rect_region_l),
set_ attribute(context_ di pping_region, rect_region_l,

device_context_l),
dereference(pararn_2, memory _I, paint_struct_l),
fill_info(paint_inf o _1, paint_struct_l),
make_reference(hdevice_context_l, memory _1,

device_context_l),
send_message(window _1, erase_background_message),
return(hdevice_context_l)], type, min]),

constraint:facets([value:[assoc_type(memory _l, memory),
assoc_type(window _l, window),
assoc_ type(device_context_l, device_context),
assoc_type(paint_struct_l, paint_struct),
assoc_type(paint_info_l, paint_info),
assoc_type(hdevice_context_l, hdevice_context),
assoc_type(rect_region_l, region),
assoc_type(invalid_rect_l, rectangle)], type, min]),

preconditions:facets([value:[received(window _l, paint_message)],
type, min])]).

	A Cognitively Motivated System for Software Component Reuse
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1549479992.pdf.t3y9f

