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AN ABSTRACT OF THE THESIS OF Lifei Wu for the Master of Science in Electrical 

and Computer Engineering presented February 9, 1993. 

Title: Minimization of Pe~uted Reed-Muller Trees and Reed-Muller Trees for Cellular 

Logic Programmable Gate Arrays 

APPROVED BY THE MEMBERS OF THE THESIS COMMfITEE: 

MilJ:ekA. 

Jing-ke Li 

The new family of Field Programmable Gate Arrays, CLI 6000 from Concurrent 

Logic Inc realizes truly Cellular Logic. It has been mainly designed for the realization of 

data path architectures. However, the realizable logic functions provided by its macro

cells and their limited connectivity call also for new general-purpose logic synthesis 

methods. The basic cell of CLi 6000 can be programmed to realize a two-input multi

plexer ( A*B + C*B ), an AND/EXOR cell ( A*B Ea C ), or the basic 2-input AND, OR 

and EXOR gate. This suggests to using these cells for tree-like expansions. These "cellu

lar logic" devices require regular connection patterns in the netlists resulting from logic 
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synthesis. This thesis presents a synthesis tree searching program PROMPT, which gen-

erates AND/EXOR tree circuits from given Boolean functions. Such circuits have the 

property that the gate structures are AND/EXOR ( A *B EB C ), AND and EXOR which 

could be realized by the CLI6000 cells. Also, the connection. way in the circuit is that 

usually the output of one level gate is the input of the next level gate of the tree. This 

matches ideally to the architecture of the CLI6000 bussing network where the macrocells 

have only connections to their neighboring cells. PROMPT is based on the Davio expan

sions ( an equivalent of the Shannon expansions for the EXOR gates ) as its Boolean 

decomposition methods. The program includes three versions: exact version, heuristic 

version and fixed-variable version. 

The exact version of PROMPT generates the Permuted Reed-Muller Tree circuit 

which has the minimum number of gates. Such tree circuit is obtained by searching 

through all possible combinations of the expansion variable orders to get the one which 

needs the least number of gates. 

The heuristic version of PROMPT is designed to decrease the time complexity of 

the search algorithm when dealing with logic functions having many input variables. It 

generates a Permuted Reed-Muller Tree which may not have the minimum number of 

gates. However, the tree searching time in this version decreases tremendously compared 

to the time necessary in the exact version. 

The fix-variable version is developed to generate Reed-Muller Tree circuits. Such 

circuits will have the same expansion variables at the same tree level, so they can be 

easier routed after the placement to the CLI6000 chips. 

In short, the program PROMPT generates the PRM and RM tree circuits which are 

particularly well matched to both the realization of logic cell and connection structure of 

the CLI6000 device. Thus, the PRM and RM circuits can be easily placed and routed on 

the CLI6000 FPGAs. 
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CHAPTER I 

INTRODUCTION 

In the last decade there has been a tremendous effort to develop design automation 

tools for the development of increasingly complex digital circuits. To decrease addition

ally the necessary design time, synthesis tools for Application Specific IC's (ASICs) 

based on high-level description languages (HDL, such as VHDL and Verilog) have been 

introduced. 

The upcoming of Field Programmable Gate Arrays (FPGAs) allowed to further 

decrease the development and testing phase for new products. While for ASICs the pro

cess of making and testing of a single development iteration of a new circuit takes 

several monthes due to the necessary chip fabrication, FPGAs allow for an immediate 

realization of the logic function with following testing. 

The logic synthesis methods developed for FPGAs have been based on algebraic 

decomposition methods [123456). However, it is known that logic synthesis methods 

based on Boolean decomposition methods can produce better results[7]. Moreover, like 

the logic synthesis tools for ASICs, the FPGA logic synthesis concepts have been based 

on the "unate paradigm" (7). The "unate paradigm" implies, that most of the logic func

tions occurring in real life design have a minimal circuit realization based on AND and 

OR gates. However, arithmetic functions like adders, multipliers, counters, signal pro

cessing functions, and error correcting logic have a smaller circuit realization if the 

EXOR gate is incorporated. The synthesis incorporating the EXOR gate have been 

neglected because the EXOR gate was perceived to be slower and having a larger circuit 

area. 
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The upcoming of FPGAs like the Xilinx Table-Look-Up (TLU) architecture, the 

Actel multiplexer based (MB) architecture and recently the fine grain FPGAs from Con

current Logic [8], Algotronix [9] and Texas Instruments[lO] allow the implementation of 

the EXOR gate without any speed or circuit size penalty in comparison to the AND and 

OR gates. 

This thesis introduces a decomposition algorithm for the CLi 6000 FPGA series 

from Concurrent Logic [8] to overcome the disadvantages of current synthesis tools with 

respect to the synthesis for EXOR gates in FPGAs. Moreover, the presented synthesis 

concept generates a regular circuit structure which can be easily placed and routed on the 

regular architectures provided by the new fine grain ( cellular, sea of gates ) type FPGAs. 

The basic cell of CLi 6000 can be programmed to realize a two-input multiplexer 

( A *B + C*B ), an AND/EXOR cell ( A *B EB C ), or the basic 2-input AND and OR 

gate. The multiplexer and the AND/EXOR cell realization are the two most efficient real

izations of combinational functions with a Cli 6000 macrocell. This suggests to develop 

synthesis methods based on the AND/EXOR gate structure. 

The realization of a logic function, using AND and EXOR gates, based on Reed

Muller canonic expansions has the characteristic of being easily testable [11]. Moreover, 

the regular structure of a Reed-Muller Tree circuit is that the basic gate structures are 

AND/EXOR ( A *B EB C ), AND and EXOR, and connections between the gate structures 

are only from one level of the tree to another level. Therefore, such a circuit realization is 

ideally suitable for the implementation on FPGAs having limited wiring resources. Such 

a circuit realization is in particular beneficial for the CU 6000 FPGA series from Con

current Logic having a cellular architecture, where each macrocell has connections only 

to its four neighbours ( plus limited local busses ). 

PROMPT is a synthesis tree searching algorithm presented in this thesis which 

generates Reed-Muller Tree from a given Boolean function. PROMPT includes three 
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versions: exact version, heuristic version and fixed-var version. 

The exact version of PROMPT generates the minimal Permuted Reed-Muller 

Tree[12] for a given Boolean function. The Permuted Reed-Muller Trees included all 

possible expansion order combinations for the variables. It means that different expan

sion variables could appear at the same tree level. The goal of the exact version is to find 

the minimum gate number Permuted Reed-Muller circuit for the given Boolean function. 

However, it is traded off with the non-regular structure of variables connecting networks 

in the different subtrees. Thus, the following placement and routing problem is of higher 

complexity. 

The limited bussing network of the CLi 6000 requires some additional restrictions 

to the presented exact tree searching algorithm To accommodate this restrictions to 

allow an easy placement and routing of the macrocells the fixed-var version of PROMPT 

is introduced. In the fixed-var searching algorithm the data-select variables in one partic

ular level of the tree is there restricted to be the same in each node. In other words, the 

fix-var version will generate Reed-Muller Tree. 

The heuristic version of PROMPT is designed to decrease the time complexity of 

the search algorithm when dealing with logic functions having many input variables. It 

generates a Permuted Reed-Muller Tree which may not have the minimum number of 

gates. However, the tree searching time in this version decreases tremendously compared 

to the time necessary in the exact version. 

The following gives an outline of the organization of this thesis. First, in Chapter 

II, the basic architecture of the CLi 6000 series is reviewed and the main restrictions that 

lead to the presented synthesis methods are pointed out. Chapter ID gives the theoretical 

background to the developed concept There, the Davio and Shannon Expansions and 

their relation to the synthesis for the CLi 6000 are presented. 
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Chapter IV introduces PROMPT, the logic synthesis algorithm generating an 

AND-EXOR circuit based on the application of expansion given in Chapter ill. An exact 

algorithm and a heuristic method to decrease the computation time are presented. 

Chapter V outlines the technology mapping of the PRM circuit and RM circuit to the Cli 

6000 chips. Chapter VI provides the testing data and analyses the results obtained from 

the implementation of PROMPT. Finally, Chapter VII presents the conclusions derived 

from the presented logic synthesis concept. 



CHAPTER II 

ARCHITECTURE OF CLI6000 SERIES 

11.1 GENERAL DESCRIPTION 

The introduction of Field Programmable Gate Arrays (FPGAs) in the last decade 

had ave~ important impact on the development of new circuit concepts and logic syn

thesis methods. FPGAs allow for an immediate realization and testing of the circuit 

under design without going through the process of a complete chip production necessary 

for custom or PGA designs. Thus, FPGAs allowed to decrease the development and test

ing phase for products. However, until recently FPGAs did not offer a similar density and 

system clock rate as Application Specific ICs (ASICs). Therefore, they were limited to 

only few applications. 

The Cli6000 Series is a new generation of Field Programmable Gate Arrays intro- , 

duced by Concurrent Logic Inc, which overcomes the above stated drawbacks. Its gen

eral architecture is based on an array of logic cells. In contrast to other FPGAs, like the 

Actel's MB based or Xilinx's TLU based approaches, the logic cells in the CU 6000 

series can realize functions of only up to three input variables. Therefore, the architec

ture is also called fine grain cellular array FPGA. Similarly, the Algotronix CAL 1024 

and the Texas Instruments TPC-10 employ such fine grain cellular architectures. 

