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Software reuse via component libraries suffers from the twin problems 

of code location and comprehension. The Intelligent Code Object Planner 

(ICOP) is a cognitively motivated system that facilitates code reuse by 

answering queries about how to produce an effect with the library. It can plan 

for effects which are not primitive with respect to the library by building a 

plan that incorporates multiple components. The primary subsystems of ICOP 

are a knowledge base which describes the ontology of the library, a natural 

language interface which translates user queries into a formal effect language 

(predicates), a planner which accepts the effect and produces a plan utilizing 
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the library components, and an explanation generator which accepts the plan 

and produces example code illustrating the plan. ICOP is currently 

implemented in Prolog and supports a subset of the Windows 3.0 APL 
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CHAPTER I 

PROBLEM STATEMENT 

INTRODUCTION 

The software crisis has been recognized since the late 1960's 

[Sommerville, 1989]. Software systems tend to be delivered late, cost more 

than originally predicted, and difficult to maintain. With demand for code 

exceeding supply, it does not make sense to keep reimplementing the same 

functionality. Yet a 1983 study indicates that of all code written in that year, 

less than 15 percent was unique and specific to a particular application Uones, 

1984]. The field of software reuse is concerned with standardizing the 

remaining 85 percent of this code and providing tools to reuse it. 

OVERVIEW OF SOFTWARE REUSE 

Software reuse is not a new idea. The first compilers supported reuse of 

common machine language patterns such as looping and branching. Now 

these constructs could be reused by writing some short but understandable 

symbol sequences (high level language) rather than rewriting the much 

longer machine language pattern. The first operating systems provided 

commonly needed services such as i/ o. The blocks of code necessary to 

perform these services could now be reused by making operating system calls 

rather than having to rewrite these blocks for every program. Biggerstaff and 

Perlis' [1984] conceptual map for looking at the software reuse field shows that 
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these two approaches are still extensively used for delivering reusable 

functionality. Work in the software reuse field can be divided into two 

conceptual classes: the reuse of patterns (generation) and the reuse of building 

blocks (composition). 

Pattern Reuse 

Pattern reuse is based on the idea of generation. The idea here is to 

build a system which accepts some sort of terse yet easy to specify input and 

produces a program as output. For example, imagine some system that could 

take the natural language utterance "Give me a program that sorts strings" 

and produces as output an executable program to perform such sorting. The 

particulars of sorting strings (algorithms and data structures) are being reused, 

but these particulars, rather than being stored as some atomic building block 

(a sort routine) are stored as a potential pattern of activation of the generating 

system. A compiler for a high level language can be thought of as a system for 

reusing blocks of assembly code. A "while" loop, which is terse and easy to 

read in the source, is turned into a much longer, standard block of assembly 

code. Pattern reuse approaches can be divided into roughly three major 

categories: language based generators, application generators and 

transformation systems. 

Lan2ua2e Based Generator. A language based generator extends the 

idea of a high level language. A very high level language (VHLL) provides a 

small set of semantically neutral components which are more abstract than 

those provided by a standard high level language. Such an abstract language 

can be used across a wide set of domains. Problem oriented languages (POL) 

provide a rich set of semantics aimed at a particular application domain. By 



providing constructs directly supporting a particular domain, the 

programmer's job of mapping a domain problem into the language is much 

easier. The programmer is reusing a domain analysis. 

Application Generator. Application generators also encode domain 

specific information, but store it in the generator rather than the language. 

The input to an application generator is usually quite simple and does not 

really qualify as a full fledged language. A 4GL which lets one construct 

databases by describing the database fields and input screens, is an example of 

an application generator. 

Transformation System.Transformation systems are similar to 

language based generators. They take some input written in a terse, easy to 

understand, but highly inefficient notation and, by successive 

transformations, turn it into an efficient but more difficult to read executable 

form. The transformation system itself is simple and fairly generic. The rules 

of transformation are stored as separate declarative knowledge (data) outside 

of the transformation system. It is these rules which are being reused. 

Building Block Reuse 

The reuse of building blocks is probably what comes to most people's 

minds when they think of code reuse. The idea is to compose preexisting 

atomic components to produce a desired effect. An example of a typical 

atomic component is a subroutine from a subroutine library. Modern object­

oriented approaches are also a building block methodology. Here, many 

separate pieces of reusable code can be localized in a single object. 

Building block reuse is not without problems [Horowitz and Munson, 

1984]. First, it is difficult to determine which pieces of functionality are 

3 
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generally useful and can be described by a parameterized piece of code. This is 

a domain analysis problem. Secondly, once a library of useful components 

exists, how do you describe them in a manner that the user of the library will 

find comprehensible? This is a code comprehension problem. Thirdly, should 

the components be implemented in a standard programming language and be 

made available in an object library, thus becoming language and machine 

dependent, or should they be described by some sort of high level design 

language? This is an implementation problem. Finally, how does the user 

locate a particular component within a potentially large library? This is a code 

location problem. Additional problems are raised if the user wants to modify 

a reusable component to perform a slightly different task. Object oriented 

languages, with their support for inheritance, are one approach to this 

problem. 

SUPPORTING BUILDING BLOCK REUSE 

Library Components Interrelated 

This thesis tackles the problems of code location and comprehension in 

building block reuse. The libraries provided by today's increasingly complex 

graphical environments present an interesting problem. Environments such 

as the Macintosh, Windows or X-Windows provide a huge number of 

routines, data types, macros and constants for use by the programmer. All of 

the components of these libraries are richly intertwined. Generally, a 

programmer's problem is not solved by locating a single routine. Rather, a 

pattern of routines and other library components (data types, etc.) must be 

used to accomplish the task. So a programmer must not only locate a single 

routine out of a large library, but must also locate an interwoven set of 
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routines and other software objects. A programmer must not only 

comprehend a single routine, but must also comprehend the interactions 

between a set of routines and other software objects. A tool that supports use 

of these libraries must support the location and comprehension of patterns of 

use of these components. 

Knowledge Transfer 

These graphical environments have another property of interest. At a 

conceptual level, they are quite similar. They all have concepts of windows, 

controls, messages, etc. So someone with expertise in using one of these 

libraries, say, the Macintosh Toolbox, should be able to use their mental 

model of the library to transfer their skills to another, say the Windows APL 

Yet at a lower level of detail, these libraries are dissimilar. The names of 

routines are different, the routines are organized in a different manner, etc. 

While the knowledge of the conceptual level of one of these libraries will aid 

the programmer in transfering to another, the need to focus on low level 

details of the new library might hinder this positive transfer effect. Also, in 

places where two libraries may differ at a conceptual level, the programmer's 

mental model of the first library may actually result in negative transfer, 

hindering their ability to properly use the second library. A tool to support 

use of these libraries should support transfer between libraries of similar 

functionality, providing retrieval of collections of code objects from 

conceptual descriptions in places where the libraries are conceptually similar, 

and pointing out differences in places where the libraries are conceptually 

different. With this basic idea of what capabilities a reuse support system 

should provide, the task is now to design such a system. 
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MOTIVATED DESIGN 

How should one go about designing a system to support reusability? 

Traditional system design tends to be technologically motivated. This 

technological motivation, and its place within the broad spectrum of 

problems, is captured nicely by Lehman's S-P-E program classification scheme 

[Lehman, 1991]. Sand E programs are the extremes at the ends of the 

spectrum with P programs in the middle. S programs are those which need to 

satisfy some pre-stated specification. The specification is complete; it is the 

sole determinate of program correctness. The writer of an S program has no 

concern for where the specification came from. Their design task consists 

purely of making maneuvers within a technologically determined space (as 

conditioned by the concepts made available in the language used). Formal 

approaches to software engineering concern themselves with S type 

programs. An E program attempts to solve a problem in a real world domain. 

All consequences of the program's use, including its effectiveness in 

communicating with human users, and the manner in which the use of the 

program changes the very domain for which the program was written, 

determine the acceptability of the program as a solution. These systems 

always escape full formalizability. Berry [1992] argues that it is necessary to 

consider nontechnical issues such as management, psychology and sociology 

when developing E programs. Fischer laments that the traditional 

overemphasis on technology has lead to systems which do not effectively 

solve real world problems, cannot be adapted to changing conditions, and 

impose unnecessary constraints on users [Fischer, 1987]. 

A system to support reusability will be used in the complex, real-world 

domain of software development. Such a system is an example of an E 
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program. It should take account of the fact that fundamentally, programming 

is a cognitive act engaged in by human beings. In Chapter II, a cognitive 

model of programming is developed which serves as a framework to 

motivate tool design. At the end of Chapter II, a cognitively motivated design 

for a system which facilitates reuse is given. Chapters ill-VI describe the 

components of this system, Chapter VII summarizes the results of this thesis, 

and Chapter VIII describes prospects for future work. 



CHAPTER II 

COGNITIVE MODEL OF PROGRAMMING 

INTRODUCTION 

A cognitive model of human behavior starts with the premise that the 

complexity of this behavior is a result of a simple architecture responding to a 

complex environment, where the environment includes both sensory data 

and memory [Simon, 1981]. Simon uses the analogy of an ant making its way 

across a wind and wave tossed beach. The ant's trail is irregular, with many 

twists and turns, though there is a general large scale direction to its 

movements. If its path were drawn on a piece of paper, the path would be 

quite complex and difficult to describe. But this complexity resides in the 

environment (the twists and turns of the sand) rather than in the ant. A 

simple behavioral repertoire can generate complex behavior in a complex 

environment. To the extent that human behavior is analogous to that of an 

ant, human behavior can be modeled with a simple cognitive architecture 

interacting with a complex environment. This environment includes the 

internal environment of memory. Starting with this model, the cognitive 

structure of programming can be described in two stages: the invariant and 

relatively simple human processing architecture, and the structure of the 

internal (programming knowledge) and external (programming) 

environment. 
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ARCHITECTURE OF COGNITION 

Memory 

Short Term Memory. There are two types of memory, short term and 

long term. Short term memory (STM) can hold approximately 7 +- 2 chunks 

of information [Miller, 1956]. These chunks tend to decay rather rapidly. Short 

term memory stores the immediate context of cognition. The term "chunk" is 

somewhat ambiguous. It is any piece of information that can be manipulated 

as a unit. Chunking is a generic learning strategy. This is the process by which 

smaller pieces of information which were at one time manipulated as 

independent entities, become combined into a larger structure. Chunking can 

increase the effective capacity of short term memory. 

Long Term Memory. Long term memory (LTM) has a virtually 

unlimited capacity. The information in LTM is often characterized as stored 

in a highly elaborate network (semantic net). This net provides a large 

number of associations through which stored data can be recalled. The unit of 

LTM is called the schema [Curtis, 1989]. This is a knowledge structure that 

bundles together the information necessary to manipulate a concept. The 

construction of these schema is facilitated by the chunking process in STM. 

Processor 

The human processor is responsible for a complex interplay between 

STM and LTM [Card, Moran and Newell, 1983] called the recognize-act cycle. 

The chunks in STM associatively trigger chunks in LTM. These L TM chunks 

are loaded into STM, where they prime the next cycle. The recognize-act cycle 

is the fundamental unit of cognition. More complex acts such as planning are 

built out of organized sequences of these cycles. 



10 
GOAL-DIRECTED MODEL OF COGNITION 

The next level of specificity in cognitive modeling is a goal-directed 

model of cognition which Simon calls design [1981]. Programming is a special 

case of this cognitive activity. The basic recognize-act cycle has no constraints 

on the type of associations that take place. The associations between STM and 

L TM could result in a crazy chaotic jumble of chunks becoming present in 

STM, or, at the other extreme, in a few chunks repeatedly firing each other ad 

infinitum. In normal human behavior, however, this rarely happens. 

Instead, thinking results in a relatively ordered movement towards a goal. 

This general process of goal-directed thinking Simon calls design, where 

design is construed most generally (eg. design of buildings, actions, 

mathematical solutions, etc.). In design, search is in general necessary because 

many chunks in LTM are associated with any given chunk in STM. Since a 

limited number of these associations can actually be loaded into STM, they 

will need to be explored serially. The search process is driven by two types of 

domain knowledge, declarative knowledge (facts) about the domain, and 

procedural knowledge that describes how to manipulate the facts in an 

order! y manner. A domain expert is distinguished both by the number of 

chunks of knowledge they have and the structure of the association web 

linking these objects. 

This general structure implies that a model of programming should 

account for two types of knowledge: declarative and procedural. Declarative 

knowledge schemas represent the "facts" of programming and procedural 

design knowledge is used to guide the process of programming. The 

programming and design models below are presented in increasing order of 

complexity and specificity. 



PROGRAMMING KNOWLEDGE 

Syntactic and Semantic Knowledge 

Shneiderman and Mayer [1979] divided the declarative knowledge of 

programming into two categories, syntactic and semantic. Syntactic 

knowledge is knowledge of the mechanics of programming languages. It is 

acquired essentially by rote. New knowledge will often interfere with 

previous knowledge since new syntactic knowledge tends to be additive 

rather than integrative. For example, knowledge of the syntax of the 

assignment operators in C and Pascal ("=" and ":=") can't be integrated; the 

syntactic difference must be memorized. 

11 

Semantic knowledge consists of language independent programming 

concepts. This knowledge exists at several levels of abstraction. At the low 

abstraction end are concepts like the "actions" of assignment and conditional 

statements. At an intermediate level are concepts like looking for a 

maximum value in an array or swapping the contents of two variables. At a 

high level of abstraction are concepts like searching and sorting methods. 

Plans 

Soloway et al [1984a, 1984c] present a refined model of the declarative 

knowledge. They argue that this knowledge is structured in a hierarchy of 

plan types. Strategic plans describe a global decomposition strategy for an 

algorithm, such as a process/read looping strategy. Tactical plans describe 

more concrete operations, such as a running total loop. Finally, 

implementation plans specify the manner in which the more abstract plans 

are implemented in the code of some particular programming language. For 

example, a while loop in Pascal that is used to repeatedly read in numbers and 
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add them to a running total until a stop number is entered is using both the 

strategic plan read/process (abstract structure of the loop) and the tactical plan 

running total (particular processing to be performed by loop). The strategic 

and tactical plans are language independent; the implementation plans are 

language dependent. In addition to the various levels of plan knowledge, line 

level semantic and syntactic knowledge of the language used are also 

necessary in order to carry out the low level implementation of the plans. 

There are interactions between the implementation plans and the 

more abstract plans. Different languages make different abstract plans more 

difficult to implement than others. Proper use of a language involves 

learning the abstract plans which are most elegantly implemented in the 

language. However, since the abstract plans are stored as separate chunks of 

knowledge from the implementation plans, the abstract plans are not 

automatically adjusted by switching to a new language with new 

implementation plans [Scholtz, in press]. Scholtz showed that Pascal 

programmers writing code in Ada and Icon tended to use Pascal-like plans in 

both languages, even though Pascal-like abstract plans are not the ones most 

readily expressed in Icon (a string processing language). To the extent that the 

same abstract plans are readily supported across two languages, positive 

transfer will be seen. To the extent that the new language facilitates a different 

set of abstract plans, negative transfer will be seen. Since plans are built by a 

process of chunking, it makes sense that the lower level semantic features of a 

language, which serve as the building blocks, will influence the structure of 

the abstract plans. 
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Code Level Plan Structure 

Rist [in press] argues that the deep structure of a program is its plan 

structure. The particular ordering of code statements in any given program is 

its surface (or shallow) structure. The surface structure is generated by 

applying an organizational scheme to the deep structure. The three 

organizational schemas he presents are procedural, functional and object 

schemas. His definition of plan structure is different from Soloway's. For Rist, 

the plan structure is the control and data flow graph of the program. The 

nodes of this graph are individual lines of code. A plan is a branch of this 

plan structure. What Soloway calls a plan, Rist calls a plan schema. Plan 

schemas are known solutions to common programming problems. A plan 

(branch of the graph) may or may not be a plan schema. A tool called PARE 

has been written by Rist to extract the plan structure automatically from the 

program code. Functional, procedural and object-oriented programming 

paradigms can be explained in terms of an organizational schema applied to a 

deep structure. A problem with this approach is that it is knowledge poor. By 

looking just at the program code, deep structure contains only lines of 

program code connected by control and data flow links. The plan schema 

captured by this representation will only be at the implementation level. As 

Scholtz [in press] showed, more abstract plan schemas do influence 

implementation plans across programming paradigms. Further, different 

abstract plans are more appropriate in different languages. The deep structure 

contains none of this more abstract knowledge. So while this view of plan 

structure is certainly well-defined and useful for talking about 

implementation level plans, it does not appear to suffice as a cognitive model 

of programming knowledge. 
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DESIGN KNOWLEDGE 

The hierarchy of plan types and the syntactic/ semantic knowledge of a 

programming language serves as a model of declarative programming 

knowledge. This section presents a model of the declarative and procedural 

knowledge of the design process and the relationship between the application 

domain (where the problem that needs to be solved resides) and the 

programming domain (where the solution artifact resides). Most of the 

models below describe some aspect of the global design process. As with the 

programming knowledge models above, they are presented in increasing 

order of complexity and specificity. The first model presented, however, 

describes the local composition of plans rather than the global design process. 

Rules of Discourse 

At a low level of design cc;mtrol, there are rules which determine how 

plans are composed together. Soloway and Ehrlich [1984b] call this knowledge 

the rules of programming discourse. These rules are shown in Figure 1. 

Programs that follow these rules are called planlike and programs that break 

these rules un-planlike. 

Soloway and Ehrlich performed two experiments to test the rules of 

discourse hypothesis. In the first, a group of novices and a group of experts 

were given both planlike and un-planlike programs which had a missing 

line. With the planlike programs, experts were able to correctly supply the 

missing line much more often then novices. With the un-planlike programs, 

experts and novices performed about the same. In the second experiment, 

experts were given both planlike and un-planlike programs to study. They 

were then asked to reproduce the programs they had studied. Their recall was 



1) Variable names should reflect function. 

