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Abstract 

In this study, a Prediction Accuracy Based Hill Climbing Feature Selection Algorithm 

(AHCFS) is created and compared with an Error Rate Based Sequential Feature 

Selection Algorithm (ERFS) which is an existing Matlab algorithm. The goal of the study 

is to create a new piece of an algorithm that has potential to outperform the existing 

Matlab sequential feature selection algorithm in predicting the movement of S&P 500 

(^GSPC) prices under certain circumstances. The two algorithms are tested based on 

historical data of ^GSPC, and Support Vector Machine (SVM) is employed by both as the 

classifier. A prediction without feature selection algorithm implemented is carried out 

and used as a baseline for comparison between the two algorithms. The prediction 

horizon set in this study for both algorithms varies from one to 60 days. The study 

results show that AHCFS reaches higher prediction accuracy than ERFS in the majority of 

the cases.  
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Chapter 1 Introduction 

Financial markets are becoming more and more significant in the modern economic 

system [1]. Nowadays, the stock market is an essential component of the global 

economy. Each stock market plays a pivotal role in many fields, and the state of a 

nation's stock market somewhat represents its economic status. Due to the 

fundamental importance of stock markets, significant effort has been put into studies 

regarding market behaviors. One of the many major topics is predicting stock price. 

1.1 Technical Analysis 

Technical analysis seems to have first appeared in 18th century Japan [2]. The first 

version, the Japanese version, of technical analysis was based on candle charts. It is 

currently one of the most popular tools and was first created and used by a wealthy 

merchant.  

In recent years, computing power is becoming more powerful and cheaper. Thus it is 

more accessible. Meanwhile, artificial intelligence develops rapidly, such as machine 

learning. Many efforts have been put into the study of predicting stock prices and many 

theories have come into being [3]. Besides the traditional analysis method, fundamental 

analysis (FA), a new method, technical analysis (TA) is actively used in stock price 

forecasting [4].  The FA evaluates the intrinsic value of a company’s stock price by 

delving into the company’s financial statements [5]. The FA evaluation is a quantitative 

analysis based on the company’s revenues, expenses, assets, liabilities, and all the other 

financial aspects. The analysis will yield a lot of measurements of the company’s 
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financial status as well as a comprehensive projection based on experience-adjusted risk 

parameters. These will then be used to determine the intrinsic value of a company’s 

stock price. On the other hand, the TA, as a nontraditional method, is quite the 

opposite. The TA method uses a company’s historical data regarding stock price, other 

related prices, and other non-price information to identify and summarize existing 

patterns and to suggest future movements instead of measuring intrinsic value.  

More straightforward, the FA method predicts stock price by finding out and explaining 

what the underlying assets of the stock are and how the stock works; the TA method 

predicts the stock price by only tracking and learning the stock price and related 

information to find a pattern for future use. In sum, FA seeks to understand and explain 

the entire system to provide a prediction while TA lets the data take priority and speak 

for itself. 

1.2 Theoretical Insights 

1.2.1 The Dow Theory 

Charles Dow, the father of modern TA in the West, provides the initial basis for the 

further development of TA, which is now called the Dow Theory [6], [7]. Summarized by 

his followers, the Dow Theory includes six tenets/principles. 

1. The Averages Discount Everything. Every single factor, which is likely to have an 

influence on both demand and supply, is reflected in the market price. 
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2. The Market Has Three Trends. A primary trend lasts for more than a year; a

secondary trend lasts from 3 weeks to 3 months; minor trends last less than

three weeks.

3. Major Trends Have Three Phases

In the first stage, Accumulation Phase, investors enter; in the second stage, the

Public Participation Phase, prices rapidly rise, and economic news becomes

favorable; in the third state, the Distribution Phase, economic conditions peak,

and public participation increases.

4. The Averages Must Confirm Each Other

The Industrial Average and Rail Average (now it is the Dow Jones Transportation

Average) must confirm each other.

5. Volume Must Confirm the Trend

The Dow recognizes volume as a secondary indicator, ranked second only to

price. Volume should expand in the direction of the primary/major (price) trend.

6. A Trend Is Assumed to Be Continuous until Definite Signal of Its Reversal

Trends exist.

It occurs regardless of "market noise." Prices continue going in the same

direction despite the short period of opposite movement. It lasts for a while until

a reversal signal occurs.

Based on these six principles, TA is generally understood as based on the following three 

principles: 
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• Price Discounts Everything 

• Prices Move in Trends 

• History Repeats Itself 

1.2.2 Efficient Market Hypothesis 

The Efficient Market Hypothesis (EMH) states that: “at any given time, security prices 

fully reflect all available information” [8]. EMH indicates that TA will not be useful. If the 

current price fully reflects all the information and states that previous prices cannot be 

used to predict future prices, EMH implies that no investment strategy can outperform 

the market. 

1.2.3 Random Walk Theory 

This theory states that stock market prices evolve according to a random walk and thus 

cannot be predicted [9]. It is consistent with EMH and contradicts the application of TA. 

1.2.4 Behavioral Finance 

EMH and random walk theories both ignore market realities by assuming that all 

participants are entirely rational. Behavioral finance studies investor's market behavior 

that derives from the psychological principles of decision making to explain why people 

buy and/or sell stocks [10]. A few of the behavioral biases discussed in this chapter 

might contribute to such trends and patterns. Further, TA based on historical data is 

able to discover trends and patterns to predict the future. 
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With the support of behavioral finance, a new theory – Adaptive Market Hypothesis 

(AMH) – started to reconcile economic theories based on EMH with behavioral finance 

[11]. 

1.3 Combination of Technical Analysis and Artificial Intelligence 

With the development of computational power in recent years, it is found that the 

application of artificial intelligence in TA can be very powerful and has excellent 

potential to bring changes on how to predict the market. A multitude of machine 

learning techniques is applied to TA to attempt to improve market prediction accuracy 

[12],  [13],  [14]. 

Simply put, TA uses technical indicators which are derived from stock prices, including 

open, close, high, and low prices, and volume as input to attempt to determine future 

trends and decide when to buy or sell stocks. Beyond this, there are many studies 

combining TA and artificial intelligence (AI), from which a much better prediction model 

could be achieved. For example, an Artificial Neural Network (ANN) is used for stock 

prediction [15], [16]. At present, Support Vector Machines (SVM), which works similarly 

to ANN, is used extensively in this field [17], [18].  

1.4 Problem Statement 

SVM works as a prediction model with a multitude of adjustable parameters. Technical 

indicators (TIs) are used as input features to fine-tune those parameters [19]. Then, the 

trained SVM based prediction model is used to predict future movement in stock prices. 

That leads to another question: how many and what kinds of indicators/information are 
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best for SVM training? Common sense would suggest that the more information, the 

better. However, further studies indicate that increasing the number of SVM features 

will reduce performance. One important reason for this is the overfitting problem. This 

is the problem of feature selection [20].  

Many algorithms have been developed to solve the problem of choosing the best 

features for SVM [21], among which the sequential feature selection function (a Matlab 

function “sequentialfs”) is a good one [22]. This function is an error rate, filter-based, 

sequential feature selection algorithm (we call it ERFS in later discussion). Besides this 

function, another improved sequential feature selection method is developed and 

tested in this study, which promotes prediction accuracy. The improved method is a 

prediction accuracy based hill climbing feature selection algorithm or AHCFS. 

1.5 Thesis Structure 

Chapter 1 introduced the development of market prediction, stated the problem that 

will be covered in this thesis, and described the thesis structure. Chapter 2 provided the 

background information on previously-related works and clarified the thesis' hypothesis, 

goal, and evaluation method. Chapter 3 explained the experiment design and 

methodology. Chapter 4 displayed the results of experiments. Chapter 5 discussed and 

summarized the results along with all research aims. Chapter 6 concluded this research 

and suggested future applications and continuation of this research. 
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Chapter 2 Background Information and Literature Review 

Many studies have combined SVM and TA for market trend prediction/stock trading. 

Some begin by studying the features selecting problem to improve the SVM training 

process. The followings are the brief introduction to SVM, TIs, and ERFS algorithm which 

we used as a comparison of the AHCFS algorithm. 

2.1 Support Vector Machine (SVM) 

Support Vector Machine (SVM) [23], a supervised machine learning model [24], is one of 

the most popular machine learning algorithms. It is often used as a classifier in data 

classification, which is a common task of machine learning. The concept and the very 

first SVM algorithm were created by Vladimir N. Vapnik and Alexey Ya. Chervonenkis. 

Later, SVM was first introduced by Boser, Guyon, and Vapnik at the 1992 COLT 

conference [25]. Theirs SVM was developed from Statistical Learning Theory by Vapnik 

[26]. 

The basic idea of SVM is to create hyperplane to separate different classes of the data 

points. Let's only talk about two classes problem here. The hyperplane has one less 

dimension of the target space. For instance, if our two classes of data are distributed in 

3-dimension space, the hyperplane the SVM created to separate the two classes is a 2-

dimension plane, a normal plane in the real world. If our data is in 2-dimension space, 

the hyperplane the SVM gives to separate the classes is a line. The following is the 

simplest example to demonstrate how SVM work. 
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Figure 2. 1 Sample of how SVM works in 2-dimension case (not optimized) 

In Figure 2.1, there are two classes of data, green cross group, and blue circle group, and 

SVM finds a line to separate the two groups of data reasonably. As shown in the figure, 

the thick black line is the separation line, and the two lighter black lines on both sides of 

the separation line are boundaries. Let the separation line moves parallelly towards 

both directions, the boundaries are determined as soon as the line reaches the very first 

data point or group of points. Moreover, the data points which define the boundaries 

are called support vector. Support vectors solely determine the boundaries. Also, the 

distance between the two boundaries, the red line in the figure, is the margin of this 

classifier. Apparently, the separation line in Figure 2.1 is not optimized, and its margin is 

not the largest. SVM tries to find a separation line which maximizes the margin under 

certain conditions. 
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Figure 2. 2 Sample of how SVM works in 2-dimension case (optimized) 

In Figure 2.2, the separation line with the maximized margin is given by SVM. Generally, 

for every classifier, the larger the margin is, the lower the classification error rate is. 

SVM also uses kernel method [27]. In machine learning, SVM is not the only one which 

employs kernel method, but it must be the best-known one which employs a kernel 

method. The classification is a kind of analysis of relations between data points, so it 

usually does not need to calculate the coordinates explicitly. The high dimension data 

can be transformed using a user-specified kernel function without any explicit 

calculation of data point coordinates. The computing need of classification process is 

significantly lower after using the kernel function to transform. There are quite a few 

kernel functions that can be used in SVM; the commonly used kernel functions are the 

linear kernel, quadratic kernel, polynomial kernel, Gaussian Radial Basis Function (RBF) 
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kernel, and Multilayer Perceptron (MLP) kernel. The RBF kernel is the most popular and 

most commonly used one, and it is used in this study as well. 

The inputs of an SVM classification algorithm in Matlab are called features. In this study, 

all the inputs for SVM training or parameters tuning are constructed from technical 

indicators (Tis) [28]. 

2.2 Technical Indicators (TIs) 

There are 24 TIs used in testing, and almost all of them come from the Technical 

Analysis Library (TA-lib). They are not equal to features, and features are made from 

them. There are 44 features made from TIs [29], [30]. 

2.2.1 Relative Strength Index (RSI) 

𝑅𝑅𝑅𝑅𝑅𝑅 = 100 −
100

1 + 𝑅𝑅𝑅𝑅
 

Where RS is the average upward price change divided by the average of downward price 

change over the same period.  

RS compares the magnitude of recent gains and losses over a specified period, 

measuring the price movement and the changing speed of securities. It is used to 

identify the overbought/overvalued (>70) or oversold/undervalued (<30) status of 

certain assets. 

In our Matlab code, the function is “TA_RSI,” a 14-day period is used for RS.  
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2.2.2 Bollinger Bands 

Bollinger Bands are used to measure the volatility of a stock price and involves an upper 

and a lower band along with a simple moving average. 

Bollinger Bands consist of: 

• An N-period moving average 

• An upper band at K times an N-period standard deviation above the moving 

average 

• A lower band at K times an N-period standard deviation below the moving 

average 

In our Matlab code, the function is “TA_BBANDS” and a 9-day period is used. Two times 

the standard deviation is used to determine the upper and lower band.  

2.2.3 Stochastic Oscillator 

The Stochastic Oscillator compares closing price of a stock to the range of its price over 

a specified period. This indicator includes two indicators: The Stochastic Fast (%K) and 

the Stochastic Slow (%D). Their formulas are: 

%𝐾𝐾 = 100
𝐶𝐶 − 𝐿𝐿𝑁𝑁
𝐻𝐻𝑁𝑁 − 𝐿𝐿𝑁𝑁

 

%𝐷𝐷 = 𝑀𝑀 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑅𝑅𝑀𝑀𝑆𝑆 𝑟𝑟𝑜𝑜 %𝐾𝐾 

Where 𝐶𝐶 is closing price, 𝐿𝐿𝑁𝑁 is the lowest trading price of 14 previous trading days. 𝐻𝐻𝑁𝑁 is 

the highest trading price of the 14 previous trading days. The SMA stands for Simple 
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Moving Average, which is explained below. 

In our Matlab code, the function is “TA_STOCHF” and we use 𝑁𝑁 = 14 and 𝑀𝑀 = 3. 

2.2.4 Simple Moving Average (SMA) 

A Simple Moving Average (SMA) is an arithmetic moving average. The SMA is calculated 

by adding up the total of closing prices of the security for a few periods and dividing this 

sum by a pre-set number. Typically, the period is a day. 

𝑅𝑅𝑀𝑀𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑜𝑜 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 𝑜𝑜𝑟𝑟𝑟𝑟 𝑁𝑁 𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐 𝑟𝑟𝑡𝑡𝑑𝑑𝑠𝑠/𝑁𝑁 

In our Matlab code, the function is “TA_SMA” and there are two sets of parameters 

used: the 10-day SMA and the 21-day SMA. 

2.2.5 Exponential Moving Average (EMA) 

The Exponential Moving Average (EMA) is another moving average but is like a simple 

moving average. The difference between EMA and SMA is that EMA weighs more recent 

data more heavily than less recent data. Here is the formula: 

𝐸𝐸𝑀𝑀𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐾𝐾𝑁𝑁 + 𝐸𝐸𝑀𝑀𝑆𝑆𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 ∗ (1 − 𝐾𝐾𝑁𝑁) 

Where 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is today’s closing price, 𝑁𝑁 is the length of 𝐸𝐸𝑀𝑀𝑆𝑆. For example, if it is 4-day 

EMA, the N is 4. 𝐾𝐾𝑁𝑁 = 2/(𝑁𝑁 + 1),  𝐸𝐸𝑀𝑀𝑆𝑆𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 is the previous EMA value, calculated 

using the same formula. 

In our Matlab code, the function is “TA_EMA” and we use a 4-day EMA. 
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2.2.6 Triple Exponential Moving Average (TEMA) 

Triple Exponential Moving Average (TEMA) is another moving average. It is a composite 

of a single exponential moving average, a double exponential moving average, and a 

triple exponential moving average. Here is the equation: 

𝑇𝑇𝐸𝐸𝑀𝑀𝑆𝑆 = 3 ∗ 𝐸𝐸𝑀𝑀𝑆𝑆 − 3 ∗ 𝐸𝐸𝑀𝑀𝑆𝑆(𝐸𝐸𝑀𝑀𝑆𝑆) + 𝐸𝐸𝑀𝑀𝑆𝑆(𝐸𝐸𝑀𝑀𝑆𝑆(𝐸𝐸𝑀𝑀𝑆𝑆)) 

Compared to EMA, TEMA smooths price fluctuations and filters out volatility, making it 

easier to identify trends with less lag time. 

2.2.7 Kaufman Adaptive Moving Average (KAMA) 

A moving average designed to account for market noise or volatility. It will closely follow 

prices when the price swings are relatively small, and the noise is low. KAMA will also 

adjust itself when the price swings, widens and follows price more loosely to keep it 

smooth. Here is the equation: 

𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑡𝑡 𝐾𝐾𝑆𝑆𝑀𝑀𝑆𝑆 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐾𝐾𝑆𝑆𝑀𝑀𝑆𝑆 + 𝑅𝑅𝐶𝐶 ∗ (𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐾𝐾𝑆𝑆𝑀𝑀𝑆𝑆) 

SC is the Smoothing Constant which is calculated based on Efficiency Ratio (ER). ER is 

basically when the price change is adjusted for the daily volatility. Here are the 

equations: 

𝐸𝐸𝑅𝑅 =
𝑆𝑆𝐴𝐴𝑅𝑅�𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝(10 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑐𝑐𝑟𝑟)�

𝑣𝑣𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑟𝑟𝑐𝑐𝑟𝑟𝑡𝑡𝑑𝑑
 

𝑉𝑉𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑟𝑟𝑐𝑐𝑟𝑟𝑡𝑡𝑑𝑑 𝑟𝑟𝑠𝑠 𝑡𝑡ℎ𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑜𝑜 𝑡𝑡ℎ𝑝𝑝 𝑡𝑡𝑎𝑎𝑠𝑠𝑟𝑟𝑐𝑐𝑠𝑠𝑡𝑡𝑝𝑝 𝑣𝑣𝑡𝑡𝑐𝑐𝑠𝑠𝑝𝑝 𝑟𝑟𝑜𝑜 𝑡𝑡ℎ𝑝𝑝 𝑐𝑐𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑝𝑝𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 𝑐𝑐ℎ𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑠𝑠 

𝑅𝑅𝐶𝐶 = (𝐸𝐸𝑅𝑅 ∗ (𝑜𝑜𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡 𝑅𝑅𝐶𝐶 − 𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡 𝑅𝑅𝐶𝐶) + 𝑅𝑅𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡 𝑅𝑅𝐶𝐶)2 
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Here we use KAMA (10, 2, 30). 10 is the number of periods for the ER, 2 is the number of 

periods for the fastest EMA constant (fastest SC), 30 is the number of periods for the 

slowest EMA constant (slowest SC). 

2.2.8 Lowest Value & Highest Value over a Specified Period (Min & Max)  

Those two technical indicators are merely the minimum and maximum value appearing 

over a certain period. 

In our Matlab code, the function is “TA_MIN” and “TA_MAX.” The period we used is a 5-

day period. 

