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ABSTRACT 

An abstract of the dissertation of Wesley Emanuel Dubbs for the Master of Science in 

Biology: presented June 2, 1994 

Title: Chlorophyll Characterization of Three Mistletoes and the Chloroplast 

Ultrastructure within Aerial and Endophytic Tissues of Phoradendron juniperinum 

The aerial shoot pigments of three epiphytic mistletoes and their hosts were 

examined and the results were found to concur with earlier reports. Emphasis was 

placed on the mistletoe P horadendron juniperinum. Absorbance spectroscopy indicated 

a very similar ratio of pigments in both the aerial tissue of the mistletoe and its juniper 

host. Spectroscopic examination found the presence of chlorophyll in the endophytic 

tissue of the genus Phoradendron for the first time. Total chlorophyll concentrations of 

the endophytic tissue of Phoradendronjuniperinum were found to be approximately 

10% that of aerial shoots. However, chlorophyll alb ratios of endophytic tissue were 

40% of those in aerial tissue. The dwarf mistletoe Arceuthobium tsugense was found to 

have about 1/3 the chi content of its host and of the two Phoradendron species 

examined. However, the endophytic concentrations of chlorophyll of A. tsugense were 

250% higher than those found in compatible Phoradendron tissue. 

Ultrastructural inspection of Phoradendron juniperinum revealed chloroplasts of 

the aerial shoots to be typical of C3 plants, yet they were small and contained little 

relative stroma lamella. This is characteristic of plants with unequal complement of the 

two photosystems. Examination of the endophytic system indicated that the most likely 

source of the chlorophyll to be plastids with enlarged thylakoid channels. These plastids 

were termed endophytic-chloroplasts 

Experiments were performed to establish whether the synthesis of the 

chlorophyll within the endophytic system was via a light-independent pathway or by 

means of light penetration into mistletoe tissue and stimulation of the typical angiosperm 

light-dependent pathway. However, results as to the biosynthesis of chlorophyll were 

inconclusive. These experiments did indicate that chlorophyll was still present in 



endophytic tissue of Phoradendronjuniperinwn after 11 months without aerial shoots, 

whether enclosed in complete darkness or not. Microscopic examination of tissue did 

not revile the presence of any light conductive tissues in either the parasite or its host. 
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INTRODUCTION 

Among the members of the Kingdom Plantae, parasitic angiosperms are unique 

in being dependent on other plants for water, minerals and often organic materials. 

These parasitic plants are separated into two groups based on their chlorophyll content 

(Marshall and Ehleringer 1990). Holoparasites are those that lack chlorophyll and are, 

therefore, dependent on their host for all carbohydrates and nutrients. Hemiparasites 

contain chlorophyll but they are often partially heterotrophic on host carbohydrates. 

Phoradendronjuniperinum (Viscaceae) is an epiphytic, squamous (scale-leaf) mistletoe 

that is found as an obligate parasite on the branches of juniper, including the Western 

Juniper, Juniperus occidentalis. P.juniperinum is considered a hemiparasite, since it 

contains chlorophyll and is able to produce energy through photosynthesis. It is a 

xylem-tapping mistletoe but is, to an extent, heterotrophic, obtaining 61-62 % of its 

fixed carbon via uptake of dissolved organic compounds from the host's xylem stream 

(Marshall and Ehleringer 1990). 

Angiosperms have two types of pigments in their chloroplasts: chlorophylls and 

carotenoids. There are two main kinds of chlorophyll in angiosperms, chlorophyll a 

and chlorophyll b. Both act as accessory pigments, absorbing different wavelengths of 

light and transferring that energy to special chlorophyll a photoreaction centers located 

in the thylakoid membrane of chloroplasts. This captured energy is used to drive the 

light reaction of photosynthesis. Carotenoids also act as accessory pigments in 

photosynthesis and, by acting as a preferred compound for photoxidation (oxygen

dependent bleaching of chlorophyll), they protect chlorophyll from potentially harmful 

short-wavelength light. This protective role explains why carotenoids concentrations 

are often seen to increase with increased light intensity (Kirk and Tilney-Bassett 1978). 

In angiosperms, chlorophyll synthesis is closely related to the plastid structure 

and development (Virgin et al. 1963). All of the chlorophyll molecules and most 

carotenoids are contained in plastids. Plastids destined to become chloroplasts typically 

differentiate in the dark to form etioplasts with abundant prolamellar bodies which lack 

chlorophyll (Kirk and Tilney-Bassett 1978). When exposed to light, the lattice 

arrangement of the prolamellar bodies breaks down as the precursor molecule, 



protochlorophyllide, is esterified into chlorophyll, and the formation of the thylak:oid 

membrane begins. 
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The endophytic system (longitudinal strands and sinkers) of mistletoe is 

considered to be a modified root system (Dawson and Ehleringer 1991). From the point 

of infection longitudinal strands grow acropetally, basipetally and laterally in the bark of 

the host branch. Sinkers arise from the longitudinal strands, and, upon reaching the 

host's vascular cambium, fonn their own cambial zone and establish a coordinated, 

centrifugal, growth with the host vascular cambium (Salle 1979) (figure 1). 