2) Do not include code that will not be used. 

2a) If there is a test for a condition, then the condition must have 
the potential of being true. 

3) A variable that is initialized via an assignment statement 
should be updated via an assigrunent statement. 

4) Do not do double duty with code in a non-obvious way. 

5) An IF should be used when a statement body is guaranteed to 
be executed only once, and a WHILE used when a statement 
body may need to be repeatedly executed. 

Figure 1. The rules of programming discourse. 

significantly higher with the planlike programs. Both of these experiments 

support the hypothesis that rules of discourse are a part of an experienced 

programmer's knowledge. 
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These discourse rules are low level. This design knowledge is at a level 

of abstraction similar to tactical plans. There must be more abstract knowledge 

to drive the design process. 

Funnelling Control Strategy 

Shneiderman and Mayer (1979] describe the control strategy of design as 

a "funnelling" from the abstract to the concrete. The programmer's internal 

representation of the program starts out general and becomes progressively 

more concrete until specific code details are worked out. This working out of 

a detailed representation of the code can proceed in a top-down or bottom-up 

manner. Top-down design requires that the more general aspects of the 

internal representation are worked out before the more particular aspects. 
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Bottom-up design starts with language statements and builds up more 

abstract structures. Shneiderman and Mayer have no model of when top­

down or bottom-up design will occur. They mention that perhaps some types 

of problems are suited more to one technique than the other. 

Design Schema 

Jeffries, Turner, Polson, and Atwood (1981] describe a design schema 

which controls the recursive decomposition of a problem. A problem is 

broken down into smaller and smaller components until recognized solution 

components (plans) are found. They provide a list of 11 abstract productions 

which characterize the design schema. A list of unsolved subproblems is 

maintained and stored in sorted order of priority. A highest priority 

subproblem is pulled off of the list, and evaluated. Either it is a problem for 

which a solution is readily available, or it is not. If not, a solution model is 

created for the problem. A search is done for a solution matching the solution 

model. If none is found, the solution model is decomposed into subproblems 

and the subproblems are placed on the list. 

This model of the design process adds specificity to the funnelling 

model. However, there are some questions which still need to be answered. 

When will top-down and bottom-up design processes be seen? During the 

decomposition process, some internal representation must be used before the 

program (or pieces of the program) has reached the level of specificity of the 

strategic plan. What is this representation? How does knowledge of the 

application domain (real world) and specific knowledge in CS (such as 

space/time efficiency) interact with the decomposition process? The next 

three models provide answers for these questions. 
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Unified Model of Top-Down and Bottom-Up Design 

Rist [1989, in press] provides a unified model of top-down and bottom­

up processes at the level of tactical plans. Every plan has a goal and a focus. 

The goal is what the plan is supposed to achieve. The focus is the primary 

line of code which achieves the goal. The rest of the plan is support for the 

focus. For example, a counting plan has the goal of counting the number of 

times something occurs. The focus line is "count := count + l." The rest of the 

plan (a loop plus an initialization of count to 0), supports the focus. Top­

down development takes place when the plan is already known. The goal is 

used to retrieve the plan. If a plan to accomplish the goal is not known, 

however, the plan must be constructed. This starts from the focus line since 

this line is most directly related to the goal. Development then proceeds 

outwards from the focus in a bottom-up manner. The newly created plan is 

stored, and, with repeated use, becomes automatic. 

Design Executive 

Adelson and Soloway [1985] provide a model of the design process in 

which six behaviors occur: mental model formation, systematic mental 

model expansion, mental model simulation, constraint representation, plan 

label retrieval, and note making. The mental model is a representation of the 

design in progress. This mental model must support simulation of the 

design. Simulation is used to compare the problem statement with the 

design. The problem statement is generally given as a desired behavior for an 

artifact. The design model is not a behavior; it is a partially designed 

mechanism. By simulating the design model, the resulting behavior can be 

compared with the desired behavior and steps taken to reduce the differences. 

As time progresses, the design model becomes more specific. This expansion 
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takes place systematically across the design. Systematic expansion is required 

in order to maintain a simulateable model. In order to produce a simulation, 

the i/ o of the components of a model must be at the same level of 

description. The constraint representation of a design is an alternative 

representation which supports property assertion and the deduction of 

implications. A runable mental model cannot be constructed until the design 

has reached a certain level of specificity. The constraint model is used to 

constrain the allowable simulation models and thus aid in achieving the 

requisite specificity. Constraint activity is seen most often in the early part of a 

design. Plan labels are retrieved when elements of the design already have 

solutions stored in memory. They serve as place holders; later they will be 

used as an index to look up the plan. Note making behavior is seen when 

concerns are raised that are not at the current level of detail of the mental 

model. When the model has been expanded to a level matching that of the 

concerns, the notes are used to remind the designer of things to consider at 

that level. 

Adelson and Soloway's design model provides an internal 

representation used during the decomposition process. Decomposition is 

driven by a simulateable model of the design. This model serves as the 

representation at levels of detail more abstract than that of plans. Domain 

knowledge still needs to be incorporated into the process. Adelson and 

Soloway found that some design behaviors change for a designer in an 

unfamiliar domain. In particular, global models are not built and 

consequently global simulation is not performed. This leads to errors in 

systematic expansion. Thus domain knowledge certainly seems important in 

design. 



Domain and Algorithm Spaces 

Kant [1985] describes a model which explicitly takes account of the 

domain knowledge. Design is seen to take place in two main search spaces 

and two auxiliary search spaces. The main search spaces are the domain and 

algorithm spaces. The algorithm space contains knowledge of 
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implementation issues and the domain space contains knowledge of domain 

issues. The design model in her paper is motivated by protocols of experts 

developing a convex hull algorithm. In this case the domain space contains 

geometry and visual reasoning knowledge. The algorithm execution space 

and the example generation space are extensions of the algorithm space and 

domain space respectively. The algorithm execution space is where design 

simulation takes place. The example generation space is used to generate 

standard, degenerative, and counter-examples. These examples are used to 

test the algorithm in the execution space. Design is accomplished by 

performing searches in the various spaces. For example, if a component needs 

to be expanded and it is supposed to give a known output, construct an 

example of this output study and its properties. The example would be 

generated in the example space, and studied in the domain space. Properties 

in the domain space might trigger plans in the algorithm space. The design 

would be expanded and then executed (to test it) in the execution space. 

Kant's model directly accounts for the role of domain knowledge in design. 

Unification of Design and Domain Knowledge 

The most complete model of design to be presented here is Guindon's 

[1990]. Seven knowledge categories are used to guide design: domain 

knowledge, inferred and added constraints, external design notation, design 

methodology, design schema, problem solving and design heuristics, and 
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preferred evaluation criteria. The domain knowledge is similar to Kant's 

domain space, with the exception that simulation can take place here as well. 

Domain simulations lead to discovery not only of solution knowledge but 

also of problem goals and evaluation criteria. Inferred and added constraints 

are used to constrain and disambiguate the problem specification. Inferred 

constraints are not given directly in the requirements but can be deduced 

from the requirements and domain knowledge. Added constraints are chosen 

by a designer to limit the range of possible solutions. For example, the 

protocol study performed by Guindon involved the design of an elevator 

control system. One designer chose early on to use a distributed control 

scheme to a void having a single point that results in global breakdown. 

Though such a constraint appears nowhere in the specification, it serves to 

limit the allowed designs. External notations are used to support design 

simulation, which would otherwise be too cognitively taxing to perform. 

They also provide a set of operators for design expansion. Search during 

design can include searching for a good notation. Design methods provide a 

set of operators and their applicability tests for transforming the requirements 

into a solution. An example of a design method is the Jackson System 

Development Method. Design schemas are problem decompositions that are 

applicable to a set of problem types. For example, one of the designers 

recognized the elevator problem as a special case of resource allocation 

systems. Drawing on memories of a film controller design he'd done, he 

quickly sketched out a high-level solution decomposition including 

alternative solutions for sub-systems and evaluation criteria for these 

alternatives. Design heuristics guide the search process. Two example 

heuristics are 1) divide the system into nearly independent subsystems, and 2) 



solve a simplified version of a problem and expand the solution to 

encompass more complex situations. Finally, preferred criteria are used to 

limit the size of the search space. These criteria go hand in hand with the 

added constraints above. For example, the criterion of high reliability goes 

with the added constraint that there should be no single point of failure. 

This last design model explicit! y accounts for the role of domain 

know ledge as well as the effect of design methodologies and generic design 

heuristics, while retaining the basic pattern of design as a movement from 

the abstract to the concrete. 
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The cognitive model of programming builds on the generic 

architecture of the human information processor by detailing the declarative 

and procedural knowledge used during software design. Now this cognitive 

model can be used as a framework within which to study cognitively 

motivated systems for software reuse. 

COGNITIVELY MOTIVATED SYSTEMS 

Other research has focused on building systems based on cognitive 

principles to support software reuse. This section reviews some of these 

systems. After describing general cognitive concerns of software reuse, several 

systems are described which attempt to alleviate these problems. The next 

section describes the system developed in this thesis. This system builds on 

the ideas found in the cognitively motivated systems described below. 

Cognitive Concerns of Software Reuse 

Curtis [1989] points out that designers are already reusing knowledge 

when they design. Everything from the low level implementation plans to 
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high level design schema can be view as reusable components. This implies 

that one approach to software reuse is to externalize the plans and schemas in 

a development environment. This would accomplish two goals. Novices 

could progress more rapidly towards expert performance by having the expert 

knowledge directly available for study and use. Experts could design more 

rapidly by having the knowledge structures they use directly available in a 

machine executable format, thus bypassing the need to physically translate the 

mental structures into machine structures. Curtis also mentions the 

importance of indexing the components in a manner that matches the 

programmer's model of the domain. When the structure of a component 

library matches the programmer's domain model, they can more easily 

switch between the domain space in which high level goals might be stated 

and the application space in which components exist. Fischer et al [1991] have 

listed six problems that programmers have in reusing software: they do not 

have well-formed goals or plans, do not know of the existence of 

components, do not know how to access components, do not know when to 

use components, do not understand the results produced by components, and 

do not know how to combine, adapt, and modify components. Several 

cognitively motivated systems have been built which attempt to alleviate 

some or all of these problems. 

Programmer's Apprentice 

Rich and Waters' Programmers Apprentice [1989, 1990] contains a 

knowledge base of reusable implementation plans called cliches. The plans 

are stored using a language independent knowledge representation scheme 

called the plan calculus. The plans are accessed using an an extension of the 
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EMACS editor called KBEmacs. By using a special plan editing and description 

language, a relatively short description in the plan language is turned into a 

program in the target language. The Programmer's Apprentice can be viewed 

as a very high level language as described in the first section. It provides 

leverage by taking a small set of high level descriptions (plan labels) and 

turning them into a detailed program. In addition, it supports the creation of 

plans using the target language with some machine readable annotations. 

These are converted into the language neutral plan calculus. Rich and Waters 

do not explicitly motivate their system from cognitive grounds. Yet from the 

general cognitive model of software design, we can see that the Programmer's 

Apprentice works by reifying implementation plans. 

Brid~e 

Bonar and Liffick [1991] describe an alternative method for reusing 

plans in their Pascal tutor called Bridge. They also use a high level 

programming approach, but for them a high level language means the vague, 

heuristic sort of specifications used by humans while talking to each other 

rather than the more algebraic formalisms demanded by automatic 

programming systems. The Bridge tutor leads a novice through a problem in 

three steps. First the user specifies high level informal plans in natural 

language. The system then leads the user through specifying more detailed 

plans using an iconic language. Finally, the iconic plans are implemented in 

Pascal code. At each level of abstraction, Bridge can detect buggy plans. There 

are facilities for the user to add new plans by means of an iconic (visual) 

programming language. Besides making available a library of plans for reuse, 



Bridge guides the user through the design stages from abstract, vague 

specification to detailed code. 

Fischer's Systems 
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Architecture. Fischer (1987] describes a generic architecture for 

intelligent design environments. Such environments are intended to support 

incremental, evolutionary reuse and redesign. The 8 major components of 

this architecture are the visualization system, design kits, documentation 

system, analysis system, critics, help system, instructional system, and 

explanation system. The visualization system provides a graphic 

representation of a design, a design kit provides a set of components useful 

within a domain, the documentation system supports design rational and 

argumentation among multiple designers, the analysis system runs design 

simulations, critics are knowledge based agents which comment on a growing 

design, the help system provides online help about the design system and its 

domain, the instructional system provides tutoring about the design system 

and its domain, and the explanation system aids in comprehension of the 

components available in the design kit. The functionality provided by the 

design kit and explanation system are described in more detail below, since 

these two systems most closely provide the code location and comprehension 

facilities being focused on in this thesis. 

Desi~n Kits. Design kits support what Fischer calls human problem­

domain communication [Fischer and Lemke, 1988]. By communicating with a 

computer tool in the language of the problem domain, the user is relieved of 

the burden of translating goals and operators in the problem domain into the 

system domain. This reduces (or eliminates) the difference between the 
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domain space and application space, thus simplifying the design process. The 

construction kits Fischer describes generally involve direct manipulation of a 

palette of tools. Design environments provide further aid via knowledge 

based systems such as critics, which offer advice as a design progresses [Fischer 

et al, 1992]. Reusable component comprehension is aided via the explanation 

system, which presents annotated examples of components in use [Fischer et 

al, 1991]. A design kit can include a query system to locate reusable 

components. This becomes necessary as the number of reusable components 

increases; direct manipulation of component palettes becomes unwieldy. The 

Codefinder system [Fischer et al, 1991] supports query by reformulation. A 

semantic network is used to describe the components. Spreading activation is 

used to locate components near the first set of query keywords. In response to 

a query, a list of components sorted in order of activation strength and a list of 

related (activated) keywords is presented. Keywords and components can be 

added to the query. By iterating in this manner, the system helps the user 

narrow an initially vague query. The spreading activation helps alleviate 

problems with indexing inconsistency. 

Explanation System. Fischer's explanation system makes use of 

examples to facilitate component comprehension. Other workers have found 

this to be an effective technique [Neal, 1990, Rosson and Carroll, in press]. 

Neal created a base of Pascal examples. The programmers in her study used 

the examples both for code reuse (at a plan level) and to understand 

Macintosh specific language features and procedures. Rosson and Carroll 

seeded a Smalltalk environment with application examples. The subjects in 

their study not only reused the components they found in the example 

applications, they also reused the patterns of component use. That is, code 
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from the example applications served as templates for their own application. 

This again shows reuse of plan level knowledge embedded in the example as 

well as reuse of the components used in the example. 

Motivated Redesign of the Smalltalk Browser 

Another approach to the cognitively motivated design of software 

environments is to analyze pre-existing environments and use the analysis to 

suggest improvements. Bellamy [in press] takes this approach by applying 

strategy analysis to the Smalltalk environment. Strategy analysis is an 

extension of claims analysis. In claims analysis, one attempts to articulate the 

psychological theory implicit in a tool. This psychological theory is making 

claims about the way people work; by examining these claims, the tool can be 

redesigned to embody a more truthful psychological theory. Strategy analysis 

extends claims analysis by offering a specific methodology for producing 

analyses by looking at strategies of tool use. The primary problem Bellamy 

found was the difficulty of locating reusable components in the Smalltalk 

hierarchy. The browsing approach supports serendipitous discovery of new 

classes, but distracts the user from the original task, sometimes to the point 

that the user loses track of the original task. The class names are not always a 

good indicator of function. Examining a working application suggests reuse 

possibilities, but it can be difficult to map application behavior into specific 

classes and methods. Tracing code in the debugger places a heavy load on 

short term memory, as the user has to maintain the context of many classes 

and methods spread throughout the hierarchy. By providing an enhanced 

browser which supports multiple views of the hierarchy, and a project 

organizer which maintains a context for all the Smalltalk tools (including the 



browser) within a particular application, Bellamy was able to mitigate many 

of these problems. 

Motivated Redesign of a Smalltalk Tutor 
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Singley, Carroll, and Alpert [1991] take a similar approach with the 

design of a Smalltalk tutor motivated through claims analysis. They found 

that users had trouble managing goals, finding classes, and comprehending 

code. The goal management problems are related to the serendipitous 

browsing supported by the environment. Both low and high level goals can 

be forgotten during this browsing process. The Goalposter maintains a list of 

goals which the system has inferred from user activities. It is acting as an 

externalization of part of short term memory. The Adaptive Index adds a 

query mechanism to the browser. Only those classes and methods related to 

the query are shown. The comprehension process is aided by a commentator, 

which provides hypertext help on selected pieces of code. Finally, the need for 

a Guru is hypothesized. The Guru performs a post-mortem analysis of the 

user's project, both clarifying the design process and offering suggestions for 

improvement. 

The Cognitive Browser 

Green et al [in press] have designed a cognitive browser for object 

oriented programming systems. They analyze object oriented programming 

in terms of 5 cognitive dimensions: viscosity, hidden dependencies, 

premature commitment, perceptual cueing, and role expressiveness. 

Viscosity is resistance to change. It disturbs working memory by requiring the 

user to manually manage some complex change operation. Hidden 

dependencies are links between entities which are not readily apparent. These 
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dependencies include links which are important to the user, not just those 

deemed important by the environment designer (usually the dependencies 

which are technically easy to show). The larger the number of dependencies 

(hidden or not), the greater the viscosity of the system. Premature 

commitment occurs when the user must make decisions too early in the 

design process. This occurs in object oriented systems which force the design 

of class structures in a top-down manner. If the system has high viscosity, 

premature commitment is a big problem, since decisions made early in the 

design process are going to be difficult to change. Perceptual cueing is the 

redundant coding of important attributes in a notational system. An example 

is the coding of functional grouping in the layout of an electronics schematic. 