*2.2.8 introduces two TIs. 

 

2.2.9 Connors RSI (CRSI) 

Connors RSI has three major components: RSI, Updown Length, and ROC. RSI and ROC 

are introduced separately in this Chapter. Updown Length is the number of consecutive 

days that a security price has either closed up (higher than previous day) or closed down 

(lower than previous days). We usually use closing price as default. Closing up is a 

positive number, and closing down is a negative number.  

CRSI has three variables, and here is the equation example for CRSI (3, 2, 100): 

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅(3,2,100) =
𝑅𝑅𝑅𝑅𝑅𝑅(3) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝑈𝑈𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑐𝑐 𝐿𝐿𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡ℎ, 2) + 𝑅𝑅𝑅𝑅𝐶𝐶(100)

3
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3 is the number of periods for RSI, 2 is the number of periods for Up-Down Length, 100 

is the number of periods for ROC. 

2.2.10 Money Flow Index (MFI) 

The Money Flow Index measures the inflow and outflow of money into certain securities 

over a period. It uses a stock's price and volume to measure trading pressure. 

Here are the steps/items used to calculate MFI: 

𝑇𝑇𝑑𝑑𝑝𝑝𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 = (ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑟𝑟𝑠𝑠 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝)/3 

𝑅𝑅𝑡𝑡𝑠𝑠 𝑠𝑠𝑟𝑟𝑐𝑐𝑝𝑝𝑑𝑑 𝑜𝑜𝑐𝑐𝑟𝑟𝑠𝑠 = 𝑡𝑡𝑑𝑑𝑝𝑝𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 ∗ 𝑣𝑣𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝 

𝑀𝑀𝑟𝑟𝑐𝑐𝑝𝑝𝑑𝑑 𝑜𝑜𝑐𝑐𝑟𝑟𝑠𝑠 𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 = (14 − 𝑟𝑟𝑡𝑡𝑑𝑑 𝑃𝑃𝑟𝑟𝑠𝑠𝑟𝑟𝑡𝑡𝑟𝑟𝑣𝑣𝑝𝑝 𝑀𝑀𝑟𝑟𝑐𝑐𝑝𝑝𝑑𝑑 𝐹𝐹𝑐𝑐𝑟𝑟𝑠𝑠)/(14 − 𝑟𝑟𝑡𝑡𝑑𝑑 𝑁𝑁𝑝𝑝𝑐𝑐𝑡𝑡𝑡𝑡𝑟𝑟𝑣𝑣𝑝𝑝 𝑀𝑀𝑟𝑟𝑐𝑐𝑝𝑝𝑑𝑑 𝐹𝐹𝑐𝑐𝑟𝑟𝑠𝑠) 

 

 

𝑀𝑀𝐹𝐹𝑅𝑅 = 100 −
100

1 −𝑀𝑀𝑟𝑟𝑐𝑐𝑝𝑝𝑑𝑑 𝑜𝑜𝑐𝑐𝑟𝑟𝑠𝑠 𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟
 

In our Matlab code, the function is “TA_MFI,” and the function requires high, low, 

closing prices and volumes. No other parameter (number) is needed as input. 

2.2.11 Balance of Power (BOP) 

The Balance of Power (BOP) is designed to measure the strength of buyers versus sellers 

by assessing the ability of each to push the price to an extreme level. 

𝐴𝐴𝑅𝑅𝑃𝑃 = (𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑟𝑟𝑝𝑝𝑝𝑝𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝)/(ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑟𝑟𝑠𝑠 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝) 
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No other parameter/number is needed besides close, open, high, and low prices. 

In our Matlab code, the function is “TA_BOP.” 

2.2.12 Williams %R (WPR) 

Williams %R is also referred to as the Williams Percent Range (WPR). It also measures 

overbought and oversold levels. The equation is: 

%𝑅𝑅 =
(ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝)

ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑟𝑟𝑠𝑠 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝
∗ −100 

In our Matlab code, the function is “TA_WILLR.” No other parameter/number is needed 

besides high, low, and closing prices. 

2.2.13 Ultimate Oscillator (ULT) 

Ultimate Oscillator is a range-bound indicator. It uses the weighted average of three 

different periods to reduce volatility and false transaction signals. Before calculating 

ULT, we need to define several items: 

𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑐𝑐𝑟𝑟𝑠𝑠 = min(𝑐𝑐𝑟𝑟𝑠𝑠 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝, 𝑝𝑝𝑟𝑟𝑝𝑝𝑣𝑣𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 ) 

𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 ℎ𝑟𝑟𝑐𝑐ℎ = max(ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝,𝑝𝑝𝑟𝑟𝑝𝑝𝑣𝑣𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝) 

𝑎𝑎𝑠𝑠𝑑𝑑𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝(𝑎𝑎𝑝𝑝) = 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑝𝑝 − 𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑐𝑐𝑟𝑟𝑠𝑠 

𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝(𝑡𝑡𝑟𝑟) = 𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 ℎ𝑟𝑟𝑐𝑐ℎ − 𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑐𝑐𝑟𝑟𝑠𝑠 

𝑡𝑡𝑣𝑣𝑐𝑐7 =
𝑎𝑎𝑝𝑝1 + 𝑎𝑎𝑝𝑝2 + ⋯+ 𝑎𝑎𝑝𝑝7
𝑡𝑡𝑟𝑟1 + 𝑡𝑡𝑟𝑟2 + ⋯+ 𝑡𝑡𝑟𝑟7
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Where 𝑡𝑡𝑣𝑣𝑐𝑐7 is the sum of buying pressure over the most recent seven days divided by 

the sum of true range over those seven days. The same calculation applies to 𝑡𝑡𝑣𝑣𝑐𝑐14 and 

𝑡𝑡𝑣𝑣𝑐𝑐, and the ULT is: 

𝑈𝑈𝐿𝐿𝑇𝑇 = 100 ∗
4 ∗ 𝑡𝑡𝑣𝑣𝑐𝑐7 + 2 ∗ 𝑡𝑡𝑣𝑣𝑐𝑐14 + 𝑡𝑡𝑣𝑣𝑐𝑐28

4 + 2 + 1
 

In our Matlab code, the function is “TA_ULTOSC.” The period for the three averages in 

ULT calculation is adjustable. However, our setting for the three averages is the same as 

the example: 7, 14, and 28. 

2.2.14 Rate of Change (ROC) 

The Rate of Change (ROC) is the speed at which a variable will change over time. Here, 

ROC is used to describe the percentage of change in the value of a stock over a period. 

The equation is: 

𝑅𝑅𝑅𝑅𝐶𝐶 = �
𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑡𝑡 𝑣𝑣𝑡𝑡𝑐𝑐𝑠𝑠𝑝𝑝

𝑁𝑁 − 𝑟𝑟𝑡𝑡𝑑𝑑 𝑝𝑝𝑟𝑟𝑝𝑝𝑣𝑣𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑣𝑣𝑡𝑡𝑐𝑐𝑠𝑠𝑝𝑝
− 1� ∗ 100 

In our Matlab code, the function is “TA_ROC.” We use closing price as the value of a 

stock and let 𝑁𝑁 = 5. 

2.2.15 Average True Range (ATR) & Normalized Average True Range (NATR) 

The Average True Range (ATR) is a measure of volatility. Before we calculate ATR, we 

define the true range as the following: 

𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝 (𝑇𝑇𝑅𝑅) = 𝑠𝑠𝑡𝑡𝑚𝑚(ℎ𝑟𝑟𝑐𝑐ℎ − 𝑐𝑐𝑟𝑟𝑠𝑠,𝑡𝑡𝑎𝑎𝑠𝑠(ℎ𝑟𝑟𝑐𝑐ℎ − 𝑝𝑝𝑟𝑟𝑝𝑝𝑣𝑣 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐),𝑡𝑡𝑎𝑎𝑠𝑠(𝑐𝑐𝑟𝑟𝑠𝑠 − 𝑝𝑝𝑟𝑟𝑝𝑝𝑣𝑣 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐)  

Where the high, low, prev close are high, low, and previous closing prices. 
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The ATR is a moving average of the true ranges. The following is the ATR form of the 

exponential moving average: 

𝑆𝑆𝑇𝑇𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑆𝑆𝑇𝑇𝑅𝑅𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 ∗ (𝑁𝑁 − 1) + 𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁
 

Where N is the length of the moving average. 

For the Normalized Average True Range (NATR), the formula is: 

𝑁𝑁𝑆𝑆𝑇𝑇𝑅𝑅 =
𝑆𝑆𝑇𝑇𝑅𝑅𝑁𝑁

𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝
∗ 100 

In our Matlab code, the functions are “TA_ATR” and TA_NATR.” We use 𝑁𝑁 = 14 as 

suggested. 

*2.2.15 introduces two Technical Indicators. 

 

2.2.16 Standard Deviation (SD)  

Standard Deviation (SD) is a fundamental measurement in descriptive statistics. SD 

measures the dispersion of a set of data from its mean. In investment, SD measures the 

volatility of the investments. 

In our Matlab code, the function is “TA_STDDEV,” and we calculate SD based on closing 

price and set the number of variable equals to 7. 
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2.2.17 On-Balance Volume (OBV) 

On-Balance Volume is a momentum indicator that uses volume flow to predict changes 

in stock price. It is believed by the creator of the indicator that sharp increases in 

volume without a significant change in stock price will eventually lead to a jump forward 

in the price and vice versa. 

The calculation of OBV is a running total of positive and negative trading volume for a 

stock. If today’s closing price is above yesterday’s closing price, today’s trading volume is 

positive and 𝑅𝑅𝐴𝐴𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑅𝑅𝐴𝐴𝑉𝑉𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐 𝑣𝑣𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝; if today’s closing 

price is below yesterday’s closing price, today’s trading volume is negative and 

𝑅𝑅𝐴𝐴𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑅𝑅𝐴𝐴𝑉𝑉𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐 𝑣𝑣𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝. 

In our Matlab code, the function is “TA_OBV” and there is no other parameter/number 

needed besides closing price and volume. 

2.2.18 Percentage Price Oscillator (PPO) 

Percentage Price Oscillator (PPO) is a momentum indicator that shows the relationship 

between two moving averages. Commonly, exponential moving averages are used in 

PPO. Here is the equation for PPO in terms of EMAs as an example: 

𝑃𝑃𝑃𝑃𝑅𝑅 =
𝐸𝐸𝑀𝑀𝑆𝑆𝑁𝑁 − 𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀

𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀
 

Where N is a smaller number compared with M, 𝐸𝐸𝑀𝑀𝑆𝑆𝑁𝑁 is a faster, short-term EMA and 

𝐸𝐸𝑀𝑀𝑆𝑆𝑀𝑀 is a slower, long-term EMA. Usually, N is 9 and M is 26. 
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 In this Matlab code, the function is "TA_PPO" and we use 𝑁𝑁 = 9 𝑡𝑡𝑐𝑐𝑟𝑟 𝑀𝑀 = 26. Besides 

N & M, there is another parameter which is needed to set: the type of moving average. 

We use two which stands for exponential moving average form. 

2.2.19 Median Price 

The median price is merely the mid-point of a trading range for a period. It is an 

arithmetic average. The formula is: 

𝑀𝑀𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑐𝑐 𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 =
ℎ𝑟𝑟𝑐𝑐ℎ 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑟𝑟𝑠𝑠 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝

2
 

In our Matlab code, the function is “TA_MEDPRICE” and there is no other 

parameter/number needed besides high and low price. 

2.2.20 Average Directional Index (ADX) 

The Average Index is used to qualify trend strength. It is a combination of two 

indicators: the Positive Directional Indicator (+DI) and the Negative Directional Indicator 

(-DI). To calculate +DI or -DI, we need to calculate the directional movement first (+DM 

or -DM): 

𝑈𝑈𝑝𝑝𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 ℎ𝑟𝑟𝑐𝑐ℎ − 𝑑𝑑𝑝𝑝𝑠𝑠𝑡𝑡𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 ℎ𝑟𝑟𝑐𝑐ℎ 

𝐷𝐷𝑟𝑟𝑠𝑠𝑐𝑐𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 = 𝑑𝑑𝑝𝑝𝑠𝑠𝑡𝑡𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 𝑐𝑐𝑟𝑟𝑠𝑠 − 𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑′𝑠𝑠 𝑐𝑐𝑟𝑟𝑠𝑠 

𝑟𝑟𝑜𝑜 𝑈𝑈𝑝𝑝𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 > 𝐷𝐷𝑟𝑟𝑠𝑠𝑐𝑐𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 𝑡𝑡𝑐𝑐𝑟𝑟 𝑈𝑈𝑝𝑝𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 > 0, 𝑡𝑡ℎ𝑝𝑝𝑐𝑐 + 𝐷𝐷𝑀𝑀 = 𝑈𝑈𝑝𝑝𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝, 𝑝𝑝𝑐𝑐𝑠𝑠𝑝𝑝 + 𝐷𝐷𝑀𝑀 = 0 

𝑟𝑟𝑜𝑜 𝐷𝐷𝑟𝑟𝑠𝑠𝑐𝑐𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 > 𝑈𝑈𝑝𝑝𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 𝑡𝑡𝑐𝑐𝑟𝑟 𝐷𝐷𝑟𝑟𝑠𝑠𝑐𝑐𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝 > 0, 𝑡𝑡ℎ𝑝𝑝𝑐𝑐 − 𝐷𝐷𝑀𝑀

= 𝐷𝐷𝑟𝑟𝑠𝑠𝑐𝑐𝑀𝑀𝑟𝑟𝑣𝑣𝑝𝑝, 𝑝𝑝𝑐𝑐𝑠𝑠𝑝𝑝 − 𝐷𝐷𝑀𝑀 = 0 
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After +DM and -DM are calculated, +DI and -DI are: 

+𝐷𝐷𝑅𝑅 = 100 ∗
𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁(+𝐷𝐷𝑀𝑀)

𝑆𝑆𝑇𝑇𝑅𝑅
 

−𝐷𝐷𝑅𝑅 = 100 ∗
�𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁(−𝐷𝐷𝑀𝑀)�

𝑆𝑆𝑇𝑇𝑅𝑅
 

Then the ADX is: 

𝑆𝑆𝐷𝐷𝐴𝐴 = 100 ∗ 𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁(𝑡𝑡𝑎𝑎𝑠𝑠(
+𝐷𝐷𝑅𝑅 − (−𝐷𝐷𝑅𝑅)
+𝐷𝐷𝑅𝑅 + (−𝐷𝐷𝑅𝑅)

) 

In our Matlab code, the function is “TA_ADX,” and we use 𝑁𝑁 = 14. 

2.2.21 Chande Momentum Oscillator (CMO) 

Like RSI, the indicator is also used to measure the oversold (+50) or overbought (-50) 

status of certain securities. To get the number, first, we calculate the difference 

between the total of recent gains and the total of recent losses over a period. Then, we 

divide the difference by the total price movement over the same period. Let's define the 

total of gain, loss, and price movement: 

𝑟𝑟𝑜𝑜 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡

> 0, 𝑡𝑡ℎ𝑝𝑝𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑠𝑠 𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐. 

𝑟𝑟𝑜𝑜 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡

< 0, 𝑡𝑡ℎ𝑝𝑝𝑐𝑐 𝑡𝑡𝑎𝑎𝑠𝑠(𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡) 𝑟𝑟𝑠𝑠 𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠. 

𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑐𝑐 𝑟𝑟𝑜𝑜 𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐), 𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑐𝑐 𝑟𝑟𝑜𝑜 𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠) 

𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑝𝑝 𝑠𝑠𝑟𝑟𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑐𝑐𝑡𝑡 = 𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑐𝑐 𝑟𝑟𝑜𝑜 𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑠𝑠 + 𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑐𝑐 𝑟𝑟𝑜𝑜 𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 
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𝐶𝐶𝑀𝑀𝑅𝑅 = 100 ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁(𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠) 

Where N is the period, for example, a 10-day period. 

In our Matlab code, the function is “TA_CMO” and we use 𝑁𝑁 = 10. 

2.2.22 Commodity Channel Index (CCI) 

The Commodity Channel Index (CCI) is an oscillator and is used to measure whether a 

stock is oversold/overbought. It attains value by quantifying the relationship between 

the stock’s typical price (𝑃𝑃𝑡𝑡), the N simple moving average of the stock’s typical 

price (𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁(𝑃𝑃𝑡𝑡)), and the N points mean absolute deviation from typical 

price�𝜎𝜎𝑁𝑁(𝑃𝑃𝑡𝑡)�. Here is the formula: 

𝐶𝐶𝐶𝐶𝑅𝑅 =
𝑃𝑃𝑡𝑡 − 𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁(𝑃𝑃𝑡𝑡)
0.015 ∗ 𝜎𝜎𝑁𝑁(𝑃𝑃𝑡𝑡)

 

Where the typical price is 𝑃𝑃𝑡𝑡 = ℎ𝑖𝑖𝑖𝑖ℎ+𝑙𝑙𝑡𝑡𝑙𝑙+𝑐𝑐𝑙𝑙𝑡𝑡𝑦𝑦𝑖𝑖𝑐𝑐𝑖𝑖
3

, and the aim of scaling by 1/0.015 is to 

produce a more readable number. 

In our Matlab code, the function is “TA_CCI”, and we use 𝑁𝑁 = 20. 

2.3 Hypothesis 

Although the financial market is complex, based on previous research, market trends 

are somewhat predictable. The TA method offers a unique way to discover the secret of 

future movement. A machine learning classifier such as SVM is a great tool that 

significantly improves market trend prediction. An SVM based TA for market trend 

prediction is a beautiful approach, and we believe it is possible to improve the 
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predicting accuracy by performing features selection while preparing training data for 

an SVM based prediction model. Furthermore, improvement of the feature selection 

algorithm can promote the prediction accuracy of the model again. 

2.4 Goal 

The goals of the work include: 

1. Study prediction accuracy improvement after applying Sequential Feature 

Selection function to an SVM based model. 

We will use a fixed, initial combination of technical indicators as input to train 

SVM and test the model. Then we apply ERFS on the same initial combination of 

technical indicators, using the left indicators to train SVM and test the model. 

The differences between the two groups of results will be studied. 

2. We will apply the AHCele instead of the ERFS and repeat the test. The new group 

of results is then studied and compared to the previous two result groups. The 

differences will then be interpreted.  