Subsequently the oldest part of a sinker is found deep within host tissue (as deep as lcm 

for those plants examined). When thick cross sections are made in fresh host tissue 

encompassing endophytic tissue, a green pigmentation is seen predominantly in the 

longitudinal strand (not including vascular tissue) and in the oldest, deepest part of the 

living sinker (1boday 1956; Brian Fineran and Brian Malloy personal communications). 

The presence of chlorophyll and its photosynthetic activity has been documented within 

the endophytic system of Arceuthobium oxycedri (Viscaceae) (Rey et al. 1992). 

However, the presence of chlorophyll within the endophytic tissue of the genus 

P horadendron has not been documented. 

Chlorophyll production in angiosperms is believed to require light for activation 

of the chlorophyll biosynthesis (Castelfranco and Beale 1983) (Appendix A). Thus, if 

chlorophyll is found within the endophytic system of Phoradendron juniperinum it must 

be the result either of light penetration of host tissue and stimulation of the chlorophy 11 

biosynthesis pathway or the result of a light-independent pathway for chlorophyll 

synthesis. 

The penetration of light into plant tissue via fiber optics (Vogelmann 1989) or 

epidermal focusing (Martin et al. 1989; Bone et al. 1985) has been studied previously in 

plants. Because of light scattering, light entering a plant by fiber optics attenuates 

rapidly, becoming very diffuse at 0.1-0.2 mm depths in irradiated lettuce seeds 

(Vogelmann 1989). Of the incident 450 and 680 nm light striking the leaf surfaces, 

90% was removed by the first 50 µm of tissue and explains why many leaves are so 

thin, 80-250 µm (V ogelmann 1989). Epidennal focusing by specialized cells can 

concentrate light up to 20 times (Bone et al. 1985) and, in combination with fiber optics, 

may allow light to penetrate deeply enough into host tissue to stimulate the biosynthesis 

of chlorophyll. 



Sinker 
cambium 

3 
Mistletoe vascular tissue 
(dev9id of chlorophyll) 

...,. ' , ' ., 1 Sinker 

Figure 1. Diagram of endophytic system of 

(shading indicates 
relative amount of 
green pigmentation) 

0.5 cm 

P horadendron juniperinum (gray area) on host stem. 

To a varying extent, gymnosperms and other non-flowering plants are able to 

form chlorophyll in the dark without a prior light exposure (Castelfranco and Beale 

1983) and fonnnonnal chloroplasts (Michel-Wolwertzand Bronchart 1974) through a 

light-independent pathway. However, in gymnosperms light-independent chlorophyll 

biosynthesis is believed to occur predominantly within cotyledons of young seedlings, 

when associated with the megagametophyte (Virgin and Egn6us 1983) or, artificially, 

with the addition of cytoldnins to cotyledons (Jansson et al. 1992). Adult plants as well 

have been shown to synthesize chlorophyll in the dark, however the amount fonned in 

light is always substantially higher (Kasemir and Mohr 1981). 
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The chlorophyll content of mistletoe has been examined previously (Hull and 

Leonard 1964; Elias 1987; Shah et al. 1987; Rey et al. 1992). Chloroplast ultrastructure 

has been examined in Viscum album (Hudak and Lux 1986; Dodge and Lawes 1974), 

Striga hermonthica and Tapinanthus dodoneifolius (Tuquet and Salle 1991). None of 

these studies however have addressed the plastid ultrastructure within the endophytic 

system and, except for Arceuthobium oxycedri (Rey et al. 1992), chlorophyll 

characterization has been limited to examination within aerial shoots. 

The purpose of this thesis is to characterize and document the pigments found in 

aerial and endophytic tissues of Phoradendronjuniperinum, P. villosum and 

Arceuthobium tsugense and their hosts. The ultrastructure of plastids of 

P.juniperinum in both aerial shoots and the endophytic system were examined, and 

these tissues and those of its host were examined for the presence of light conductive 

cells. Experiments were conducted to determine whether chlorophyll was being 

synthesired in the endophytic system via light stimulation or by a light-independent 

pathway. 



MATERIALS AND :METHODS 

Plant Material 
In addition to Phoradendron juniperinum (Englem.) ex A. Gray subsp. 

juniperinum, two other species of mistletoes were examined: Phoradendron villosum 

(Nutt.) Nutt. subsp. villosum, and Arceuthobium tsugense (Rosendahl) G. N. Jones. 