Role expressiveness is the ease with which a user can comprehend 

meaningful structure. Unlike the other dimensions, which are structural, this 

is a mentalistic dimension. Role expressiveness is a function of how easily 

the user can translate between the notational system provided by the 

environment and some internal mental representation. For example, if 

programming plans are taken to be an internal mental structure (as described 

above), then the systems which reify plan structures in their notational 

system (such as the Bridge tutor) should exhibit high role expressiveness. 

In terms of these cognitive dimensions, Green et al find that Smalltalk­

like environments exhibit extensive premature commitment, high viscosity, 

and poor role-expressiveness. This leads them to the following requirements 

for a cognitive browser: code location support, code comprehension support, 

design rational, and support for modification of entire class structures. The 

basis for providing this support is a description level. They note that program 

code does not express all of the programmer's knowledge about the program. 



The description level is a place to store this knowledge. This description can 

be used to support location, changes and comprehension. 

The description level supports code location by allowing three query 

styles: attribute searching, query by effect, and query by analogy. Attribute 

searching is the most straightforward. The user can invent attributes and 

relations and place them in the description level. Queries take the form 

"Show me all the components with attributes A, B, C." Effectively, the 

description level supports the user in creating dynamic indexing schemes. 
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Search by effect allows the user to specify a desired effect for a piece of 

code. The browser searches for code which satisfies the effect. The problem is 

how to specify the desired effect. One approach is to use a formal, declarative 

specification language. Green et al provide an example of such a specification 

for a stack. This formal approach, however, has several problems. For large 

chunks, such as a text editing window, the formal specification becomes 

unwieldy. Further, the specification may not match the user's domain model. 

The user probably does not think of a stack as a set of preconditions, 

postconditions and operators, but rather as an entity labeled by the term 

"stack." This label can of course be expanded, but this requires a cognitive 

effort that may be equivalent to writing the code. In plan terms, a formal 

specification of a stack is a description of the plan rather than a plan label. As 

Adelson and Soloway [1985] showed, designers retrieve plans by label. 

The third search modality, search by analogy, uses some kind of 

similarity measure to answer queries of the form "Find something similar to 

A." Computational models of analogical reasoning can be used as a basis for 

such functionality. 



THE INTELLIGENT CODE OBJECT PLANNER 

The system developed in this thesis, the Intelligent Code Object 

Planner (ICOP), supports code location and comprehension in complex 

libraries. To make this problem concrete, ICOP has been instantiated to 

support a subset of the Windows 3.0 Application Program Interface (API). 

System Components 
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ICOP consists of four main components: a limited natural language 

interface, a knowledge base, a planning system and an example generation 

system. The natural language interface accepts English queries regarding a 

library and translates them into a semantic formalism. The knowledge base 

uses a frame language to describe the components of the library. The planning 

system accepts the semantic representation of the query returned by the 

natural language interface and attempts to find a set of library objects 

(routines, etc.) which satisfy the query. Finally, the example generation system 

constructs example code out of the plan returned from the planning system. 

Each of these components is described in greater detail in the next chapter. 

Design Motivation 

Programmers working with a complex library want to create specific 

effects. For example, with a windowing library, a programmer may want to 

create a window. This requires the use of more than one atomic library 

component. A plan utilizing multiple library components is needed. Since 

programmers move from goal, to plan focus, to plan generation, ICOP 

facilitates library reuse by accepting a focal goal and returning the detailed 

plan. ICOP effectively supports the recall of plans by label, where the label 

expresses the goal of the plan. The limited natural language interface allows 
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the programmer to use their natural model of the domain. In the case of a 

windowing system, common domain objects are windows, controls and 

messages. ICOP allows the programmer to talk directly in terms of these 

words rather than having to learn some formal specification language. If 

experimental protocols reveal that programmers wish to refer to certain 

effects in a manner different than that supported by the current interface, it is 

easy to add synonyms to the interface by expanding the vocabulary. This 

decoupling of the the domain model from the library details supports transfer 

between libraries in the same domain. The know ledge base can be expanded 

to describe the new library while queries are still made using the same 

vocabulary. Once ICOP has understood a natural language domain query and 

found a library plan which performs the desired effect, it must communicate 

this plan to the programmer. Examples are an effective way to communicate 

to programmers. By expressing the plan directly in example code, the 

programmer does not have to understand some intermediate formalism and 

then translate this into program code. 

Relationship to Other Cognitively Motivated Systems 

ICOP builds on ideas found in the cognitively motivated systems 

described in the previous section. It uses the concept of plans, which is found 

in The Programmer's Apprentice [Rich and Waters, 1989, 1990] and Bridge 

[Bonar and Liffick, 1991]. However, rather than having a plan base of explicitly 

stored plans, ICOP builds plans from the atomic components represented in 

its knowledge base. The example systems developed by Neal [1990], Rosson 

and Carroll [in press] and Fischer, Henninger and Redmiles [1991] all use 

examples to facilitate both component level and plan level comprehension. 
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ICOP also uses examples to facilitate comprehension, but rather than storing 

these examples explicitly in an example base, the examples are constructed 

dynamically using knowledge about the general form that examples should 

take. The automatic construction of plans and examples frees the knowledge 

engineer from having to explicitly represent examples for all possible user 

queries. ICOP allows the user to query by effect as suggested in the Cognitive 

Browser project [Green et al, in press]. Rather than using a formal effect 

language, however, the user can communicate the desired effect in the 

natural language of the domain. 



CHAPTER ill 

THE KNOWLEDGE BASE 

FRAME SYSTEM 

Generic Frame System 

Frames and Slots. A frame is a collection of fields, called slots, which 

describe some entity in the world. The slots hold values. In addition, the slots 

can have an internal structure of subfields (called facets) which describe 

properties of the slot such as default value or the type of values allowed. 

When a slot holds a value which is the name of another frame, this 

represents some relationship between the two frames. The primary actions 

that one performs on slots are getting and setting values. Two relationships 

are considered quite important: isA and instanceOf. lsA relates a frame which 

represents a set or class to its superset. lnstanceOf relates a frame which 

represents some non-set entity to the set to which it belongs. Both of these 

relationships have their inverses which can be explicitly represented as slots. 

A form of default reasoning called inheritance takes place along the isA and 

instanceOf slots. When a value is requested from a slot which has none, a 

frame system will check the corresponding slot on the frame pointed to by the 

isA or instanceOf slot. In this way, default values for slots can be stored in 

frames representing general things. 

Attachments and Methods. Procedural knowledge can be attached to 

frames in the form of slot attachments and methods. Slots attachments are 
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pieces of procedural code which are activated when the slot is accessed in 

particular ways. Two common attachments are the get-attachment and the 

put-attachment. These pieces of code fire when a get or put is performed on 

the value of a slot, respectively. A get-attachment can be useful for calculating 

a value which depends on the values of multiple slots. 

A method is a named piece of procedural code which is attached to a 

frame, but not to any particular slot. It corresponds to the idea of method in 

object-oriented programming. Both methods and procedural attachments can 

be inherited. 

Figure 2 illustrates some of these ideas. The Person frame is a subset 

(isA) of Mammal and an instanceOf Class. Class is a frame which stores 

general information about frames which represent classes. This shows that a 

frame can simultaneously represent both a set (in this case the set of people) 

and a thing (in this case the thing that is the set of people). The Age slot 

contains a default age for people. This slot demonstrates the idea of facets. Age 

has two facets, a value and a type. The type can be used by the frame system to 

insure that objects of the right type are used to fill the value of the slot. The 

Computer-Scientist frame is also a set and a thing. It is a subset of the set of 

people and a member of the set of professions. The Michael-Mateas frame 

describes a particular person. This person belongs to two sets (Adult-Male and 

Computer-Scientist). The isA and instanceOf relationships do not have to be 

filled by only a single frame. If these relationships are limited to single 

frames, the system is single inheritance; the frames are organized in an 

inheritance hierarchy. If multiple frames are allowed to fill these slots (as in 

this example), the system exhibits multiple inheritance. The frames are 

arranged in an inheritance graph (directed acyclic graph, or DAG). The Age 



Person 
isA: Mammal 
instanceOf:Class 
Age:{ value:40, type:integer } 

Adult-Male 
isA:Person 
sex: Male 

Com pu ter-Scie ntis t 
isA:Person 
instanceOf :Profession 
personalSty le: nerd 

Michael-Ma teas 
instanceOf:{Computer-Scientist, Adult-Male} 
Age:{ value:27, type } 
personalSty le:wired 

Figure 2. Example of generic frame system. 
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slot has a value which overrides the value of 40 which would normally be 

inherited all the way from Person. The type of the age slot, however, is 

inherited from Person. The personalStyle slot overrides the value that would 

be inherited from Computer-Scientist. 

Reifying Slots. The basic frame representation can be extended by 

representing slots as frames. This extends the idea of giving slots an internal 

structure with facets. Where the facets of a slot must be repeated every time 

the slot is used, a frame describing a slot allows one to create a single localized 

description of the slot. It makes the slot into a thing. The kinds of slots one 

might find on a frame describing a slot are domain (the kind of frames this 

slot can legally be attached to), range (the kinds of values that can fill the slot), 

and of course isA and instanceOf. By including a slot transfersThrough which 

is filled by a list of slots through which this slot can acquire default values by 



inheritance, one effectively places a frame containing this slot within 

multiple DAGs. Now any arbitrary relation can have the power of isA as an 

organizing relation for a set of frames. 

Frame System for ICOP 
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The frame system used in this thesis is written in Prolog. The core of 

this system was written by David Novick at the Oregon Graduate Institute. It 

has been enhanced with type checking capabilities. 

Note on Terminolo~y. In the rest of this thesis, any symbolic names 

which refer to any piece of the Windows library or some part of ICOP appear 

in italics. In addition, predicates and functors are distinguished by following 

them with a "/"and the number of arguments. Thus, an arity two predicate 

my_predicate is written as my_predicate/2. Generally, the number of 

arguments is not important; the "/"notation is used to distinguish predicate 

and functor names from other names in the text. 

Frames. A frame is represented by the arity four functor shown in 

Figure 3. 

frame( name: <fr ame_name>, 
parent:<parent_name>, 
children:[ <child_l>, <child_n> ], 
slots:[ <slot_l>:facets([ <facet_l>, <facet_n> ]), 

<slot_n>:facets([ <facet_l>, <facet_n>]) ]). 

Fi~ure 3. Frame functor. 

Any name in angle brackets is a metavariable. In a real frame, these names 

will be replaced by names chosen by the user. The":" has been defined as a 

Prolog infix operator. The first argument in the frame functor is the name of 

the frame. The second argument is the name of the parent frame. Inheritance 
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flows through this argument. Only one parent is allowed, making this a 

single inheritance system. The third argument is a list of children frames. 

These frames lie below the given frame in the inheritance hierarchy. Finally, 

the last argument is a list of slots belonging to this frame. Each slot has list of 

facets. By convention, one of these facets should be called value. This facet 

actually holds the value which fills the slot. The rest of these facets describe or 

modify the value in some way. 

Operations on Frames.The primary functions supported by the frame 

system are getting the value of a slot facet and setting the value of a slot facet. 

While the names chosen for facets are arbitrary, the frame system provides 

special semantics for two facet names. The name value is the value of the 

slot. If one gets or sets a slot without specifying a particular facet, the facet 

accessed is the value facet. The default facet provides the value for a slot in 

the event that the value facet is empty. 

Procedural Attachments.The system also supports procedural 

attachments and methods. The procedural attachments are attached to a slot 

as a special facet named either get_value or set_value. The value of this facet 

is a conjunction of Prolog goals. When a get or set is performed on the value 

facet of a slot, the appropriate attachment is called after performing the get or 

set. In addition to the conjunction of goals, an attachment facet also stores an 

unbound variable (by convention named Caller) which is bound to the name 

of the frame the get or set was performed upon at call time. The predicates in 

the conjunction of goals can refer to the Caller variable. Since an attachment 

might be stored on a frame high in the inheritance hierarchy, the Caller 

variable allows the attached code to properly determine the context of the call 

when a frame lower in the hierarchy is manipulated. 
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Methods. Methods are stored as slots named method having a special 

structure, rather than the normal list of facets. This structure is built using the 

":" and ":-" operators and includes the name of the method, an unbound 

variable to hold the call context (in the same manner as described above for 

attachments), and a conjunction of Prolog goals. If there are several methods 

attached to a frame, there will be several slots named method. Normally, one 

would not want to put multiple slots having the same name on a frame. But 

the method slot has been given special semantics so that methods are 

distinguished by their names, which are part of the internal structure of the 

slot. The frame system provides a special predicate to allow the user of the 

system to call a method on a frame. In the case of a call to either an 

attachment or method, the frame system attempts to satisfy the goals 

constituting the attachment or method through the use of the built in control 

predicate call/1. 

Properties of the Frame System. There are several interesting things to 

note about this frame system. First it is single inheritance. Each frame sits 

somewhere in an inheritance tree rather than an inheritance DAG. Second, 

inheritance only flows along the parent link. In general, inheritance links can 

be view as just another slot. The isA and instanceOJ slots just happen to be 

two which are widely used. Here, the parent and children links have been 

distinguished from the rest of the slots. So not only is the system single 

inheritance, each frame sits in a single tree, rather than in multiple trees 

coordinated by multiple slots. In the example in Figure 2 (page 35), a 

Computer-Scientist isA Person (indicating a superset relationship) and is an 

instanceOJ Profession (indicating a membership relationship). Inheritance 

flows along both of these links. Such a structure is not possible in the frame 
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system used in this thesis. An ambiguity that then arises is whether the 

Parent relationship indicates superset or membership. This is a problem that 

will be discused in the section describing the knowledge base. Finally, the slots 

are structured by facets, but have not been reified as independent frames. 

Type Checking. To help maintain knowledge base coherence, a type 

system was added to the core frame system described above. Every slot can 

have an additional facet named type. The value of this facet describes the type 

of the filler that the value facet can take. The types currently recognized by the 

type system are frame, atom, integer, string, none, list_of( <type>) (where 

<type> is any of the recognized types), and a name that is the name of some 

frame. A value is checked for conformance with the atom, integer, and string 

types through the use of built-in predicates. Any value conforms to the type 

none. A value conforms to the frame type if this value is the name of some 

frame. A value conforms to list_oj( <type>) if the value is a list and each 

member of the list conforms to <type> (which is checked by recursively 

calling the type checker on each member of the list). A value conforms to a 

type which is the name of some frame if the value is the name of a frame 

which is subsumed by the type in the inheritance hierarchy. For example, if 

Computer-Scientist is a child of Profession, Computer-Scientist can legally fill 

the value facet of a slot whose type is Profession. A value facet can also be 

filled with a name that takes arguments (a predicate or functor). The 

predicates and functors used to describe relationships in the knowledge base 

are themselves represented as frames. These frames describe the number and 

type of objects that can be taken as arguments, and, in the case of functors, the 

type of object returned. If the value of a slot is a predicate, it conforms to the 

type (which is the name of some frame) if the predicate name is subsumed by 



the type, and each argument of the predicate is subsumed by the 

corresponding type found in the list of valid arguments in the predicate 

frame. If the value of a slot is a functor, it conforms to the type if the return 

object of the functor is subsumed by the type and each argument of the 

functor is subsumed by the corresponding type found in the list of valid 

arguments in the functor frame. Whenever an attempt is made to set the 

value of a slot, type checking is performed. The set will fail if the type check 

fails. The type check is defined to succeed for slots which do not have a type 

facet or for slots whose type facet is empty. 

Consistency Checking 
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In building a knowledge base of even this small size, it becomes 

important to automate some consistency checks, especially since frames are 

richly related, causing a change in one part of the knowledge base to propagate 

to other parts of the knowledge base. The consistency checker checks that the 

frames are syntactically well formed, every frame is mentioned in the child 

list of its parent, every frame in a child list exists, every slot has a value, every 

slot has a type, and that the value of every slot conforms to its type. A frame is 

considered well formed if it has the form frame( name:_/ parent:_/ children:_, 

slots:_) where the "_" matches any string. The next two checks make sure 

that the parent-child links are consistent. The value check is more of a 

warning than an error. Many frames may have slots without values (because 

they represent an abstract entity), but it is a good idea to look at a list of these 

slots to make sure that some slot which should have a value has not been 

overlooked. A slot without a type is an error; every slot should have a type. 

The type check is performed in the same manner as described above. The 



41 

consistency checker calls predicates in the frame system to perform this check. 

In addition, the method check_type (described below in the section on 

routine frames) is called on frames for which the other checks fail. The 

iterative construction of ICOP's knowledge base was greatly simplified by 

utilizing this semantic consistency checker. 

GLOBAL ONTOL<:X;Y 

ICOP's knowledge base currently describes a subset of the Windows 3.0 

APL The description of the knowledge base is divided into two parts. First, the 

ontology of the knowledge base is described. This gives a global map of its 

structure. Then, a detailed description of the frame type used to describe 

routines is given. Routine frames are the most complicated frames in the 

knowledge base. Since most other entities in the knowledge base support the 

expression of routines, a detailed description of routine frames should 

provide a good understanding of other parts of the knowledge base as well. 

An ontology for a domain describes the existent entities for that 

domain. The decision to make something a "thing" is arbitrary. The final test 

of an ontology is adequacy; is the ontology's way of chopping up the domain 

adequate to the task at hand? Each domain entity is described by a frame in 

the knowledge base. ICOP's ontology for Windows 3.0 is motivated both by 

the need to support code location and comprehension, and by the desire to 

construct a deep model of the domain. It is hoped that this deep model will 

allow ICOP to be more easily extended to handle other domains (both other 

windowing systems and other types of libraries entirely) as well as support an 

intelligent tutoring system. Thus, there may be parts of the knowledge base 

that seem deeper than strictly necessary to support a code location system. 
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Some frames have no slot structure. For the kind of planning currently 

supported by ICOP, the mere existence of certain named frames suffices. To 

support an intelligent tutoring and documentation system, these frames 

would be given a more complex structure. For example, frames describing 

memory resources do not currently have any slots. These frames could be 

enriched by adding slots which describe the actual memory structure of the 

resource. The idea is that the global ontology is deep enough to support these 

more complex reasoning processes. The structureless frames provide 

locations ("hooks") where more detailed knowledge can be entered. 