Because this thes~s introduces synthesis methods especially suited for the CLi 6000 

series, this Chapter reviews the basic features of this architecture. 

The CLi6000 Series employs a patented, symmetric~ architecture consisting of 

many small yet powerful logic cells connected to a flexible bussing network and sur-
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rounded by programmable 1/0. The Concurrent Logic architecture was developed to pro

vide the highest levels of performance, functional density and design flexibility in a 

FPGA. The cell's small size allows for the realization of arrays with a large number of 

cells. For example, the Cli6010 has 6400 logic cells while the largest Xilinx400 chip has 

only 900 cells, so that the lower cell complexity is traded off for the larger number of 

cells. A simple, high-speed bussing network offers fast, efficient communication over 

medium and long distances. Thus, the CLi 6000 series provides the density and perfor

mance of custom gate arrays without the prototyping and debugging delays necessary for 

mask-programmed devices. 

II.2 THE BUSSING NETWORK 

Figure 1 shows one CLi cell. Figure 2 illustrates the 8x8 cells with busses. 
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Figure 1. Cell-to-cell and cell-to-bus connections. 

To perform the logic functions, each cell takes three inputs: two inputs from any of 
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the four neighboring cells ( AE or As or Aw or AN and BE or Bs or Bw or BN ), one input 

from a bus ( EW 1 or EW 2 or NS 1 or NS 2 ) and could provide two outputs A and B to all 

neighbors, one output to bus ( EW 1 or EW 2 or NS 1 or NS 2 ). 
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Figure 2. Bussing Network. 

-r'1- Cell 
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:D: Repeater 

As one can observe from Figure 2, the CLi 6000 series has a very limited wiring 

resources. Therefore, a tree-like circuit that has connections only between two levels of 

the circuit matches ideally such a structure. Moreover, a tree circuit having at a particu-

lar level the same input variable to each module can efficiently take advantage of the bus 

network. In Chapter IV an algorithm to generate such circuits will be presented. 
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II.3 THE CLI6000 MACROCELL 

Due to the small size of the macrocells on the CLi 6000 FPGA, only a limited set 

of logic functions having up to three inputs can be realized with a single cell. Figure 3. 

gives the 20 configurations for combinational logic functions that are possible with one 

macrocell. 

L L A L B 

n (l t, J, .-Y 
A B A 8 A, l 8 A B A.L B 

Al 8 AL B A l A L /,L 

~ I 
>< 
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~ ~ id ~ A 

A. L B A B 
A B 

A B 

Fifil!!e 3. Combinatorial States of CLI Macrocell. 
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As one can observe from Figure 3, there are four basic logic functions AND, OR, 

EXOR and AND-EXOR. Additionally, for configurations having three inputs, one input 

has to be from the local bus. Thus, synthesis methods that take these restrictions into 

account have to be developed. This thesis investigates logic synthesis methods that 

effi~iently minimize the number of macrocells by taking advantage of the powerful 

AND-EXOR cell realization. To take the connectivity of the cells into account we pro

pose a synthesis method that generates a tree circuit. Such a circuit has the property that 

the gate structures are AND/EXOR ( A *B ES C ), AND and EXOR which could be real

ized by the CLI6000 cells. Also, the connection way in the circuit is that the output of 

one level gate is the input of the next level gate. This matches ideally to the architecture 

where the macrocells have only connections to their neighboring cells. Moreover, in 

Chapter IV we employ a further adaptation of the presented synthesis algorithm to match 

the availability of the local busses. Using this algorithm, the generated AND/EXOR cir

cuit has the same input variable in a particular level. Therefore, the realization of the cir

cuit is easily mutable. 

The next Chapter introduces an efficient Boolean decomposition method that 

allows for the decomposition of a logic function to the functions that are realizable with a 

single macrocell. 



CHAPTER ID 

THE DA VIO EXP ANS IONS AND THEIR CIRCUIT REALIZATIONS 

The general objective of decomposition methods in logic synthesis is to decom

pose a given set of functions into smaller subfunctions that can be realized by certain 

gate structures such that the final circuit realization is optimized for speed and area. Usu

ally, a large logic function is difficult to analyze and to find a small circuit realization for 

it. One way to solve the problem is to decompose the initial logic function into smaller 

blocks which are easier to implement. There are two basic approaches to decomposition 

[7]: the algebraic factorization and the Boolean decomposition. The algebraic decompo

sition methods are based on the factoring and extraction of common subfunctions. 

Boolean decomposition methods take advantage of the structure of the function to be 

decomposed. Because they operate on the whole functions they are computationally more 

expensive than the algebraic methods. However, it was obseived [7] that they lead to 

better results than the algebraic methods. Therefore, the multilevel synthesis tools like 

RENO and MISTI make use of algebraic methods to find a local minimum and try then to 

apply Boolean decomposition methods to find a lower local minimum. 

One of the most fundamental concepts for the decomposition of a logic functions is 

the Shannon expansion. The Shannon expansion can always be applied to a logic func

tion in contrast to other types of Boolean decompositions like the Ashenhurst [13] or the 

Curtis [14] decomposition. These decompositions can be only applied to logic functions 

belonging to a certain class, like the class of disjoint decomposable functions. 

Therefore, this Chapter reviews the concepts of the Davio expansions over the 

Galois Field (2) (GF2) and shows its circuit realizations. It will be shown, that the Davio 
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expansion suits ideally for the decomposition of logic functions to subfunctions that can 

be ideally realized with the CLi 6000 FPGA series. 

III.1 DAVIO EXPANSIONS 

The well-known Davio expansions is given by [1516] 

f (xi, .. .X;, .. .Xn) = 
X;. f (Xi, .. ,X; =1, , .. .Xn) Ea X;. f (X1, .. ,X;=O, .. .Xn) (1) 

By applying the rules a= lEaa and a= lEaa one obtains the two Davio expansions 

(15]: 

and 

f (xi, .. .X;, .. .Xn) = 
f (x 1' .. .x;=O, .. .xn) Ea X; · [/ (x b .. .x;=O, .. .xn) Ea f (x b .. .x;=l, .. .xn)l (2) 

f ( X 1 , ·· .X;' •· .Xn) = 
f (Xi, .. .x;=l, .. .Xn) EB X; • [f (xi, .. .x;=O, .. .Xn) EB f (xi , .. ..x;=l, •. ..Xn)l (3) 

in short form: 

f =x; fx. Ea x; /x. 
I I 

f = fX; Ellx; [ fx; EB fX; J = fx; EB Xi g 

f = fx. El) X; [tx. EB tx.] = fx. El) X; g 
I I I I 

(4) 

(5) 

(6) 

The circuit realization of Equation ( 4) is given by a multiplexer gate while Equations (5) 

and (6) describe an AND-EXOR gate structure, see Figure 4. 
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a. Circuit Realization of Equation (4): 

tx .. 
f 

fxi 

Xi 

b. Circuit Realization of Equation (5): 

;~ _I )_1 

) ""- f 
!xi l/ 

c. Circuit Realization of Equation (6): 

;j~ 
Ix, )[>- f 

Figure 4. Circuit realizations of the three Shannon expansions. 

It can be obsetved from Figure 4 that the circuit realization of the three expansions 

correspond to the realizable functions of a macrocell of the Concurrent Logic CLi 6000 

FPGA series. Therefore, the Davio expansions are ideally suited for the decomposition of 

Boolean functions with respect to the realization with the CLi 6000 series. 

One can observe, that be applying the three expansions in different orders one 

obtains different tree forms. By "flattening" of the tree forms, which will be described in 

the next section, one obtains the Reed-Muller forms (151718]. 

The next section investigates the different forms that can be obtained by applying 

the Davio expansions. 
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III.2 CIRCUIT REALIZATIONS OBTAINED BY THE DA VIO EXPANSIONS 

III.2.1 Multi-Level Circuit Realizations 

Definition 111.1: The literal of a variable x; can be either positive ( x; ) or negative ( 

x;) form. 

Definition III.2: The polarity of a variable is "1" for a positive literal and "O" for a 

negative literal. 

It follows from Equation ( 4 )-( 6) and Definition ill.2, that different tree forms are 

obtained when the Davio expansions are applied in different orders. There are four pos

sible ways of applying the three Davio expansions [151718]. The following Definitions 

give the various tree forms obtained by applying the Davio expansions. 

Definition 111.3: Reed-Muller Tree ( RMT) --The expansion tree in which all vari

ables appear positive polarity only and in each subtree the decomposing variable 

has the same order ( See Figure 5 ). 

During the decomposition, if only rule (5) is used repeatedly for some fixed order of 

expansion variables, the RM trees are created. 

Definition III.4: Permuted Reed-Muller Tree ( PRMT) -- The expansion tree in 

which all variables appear in positive polarity but in each subtree the decomposing 

variables could be in a different order ( See Figure 6 ). 

During the decomposition, if only rule (5) is used repeatedly, but the order of expansion 

variables is not fixed, the PRM trees are created. 

Definition III 5: Generalized Reed-Muller Tree ( GRMT ) -- The expansion tree in 

which each variable appears only either in positive or negative polarity ( See Fig

ure 7 ). 

During the decomposition, if for every variable one uses either rule (5) or rule (6) , the 

GRM trees are created. 
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f (a, b, c, d) 

----------c-\----------
d 

Figure 5. RMT. 

f (a, b, C, d) 

- - - - c 
'd 

c 

-----\-------- b 
b d 

Figure 6. PRMT. 