Pigment concentrations of all three mistletoes were examined spectroscopically. 
Emphasis was placed on P. juniperinum and, experiments and electron microscopy 

were performed. 

Arceuthobium tsugense infected Tsuga heterophylla (Rafinesque) were collected 

on January 15, 1994, southwest of Estacada, Oregon. Phoraderzdron villosum 

epiphytic infections on Quercus garryana (Dougl.) were collected in early April, before 

bud brake on host, along Interstate Five south of Salem, Oregon. The location of the 
P.juniperinum infectedluniperus occidentalis (Hook) study site was about one km 

west of Tumalo, Oregon off Highway 20, in a juniper forest about 100 meters south of 

the intersection of Market Road and Highway 20. All experiments and collections were 

done on material taken between 1.5 to 3 meters from the ground on trees. Only those 

mistletoes growing on host branches with diameters of approximately 1.5 cm were 

used. Older, healthy mistletoe infections were chosen, as they are more likely to have a 

well-developed endophytic system. Plant tissue was stored in plastic bags, on ice, until 

return to Portland, Oregon. Voucher specimens of parasites and their hosts are 

deposited at Portland State University herbarium (HPSU). 

Dark Experiments 

Controls, aluminum wrappings and dark boxes experiments (Appendix B) were 

initiated on Phoradendron juniperinum infected juniper on April 20, 1993 and collected 

at intervals until March of 1994. 

Pi~ent Extraction 

All extractions were done in physiological darkness, using a green safe-light to 

prevent the photobleaching of pigments and to prevent any possible activation of 



chlorophyll biosynthesis. The safe-light was constructed using a modification of that 
described by Schiff (1972). Each of two 16" fluorescent tubes was covered by four 

sheets of amber cellophane and three sheets of green cellophane. The ends of the tubes 

were wrapped with tape to prevent light leakage from around the cellophane. The 

physiological darkness of the safe light was determined by its inability to stimulate 

chlorophyll production in etiolated pea seedlings (Adamson 1985). 

Fresh weights of plant tissue were determined, and extractions were performed. 

In a mortar and pestle, 0.5 grams of chopped plant tissue 1 were ground using acid 

washed quartz sand in acetone. To neutraliz.e any acidity, and thus prevent pheophytin 

(magnesium-free chlorophyll derivatives) formation, 0.15 grams ofNa2C~ was added 

at the time of grinding. Acetone ( 100%) was used, as it does not extract water soluble 

tannins that might interfere with the determination of the peaks for the shorter 

wavelength absorbing carotenoids yet, 100% acetone does not extract 

protochlorophyllide readily. Therefore, for the identification of protochlorophyllide, 

80% acetone was used on the same sample immediately following the 100% extraction. 

Extractions were performed using 5 ml aliquots of the solvent and decanting 

through a Whatman glass microfibre filter (1.2 µm pore size) placed over a sintered 

glass filtered funnel, assisted by a vacuum created by a water aspirator. This procedure 

was repeated on the plant tissue at least seven times to insure complete removal of 

pigments. The filter was then rinsed with the solvent several times and the resultant 

solution brought up to 45 ml. 

Absorbance SpectroSCQPY 

The absorbance spectrum of chlorophyll is a distinct indicator for its presence 

and was used to determine chlorophyll concentrations above 1 µg/ml. Below this level, 

relative fluorescence was used to determine chlorophyll concentration (Kamiya et al. 

1981). 

1 Endophytic tissue was obtained by first removing the cork tissue of the host 
stem then, using a razor blade or a hand trimmer, infected tissue was removed for 
extraction (only tissue away from where an aerial shoot emerged was used). Because 
Arceuthobium tsugense and Phoradendron juniperinum are both squamous mistletoes, 
only their photosynthetic stems were used for determination of aerial chlorophyll 
content. For P. villosum, leaves were used for extractions. 

6 



Within quartz cuvettes the absorbance spectrum of bulk pigment extract was 

determined using a Shimadzu UV-visible recording UV-260 spectrometer, scanning 

from 350-700 nm. Raw data was transferred digitally to a computer for accurate 

determination of absorbance readings. Total carotenoids, total chlorophyll, 

chlorophyll a, and chlorophyll b concentrations were calculated using the equations of 

Lichtenthaler ( 1987). 

For acetone 80% ( v /v) extractions the following formula was used. 

Results in micrograms per gram fresh weight of plant tissue: 

Chlorophyll a= (12.25~2 - 2.79A646_g)'Dilution factor 

Chlorophyll b = (21.50A646.8 - 5.10A663.2)/Dilution factor 

Total Chlorophyll= (7.15A663.2 + 18.71A646.8)/Dilution factor 

T al C . .d (1000A470 - 1.82Chla - 85.02Chlb) I Dil . f ot arotmo1 s = utton actor 
198 

For acetone 100% (v/v) extractions the following formula was used. 