2.5 Evaluation Method 

The critical measurement of the prediction model is the prediction accuracy, and all 

results are finally evaluated by their prediction accuracy. The prediction model is trained 

and tested/simulated based on historical data using Matlab. The classifier used for 

predicting target is SVM. The prediction accuracy is defined as the sum of correctly 

classified targets divided by the sum number of targets. 
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Chapter 3 Experiment Design 

The whole experiment is carried out in Matlab based on its easily accessible and 

powerful simulator. The market prediction is basically an application of the SVM 

classifier. The data used to train the SVM classifier include features made from technical 

indicators based on historical data from the S&P500 (^GSPC). Later we will use the 

SP500 instead of the S&P500 (^GSPC). The trained SVM classifier is also tested on 

historical data from the SP500. 

3.1 Data Construction 

The original data is historical S&P 500 index prices (^GSPC) acquired from Yahoo! 

Finance. The available data spans from 1950 to 2017. This data is composed of daily 

data points. Each data point consists of high, low, close, and open prices and volume of 

a particular trading day. All the 24 technical indicators introduced in Chapter 2 are 

calculated based on the market high, low, close, and open prices and volume and are 

further made into 44 features. The features are the inputs for SVM training. Although 

other indicator types are prepared, such as microeconomic indicators (other stocks' 

momentum and acceleration) and microeconomic indicators, they were not used in our 

experiments. 

Among the 67 years of data, we take a 10-year window divided into two parts –the first 

part is for the training aim, called In-Sample data; the second part is for the testing aim, 

called Out-Of-Sample data. The length ratio of In-Sample data to the length of Out-Of-
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Sample data is 7:3. The In-Sample is used for features selecting, and the data after 

selection are for SVM training inputs. The Out-Of-Sample part is used for testing the 

trained SVM classifier and returns a prediction accuracy used to evaluate the trained 

model. There are approximately 252 trading days in a year, which makes about 1800 

points in the In-Sample data and 800 points in the Out-Of-Sample data when daily data 

is used. 

In the following experiments, four pieces of data are used: 2007-2017, 2000-2010, 1992-

2001, and 1960-1970. 

3.2 Classification 

The prediction model is designed to indicate the market trend; it is the movement of the 

S&P 500 index price in this case. All the data used as inputs are sharing the same unit: 

the U.S. dollar. Based on the above information, the classification criterion is to check 

the difference between the present index closing price and the previous index closing 

price. If the difference is non-negative (including 0), which means the index closing price 

does not fall, the classification result and record is a 1; if the difference is negative, 

which means the index closing prices fall, the classification result and record is a 0.  

3.3 Data Pre-processing 

3.3.1 Interpolation 

It is a necessary process before the data enters into the SVM. Due to missing values in 

stock prices (or/and character of feature formulas), some "not a number" (NaN) values 

appear, which can break SVM training rules and ruin the training process. Those NaN 
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values are converted into zeros in all following experiments to make the SVM work 

normally. There is another way to interpolate these kinds of numbers using linear 

regression or the average of several neighboring numbers to smooth out the holes. 

Typically, this method eliminates the holes inside the training data more smoothly than 

inserting zeros. However, when there is a string of NaN values, especially when starting 

from the very beginning of the array, this method will not work well. 

3.3.2 Normalization  

After features are calculated, the magnitude order of features could be very different. 

Some range from 0 to 1 or -1 to 1, while others range from 1 to 10,000. Their scales can 

be incredibly different and will likely poorly affect the performance of the classifier, 

which is trained via this data. It will significantly lengthen the running time of classifier 

training. One reason is the mixed use of prices and volumes. Prices are recorded in the 

hundreds or thousands of levels, but volumes are recorded in tens of millions. The other 

reason is that all kinds of technical indicators are employed, some are designed to 

determine percentages, and some are designed to determine large numbers. It is 

essential to implement normalization to make the data organized and efficient. The 

Matlab function "zscore", which performs better than another two choices "normc" and 

"normalize", according to a summing-up in a similar work [31], is used in here to 

normalize all the data. 

With the character of each technical indicator/feature formula known, there is another 

to avoid normalization while keeping data efficient. We can rescale each 
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indicator/feature to let their order of magnitude become more consistent before 

pouring them into the SVM. This idea is tested and discussed separately at the end. 

3.4 Feature Selection 

3.4.1 General 

Feature selection (FS) is a great way to screen data and improve the accuracy of a 

prediction model [32]. Feature selection is a critical part of the following experiments. 

The experiment designed a comparison among one control group and two experimental 

groups. All three codes, including raw data processing, features calculating, and SVM 

training, testing, and generating output, are the same except for feature selection parts. 

For feature selection part, each group used different strategies. 

Data processingRaw Data Technical Indicators/
Features

Trained SVM

SVM Training

SVM TestingOOS Prediction 
Accuracy

 

Figure 3. 1 Flowchart of SVM classification model without feature selection (Strategy #0) 
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3.4.2 Control Group – Strategy #0 

The flowchart of the code used in the control group is given above. We call this Strategy 

#0 (Without FS). Basically, the code in Strategy #0 includes no feature selection 

algorithm. It just merely uses all initial features as input for SVM training. 

First, the code acquires raw data from a prepared Excel file created directly by Yahoo! 

Finance. The Excel document (.csv format) is the historical S&P 500 ^GSPC daily data 

beginning in 1950, including open price, high price, low price, closing price, and daily 

trading volume. Second, all the raw data goes into processing algorithm. All the data will 

be extracted and separately stored. Date format will be changed, and step size 

(prediction horizon) will be set. All 24 technical indicators will be calculated, and further 

calculation is conducted to get all 44 initial features' values from the technical 

indicators. Data piece boundaries will be set, and training and supervising groups will be 

created. Third, after data processing, the prepared features input will be used in training 

the SVM, and the trained SVM classifier will be employed as our prediction model. Last, 

the testing group data created in the above step will be used to get the Out-of-Sample 

prediction accuracies, which we will use to evaluate the effectiveness of the prediction 

model. 
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Data processingRaw Data Technical Indicators/
Features

Selected Features

Feature Selecting

SVM TraningTrained SVMSVM Testing

OOS prediction 
accuracy

 

Figure 3. 2 Flowchart of SVM classification model with feature selection (Strategy #1 & Strategy #2) 

Although the algorithms are different from each, both can fit into the same flowchart 

above. 

3.4.3 Experiment #1 – Strategy #1 

The code in the experiment #1 group will employ an Error Rate Filter Sequential Feature 

Selection (ERFS) algorithm as its feature selection part. We call this Strategy #1. It is a 

partial Matlab function that provides a variety of changeable parameters and settings 

plus a user given function that calculates criterion values to rank features. Compared to 

a wrapper method, it is more like a filter method. Thus, to provide the same basis in 
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comparison, a piece of code is added to transform it into a wrapper method. Besides 

features selection, all parameters and settings are the same as in any of the 

experiments. The following is the flowchart of Strategy #1 feature selection following 

the detailed introduction of Strategy #1. 

Ranking by criterion 
value for every 

combination of 1 
feature/Saving index of 

best feature into set

Features/Function/
Setting number of 

features to choose: 1
(initial set: empyt)

Features/Function/
Setting number of 

features to choose: 2 
(initial set: include 
feature selected in 

previous round) 

Ranking again for every 
combination of 2 

features/Saving indices 
into set

Repeated 44 times with the same setting except “number of features to choose” 
varying from 1 to 44, saving 44 indices into the set. (the order of the indices is 

the order of ranking)
Final Ranking

Grouped all features into 44 groups of feature according to ranking, first group with 
only first ranking feature, second group with first and second ranking features, 
…...last group with all 44 features. Test In-Sample prediction accuracies of all 44 
groups based on training (In-Sample) data, choose the a group with highest In-
Sample accuracy, save the feature indices and In-Sample prediction accuracy

Best combination of 
features

 

Figure 3. 3 Flowchart of feature selection (Part 1) 

The inputs of the Strategy #1 algorithm include all 44 features, the function given by use 

for calculating ranking criterion value, and the number of features – varying from 1 to 44 

with the ranking algorithm repeated 44 times – to choose. It is a forward sequential 

features selection starting from an empty set of features and individually adding 

features. The function chosen by the user, in this case, is a function that calculates the 
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error rate based on the SVM classification. The error rate is calculated based on In-

Sample data using 10-fold cross-validation. We will call this the "error rate function" in 

all following discussions. The ranking process will be applied multiple times round by 

round. In any given round, each possible combination that meets the conditions is 

evaluated by the error rate function, and an error rate based on In-Sample data will be 

returned. In that round, the one with lowest error rate will be chosen and the feature 

indices will be saved and will serve as the initial set for the next round. It will repeat 44 

times before finishing all evaluations and rankings. 

For example, in round 1, with the features and function as input, the number of features 

to choose from is set 1, and the initial evaluating starts with a starting set of 0 features. 

The algorithm then chooses feature 1 (feature one is not first ranking feature, but the 

feature with index 1 in the coding) each time, calculates the error rate after each 

selection, saves, initializes a starting set of features to empty, chooses feature 2. It then 

repeats 44 times until every possible combination is evaluated, saves 44 error rates, 

choosing the one with the lowest error rate, saves the index as the first ranking feature, 

and adds it into a starting set of features for the next round. As round 1 finishes, round 2 

starts. In round 2, with the same features and function as input, the number of features 

to choose is pre-set to be 2, and the initial evaluating begins with a starting set of first 

ranking features. The algorithm then chooses feature 1 in left 43 features to combine 

with the first ranking feature, calculates the error rate, saves, and initializes the starting 

set of features (a set only includes first ranking features). The algorithm then selects, 
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evaluates, saves again, and repeats 43 times until all possible combinations are 

evaluated, and all error rates are achieved. The combination with the lowest error rate 

is chosen, and the index with first and second ranking features is saved (the first ranking 

one is always the feature selected in round 1) and then added into the starting set of 

features for the next round. Round 2 ends and round 3 begins. This process repeats 

multiple times until round 44, with only the number of features to choose from 

changing. There is only one possible combination – a combination of all 44 features. 

After the last round (round 44 in this case), all 44 features are ranked.  

To compare with another wrapper method of feature selection, we need to figure out 

exactly which combination of features provides the highest prediction accuracy. With 

the ranking of features known, we need to decide how many features from top to 

bottom, if chosen, will yield the best prediction accuracy. Due to the nature of 10-fold 

cross-validation, the error rate here is not a real prediction error rate. It is not proper to 

use the error rate derived from a 10-fold cross validation as evaluation of prediction 

accuracy. The error rate is more like an evaluation of each feature itself and the feature 

selection method up to this point is more like a filter method than a wrapper method. 

For the aim of comparing the method with another wrapper method, another 

evaluation method is needed to be added to assess and find the combination, with the 

ranking known, that gives the highest In-Sample prediction accuracy. The following 

process is added to achieve the evaluation aim. 
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Following the previous output and according to the ranking, all 44 features are allocated 

into 44 groups: group 1 includes the first ranking feature, group 2 includes the first and 

second ranking features, group 3 includes the first, second, and third-ranking features 

and so on. Group 44, of course, includes all features. All the groups are evaluated by a 

"hold-out" cross-validation and will return an In-Sample prediction accuracy. The group 

with the highest In-Sample accuracy is the best combination of features selected by 

feature selection Strategy #1. 

It is an existing feature selection method from a previous paper. 

3.4.4 Experiment #2 – Strategy #2 

The code in the experiment #2 group will employ the AHCFS algorithm as its feature 

selection part. We will call this Strategy #2. It consists of two processes. The first one is 

like the one in Strategy #1, and we will call it Step #1 in Strategy #2. The second one is a 

conditional exhaustive search algorithm (Hill Climbing Scheme), and we will call it Step 

#2 in Strategy #2.  

To introduce Step #1 of Strategy #2, please refer to figure 3.2 – the flowchart of Strategy 

#1, which is also suitable for Step #1. There are two main differences here: 

1. In Strategy #1, it uses an error rate to choose the best combination and further 

decides the ranking. In this way, it can only rank one feature each time and 

needs to repeat 44 rounds to rank all 44 features. In Strategy #2, Step #1, it uses 

prediction accuracy (this is the same as the error rate to some degree. 

Theoretically, prediction accuracy equals one minus the error rate of each 
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feature itself to rank the feature. In this way, there is only one round of 

calculation needed to rank all features. 

2. The validation methods used to calculate the error rate/prediction accuracy are 

different. In Strategy #1, it uses a 10-fold cross validation to calculate the error 

rate. Due to the nature of 10-fold cross-validation, the validation process is less 

like a prediction process. In Strategy #2 Step #1, it uses hold-out cross-validation, 

which exactly the prediction process uses. The validation process on In-Sample 

data is more consistent with the final testing process on Out-of-Sample data and 

helps to improve the effectiveness of feature selection. 

Since it uses hold-out cross-validation, we need to break the In-Sample into "In-

Sample" and "Out-of-Sample" parts and attend that the code does not know the 

"Out-of-Sample" part while training the model. We can name the pseudo-In-

Sample and pseudo-Out-of-Sample or IS' and OOS' to distinguish from IS and 

OOS. 

To introduce Step #2 of Strategy #2, please refer to Figure 5.4 below before we start. 

Step #2 begins with the best combination of features and the highest IN-Sample 

accuracy from Step #1. Process #1 is an initial subtraction including indices of the best 

combination from Step #1, and the IS accuracy of the combination will be the input. It 

subtracts one feature each time, calculates the In-Sample prediction accuracy, repeats 

as many times as possible until all possible subtractions are complete, and gets all the 

In-Sample accuracies, determining the highest one. The process then compares the 

highest IS accuracy generated from the initial subtraction and the highest IS accuracy 
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from Step #1. If the one from the initial subtraction is higher, the indices of combination 

and the IS accuracy of the combination will be saved. If not, then the original Step #1 

combination and IS accuracy is passed to the next process. However, whether the IS 

accuracy is improved or not, process #1 ends and process #2 begins. 

Process #2 is an addition cycle, and the indices of the best combination from process #1 

and its IS accuracy will be the inputs. It adds one feature each time, calculates the IS 

accuracy, repeats until all 44 possible additions are complete, and saves all the IS 

accuracies while determining the highest IS accuracy. It then compares the highest IS 

accuracy with the one passed from process #1 (first subtraction) and decide. If the 

highest IS accuracy from this addition cycle is higher than the one passed from process 

#1, the indices of the new combination and its IS accuracy will be saved as new input 

and the addition cycle will be rerun from the beginning with the new input. Process #2 

then begins again. If it is not, the input of process #2 will become the output of process 

#2. When process #2 ends, process #3 begins. 

Process #3 is a subtraction cycle, similar to first subtraction, but a cycle. The inputs are 

indices of the best combination from process #2, and its IS accuracy. It subtracts one 

feature each time, calculates the IS accuracy, repeats until all possible subtractions are 

complete, determines all IS accuracies and finds the highest one. Process #3 then 

compares the highest IS accuracy after the subtraction cycle with the one passed from 

process #2. If the highest IS accuracy from this subtraction cycle is higher than the one 

passed from process #2, the indices of the new combination and IS accuracy of it will be 
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saved as new input and the subtraction cycle will be rerun with an updated highest IS 

accuracy and the related combination as input. If it is not, the input of process #3 will 

become the output as well. Process #3 then ends and returns a finishing mark. 

When process #2 ends and process #3 begins, the algorithm will count the number of 

times that process #3 repeated and check the repeat times when a finishing mark 

appears. While checking, if the algorithm finds out that process #3 is repeated once or 

more times, it will jump back to the beginning of process #2, then process #2 and #3 run 

one more round with the final output of the previous round as input. If in a round, the 

repeat time of process #3 equals zero while the finishing mark is reached, the entire 

feature selection is completed, and the final result is delivered. 
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Is there any IS accuracies after subtraction 
higher than the best IS accuracy now?

Initial Step:
Subtract 1 feature each time
Evaluate IS accuracy and save

Repeat till all possible subtractions are done

Formal Step 1:
Add 1 feature (from 1 to 44, repeated feature allowed)

Evaluate IS accuracy
Repeat till all possible additions are done

Best feature combination from Step 
#1

IS accuracy of the combination

Is there any IS accuracies after subtraction 
higher than the best IS accuracy now?

YES

Save the combination and the IS accuracy

Formal Step 2:
Subtract 1 feature

Evaluate IS accuracy
Repeat till all possible subtractions are done

Is there any IS accuracies after subtraction 
higher than the best IS accuracy now?

YES

Save the combination and the IS accuracy

NO

Does it cycle at least once in Step 2?

NO

YES

Best combination of features
Highest In-Sample accuracy

NO

Save the combination and the IS accuracy

Save the new combination
and its IS accuracy

 to next process

Pass Step #1 combination
and the IS accuracy

to next process

NO YES

Figure 3. 4 Flowchart of feature selection (Part 2)
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Chapter 4 Results and Discussion 

4.1 Effectiveness and stability of SVM based feature selection algorithm 

Each feature selection strategy/algorithm will finally generate the best combination of 

features after all, and each best combination is tested on testing (OOS) data – the 

unknown data – to evaluate the performance of each strategy. The three 

strategies/algorithms will be applied and tested on a different data period with the 

same supplementary parameters and settings. Two crucial metrics are measured to 

evaluate their performances: 

• The effectiveness of feature selection strategy/algorithm – the absolute and

relative percentage improvement on testing (OOS) prediction accuracy are the

KPIs for evaluating the effectiveness

• The stability of feature selection strategy/algorithm in different economic

environments – the fluctuation of feature selection effectiveness on different

data period and the rate of sudden crush cases are the KPIs for evaluating

stability.
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4.2 Scenario 1: Experiment based on the most recent data (2007–2017) 

Parameters and settings are as follows: 

1. Classification method – SVM

a. Kernel: Radial Basis Function

b. Normalization Method: zscore

c. Input features: 44, all come from Technical Indicators

2. Training and testing data

a. Total length: 10 years

b. Training/Testing (IS: OOS) Ratio: 7:3

c. Data type: daily S&P 500 ^GSPC, prices, and volume

d. Date: IS = 2007 – 2014; OOS = 2014 – 2017

3. Features selection:

a. Strategy #0 vs. Strategy #1 vs. Strategy #2

b. Strategy #2 Step #1: IS’: OOS’: 2:5; IS’ = 2007 – 2009, OOS’ = 2009 – 2014

4. Step size (prediction horizon): from one day to 60 days (2 months)

The following are the trending of the S&P500 ^GSPC from 2007-2017 and the separation 

line of training (known) data and testing (unknown) data (Figure 4.1), and the results 

from all three algorithms (Strategy #0, #1, #2) with varying step size (Table 4.1). Table 

4.1 shows the testing (OOS) prediction accuracies of each strategy with different step 

size and the number of features selected in each case in terms of weekly averages and 

standard deviations. The original results worksheet is too big to be presented here. The 
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step size varies from 1 to 60; in the weekly format, there are nine weekly averages. 