Definition 111.6: Kronecker Reed-Muller Tree ( KRMT) -- The expansion tree in 

which all variables appear in either positive or negative, or both polarities, but hav-

ing a single fixed order of expansion variables in the tree levels ( See Figure 8 ). 
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f (a, b, c, d) 

a 

d 

c 

d 

Figure 7. GRMT. 

During the decomposition, if for every variable one uses either rule ( 4), rule (5), or rule 

(6) without regard to consistency, the KRM trees are created [16]. 

f (a, p, c, d) 

a 

d 

c 
d c d 

Figure 8. KRMT. 
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Definition 111.7: Pseudo-Kronecker Reed-Muller Tree ( PKRMT) -- The expansion 

tree in which all variables appear in either positive or negative. or both polarities 

and having all possible orders of expansion variables ( See Figure 9 ). 

During the decomposition, if rule ( 4 ), (5) and (6) are used , but in each subtree there is a 

choice of a rule, the PKRM trees are generated [ 16]. 

f (a, b, c, d) 

~ 
____ a/_-~---

+) c±) 

/\-b (0 ___ b 
b C\ A 

\ti c 

c ~ - - - _0 _ --d /-?-------c cL\ ~~ 

a 

d d 

Fie:ure 9. PKRMT. 

For allowing various orders of variables in subn·ees or using different rules in sub-

trees, an even wider family of trees could be created. 

III.2.2 Two Level Circuit Realizations 

The expansion formulas applied to various variables and the resulting subfunctions 

fj generate different multi-level tree circuits as described in the previous section. 

The obtained tree circuits can be flattened to a two level form which can be real-

ized by an AND-EXOR circuit. 
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Definition III.8: Flattening -- Applying rule a ( b E9 c ) = a b E9 ac recursively to a 

multilevel network until a 2-level network ( ESOP) is created. 

Definition III.9: Reed-Muller ( RM ) form is an ESOP obtained by flattening of a 

RM Tree. 

For example, assuming a four variables input function, the RM form expression is 

of the following form: 

Fi ( a, b, c, d ) =a e ab e abc e cd e abed 

Definition III.10: Generalized Reed-Muller ( GRM ) form is an ESOP obtained by 

flattening of a GRM Tree. 

For example, assuming a four variables input function, the ORM form expression 

is of the following form: 

- -
F 2( a, b, c, d ) = a e ab e abc e cd e abed 

Definition III.11: Kronecker Reed-Muller ( KRM) form is an ESOP obtained by 

flattening of a KRM Tree. 

Definition III.12: Pseudo-Kronecker Reed-Muller ( PKRM ) form is an ESOP 

obtained by flattening of a PKRM Tree. 

The tree structure obtained by the RM tree is ideally suited for the mapping to the 

CLi 6000 FPGA series. However, the restricted connectivity between neighboring cells 

and the limited bus resources require a modification of the general RM tree circuit. 

Therefore, in the next Chapter the general tree circuit algorithm will be presented and its 

modification to allow the generation of circuits that are additionally easily routable. 



CHAPTER IV 

DESCRIPTION OF PROMPT 

PROMPT is the synthesis algorithm for the calculation of the Reed-Muller Tree for 

a given Boolean function having the minimal number of AND/EXOR gates. As men

tioned, PROMPT consists of three options. The exact option determines the absolute 

minimal Permuted Reed-Muller Tree for the underlying Boolean function. In order to 

reduce the complexity of the implied exhaustive search, the heuristic option has been 

also developed that leads to a quasi minimal Permuted Reed-Muller Tree. Finally, a 

third option of PROMPT has been developed to provide Reed-Muller Tree that is espe

cially suited for the technology mapping to the CLi 6000 series of Concurrent Logic. 

In the next sections the three different synthesis concepts are illustrated. 

IV.1 EXACT PRM TREE SEARCHING ALGORITHM 

IV .1.1 Basic Idea 

The Reed-Muller (RM) expression is an exclusive sum of products of positive ( 

non-complemented) input variables. Therefore, only equation (5) should be used during 

the decomposition. 

A given Boolean function can be decomposed using Equation ( 5 ): 

f =!xi E9X; • gX; where gx. = /x. E9 fx. 
I I I 

The two subfunctions h; and gx; are independent of the variable x;. The AND-gate 

takes (x;) and gx. as its two inputs. The EXOR-gate takes (£) and the output of the 
I . I 

AND-gate as its two inputs. Their relationship is shown in Figure 10. For each subfunc-
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tion ~ and gx;' choosing another variable, such as (xj), the Davio Expansion is used to 

continue the decomposition. After the further decomposition, both functions IX; and gx; 

will be decomposed into another two subfunctions, which are connected by AND-gate 

and EXOR-gate also, but at one level down in the tree (See Figure 11 ). The decomposi

tion is repeated recursively until the input functions are all trivial (0, 1, Xj)· After com

pleting the decomposition, a tree circuit is created. The output of the tree circuit is the 

original function f. In the tree circuit, all input variables appear in positive polarity, they 

are connected by AND-gates and EXOR-gates. 

In other words, after the decomposition, the Boolean function is represented by 

multi-level AND, EXOR circuit, where the inputs are intermeditate functions of positive 

literals. Let us observe that all gates have a fan-in of only two. This kind of decomposi

tion is ideally suited to a regular array realization of the combinational logic, such as 

those offered in "cellular logic" or new Field Programmable Gate arrays like those from 

Concurrent Logic[8] and Algotronix[9]. 

' Ix;/ A 
X; ifx;@ /;;) 

Figure 10. Function decomposition by Davio expansion. 



~~ 

(±) 

/ ""'. 
J;, ?'Jx @J;,) 

/4\. X; A 
0 )-µ / \ <!x;@J;, X; "' 

X1 ,r-)-h. 
li'\1-'-- X1· if;)-l'i'\l.f' @Jx: Xj x-""'Jx;x; II' @ X· X·'(J;IVX; • 

'' Vx; ' ' 

Figure 11. Expansion tree with two levels. 
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The diagram from Figure 12 illustrates all possible choices .of decomposing a n 

input variable function using Davio Expansion. This diagram describes all applications of 

Davio Expansion with respect to all possible variables in all subtrees. 

Here, we use Figure 12 as an example to explain the steps of how to apply the 

Davio Expansion to completely decompose a function. 

Suppose the input function f has n variables. 

( 1) At the first level of the tree ( the root of the tree ), there is only one node, 

which describes the input Boolean function f. 

(2) The second level is obtained by the decomposition of function fin variable x;. 

Because there are n variables, so there are n possible choices for the decomposition at 

this level. Therefore, at the second level, there are 2n nodes. Each pair of nodes 

corresponds to the two subfunctions: J; and gx., which are obtained by decomposing a 
I I 

variable x; from fusing Equation (5) at the root ( first level ). 

(3) Each node at the second level could be further decomposed by using Davio 

Expansion form to decompose other variables as their parent-node did, but there are less 



first level (root)· 

decomposed variable 
~XI 

second level·· 

input function 
f (x1,Xz, . .x;, . .xn) 

using Shannon Expension 
f = /x,tl) X; ( /x. G fX. ) 

I I I 

to decompose different variable 

\ \ 

I \ ' 
I ' 
I \ 

\ 

I I· 

Figure 12. Diagram for the full_tree searching. 
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gx. 

decomposing choices than in the parent-node (because the number of choices is deter

mined by the number of remaining variables in the subfunction ). 

(4) It is clear that at the third level, there are 2n*(n-l) nodes (each node contains a 

subfunction: fx,, or gx,, ). 

(5) Each node continues the decomposing process until all variables are decom

posed ( no more variable remains in the subfunction ). 

(6) From calculation, at the last level, there are total n !*2n nodes. In the worst 

case, the tree has a maximum of n levels. 
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Even though all variable's decomposition is according to the same form 

f = /; E9 x; · gx. 
I I 

the variable's decomposing order still makes the results ( the total number of gates used 

to represent the original Boolean function ) different. The goal of the exact PRM tree 

searching program is to find the best variable decomposing order and obtain the optimum 

solution. 

IV .1.2 Algorithm for the PRM tree searching 

In order to find the minimal PRM Tree, checking all possible decomposing choices 

of the function is necessary. A depth first algorithm has been adapted to-travel through all 

possible variable selections during the decomposition. 

The advantage of using a depth-first search is that it requires less memory, since 

only the nodes on the current path from the root to the leaf are stored. This contrasts with 

the breadth-first search, in which the complete tree has to be stored .. 

The depth-first algorithm that follows is a recursion function, decompose(/). This 

function is used to realize the decomposition. 

decompose ( functpt ) 

{ 

} 

I* functpt is a pointer which points to 
the input function (cube array) *I 

var = select variable ( functpt ) ; 
fx = subfunCI(functpt, var); 
gx = subfuncr(functpt, var); 

if ( fx not trivial ) 
decompose( fx ) ; 

if ( gx not trivial ) 
decompose( gx ) ; 
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The function decompose( functpt ) takes a Boolean function as its input, in the 

form of cube array which is pointed by pointer functpt. The function select_ variable( 

functpt ) picks a variable from the inputs. For this selected variable, using the Davio 

Expansion to decompose the function, the subfunctions fx and gx are obtained. Next it 

has to be identified if the subfunctions fx and gx are already trivial, otherwise another 

variable has to be selected to decompose the subfunctions. The decomposition will con

tinue on all subfunctions until all inputs are trivial. 