Results in micrograms per gram fresh weight of plant tissue: 

Chlorophyll a= (l 1.24A661.6 - 2.04A644.8 )/Dilution factor 

Chlorophyll b = (20.13A644.8 - 4.19A661.6)/Dilution factor 

Total Chlorophyll= (7.05A661.6 + 18.09A644.8)/Dilution factor 

T ale .. d (1000A470 - 1.90Chla - 63.14Chlb)/D"l . f ot arotmo1 s = 1 ut10n actor 
214 

The blanks used for the plant tissue was acetone, of the appropriate 

concentration. 

Fluorescence Spectroscopy 

Using the same bulk pigment extracts as those obtained for absorbance 

spectroscopy, fluorescence spectra were made using a SPEX Fluorolog 2, single beam 

spectrophotometer. Data acquisition and processing were done with a SPEX DMlB 

Spectroscopy Laboratory Coordinator. Specimens were excited using 432 nm light, 

and the right angle emittance was recorded from 600-750 nm with a Hamanatsu 

photomultiplier tube, R938 (Kamiya et al. 1981). Fluorescence spectra were corrected 

for the spectral intensity variation of the 1908 Standard Lamp with 0.3% rhodamine B, 

7 



as the quantum counter. When bulk pigments are extracted with acetone and excited 
with 432 nm light chlorophyll a fluoresces at about 670 nm (Ikegami 1984). Using the 

670 nm peak as an indication for the relative concentration of total chlorophyll, low 

concentrations of chlorophyll were detennined and corroborated absorbance results. 

The presence ofprotochlorophyllide can also be determined using fluorescence. 

By excitation of 80% acetone bulk pigment extract with 432 nm light, 

protochlorophyllide fluoresces at approximately 632 nm (Kamiya et al. 1981). 

Thin Layer Chromatomphy 

Thin layer chromatography (fLC) was done using a variation of that by Zweig 

and Sherma (1972). Pigments were extracted from plant tissues using the same 

procedure as with bulk pigment extraction for absorbance spectroscopy but using only 

100% acetone. The resultant pigment extract was then placed in a separatory funnel, 

and a small amount of petroleum ether (b.p. 40-60° C) was added. This solution was 

swirled gently to insure pigment migration into the petroleum either. An excess of 10% 

NaCl solution was then added to cause a phase separation of the pet ether and 

acetone/I 0% NaCl solution. The lower acetone solution was discarded. The upper pet 

ether phase, containing pigments, was removed to a small beaker. 

A Whatman Linear-K Pre-absorbent 5 x 20 cm silica gel plate was activated by 

drying at 60° C overnight. The bulk pigments, in petroleum ether, were applied to the 

bottom of the 1LC plate with a capillary tube. In a darkened fume hood the TLC plate 

was placed into the TLC chamber and allowed to develop for 30-45 minutes (hexane: 

ethyl ether: acetone in the ratio 60:30:20 (v/v) was used as the developing solvent). To 

help minimire the amount of light exposure during pigment separation the TLC chamber 

was placed into the small cardboard box it was originally packaged in. When finished, 

the plate was remove from the chamber, and under low ultraviolet light, the solvent 

front and individual pigment migrations were marked to obtain data for determination of 

Rt values. 

Individual pigments were retrieved by scraping off the desired pigment band and 

extracted by gentle mixing in 80% acetone. The solution was centrifuged, poured 

directly into cuvettes and analyred for absorbance and fluorescence emissions as 

described above. 

8 



Light microscopy 

Tissue was examined which had previously been prepared according to Calvin et al. 

(1991 ). Approximately 3 mm diameter infected host stems were selected and cut 

directly into the fixative fonnalin-propionic acid-alcohol (FP A), and to aid infiltration a 

vacuum was applied several times. T~ue was dehydrated in a series often-butyl 

alcohol baths and infiltrated with paraffin over two weeks. Sections, 10-12 µm thick 

were made using a rotary microtome and stained using safranine-fast green (staining in 

safranine for 6 hours and counter staining for 2 minutes in fast green) (Jensen 1962). 

Observations of tissue were made at 400x using a ~iss compound microscope with a 

calibrated ocular lens. 

Transmission Electron Microscopy 

In physiological darkness, collected plant tissues were processed according a 

modification of Roland and Vian (1991 ). Tissues were trimmed to approximately 

2 mm2 section and transferred directly into glutaraldehyde fixative 

(1.5% glutaraldehyde and 1.5% parafonnaldehyde in 0.1 M cacodylate). 