Routines 

The primary entities in the knowledge base are routines. After all, ICOP 

supports the reuse of code objects, and in procedural libraries routines are the 

primary objects available for reuse. These routines are organized in their own 

hierarchy. The principal of organization of this hierarchy is that routines with 

similar effects are siblings in the hierarchy. Their parent will be a generic 

routine frame which does not actually describe a routine in the library, but 

rather describes the similarities that the children share. This will become 

clearer when the details of the structure of the routine frame are given and 

the planning algorithm is described. The effect of each routine is described by 

a slot filled with a list of predicates. These predicates are the fundamental 

domain operators recognized by ICOP. 

Predicates and Functors 

The predicates and functors used within the knowledge base are 

themselves described explicitly by frames. Predicate frames describe the 

predicate's arity and the legal types of its arguments. Functor frames include 
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this same information and, in addition, describe a return type for the functor. 

Predicates are mappings from domain objects (in the knowledge base) to truth 

values. A functor is a mapping from domain objects (in the knowledge base) 

to another domain object. 

Predicates. The predicate types found in the predicate hierarchy are 

operator, constraint, state and source. Operators are the fundamental actions 

recognized by ICOP. For example, add_object( <container>, <memory_object>) 

expresses that it is true that some object has been placed in some container. 

Containers and objects are other members of the ontology which will be 

described later. The effects of routines are described in terms of these 

operators. The user's query regarding a domain action is also translated into 

this operator language. 

Constraints indicate that some constraining relationship exists between 

the arguments. For example, assoc_type( <atom>, <frame_name>) indicates 

that the type indicated by the <frame_name> (meaning that frame and all of 

its children) should be associated with an atom, where an atom is an arbitrary 

sequence of characters. In other words, some name has been given a type. The 

primary difference between constraints and operators is one of interpretation. 

Operators are intended to represent domain actions, while constraints 

represent static relationships. 

State predicates indicate some relationship regarding the state of the 

system. For example, received( <message>) means that the message indicated 

by the argument has been received by a window. 

Source predicates indicate the default source for a routine parameter. 

For example, user _source( <user _source_object>) expresses that a parameter 

will be provided by the user and that this parameter should be a 
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<user _source_object>. If the planning system had added some routine to its 

current plan, and user _source was indicated for one of its parameters, the 

planner would look no further to satisfy the parameter. 

Functors. Just as in the predicate calculus, functors are used to describe 

composed objects. Some things in the world are best described by naming 

their parts. A functor is a function which takes as its arguments the parts of 

something and returns (constructs) the thing. An example is 

iconJunc(<icon>, <x>, <y>) which takes an icon (meaning the actual piece of 

memory describing a bitmap which is an icon), a screen x coordinate and a 

screen y coordinate and returns a drawable_icon (mean the actual pattern of 

light which is placed on the screen). One can clearly see that the icon (piece of 

memory) and drawable_icon (screen object) are different objects by looking at 

their attributes. It makes no sense to talk about the screen location, height, 

and width of a piece of memory, while these attributes are valid for a pattern 

on the screen. Conversely, the pattern on the screen does not occupy a given 

number of bytes, while the memory pattern certainly does. Functors allow 

one to point to an object in the domain (in this case a pattern on the screen) 

by pointing to other objects (in this case a bitmap and a coordinate pair) out of 

which the first object can be built. 

Objects 

The predicates and functors express relationships between objects. 

These objects are themselves represented within a hierarchy of the 

knowledge base. The first level of objects is container, memory_object, 

screen_object, and user _source_object. 
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Containers. Containers are things that can contain other objects. 

Memory and file are containers. System_memory and user _memory are 

recognized as two subtypes of memory, and executableJile is recognized as a 

subtype of file. Currently, containers have no slots. These frames could be 

made richer by including such information as capacity, the type of objects 

stored in system memory vs. user memory, the fact the files have names, etc. 

Memory Objects. Memory objects are objects which can occupy space in 

containers. The main types of memory objects are referenceable objects, 

declareable objects, state objects and values. Referenceable objects are objects 

which cannot be directly examined by a programmer. In the Windows 

domain, for example, a window is a memory object which contains all of the 

system information about a screen window. The contents and structure of 

this memory object cannot be directly examined. Instead, this object is passed 

to system routines indirectly by means of a handle. The referenceable object 

frames do not have any slots. These frames could be made richer by including 

information about the actual memory structure. 

Declareable objects are typed memory objects which the user can 

manipulate in a manner similar to language built-in types. They can be 

declared, assigned to, examined, etc. Under declareable_object are 

fundamental_type and library_type. Fundamental types are the C built in 

types. Library types are defined by the library (in this case Windows). Subtypes 

of the library types are library defined structures, handles, pointers and simple 

types (simple typedefs of built-in types). 

State objects contain some system state. For example, a device context 

contains information about the current pen, brush, background, color, 

clipping rectangle, etc. for a graphic device. State objects are similar to 
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referenceable objects in that they cannot be directly examined by a 

programmer. Unlike referenceable objects, they cannot be pointed at 

indirectly by a handle. To gain state information, a programmer must usually 

make special calls which copy some aspect of a state object into a declareable 

object where it can be examined. 

Value objects are values which declareable objects can take on. Many 

value objects are integer constants which have been #defined by Windows. 

These constant names can be used as arguments to various routines. For 

example, the background mode constants opaque and transparent are passed 

to SetBkMode and returned by GetBkMode, Windows routines which get and 

set the drawing background mode. By representing the concept of a 

background mode constant as a separate frame, it allows the argument and 

return values of routines which manipulate the background mode to be 

expressed accurately. Without the concept of this constant, one would have to 

express the values used by SetBkMode and GetBkMode as integer. Yet is is not 

the case that these routines accept or return any integer. Only those specific 

integers which have been given background mode names by Windows are 

valid for these routines. 

Screen Objects. Screen objects represent actual patterns of color on the 

display screen or objects which are intimately involved in the display process. 

The three kinds of screen objects are device coordinates, drawable objects, and 

window parts. Device coordinates are the various coordinate systems that can 

be used to locate points on the screen. Drawable objects are the screen pattern 

associated with a memory representation. As explained in the description for 

icon_func above, the memory representation of an object and the 

corresponding pattern on the screen should be represented as distinct things 



because they have distinct sets of properties. Window parts are entities like 

scroll bar, title bar, and client area (the drawable area of a window). In 

addition to being patterns of color, a user can interact with a window part 

using the mouse or keyboard. 
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User Source Objects. User source objects are values that a user can 

supply to a routine. For example, x_coord represents an x coordinate that a 

user should supply. Memory_object_name represents a string which names 

some other memory object (eg. a resource) which the user should supply. 

These objects are the arguments to user _source/1. 

Distinction Between Sets and Members 

The isA and instanceOf slots express the distinction between sets and 

members. Though one could put slots with these names on frames in ICOP's 

. knowledge base, the frame system does not give them their usual semantics. 

In ICOP, this distinction is made by location in the hierarchy. Leaves are 

individual things, anything else is implicitly a set (the set of all leaf frames 

which are below a given frame in the hierarchy). This is not a clean way to 

handle this distinction. For one thing, the distinction is made implicitly by 

the way the knowledge base is manipulated rather than in some explicit, 

declarative manner. Another problem is that it is not possible to express that 

something is both a set and a thing (like C~mputer-Scientist in the example). 

Finally, it is not possible to express that something is a set without also 

representing at least one member of the set (ie. placing at least one child in 

the child list). In future versions of ICOP, this representational deficiency 

should be remedied by giving inheritance semantics to slots named isA and 

instanceOJ. 



ROUTINE FRAMES 

Root Routine 

The root of the routine frame hierarchy is root_routine. This frame 

appears in Figure 4. 

frame( name:root_rou tine, 
parent:[], 
children:[ draw _icon, 

get_device_context, 
release_device_context, 
load_resource_abstract], 

slots:[ routine_name:facets([value,type:atom]), 
parameter_list:facets([value,type:list_of(declareable_object), 

min:l]), 
default_source:facets([value, type:list_of(source), min:O]), 
return_normal:facets([ value, type:declareab le_ object]), 
return_ error: facets([ value:null, type:value]), 
main_effect:facets([ value, type:list_of(operator), min:l]), 
micro_effect:facets([ value, type:list_of( operator), min:O]), 
constraint:facets([ value, type:list_of( constraint), min:O] ), 
preconditions:facets([value, type:list_of(state), min:O])]). 

Fi~ure 4. Root frame of the routine hierarchy. 
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The parent value is the empty list []. This indicates that the frame has no 

parent; it is the root of a hierarchy. The children slot contains a list of the 

immediate children frames. These frames should partition the set of effects 

that can be produced by routines in the library. Each of their children should 

partition the set of effects represented by their parent and so on, until one 

comes to a leaf frame which represents an actual library routine producing a 

specific effect. The slots describe the properties of a particular library routine 

or of some abstract routine (not actually available in the library) which 

represent a set of effects. These abstract frames are useful both for searching 

(as will be describe below in the section on the planner) and as a location to 

place slot values which should be inherited by multiple routine frames. Most 
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slots in the root_routine have no value. There is no default value that makes 

sense at that level of abstraction. However, the type facet of every slot does 

have a value. All other routine frames will inherit these types. 

The routine_name slot contains the actual library name of a routine. 

Its type is atom, meaning that the routine name can be any arbitrary sequence 

of characters. The parameter _list contains the list of parameter types which 

the routine takes. Its type is list_oj(declareable_object). If any atom is used in 

the parameter _list which is not the name of some frame in the 

declareable_object subhierarchy, a type error will be detected. The 

default_source is a list of sources for the parameters of the routine. This list is 

always the same length as parameter _list, with the sources in one-to-one 

correspondence with the parameters (that is, there should be one source for 

every parameter). If no default sources exist for a parameter (meaning that the 

planner should not assume that the value for a routine argument is going to 

come from some specific place), then the arity zero source predicate 

no_default/O is placed in the default_source list. The type of the 

default_source is list_oj(source), where source is a type of predicate. 

Return_normal and return_error describe the library routine return type in 

the event of normal termination and the return value in the event of error 

termination respectively. The return_error slot has a default value of null, as 

this is a common error return value for routines. The main_effect slot 

contains a list of operators which describe the main effect of the routine. 

Currently, the planner assumes that the main effect is described by a single 

operator. The micro_effect is a list of operators which describe in detail what 

the routine does. The planner does not currently access the micro_effect. It is 

intended to be used by the natural language generator of an intelligent 
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tutoring and documentation system to describe the operation of a routine. 

The example given below of a leaf routine frame which describes an actual 

library routine should make the idea behind the micro_effect clearer. The 

constraint slot holds a list of constraints which pertain to objects mentioned 

in the main and micro effect slots. Currently, the only type of constraint used 

is assoc_type/2, which associates an atom with a type. If it does not prove 

useful to include any other type of constraint which pertains to the effect in 

this slot, the next version of the knowledge base could change the name of 

this slot to associated_type and change the type facet to list_oj(assoc_type) 

rather than list_oj(constraint). The preconditions slot contains a list of state 

conditions which must hold in order for the routine to be called. For 

example, in the Windows API, the routine BeginPaint should only be called if 

the window to which BeginPaint refers has received a paint message. The 

preconditions slot allows this kind of information to be expressed. 

Example Routine 

The frame in Figure 5 describes the Drawlcon routine which draws an 

icon on the device associated with a device context (ie. screen, printer, etc.). 

The routine_name slot holds the library name of the Drawlcon routine. The 

parameter _list expresses that Drawlcon takes four parameters: a handle to a 

device context, two integers (which are coordinates) and a handle to an icon. 

The default_source expresses that the handle to the device context and the 

handle to the icon have no default source, while the two integers are x and y 

coordinates and should be supplied by the user. The return_normal and 

return_error slots express that Drawlcon normally returns a boolean (which 

an examination of the micro_effect reveals takes the value true) and that a 



frame(name:draw _icon, 
parent:root_rou tine, 
children:[], 
slots:[ routine_name:facets([value:'Drawlcon', type]), 

parameter_list:facets([ 
value:[hdevice_context, integer, integer, hicon], 
type, min]), 

default_source:facets([value:[no_source, 
user_source(x_coord), 
user_source(y _coord), 
no_source], 
type, min]), 

return_normal:facets([value:boolean, type]), 
return_error:facets([ value:false, type]), 
main_effect:facets([ value:[ 

draw(device_l, icon_func(param_2, param_3, icon_l)) 
], type, min]), 

micro _effect:facets([ value: 
[dereference(param_l, system_memory_l, device_l), 
dereference(param_4, user_memory _l, icon_l), 
draw(device_l, icon_func(param_2, param_3, icon_l)), 
return( true)], 
type, min]), 

constraint:facets([ value: 
[assoc_type(system_memory _l, system_memory), 
assoc_ type( device_ I, device_ context), 
assoc_type(user_memory _l, user_memory), 
assoc_type(icon_l, icon)], type, min]), 

precondi tions:facets([ value:[ 
has_state( context_mapping_mode, mm_text,device_l) 
], type, min])]). 

Fiii!ure 5. Frame representing the routine Drawlcon. 
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value of false is returned if an error occurs. The main_effect expresses that 

the main effect of the Drawlcon routine is to draw on some device context the 

drawable_icon which is described by an icon and two coordinates, the 

coordinates being supplied by the second and third parameters. 

The micro_effect expresses that the total operation of the routine involves 

dereferencing the first parameter (which is a handle to a device context) to 

retrieve the device context pointed to by the handle in system memory. The 

fourth parameter (which is a handle to an icon) is dereferenced to retrieve the 
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icon in user memory. The icon is then drawn on the device context (this 

operator is the same one which occurs in the main effect) and the value true 

returned. Now it is clear what type of information is captured by the micro 

effect which is not captured in the main effect. Imagine a system which 

answers natural language queries regarding particular routines. A query such 

as "Which icon is drawn?" or "What is the first parameter used for?" is not 

answerable based only on the main effect. All one can say from the main 

effect is that some icon is drawn on some device context at the coordinates 

given by the second and third parameter. The micro_effect provides the 

richer knowledge which would be needed by a system which can answer such 

questions. 

In the main and micro effects, arbitrary atoms are used as arguments to 

operators rather than the names of frames which describe objects. This will 

cause the predicate type checking procedure described above to fail. The 

assoc_type/2 constraints which appear in the constraint slot solve this 

problem. Each of the atoms which appear in the effects slot is bound to some 

object which is described by a frame. Why not include the names of these 

objects directly in the effect operators rather than using this indirection? 

Direct use of object names would not work if more than one instance of an 

object is referred to in the micro effect. For example, an operation which 

copies some information between two device contexts will have to refer to 

two different device contexts in the micro effect. The indirection provided by 

assoc_type/2 allows these two device contexts to be distinguished by choosing 

an arbitrary atom to name them. (eg. source_context, destination_context). 

The symbol param_ <number> also appears as an argument to predicates and 

functors in the effect slots. This symbol has special semantics. It refers to the 
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object which must be passed to the <number> parameter of the routine. The 

last slot, preconditions, expresses that the mapping mode of device context on 

which the icon is drawn must have the value mm_text (meaning that the x 

and y coordinates indicate the number of pixels in the x and y direction from 

the origin). 

Example of Type Checking 

Now that the meanings of the routine frame slots have been described 

and a particular routine frame has been examined, type checking on each slot 

can be stepped through, both to provide an example of the type checking 

algorithm described above, and to motivate some methods that are attached 

to the root_routine (and thus available to all routines). 

The routine_name value of Drawlcon satisfies the type of atom, since 

Prolog considers any expression an atom if it consists of lowercase 

alphanumeric characters or appears in single quotes. The parameter value is 

the list [hdevice_context, integer, integer, hicon]. The type is 

list_oj(declareable_object), meaning that the value facet must take a list 

where each element of the list is a frame subsumed by declareable_object in 

the frame hierarchy. In this case, each of the four parameters is indeed a 

declareable object (an object which can be directly declared, modified, and 

inspected by the programmer). The value of the default_source is [no_source, 

user _source(x_coord), user _source(y_coord), no_source] and the type is 

list_of(source). The source frame is the parent frame of predicates which 

express the relationship of some object serving as a default value for a routine 

parameter. The no_source/0 predicate is a child of source and thus satisfies 

the type. The user _source/1 predicate takes an argument which must be a 
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user _source_object (this is expressed in the user _source/1 frame). X_coord 

and y_coord are found to be the names of frames which are subsumed by the 

user _source_object frame. The arguments to user _source/1 thus satisfy their 

type requirements, while user _source/1 is found to be a child of source (and 

is thus subsumed by source), satisfying the source type requirement. Finally, 

the value of default_source is indeed a list, each element of which satisfies 

source. The return_normal and return_error slots are checked by simple 

frame subsumption. The remaining slots all contain lists of predicates and are 

checked in the same manner as the default_source slot. A point of interest is 

that the checking of the main_effect will descend through one more level of 

recursion due to the presence of the iconJunc/3 functor as the second 

argument to the draw/2 predicate. 