The routines in the function decompose(): 

select variable(functpt) -- Select a variable for the decomposition of the function. 

subfuncl(functpt, var) -- compute the subfunction of function f which responds to 

fx .. Subfuncl(functpt, var) returns a pointer which points to the cube array of fx .. 
I I 

subfuncr(functpt, var) -- compute the subfunction of function f which responds to 

gx; = fx; EB fx; . Subfuncr(functpt, var) returns a pointer which points to the cube 

array of gx;. 

f is trivial if/ e { 0, 1, x, x }. 

To obtain the exact minimal solution, a complete tree search has been imple

mented. 

Exact searching -- searching the whole tree to generate all possible combinations 

of different variable orders for the decomposition and finding the best result. For a given 

n input variable function, the exact search will involve a total of n !*2n possible paths. 

Definition IV.1: Decomposing Tree -- The tree describing all possible decomposi

tions. 

The pseudo code for the exact tree search is given by the function 

decomposeT(funcpt, variable). DecomposeT(funcpt, variable) generates the decomposing 

tree. 



decomposeT ( functpt, variable ) 
{ 

} 

inti; 
int undecomposed = O; !*flag *I 
int decomposed= 1; I* flag *I 

/* This flag is used to indicate variable 
decomposition states. If the variable has 
been decomposed, set the flag to 1, otherwise, 
set flag to 0. *! 

fx = subfuncl(functpt, variable); 

if ( fx not trivial ){ 

} 

for ( i = 0; i < literals; i++ ){ 

} 

if ( var[i] == undecomposed ){ 
var[i] = decomposed; 
decomposeT ( fx, i ) ; 
var[i] = undecomposed; 

} 

gx = subfuncr(functpt, variable); 

if ( gx not trivial ){ 
for ( i = O; i < literals; i++ ){ 

} 
} 

if ( var[i] == undecomposed ){ 
var[i] =decomposed; 
decomposeT ( gx, i ); 
var[i]= undecomposed; 

} 
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The recursion function decomposeT( functpt, variable ) searches through all possible 

choices of decomposition. In other words, it generates all possible combinations of dif

ferent variable orders for the decomposition. 

subfuncl( functpt, variable ) is as the same as the one in decompose( functpt ). 

subfuncr( functpt, variable ) is as the same as the one in decompose( functpt ). 



Figure 13 shows the decomposing tree for a three variable input function. 

Node.O 
f ( a, b, c----- input function 

decomposing variable.__ _ ___,, ____ ,__ _ _. 
a 

Node.laL Node.laR Node.lcL I Node.lcR 

fa Ka I JtJ I Kb I Jc 
( b, c ) ( b, c ) ( a, c ) ( a, c ) 

Jc 
() 

N.2bR 

gc 
() 

·· .. ·· .. 
····· ... ···· ...... _ ; :. 

N.2cLI N.2cR 

gc 
() 

remaining variable 

gb 
() 

gb 
() 

Figure 13. Decomposing tree. 

(a, b) 

For the purpose of easy explanation, we define some terms: 

gc 
(a, b) 
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After decomposing variable x;, the function will be divided into two subfunctions: 

( h; ) and ( fxj E9 h; ) or ( gxj ), denoted as : 

L-- (h; ). 

R -- ( gXj ). 

'Node.xyz'-- Letter x indicates which tree level this node is located at. Letter y indicates 

which variable was decomposed to create this node. Letter z indicates which part, 

L or R the node belongs to . 
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Open -- It means that the Node still contains at least an undecomposed variable, further 

decomposition should be performed on this Node. 

Closed-- The Node contains no more undecomposed variables, no further operation on 

this Node is required. Node is a leaf of the tree. It contains value zero or value one. 

Example IV .1 shows the decomposition of a function according to the whole tree 

search algorithm indicated in Definition IV.l. Suppose the input function has three vari

ables : a, b, c (see figure 13). 

At root, only one node -- Node.0 ( the function contains variables a, b and c ). 

After decomposing variable a from Node.O, two new nodes are created: Node.laL 

and Node.laR (contain variable band c ). The condition of Node.laL and Node.laR is 

Open. Further decompositions should operate on them. 

If decomposing variable b instead of a from Node.O, two other nodes will be 

created: Node.lbL and Node.lbR (contain variable a and c ). Condition: Open. 

If continue decomposing variable b from Node.laL, the children nodes are: 

Node.2bL and Node.2bR ( contain only variable c ). Condition: Open. 

Node.2bL and Node.2bR contain only one variable -- variable c. Further decompo

sition could be only decomposing variable c. No other choice. The children are 

Node.3cL and Node.3cR. 

Node.3cL, Node.3cR contain no variable, they are the leaves of the tree. No 

further operation on them is possible. The condition of Node.3cL and Node.3cR is 

Closed. No further operation on them is possible. 

The exact searching algorithm creates the decomposing tree which shows all possi

ble decompositions. As mentioned before, the order of decomposing variables at each 

~evel determines the circuit structure. The decomposing tree illustrates all different ways 

to decompose an input function, however, for reaching the best solution, more methods 
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need to be used. 

Definition N.2: PRM Tree -- The tree describing the circuit realization obtained 

from the decomposition tree. 

Figure 14 shows a PRM tree for a three variable input function. 

b 

~ 
!~ 

b /°© 
c / " 

b 1 

Q--- AND-gate 

® --- EXOR-gate 

Figure 14. PRM tree circuit. 

As mentioned before, after using Davio Expansion form, f = J; E9 x; · g to 
I 

decompose a variable x; from a given function, two subfunctions, J; , gx., and an 
I I 

AND-EXOR gate structure are created. Their relationship is indicated in Figure 15. 

From now on, "GN"-- Gate-Node, will be defined to store the gate structure. 

There are some notations: 

(1) The gate structure depends on the condition of the L( h; ) and R( gx; ). For exam-

pie, the structure of GN.lx; is decided by Node.lx;L and Node.lx;R. 

(2) We use GN.xy to label each Gate-Node, where x indicates which tree level this 

node ls located at. Letter y indicates which variable was used in the decomposition 

to create this node. 
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1 ~b: 

GNx; 
~ 

y /.\- ...... . /! .... X; ................ i\ .................... . ...................... ·······: 

Ix; fx"; EBfx; 

Node.x;L Node.x;R 
······························· ·································· 

Figure 15. Relationship between gate structure and expansion subfunctions. 

28 

(3) After decomposing with respect to all variables from all subfunctions, the connec

tion of all the gate structures constructs the PRM Tree. In other words, the PRM 

Tree is built up of the GNs. 

(4) The contents of GN could be: (i) an AND-gate, (ii) an EXOR-gate, (iii) an AND

gate and an EXOR-gate (like the one in Figure 15). (iiii) value 1 or 0. 

How do the L and R decide the gate structure of a GN? The rules are as follows: 

(1) H Node.L =Open, Node.R =Open 

then L~R 
X; 

(2) H Node.L = 1, Node.R =Open 

then 1/AR 
X; 

(3) If Node.L = 0, Node.R = Open 

A 
Xj R then 



(4) If Node.L =Open, Node.R = 1 

then A 
L X; 

(5) If Node.L = 0, Node.R = 1 

then A 
l x· I 

(6) If Node.L = 0, Node.R = 1 

then X; 

(7) If Node.L = 1, Node.R = 0 

then I 

(8) If Node.L = Open, Node.R = 0 

then L 

L -- The GN formed from the NodeL. 

R -- The GN formed from the NodeR. 
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The structure of the PRM Tree is based on the structure of the Decomposing Tree. 

The PRM Tree is constructed while the Decomposing Tree is generated. The searching 

method for the Decomposing Tree is "Depth-first", and the way to built the PRM Tree is 

"from bottom up". 

When the first time reaching the leaf of the Decomposing Tree during the Decom

posing Tree generation, the PRM Tree starts to be created. In this way, during the process 

of PRM Tree and Decomposing Tree creation, the program could always compare and 

choose the better GN. It provides then the best circuit structure. Before reaching the leaf 
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of the Decomposing Tree, one couldn't decide which GN is better, because the decom

posing process continues in the current "Node", the Decomposing Tree is still growing 

deeper, the gate structure under each possible decomposing way is unknown. 

Let's refer to Figure 13 and Figure 15. When decomposing variable a in Node.O, 

Node.laL and Node.laR are created. According to the condition of Node.laL and 

Node.laR, structure GN.la is generated. Same, if decomposing variable b in Node.O, 

Node.lbL, Node.lbR and structure GN.lb are generated. 

At this point, even if the structures of GN. la and GN.1 b are known, one can not 

_ determine which variable should be chosen to decompose to obtain a better result ( i.e. 

the PRM Tree having less number of gates ). This is because the gate structure under 

nodes: Node.laL, Node.laR, Node.lbL and Node.lbR are still unknown. 

While creating the PRM Tree from the bottom up, in each GN structure the total 

gate number under this ON is already known. It makes possible to determine which ON 

should be chosen, and which GN should be deleted. 

If in a particular node of the Decomposing Tree, the function contains only one 

variable, than only one possible decomposition exists for this node. Therefore only one 

ON will be created. If there are more than one decomposing choices at a particular node, 

different ONs will be generated under this node for different decomposing variables. In 

this case, the program will compare all ON' s to find out the ON which has the minimum 

number of gates, in order to determine which variable should be chosen for the decompo

sition at this node. 