Glutaraldehyde buffer was used, because it penetrates well, preserves proteins, and 

retains cellular components. Infiltration of fixative into ~ue samples was aided by 

several applications of a vacuum. 

Samples, in fixative, were kept in darkness at 4 ° C until the time of post 

fixation, 1-4 days. Tissue was secondarily fixed using 2% Os04 buffered in 0.lM 

cacodylate at 10° C for two hours. Osmium tetroxide was used for post fixation, 

because it stabilires unsaturated lipids and phospholipids that would otherwise be 

d~olved during dehydration with ethanol. Dehydration of ~ue was performed using 

an ethanol series. Samples were transferred into L.R. White embedding solution (a 

methyl methacrylate), and polymerized within jell capsules at 60° C overnight. The 

resulting blocks were removed from the capsules, trimmed, and sections were made 

using a Sorvall Porter-Blum MT-2 ultramicrotome with a diamond knife. 

Sections, on copper grids, were stained for four minutes with uranyl acetate, 

which enhances contrast of DNA and RNA (Roland and Vian 1991) and for 15 minutes 

with lead citrate (Reynolds 1963), which enhances cell membranes. To improve sample 

stability, sections were carbon coated. Examination and micrographs were made using 

a Hitachi HS7S transmission electron microscope. 

9 



RESULTS 

Absorbance Spectrosco.py 

P horadendron juniperinum infections are typically easily seen on infected host 

trees as olive-green to yellow-green clumps of growth against the gray-green foliage of 

the juniper. Absorbance spectra of the bulk pigment extractions of the aerial positions 

of both the P. juniperinum and its host (figure 2) shows them to qualitatively have the 

same pigment complex. Table I indicates the qualitative and quantitative similarities 

between pigment concentrations in P.juniperinum and its host as shown by the highly 

comparable chlorophyll alb and carotenoid/chlorophyll ratios. Uninfected foliage of 

juniper had a statistically similar pigment complement as that of infected juniper, data 

not shown. 

2.5 

2.0 

1.5 
abs. 

1.0 

0.5 

P. juniperinum 
J unioerus occident alis 

0.0 --,..., ---..-, ----r1 ----.-, ---....-.----.....---.-__;;:2!==,;a 
350 400 450 500 550 600 650 700 

Wavelength in nm 

Fifmre 2. Absorbance spectra of extracts from aerial shoots of Phoradendron 
juniperinum and juniper. 
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Absorbance spectroscopy of the pigment extract from the endophytic system of a 

lateral control infection yielded the specnum seen in figure 3. The spectrum is 

compared to that obtained from the aerial shoots which was divided by 10 to allow a 

more direct comparison to the endophytic system spectrum. The difference in the 

relative heights of the peaks (figure 3) indicate different concentrations of similar 

pigments as shown in table 1 Both lateral and pseudoterminal infections were 

examined. Calvin et al. (1991) defines a lateral infection as one occurring along the 

sides of branches and a pseudoterminal as one where, as a result of cell death on the 

distal portion of a lateral infection, the infection becomes terminal on the branch. Table 

I shows the pigment concentrations of the endophytic tissue of lateral infections to be 

about a tenth that of the aerials. However, since removal of the endophytic system was 

done in physiological darkness, and that removal inevitably was accompanied by large 

amounts of host tissue, the actual concentrations of endophytic chlorophyll and 

carotenoids is larger than that indicated. This might explain some of the large range of 

error in the final values. Some error undoubtedly is due also to changes in chlorophyll 

concentration that occurred throughout the year in which tissue collections were made. 

However, results were not consistent enough to make any definite conclusions 

regarding seasonal variations in pigment content. 

It was noted during removal of endophytic tissue for extraction that 

pseudoterminal infections showed a marked amount more necrotic tissue than did lateral 

infections. Table I shows that pseudoterminal infections have a lower chlorophyll 

concentration compared to lateral infections but had statistically similar chlorophyll alb 
and carotenoid/chlorophyll ratios. This could be due to increased amounts of necrotic 

tissue and a less elaborate endophytic system in pseudoterminal infections (Calvin et al. 

1991) which might lower the percentage of living, chlorophyll containing, mistletoe 

cells removed for pigment extraction. The similar pigment ratios indicate that regardless 

of the presence of necrotic material, the endophytic system has a fundamentally similar 

pigment complement in both lateral and pseudotenninal infections. 
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Dissected Phoradendronjuniperinum seeds, collected in November, show green 

endosperm and embryos. Data from absorbance spectrum reveal approximately half the 

chlorophyll concentration, a lower chlorophyll alb ratio and a comparable ratio of 

carotenoid/chlorophyll to that of aerial shoots (table n. The viscin also contained a trace 

amount of chlorophyll (data not shown). 