The effect slots do present a problem for type checking, however. The 

arguments present in these predicates are not the names of frames, but rather 

are arbitrary atoms which are bound to frame names by assoc_type/2. Two 

methods are attached to the root routine to bind the associated types to the 

atoms which appear in the effect predicates. The check_type method takes the 

name of a slot as an argument, though the only two slots for which it could 

possibly succeed are main_effect and micro_effect. This method gets the 

value of an effect slot, constructs a new effect list with the appropriate 

substitution of a type (frame name) for each predicate argument as described 

by the assoc_type/2 predicates in the constraint slot, and then performs the 

type check on this newly constructed list. The bind_main_effect method 

constructs a new main effect with the appropriate types and returns this new 

main effect. This method is used by the planner. Both check_type and 

bind_main_effect will search up through the inheritance hierarchy to find 
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type bindings for effect arguments if a binding cannot be found on the local 

frame. The situations in which this occurs can be illustrated with two 

examples. If the value of one effect slot is inherited and the other is not, then 

the local constraints slot will contain the assoc_type/2 bindings for the non­

inherited effect, while the bindings for the inherited effect will be found on 

the same frame as this effect. If the bindings of some inherited effect operators 

within an effect slot are changed while the other effect operator bindings stay 

the same, the bindings of the unchanged operators will be found on the frame 

on which they reside. In both of these cases, the basic idea is that when 

inherited type bindings need to be overridden, just those bindings which 

have changed are placed in the constraint slot. The unchanged bindings will 

be inherited even though the local constraint slot has a value. 

Most type checks are performed by the frame system whenever a slot 

value is set. The type check on the main and micro effects, however, is not 

performed during a set for two reasons. First, the semantics for these slots are 

peculiar to this particular application. The frame system is designed to 

support generic operations useful for any knowledge base. Supporting 

explicitly defined predicates and functors is a general enough operation to 

support in the frame language. The binding of types to atoms in the routine 

frames, however, is particular to this application. Of course, the frame system 

could always attempt to call a check_type method on any slot for which all 

other checks failed, thus providing a hook for an application developer to 

implement application dependent semantics. In general, this is a good idea. 

The second problem here, however, is that the correctness of the value of an 

effect slot depends on the value of the constraint slot. Making changes to 

either one of these slots could potentially require making coordinated 
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changes to both slots. If the constraints were changed first, it could make the 

effects become illegal. If the effects are changed first, this could introduce new 

atoms that are not yet mentioned in the constraint slot. For this reason, the 

type check is not performed during a set for the effect slots. This is not a 

problem for this particular application because the values of the slots on the 

routine frames are not changed while the system is running. These frames 

statically describe the routines available in a library. The consistency checker, 

which performs syntax checks and semantic consistency checks on the 

knowledge base, does call the check_type method on the effect slots. 



CHAPTER IV 

NATURAL LANGUAGE INTERFACE 

The natural language interface accepts an English query and translates 

it into an operator describing a desired main effect. There are two main stages 

in this processing: syntactic processing in which an augmented transition 

network (ATN) is used to locate the main verb and the object of the verb, and 

semantic processing in which an attempt is made to build a valid operator 

from the verb and verb object. 

SYNTAX 

The syntactic subsystem accepts a sentence input by the user and 

produces a register structure representing the sentence. The primary 

components of the syntactic processor are an ATN grammar, the string 

preprocessor, an affix stripper, and an interpreter. Each of these components is 

described below. 

The ATN 

Transition Networks. A transition network consists of a set of states 

and a set of directed arcs connecting the states. The arcs are labeled by input 

symbols and input symbol categories. Some set of states is distinguished as 

start states and some set of states is distinguished as terminal states. As input 

symbols arrive, transitions can take place from one state to another along an 

outward arc whose label matches the input symbol. Such networks have the 
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same generative power as regular grammars. Recursive transition networks 

(RTN) augment the basic transition network by allowing arcs to represent 

entire networks. Traversing such an arc in a network is legal only if the 

transition network associated with the arc can be traversed from a start state 

to a terminal state. RTNs have the same generative power as context free 

grammars. An augmented transition network (ATN) further augments RTNs 

by associating a register structure with the network. A register consists of 

features dimensions and roles, where feature dimensions can take a value 

from some primitive set of dimensions and roles can be filled by some other 

register. A word or set of words from the input sentence is associated with 

each register. The arcs of an A TN are labeled by conditions and actions in 

addition to symbols and symbol categories, where conditions can test the 

current state of a register and actions can modify a register. Basically, an ATN 

provides an RTN with a modifiable memory and rules for modifying the 

memory. ATNs have the generative power of context sensitive grammars. 

The ATN for ICOP is expressed in Prolog as a definite clause grammar. 

Definite clause grammars are similar to context free grammars except that 

arbitrary Prolog expressions can appear on the right hand side in addition to 

grammar symbols. This provides the ability to perform tests and actions, the 

two necessary features for an ATN. 

The Grammar. ICOP answers questions about how to achieve an effect 

using a library. This type of question takes the form of asking how to perform 

an action on an object ("How do I <verb> an <object>?"). In the future, ICOP 

may handle information requests as well ("Tell me about <object>?"). 

Though none of ICOP's other subsystems currently knows how to handle 

such a request, the syntactic processing stage can correctly parse this kind of 
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sentence. The four types of sentences currently understood by the grammar 

are shown in Figure 6. 

How <swallow> <verb> <noun phrase>? 
Eg. "How do I create a window?" 

How is/are <noun phrase>(s) <verbed>? 
Eg. "How are windows created?" 

Tell <swallow> about <noun phrase>s? 
Eg. "Tell me about windows?" 

Tell <swallow> about verbing <noun phrase>(s)? 
Eg. "Tell me about creating a window?" 

Figure 6. Four sentence types understood by A TN. 

The <swallow> grammar symbol is special. It matches any number of 

any kind of word. Words are swallowed until a sentence that the grammar 

recognizes is found or the entire sentence is swallowed (and recognition fails). 

This allows the grammar to recognize sentences which have been 

embellished with words which do not add to the meaning of the sentence. 

For example, "How do I draw an icon?" and "How in the world is it possible 

to draw an icon?" are both reduced to "How draw an icon?" which is 

recognized by the grammar. This does have the side effect of allowing 

ungrammatical sentences such as "How draw an icon?" to be recognized. 

However, ICOP's grammar is not motivated by the desire to reject 

ungrammatical sentences but rather by the desire to assign meaning to as 

wide a range of sentence as possible within the domain. 

ICOP's natural language interface currently handles an extremely 

limited subset of English, even though the A TN formalism is capable of 

representing a much richer subset. Using a formalism more powerful than 
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ICOP's interface can grow. 
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The Re~ister Structure. Given the simple form of the sentences 

handled, the registers have a simple structure. The two registers filled by the 

ATN are shown in Figure 7. 

Sentence Register 
Object -
Action -
Type-

filled by a noun phrase register 
filled by the verb in infinitive form 
filled by "plan" or "info" 

Noun Phrase Register 
Head - filled by noun in singular form 
Describers - filled by list of adjectives and nouns in 

singular form 

Fi~ure 7. Registers filled by ATN. 

No attributes other than the sentence type are included. Any attributes 

needed during parsing (verb form, number) are passed as arguments in the 

definite clause grammar. The slot structure is influenced by the semantic 

form of the queries. All queries are either requests for a plan or requests for 

information (this is stored in the sentence type slot). Plan requests are always 

requests for some action on an object. Information requests are always 

requests for information about some particular object. If an object can be 

described in one word (eg. menu), it will be in the head slot of the noun 

phrase. If the object takes several words to describe (eg. handle to an 

application instance), the base word (handle) will appear in the head and the 

other words (application, instance) will appear in the list of describers. 

Currently, only one noun phrase is ever created during the processing of a 

query. This noun phrase is always the object of the sentence. The code has 
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been made general enough (register names are passed as arguments) so that if, 

in the future, multiple registers of the same type are needed, it will not 

require a major code revision. The registers are implemented using frames 

managed by the frame system. 

The String Preprocessor 

The string preprocessor takes the string typed by the user, which is 

represented as a list of characters in Prolog, and converts it into a list of atoms 

where each word becomes an atom. During this process, all characters are 

converted to lower case and extraneous punctuation is removed. The list of 

atoms is then processed by the ATN. 

Affix Stripper 

The action verb is stored in the register in its infinitive form and 

nouns are stored in their singular form. This simplifies later processing of the 

register structure by the semantics subsystem. The affix stripper converts 

plural nouns to singular nouns and past participle and present participle verb 

tenses to the infinitive tense. Regular plural nouns and verbs with regular 

present and past participles are constructed automatically by this component. 

Only irregular forms need to be explicitly represented in the lexicon. Since so 

many verbs take either -en (eg. given) or -ed (eg. dropped) for the past 

participle form, the system tries both forms while looking for the infinitive in 

the lexicon. This means that incorrect forms like "droppen" will be accepted 

by the parser. However, as mentioned above, the motivation of the parser is 

to try an extract meaning from sentences rather than to reject ungrammatical 

sentences. 
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The Interpreter 

To facilitate debugging of the parser, a special Prolog interpreter that 

produces ATN specific trace messages was written. The grammar actually 

runs in this interpreter rather than directly in Prolog. With a debug switch 

on, the interpreter produces trace messages when processing particular 

predicates. Since the meta-language understood by the interpreter is precisely 

Prolog (the object language), the interpreter can be removed and the grammar 

run direct! y in Prolog when debugging is complete. 

SEMANTICS 

The semantics analyzer accepts the sentence register produced by the 

ATN and attempts to construct an operator that represents the desired effect 

expressed in the query. There are three phases in this process: matching the 

verb of the sentence to an operator, matching the head and describers of a 

sentence to objects in the knowledge base, and testing the arguments of the 

operator for semantic validity. In this last stage, any arguments needed by the 

operator which were not explicitly given by the user are filled in. 

Determining the Operator 

The main verb is a valid operator if there is an operator frame with the 

same name as the verb. For example, the query "How do I draw an icon?" 

contains the verb "draw". There is an operator frame with the name draw, 

therefore draw/2 will be selected as the operator. If there is no frame whose 

name is the same as the verb, an attempt is made to map the verb to operator. 

Mappings from verbs to operators are represented by the predicate 

map_action(<verb>, <operator>). A map_action/2 fact expresses that some 

verb should be considered a synonym for some operator. For example, the 
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query "How do I load an icon?" contains the verb "load." There is no operator 

frame with the name "load," so that condition for converting a verb to an 

operator fails. Next, an attempt is made to map "load" to an operator. It so 

happens that there is a map_action/2 fact map_action(load, add_object) 

which expresses the fact the "load" should be considered a synonym for the 

operator add_object/2. If the verb "load" can have more than one meaning in 

the context of using a code library, these multiple meanings can be 

represented by multiple map_action/2 facts containing "load" as the first 

argument. In the event that another attempt is made to map the verb to an 

operator (perhaps due to the objects of the verb not meeting the operator 

argument constraints), the next operator mapping will be tried. 

Determining the Objects 

The next stage in semantics processing is to convert the head and 

describers obtained from the A TN into an object or list of objects. Before 

attempting to map the head and describers to objects, the head is appended to 

the end of the describers. In the query "How do I get a handle to an 

application instance?", the head is "handle" and the describers are 

[application, instance]. The new list formed for object mapping is 

[application,instance,handle]. Of course, if the describers are empty (as in the 

query "How do I draw an icon?"), then the new list still contains one word. 

The predicate find_object/2 performs the mapping from a list of one or 

more words to a list of one or more objects. There are four ways for 

find_object/2 to succeed. If there is only one word in the list (meaning there 

was only a head with no describers), then there is an object corresponding to 

this word if there is an object frame whose name is this word. If the frame has 
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children, meaning that the frame actually describes a set of objects, then the 

actual object returned will be a leaf in the subtree whose root is this frame. 

This accommodates user queries which are at a more general level than the 

primitive objects represented in the system. For example, a user may ask the 

query "How do I load a resource?" Now it so happens that there is a frame 

named resource whose children include all of the resource objects known by 

ICOP. However, if the object mapping stage returned the object resource, the 

query that would be constructed is add_object(user _memory, resource). This 

query would fail because there is no particular routine described in the 

knowledge base that loads resources in general, though there are routines 

which load particular resources. However, instead of returning resource, the 

object mapper will find the resource frame in the knowledge base and begin 

searching the resource subtree for leaf frames. If the first leaf frame it found 

was system_icon, then the object mapper would return system_icon. Now 

there is a routine for loading a system icon; an example will successfully be 

constructed. If the user asks the system to generate another example, 

find_object/2 will be tried again (after the example generator has tried to 

construct a different example for the plan to load a system icon, and the 

planner has tried to construct an alternate plan to load a system icon). This 

time, find_object/2 might return the object menu. Now an example for 

loading a menu will be created. This mapping of non-primitive (set) objects to 

primitive objects is one way in which ICOP attempts to provide specific 

examples in response to general information needs. 

The second way in which find_object/2 succeeds is if there is only one 

word in the list and a map _object/2 fact can be found for the word. The 

map _object/2 facts are analogous to the map _action/2 facts. They allow 
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natural language words to serve as synonyms for some object. An attempt is 

still made to find a primitive object if the object indicated by map_object/2 is 

non-primitive. This allows words to serve as synonyms for abstract (non­

primi ti ve) objects. 

The third way in which find_object/2 succeeds is by concatenating a 

multiple word list (the describers are not empty) into a single atom and 

recursively checking whether this single atom satisfies one of the first two 

cases. The single atom created through concatenation consists of each word in 

the list separated by an underbar ("_"). Thus the list [application, instance, 

handle] becomes application_instance_handle. 

The final way in which find_object/2 succeeds is by finding some 

partition of the list of words such that each piece of the partition recursively 

satisfies find_object/2. This is the only way in which a list of words can be 

mapped to a list of objects rather than a single object. The examples at the end 

of this chapter will make each of these four cases for matching words to 

objects more clear. 

Checking Semantic Validity 

After the head and describers have been converted into a list of objects 

which serve as potential arguments for the operator, these arguments are 

tested for semantic consistency with the operator. This processing deals with 

the problem that sentences which are syntactically valid may be semantically 

invalid. For example, the utterance "I want to drink a rock" has proper 

syntactic form, but is invalid because the object of the verb does not "fit" the 

verb (rock is not a legal argument of the drink operator). The frame describing 

each operator has a slot containing the legal arguments for that operator. Each 
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object in the object list is compared against the legal arguments. If there is 

some argument which subsumes the object, the object is valid. This step also 

orders the objects. For example, if there are two objects in the object list, and 

the first object is subsumed by the second argument and the second object is 

subsumed by the first argument, then order of the objects will be switched. If 

no argument subsumes an object, a check is made to see if some functor can 

map the object to an object which is subsumed by an argument. If a functor is 

found with an argument that subsumes the object and whose return value is 

subsumed by an operator argument, the return value of the functor is placed 

in the ordered list of objects. After the object list has been ordered, any 

operator arguments which were not given explicitly in the query are filled 

with the appropriate value from the list of legal arguments. The next section 

gives some examples of query processing. 

Examples 

Example l.Consider the query "How do I draw an icon?" The ATN 

grammar recognizes this sentence and produces the register shown in Figure 

8. 

Sentence Register 
Object: Noun Phrase 1 
Action: draw 
Type: plan 

Noun Phrase 1 
Head: icon 
Describers: 

Figure 8. Registers produced during parse of the query "How do I 
draw an Icon?". 
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The first step in semantic processing is mapping the verb to an operator. An 

operator frame named draw does indeed exist, so the operator corresponding 

to the action "draw" is draw/2. The next step is mapping the noun phrase to a 

list of objects. The describers are empty, so the word list to be mapped is [icon]. 

A non-primitive frame named icon is found. The first primitive child located 

beneath icon is defined_icon (meaning an icon defined by the user, as 

opposed to a system icon), so "icon" maps to defined_icon. Now the test is 

performed to check if defined_icon is subsumed by an argument of draw/2. 

Draw/2's legal arguments are [device_context, gdi_drawable_object]. Neither 

of these arguments subsumes defined_icon, so this test fails. However, there 

is a functor iconJunc/3 taking an icon as one of its arguments (subsuming 

defined_icon) which maps to the object drawable_icon. Drawable_icon is 

subsumed by the second argument of draw/2 (gdi_drawable_object), so 

drawable_icon fills the second argument. Finally, the first argument, which 

was not filled by any object mentioned in the query, is filled by the first object 

in draw/2's valid argument list (device_context). The final operator produced 

after semantic processing is draw(device_context, drawable_icon). 

Example 2. As a second example, consider the query "How is a bitmap 

added to user memory?" The register structure produced by the ATN is 

shown in Figure 9. There is no operator frame named "add," so the first case 

for mapping a verb to an object fails. However, there is a map _action/2 rule 

mapping "add" to add_object/2. Now the head is appended to the end of the 

describers producing the list [user,memory,bitmap]. The first find_object/2 

case which handles lists containing multiple words attempts to 

mapuser_memory _bitmap to an object. This attempt fails. The final 

find_object/2 clause partitions the list as [user], [memory,bitmap] and tries to 



Sentence Register 
Object: 
Action: 
Type: plan 

Noun Phrase 1 
Head: 
Describers: 

Noun Phrase 1 
add 

bitmap 
[user ,memory] 

Figure 9. Registers produced during parse of the query "How is a 
bitmap added to user memory?". 
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map each of these to a list of objects. The attempt to find an object 

corresponding to [user] fails, so the attempt to call find_object/2 on 

[memory,object] is never even tried. The next partition tried is [user,memory], 

[bitmap]. The first list is mapped to the object user _memory by the second 

find_object/2 clause. The second list maps to bitmap, because there is a 

primitive frame named bitmap. So the object list produced from the word list 

[user,memory,bitmap] is [user _memory, bitmap]. Finally, these objects are 

checked for semantic validity with add_object/2. The valid arguments of 

add_object/2 are [container, memory_object]. Container subsumes 

user _memory and memory_object subsumes bitmap, so the test succeeds. 

The final operator representation of the query is add_object(user _memory, 

bitmap). 