From Figure 4.1, the trending in the training part included an economic downside at the 

beginning and turned back to rise without big relapses. The trend of the testing part is 

consistent with the trend of the second half of the training part. Normally, if the training 

part is somewhat like the testing part, the prediction result will be better than it is in 

general cases. 

 

 Figure 4. 1 2007-2017 S&P500 ^GSPC trending 

From Table 4.1, the weekly average shows that the testing accuracies of Strategy #0 (no 

feature selection) increase when the step size increases from 55.55%, when the step 

size is smaller than 7 (1 week), to 69.05%, when the step size approaches 60 (2 months). 

Weekly standard deviations are less than 2% except for during the 1st week, meaning 

there is less fluctuation in testing accuracy with the increase of step size, which indicates 

stability. Compared with Strategy #0, Strategy #1 and Strategy #2 both show more 
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potential; however, some limitations are observed. Strategy #1 and #2 do not reach 

significance until the step size is more significant than three weeks. The highest testing 

accuracies from Strategy #1 and #2 are 71.57% (9th week, close to 60) and 73.31% (6th 

week, close to 40), both significantly higher than Strategy #0 does. 
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Step Size accuracy% # of selected features 
 44 

features 
Without FS ERFS AHCFS ERFS AHCFS 

Step #1 Step #2 Step #1 Step #2 
1st week 

Mean 55.66% 53.65% 53.65% 51.49% 7 2 4 

SD 5.04% 1.85% 3.32% 1.94% 3.83 0.71 2.12 
2nd week 

Mean 59.76% 57.24% 55.11% 57.25% 24 8 11 
SD 1.97% 3.07% 1.48% 2.82% 14.34 6.54 10.16 

3rd week 
Mean 60.61% 59.02% 54.11% 60.48% 22 9 20 

SD 1.66% 1.21% 2.79% 9.62% 6.22 4.95 10.23 
4th week 

Mean 61.62% 62.69% 62.14% 64.67% 9 9 16 
SD 2.53% 4.62% 5.03% 4.88% 3.49 5.31 8.14 

5th week 
Mean 64.01% 63.74% 66.93% 68.65% 22 12 15 

SD 2.22% 2.09% 3.54% 4.14% 10.16 1.48 3.27 
6th week 

Mean 66.40% 66.81% 67.73% 73.31% 22 15 20 
SD 1.08% 3.91% 4.82% 2.58% 15.07 0.43 0.83 

7th week 
Mean 67.46% 62.81% 66.27% 71.84% 18 10 22 

SD 1.35% 5.50% 2.11% 2.36% 13.06 3.49 5.17 
8th week 

Mean 67.19% 67.74% 68.12% 72.90% 8 13 26 
SD 1.17% 2.87% 4.46% 3.85% 0.83 2.45 11.43 

9th week 
Mean 69.05% 71.57% 66.40% 70.38% 6 8 11 

SD 1.55% 4.48% 3.49% 7.81% 2.49 4.26 5.26 

Table 4. 1 Testing (OOS) accuracies for 2007-2017 



43 

Using testing accuracies of Strategy #0 as a baseline, Table 4.2 reflects the absolute (abs) 

and relative (real) improvement on testing accuracies by Strategy #1 and Strategy #2 

(Step #1 and Step #2): 

Abs Real 

ERFS AHCFS ERFS AHCFS 

1st -2.01% -2.01% 4.16% 3.61% -3.61% -7.48%

2nd -2.52% -4.66% 2.52% 4.22% -7.79% -4.22%

3rd -1.59% -6.50% 0.13% 2.63% 10.73% -0.22%

4th 1.07% 0.52% 3.05% 1.73% 0.84% 4.94% 

5th -0.26% 2.92% 4.64% 0.41% 4.56% 7.25%

6th 0.40% 1.33% 6.91% 0.61% 2.00% 10.41% 

7th -4.65% -1.19% 4.38% 6.90% -1.77% 6.49%

8th 0.54% 0.93% 5.71% 0.81% 1.38% 8.50% 

9th 2.52% -2.66% 1.33% 3.65% -3.85% 1.92%

 Table 4. 2 Improvement by ERFS vs. by AHCFS (baseline: no feature selection) 

* Absolute improvement: 𝑆𝑆𝑡𝑡𝑎𝑎𝑦𝑦 = 𝑆𝑆#1/#2 − 𝑆𝑆#0,

* Absolute improvement: 𝑆𝑆𝑦𝑦𝑦𝑦𝑙𝑙 = (𝑆𝑆#1/#2 − 𝑆𝑆#0)/𝑆𝑆#0,

A#0 is testing accuracy from Strategy #0; 

 A#1/#2 is the testing accuracy from Strategy #1 or #2.
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Strategy #1 sometimes fails to improve testing accuracies. The rate of effectively 

improved cases is 31.8%, the highest improved accuracy is 2.52% (abs) & 3.65% (rel). 

Without FS vs. AHCFS 

Compare to Strategy #0 (Without FS), Strategy #2 (AHCFS) works much better. Strategy 

#2 outperforms 6 out of 9 weekly average. However, it still doesn't work out for small 

step sizes. The rate of effectively improved cases is 70.5%, and most cases are improved 

by using Strategy #2. The highest improved accuracy is 6.91% (abs) and 10.41% (rel). 

ERFS vs. AHCFS Step #1 & Step #2 

As two similar algorithms, we would like to see if Strategy #2 Step #1 works better than 

Strategy #1. The answer is positive. Based on Strategy #0’s results, Strategy #2 Step #1’s 

rate of effective cases is 38.6%, which is higher than Strategy #1’s, at 31.8%. 

Compared to Strategy #2 Step #2 (Strategy #2 Step #2 equals Strategy #2), the rates of 

effectively improved cases, using Strategy #0's results as a basis, are 31.8% vs. 70.5%. 

Numbers of improved weekly averages are 4/9 versus 6/9. The highest improvement is 

2.52% versus 6.91% (abs). Strategy #2 Step #2 is significantly better. 

Without FS vs. ERFS

Compared to Strategy #0 (Without FS), Strategy #1 (ERFS) is not very stable or effective.

in 1st,2nd, 3rd, 5th,6th, 5 out of 9 weekly average, Strategy #1 underperforms Strategy #0.

For small step sizes (<21 days), Strategy #1 does not work better, and for large step size,
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4.3 Scenario 2: Experiment based on data with sharp changes (2000–2010) 

Parameters and settings are as follows: 

1. Classification method – SVM

a. Kernel: Radial Basis Function

b. Normalization Method: zscore

c. Input features: 44, all come from Technical Indicators

2. Training and testing data

a. Total length: 10 years

b. Training/Testing (IS: OOS) Ratio: 7:3

c. Data type: daily S&P 500 ^GSPC, prices, and volume

d. Date: IS = 2000 – 2007; OOS = 2007 – 2010

3. Features selection:

a. Strategy #0 vs. Strategy #1 vs. Strategy #2

b. Strategy #2 Step #1: IS’: OOS’: 2:5; IS’ = 2000 – 2002, OOS’ = 2002 – 2007

4. Step size (prediction horizon): from one day to 60 days (2 months)

Figure 4.2 presents the trending of the S&P500 from 2000 to 2010, and Table 4.3 

presents the testing (OOS) accuracies based on the above piece of data (data period 

2000–2012). Compared to 2007-2017, 2000-2010 includes some similarities and some 

significant differences. The training part is similar in some respects: it begins with a 

downslope that lasts three years, and then shows a more gradual increase until the 

separation line. The testing part shows a sharp decrease - a significant drop due to the 
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subprime mortgage crisis, and then it picks up a little bit just after a crisis. It is a 

relatively difficult prediction since the testing (unknown) data begins with a big change 

in direction, which is inconsistent with training data. However, with the small rebound 

after 2009, the testing data looks like the training data in miniature. However, the 

trading volume during the drop (2009) in 2007-2017 fluctuates significantly while the 

trading volume during the drop (2003) in 2000-2010 fluctuates very slightly. 

 Figure 4. 2 2000-2010 S&P500 ^GSPC trending 

In general, Strategy #0 is ineffective. The testing accuracies vary from 49.51% to 55.37%, 

which is as ineffective as a guess with just 50% accuracy. The standard deviation is equal 

to or less than 2%, except for the 1st week, which means the fluctuation in testing 

accuracies is relatively small. The testing accuracies of Strategy #1 range from 49.16% to 

72.39%, except during the 9th week's 78.75% (a sudden high). The testing accuracies of 

Strategy #2 range from 50.47% to 77.02%. Both Strategy #1 and #2 are within the 
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standard deviation at around 4% (#1 – 3.64%, #2 – 3.98%), which shows a more 

substantial fluctuation in testing accuracies than Strategy #0. 

Step Size accuracy% # of selected features 
 44 
features 

Without FS ERFS AHCFS ERFS AHCFS 
Step #1 Step #2 Step #1 Step #2 

1st week 
Mean 49.51% 49.16% 50.66% 52.31% 6 5 7 
SD 3.80% 3.47% 1.35% 3.55% 4.06 5.50 7.23 
2nd week 
Mean 52.86% 50.08% 52.06% 50.47% 3 3 6 
SD 1.89% 5.00% 2.71% 2.70% 0.50 2.06 3.96 
3rd week 
Mean 54.31% 56.71% 57.64% 60.43% 12 6 10 
SD 2.16% 2.97% 5.96% 5.34% 15.08 3.64 4.71 
4th week 
Mean 55.37% 60.97% 60.70% 66.39% 6 13 19 
SD 1.63% 4.61% 5.07% 6.63% 1.09 1.30 3.54 
5th week 
Mean 53.51% 66.94% 70.12% 68.13% 22 12 15 
SD 2.12% 2.19% 2.83% 1.06% 10.16 1.48 3.27 
6th week 
Mean 51.39% 65.47% 68.93% 71.06% 6 9 14 
SD 0.82% 3.06% 4.03% 5.35% 1.87 2.69 2.86 
7th week 
Mean 50.00% 69.89% 70.96% 73.74% 7 8 14 
SD 0.84% 3.90% 1.93% 3.22% 1.09 1.66 0.83 
8th week 
Mean 49.93% 72.39% 67.21% 69.86% 8 12 16 
SD 1.25% 3.79% 4.25% 2.52% 3.08 2.12 1.41 
9th week 
Mean 50.07% 78.75% 73.84% 77.02% 7 12 13 
SD 2.26% 3.80% 4.37% 5.45% 1.66 3.20 2.28 

Table 4. 3 Testing (OOS) accuracies for 2000-2010 
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Using the testing accuracies of Strategy #0, Table 4.4 depicts the absolute and relative 

improvement on testing accuracies by Strategy #1 and Strategy #2 (Step #1 and Step 

#2): 

 
Abs 

  
Real 

  

 
ERFS AHCFS 

 
ERFS AHCFS 

 
1st  -0.35% 1.15% 2.81% -0.70% 2.33% 5.67% 

2nd  -2.78% -0.80% -2.39% -5.27% -1.52% -4.52% 

3rd  2.40% 3.32% 6.12% 4.42% 6.12% 11.27% 

4th  5.59% 5.32% 11.01% 10.10% 9.61% 19.89% 

5th  13.42% 16.61% 14.61% 25.08% 31.03% 27.31% 

6th  14.07% 17.54% 19.67% 27.39% 34.13% 38.27% 

7th  19.89% 20.96% 23.74% 39.79% 41.91% 47.49% 

8th  22.45% 17.27% 19.92% 44.97% 34.59% 39.90% 

9th  28.68% 23.77% 26.95% 57.29% 47.46% 53.82% 

       

Table 4. 4 Improvement by ERFS vs. by AHCFS (baseline: no feature selection) 

* Absolute improvement: 𝑆𝑆𝑡𝑡𝑎𝑎𝑦𝑦 = 𝑆𝑆#1/#2 − 𝑆𝑆#0, 

* Absolute improvement: 𝑆𝑆𝑦𝑦𝑦𝑦𝑙𝑙 = (𝑆𝑆#1/#2 − 𝑆𝑆#0)/𝑆𝑆#0, 

𝑆𝑆#0 is testing accuracy from Strategy #0; 

𝑆𝑆#1/#2 is the testing accuracy from Strategy #1 or #2.  
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Without FS vs. ERFS 

Compared to Strategy #0, Strategy #1 is relatively effective but slightly less stable. In 7 

of 9 weekly averages, Strategy #1 outperforms Strategy #0. However, it still does not 

work out for small step sizes and works better in Scenario 1 (only two weekly averages 

underperform in this case compared to 3 weekly averages underperforming in Scenario 

1).  The rate of effectively improved cases is 95.5%, and the highest improved accuracy 

is 28.68% (abs) & 57.29% (rel). 

Without FS vs. AHCFS 

Compared to Strategy #0, Strategy #2 exhibits better performance in effectiveness, but 

not instability. In 8 out of 9 weekly averages, Strategy #2 outperforms Strategy #0. The 

rate of effectively improved cases is 84.1%, and the highest accuracy is 26.95% (abs) and 

53.82% (rel). 

ERFS vs. AHCFS Step #1 & #2  

Compared with Strategy #1, Strategy #2 Step #1 outperforms 6 out of 9 weekly 

averages. However, the rate of effectively improved cases, using Strategy #0's results as 

the basis, is 84.1%, which is slightly lower than Strategy #1. 

Strategy #2 Step #2 (Strategy #2 Step#2 equals to Strategy #2, only when we mention 

Strategy #1 do we use Strategy #2 Step #2 instead of Strategy #2) outperforms Strategy 

#1 in terms of rate of effectively improved cases (84.1% vs. 84.1%) and number of 

improved weekly averages (8/9 vs. 7/9). However, the highest improvement of Strategy 

#2 is smaller. 
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4.4 Scenario 3: Experiment based on older data (1992–2002) 

Parameters and settings are as follows: 

1. Classification method – SVM  

a. Kernel: Radial Basis Function 

b. Normalization Method: zscore 

c. Input features: 44, all come from Technical Indicators 

2. Training and testing data 

a. Total length: 10 years 

b. Training/Testing (IS: OOS) Ratio: 7:3 

c. Data type: daily S&P 500 ^GSPC, prices, and volume 

d. Date: IS = 1992 – 1999; OOS = 1999 – 2002 

3. Features selection:  

a. Strategy #0 vs. Strategy #1 vs. Strategy #2 

b. Strategy #2 Step #1: IS’:OOS’: 2:5; IS’ = 1992 – 1994, OOS’ = 1994 – 1999 

4. Step size (prediction horizon): from one day to 60 days (2 months) 

Figure 4.3 shows the trending of the S&P500 from 1992 to 2002, and Table 4.5 is the 

testing (OOS) accuracies based on the above data (data period 1992-2002). The trend 

both in the training and testing parts are quite different from those in Scenarios 1 and 2. 

The training part consists of two pieces of trends – the first piece is a slow increase and 

the second piece is speeded increase. The testing part also consists of two pieces of 

trends – the first piece is a sharp increase which is consistent with another piece in the 
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training part and the second piece is a significant decrease. Overall, it is correct to say 

that the pattern of training data is quite different from that of the testing data. 

 Figure 4. 3 1992-2002 S&P500 ^GSPC trending 

In general, Strategy #0 doesn't work well in this case either. Its testing accuracies vary 

from 46.20% to 50.00%, which is roughly equal to guess. It is ineffective. The weekly 

standard deviation is about 2%. Testing accuracies of Strategy #1 vary from 49.94% to 

63.52%, which is significant compared with Strategy #0. Its weekly standard deviation is 

about 4.5%. The testing accuracies of Strategy #2 vary from 49.68% to 75.16%, which is 

better than Strategy #1. Its weekly standard deviation is about 2.5%. 
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Step Size accuracy% # of selected features 

 44 features Without FS ERFS AHCFS ERFS AHCFS 
Step #1 Step #2 Step #1 Step #2 

1st week 
Mean 50.00% 51.30% 51.80% 49.68% 13 7 11 
SD 3.12% 4.41% 5.29% 1.52% 15.64 5.31 8.04 
2nd week 
Mean 49.87% 50.79% 53.80% 54.06% 15 13 19 
SD 1.15% 2.21% 4.10% 3.71% 6.58 1.22 1.30 
3rd week 
Mean 49.15% 49.94% 60.05% 60.18% 17 13 18 
SD 2.19% 2.79% 0.79% 3.90% 4.76 2.35 2.55 
4th week 
Mean 47.63% 57.75% 64.43% 64.83% 10 12 14 
SD 1.99% 4.25% 3.77% 1.44% 1.12 3.50 2.18 
5th week 
Mean 49.08% 58.26% 68.50% 68.25% 10 11 15 
SD 1.08% 4.03% 3.67% 4.12% 2.77 2.83 2.17 
6th week 
Mean 47.64% 63.52% 71.25% 71.65% 8 11 13 
SD 1.37% 2.43% 3.36% 1.60% 1.66 1.80 2.86 
7th week 
Mean 47.17% 61.22% 70.43% 75.16% 9 11 15 
SD 2.24% 7.55% 5.08% 1.13% 3.77 2.49 3.91 
8th week 
Mean 46.20% 56.31% 72.43% 71.52% 12 9 13 
SD 1.10% 7.03% 4.81% 3.56% 2.92 1.30 1.58 
9th week 
Mean 46.58% 62.99% 67.98% 72.17% 9 10 11 
SD 1.57% 5.01% 4.18% 2.33% 1.12 2.92 3.20 

Table 4. 5 Testing (OOS) accuracies for 1992-2002 
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Using the testing accuracies of Strategy #0, Table 4.6 depicts the absolute and relative 

improvement on testing accuracies by Strategy #1 and Strategy #2 (Step #1 and Step 

#2): 

 
Abs 

  
Real 

  

 
ERFS AHCFS 

 
ERFS AHCFS 

 
1st 1.30% 1.80% -0.33% 2.60% 3.60% -0.66% 

2nd 0.92% 3.93% 4.19% 1.84% 7.87% 8.40% 

3rd 0.79% 10.91% 11.03% 1.60% 22.19% 22.44% 

4th 10.12% 16.79% 17.19% 21.24% 35.26% 36.09% 

5th 9.18% 19.41% 19.17% 18.71% 39.56% 39.05% 

6th 15.88% 23.61% 24.01% 33.35% 49.57% 50.41% 

7th 14.05% 23.26% 27.99% 29.78% 49.30% 59.33% 

8th 10.11% 26.23% 25.32% 21.88% 56.78% 54.80% 

9th 16.41% 21.39% 25.59% 35.22% 45.92% 54.93% 

Table 4. 6 Improvement by ERFS vs. by AHCFS (baseline: no feature selection) 

* Absolute improvement: 𝑆𝑆𝑡𝑡𝑎𝑎𝑦𝑦 = 𝑆𝑆#1/#2 − 𝑆𝑆#0, 

* Absolute improvement: 𝑆𝑆𝑦𝑦𝑦𝑦𝑙𝑙 = (𝑆𝑆#1/#2 − 𝑆𝑆#0)/𝑆𝑆#0, 

 𝑆𝑆#0 is the testing accuracy from Strategy #0; 

𝑆𝑆#1/#2 is the testing accuracy from Strategy #1 or #2.  
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Without FS vs. ERFS 

In 9 out of 9 weekly averages, Strategy #1 outperforms Strategy #0, however, for small 

step sizes (1st, 2nd, third weeks), the improvement is so insignificant (1.3%, 0.92%, 0.79%) 

that it can be disregarded. The rate of effectively improved cases is 88.6%; the highest 

testing accuracy improvement is 16.41% (abs) and 35.22% (rel).  