Figure 16 shows part of a Decomposing Tree and part of a PRM Tree for a three 

input variable function. Using Figure 16, we could explain some basic steps of generat

ing the PRM Tree. 
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'ode3cLJL GN.3cL 1Node3c Node3cLR GN.3cR I Node3c 

1 1 0 0 c 1 

Figure 16. Relationship of the decomposing tree and the PRM tree. 

The generating of PRM Tree starts from the bottom. Here, the generating order of 

the GNs is: 

(1) GN.3cL. (2) GN.3cR. (3) GN.2b. 

Linking the L of GN.2b to GN.3cL and the R of Gn.2b to GN.3cR. 

(4) GN.2c. Comparing GN.2b with GN.2c and storing GN.2c ( Because here 

GN.2c includes less number of gates than GN.2b does ). In the case when the 

obtained GN contains no gate, the program will not continue to search the other 

possible GNs for the equivalent position, because it could not find a ON which is 

better than this one which contains no gate. For example, here, if GN.2b contains 

no gate, the program would not generate GN.2c but just save GN.2b and connect it 
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to the L of the ON at one level up the tree ( here, the up-level ON is ON. la). 

(5) Generate the ON under Node.laR, let's say GN.2b. 

(6) Generate ON.la. Link Land R of ON.la to GN.2c and GN.2b. 

(7) Generate ON.lb, compare ON.la with ON.lb, store the better one, and so on. 

So, one could see that the program checks all possible cases and provides the best PRM 

Tree. 

IV.1.3 Example for the Exact PRM Tree Searching 

The input function for the program is in the form of ESOP ( Exclusive Sum of Pro

duct ). For example, a three variables function: 
- -

f ( a,b,c ) =a c EB abc EB abc EB abc 

will be presented in the following form: 

.i 3 

.o 1 

0-0 
001 
111 
100 
.e 

i -- the number of inputs. 

o -- the number of outputs. 

"1" -- the variable is in positive polarity. 

"O"-- the variable is in negative polarity. 

"-" -- the variable is not in the cube. 

Each column corresponds to a variable. Each row is one cube. Such as, 

"0-0" represents cube a c, 
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-

"001" represents cube Gbe, etc. 

When decomposing a variable, such as a, the subfunctions fa and (fa E9 fa ) are created. 

The program will check all cubes of the input function to decide which cube belongs to 

which subfunction (fa or (fa E9 fa ) ) or belongs to both parts. Mark ' - ' would be used to 

indicate the decomposed variable. According to the definition of: 

For the above function, 

fa=f(a=l) 

fa=f(a=O) 

fa = be E9 be ( From terms: abe, abe) 

fa = e EB be ( From terms: a e, abe ) 

- -
la EB fa= be ffi be E9 e-ffi be 

One could see that the term which doesn't contain a will appear to the fa part. 

Because when a= 1, a= 0, the term which contains a is zero. The same reason, the term 

which doesn't contain a will appear to the fa part. If variable a appears in the term as a 

"-" (don't care), this term then belongs to both fa and fa-, because doesn't matter if a= 1 

or a = 0, this term will not be zero. Also, the term which contains a as a "-" ( don't care ) 

will not be in fa ffi fa , since it appears twice ( from fa and fa )and gets canceled. 

So the cubes in which a= "O" or a = "-" will be selected to the fa part while the 

cubes in which a = "O" or a = "1" will be selected to the fa E9 fa part. In the above 

example, cubes "0-0" and "001" belong to fa part, cubes "0-0", "001", "lll"and "100" 

belong to (fa E9 fa). So, after decomposing variable a from the input function, fa and 

(fa E9 la ) are created. Variable a will not appear in the subfunctions any more. The 

position of variable a is replaced with " -". So 

la includes: "--0" and "-01". 

(fa ffifa) includes: "--0", "-01", "-11" and "-00". 
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Variable a is no longer in the cubes. Now fa and (fa Ea fa) still contain variables band 

c, further decomposition should be performed on them. The decomposing process contin-

ues until no more variables remain in the cubes. In other words, the decomposing ter-

minates when the cubes contain only the "-"s. For example, here, if fa contains only cube 

"---", then no further decomposition will be applied to fa. As the same, if only cube " ---" 

is in (fa Ea fa ), no Decomposing Tree will grow under (fa Ea fa ). Use the previous 

definition: 

If only cube "---" appears in the "Node", this "Node" is Closed. Otherwise, the 

"Node" is Open. If the Node only contains one "---",the value of this Node is 1. If the 

Node contains nothing, the value of this Node is 0. 

Now, we use the above function as an example to explain the Exact PRM Tree 

searching (See Figure 17). 

Figure 17 shows that, at Node.0, there is the input function: 

- -
f ( a,b,c ) =a c Ea abc Ea abc Ea abc 

Node.0 contains: 0-0, 001, 111 and 100. 

Check the condition of Node.O -- Open. Decomposing variable a from "Node.0", gen

erate NlaLl and NlaR2. 

NlaLl (fa): --0, -01. 

NlaR2 (fa Ea fa): --0, -01, -11, -00. 

Check the condition of NlaLl -- Open. Decomposing variable b from NlaLl, generate 

N2bL1 and N2bR2. 

N2bL1: --0, --1. 

N2bR2: --1. 

Check the condition of N2bL1 -- Open. Decomposing variable c from N2bLl, generate 

N3cL1 and N3cR2. 
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Figure 17. PRM tree generation. 

N3cL1: ---. 

N3cR2: no cube. 

Check the condition of N3cL1 -- Closed. The property of N3cL1 : 1. 

Check the condition of N3cR2 -- Closed. The property of N3cR2 : 0. 

According to the properties of N3cL1 and N3cR2, generate GN.3cl. 

GN.3cl: value 1. 

Check the condition of N2bLl -- Closed. The property of N2bLl: function. 
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Check the condition of N2bR2 -- Open. Decomposing variable c from N2bR2, generate 

N3cL3 and N3cR4. 

N3cL3: no cube. 

N3cR4: ---. 

Check the condition of N3cL3 -- Closed. The property of N3cL3: 0. 

Check the condition of N3cR4 -- Closed. The property of N3cR4 : 1. 

According to the properties of N3cL3 and N3cR4, generate GN.3c2. 

GN.3c2: variable c. 

Check the condition of N2bR2 -- Closed. The property of N2bR2 : function. 

According to the properties of N2bL1 and N2bR2, generate GN.2bl. The L in 

GN.2bl links to GN.3cl and the R in GN.2bl links to GN.3c2. 

GN.3c2: 

(1) an AND-gate -- It takes variable band c as its two inputs. 

(2) an EXOR-gate -- It takes value 1 and the output of the AND-gate as its two 

inputs. 

Check the condition of NlaLl -- Open. Decomposing variable c from NlaLl, generate 

N2cL3 and N2cR4. 

N2cL3: ---. 

N2cR4: ---, -0-. 

Check the condition of N2cL3 -- Closed. The property of N2cL3 : 1. 

Check the condition of N2cR4 -- Open. Decomposing variable b from N2cR4, generate 

N3bL5 and N3bR6. 

N3bL5: no cube. 
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N3bR6: ---. 

Check the condition of N3bL5 -- Closed. The property of N3bL5 : 0. 

Check the condition of N3bR6 -- Closed. The property of N3bR6 : 1. 

"° 

According to the properties of N3bL5 and N3bR6, generate GN.3b3. 

GN.3b3: variable bR. 

Check the condition of N2cR4 -- Closed. The property of N2cR4 : function. 

According to the properties of N2cL3 and N2cR4, generate GN.2c2. The R of 

GN.2c2 links to GN.3b3. 

GN.2c2: 

(1) an AND-gate -- It takes variable band c as its two inputs .. 

(2) an EXOR-gate -- It takes value 1 and the output of the AND-gate as its two 

inputs. 

Comparing GN.2b 1 with GN.2c2, since the nodes have the same cost ( the same number 

of gates ), then, either one could be stored as a subPRM Tree for the up level GN. In the 

program, if both GNs has the same cost, the first one will be saved. So here, GN.2bl is 

saved and GN.2c2 is deleted. If during the comparison, the cost of the two GNs is dif

ferent, the program will store the one which has the smaller cost and will delete the other 

one. 

Check the condition of NlaLl -- Closed. The property of NlaLl: function. 

Check the condition of NlaR2 -- Open. 

Repeat the same processes which was operated on NlaLl, until the condition of 

NlaR2 is Closed. The property of NlaRl : function. 

Then generate GN.lal according to the properties of Node.laLl and NlaR2. The 

L of GN.lal links to GN.2bl and the R of GN.lal links to the GN which is obtained 

from NlaR2. In this example, the R of GN.lal links to GN.2b3. 
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Back up one level of the tree. The condition of Node.O is Open. Another variable 

such as b will be chosen for the decomposition. The previous processes ( creating Nodes, 

generating GNs, comparing and recording the better ON) will repeat until all variables in 

Node.O have been decomposed. 

When the condition of Node.O is Closed, the whole search is completed. The out

put is a tree of the GNs. That is the PRM Tree. It gives the best AND-EXOR gates con

nection for realizing the requested Boolean function. 

The output of the program could be presented in three equivalent forms: formula, 

graph and BLIF form. The formula form presents the result in a standard way. The BLIF 

form is necessary for interfacing PROMPT to U.C. Berkeley tools which allows, among 

other, to verity the correctness of the produced by it results. The graph form makes the 

result easier to read. 