Chlorophyll was also found also in the endophytic systems of the oak mistletoe 

Phoradendron villosum and the hemlock dwarf mistletoe Arceuthobium tsugense2 (only 

lateral infections were examined) (table n. 
Uninfected hemlock stems of a similar age as those collected with Arceuthobium 

infections also contained chlorophyll (table I). However, endophytic extracts contained 

about twice the concentration of pigments as the uninfected stems, resulting in similar 

2Arceuthobium tsugense's host, hemlock, was routinely found to contain 
chlorophyll within young cork or phloem cells, so as much of this material was 
removed as possible prior to pigment extraction. 
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pigment ratios. These ratios were almost identical to those seen in the endophytic tissue 

of Phoradendron juniperinum. The endophytic system of A. tsugense had 

approximately the same total chlorophyll concentration as did aerial tissue with a higher 

average amount of chlorophyll b but only about half the carotenoid concentration 

(figure 4). 

The outer bark of Phoradendron villosum was covered with a prominent amount 

of lichen, so all bark was removed. Subsequently, chlorophyll concentrations recorded 

are only for sinker tissue. At the time of collection of P. villosum, its host (oak) had 

only recently begun bud break, so no data was obtained for the host aerial shoots. 

Chlorophyll content and pigment ratios were similar to that seen in P. juniperinum with 

ether notable exception of the carotenoid/chlorophyll ratio. This ratio may have been so 

high in P. villosum because its host had no shading foliage and thus carotenoid 

concentrations increased in aerial shoots, fulfilling their function in protecting 

chlorophyll from photoxidation. No pigment concentrations were determined for oak 

stems as the areas of the same age as infected branches were highly infested with lichen. 

Uninfected wood from similar locations as that removed for P. villosum sinker 

extractions lacked chlorophyll. 

Dark Experiments 

The photosensitive paper, which was kept within the dark boxes during the 

duration of the experiment, was processed. Only data from those four out of the five 

dark box set-ups in which the paper had not been exposed (showing darkness had been 

maintained) were used. Neither those control plants that had had their aerial portions 

removed nor those which were enclosed within dark boxes showed any regrowth of 

aerial shoots throughout the course of the experiment. Absorbance spectra of 

endophytic tissue extracts of these experiments did not indicate chlorophyll 

concentrations above 1 µg per ml extract. Therefore, the extracts were examined with 

fluorescence spectroscopy. Consequently, no data was obtained concerning individual 

chlorophylls, chlorophyll ratios, or carotenoid concentrations. 

Results of wrapping near-by infected juniper stems with aluminum foil show 

endophytic chlorophyll concentrations to be approximately half that of lateral control 

endophytic tissues. This discrepancy could be either the result of blocking light from 

reaching this tissue via light channeling or the result of where on the host branch this 

tissue was collected. Only tissue 1 cm in from both ends of the aluminum wrap was 



used for extraction. This limited the percentage of host tissue likely infected, as 

opposed to the control endophytic tissue that was collected in a closer proximity to the 

point of infections, and therefore was probably more concentrated with endophytic 

tissue. Chlorophyll alb ratios of aluminum wrapped stems were higher then that seen 

in controls. This higher chlorophyll alb ratio could be because of the reasons 

mentioned above, or because overall chlorophyll concentrations were low 1.3 µg/ml 

pigment extract and background absorbance by the spectrometer might have interfered 

with the chlorophyll b peak. The value for chlorophyll b has a higher probability for 

error, as it is calculated from absorption readings on a steep part of the combined 

chlorophyll a chlorophyll b curve (Lichtenthaler 1987). 
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Juniperus occidentalis, a gymnosperm, is presumably capable of biosynthesis of 

chlorophyll in dark. A small amount, 1.1 µg chlorophylVml extract was noted just 

below the cork layer, in the phloem of young uninfected juniper tissue (data not 

shown). However, no chlorophyll pigments were noted in control bark of uninfected 

hosts of a similar diameter and age as those used for extraction. A shoot of juniper was 

found within one of the dark boxes that was in the dark for 11 months. Application of 

2% tetrazolium gave a positive result (clear to red) that the shoot was respiring. Table I 

compares the pigment concentrations of this shoot with normal juniper shoots that had 

been growing under ordinary light. Nearly half the concentration of chlorophyll a was 

found in the ·dark grown juniper shoots as compared to light grown juniper shoots, 

while chlorophyll b concentrations were almost equal in both samples. This resulted in 

a low chlorophyll alb ratio. These results differ from that typically obtained when 

young gymnosperm tissue is grown in darkness, which shows chlorophyll alb ratios to 

be higher in dark grown seedlings (Jansson et al. 1992) 



Fluorescence Spectrosco_py 

Absorbance spectra of the endophytic systems from the dark box experiments, 

the controls with their aerial-shoots-removed and Phoradendron villosum showed very 

low chlorophyll concentrations .. Accurate total chlorophyll concentrations were 

obtained from the 670 nm chlorophyll fluorescence peak (figure 4 ). Results showed 

endophytic tissues of both dark box and aerial-shoots-removed infections had only 

about 1/3 the amount of chlorophyll as lateral controls. P. villosum sinker tissue had 

only 5% the chlorophyll concentration of its aerial shoots (table I). 