Without FS vs. AHCFS 

In 8 out of 9 weekly averages, Strategy #2 outperforms Strategy #0. The 1st week is 

below average insignificantly (-0.33%) as well. The 2nd week's improvement is slightly 

insignificant (4.19%) as well. Still, they do not work well for the small step sizes. The rate 

of effectively improved cases is 93.18%, and the highest improvement is 27.99% (abs) 

and 59.33% (rel). 

ERFS vs. AHCFS Step #1 & #2 

Compared with Strategy #2 Step #1, Strategy #1 provides a lower rate of effective 

improved cases (88.6% vs 90.9%), lower highest improvement (16.41% abs vs. 26.23% 

abs), and larger weekly standard deviation (4.41% vs. 3.89%). 

Compared with Strategy #2 Step #2, Strategy #1 provides a lower rate of effectively 

improved cases (88.6% vs. 93.2%), lower highest improvement (16.41% abs vs. 27.99% 

abs), and a more substantial weekly standard deviation (4.41% vs. 2.59%). 

Both Strategy #2 Step #1 and #2 outperform Strategy #1 in this case. 
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4.5 Scenario 4: Experiment based on much older data (1960-1970) 

Parameters and settings are as follows: 

1. Classification method – SVM  

a. Kernel: Radial Basis Function 

b. Normalization Method: zscore 

c. Input features: 44, all come from Technical Indicators 

2. Training and testing data 

a. Total length: 10 years 

b. Training/Testing (IS: OOS) Ratio: 7:3 

c. Data type: daily S&P 500 ^GSPC, prices, and volume 

d. Date: IS = 2000 – 2007; OOS = 2007 – 2010 

3. Features selection:  

a. Strategy #0 vs. Strategy #1 vs. Strategy #2 

b. Strategy #2 Step #1: IS’: OOS’: 2:5; IS’ = 1960 – 1967, OOS’ = 1967 – 1970 

4. Step size (prediction horizon): from one day to 60 days (2 months) 

Figure 4.4 demonstrates the trending of the S&P500 from 1960 to 1970, and Table 4.7 

reflects the testing (OOS) accuracies based on the above data. The training part is an 

increase in general with a sudden drop due to “Flash Crash” in 1962. The testing part 

also generally increases with a sudden drop due to the 1967 “Sterling Crisis” and a weak 

end.  
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Figure 4. 4 1960-1970 S&P500 ^GSPC trending 

In general, Strategy #0 works better than it does in the last case; its testing accuracies 

vary from 53.58% to 60.03%. Its weekly standard deviation is about 1.5%. Strategy #1's 

testing accuracies vary from 54.57% to 75.83%; its weekly standard deviation is about 

4%. Strategy #2's testing accuracies vary from 54.56% to 82.45% (the highest). Its weekly 

standard deviation is about 3.5%, which is lower than Strategy #1's. 
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Step Size accuracy%       # of selected features 
 44 
features Without FS ERFS AHCFS  ERFS AHCFS   

    Step #1 Step #2  Step #1 Step #2 
1st week               
Mean 60.03% 60.70% 57.54% 54.56% 37 4 6 
SD 1.23% 2.21% 5.12% 3.55% 7.84 3.67 3.77 
2nd week               
Mean 58.30% 54.57% 56.98% 56.04% 25 4 7 
SD 0.82% 7.16% 4.53% 4.62% 10.21 3.70 3.11 
3rd week               
Mean 57.77% 57.37% 62.02% 61.36% 24 9 14 
SD 1.18% 1.68% 2.50% 4.24% 15.12 3.00 5.41 
4th week               
Mean 58.70% 62.95% 65.74% 75.04% 8 11 17 
SD 1.40% 4.25% 4.73% 2.47% 0.87 3.35 2.55 
5th week               
Mean 58.56% 66.93% 67.07% 74.24% 9 12 16 
SD 1.16% 4.29% 5.64% 3.43% 3.77 2.50 5.12 
6th week               
Mean 55.78% 69.45% 71.72% 79.81% 7 9 13 
SD 0.90% 3.97% 2.90% 3.76% 2.28 1.66 1.58 
7th week               
Mean 56.70% 75.83% 81.27% 81.27% 6 13 17 
SD 1.46% 2.48% 3.21% 3.54% 1.09 2.29 2.69 
8th week               
Mean 56.78% 74.34% 82.17% 82.45% 6 13 18 
SD 1.78% 6.33% 3.22% 2.62% 1.48 1.87 1.22 
9th week               
Mean 53.38% 74.37% 73.70% 79.94% 7 11 15 
SD 1.91% 4.54% 3.51% 3.02% 3.96 2.95 4.09 

 

Table 4. 7 Testing (OOS) accuracies for 1960-1970 
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Using the testing accuracies of Strategy #0, Table 4.8 depicts the absolute and relative 

improvement on testing accuracies by Strategy #1 and Strategy #2 (Step #1 and Step 

#2): 

 
Abs 

  
Real 

  

 
ERFS AHCFS 

 
ERFS AHCFS 

 
1st 0.66% -2.49% -5.47% 1.10% -4.15% -9.11% 

2nd -3.73% -1.32% -2.26% -6.40% -2.27% -3.87% 

3rd -0.40% 4.25% 3.59% -0.69% 7.36% 6.22% 

4th 4.25% 7.05% 16.34% 7.25% 12.00% 27.84% 

5th 8.37% 8.50% 15.68% 14.29% 14.52% 26.77% 

6th 13.68% 15.94% 24.03% 24.52% 28.58% 43.09% 

7th 19.13% 24.57% 24.57% 33.74% 43.33% 43.33% 

8th 17.56% 25.40% 25.68% 30.93% 44.73% 45.22% 

9th 20.99% 20.32% 26.56% 39.32% 38.06% 49.75% 

Table 4. 8 Improvement by ERFS vs. by AHCFS (baseline: no feature selection) 

Without FS vs. ERFS 

In 7 out of 9 weekly averages, Strategy #1 outperforms Strategy #0, and the same 

situation occurs. Although improvements appear in small step sizes, the improvements 

are not significant. The rate of effectively improved cases is 75%, and the highest testing 

accuracy improvement is 20.99% (abs) and 39.32% (rel).  

Without FS vs. AHCFS 

In 7 out of 9 weekly averages, Strategy #2 outperforms Strategy #0; its performance 

becomes better when step size becomes more substantial. The rate of effectively 
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improved cases is 81.8%, and the highest testing accuracy improvement is 26.56% (abs) 

and 49.75% (rel). 

ERFS vs. AHCFS Step #1 & Step #2 

Compared with Strategy #2 Step #1, Strategy #1 gives a lower rate of effective improved 

cases (75% vs. 86.3%) lower highest improvement (20.99% abs vs. 25.40% abs), and 

larger weekly standard deviation (4.10% vs. 3.93%). 

Compared with Strategy #2 Step #2, Strategy #1 gives a lower rate of effectively 

improved cases (75% vs. 81.8%), lower highest improvement (20.99% abs vs. 26.56% 

abs), and more substantial weekly standard deviation (4.10% vs. 3.47%). 

Both Strategy #2 Step #1 and #2 outperform Strategy #1 in this case. 
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4.6 Others 

One thing needs to be pointed out is that the SVM model without any feature selection 

algorithm may not get well trained on a 10-year-long piece of data. That means the 

results from Strategy #0 (Without FS) may suffer from an underfitting situation. The 

extended experiment on the case of FS Strategy #0 (Without FS) suggests that the SVM 

prediction model may need more data – a longer piece of data – to be sufficiently 

trained to give stabilized predicting results, that somehow explains the significant 

performance differences of Strategy #0 (Without FS) between in Scenario #1 and 

Scenarios #2, 3, 4.  
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Chapter 5 Conclusion and Future Work 

This work compared 3 SVM based strategies (algorithms) – #0: no FS, #1 ERFS, and #2 

AHCFS on predicting market trends (up or down) of the S&P 500. Input data consists of 

44 features drawn from 24 technical indicators. Additionally, several data groups are 

collected and experimented within four different periods during which closing price 

trends and trading volume trends are dissimilar. The prediction horizon is an 

independent variable ranging from 1 to 60. 

When the prediction horizon is smaller than two weeks (< 14 days), the prediction 

accuracy difference from the three strategies is not significant. They are just around 

50%, and any of these strategies can outperform others. When the prediction horizon is 

more significant than three weeks (> 21 days), our target strategy - #2 always 

outperforms the other two strategies. When the prediction horizon is between 2 weeks 

and three weeks (14 days to 21 days), there is 1 case out of every four that our target 

(strategy #2) does not significantly outperform (prediction accuracy is like) the other 

two strategies. (*Due to space constraints, there is no detailed predicting of the results 

given above. Instead, the weekly averages are shown as a summary to reduce the size of 

the results table. All the detailed predicting results are listed in Appendix A.) 

As a conclusion, our target #2 strategy—a prediction accuracy based hill climbing 

feature selection algorithm (AHCFS)—works significantly better when the prediction 

horizon exceeds three weeks (21 days). 
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The average numbers of features selected by strategy #2 after a prediction horizon 

larger than three weeks (21 days) are between 10 and 20 (except in scenario 1) and 

have smaller fluctuation, meaning higher stability compared to strategies #0 and #1. 

SVM as a favorite machine learning technique is not the only tool we can use. This 

algorithm can be tested based on other supervised machine learning techniques to fit 

them better. Moreover, the other non-technical indicators, like macroeconomic 

indicators, are not tested in this work. The mix of different kind of indicators could a 

possible way to improve the prediction model. Also, the parameters of indicators could 

be further optimized to improve the prediction results. 

 

  



 

63 
 

References 

 

[1]  F. X. Diebold and K. Yilmaz, Financial and Macroeconomic Connectedness: A 

Network Approach to Measurement and Monitoring, New York: Oxford 

University Press, 2015.  

[2]  J. Chen, "The Story of Technical Analysis: From the Japanese Rice Markets to Dow 

Theory to Automated Trading," in Essentials of Technical Analysis for Financial 

Markets, Hoboken, New Jersey., Wiley & Sons, Inc., 2010, pp. 11-24. 

[3]  K. G. Richards, Sideways: Using the Power of Technical Analysis to Profit in 

Uncertain Times, Toronto and New York: BPS Books, 2011.  

[4]  Investopedia, "Technical Analysis," INVESTOPEDIA, 05 05 2016. [Online]. 

Available: https://www.investopedia.com/exam-guide/series-7/portfolio-

management/technical-

analysis.asp?ad=dirN&qo=investopediaSiteSearch&qsrc=0&o=40186. 

[5]  T. N. Bulkowski, "Fundamental Analysis Summary," in Fundamental Analysis and 

Position Trading, Hoboken, John Wiley & Sons, Inc., 2012, pp. 95-99. 

[6]  R. Rhea, The Dow Theory, www.snowballpublishing.com, 2013.  



 

64 
 

[7]  S. Matasyan, "The Dow Theory in Technical Analysis," 2013. [Online]. Available: 

http://www.ifcmarkets.com/en/forex-trading-books/dow-theory-pdf. 

[8]  J. V. Bergen, "Efficient Market Hypothesis: Is The Stock Market Efficient?," 

INVESTOPEDIA, 17 02 2004. [Online]. Available: 

https://www.investopedia.com/articles/basics/04/022004.asp. 

[9]  E. F. Fama, "Random Walks in Stock Market Prices," 1995. [Online]. Available: 

https://www.cfapubs.org/doi/pdf/10.2469/faj.v51.n1.1861. 

[10]  A. Plastun, "Behavioral Finance Market Hypotheses," Oxford Scholarship Online, 

2017.  

[11]  M. Santos, "Adaptive Markets Hypothesis: An Evolutionary View About the 

Relationship Between Environmental Factors and Market Structure," SSRN 

Electronic Journal, 2015.  

[12]  P. Rodriguez and S. Rivero, "Using Machine Learning Algorithms To Find Patterns 

in Stock Prices," SSRN Electronic Journal, 2006.  

[13]  R. Dash and P. Dash, "A Hybrid Stock Trading Framework Integrating Technical 

Analysis with Machine Learning Techniques," The Journal of Finance and Data 

Science, vol. 2, no. 1, pp. 42-57, 2016.  



 

65 
 

[14]  Y. Shynkevich, T. Mcginnity, S. Coleman, Y. Li and A. Belatreche, "Forecasting 

stock price directional movements using technical indicators: Investigating 

window size effects on one-step-ahead forecasting," in 2014 IEEE Conference on 

Computational Intelligence for Financial Engineering & Economics (CIFEr), 

London, UK, 2014.  

[15]  S. Niaki and S. Hoseinzade, "Forecasting S&P 500 Index Using Artificial Neural 

Networks and Design of Experiments," Journal of Industrial Engineering 

International, vol. 9, no. 1, 2013.  

[16]  O. Sezer, A. Ozbayoglu and E. Dogdu, "An Artificial Neural Network-based Stock 

Trading System Using Technical Analysis and Big Data Framework," in The Annual 

ACM Southeast Conference ACMSE 2017, Kennesaw, Georgia, 2017.  

[17]  P. Kantavat and B. Kijsirikul, "Combining Technical Analysis and Support Vector 

Machine For Stock Trading," in 2008 Eighth International Conference on Hybrid 

Intelligent System, Barcelona, Spain, 2008.  

[18]  Y. Lin, H. Guo and J. Hu, "An SVM-based Approach For Stock Market Trend 

Prediction," in The 2013 International Joint Conference on Neural Networks 

(IJCNN), Dallas, 2013.  

[19]  S. B. Achelis, Technical analysis from A to Z, New York: McGraw-Hill, 2000.  



 

66 
 

[20]  I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature selection," 

Journal of Machine Learning Research, no. 3, pp. 1157-1182, 2003.  

[21]  L. Ladha and T. Deepa, "Feature Selection Methods and Algorithms," 

International Journal on Computer Science and Engineering (IJCSE), vol. 3, no. 5, 

pp. 1787-1797, 2011.  

[22]  D. W. Aha and R. L. Bankert, "A Comparative Evaluation of Sequential Feature 

Selection Algorithms," in Learning from Data - Lecture Notes in Statistics vol. 112, 

New York, Springer, 1996, pp. 199-206. 

[23]  B. Boser, I. Guyon and V. Vapnik, "A Training Algorithm For Optimal Margin 

Classifiers," in COLT92 5th Annual Workshop on Computational Learning Theory, 

New York, 1992.  

[24]  V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, INC., 1998.  

[25]  I. Steinwart and A. Christmann, "Introduction," in Support Vector Machine 

(Information Science and Statistics), New York, Springer, 2008, pp. 01-19. 

[26]  T. Hastie, R. Tibshirani and J. Friedman, "Overview of Supervised Learning," in 

Elements of Statistical Learning 1st edition, New York, Springer, 2016, pp. 9-39. 



 

67 
 

[27]  N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines 

and Other Kernel-based Learning Methods, Cambridge: Cambridge University 

Press, 2000.  

[28]  E. S. Youn, "Feature Selection In Support Vector Machines," 2002.  

[29]  S. Grigalunas, "List of Technical Indicators," Trading Technologies, 15 10 2015. 

[Online]. Available: https://www.tradingtechnologies.com/help/x-

study/technical-indicator-definitions/list-of-technical-indicators/. 

[30]  StockCharts, "Technical Indicators and Overlays," StockCharts.com, 09 10 2017. 

[Online]. Available: 

http://stockcharts.com/school/doku.php?id=chart_school%3Atechnical_indicato

rs . 

[31]  A. T. Alali, "Application of Support Vector Machine in Predicting the Market’s 

Monthly Trend Direction," 2013.  

[32]  S. Abe, "Feature Selection and Extraction," in Support Vector Machines for 

Pattern Classification (Advances in Computer Vision and Pattern Recognition) 1st 

edition, Springer, 2005, pp. 189-199. 

 

 



 

68 
 

Appendix A Summary Data Sheets 

*Due to the size of data, detailed data can only be presented in digital format. 