The obtained output of our example is: 

( 1) formula: 

f = [[[1] + [[b] * [c]]] +[[a] * [[c] + [[b] * [[1] + [c]]]]]] 

(2) BLIF form (the corresponding diagram is Figure 18 ): 

.inputs a b c 

.outputs mO 

.names ml m3 mO 

01 1 

10 1 

.names m2 ml 

0 1 

.names b c m2 

11 1 



.names a m4 m3 

11 1 

.names c m5 m4 

01 1 

10 1 

.names b m6 m5 

11 1 

.names c m6 

0 1 

.end 

(3) graph: 

+ 
* 

+ 
* 

+ 
c 
1 

b 
c 

a 
+ 

* 
c 
b 

1 
*--AND-gate, 
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+ -- EXOR-gate. 

When the above graph is rotated 90 degree clock-wise and the connection lines are 

added, one obtains the PRM Tree ( Figure 14 ). 

Actually, the tree structure is equivalent to a circuit One can convert PRM Tree 

into a circuit very easily. The corresponding circuit is presented in Figure 18. 
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f 

Figure 18. PRM circuit. 

IV.2 HEURISTIC PRM TREE SEARCHING 

IV.2.1 Basic Method 

The execution time of complete tree searching programs is large for problem 

instances of high complexity. Thus, the PRM Tree searching method presented in the 

previous section is applicable to only very small pi:oblems. Therefore, even though the 

Exact PRM Tree searching allows to obtain the best solution, no solution for functions 

depending on many input variables cai:i be generated in a realistic time. Therefore, we 

need to find some methods that will produce solutions in a reasonable time. 
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As could be observed in the previous section the size of the Decomposing Tree can 

be extremely large when the function has a large number of input variables. Therefore, 

searching the whole solution space takes a large amount of time. In order to reduce the 

search time, the solution space has to be reduced. One of the methods to achieve this is 

to limit the choices of the possible decompositions for a function. 

At the root node of the tree for a function of n input variables there are n decompo

sition choices. If one allows only one variable to be selected for the decomposition at 

this level, the size of the Decomposing Tree could be reduced exponentially. Therefore, 

to reduce the time of the tree searching process, cutting off a branch at the top level of 

the tree is much more effective than cutting off a branch at a lower lever of the tree. But 

it often leads to an nonoptimal result. 

The next section illustrates a heuristic to decrease the solution space to obtain 

results in a reasonable amount of time, even for large functions. 

IV.2.2 Algorithm 

To reduce the solution space for a large function to a space that is computational 

feasible, the heuristic PRM Tree searching algorithm allows only one decomposition 

choice in the top levels of the Decomposing Tree. That is, in the top levels that are 

specified by the user, the decomposition is performed only for one selected variable. In 

this way, the tree searching time can be reduced tremendously. The heuristic for the vari

able selection used is given by: the variable that occurs most often in the cubes is 

selected. In order to obtain results as close as possible to the exact solution, at certain 

level of the Decomposing Tree, the program starts to checking all possible variable 

decompositions. 

The algorithm of the heuristic PRM Tree searching program is given by function 

hprms(). The function hprms(functpt, selectvar, level) is recursive. It accepts three argu

ments: functpt, selectvar and level: functpt is a pointer which points to the input function, 
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selectvar is the variable selected for the decomposition, level is the number of top levels 

of the Decomposing Tree for which the decomposition is only performed for the variable 

selected according to the above mentioned heuristic. 

The characteristic of function hprms() is: during the Decomposing Tree generation, 

at the top levels, only one variable is chosen for the decomposition under each function. 

After those top levels, all possible decomposition choices will be checked. 

The pseudo-code for the function hprms() is as follows: 

hprmt ( functpt, selectvar, level ) 
int level; 
{ 

} 

level++; 

fx = subfuncl ( functpt, selectvar ); 
if ( fx not trivial ) 
{ 

} 

if ( level < specified number)!* user set the number *I 
{ 

} 
else 

var= pick var ( fx ); 
f = hprmt r fx, var, level ) ; 

I* the exa,ct tree searching *I 
f = decomposeT ( fx ); 

gx = subfuncr (function, variable ); 
if ( gx not trivial ) 
{ 

} 

if ( level < specified number) I* user set the number *I 
{ 

} 
else 

var =pick_ var ( gx ); 
g = hprmt ( gx, var, level ) ; 

I* the exact tree searching*! 
g = decomposeT ( gx ); 
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The routines in the function hprmt( functpt, selectvar, level ): 

pick_ var( function ) -- Select a variable for the decomposition according to the 

heuristic rule. The rule used: the variable that occurs most often in both positive and 

negative polarities in the cubes is selected. 

suhfunctionl( functpt, selectvar ) -- compute the subfunction of the input function 

which corresponds to /xi. 

suhfanctionr( fanctpt, selectvar ) -- compute the subfunction of the input function 

which corresponds to gx. = /x. E9 fx . . 
I I I 

decomposeT( function ) -- Check all possible decompositions and record the best 

one. This is the same function mentioned in the previous section. 

f is trivial if f e { 0, 1, x, x } . 

Figure 19 shows the Decomposing Tree generated by hprmt( functpt, selectvar, level). 

Figure 19 illustrates the following issues: 

The root of the tree is given by NodeO. NodeO stores the input function. Even 

though the function in NodeO contains n variables Xi,X2, •• .x;, . .Xm only one variable 

will be selected for the decomposition at NodeO. Here, we assume that x 1 is the 

selected variable. After the decomposition, two nodes: Nodelx 1L and Nodelx 1R 

are generated. 

At the second level, there are two Nodes: Nodelx1L and Nodelx1R. 

Nodelx1L stores the cubes which correspond to the subfunction fi;. Nodel.x 1R 

stores the cubes which correspond to the subfunction gx 
1 

• Both nodes contain many 

undecomposed variables ( from x 2, x 3 to Xn ). 

The decomposing process is performed as before: only one variable will be 

selected for the decomposition at each node. For example here, decomposing x 2 at 

Nodelx 1L, the nodes Node2x2L and Node2x2R are created. Decomposing x 3 at 



J·· 

level 2·· 

root ················ 
input function 

f (x 1, . .X;, • .Xn) 

decomposed variable x 
1 

level 1·······1 NodelxjL Nodelx 1 R 
(x2, . .Xn (x2, . .Xn) 

X2 ~ 
Node2x2L I Node2x,iR 
(.x 3 , . .Xn) (x 3, . .XnJ 

Node2x3L Node2x3R 
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Figure 19. Diagram for the heuristic tree searching. 

Nodelx 1 R, the nodes Node2x3L and Node2x3R are created. 

Continuing the decomposition for all remaining Nodes only one decomposi

tion choice is allowed for each Node, until reaching the level where the exact 

searching starts. 

For example, suppose level i is the level where to start checking all possible 

decompositions at each node. Starting from level i, as many not yet decomposed 

variables a Node contains, that many decomposing choices have to be checked for 

this Node. 
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For example, Nodeix;L contains variables Xj,Xb···.x,n· Then, the program will 

check all po~sible decomposition branches, decomposing Xj, decomposing Xb···.x,m 

it will find the best result, and will return it to the upper level. In other words, the 

exact searching is executed on each Node at level i. 

The heuristic PRM Tree searching programs allowed to reduce the computation 

time. However, with the trade-off of generating an non optimal result. 

For the mapping of the obtained result to the CLi 6000 one can observe that the 

structure of the architecture does not ideally match the structure of the obtained circuit. 

In the PRM Tree, usually, at the same tree level, the expansion variables for each node 

are not necessarily the same. See Figure 20. 

expansion variable 

~c--+--
AND/EXOR structure 

d--+-- ---- b different expansion variable 
at the same tree level 

a 

Figure 20. Diagram of PRM Tree. 

Thus, for the implementation of the circuit to the CLi600, several input variables 

would have to be routed to cells in which they are the expansion variables. This may 

cause some routing inconveniences when mapping the circuit into the CLi6000 chip. 

Therefore, this is a trade-off between the necessary routing cells and the necessary logic 

cells. 

For the purpose to better match the tree circuits to the CLi6000 chip, another ver

sion of the heuristic searching program called Heuristic Reed-Muller Tree Searching ( 
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HRMT ) is introduced in the next section. 

IV.2.3 RM Tree 

In the RM Tree, all nodes at the same tree level have the same input variable. Such 

a 'levelized' distribution of input variables matches closer to the local bus structure of 

the CLi 6000, see Figure 21 and Figure 2. 

c 

expansion variable 

~a---

b-------

d----

same expansion variable 
at the same tree level 

Figure 21. Diagram of RM Tree 

As can be observed from Figure 21, the RM Tree provides a circuit structure that 

better matches the CLi6000 chip. The input variable distribution of the obtained circuit 

matches ideally the local bus structure provided by the CLi6000. Thus, fewer routing 

cells should be required to place and route the circuit. 

In the HRMT searching, a decomposing variable is selected each level of the 

Decomposing tree according to a simple heuristic. Each function in the same level of the 

tree is decomposed with respect to this selected variable. Further improvements of the 

heuristic could be to find a method to predict the best decomposing variable for each 

level. 
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IV.3 THE GRM TREE SEARCHING 

The Exact PRM Tree searching could find the best PRM circuit for a given func

tion. H we perform some polarity transform of the original function, the program would 

be also to find the GRM Tree circuits. For two-level GRM forms there exists the pro

gram EQM[l 9] which computes the polarity that leads to the best two-level solution in 

an reasonable amount of time. Thus, we can apply this program as preprocessor to find a 

good polarity that is then used for the PRM Tree searching. 