1 6 

No protochlorophyllide was found in the any of the Phoradendronjuniperinum 

samples, so a test was done to check the accuracy of the fluorometer for determining 

protochlorophyllide. Peas were germinated in the dark, and the etiolated tissue was 

processed as outlined for pigment extraction, using 80% acetone as the solvent. This 

extract was examined using the fluorometer as described above. Figure 4 compares the 

fluorescence spectra of etiolated pea shoots and P. juniperinum endophytic tissue. The 

etiolated pea spectrum shows clearly the presence of a protochlorophyllide 632 nm 

peak, while none was seen in the P. juniperinum endophytic tissue. 
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Fi~ 4. Fluorescence of protochlorophyllide and chlorophyll. 



Thin Laver Chromatomphy 

Carotenoids have a strong absorbance between 400-500 run but do not 
fluoresce. Rjbands for Phoradendronjuniperinum aerial shoots and endophytic tissue 

agree well with the expected migration of pigments, and the values indicate a typical 

angiosperm complement of pigments (Zweig and Shenna 1972). Table I shows the 

aerial carotenoid/chlorophyll ratios to be similar between the mistletoes and their 

prospective host. This concurs with the known role of carotenoids in protecting the 

photosynthetic apparatus. 

Li~ht Microsco11y 
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Microscopically, distinguishing the cells of Phoradendron juniperinum from 

those of juniper was done by the noting the large nuclei and thick cell walls of mistletoe 

cells. 

When thick cross sections of infected fresh juniper stems were made, a green 

pigmentation was observed within the longitudinal strands and in the deepest areas of 

sinkers. No pigmentation was seen near the cambial zone of the sinkers. Prepared 

slides of these tissues indicated that the oldest sinkers had been initiated in young host 

tissue (about one or two years old). The host cork layer covering longitudinal strands 

was approximately 0.1 mm thick. No light conductive cells, as described by 

Vogelmann (1989), were observed in either the parasite or its host. 

Transmission Electron Microsccwy 

Chloroplasts found in the photosynthetic aerial stem of P horadendron 

juniperinum are similar to those one would typically see in leaf tissue (figure 5). Yet 

were small (3 µrn long) and contained little relative stroma lamellae. These chloroplasts 

were lens shaped, with their longitudinal axes parallel to the cell wall and near the 

nucleus. They had a smooth plastid envelope with a moderate amount of grana and 

infrequently branching stroma lamellae (frets). Each granum consist of 3-12 stacks of 

thylakoids. Very few lipid bodies (plastoglobuli) were noted free within the stroma. 



Figure 5. Chloroplasts in an aerial section of Plwra.dendron juniperinum. 
Note chloroplast at bottom of photo undergoing division 

Bar= 1 ~trn: S-starch, G-granum 
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A large number of pla~tids were found as amyloplill>ts in both longirudinal 

srnmds and sinkers (figures 6). 'n1e length of these amyloplasts 'laried from 2 - 3 µm 

depending on the quantity of starch. Several of these amyloplasts showed area~ of 

lightly staining thylakoid and are, therefore, a form of chloroplast. These plastids were 

tem1ed endophytic-chloroplasts. Endophytic-chloroplasts tended to have enlarged 

irregularly arranged thylakoid chmmels (the ruptured appearance of starch seen is a 

common artifact of arnylopla __ .;.,1s processing). No endophytic-chloropla~ts were 

identified within or near the sinker cambium. 



Figure 6. Endophytic-ch loropla\1 in control longitudinal strand. 
Bar= lµm: M-mitochondria, S-starch, T-thylakoid 

Endophytic-chloroplasts were aJso found in the endophytic system of the 

controls that had their aerial shoot removed (figure 7). They were very similar to those 

seen in the dark box longitudinal strands and sinkers (figure 8). Compared to plastids 

in the control endophytic tissue~ both longitudinal ~1nmds and sinkers in the 

experimental group tended to be smaller (1-2.5 µrn) have less starch and more 

prominent thylako:id with an enlarged lhylakoid channel than in the control endophytic 

system (figure 9). Both groups had an approximately equal number of mitochondria 

with well developed cristae. Cytopla1.tmic content of cells of the experimental plants 

were much less dense than controls and contained no lipid lx)dies. 
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fll:1tr~_}. Endophytic-chloroplasts from controls with their aerial shoots removed for 
11 months. Bar= l µm: M-mitochondria, T-thylakoid 
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Figure 8. Endophytic-chloropla.;.;ts from dark box with their aerial shoots removed for 
11 months. Note the unusual amount of starch. 