2007-2017 

Step 
Size(days) 

Without FS Simple Improved       

 44 
features 

accuracy% 
 

Step #1 Step #2 # of 
selected 
features 

# of 
selected 
features 

# of 
selected 
features 

1 47.02% 54.30% 58.94% 49.01% 2 1 2 
2 59.33% 52.67% 54.00% 52.00% 11 2 7 
3 57.33% 51.33% 50.67% 50.67% 10 2 2 
4 58.94% 56.29% 50.99% 54.30% 4 3 5 
Mean 55.66% 53.65% 53.65% 51.49% 7 2 4 
Stddev 5.0425% 1.8533% 3.3192% 1.9382% 3.83 0.71 2.12 
7 56.29% 54.97% 54.97% 54.97% 1 8 8 
8 58.94% 52.32% 57.62% 55.63% 3 13 17 
9 60.67% 59.33% 54.00% 57.33% 34 1 2 
10 61.33% 60.00% 53.33% 62.67% 40 15 25 
11 61.59% 59.60% 55.63% 55.63% 19 1 1 
Mean 59.76% 57.24% 55.11% 57.25% 24 8 11 
Stddev 1.9671% 3.0652% 1.4804% 2.8218% 14.34 6.54 10.16 
14 62.25% 57.62% 49.01% 45.03% 7 10 14 
15 61.59% 58.28% 56.95% 54.97% 25 12 15 
16 62.00% 60.67% 54.00% 63.33% 13 1 7 
17 58.28% 60.26% 54.30% 66.23% 30 14 35 
18 58.94% 58.28% 56.29% 72.85% 21 9 21 
Mean 60.61% 59.02% 54.11% 60.48% 22 9 20 
Stddev 1.6620% 1.2111% 2.7907% 9.6240% 6.22 4.95 10.23 
21 63.58% 63.58% 58.94% 58.94% 44 3 6 
22 60.00% 59.33% 55.33% 58.67% 6 1 4 
23 65.33% 71.33% 60.67% 67.33% 15 7 15 
24 60.93% 58.94% 66.89% 68.21% 9 12 27 
25 58.28% 60.26% 68.87% 70.20% 7 15 16 
Mean 61.62% 62.69% 62.14% 64.67% 9 9 16 
Stddev 2.5254% 4.6195% 5.0324% 4.8800% 3.49 5.31 8.14 
28 63.58% 62.25% 69.54% 66.89% 14 15 23 
29 60.67% 60.67% 60.00% 61.33% 33 14 18 
30 66.67% 66.67% 69.33% 70.67% 22 12 12 
31 66.23% 64.24% 68.21% 72.19% 6 10 19 
32 62.91% 64.90% 67.55% 72.19% 28 13 12 
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Mean 64.01% 63.74% 66.93% 68.65% 22 12 15 
Stddev 2.2151% 2.0891% 3.5390% 4.1402% 10.16 1.48 3.27 
35 64.90% 59.60% 71.52% 72.19% 5 12 20 
36 66.00% 66.67% 60.67% 72.67% 7 15 21 
37 66.67% 71.33% 73.33% 78.00% 7 15 21 
38 68.21% 68.21% 63.58% 73.51% 39 14 20 
39 66.23% 68.21% 69.54% 70.20% 35 15 19 
Mean 66.40% 66.81% 67.73% 73.31% 22 15 20 
Stddev 1.0764% 3.9079% 4.8207% 2.5844% 15.07 0.43 0.83 
42 68.87% 61.59% 68.21% 72.85% 6 4 9 
43 65.33% 53.33% 64.00% 68.67% 6 8 19 
44 66.67% 64.67% 68.67% 70.00% 5 14 29 
45 67.55% 64.24% 63.58% 75.50% 27 12 23 
46 68.87% 70.20% 66.89% 72.19% 35 5 15 
Mean 67.46% 62.81% 66.27% 71.84% 18 10 22 
Stddev 1.3535% 5.5023% 2.1122% 2.3648% 13.06 3.49 5.17 
49 66.00% 72.67% 66.67% 66.67% 7 11 19 
50 66.00% 68.67% 66.67% 76.00% 7 15 45 
51 68.21% 67.55% 61.59% 70.86% 7 9 21 
52 68.87% 64.90% 74.83% 77.48% 9 15 22 
53 66.89% 64.90% 70.86% 73.51% 8 13 15 
Mean 67.19% 67.74% 68.12% 72.90% 8 13 26 
Stddev 1.1666% 2.8737% 4.4603% 3.8471% 0.83 2.45 11.43 
56 70.00% 66.67% 64.00% 64.67% 3 8 15 
57 66.00% 70.67% 67.33% 72.67% 5 10 13 
58 69.54% 78.81% 70.20% 78.15% 10 10 12 
59 70.20% 74.17% 60.93% 58.28% 4 1 2 
60 69.54% 67.55% 69.54% 78.15% 4 12 16 
Mean 69.05% 71.57% 66.40% 70.38% 6 8 11 
Stddev 1.5490% 4.4762% 3.4886% 7.8095% 2.49 4.26 5.26 
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2000-2010 

Step 
Size(days) 

Without FS Simple Improved       

 44 
features 

accuracy% 
 

Step #1 Step #2 # of 
selected 
features 

# of 
selected 
features 

# of 
selected 
features 

1 48.34% 54.30% 52.98% 56.29% 2 1 2 
2 47.02% 49.67% 49.67% 54.97% 2 2 3 
3 56.00% 44.67% 50.00% 47.33% 9 1 2 
4 46.67% 48.00% 50.00% 50.67% 11 14 19 
Mean 49.51% 49.16% 50.66% 52.31% 6 5 7 
Stddev 3.8001% 3.4735% 1.3450% 3.5489% 4.06 5.50 7.23 
7 52.98% 50.99% 53.64% 50.33% 5 1 4 
8 50.33% 51.66% 47.02% 49.01% 2 1 3 
9 51.66% 40.40% 54.97% 46.36% 3 6 13 
10 56.00% 52.67% 52.67% 54.00% 2 2 4 
11 53.33% 54.67% 52.00% 52.67% 3 1 5 
Mean 52.86% 50.08% 52.06% 50.47% 3 3 6 
Stddev 1.8944% 4.9960% 2.7103% 2.6966% 0.50 2.06 3.96 
14 52.32% 51.66% 51.66% 54.97% 1 1 2 
15 56.95% 56.95% 56.95% 53.64% 1 1 2 
16 52.67% 60.67% 50.67% 61.33% 4 3 13 
17 52.67% 56.00% 64.67% 65.33% 5 8 10 
18 56.95% 58.28% 64.24% 66.89% 38 10 14 
Mean 54.31% 56.71% 57.64% 60.43% 12 6 10 
Stddev 2.1609% 2.9740% 5.9636% 5.3381% 15.08 3.64 4.71 
21 57.62% 52.98% 52.98% 70.86% 1 1 15 
22 56.29% 62.91% 60.26% 69.54% 4 11 13 
23 55.33% 66.00% 67.33% 70.67% 7 14 20 
24 52.67% 64.00% 58.00% 53.33% 6 14 22 
25 54.97% 58.94% 64.90% 67.55% 6 14 21 
Mean 55.37% 60.97% 60.70% 66.39% 6 13 19 
Stddev 1.6349% 4.6091% 5.0739% 6.6333% 1.09 1.30 3.54 
28 54.97% 64.90% 70.86% 66.23% 9 13 18 
29 54.30% 64.24% 66.89% 68.21% 7 8 21 
30 49.33% 66.67% 74.67% 68.00% 7 13 18 
31 54.00% 69.33% 67.33% 69.33% 4 10 14 
32 54.97% 69.54% 70.86% 68.87% 5 9 12 
Mean 53.51% 66.94% 70.12% 68.13% 6 10 16 
Stddev 2.1242% 2.1910% 2.8279% 1.0634% 1.30 1.87 3.49 
35 51.66% 61.59% 70.20% 74.83% 4 7 18 
36 52.32% 70.20% 66.23% 64.90% 8 7 12 
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37 50.00% 63.33% 74.67% 76.67% 7 8 16 
38 52.00% 64.67% 70.67% 74.67% 6 6 10 
39 50.99% 67.55% 62.91% 64.24% 3 13 17 
Mean 51.39% 65.47% 68.93% 71.06% 6 9 14 
Stddev 0.8238% 3.0645% 4.0260% 5.3509% 1.87 2.69 2.86 
42 49.67% 70.20% 70.86% 70.20% 5 7 12 
43 50.99% 72.85% 73.51% 69.54% 5 8 14 
44 49.33% 69.33% 71.33% 75.33% 7 10 13 
45 49.01% 62.91% 67.55% 76.82% 8 6 13 
46 50.99% 74.17% 71.52% 76.82% 7 6 15 
Mean 50.00% 69.89% 70.96% 73.74% 7 8 14 
Stddev 0.8384% 3.9027% 1.9287% 3.2167% 1.09 1.66 0.83 
49 49.01% 72.19% 64.24% 70.86% 6 8 16 
50 49.33% 76.00% 70.00% 70.67% 13 9 14 
51 50.00% 76.67% 70.67% 72.00% 6 11 16 
52 49.01% 70.86% 60.26% 64.90% 8 14 18 
53 52.32% 66.23% 70.86% 70.86% 5 14 16 
Mean 49.93% 72.39% 67.21% 69.86% 8 12 16 
Stddev 1.2464% 3.7870% 4.2456% 2.5231% 3.08 2.12 1.41 
56 46.36% 72.19% 78.81% 81.46% 6 6 13 
57 53.33% 81.33% 78.00% 80.00% 8 10 13 
58 50.00% 78.00% 68.00% 68.00% 8 15 17 
59 50.99% 83.44% 69.54% 73.51% 6 14 11 
60 49.67% 78.81% 74.83% 82.12% 4 7 12 
Mean 50.07% 78.75% 73.84% 77.02% 7 12 13 
Stddev 2.2561% 3.8043% 4.3727% 5.4452% 1.66 3.20 2.28 
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1992-2002 

Step 
Size(days) 

Without FS Simple Improved       

 44 
features 

accuracy% 
 

Step #1 Step #2 # of 
selected 
features 

# of 
selected 
features 

# of 
selected 
features 

1 48.03% 48.03% 47.37% 50.66% 40 2 3 
2 54.61% 50.00% 56.58% 50.66% 8 11 10 
3 50.98% 58.82% 57.52% 50.33% 4 1 6 
4 46.41% 48.37% 45.75% 47.06% 1 13 24 
Mean 50.00% 51.30% 51.80% 49.68% 13 7 11 
Stddev 3.1220% 4.4051% 5.2853% 1.5167% 15.64 5.31 8.04 
7 48.68% 48.68% 47.37% 48.68% 32 13 15 
8 51.97% 54.61% 50.66% 55.92% 22 13 20 
9 50.00% 48.68% 56.58% 50.66% 17 14 17 
10 49.67% 50.33% 56.21% 56.86% 15 14 18 
11 49.02% 51.63% 58.17% 58.17% 4 11 20 
Mean 49.87% 50.79% 53.80% 54.06% 15 13 19 
Stddev 1.1498% 2.2069% 4.0954% 3.7063% 6.58 1.22 1.30 
14 48.03% 47.37% 61.18% 54.61% 9 12 17 
15 48.03% 48.68% 59.87% 64.47% 21 9 16 
16 53.29% 55.26% 59.87% 57.89% 16 15 21 
17 47.06% 48.37% 58.82% 64.71% 22 14 15 
18 49.34% 50.00% 60.53% 59.21% 10 14 20 
Mean 49.15% 49.94% 60.05% 60.18% 17 13 18 
Stddev 2.1941% 2.7931% 0.7853% 3.9028% 4.76 2.35 2.55 
21 44.74% 55.92% 61.18% 64.47% 9 13 18 
22 46.05% 63.16% 65.79% 63.16% 8 15 13 
23 48.37% 50.98% 70.59% 67.32% 9 11 13 
24 50.33% 57.52% 64.71% 65.36% 10 6 11 
25 48.68% 61.18% 59.87% 63.82% 11 14 17 
Mean 47.63% 57.75% 64.43% 64.83% 10 12 14 
Stddev 1.9892% 4.2489% 3.7734% 1.4445% 1.12 3.50 2.18 
28 48.68% 58.55% 63.16% 71.71% 6 4 14 
29 49.34% 58.55% 68.42% 73.68% 7 11 14 
30 47.71% 53.59% 74.51% 63.40% 13 11 15 
31 50.98% 65.36% 69.28% 68.63% 7 15 18 
32 48.68% 55.26% 67.11% 63.82% 12 7 12 
Mean 49.08% 58.26% 68.50% 68.25% 10 11 15 
Stddev 1.0829% 4.0328% 3.6665% 4.1194% 2.77 2.83 2.17 
35 47.37% 64.47% 67.76% 71.05% 9 15 17 
36 46.05% 65.79% 67.76% 69.74% 6 13 17 



 

73 
 

37 46.41% 64.71% 75.82% 73.20% 6 11 13 
38 49.67% 58.82% 74.51% 73.86% 8 8 14 
39 48.68% 63.82% 70.39% 70.39% 10 10 9 
Mean 47.64% 63.52% 71.25% 71.65% 8 11 13 
Stddev 1.3669% 2.4335% 3.3625% 1.6044% 1.66 1.80 2.86 
42 46.05% 54.61% 75.00% 75.66% 12 15 12 
43 43.42% 51.32% 72.37% 74.34% 15 15 20 
44 47.71% 71.24% 72.55% 75.16% 7 9 14 
45 49.34% 67.76% 60.53% 73.68% 5 12 9 
46 49.34% 61.18% 71.71% 76.97% 10 9 15 
Mean 47.17% 61.22% 70.43% 75.16% 9 11 15 
Stddev 2.2376% 7.5512% 5.0765% 1.1300% 3.77 2.49 3.91 
49 46.05% 68.42% 66.45% 69.74% 6 9 12 
50 45.75% 59.48% 77.78% 69.93% 7 10 11 
51 44.44% 48.37% 78.43% 78.43% 14 8 12 
52 47.37% 52.63% 70.39% 68.42% 13 11 15 
53 47.37% 52.63% 69.08% 71.05% 14 8 14 
Mean 46.20% 56.31% 72.43% 71.52% 12 9 13 
Stddev 1.0986% 7.0268% 4.8120% 3.5576% 2.92 1.30 1.58 
56 44.08% 62.50% 70.39% 72.37% 7 8 9 
57 47.71% 55.56% 64.05% 70.59% 10 11 9 
58 47.71% 71.24% 74.51% 76.47% 8 9 16 
59 45.39% 61.84% 67.76% 69.74% 9 6 8 
60 48.03% 63.82% 63.16% 71.71% 7 14 9 
Mean 46.58% 62.99% 67.98% 72.17% 9 10 11 
Stddev 1.5695% 5.0121% 4.1760% 2.3310% 1.12 2.92 3.20 
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1960-1970 

Step 
Size(days) 

Without 
FS 

Simple Improved       

 44 
features 

accuracy
% 

 
Step #1 Step #2 # of 

selected 
features 

# of 
selected 
features 

# of 
selected 
features 

1 58.28% 58.28% 60.93% 59.60% 44 1 3 
2 59.60% 59.60% 63.58% 52.32% 44 1 2 
3 61.59% 64.24% 50.33% 50.33% 25 10 10 
4 60.67% 60.67% 55.33% 56.00% 35 4 10 
Mean 60.03% 60.70% 57.54% 54.56% 37 4 6 
Stddev 1.2338% 2.2131% 5.1173% 3.5501% 7.84 3.67 3.77 
7 58.00% 40.67% 64.00% 58.00% 3 1 2 
8 56.95% 56.95% 58.94% 63.58% 31 5 9 
9 58.28% 55.63% 50.33% 49.67% 7 1 2 
10 58.94% 58.94% 56.95% 54.97% 32 10 10 
11 59.33% 60.67% 54.67% 54.00% 28 1 6 
Mean 58.30% 54.57% 56.98% 56.04% 25 4 7 
Stddev 0.8223% 7.1607% 4.5317% 4.6161% 10.21 3.70 3.11 
14 60.00% 59.33% 63.33% 66.00% 34 5 9 
15 56.95% 54.30% 60.93% 60.93% 5 10 12 
16 57.62% 57.62% 57.62% 53.64% 41 4 6 
17 57.62% 58.28% 64.24% 64.24% 36 12 21 
18 56.67% 57.33% 64.00% 62.00% 13 10 15 
Mean 57.77% 57.37% 62.02% 61.36% 24 9 14 
Stddev 1.1751% 1.6815% 2.4963% 4.2420% 15.12 3.00 5.41 
21 56.67% 59.33% 62.67% 74.00% 6 14 20 
22 58.28% 66.89% 61.59% 76.82% 9 5 13 
23 58.28% 62.25% 61.59% 71.52% 7 12 20 
24 60.93% 57.62% 70.20% 74.17% 7 11 17 
25 59.33% 68.67% 72.67% 78.67% 7 14 18 
Mean 58.70% 62.95% 65.74% 75.04% 8 11 17 
Stddev 1.4037% 4.2475% 4.7278% 2.4710% 0.87 3.35 2.55 
28 58.00% 61.33% 64.00% 72.67% 4 9 19 
29 57.62% 63.58% 59.60% 68.21% 14 8 17 
30 60.26% 72.85% 64.90% 76.16% 10 11 22 
31 59.60% 66.23% 75.50% 76.82% 5 15 18 
32 57.33% 70.67% 71.33% 77.33% 5 12 8 
Mean 58.56% 66.93% 67.07% 74.24% 9 12 16 
Stddev 1.1579% 4.2907% 5.6405% 3.4271% 3.77 2.50 5.12 
35 56.67% 65.33% 71.33% 73.33% 5 12 20 
36 56.95% 64.24% 68.87% 78.15% 5 7 11 
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37 54.97% 70.86% 72.85% 81.46% 7 11 12 
38 55.63% 74.17% 68.87% 84.11% 6 7 15 
39 54.67% 72.67% 76.67% 82.00% 11 9 14 
Mean 55.78% 69.45% 71.72% 79.81% 7 9 13 
Stddev 0.9041% 3.9685% 2.9013% 3.7598% 2.28 1.66 1.58 
42 54.00% 74.00% 76.00% 77.33% 12 11 15 
43 57.62% 72.85% 84.77% 85.43% 6 12 19 
44 58.28% 75.50% 79.47% 76.82% 5 14 18 
45 56.95% 76.82% 82.12% 84.11% 6 9 12 
46 56.67% 80.00% 84.00% 82.67% 8 15 17 
Mean 56.70% 75.83% 81.27% 81.27% 6 13 17 
Stddev 1.4618% 2.4789% 3.2070% 3.5381% 1.09 2.29 2.69 
49 58.00% 78.67% 82.67% 86.00% 6 12 15 
50 58.94% 62.91% 81.46% 78.81% 4 15 19 
51 57.62% 81.46% 87.42% 80.13% 5 14 19 
52 54.67% 74.00% 82.00% 83.33% 6 10 16 
53 54.67% 74.67% 77.33% 84.00% 8 13 18 
Mean 56.78% 74.34% 82.17% 82.45% 6 13 18 
Stddev 1.7769% 6.3269% 3.2159% 2.6238% 1.48 1.87 1.22 
56 51.66% 68.87% 75.50% 75.50% 5 15 16 
57 55.63% 74.17% 77.48% 82.12% 5 15 16 
58 54.97% 78.15% 72.85% 84.11% 14 12 19 
59 54.00% 70.00% 75.33% 80.00% 4 8 16 
60 50.67% 80.67% 67.33% 78.00% 6 8 8 
Mean 53.38% 74.37% 73.70% 79.94% 7 11 15 
Stddev 1.9129% 4.5441% 3.5063% 3.0204% 3.96 2.95 4.09 
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Appendix B Maltab Codes 

SVM based prediction with AHCFS as a feature selection method 

clear 

close all 

format compact 

addpath '..\misc2' 

addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 

  

% Pre-allocat memory for saving intermediate and final results 

resultsexcel = cell(65,13); 

  

% Count running time 

tstart = tic; 

  

% Read raw data (original data from market) 

[op, hi, lo, cl, vo, dt, dn, ds, d] = read_data('SP500_GSPC_D.csv'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

% Test effect of improved feature selection algorithm on a 

changeable ... 