For example, we have the following function: 

f = a ed Ea abed Ea abed Ea abc 

The program called EQM [19] can find the best polarity for a GRM of a Boolean 
-

function. Suppose, EQM found that the best polarity of GRM for this function is: a,b,e,d. 

The Exact PRM Tree searching assumes the polarity is a, b, c, d. To apply the result 

obtained by EQM to our PRM tree searching, we have to perform the following steps: 

- -
(ii) Change b and e to negated variables: b --> B, e --> C. Do the following transform, 

generate function f 2 ( Figure 23 ). 



48 

-
b ~B 

c ~c 

a b c d a B c d 

0 x 0 1- - - - - -> 0 x 1 1 

1 1 0 1- - - - - -> 1 0 1 1 

1 0 0 0- - - - - -> 1 1 1 0 

1 0 1 )f- - - - -> 1 1 0 x 

Ji f 2 
-

Figure 23. polarity transform for function f 1• 

(iii) Take function f 2 as the input function to run the Exact PRM Tree searching ( Fig-

ure 24 ). 

Cd 

aB~ 01 11 10 
oo 0 I 0 I /1 \ I 0 

01 0 I 0 I \1 JI 0 

111(1 I 1)1 0 1c!51 /2 

10 I 0 I 0 1(0 0 
-

Figure_i4_._ function f 2• 
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Now, we find the best PRM Tree circuit for /2. See Figure 25. 

f 2 

0 

Figure 25. PRM Tree circuit for f 2 • 

(iv) In schematic change back: B --> b, C --> c. We get the GRM circuit with polarity 

abed for function f 1• See Figure 26. 

Ii 

0 

Figure 26. GRM Tree circuit for f 1• 



CHAPTER V 

TECHNOLOGY MAPPING 

The previous chapter introduced the concept of the PRM circuit and the RM cir

cuit. This chapter outlines the easy application of the obtained circuit to the placement 

and routing for the CLI 6000 FPGA series. 

The basic macrocell provided by the CLI 6000 FPGA series implements a rich and 

powerful set of logic and routing functions. With the characteristics of the PRM circuits 

and the RM circuits, only certain cell states are used during the placement. Those basic 

logic and routing functions are showed in Figure 3. 

As one can observe from Figure 3, the logic macros provided by the CLI 6000 

FPGAs are identical to the logic subfunctions obtained by the introduced PRM tree 

searching programs. Moreover, the levelized connection of input-variables to the the 

PRM tree circuit matches ideally the local bus structure of the CLI 6000 FPGA series. 

To illustrate the placement and routing of the different tree circuits obtained by the 

introduced programs to the CLI 6000 series, we show the mapping of the PRM and RM 

tree circuit of a standard benchmark function to the CLI 6000 series. 

We selected the first output function of the conl circuit provided by the MCNC 

benchmarks: 

conll.tt 

11110-
01--01 
1011-
-001--
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After the application of the RM and PRM programs we obtain the circuits shown in Fig

ure RM and Figure PRM. 

wd 
lJ. 

jf.L 

F 

b 
b~ 

al~ 

Fid ~ 
rrd ~ cft ~di( 

e If f 
f 

Figure 27. PRM circuit. 

The placement of the PRM and RM circuits to the CLI 6000 FPGA series can be 

realized by the following steps: 

(1) Map the nodes/gates of the circuit to functions realizable with one macrocell 

provided by the CLI 6000 FPGA series. 

(2) Place the mapped circuit into the CLI 6000 chip. 

(3) Check the connections of the macrocells between the neighboring cells. If the 
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fu 
I ll_a 
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~ ir-Jb 
clld ~ f1c~d 

0 
dlj e dll e 

fib d1 
tfl ellf f 

e 

Figure 28. RM circuit. 

required input or output of a macrocell can not be directly provided by the 

corresponding neighboring cell, an additional routing cell is needed between those 

two logic cells. 

( 4) Check the connections of each local bus to the macrocells. If the required input 

variable of a cell can not be provided by the local bus which is connected to this 

cell, one or more routing cells need to be reserved next to this cell in order to get 

the required input variable through another cell's local bus. 

(5) Check if the number of macrocells obtained by the placement of logic and rout

ing cells can be reduced by routing input variables directly to a particular cell 

using a vertical local bus. 

The following graphs illustrate the placement of the PRM and RM circuit to the 

CLI 6000 chips. 

.., 
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In the pictures, each square illustrates a macrocell, the horizontal and vertical lines 

illustrate the local bus. Each cell connects to four local buses but can only get one input 

from any one of the four local buses. A and B are the inputs or outputs of the macrocells. 

When realizing logic functions, some logic gates in the macrocell require the A inputs 

while some logic gates require the B inputs, and some gates in the macrocell could pro

vide only A outputs while some gates could provide only B outputs. So that, during the 

circuit placement, the input and output type ( A or B ) also needs to be match. 

Figure 29 shows the mapping of the PRM circuit to the CLI6000 chip. One can 

observe that 10 logic cells and 20 routing cells are required for its implementation. 

Making some input variables available on the vertical local bus and rearranging 

some logic cells, one obtains the PRM circuit shown in Figure 30. 

The improved circuit placement takes 18 routing cells. 

Figure 31 and Figure 32 show the mapping of the RM circuit to the CLI6000 chip. 

Because the different way of loading expansion variables to the local bus, the number of 

routing cells in Figure 31 is less than the one in Figure 32. 

The placement of the RM circuit takes 11 logic cells and 17 routing cells. 

The improved RM circuit placement needs 11 logic cells and 13 routing cells. 

As we mentioned before, each macrocell is connected to four local buses ( let's 

call them lower-bus, up-bus, left-bus and right-bus). On above placement examples, the 

expansion variables were loaded on only the lower-bus not the up-bus. If some chosen 

expansion variables be loaded also on the up-bus, it may lower the cost of the placement 

Figure 33 illustrates another application of the RM circuit placement 

Figure 33 shows that only two additional loaded buses are needed, one for input 

variable d and one for f, instead of four, two ford and two for f, in Figure 32. 

Table I shows the results of the placement. One could see that for the PRM circuit 
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the placement needs less logic cells but more routing cells than for the RM circuit. 

d F a f 
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Figure 29. Mapping for the PRM circuit. 
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Figure 30. Mapping #2 for the PRM circuit 
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Figure 31. Mapping for the RM circuit. 
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Figure 32. Mapping #2 for the RM circuit. 
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Figure 33. Mapping #3 for the RM circuit. 

TABLE I 

COMPARISON OF PRM CIRCUIT AND RM CIRCUIT PLACEMENT 

-uses 

-uses 

-uses 
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CHAPTER VI 

EVALUATION OF RESULTS 

In this thesis the multiple-level Reed Muller Tree searching and the Permuted RM 

Tree searching have been introduced. The interest in such forms was triggered by the 

upcoming of the CLi6000 series of Field Programmable Gate Arrays from Concurrent 

Logic Inc. The CLi 6000 series provides an architecture that ideally matches the AND

EXOR structure of the RM trees. Additionally, it provides a near optimum AND-EXOR 

circuit to realize a given Boolean function. Therefore, it can be used in any technology 

that contains the AND and EXOR gates: for instance, the standard cell technology. 

The multiple-level tree searching algorithms introduced in this thesis include three 

searching methods : 

(1) Exact PRM Tree searching . 

(2) Heuristic PRM Tree searching . 

(3) Heuristic RM Tree searching . 

The introduced exact PRM Tree searching computes the entire solution space of possible 

decompositions. That is, it checks all possible variable orders for the decomposition and 

compares the different results at each tree level. Therefore, the exact tree searching 

guarantees to find the PRM tree with the least number of AND-EXOR gates. 

After testing a large number of functions with different numbers of inputs, we 

compared the results of the exact tree searching with the results of a decomposition based 

on a random selection of the decomposition variable. (Here we just pick a decomposi

tion order for all variables, like a, then b, c, d .... ) 
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The test results show that, regardless how many input variables or how many input 

cubes, the exact tree searching always gives a better solution. 

Table Il shows that for realizing the same input function, the gate number obtained 

by the exact tree searching is always smaller than the one obtained by the random search

ing. 

From the test results, we conclude that when the input function has less than nine 

input variables, the Exact PRM Tree searching is the ideal searching method. Because it 

always provides the best PRM AND-EXOR structure tree within a reasonable time. 

The heuristic tree searching has been developed to overcome the time problem 

when dealing with functions having many input variables. For input functions having 

more than nine variables, the exact tree searching takes an extremely long time because 

the size of the tree increases exponentially with the number of inputs. Thus, the tree 

searching time increases also exponentially with the number of inputs. For example, for 

an eight input function, the exact tree searching may take 200 seconds, however, a nine 

input function would take up to eight hours. Thus, using the exact tree searching on func

tions having many input variables ( more than nine variables ) is not practical. 

The presented heuristic PRM tree searching has overcome this problem. A larger 

number of tests proved the following facts: by using the heuristic tree searching, the 

searching time drops tremendously. See Figure 33. The result quality varies with dif

ferent input functions. For some functions the heuristic tree searching finds the best solu

tions ( see Table ID ), while for some other functions the results from the heuristic tree 

searching are quite different from the results of the exact tree searching. But all results 

are obviously in an acceptable region of the best result. Please see Figure 35. 