Syntax vs. Semantics. The final clause of find_object/2, which 

attempts to find a partition of the list which can be mapped to objects, is 

necessary because the ATN represents multiple objects as single objects. In the 

example above, the noun phrase in " ... add a bitmap to user memory" was 

described in the register structure as the single entity "bitmap" modified by 

the describers "user memory." Actually, these are two separate objects, where 
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the preposition "to" relates an object to a location. The semantics processing 

had to break this back into two separate objects. However, the noun phrase in 

" ... get a handle to an application instance" is correctly represented as a single 

object "handle" modified by "application instance"; this will not need to be 

broken into separate objects during semantic processing. This inconsistency is 

caused by the fact that the ATN does not currently distinguish between 

transitive and bitransitive verbs. "Get" is transitive and thus takes only one 

object. "Add" is bitransitive, therefore the object of the preposition becomes 

the second object of the verb rather than describers of the first object. Since the 

ATN does not make these distinctions, they have to be unraveled in the 

semantics. 



CHAPTER V 

THE PLANNER 

The planner accepts an effect and produces a list of routines which 

have the desired effect. There are three major stages in the planning process: 

find a routine which produces the desired effect (the plan focus in Rist's 

terminology), satisfy any preconditions of this routine by recursively finding a 

focus routine for each precondition and satisfying the preconditions of this 

new focus routine, and satisfy any postconditions for all routines present after 

the second step. To aid in understanding the planning process, the general 

description of each processing step will be accompanied with an example of 

plan generation. Before understanding the processing, however, it is 

important to understand the plan representation. 

PLAN REPRESENTATION 

Routine Representation 

Each routine in a plan is represented with the routine/3 functor. This 

functor has the form routine( <routineJrame_name>, return(Unbound), 

<list_of _sources>). The <routine_frame_name> is the name of the frame 

which describes the library routine. Return(Unbound) is a functor 

representing the return value of the routine. The unbound Prolog variable in 

the argument of return/1 will be bound to a name during the example 

generation stage. The list of sources is a list of source predicates describing 

where each parameter of the routine should come from. The routine/3 
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functor in Figure 10 describing the Windows BeginPaint procedure illustrates 

these ideas. 

[routine(begin_paint, return(_B), 
[ code_source(window _procedure,hwnd), 
user_source(user_declareable_object,_A)]) 

Figure 10. Routine functor for BeginPaint. 

Begin_paint is the name of the frame describing the BeginPaint 

routine. The B in the return/1 functor is the unbound variable which will 

be bound during the example generation stage to the name of the variable 

which accepts BeginPaint's return value. The list of two sources describes 

how BeginPaint's two arguments will be satisfied. The 

code_source(window_procedure, hwnd) predicate expresses that the first 

argument is satisfied by the hwnd argument of the window _procedure code 

object. The user _source(user _declareable_object, _A) predicate indicates that 

the second argument is satisfied by a variable declared by the user. The 

unbound variable _A will be bound to the actual name of this user declared 

variable during the example generation stage. 

Plan Representation 

A plan consists of a list of routine/3 functors. A plan to draw an icon is 

shown in Figure 11. This plan consists of the four Windows routines 

BeginPaint, Loadlcon, Draw/con and EndPaint. Looking at an entire plan, the 

purpose of the unbound variables in the return/1 functor and the source 

predicates becomes clear. They are used to express the dataflow dependencies 

of the plan. The unbound variables for values which should be shared 

between routines are unified. For example, the first argument to Drawlcon 



[routine(begin_paint, return(_B), 
[ code_source( window _proced ure,hwnd), 
user _source( user_declareable_object,_A)]), 

routine(load_icon_resource, return(_D), 
[code _source( main_ en try ,hlns tance), 
user_source(memory _object_name,_C) ]), 

routine(draw _icon, return(_G), 
[routine_source(begin_paint,O,_B), 
user_source(x_coord,_E), user_source(y _coord,_F), 
routine_source(load_icon_resource,O ,_D)] ), 

routine( end_paint, return(_H), 
[routine_source(begin_paint,l,hwnd), 
routine_source(begin_paint,2,_A)])] 

Figure 11. Representation of plan to draw an icon. 

should come from the return value of BeginPaint. This is expressed by the 

first source predicate in draw _icon's source list and begin_paint's retu rn/1 

functor. The first source predicate for Drawlcon is 
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routine_source(begin_paint, 0, _B). This expresses that the first argument for 

Drawlcon should come from the zeroth argument of BeginPaint; the zeroth 

argument means the return value. The variable in the return/1 functor for 

BeginPaint has been unified with the variable in the routine_source/3 

predicate, as is indicated by the shared name "_B." When the example 

generator first creates a name for a return value or an argument, the pattern 

of unification in the plan ensures that this name will be shared properly 

among the elements of the plan. With this understanding of the plan 

representation, it is now time to look at the stages of plan production. 
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SEARCHING FOR THE FOCUS 

Discrimination Tree 

The first stage in the planning process is finding the routine which 

produces the desired effect. This is done by performing a depth first search of 

the routine frame hierarchy. When a frame is found which has no children 

and whose main_effect subsumes the query effect, the routine represented by 

this frame satisfies the query. The main_effect slot of the routine frames is 

used by the planner to prune branches off the search tree. Subtrees are only 

searched if the main effect at the root of the subtree subsumes the query effect. 

The routine hierarchy can be seen as a discrimination tree, in which nodes on 

the same level describe effects of the same generality, and children describe 

less general effects. 

Search Example 

For example, the query that would have produced the plan shown 

above to draw an icon is draw(device_context, drawable_icon). Assume that 

the immediate children of the root routine are draw_object, load_resource 

and get_device_context. This first level of routine frames with their effect are 

shown in the Figure 12. 

Name: draw _object 
Effect: 
draw( device_ context, 
gdi_drawable_object) 

Name: root_routine 

Name: load_resource 
Effect: 
add_object( user_memory, 
resource) 

Name: get_device_context 

Effect: 
retum(hdevice_context) 

Figure 12. First level of discrimination tree. 
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The search to satisfy the query draw(device_context, drawable_icon) 

begins with the child list of the root routine. Since the search is performed left 

to right, the first frame examined is the draw_object frame. In this case, the 

main effect of draw _object, draw(device_context, gdi_drawable_object), 

subsumes the query, since the predicates subsume each other (draw/2 

subsumes draw/2), the first arguments subsume each other (device_context 

subsumes device_context) and the second arguments subsume each other 

(gdi_drawable_object subsumes drawable_icon). The search would then 

proceed down into this subtree. Suppose, however, that draw_object was the 

rightmost frame. Then load_resource and get_device_context would be 

checked first. In each case, subsumption would fail, because add_object/2 and 

return/1 do not subsume draw/2 (this is checked by looking at the relative 

positions of these predicates in the predicate hierarchy). The subtrees below 

load_resource and get_device_context have been pruned from the search. 

Once the search descends into the draw_object hierarchy, the subsumption 

check process is repeated until a routine frame is found which has no 

children and whose effect subsumes the query. Once a routine is found, a 

routine/3 functor is built by placing the name of the located frame in the first 

argument, a return/1 functor with a new unbound variable in the second 

argument, and an empty list (which will eventually become the list of 

sources) in the third argument. For this query, the routine/3 functor 

produced is routine(draw_icon, return(_G), []). 
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SATISFYING THE PRECONDITIONS 

Satisfying Arguments, Not State 

Once the focus of the plan has been found, an attempt is made to satisfy 

the preconditions of the focus. In order to use a routine, one must have the 

proper arguments to pass to the routine. Satisfying the preconditions of the 

focus means satisfying the arguments of the focus routine. Note that this has 

nothing to do with the preconditions slot on the routine frames. The 

preconditions slot describes states that must be true in the world in order to 

use a routine. Some of these states may not be under programmer control, 

such as whether a window has received a paint message. Other states are 

under programmer control, such as the coordinate mapping mode of the 

device context. Unlike many planners, ICOP's planner does not know the 

state of the world prior to plan execution; ICOP assumes that state 

preconditions have been met. The preconditions list was included on frames 

to be used, along with the micro effect, by a natural language generator in 

producing comments, tutorials, answers ·to questions, etc. The preconditions 

could also be used to produce alternate examples. One can envision a user 

making a query, getting a commented example in reply, then requesting a 

plan showing what to do if the preconditions are not met. It would not be 

complicated to add a new predicate to the planner which processes the 

preconditions list as well as the parameter list while planning. The current 

implementation of ICOP, however, does not do this. As will be seen in the 

description of the example generator, some preconditions do effect the 

example being produced. 
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Invoking Effect Rules 

To satisfy the routine arguments, the default source list is examined. 

Any source which is not no_source is added to the source list in the routine/3 

functor with no change. When no_source is encountered, this means that no 

default is specified for the corresponding argument. The planner must find a 

way to satisfy this argument. The type of the unsatisfied argument is found in 

the parameter list. Then, effect rules are used to determine the effect of a 

routine which could satisfy these arguments. What is needed is a routine 

which returns the required type either directly as a return value or indirectly 

through an argument pointer. Since the main effect indexes the routines, the 

only way to search for a routine without a main effect would be to examine 

the parameters and return value of every routine with no children. In the 

event that a parameter was found which is a pointer to the correct type, the 

micro effect would need to be examined to determine whether this routine 

was actually altering the value of the object pointed at by the pointer. 

Altogether, this would be a highly inefficient way to proceed. One alternative 

would be to assume that the main effect of a routine which produces a value 

of type <type> is return( <type>). In building the knowledge base, however, 

this alternative constrains the selection of the main effect. Other processing 

components of ICOP may find it more convenient to have a different effect 

hilighted as the main effect. For example, the Loadlcon routine loads an icon 

into memory and returns a handle to this icon. Should it's main effect be 

return(hicon) or add_object(user _memory, icon)? The effect rule allows 

maximum flexibility in choosing the main effect by providing a mapping 

between a parameter need and the main effect of the routine which satisfies 

such a parameter. The form of an effect rule is effect( <type>, <effect>) if 
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<condition> where the <type> is some argument type, the <effect> is some 

effect, and the <condition> is a conjunction of Prolog goals. The conjunction 

of Prolog goals allows an arbitrary condition to be tested before choosing an 

effect as the proper effect to look for to satisfy an argument of type <type>. In 

the example plan, the current plan focus is draw_icon. In examining the 

default source list, two no_source predicates are found, one for the first 

argument and one for the fourth argument. The type of the first argument is 

hdevice_context (handle to a device context). The type of the fourth 

argument is hicon (handle to an icon). The effect rules relevant in these two 

cases are shown in Figure 13. 

effect(hdevice_context, return(hdevice_context)). 
effect(Resource_handle, add_ object( user_rnernory, Object)) :­

subs umes(Resource_handle, handle), 
ask(Resource_handle, get-referenced_object:Object), 
subsurnes(Object, resource). 

Figure 13. Effect rules relevant during planning for drawing an 
icon. 

The first effect rule is applicable to the hdevice_context argument. This 

rule states that if a handle to a device context is needed, the appropriate effect 

to look for is indeed the return of a handle to a device context. The second 

effect rule is applicable to the hicon argument. This rule states that if the 

required argument is a handle, and this handle references a resource, then the 

appropriate effect to look for is adding this resource to user memory. In the 

case of hicon, hicon is a type of handle, the referenced_object slot on the 

hicon frame is filled by icon, and icon is a type of resource. Therefore, the 

appropriate effect to look for is add_object(user _memory, icon). 
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Recursively Satisfying Preconditions 

Once an effect has been found by firing the effect rules, a focal routine 

for this effect is found and the preconditions of this new routine are satisfied. 

Routines are added to the plan to satisfy the preconditions of this new focus. 

As each routine is added to the plan, it becomes the focus; it's preconditions 

are recursively satisfied. This continues until no unsatisfied preconditions 

remain. All postconditions are deferred until the precondition processing 

phase has been completed. Note that this does not involve recursively calling 

the entire planner. If the entire planner were called, the focus would be 

found, preconditions satisfied, and postconditions satisfied for each routine as 

it was processed. This can create goal interaction problems in which satisfying 

the postcondition undoes the effect of a routine before the user of some data 

object produced by the routine has a chance to use it. An example of this 

problem will be described below in the section on postcondition processing. 

Determining the Da taflow 

As each argument is satisfied, the last routine in the satisfying subplan 

(this will be the routine which immediately satisfies the argument) is 

examined. A new routine source/3 functor is created with the name of the 

immediate satisfier in the first argument. The satisfier is then examined to 

determine which of its arguments produces the desired object. If its return 

type is the same type as the argument, it is assumed that the return value is 

the needed value; the second argument of routine_source/3 is set to 0 and the 

third is an uninstantiated variable which is unified with the return variable 

of the satisfier. If the return value is not the same type as the argument, each 

of the satisfier's arguments is examined in turn. The first one which matches 

the desired type is assumed to be the source. The last argument of the 
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matching source predicate is unified with the third argument of the 

routine_source/3 predicate. The second argument of routine_source/3 is set 

to the number of the satisfying argument. In this way, the dataflow through 

the plan is expressed. 

Precondition Processing Example 

In the example plan, the current focus is Draw/con. The first no_source 

source encountered is for the hdevice_context argument (argument one). The 

effect rules are fired and the corresponding effect found is 

return(hdevice_context). The search through the routine tree retrieves 

BeginPaint. Its source list is searched and no no_source sources are found. 

Since BeginPaint is the last (and only) routine in the subplan which satisfies 

hdevice_context, it is examined to determine how it produces an 

hdevice_context. Its return value has this type; the return value is unified 

with the third argument of routine_source/3 and the second argument is set 

to 0 (return value is source). The second no_source source found in Draw/con 

is for the fourth argument hicon. The effect rules are fired and the 

corresponding effect found is add_object(user _memory, icon). The routine 

tree is searched and the routine Loadlcon is found. It's source list contains no 

no_source sources. Again the satisfying subplan consists of one routine. It is 

found that Load/con returns an hicon; the routine_source/3 for the fourth 

argument of Drawlcon is set accordingly. There are no more unsatisfied 

preconditions. The plan at this stage is show in Figure 14. 



[routine(begin_paint, return(_B), 
[ code_source( window _procedure ,h wnd), 
user_source(user_declareable_object,_A)]), 

routine(load_icon_resource, return(_D), 
[ code_source(main_entry ,hlnstance ), 
user_source(memory_object_name,_C)]), 

routine( draw _icon, return(_G), 
[routine _source (be gin_ paint, 0, _ B), 
user_source(x_coord,_E), user_source(y _coord,_F), 
rou tine_source(load_icon_resource ,0 ,_D)])] 

Fi~ure 14. Plan to draw an icon after precondition processing. 

POSTCONDITION PROCESSING 

Concern Rules 

The last stage of plan processing satisfies any postconditions. 
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Postconditions "clean up" the plan. Determining the postconditions is done 

by firing concern rules. Concerns have the form 

concern(<routine_frame_name>, <effect>) if <condition> where the 

<condition> is a conjunction of Prolog goals. A concern is a way of saying that 

a certain effect should always occur at the end of a plan in which a certain 

routine occurs. A routine satisfying the effect is found and it is placed at the 

end of the plan. No attempt is made to satisfy the preconditions of a routine 

added because of a concern. It is assumed that such a routine will have default 

sources for all of it's arguments. After a routine is found, an attempt is made 

to bind any routine_source/3 sources. Cleanup routines may refer to specific 

routines and arguments which they use to satisfy their own arguments. The 

plan prior to the concern is searched for any such explicitly mentioned 
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routines, and the appropriate variables are unified. Every routine in the plan 

is given the chance to fire a concern. 

Postcondition Processing Example 

In the example, the only relevant concern is concern(begin_paint, 

end_paint). Note that the concern rule is returning a routine frame name 

rather than an effect. If the search system of the planner is given a routine 

name rather than an effect, it immediately returns with the routine as the 

plan. In other words, the plan for a routine is the routine itself. This concern 

expresses that if a plan contains begin_paint, then end_paint should be placed 

on the end of the plan. End_paint's default source list contains two 

routine_source/3 sources: routine_source(begin_paint, 1, _A), and 

routine_source(begin_paint, 2, _B). Begin_paint is found in the plan, and _A 

and _B are unified with the appropriate variables in Begin_paint's source list. 

No other concerns match for the plan. The final plan is shown in Figure 11 

on page 72. 

A voiding Plan Interactions 

In the section describing precondition processing, it was mentioned 

that postcondition processing should be deferred until all preconditions have 

been satisfied, rather than recursively calling the entire planner and thus 

satisfying postconditions as each new routine is added. The draw~icon 

example shows what happens if postconditions are not deferred. If 

begin_paint's postconditions were processed immediately after begin_paint 

was added to the plan, end_paint would be added between begin_paint and 

load_icon_resource. This would invalidate the device context handle before 
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draw_icon got a chance to use it. Deferring postconditions until the end of the 

plan are an attempt to avoid this type of negative interaction. 



CHAPTER VI 

EXAMPLE GENERATOR 

The example generator accepts a plan produced by the planning 

component and produces example code illustrating the plan. For many 

reusable code libraries, the example code could be as simple as a linear 

ordering of the plan routines preceded by the appropriate variable 

declarations. However, in a message based windowing system such as 

Windows (the Macintosh toolbox and X windows have this same 

architecture), various pieces of user code are called asynchronously by the 

operating system in response to system activity such as the mouse being 

clicked or a window being opened. This means that the routines in the p Ian 

may be scattered nonlocally in the example. In order to accomplish this, the 

example generator uses a grammar of Windows examples to build up a syntax 

tree for the example. As each routine in the plan is encountered, the syntax 

tree is modified according to rules which take into account the current 

routine being added to the example and the current structure of the example. 