% step size basis 

% for nn = 58     % Step size/Prediction horizon (including 

alternatives) 

for nn = [56:60] 

%     for nn = [28:32, 35:39, 42:46, 49:53] 



 

77 
 

% for nn = [1:4, 7:11, 14:18, 21:25, 28:32, 35:39, 42:46, 49:53, 56:60] 

    disp('****************') 

    nn 

     

    % Pre-process data for technical indicator calculations 

    [thui, frii] = find_indicies(nn, dt, dn); 

    thfi = [thui, frii, (frii - thui)]; 

    NumDays = daysAct_RPT(dn(thui),  dn(frii)); 

    [~,DAYNAME] = weekday(dn(thui)); 

     

%     stk.d = d; 

%     stk.d = d(thui); 

%     stk.o = op; 

%     stk.h = hi; 

%     stk.l = lo; 

%     stk.c = cl; 

%     stk.c = cl(thui); 

%     stk.c_F = cl(frii); 

%     stk.v = vo;     

  

    stk.d = d(thui); 

    stk.o = op(thui); 

    stk.h = hi(thui); 

    stk.l = lo(thui); 

    stk.c = cl(thui); 

    stk.c_F = cl(frii); 

    stk.v = vo(thui); 

    stk.oh = TA_MAX(stk.c,12); 
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    stk.ol = TA_MIN(stk.c,12); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

     

    % Calculate technical indicators, further create feature set and 

    % training target set as SVM inputs 

    features_store = technical_indicators(stk); 

    features_store(isnan(features_store)) = 0; 

    features = features_store; 

    features_copy = features; 

    CorrectTargets = stk.c_F >= stk.c; 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

    % Create time label to partition data for training and testing aims 

     

    T1 = find(stk.d >= 20020101, 1); % T1 - T2: IS' for filter method  

    T2 = find(stk.d >= 20040101, 1); % T2 - T3: OOS' for fitler method 

    T3 = find(stk.d >= 20090101, 1); % T1 - T3: IS for SVM training 

    T4 = find(stk.d >= 20120101, 1); % T3 - T4: OOS for SVM testing 

     

    IS_Set_FS = features(T1:T2-1,:); 

    IS_CorrectTargets_FS = CorrectTargets(T1:T2-1); 

    OOS_Set_FS = features(T2:T3-1,:); 

    OOS_CorrectTargets_FS = CorrectTargets(T2:T3-1); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

    % Apply feature selection algorithms 

    [l, fn] = 

sequential_QILI_2(IS_Set_FS,IS_CorrectTargets_FS,OOS_Set_FS,OOS_Correct

Targets_FS); 

    [~,fn_qi,lp] = 

imp_seq_1(l,fn,nn,IS_Set_FS,IS_CorrectTargets_FS,OOS_Set_FS,OOS_Correct

Targets_FS); 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

     

    IS_CorrectTargets = CorrectTargets(T1:T3-1); %T1 - T3 

    OOS_CorrectTargets = CorrectTargets(T3:T4); 

     

    l = 

get_results_seq(fn,features_copy,T1,T3,T4,IS_CorrectTargets,OOS_Correct

Targets); %T1 - T3 

    l_qi = 

get_results_imp_seq(fn_qi,features_copy,T1,T3,T4,IS_CorrectTargets,OOS_

CorrectTargets); %T1 - T3 

     

    resultsexcel = 

store_results_others(resultsexcel,nn,IS_CorrectTargets,OOS_CorrectTarge

ts); 

    resultsexcel = store_results_seq(resultsexcel,nn,l,fn); 



 

80 
 

    resultsexcel = store_results_imp_seq(resultsexcel,nn,fn_qi,l_qi); 

     

end 

  

telapsed = toc(tstart) 

telapsed_min = telapsed/60 

telapsed_hr = telapsed_min/60 

  

resultsexcel = write_to_excel(resultsexcel); 
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SVM based prediction with ERFS as a feature selection method 

clear 

close all 

format compact 

addpath '..\misc2' 

addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 

  

% Pre-allocate memory for saving intermediate and final results 

resultsexcel = cell(60,13); 

  

% Count running time 

tstart = tic; 

  

% Read raw data (original data from market) 

[op, hi, lo, cl, vo, dt, dn, ds, d] = read_data('SP500_GSPC_D.csv'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

% Test effect of improved feature selection algorithm on a 

changeable ... 

% step size basis 

% for nn = 28     % Step size/Prediction horizon (including 

alternatives) 

%     for nn = [14:18, 21:25] 

%     for nn = [28:32, 35:39, 42:46, 49:53] 

for nn = [1:4, 7:11, 14:18, 21:25, 28:32, 35:39, 42:46, 49:53] 

    disp('****************') 
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    nn 

     

    % Pre-process data for technical indicator calculations 

    [thui, frii] = find_indicies(nn, dt, dn); 

    thfi = [thui, frii, (frii - thui)]; 

    NumDays = daysAct_RPT(dn(thui),  dn(frii)); 

    [~,DAYNAME] = weekday(dn(thui)); 

     

%     stk.d = d; 

%     stk.d = d(thui); 

%     stk.o = op; 

%     stk.h = hi; 

%     stk.l = lo; 

%     stk.c = cl; 

%     stk.c = cl(thui); 

%     stk.c_F = cl(frii); 

%     stk.v = vo;     

  

    stk.d = d(thui); 

    stk.o = op(thui); 

    stk.h = hi(thui); 

    stk.l = lo(thui); 

    stk.c = cl(thui); 

    stk.c_F = cl(frii); 

    stk.v = vo(thui); 

    stk.oh = TA_MAX(stk.c,12); 

    stk.ol = TA_MIN(stk.c,12); 

  



 

83 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

     

    % Calculate technical indicators, further create feature set and 

    % training target set as SVM inputs 

    features_store = technical_indicators(stk); 

    features_store(isnan(features_store)) = 0; 

    features = features_store; 

    features_copy = features; 

    CorrectTargets = stk.c_F >= stk.c; 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

    % Create time label to partition data for training and testing aims 

     

    T1 = find(stk.d >= 20030101, 1); % T1 - T2: IS' for filter method  

    T2 = find(stk.d >= 20100101, 1); % T2 - T3: OOS' for filter method 

    T3 = find(stk.d >= 20130101, 1); % T1 - T3: IS for SVM training 

    T4 = find(stk.d >= 20170101, 1); % T3 - T4: OOS for SVM testing 

     

    IS_Set_FS = features(T1:T2-1,:); 

    IS_CorrectTargets_FS = CorrectTargets(T1:T2-1); 

    OOS_Set_FS = features(T2:T3-1,:); 

    OOS_CorrectTargets_FS = CorrectTargets(T2:T3-1); 

    IS_Set_SFS = features(T1:T3-1,:); 

    OOS_Set = features(T3:T4,:); 

    IS_CorrectTargets_SFS = CorrectTargets(T1:T3-1); 
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    OOS_CorrectTargets = CorrectTargets(T3:T4);     

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

    % Sequential FS on an error rate filter basis 

    z = size(features,2); 

    maxdev = 0.001; 

    opt = statset('display','iter','TolFun',maxdev,'TolTypeFun','abs'); 

    [inmodel,history] = 

sequentialfs(@cfun,IS_Set_SFS,IS_CorrectTargets_SFS,... 

        'cv','none',... 

        'options',opt,... 

        'NFeatures', z,... 

        'direction','forward');    

     

    % Test prediction accuracies of all feature combination on testing 

data 

    IS_Set = features(T1:T3-1,:); 

    OOS_Set = features(T3:T4,:); 

    IS_CorrectTargets = CorrectTargets(T1:T3-1); 

    OOS_CorrectTargets = CorrectTargets(T3:T4); 

    accuracy = zeros(size(features,2),1); 

    for n = 1:size(features,2) 

        accuracy(n) = 

OOS_precision(IS_Set_FS(:,history.In(n,:)),IS_CorrectTargets_FS,OOS_Set

_FS(:,history.In(n,:)),OOS_CorrectTargets_FS);  

    end 

    [acc,ind] = max(accuracy); 
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    feats = find(history.In(ind,:)); 

    acc_OOS = 

OOS_precision(IS_Set(:,feats),IS_CorrectTargets,OOS_Set(:,feats),OOS_Co

rrectTargets); 

    resultsexcel{nn+2,1} = nn; 

    resultsexcel{nn+2,2} = acc_OOS; 

    resultsexcel{nn+2,3} = num2str(feats); 

     

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

     

     

%     resultsexcel = 

store_results_others(resultsexcel,nn,m,IS_CorrectTargets,OOS_CorrectTar

gets); 

%     resultsexcel = store_results_seq(resultsexcel,nn,l,fn); 

%     resultsexcel = store_results_imp_seq(resultsexcel,nn,fn_qi,l_qi); 

     

end 

  

telapsed = toc(tstart) 

telapsed_min = telapsed/60 

telapsed_hr = telapsed_min/60 

  

resultsexcel = write_to_excel(resultsexcel); 
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SVM based prediction without feature selection 

clear 

close all 

format compact 

addpath '..\misc2' 

addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 

  

precision = cell(3,60); 

% % pre-allocated memory for gathering results to creat a excel 

  

tstart = tic; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

[op, hi, lo, cl, vo, dt, dn, ds, d] = read_data('SP500_GSPC_D.csv'); 

  

  

% for nn = 28 

%     for nn = [14:18, 21:25] 

%     for nn = [28:32, 35:39, 42:46, 49:53] 

for nn = [1:4, 7:11, 14:18, 21:25, 28:32, 35:39, 42:46, 49:53] 

  

    disp('****************') 

    nn 

     

    [thui, frii] = find_indicies(nn, dt, dn); 

     

     

    % check results by looking at these results 
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    thfi = [thui, frii, (frii - thui)]; 

    NumDays = daysAct_RPT(dn(thui),  dn(frii)); 

    [~,DAYNAME] = weekday(dn(thui)); 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%      

%     stk.d = d; 

%     stk.d = d(thui); 

%     stk.o = op; 

%     stk.h = hi; 

%     stk.l = lo; 

%     stk.c = cl; 

%     stk.c = cl(thui); 

%     stk.c_F = cl(frii); 

%     stk.v = vo; 

%      

  

    stk.d = d(thui); 

    stk.o = op(thui); 

    stk.h = hi(thui); 

    stk.l = lo(thui); 

    stk.c = cl(thui); 

    stk.c_F = cl(frii); 

    stk.v = vo(thui); 

    stk.oh = TA_MAX(stk.c,12); 

    stk.ol = TA_MIN(stk.c,12); 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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    features_store = technical_indicators(stk); 

    features_store(isnan(features_store)) = 0; 

    features = features_store; 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    CorrectTargets = stk.c_F >= stk.c; 

     

    T1 = find(stk.d >= 20020101, 1);  

    T2 = find(stk.d >= 20090101, 1);  

    T3 = find(stk.d >= 20120101, 1);  

     

    IS_Set = features(T1:T2-1,:); 

    OOS_Set = features(T2:T3,:); 

    IS_CorrectTargets = CorrectTargets(T1:T2-1); 

    OOS_CorrectTargets = CorrectTargets(T2:T3); 

     

    precision{2,nn} = 

OOS_precision(IS_Set,IS_CorrectTargets,OOS_Set,OOS_CorrectTargets); 

     

    resultsexcel{nn+2,1} = nn; 

    resultsexcel{nn+2,2} = precision{2,nn}; 

     

     

end 

  

telapsed = toc(tstart) 
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telapsed_min = telapsed/60 

telapsed_hr = telapsed_min/60 

  

resultsexcel = write_to_excel_withoutFS(resultsexcel); 
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Sub Functions 

cfun.m 

function errRate = cfun(X,Y)  

  

svmStruct = svmtrain(X, Y, 'kernel_function', 'rbf'); 

YY = svmclassify(svmStruct,X); 

  

errRate = sum(YY ~= Y)/length(Y);  % mis-classification rate 

 

daysAct_RPT.m 

function NumDays = daysAct( StartDate, EndDate ) 

%daysact Actual number of days between dates 

%  Given two dates in serial date numbers or date strings, calculate 

the 

%  actual number of days between them 

% 

%  NumDays = daysact(StartDate, EndDate) 

% 

% Inputs: 

%  StartDate (required) - The starting date in serial date number or 

date 

%  string format 

%  EndDate (optional) - The ending date in serial date number or date 

%  string format.  Defaults to the MATLAB base date (1-Jan-0000 AD) 

  

%  Author(s): B. Blunk 02/11/05 bblunk@unlnotes.unl.edu 
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if(nargin < 1) 

    error('You must specify StartDate') 

end 

  

if(nargin < 2) 

    EndDate = 0; 

end 

  

if ((size(StartDate,1) ~= 0) & (size(EndDate,1) ~=0) & (size(EndDate,1) 

~= size(StartDate,1))) 

    error('StartDate and EndDate must be of same size or scalar') 

end 

  

NumDays = datenum(datevec(EndDate)) - datenum(datevec(StartDate)); 

 

find_indicies.m 

function [thui, frii] = find_indicies(nn, dt, dn) 

%UNTITLED5 Summary of this function goes here 

%   Detailed explanation goes here 

  

frii = find(weekday(dt) == 6);   

% find all Fridays 

frii = frii(10:end);   

% start with the third Friday 

  

thui = []; 

for k = frii    

    for n = 1:70 
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        nd = daysAct_RPT(dn(k-n),  dn(k)); 

        % find the number of days between two dates 

        if nd >= nn    

            thui = [thui, (k-n)]; 

            break 

        end 

    end 

end 

  

end 

 

get_results_imp_seq.m 

function l_qi = 

get_results_imp_seq(fn_qi,features_copy,T1,T4,T5,IS_CorrectTargets,OOS_

CorrectTargets) 

  

% QILI method accuracy 

if ~fn_qi(1) == 0; 

    features = features_copy(:,fn_qi); 

    IS_Set = features(T1:T4-1,:); 

    OOS_Set = features(T4:T5,:); 

    l_qi = 

OOS_precision(IS_Set,IS_CorrectTargets,OOS_Set,OOS_CorrectTargets); 

end 

end 
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get_results_seq.m 

function l = 

get_results_seq(fn,features_copy,T1,T3,T4,IS_CorrectTargets,OOS_Correct

Targets) 

  

% Sequential method accuracy 

features = features_copy(:,fn); 

IS_Set = features(T1:T3-1,:); 

OOS_Set = features(T3:T4,:); 

l = OOS_precision(IS_Set,IS_CorrectTargets,OOS_Set,OOS_CorrectTargets); 

end 

  

imp_seq_1.m 

function [acc_out,features_out,num_loops] = 

imp_seq_1(acc_in,features_in,nn,IS_Set0,IS_CorrectTargets,OOS_Set0,OOS_

CorrectTargets) 

  

features_out = features_in; 

acc_out = acc_in; 

  

for x = 1:3 

key = 1; 

num_loops = 1; 

acc_test1 = 0; 

acc_test2 = 0; 

while key == 1 

    key1 = 1; 

    key2 = 1; 
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    fprintf('%d - %d\n',nn,num_loops); 

     

    features_test1 = 0; 

    add = 0; 

    while 1 

        add = add + 1; 

        accuracyI = zeros(1,size(OOS_Set0,2)); 

        for k = 1:size(OOS_Set0,2) 

            fna = [features_out, k]; 

            accuracyI(k) = 

OOS_precision(IS_Set0(:,fna),IS_CorrectTargets,OOS_Set0(:,fna),OOS_Corr

ectTargets); 

        end 

        [acc_1, index_1]= max(accuracyI); 

        if acc_1 >= acc_out 

            if acc_1 == acc_out & index_1 == features_test1 

                %                 index_1 features_new|feautes_test1 

features_old 

                key1 = 0; 

                break; 

            else 

                features_test1 = index_1; 

            end 

            fprintf('improved\n'); 

            features_out = [features_out, index_1]; 

            acc_out = acc_1; 

            add 

            acc_1 



 

95 
 

            index_1 

            features_out 

        else 

            if add < 2 

                key1 = 0; 

            end 

            fprintf('no improvement\n'); 

            add 

            acc_1 

            index_1 

            features_out 

            break; 

        end 

    end 

     

    features_test2 = 0; 

    sub = 0; 

    while 1 

        sub = sub + 1; 

        if length(features_out) > 1 

            accuracyII = zeros(1,size(features_out,2)); 

            for k = 1:size(features_out,2) 

                fnr = subtract_feature_n(features_out, k); 

                accuracyII(k) = 

OOS_precision(IS_Set0(:,fnr),IS_CorrectTargets,OOS_Set0(:,fnr),OOS_Corr

ectTargets); 

            end 

            [acc_2, index_2] = max(accuracyII); 
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            if acc_2 >= acc_out 

                if features_out(index_2) == features_test2 

                    key1 = 0; 

                    key2 = 0; 

                    fprintf('repeated\n'); 

                    break; 

                end 

                features_test2 = features_out(index_2); 

                fprintf('improved\n'); 

                features_out(index_2) = []; 

                acc_out = acc_2; 

                sub 

                acc_2 

                index_2 

                features_out 

            else 

                if sub < 2 

                    key2 = 0; 

                end 

                fprintf('no improvement\n'); 

                sub 

                acc_2 

                index_2 

                features_out 

                break; 

            end 

             

        else 
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            key2 = 0; 

            fprintf('only one selected feature\n'); 

            break; 

        end 

         

    end 

     

    if acc_out == acc_test1 

        acc_test2 = acc_test2 + 1; 

    end 

    acc_test1 = acc_out; 

     

    if (key1||key2) == 0||acc_test2 == 1 

        key = 0; 

    end 

    num_loops = num_loops + 1; 

end 

if x > 1 

    if acc_out <= acc_previous 

        break; 

    end 

end 

acc_previous = acc_out; 

end 

end 

  

function features__1 = subtract_feature_n(features, n) 
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features(:,n) = []; 

features__1 = features; 

  

end 

  

OOS_precision.m 

function precision = 

OOS_precision(IS_Set,IS_CorrectTargets,OOS_Set,OOS_CorrectTargets) 

  

% svmStruct = svmtrain(IS_Set, IS_CorrectTargets,'autoscale',true, ...  