Figure 34 illustrates the computation times for the different algorithms. It shows 

the searching time as a percentage of the exact tree searching time. As can be observed, 

the searching time for the heuristic tree searching algorithm is much less than for the 
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exact tree searching. 

Figure 35 shows the results obtained by the two different versions of the algorithm. 

The cost for the AND-EXOR circuit is given by the number of AND gates and EXOR 

gates. 

From Figure 35 one could observe that the cost obtained by the heuristic tree 

searching is only increased by a small amount comparing to the cost obtained by the 

exact tree searching. 

The Figure 36 shows the searching time curve for exact tree searching and heuris

tic searching as a function of the number of input variables. 

After testing functions having many input variables ( inputs vary from 10 to 15 or 

even 20 ) by performing a heuristic tree search, the results show that the time consump

tion is not a problem anymore. Applying the heuristic tree searching algorithm to many 

functions having many input variables, it could be observed that all results have been 

obtained in an acceptable time. Since there are no result comparisons possible to the 

Exact PRM Tree searching for functions having many input variables, it is difficult to 

evaluate exactly how close the results provided by the heuristic PRM Tree searching are 

to the best results. However, we assume based on the results obtained for functions hav

ing few input variables, that the results of heuristic PRM Tree searching are also close to 

the exact solution. 

The heuristic PRM Tree searching could be improved by finding better heuristic 

rules for the selection of the decomposing variables. 

The RM Tree searching is developed to provide the circuits for better matching the 

CLi6000 chips. Because of the existence of bus connection in the CLi6000 chips, RM 

Tree circuit is more appropriate than PRM Tree circuit with respect to placement in 

CLi6000 chip. Even though the RM Tree circuits may not have the minimum number of 

gates ( see Table IV ), their property of having the same expansion variable at the same 
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tree level has advantage during the routing. The connectivity of the logic blocks of the 

CLi 6000 series matches the connectivity of the RM tree circuit. Therefore, the RM tree 

circuit can be directly placed. Only few additional cells for routing have to be added. 

In addition, the RM Tree searching and PRM Tree searching could be extended to 

generate the GRM circuits. This gives us more opportunities to use the program for dif

ferent applications. 

The importance of our tree searching program consists in providing a new method 

for the logic optimization with AND-EXOR gates that are of growing industrial interest. 
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Figure 34. Heuristic searching time versus exact searching time. 
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Figure 35. Cost of the heuristic searching versus the exact searching. 
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Figure 36. Real search time of exact searching versus heuristic searching. 
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TABLE II 

GATE NUMBER COMPARISON OF EXACT SEARCHING AND RANDOM SEARCHING 

Example cxact-u·cc searching rJndom order searching 

l/N O/N 
Name #And-gate # Exor-gatc #And-gate #Exor-gate 

misex25.tt 6 l 8 11 11 11 

misex53.tt 6 1 6 7 10 7 

misex57.tt 6 1 8 11 13 11 

misex22.tt 6 1 8 11 15 11 

misex55.tt 6 1 8 11 12 11 

misex58.ll 6 1 6 7 IO 7 
misex56.lt 6 I 8 11 13 12 

misex21.tt 6 l 10 15 15 16 

5x6.tt 7 l 3 4 4 4 

5xl .11 7 I n 15 26 15 

5x5.tt 7 1 5 6 7 8 

:44.tt 7 l 2 2 2 2 

conl 1.tt 7 l 7 10 9 10 
conl2.tt 7 l 5 7 5 7 

f55.ll 8 1 3 4 4 4 

f54.tt 8 1 5 6 8 8 

f53.tt 8 1 9 10 17 15 

f52.tt 8 I 14 18 33 26 
f51.tt 8 l 25 30 50 44 

* l/N -- input number . 

* O/N -- output number . 

* #AND-gate -- the number of AND-gates . 

*#EXOR-gate -- the number of EXOR-gates . 



TABLE III 

TIME COMPARISON OF EXACT SEARCHING AND HEURISTIC SEARCHING 

Example 

Name 

misex25.tt 

misex53.tt 

misex57.tt 

misex22.tt 

misex55.tt 

misex58.tt 

misex56.tt 

misex21.tt 

5x6.tt 

5xl.tt 

5:x5.tt 

z44.tt 

conll.tt 

con12.tt 

f55.tt 

f54.tt 

f53.tt 

f52.tt 

f51.tt 

9nsy.tt 

misex64.tt 

misex47.tt 

misex60.tt 

/13.tt 

/14.tt 

/15.tt 

f16.tt 

/17.tt 

/18.tt 

/19.tt 

P,O.tt 

exact-tree searching 
I/N O/N 

#And #Exor time level 

6 1 8 11 2.1 

6 1 6 7 1.4 

6 1 8 11 1.9 
6 1 8 11 2.3 

6 1 8 11 2.3 
6 1 6 7 1.8 
6 1 8 11 2.5 

6 1 10 15 3.1 
7 1 3 4 3.0 
7 1 13 15 21.3 
7 1 5 6 7.3 
7 1 2 2 1.3 
7 1 7 10 8.2 

7 1 5 7 7.7 
8 1 3 4 24.3 
8 1 5 6 45.4 
8 1 9 10 102.0 
8 1 14 18 243.2 
8 1 25 30 426.3 
9 1 41 73 13760.0 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 

* l/N -- input number . 
* O/N -- output number . 
* #AND -- the number of AND-gates . 
*#EXOR -- the number of EXOR-gates . 

6 

5 
6 
6 

6 
5 
6 
6 
4 

7 
4 
2 
6 
4 
4 
5 
6 
7 
8 
9 

heuristic searching 

#And #Ex or time 

9 11 0.4 

8 7 0.3 
9 11 0.4 
9 11 0.4 

10 11 0.5 
6 7 0.3 

10 11 0.5 

10 15 0.6 
3 4 0.4 

14 15 3.9 
5 6 1.3 
2 2 0.1 

8 10 1.2 

5 7 1.4 
4 4 0.2 
5 6 6.1 

10 11 15.4 
16 19 32.6 
26 31 57.1 
48 73 110.2 

147 295 321.6 
53 39 573.2 

33 15 265.0 
40 23 9.6 
63 27 25.5 

117 131 103.7 
94 95 23.7 

392 257 193.2 
224 199 53.6 
347 '12,7 6.6 
762 575 185.7 
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level 

6 

5 
6 
6 

6 
5 
6 
6 
4 

7 
4 
2 
6 
4 
4 
5 
6 
7 
8 
9 

10 
11 
12 

8 
12 

11 
10 

11 
12 
13 
15 
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TABLE IV 

GAIB NUMBER COMPARISON OF EXACT PRM SEARCHING AND RM SEARCHING 

Example exact-tree searching RM-tree searching 
l/N O/N 

Name #And #Exor time level #And #Exor time level 

misex25.tt 6 1 8 11 2.1 6 10 10 0.1 6 
misex53.tt 6 1 6 7 1.4 5 10 7 0.0 5 
misex57.tt 6 1 8 11 1.9 6 12 9 0.0 6 
misex22.tt 6 1 8 11 2.3 6 18 11 0.0 6 
misex55.tt 6 1 8 11 2.3 6 20 11 0.1 6 
misex58.tt 6 1 6 7 1.8 5 10 7 0.0 5 
misex56.tt 6 1 8 11 2.5 6 14 11 0.0 6 
misex21.tt 6 1 10 15 3.1 6 15 15 0.0 6 
5xl.tt 7 1 13 15 21.3 7 25 14 0.1 7 
5x5.tt 7 1 5 6 7.3 4 10 6 0.0 4 
z44.tt 7 1 2 2 1.3 2 3 4 0.0 3 
conll.tt 7 1 7 10 8.2 6 8 10 0.0 6 
con12.tt 7 1 5 7 7.7 4 7 7 0.0 4 
f52.tt 8 1 14 18 243.2 7 28 24 0.0 7 
f51.tt 8 1 25 30 426.3 8 40 35 0.2 8 

* l/N -- input number . 

* O/N -- output number . 

* #AND -- the number of AND-gates . 

* #EXOR -- the number of EXOR-gates . 

* time -- CPU time . 



CHAPTER VII 

CONCLUSIONS 

A practical program with exact and quasi-minimum options for the minimization 

of PRM Trees, RM Trees to be realized in cellular-logic FPGAs has been presented. For 

realizing a given Boolean function, the circuit obtained from the exact PRM Tree has the 

minimum number of gates. When dealing with logic functions having many input vari

ables, the heuristic PRM Tree searching works idealy to decrease the time complexity as 

well as provide quasi-minimum PRM circuit. Also, after some polarity transform of the 

original function, the program could be able to find the GRM Tree circuits. This gives us 

more opportunities to use the program to generate some other kind of tree-like circuits. 

The main advantages of our approach is that the presented program generates regular 

multi-level circuits based on the AND/EXOR gate structure, thus, the circuits can be 

easily placed to the CLI6000 chips. Moreover, the RM circuits obtained from the RM 

Trees are better suited the bussing network of the CLI6000 architecture, so, they can be 

easier routed after the placement 

The synthesis concept presented in this thesis open a wide area of interesting and 

new applications, especially to new FPGAs. 
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