There are three steps involved in adding each routine to the example: placing 

the routine name in the appropriate location in the example, adding the 

routine parameters (and making the appropriate variable declarations), and 

adding the return value (and its variable declaration). Once the syntax tree for 

the example has been built, the actual text of the example is written by 

walking along the example tree. 
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UNIFICATION GRAMMAR 

Functional Description 

The grammar for Windows examples is expressed as a unification 

grammar [Mellish, 1990]. In unification grammar, a phrase is expressed by a 

functional description. A functional description states the attributes and 

values of a phrase. For example, the functional description for the phrase "it 

hit" might be expressed as shown in Figure 15 [Mellish, 1990]. 

[s, 
subj=[person_number=(3+sing), text=[root=it]], 
pred=[first=[ 

main verb= [root= hit], 
compls=[ 

first=[np] ] ] ] ] 

Figure 15. Example functional description for phrase "it hit". 

The functional description in Figure 15 says that the phrase "it hit" is a 

sentence with the third person singular subject "it" and a predicate consisting 

of the main verb "hit" and a noun phrase. 

Any expression of the form X=Y in the functional description indicates 

that attribute X takes the value Y, where Y is either itself a functional 

description or an atom. Single atoms (such as "s") indicate additional 

properties of the phrase. Whether a functional description is legal or not 

depends on the grammar. Given a partial functional description for a phrase, 

such as the one above, it is possible in general to match this description 

against the grammar in order to test grammaticallity and fill in additional 

attributes which can be computed from those explicitly given. It is also 

possible to match two functional descriptions to test whether they 



85 

consistently describe different attributes of the the same phrase. In the process 

of matching these descriptions, attributes missing in one description but 

present in the other will be filled. It is this property of successively matching 

consistent functional descriptions to build an ever more complex phrase 

which is used in the example generator to build up a functional description of 

the entire example. 

Grammar Specification 

A specification of a unification grammar generally consists of three 

parts: descriptions of the categories of phrases and the attributes of these 

phrases, sharing rules between attributes which constrain attributes of some 

phrases to match attributes of other phrases, and finally computed properties 

which serve as abbreviations for combinations of attributes. The grammar of 

Windows examples only makes use of the first part of this grammar 

specification. The example grammar, with English explanations of each 

grammar specification, appears in Figures 16 and 17. The symbols on the left 

hand side of the grammar rules are the legal phrase types. The right hand 

sides indicate the attributes of a phrase type. The "**" symbol should be read 

as "and"; the list of properties on the right hand side are all of the properties 

of a given phrase. A property may be a simple atom or may be followed by a 

":" and a phrase type. If a property is a simple atom, this property can be filled 

by anything; this is a primitive property. Properties with phrase types can only 

be filled with phrases of that type. The "list" phrases in Figure 17 always have 

two properties: first and rest. First will be filled by some phrase type (or may 

be primitive); rest must be filled by a list of the same type. A list phrase is 

composed of an arbitrary number of some other type of phrase. 



fu.!kj_. program <--> forward:forward_list ** global:decl_list ** 
main:winmain ** proc:winproc 

A program consists of some number of forward declarations, some number of 
global variable declarations, a main procedure and a window procedure. 

R.ulLJ.decl <--> type ** name 

A variable declaration consists of a type and a variable name. 

RY.ILJ. winmain <--> var:decl_list ** create:create_window ** 
routines:routine_list **message 

A main procedure consists of some number of variable declarations, a piece of 
code which creates a window, some number of routines, and a message loop. 

R!J.lti. create_ window <--> register** create ** show 

The creation of a window consists of window registration, window creation and 
setting window visibility. 

E..y,U. routine <--> return ** name ** parameters:param_list 

A routine consists of a return variable, a routine name, and a parameter list. 

.B..llif__Q. winproc <--> var:decl_list ** case:case_list 

A window procedure consists of some number of variable declarations and some 
number of message cases. 

RY..lf_Z. case <--> name ** routines:routine_list 

A message case consists of a message name and some number of routines. 

Figure 16. Unification grammar rules for Windows examples 
(excluding "list" rules). 

forward_list <--> first ** rest:forward_list 
decl_list <--> first:decl ** rest:decl_list 
case_list <--> first:case ** rest:case_list 
routine_list <--> first:routine** rest:routine_list 
param_list <--> first ** rest:param_list 

Fi~ure 17. Unification grammar "list" rules. 
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Prolog Implementation 

In Prolog, each of the phrase types is represented by a functor with the 

same number of arguments as the phrase has attributes. For example, a 

program phrase with no attributes specified is represented by program(_A, 

_B, _C, _D). A program with nothing else specified except that it has some 

window procedure would look like program(_A, _B, _C, winproc(_D, _E)). 

The primary operation performed on functional descriptions is matching. 

The predicate to perform matching (called matches/2) was implement by 

Chris Mellish [1990] and is used with minor modifications in this thesis. 

Matching is used to build up complex phrases. For example, the call to 

matches/2 in Figure 18 produces a phrase in which the window procedure 

has a variable declaration of type HDC and a case for the W M_P A INT 

message. 

I ?- X matches [winproc=[var=+[type='HDC'], 
case=+[name='WM_P AINT']]]. 

X = program(_G,_F,_E,winproc(decl_list(decl('HDC',_D),_C), 
case_list(case('WM_PAINT',_B),_A))) ? 

yes 
I ?-

Fi~ure 18. Building WM_PAINT case with matches/2. 

The variable on the left hand side of matches/2 is unified with the 

minimally instantiated phrase structure which satisfies the functional 

description on the right hand side. If one then wanted to give the name hdc 

to the variable of type HDC and add the routine Loadlcon to the WM_PAINT 

case, this X can be unified with an additional functional description. This is 

shown in Figure 19. 



I ?- X matches [winproc=[var=+[type='HOC'], 
case=+[name='WM_P AINT']]], 
X matches (winproc=[var=+[type='HDC', name=hdc], 
case=+ [name='WM_P AINT', routine=+[name='Loadlcon']]]]. 

X = program(_H,_ G,_F, winproc( decl_list( decl('HDC' ,hdc ),_E), 
case_list( case('WM_P AINT', 
routine_list(routine(_D,'Loadlcon',_C),_B)),_A))) ? 

yes 
I ?-

Figure 19. Adding a routine to the WM_PAINT case with 
matches/2. 
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The two functional descriptions above make use of an additional 

operator "=+". This operator is used to add structures to a list of structures. 

The functional description on the right hand side of the "=+" is unified with 

the first phrase in the list which satisfies the description. If no existing phrase 

in the list satisfies a description, a new phrase which satisfies the description 

is added to the end of the list. The example in Figure 20 uses this operator to 

add a new case to the list of cases in the window procedure. 

I ?- X matches [winproc=[var=+[type='HOC'], 
case=+[name='WM_PAINT']]], 
X matches [winproc=[case=+[name='WM_CREATE']]]. 

X = program(_H,_G,_F,winproc(decl_list(decl('HDC',_E),_D), 
case_list( case('WM_P AINT',_C), 
case_list(case('WM_CREATE',_B),_A)))) ? 

yes 
I ?-

Figure 20. Adding a new case with matches/2. 
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The functional description can be thought of as specifying a path 

through a syntax tree. Thus one can use functional descriptions to pinpoint 

specific places on the syntax tree where a new structure should be added. Of 

course, if the path specified by the functional description is illegal, the 

matches/2 predicate fails. This occurs in Figure 21 in the attempt to declare a 

global variable in the window procedure. 

I ?- X matches [winproc=[global=+[name=foo, type='FOO']]]. 

no 
I ?-

Figure 21. Matches/2 failing due to specifying an illegal syntax 
tree. 

In the example generator, the matches/2 predicate is used to build a 

syntax tree for the example. 

BUILDING THE EXAMPLE 

Adding a Routine 

The example generator calls transform_example/2 on each routine in 

the plan to build the example tree. Transform_example/2 takes a routine/3 

functor and an example tree. Since the example tree is modified by unifying 

some uninstantiated variable in the tree with a structure, there is no need to 

include a third parameter to return the transformed tree. The right hand side 

of each transform_example/2 clause consists of some number of tests of the 

properties of the routine and the structure of the current example tree and 

some calls to matches/2 which transform the tree. As new cases involving 



routines and current tree structures are discovered, they can be handled by 

adding new clauses to the transform_example/2 predicate. 

Filling the Parameters 
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Fill_parameters/5 is called by transform_example/2 to fill in the 

parameters of a routine. Filling the parameters can require declaring a local 

variable or even copying a value into a global variable in addition to placing a 

variable name in the parameter list of a routine. The five arguments to 

fill_parameters/5 are the list of parameter types, the list of sources, a routine 

phrase which has been matched with the routine added by 

transform_example/2, a procedure phrase which has been matched with 

winproc or winmain, whichever was modified by transform_example/2, and 

the entire current example tree. Since the example contains the routine and 

procedure (winproc or winmain) being modified, it would appear there is no 

reason to pass the routine and procedure separately. They are passed 

separately to tell fill_parameters/5 exactly which routine to fill the 

parameters of, and which procedure to add any variable declarations to. 

Without some indication of the procedure begin modified, fill_parameters/5 

would have to look in both winmain and winproc for the routine to modify. 

If both procedures happened to contain the routine in their routine list, 

fill_parameters/5 would have to do more work to determine which should 

be modified. With the routine and procedure phrases, fill_parameters/5 can 

refer directly to the appropriate structures with no search; since the phrases 

have been matched with the current example tree, any changes to these 

phrases will automatically occur in the example tree through the unified 

uninstantiated variables in the local phrases and example tree. Some clauses 



of fill_parameters/5 make changes to other parts of the example besides the 

procedure in which the routine occurs and the parameter list of the current 

routine. For this reason, the entire example tree is passed as well. Like 

transform_example/2, new clauses can be added to fill_parameters/5 to 

handle new combinations of parameter types and sources. Each clause of 

fill_parameters/5 recursively calls itself on the rest of the parameter and 

source list. 
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As each parameter is processed, the uninstantiated variable in the 

corresponding source predicate is unified with the name of the variable added 

to the example. Because of the pattern of unification in the plan expressing 

the dataflow, this variable name will propagate to the appropriate consumers 

of the data object. For every combination of parameter type and source, there 

are usually two fill_parameters/5 clauses; one for when the parameter being 

processed involves adding a new variable to the example, and another when 

the name of the variable has already been instantiated due to a variable being 

added earlier during example processing. 

Filling the return value is quite simple. Since it is guaranteed that 

there is no previous source for the return, all that has to be done is making a 

declaration of the appropriate type, matching the new variable with the 

return attribute of the routine phrase in the syntax tree, and unifying the new 

variable with the return/1 functor in the appropriate routine/3 functor of the 

plan (to ensure proper dataflow). 
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BUILDING AN EXAMPLE FOR THE ORA W ICON PLAN 

Now that the general stages of building an example have been seen, the 

details of this process are examined by stepping through the processing of the 

plan to draw an icon. The first routine processed is shown in Figure 22. 

routine(begin_paint, return(_B), 
[code_source(window _procedure,hwnd), 
user_source(user_declareable_object,_A)]). 

Fi)!ure 22. Routine/3 functor for BeginPaint. 

One of the transform_example/2 clauses looks at the preconditions of a 

routine and checks if there is the precondition that the window must have 

received a message. This condition is satisfied for the begin_paint routine. 

The routine BeginPaint is placed in the WM_PAINT case of the window 

procedure. Fill_parameters/5 is called to add the parameters for BeginPaint to 

the example. One of the fill_parameters/5 clauses includes the condition that 

the source for the current parameter is an argument of the window 

procedure. This is true for the first parameter of BeginPaint. The atom hwnd 

is added to BeginPaint's parameter list phrase. Another fill_parameters/5 

clause contains the condition that the source of a parameter is a user declared 

variable and that the type of the parameter is a pointer to some type. As for 

any fill_parameters/5 condition which involves a source predicate with a 

potentially uninstantiated variable, there are two paired clauses, one where 

the variable is instantiated and one where it is not. In this case, the variable is 

not instantiated. A variable name is created and the declaration for this new 

variable is added to the declaration list of the window procedure. Since the 

type of the declared variable, PAINTSTRUCT, is in all capitals, the variable 
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name created is paintstruct (all lower case). If this was the second 

PAINTSTRUCT variable declared in the example, the new variable would 

take the name paintstructl and so on. Since BeginPaint's second parameter is 

actually a pointer to a PAINTSTRUCT (indicated by the functor 

pointer June( <frame_name_of _type>) in the parameters slot of the 

begin_paint frame), the string &paintstruct is added to the parameter list of 

BeginPaint. The last step in filling this parameter is unifying the variable in 

the user _source/2 predicate with the name paintstruct. Incidentally, ICOP can 

express the difference between a parameter in which the pointer should point 

to a declared piece of memory and a pointer which should not point to a 

declared piece of memory. Suppose that BeginPaint allocates the space for the 

PAINTSTRUCT. Then one should pass an unallocated pointer. Both versions 

of Begin Paint would have pointer Junc(paint_structure) in their parameter 

slot. But in the default source slot, the version which needs an allocated 

pointer (as is the case here) would have the source predicate 

user _source( user _declareable_object, _A), while the other version of 

BeginPaint would have the source user _source(user _pointer, _A). 

Back in transform_example/2, the return value is filled by creating the 

name hdc (the type of the return value of BeginPaint is HDC), declaring the 

variable in the window procedure, adding the name to the routine phrase, 

and unifying hdc with the uninstantiated variable in the return/1 functor. 

The next routine processed is shown in Figure 23. The 

transform_example/2 clause applying in this instance contains the condition 

that the main effect of a routine is adding an object into user memory. This 

clause adds the routine to the WM_CREATE case of the window procedure. 

This captures the rule that if the effect of a routine is to add something to 



routine(load_icon_resource, return(_D), 
[ code_source(main_entry,hlnstance ), 
user_source(memory _object_name,_ C)] ). 

Figure 23. Routine/3 functor for Load/con. 
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memory, then this should occur only once at some point before any possible 

use of the object. The WM_CREATE message is sent to a window when it is 

first created. In this case, the Load/con routine is added to the routine list of 

the WM_CREATE case. Now the parameters are added. The 

fill_parameters/5 clause applying for the first parameter is the one which 

contains the condition that the source be a parameter of the program's main 

entry routine (WinMain) and that the use of this parameter takes place in the 

window procedure. In this case, a global variable is declared which holds a 

copy of the hlnstance parameter, an assignment is added to the list of routines 

in the main procedure (functional description [name='=', 

param=+'hinstance', return='hlnstance_copy']), and the global variable is 

added to the list of parameters of Loadlcon. The fill_parameters/5 clause 

applying for the second parameter contains the condition that the source be 

user _source(memory_object_name, _A). The predicate filler 

memory_object_name indicates that the argument is satisfied by a string. 

This source is placed in the default source slot of routines which accept a 

string naming the object on which they operate. In this case, the string names 

some icon resource in an executable file. Fill_parameters/5 creates the name 

name, places this in Loadlcon's parameter list, and unifies this string with the 

variable in the user _source predicate. Back in transform_example/2, a return 

variable name is created (hicon), the variable is added to the declaration list 



95 

(static HICON hicon;), matched with the return attribute of the routine 

phrase, and unified with the variable in the return/1 functor. The only 

interesting aspect of this processing is the "static" declaration. This particular 

clause of transform_example/2 declares the return value static. This captures 

the rule that if an object is loaded at window creation, the handle to this 

object must be static so that future invocations of the window procedure 

(called by the operating system in response to events) will still have a valid 

handle. 

The third routine processed is shown in Figure 24. 

routine( draw _icon, return(_G), 
[ rou tine_source(begin_paint,0 ,_ B), 
user_source(x_coord,_E), 
user_source(y _coord,_F), 
rou tine_source(load_icon_resource,O ,_D)] ). 

Figure 24. Routine/3 functor for Drawlcon. 

The transform_example/2 clause applying here contains the condition that 

the main effect of the routine is drawing some drawable object on a display 

context and that the example already contains a WM_PAINT case. This clause 

expresses the rule that if a WM_PAINT case is already present (perhaps 

because of an earlier routine with a paint message received precondition, as 

in this example), then any routine which draws should also be added to the 

WM_PAINT case. In this case, Drawlcon is added to the WM_PAINT case. 

Now the parameters for Drawlcon are added. For the first parameter, the 

fill_parameters/5 clause which applies contains the condition that the source 

be a routine and that the variable in the routine_source predicate be bound. 

The variable name is added to the parameter list. This is the same variable 
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name which accepts the return value from BeginPaint. The next two 

parameters are handled by a clause which tests whether the source is a 

coordinate value supplied by the user. An integer constant is added to the 

parameter list in each case. The final parameter is handled the same as the 

first one. The variable name which accepts the return value for Load/con is 

added to the parameter list. The return value for Drawlcon is a boolean which 

indicates whether the icon was drawn successfully or not. A boolean 

declaration is added to the declaration list of the window procedure, the 

newly declared variable is matched to the return attribute of the routine 

phrase, and the variable name is unified with the variable in the return/1 

functor. 

The final routine processed is shown in Figure 25. 

routine( end_paint, return(_H), 
[routine_source(begin_paint,l,_A), 
rou tine_source(begin_paint,2,_B)] ). 

Figure 25. Routine/3 functor for EndPaint. 

The preconditions slot on the end_paint frame contains the precondition that 

a paint message has been received. End_paint is added to the example by the 

same transform_example/2 clause as begin_paint, resulting in EndPaint 

being added to the end of the WM_PAINT case. Both parameters of EndPaint 

are supplied by a routine_source/3 source. Since the third argument of both 

sources contains a value (an atom in one case and an instantiated variable in 

the other), they are both handled by the fill_parameters/5 clause which adds a 

preexisting value to a parameter list. EndPaint does not return a value (as 

indicated by a return type of void in the return_normal slot of the end_paint 
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frame), so nothing is matched with the return attribute of the routine phrase. 