%                      'kernel_function','rbf','method','LS'); 

%                     

% YY = svmclassify(svmStruct,IS_Set); 

% errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 

% fprintf('inmodel SVM Accuracy: %6.2f %%\n', 100-errRate*100);    % 

inmodel SVM Accuracy 

  

  

[r, ~] = size(IS_Set); 

XX = [IS_Set; OOS_Set]; 

YY = [IS_CorrectTargets; OOS_CorrectTargets]; 

a = 0; 

  

for n=1:length(OOS_Set) 

     

    XXN = zscore(XX(1:r+n, :)); % choose the desired normalization 

method 

    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ... 
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'kernel_function','rbf','autoscale',false,'method','LS','rbf_sigma',1,'

boxconstraint',1);       

                           

    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  

end 

  

compare = (Results == OOS_CorrectTargets); 

precision = (sum(compare)/length(compare)*100); 

%conMat = confusionmat(OOS_CorrectTargets,Results); % the confusion 

matrix 

  

res = [Results, OOS_CorrectTargets]; 

%Display Results 

%fprintf('Out-of-Sample Accuracy: %6.2f %%\n', precision); 

         

% rankfIS = rankfeatures(IS_Set', IS_CorrectTargets); 

% rankfOOS = rankfeatures(OOS_Set', OOS_CorrectTargets); 

% rankf = [rankfIS rankfOOS]  

  

%accuracy(z) = (precision); 

  

end 

 

read_data.m 

function [op, hi, lo, cl, vo, dt, dn, ds, d] = read_data( filename ) 

%UNTITLED4 Summary of this function goes here 

%   Detailed explanation goes here 
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%fid = fopen('SP500_RPT.csv');   

fid = fopen(filename);   

% ^GSPC data from Yahoo 

C = textscan(fid, '%s%f%f%f%f%f%f','Delimiter',',','Headerlines',1); 

fclose(fid); 

  

dt = C{1}(end:-1:1);   

% format is 'yyyy-mm-dd', e.g. '2013-11-29' cell 

formatIn = 'yyyy-mm-dd'; 

dn = datenum(dt,formatIn); 

formatOut = 'yyyymmdd'; 

ds = datestr(dn,formatOut);   

% change format to 'yyyymmdd' char array (string) 

d = str2num(ds);   

% change string to number 

     

op = C{2}(end:-1:1); 

hi = C{3}(end:-1:1); 

lo = C{4}(end:-1:1); 

%c = C{5}(end:-1:1); 

cl = C{7}(end:-1:1);    

vo = C{6}(end:-1:1); 

  

  

end 
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sequential_QILI_2.m 

function [acc_seq, feats] = 

sequential_QILI(IS_Set0,IS_CorrectTargets,OOS_Set0,OOS_CorrectTargets) 

  

z = 15; 

[accuracy,his] = 

seq_2(IS_Set0,IS_CorrectTargets,OOS_Set0,OOS_CorrectTargets,z);  

[acc_seq, acc_seq_i] = max(accuracy); 

% Check intermediate results 

fprintf('First %d In-Sample Accuracies of feature combinations: \n',z); 

accuracy 

  

feats = find(his.a(acc_seq_i,:)); 

%Check intermediate results 

fprintf('Best combination and In-Sample Accuracy: \n'); 

feats 

acc_seq 

  

end 

  

 

store_results_imp.m 

function [acc_seq, feats] = 

sequential_QILI(IS_Set0,IS_CorrectTargets,OOS_Set0,OOS_CorrectTargets) 

  

z = 15; 

[accuracy,his] = 

seq_2(IS_Set0,IS_CorrectTargets,OOS_Set0,OOS_CorrectTargets,z);  
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[acc_seq, acc_seq_i] = max(accuracy); 

% Check intermediate results 

fprintf('First %d In-Sample Accuracies of feature combinations: \n',z); 

accuracy 

  

feats = find(his.a(acc_seq_i,:)); 

%Check intermediate results 

fprintf('Best combination and In-Sample Accuracy: \n'); 

feats 

acc_seq 

  

end 

  

 

store_results_others.m 

function [ resultsexcel ] = 

store_results_others(resultsexcel,nn,IS_CorrectTargets,OOS_CorrectTarge

ts) 

  

resultsexcel{nn+2,1} = nn;  % get number of day 

%%%%%%%%%%%%%%%%%%%% 

len = length(OOS_CorrectTargets); 

resultsexcel{nn+2,8} = sum(OOS_CorrectTargets)/len; % always UP 

%%%%%%%%%%%%%%%%%%%% 

targets = [IS_CorrectTargets(end);OOS_CorrectTargets]; 

resultsexcel{nn+2,9} = sum(diff(targets) == 0)/len; % same as previous 

%%%%%%%%%%%%%%%%%%%% 
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resultsexcel{nn+2,10} = sum(diff(targets) ~= 0)/len;% different from 

previous 

  

%resultsexcel{nn+2,4} = m; %num2str(m);  %m; 

  

end 

  

 

store_results_seq.m 

function [ resultsexcel ] = store_results_seq(resultsexcel,nn,l,fn) 

  

resultsexcel{nn+2,2} = l; 

resultsexcel{nn+2,3} = num2str(fn); 

  

end 

  

 

technical_indicators.m 

function [ indicators ] = technical_indicators(stk) 

%UNTITLED Summary of this function goes here 

%   Detailed explanation goes here 

  

% Calculate Technicals 

  

I1 = TA_RSI(stk.c, 14); 

[bBandsHigh, bBandsMid, bBandsLow] = TA_BBANDS(stk.c,9,2,2); 

I2 = (stk.c - bBandsHigh)./bBandsHigh;   

I3 = (stk.c - bBandsLow)./bBandsLow; 
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[stochK, stochD] = TA_STOCHF(stk.oh,stk.ol,stk.c, 14, 3);% 14,3 

I4 = stochK; 

I5 = stochD; 

I6 = [nan; diff(stochK)]; 

I7 = [nan; diff(stochD)];   

I8 = [nan; diff(stk.c)./stk.c(1:end-1)]; 

I9 = (stk.c - stk.ol)./(stk.h-stk.ol); % similar to StochRSI 

PMAs = TA_SMA(stk.c,10); 

PMAl = TA_SMA(stk.c,21); 

I10 = [nan; diff(PMAs)./PMAs(1:end-1)]; 

I11 = [nan; diff(PMAl)./PMAl(1:end-1)]; 

I12 = [nan; (PMAs(2:end)-PMAl(1:end-1))./PMAl(1:end-1)]; 

I13 = (stk.c - PMAl)./PMAl; 

I14 = (stk.c - TA_MIN(stk.c,5))./TA_MIN(stk.c,5); 

I15 = (stk.c - TA_MAX(stk.c,5))./TA_MAX(stk.c,5); 

I16 = (((TA_SMA(stk.c,5) - TA_SMA(stk.c,12)) ./ TA_SMA(stk.c,12))); % 

MA 

I17 = [nan(12,1); (stk.c(13:end) - stk.c(1:end-12)) ./ stk.c(1:end-

12)];  % MOM 

I18 = TA_KAMA(stk.c,12);    % Kaufman Adaptive Moving Average  KAMA 

I19 = ConnorsRSI(stk.c,6,3,85);    % ConnorsRSI    CRSI   % 6,3,85 -> 

64.18% 

I20 = TA_MFI(stk.h,stk.l,stk.c,stk.v);    % Money Flow Index    MFI 

I21 = TA_BOP(stk.o,stk.h,stk.l,stk.c);    % Balance of Power    BOP 

I22 = TA_WILLR(stk.h,stk.l,stk.c,14);    % Williams %R    willr 

I23 = TA_ULTOSC(stk.h,stk.l,stk.c,7,14,28);    % Ultimate Oscillator 

Index    ultosc 

I24 = TA_ROC(stk.c,5);    % Rate-of-Change  ROC 
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I25 = TA_ATR(stk.h,stk.l,stk.c,14);    % Average True Range ATR 

I26 = TA_NATR(stk.h,stk.l,stk.c,14);   % Normalize Average True Range  

NATR 

I27 = TA_STDDEV(stk.c,7);    % Standard Deviation    stddev 

I28 = TA_OBV(stk.c,stk.v);  % On Balance Volume OBV 

I29 = TA_PPO(stk.c,9,26,2); % Percentage Price Oscillator PPO 

I30 = TA_MEDPRICE(stk.h,stk.l);    % Median Price  MEDPRICE 

I31 = TA_EMA(stk.c,4); % Exponential Moving Average    EMA 

I32 = TA_TEMA(stk.c,10);   % Triple Exponential Moving Average TEMA 

I33 = TA_ADX(stk.h,stk.l,stk.c,14); % Average Directional Movement 

Index ADX 

I34 = TA_CMO(stk.c,10); % Chande Momentum Oscillator    CMO 

I35 = TA_CCI(stk.h,stk.l,stk.c,20); % Commodity Channel Index   CCI 

[outFastK,outFastD] = TA_STOCHRSI(stk.c,120,120,3,1);   % StochRSI  I36 

& I37 

I36 = outFastK; 

I37 = outFastD; 

VMAs = TA_SMA(stk.v,10); 

VMAl = TA_SMA(stk.v,21); 

% MINp = TA_MIN(stk.c,6); 

% MAXp = TA_MAX(stk.c,6); 

MINv = TA_MIN(stk.v,6); 

MAXv = TA_MAX(stk.v,6); 

I38 = [nan;diff(stk.v)./(stk.v(1:end-1))]; 

I39 = [nan;diff(VMAs)./VMAs(1:end-1)]; 

I40 = [nan;diff(VMAl)./VMAl(1:end-1)]; 

I41= [nan;(VMAs(2:end) - (VMAl(1:end-1)))./VMAl(1:end-1)]; 

I42 = (stk.v - VMAl)./VMAl; 
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I43 = (stk.v - MINv)./MINv; 

I44 = (stk.v - MAXv)./MAXv; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%( 

a = stk.c(1:end-1); 

b = stk.c(2:end); 

c = double(a<b); 

I45 = [0;c]; 

d = I45(1:end-1); 

e = I45(2:end); 

f = double(eq(d,e)); 

I46 = [0;f]; 

  

  

  

% 

indicators=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,I16,I17,

... 

%     

I18,I19,I20,I21,I22,I23,I24,I25,I26,I27,I28,I29,I30,I31,I32,I33,... 

%     I34,I35,I36,I37,I38,I39,I40,I41,I42,I43,I44,I45,I46]; 

indicators=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,I16,I17,

... 

    I18,I19,I20,I21,I22,I23,I24,I25,I26,I27,I28,I29,I30,I31,I32,I33,... 

    I34,I35,I36,I37,I38,I39,I40,I41,I42,I43,I44]; 
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end 

  

 

write_to_excel.m 

function resultsexcel = write_to_excel(resultsexcel) 

  

%%% add some titles for excel 

resultsexcel{1,1} = 'number of day'; 

resultsexcel{1,2} = 'sequentialfs results only'; 

resultsexcel{1,3} = ' '; 

resultsexcel{1,4} = 'sequentialfs results plus extra procedure'; 

resultsexcel{1,5} = ' '; 

resultsexcel{1,6} = 'number of loop'; 

resultsexcel{2,1} = ' '; 

resultsexcel{2,2} = 'accuracy%'; 

resultsexcel{2,3} = 'selected features'; 

resultsexcel{2,4} = 'accuracy%'; 

resultsexcel{2,5} = 'selected features'; 

resultsexcel{2,6} = ' '; 

  

xlswrite('results',resultsexcel);  % create excel of results 

  

end 
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Appendix C Supplemental Files 

  

The above four spreadsheets are reorganized unrefined data from the MATLAB codes in 
Appendix B. The codes which give the above data are all the same except the time frame 
variables. 

 

Software requirements: 

Any OpenDocument supported software, including Microsoft Excel, Calligra Sheets, EditGrid, 
Google Docs and many more, can access above files. Refer to this link to find out more 
OpenDocument supported software: 

https://en.wikipedia.org/wiki/OpenDocument_software#Spreadsheet_documents_(.ods)  

 

Hardware requirements: 

No special requirements for hardware. 

 

# Name File Type Size 

1 2007-2017.ods OpenDocument Spreadsheet 
 

446KB 

2 2000-2010.ods 
 

OpenDocument Spreadsheet 
 

417KB 

3 1992-2002.ods 
 

OpenDocument Spreadsheet 
 

401KB 

4 1960-1970.ods 
 

OpenDocument Spreadsheet 
 

387KB 

https://en.wikipedia.org/wiki/OpenDocument_software#Spreadsheet_documents_(.ods)

	Application of Improved Feature Selection Algorithm in SVM Based Market Trend Prediction Model
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Technical Analysis
	1.2 Theoretical Insights
	1.2.1 The Dow Theory
	1.2.2 Efficient Market Hypothesis
	1.2.3 Random Walk Theory
	1.2.4 Behavioral Finance

	1.3 Combination of Technical Analysis and Artificial Intelligence
	1.4 Problem Statement
	1.5 Thesis Structure

	Chapter 2 Background Information and Literature Review
	2.1 Support Vector Machine (SVM)
	2.2 Technical Indicators (TIs)
	2.2.1 Relative Strength Index (RSI)
	2.2.2 Bollinger Bands
	2.2.3 Stochastic Oscillator
	2.2.4 Simple Moving Average (SMA)
	2.2.5 Exponential Moving Average (EMA)
	2.2.6 Triple Exponential Moving Average (TEMA)
	2.2.7 Kaufman Adaptive Moving Average (KAMA)
	2.2.8 Lowest Value & Highest Value over a Specified Period (Min & Max)
	2.2.9 Connors RSI (CRSI)
	2.2.10 Money Flow Index (MFI)
	2.2.11 Balance of Power (BOP)
	2.2.12 Williams %R (WPR)
	2.2.13 Ultimate Oscillator (ULT)
	2.2.14 Rate of Change (ROC)
	2.2.15 Average True Range (ATR) & Normalized Average True Range (NATR)
	2.2.16 Standard Deviation (SD)
	2.2.17 On-Balance Volume (OBV)
	2.2.18 Percentage Price Oscillator (PPO)
	2.2.19 Median Price
	2.2.20 Average Directional Index (ADX)
	2.2.21 Chande Momentum Oscillator (CMO)
	2.2.22 Commodity Channel Index (CCI)
	2.3 Hypothesis
	2.4 Goal
	2.5 Evaluation Method


	Chapter 3 Experiment Design
	3.1 Data Construction
	3.2 Classification
	3.3 Data Pre-processing
	3.3.1 Interpolation
	3.3.2 Normalization

	3.4 Feature Selection
	3.4.1 General
	3.4.2 Control Group – Strategy #0
	3.4.3 Experiment #1 – Strategy #1
	3.4.4 Experiment #2 – Strategy #2


	Chapter 4 Results and Discussion
	4.1 Effectiveness and stability of SVM based feature selection algorithm
	4.2 Scenario 1: Experiment based on the most recent data (2007–2017)
	Without FS vs. ERFS
	Without FS vs. AHCFS
	ERFS vs. AHCFS Step #1 & Step #2

	4.3 Scenario 2: Experiment based on data with sharp changes (2000–2010)
	Without FS vs. ERFS
	Without FS vs. AHCFS
	ERFS vs. AHCFS Step #1 & #2

	4.4 Scenario 3: Experiment based on older data (1992–2002)
	Without FS vs. ERFS
	Without FS vs. AHCFS
	ERFS vs. AHCFS Step #1 & #2

	4.5 Scenario 4: Experiment based on much older data (1960-1970)
	Without FS vs. ERFS
	Without FS vs. AHCFS
	ERFS vs. AHCFS Step #1 & Step #2

	4.6 Others

	Chapter 5 Conclusion and Future Work
	References
	Appendix A Summary Data Sheets
	2007-2017
	2000-2010
	1992-2002
	1960-1970

	Appendix B Maltab Codes
	SVM based prediction with AHCFS as a feature selection method
	SVM based prediction with ERFS as a feature selection method
	SVM based prediction without feature selection
	Sub Functions
	cfun.m
	daysAct_RPT.m
	find_indicies.m
	get_results_imp_seq.m
	get_results_seq.m
	imp_seq_1.m
	OOS_precision.m
	read_data.m
	sequential_QILI_2.m
	store_results_imp.m
	store_results_others.m
	store_results_seq.m
	technical_indicators.m
	write_to_excel.m


	Appendix C Supplemental Files