The example has now been built. The final example tree is shown in Figure 

26. 

program(_P, 
decl_list(decl('HANDLE',hlnstance_copy),_0), 
main{_N,_M, 

rou tine_list( rou tine(hlnstance_copy ,=, 
param_list(hlnstance,_L)),_K),_J), 

winproc( 
decl_list(decl('P AINTSTRUCT' ,paintstruct), 
decl_list(decl('HDC',hdc), 
decl_list(decl('static HICON',hicon), 
decl_list( decl('BOOL' ,bool),_I))) ), 
case_list( case('WM_P AINT', 

routine_list(routine(hdc,'BeginPaint', 
param_list(hwnd, 
param_list(' &paintstruct' ,_H)) ), 

routine_list(routine(bool,'Drawlcon', 
param_list(hdc,param_list(lO, 
param_list(lS, 
param_list(hicon,_G))) ), 

routine_list(routine(_F,'EndPaint', 
param_lis t(hwnd, 
param_list( &paintstruct,_E))) ,_D))) ), 

case_list(case('WM_CREATE', 
routine_list(routine(hicon,'Loadlcon', 
param_list(hlnstance_copy, 
param_list('"name"' ,_C)) ),_B)) ,_A)))) 

Figure 26. Syntax tree for Draw/con example. 

Write_tree/1 walks through this tree in a depth-first manner writing 

out the example program. Any uninstantiated variables in the tree are 

skipped. The output of write_tree/1, which is the output of the example 

generator, is show in Figure 27. 



HANDLE hlnstance_copy; 

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevlnstance 
LPSTR lpszCmdLine, int nCmdShow) 

hlnstance_copy = hlnstance; 

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam, 
LONG IParam) 

P AINTSTRUCT paintstruct; 
HOC hdc; 
static HICON hicon; 
BOOL bool; 

switch (message) 
{ 

WM_PAINT: 
hdc = BeginPaint (hwnd, &paintstruct); 
bool = Drawlcon (hdc, 10, 15, hicon); 
EndPaint (hwnd, &paintstruct); 
retum(O); 

WM_CREATE: 
hicon = Loadlcon (hlnstance_copy, "name"); 
retum(O); 

return DefWindowProc( hwnd, message, wParam, IParam); 

Figure 27. Output of example generator for Drawlcon plan. 
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CHAPTER VII 

CONCLUSIONS 

ICOP serves as a proof of concept model for a system which facilitates 

software reuse by providing support for code location and comprehension. 

Chapter II describes a psychological model of programming. Three aspects of 

this model are most important to consider in building a system to support 

location and comprehension. First, programmers think in terms of domain 

goals, moving from a domain space to an application (artifact) space. Second, 

plans are used as an internal representation scheme to store pieces of artifact 

which accomplish goals. Finally, examples are an effective means of 

communicating information to programmers. These three cognitive 

considerations lead to the design of ICOP. The system uses a limited natural 

language interface to accept queries expressed directly in the domain 

language, not forcing the programmer to translate their request into the 

language of the library. The planner then constructs a plan to satisfy the 

desired effect. This plan includes multiple components from the library, 

conveying both plan level knowledge (patterns of use) as well as detailed 

knowledge regarding the use of particular components (eg. parameters and 

return values). Finally, the plan is illustrated with example code, taking 

advantage of the programmer's ability to successfully extract information 

from an example. 

ICOP builds on ideas found in other cognitively motivated systems. It 

uses the concept of plans, which is found in The Programmer's Apprentice 
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[Rich and Waters, 1989, 1990] and Bridge [Bonar and Liffick, 1991]. However, 

rather than having a plan base of explicitly stored plans, ICOP builds plans 

from the atomic components represented in its knowledge base. The example 

systems developed by Neal [1990], Rosson and Carroll [in press] and Fischer, 

Henninger and Redmiles [1991] all use examples to facilitate both component 

level and plan level comprehension. ICOP also uses examples to facilitate 

comprehension, but rather than storing these examples explicitly in an 

example base, the examples are constructed dynamically using knowledge 

about the general form that examples should take. The automatic 

construction of plans and examples frees the knowledge engineer from 

having to explicitly represent examples for all possible user queries. ICOP 

allows the user to query by effect as suggested in the Cognitive Browser 

project [Green et al, in press]. Rather than using a formal effect language, 

however, the user can communicate the desired effect in the natural language 

of the domain. 

ICOP's design is intended to be extendible to other library domains. 

This is facilitated by the explicit representation of predicates and by the deep 

ontology. By representing predicates and functors explicitly in the knowledge 

base, the limited natural language interface and the planner become 

independent of the library domain. All references to domain specific predicate 

and functors are made by exploring the predicates and functors in the 

knowledge base rather than through explicit use in the procedural code. The 

explanation generator is domain dependent, since the structure of examples 

in a given domain does depend upon the domain. The deep ontology used in 

the know ledge base is intended to make transfers to other domains easier in 

two ways. First, some aspects of the ontology should be directly reusable. For 



101 

example, the concept of containers such as memory and files and objects 

which take up space in these containers should be useful in many library 

domains. Second, the Windows specific pieces of the ontology should serve as 

an example for building deep ontologies of other domains. 

... 



CHAPTER VIII 

FUTURE WORK 

There are many research directions suggested by ICOP. The areas for 

future research work can be divided into four categories: empirical validation, 

extending the current functionality, designing new functionality, and 

exploring applicability of ICOP's design to other domains. 

EMPIRICAL VALIDATION 

Since the design of ICOP was strongly motivated by cognitive 

considerations of the programming process, it is essential that ICOP be 

empirically validated. The programmer populations of interest are 

programmers who do not have experience in Windows but have written 

applications for windowing systems with a similar architecture (eg, 

Macintosh, X Windows), intermediate to expert programmers who have not 

written programs for a windowing environment but have used a windowing 

environment at some point (so they know what a window and a mouse is), 

and programmers with experience in Windows development. The initial set 

of experiments would divide each population into two groups, one of which 

has access to printed material and the standard Windows on-line help, and 

the other which has access to this plus ICOP. Each group is given a small 

Windows program to write and asked to talk aloud while writing it. In the 

talk aloud protocols, problems in program development caused by 

unresolved information needs are of particular interest. The impact of ICOP 
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on the program development process will be analyzed. The protocols can also 

suggest future functionality that !COP should have (new kinds of queries, 

different ways of phrasing existing queries, etc.). 

ENHANCING EXISTING FUNCTIONALITY 

Expanding the Know ledge Base 

The first area of existing functionality that must be expanded is the 

knowledge base. It currently represents a small subset of the Windows library. 

As new library routines are represented, it will be interesting to watch what 

happens to the size of the effect language (predicates). The ideal behavior is 

that the effect language grows at a much slower rate than the number of new 

routines. What has been seen so far is that adding a new routine can 

sometimes require additions to the operators, states, functors, and object 

hierarchy, with these additions then supporting many new routines. 

Generating Code Comments 

The micro effect slot on routine frames was included to support the 

generation of natural language describing the routine. The simplest way to 

incorporate natural language describing routines into the existing design is to 

generate comments for the example code. 

Representing Plans 

Currently, ICOP does not represent plans in its ontology, only 

individual routines. The knowledge representation should be extended to 

represent plans as well. Such plans could be used to hilight standard or 

preferred ways of achieving effects. Currently, all plans that ICOP's planner 

can construct for achieving an effect are considered of equal desirability. Plans 
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could also be used as an alternate way to represent postconditions. The 

postcondition processing in the planner generates "clean up" code for the 

plan. For example, if the routine BeginPaint appears in a plan, then EndPaint 

should appear at the end of the plan. An alternate way of representing this 

dependency is with a noncontiguous plan that states that drawing is 

accomplished by calling BeginPaint, some number of routines, and EndPaint. 

This has the advantage that the dependency between BeginPaint and 

EndPaint is represented locally (in one frame) rather than implicitly in the 

planner. Plan languages such as the Programmer's Apprentice plan calculus 

[Rich & Waters, 1989, 1990] should be explored. 

DESIGNING NEW FUNCTIONALITY 

New functionality of interest includes improving the interface, 

supporting transfer across libraries, supporting programmer modifiability of 

the knowledge base, and providing intelligent tutoring. 

Improving the Interface 

Coupling ICOP with a Development Environment. The current 

interface for ICOP consists of a natural language interface with queries typed 

from within Prolog. ICOP should be more strongly coupled with a 

programming environment so that working examples can be directly copied 

from ICOP to an editor window. In addition, such strong coupling could 

support context sensitive queries, in which clicking on a routine or data object 

within the editor generates an example using the routine or object, thus 

providing an alternative query mechanism to the natural language interface. 



105 

Supporting Natural Language Queries. Additional interface elements 

should support the natural language interface. A thesaurus browser, which 

lets the user explore what types of terms and concepts are known by the 

knowledge base, would facilitate querying. Such a browser was found useful 

in the medical information retrieval system Coach [Kingsland, Harbourt, 

Syed, Schuyler, 1993]. 

Supportin~ Multiple Aspects of Queries. Finally, the interface should 

support exploring different aspects of a query. After the query "How do I draw 

an icon?" produces the example, the user might want to explore how an icon 

is represented in memory, the structure of the PAINTSTRUCT data object, or 

a plan which tests whether Loadlcon succeeded. One way of handling this 

would be to provide a menu after every query which contains common 

queries for additional information. A more integrated way of handling this is 

to produce a small hypertext in response to each query. The example for 

drawing an icon would have buttons. for common additional queries (such as 

error testing) as well as links from every word in the example which denotes 

an object in the knowledge base to a screen describing that object. ICOP would 

become an intelligent documentation system. Instead of writing 

documentation for a library in the traditional way, a knowledge base rich 

enough to support natural language generation would be written for the 

library. This has the advantage over English prose that the knowledge base 

can be mechanically checked for semantic consistency. When the user types a 

query, a small custom hypertext answering the query is constructed by the 

system. Such a system provides intelligent access to information, alleviate the 

hypertext navigation problem. When the library is changed, those frames 

representing the changed library objects are updated. New answers to queries 



will now be automatically produced; the technical writers (who are now 

knowledge engineers) do not have to worry about explicitly updating 

examples and cross references in a text. 

Programmer Modification of Knowledge Base 
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Ideally, ICOP should support reuse for custom libraries used internally 

by a company as well as large libraries sold commercially. Since libraries used 

internally may be constantly changing and not be budgeted for knowledge 

engineers to maintain a knowledge base, it is important that the 

programmers themselves be able to make changes to the knowledge base 

when they change the library. Issues involving interfaces which support 

knowledge updates by people who are not professional knowledge engineers 

should be explored. 

Intelligent Tutoring System 

When a library for an entirely new domain is first used, the 

programmer will not know the domain concepts well enough to articulate 

queries. In such a case, an intelligent tutoring system (ITS) can assist the 

programmer in gaining the new domain knowledge. An ITS must be able to 

to direct the presentation of knowledge when the user requests general 

information (such as "Tell me about programming in Windows"). An 

attempt has been made to make ICOP's knowledge base general enough to 

support the reasoning processes of an ITS. 
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SUPPORTING DIFFERENT DOMAINS 

Libraries for New Domains 

ICOP's knowledge base currently supports a subset of the Windows 

APL A windowing library was chosen because the rich intertwining between 

components of such a library makes for an interesting reuse problem. There 

are other domains, however, which also have complex libraries that must be 

reused. Since the planner and semantic processor only refer to domain 

concepts via the explicitly defined predicates and objects in the knowledge 

base, the knowledge base is the main component which would have to be 

changed to support a different domain. How easy will it be to develop a 

knowledge base for ICOP for another domain? Some parts of the ontology 

should be reusable. For example, the concepts of containers (memory), objects 

which can be placed in containers (various types of variables), and objects 

which indirectly refer to another object (handles), should be useful in many 

domains. 

Object-Oriented Libraries 

ICOP can be extended to object-oriented libraries as well. Methods 

would be represented in the same manner as routines, with a new kind of 

frame representing classes. This frame would have slots with lists of method 

frames and member frames. The really new aspect would be handling queries 

where there is currently no object with a method satisfying the query 

precisely. Now a subclassing algorithm would have to determine which class 

is closest to producing the desired effect. The plan would then consist of 

defining a subclass of this class and changing one or more of the inherited 



methods. A procedural library does not have this concept of plans which 

involve modifying some library object. 
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APPENDIX 

The appendix contains sample frames from the knowledge base. 

Functor mapping two integers and an icon to drawable_icon 

frame(name:icon_func, 
parent:arity _3_functor, 
children:[], 
slots:[arity:facets([value, type]), 

arg_constraint:facets([ value: [integer, integer, icon], type, 
number]), 

return:facets([ value:drawable_icon, type])]). 

Frame representing action (predicate) of drawing on a device context 

frame(name:draw, 
parent:arity _2_operator, 
children:[], 
slots: [ arity:facets([ value,type ]), 

arg_constraint:facets([ value: [device_ context, gdi_drawable_object], 
type, number])]). 

Frame representing a memory container 

frame( name: memory, 
parent:container, 
children: [user _memory, 

system_memory], 
slots:[]). 



Frame representing a referenceable object (a type of memory object) 

frame(name:referenceable_object, 
parent: memory _object, 
children: [gdi_object, 

region, 
resource, 
window, 
a pplica tion_instance], 

slots:[]). 

Frame representing a handle (a type of declarable object) 

frame( name:handle, 
parent:windows_type, 
children: [hbi tma p, 

hcursor, 
hdevice_context, 
hi con, 
hinst, 
hmenu, 
hwindow, 
pointer], 

slots: [library _name:facets([ value:'HANDLE', type]), 
referenced_ object:fa cets( [val ue:ref erenceab le_object, 

type:referenceable_object])]). 
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Frame representing a device context (a type of state object) 

frarne(narne:device_context, 
parent:state_object, 
children:[], 
slots: [owner: facets([ value: window, type]), 

attributes:facets([ value: [ 
attrib(context_mapping_mode, mm_text, mapping_mode), 
attrib(window _origin, point_func(O, 0), point), 
attrib(viewport_origin, point_func(O, 0), point), 
attrib(window _extents, point_func(l, 1), point), 
attrib(viewport_extents, point_func(l, 1), point), 
attrib( context_pen, pen_func(black_pen_const), pen), 
attrib(context_brush, brush_func(white_brush_const), brush), 
attrib( context_font, font_func(system_font_const), font), 
attrib(context_bitmap, no_val, bitmap), 
attrib( current_pen_pos, point_func(O, 0), point), 
a ttrib( context_ba ckground_mode, opaque, integer), 
attrib(background_color, rgb_func(255, 255, 255), 

color_specification), 
attrib(text_color, rgb_func(O, 0, 0), color_specification), 
attrib(context_drawing_mode, r2_copypen, integer), 
attrib(context_stretching_mode, black_on_white, integer), 
attrib( context_pol ygon_fill_mode, alternate, integer), 
attrib(context_intercharacter_spacing, int_func(O), integer), 
a ttrib (brush_ origin, 

device_coords_func(point_func(O,O),screen_coord), point), 
attrib(context_clipping_region, no_val, region)], type, min])]). 

Parent of stock brush hierarchy (integer constants) 

frame(name:stock_brush_const, 
parent:integer_constant, 
children:[black_brush_const, 

dark_gray _brush_const, 
gray _brush_const, 
hollow _brush_const, 
light_gra y _brush_const, 
null_brush_const, 
w hi te_brush_ const], 

slots:[library _name:facets([ value, type]), 
object_type:facets([value, type])]). 
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Parent of drawable object hierarchy 

frame(name:gdi_drawable_object, 
parent:screen_object, 
children: [ drawable_arc, 

draw able_ chord, 
drawable_ellipse, 
draw able_icon, 
drawable_line, 
drawable_pie, 
drawable_point, 
draw able_pol ygon, 
drawable_pol yline, 
drawable_poly _polygon, 
drawable_rectangle, 
drawable_roundrect], 

slots:[]). 

Parent of user _source_objects 

fr a me( name: user _source_ object, 
parent:object, 
children: [memory _object_name, 

user_declareable_object, 
coord], 

slots: [ source_type:facets([ value, type:declareable_object]) ]). 
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Frame representing BeginPaint routine (inherits some properties from 
get _device_con text) 

frame( name: begin_paint, 
parent:get_device_context, 
children:[], 
slots: [routine_name:facets([ value:'BeginPaint', type]), 

parameter_list:facets([value:[hwindow, pointer_func(paint_struct)], 
type, min]), 
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default_source:facets([ value: [ code_source(window _procedure, hwnd), 
user_source(user_declareable_object, Vall)], type, min]), 

return_normal:facets([value, type]), 
return_error:facets([ value, type]), 
main_effect:facets([ value, type, min]), 
micro_effect:facets([value:[ 

dereference(param_l, memory _I, window _I), 
associated([ window _1 ], device_context_l ), 
associated([ window _l], paint_info_l), 
get_attribute(invalid_rectangle, invalid_rect_l, paint_info_l), 
make_rect_region(invalid_rect_l, rect_region_l), 
set_ attribute( context_ di pping_region, rect_region_l, 

device_context_l ), 
dereference(pararn_2, memory _I, paint_struct_l), 
fill_info(paint_inf o _1, paint_struct_l ), 
make_reference(hdevice_context_l, memory _1, 

device_context_l ), 
send_message(window _1, erase_background_message), 
return(hdevice_context_l)], type, min]), 

constraint:facets([value:[assoc_type(memory _l, memory), 
assoc_type(window _l, window), 
assoc_ type( device_context_l, device_context), 
assoc_type(paint_struct_l, paint_struct), 
assoc_type(paint_info_l, paint_info), 
assoc_type(hdevice_context_l, hdevice_context), 
assoc_type(rect_region_l, region), 
assoc_type(invalid_rect_l, rectangle)], type, min]), 

preconditions:facets([value:[received(window _l, paint_message)], 
type, min])]). 
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