Bar= l~un: M-mitochondria, S-snrrch; T-thylakoid~ CW-cell wall 
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Figure 9. Endophytic-chlorop!asts from dark tx)x with their aerial shoots removed for 
11 months. Note the mcmbnme bound proteinaceous body within the plastid and well 

developed thylakoids. 
Bar:::: I ~un: P--proteinaceous blxiy, G-granum, N-nuclcus 



DISCUSSION 

Shoot System Chlorophyll 

The degree of carbohydrate parasitism that xylem-tapping mistletoes exhibit is 

generally dependent on the quantity of chlorophyll they maintain (Marshall and 

Ehleringer 1990). Although total chlorophyll concentrations may vary, chlorophyll alb 
ratios of mistletoes frequently parallel those of their hosts (Hull and Leonard 1964; Elias 

1987; Shah 1987; Tuquet and Salle 1991). This is the case for Phoradendron 

juniperinum, reported here, where not only was a similarity found between 

chlorophyll alb ratios of host and parasite, but also they had similar chlorophyll and 

carotenoid content. These results concur closely with those reported by Hull and 

Leonard (1964) for P.juniperinum. The genus Arceuthobium has been reported to 

have only approximately 1/4 the concentration of chlorophyll as compared to its host's 

tissue (Hull and Leonard 1964) and, thus, be more dependent on its host for 

carbohydrates (Arceuthobium 's chlorophyll alb ratios were not published). The species 

A. tsugense, reported here, had approximately 1/3 the chlorophyll concentration, as 

well as a lower chlorophyll alb ratio compared to its host, and of the two Phoradendron 

species studied. This low relative chlorophyll alb ratio resembles that found in 

angiosperm tissue grown in shaded conditions (Anderson 1986), though these samples 

were taken from the same areas as was the host tissue. The lower chlorophyll content 

of A. tsugense seems to indicate a greater parasitic affect on its host's carbohydrates 

than P. juniperinum has on its host. This has been confirmed by studies of 

photosynthetic rates and carbohydrate uptake on P. juniperinum (Marshall and 

Ehleringer 1990) and Arceuthobium (Stewart and Press 1990). 

Chlorophyll found in the embryos and endosperm of P.juniperinum (an 

example of chloroembryos, embryos containing chlorophyll) (Palanisamy 1989) can be 

included with all four of the other mistletoes so far examined within the Loranthaceae 

and Viscaceae and found to have chlorophyllous embryos. This may not be an unusual 

occurrence, as one study indicates that a number of species show chlorophyllous 

embryos (Yakovlev and Zhukova 1980). 
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Endophytic System Chlorophyll 

Although some plants show chloroembryos, chlorophyll in roots is much less 

common. The genes controlling chlorophyll synthesis generally tend not to be 

expressed in the roots of species with well-developed photosynthetic aerial shoots 

(Mukai 1991 ). If chlorophyll is being synthesized in roots, the levels are typically low 

and require constant irradiation to stimulate its production (Oliveira 1981). All three of 

the mistletoes examined here have chlorophyll in their shoots and photosynthesize 

(Marshall and Ehleringer 1990; Rey et al. 1992), yet, they also contain chlorophyll 

within their modified root tissue, the endophytic system. Endophytic concentrations of 

chlorophyll and carotenoids in lateral infections of Phoradendronjuniperinum were only 

approximately 10% of the value obtained for aerial shoots. This depressed pigment 

content could be due to the problems discussed, involving the separation of the 

endophytic tissue from the host tissue, however chlorophyll and carotenoid ratios were 

probably accurate. These difficulties in tissue removal also occurred in obtaining 

endophytic tissue for Arceuthobiwn tsugense, yet chlorophyll concentrations of the 

endophytic and aerial tissues were statistically equal (the carotenoid content was about 

50% that of aerial shoots). This indicates either that A. tsugense' s endophytic tissue 

has a significantly higher chlorophyll concentration than do the aerial shoots (to account 

for the lower proportion of parasitic tissue as the result of accompanying host tissue) or 

that the presence of the mistletoe increases the synthesis of chlorophyll within host bark 

tissue, which normally show only a moderate level of chlorophyll. The latter was not 

supported by spectroscopic examination of uninfected bark tissue that was near an 

infection nor by visual inspection of infected host tissue, which showed the greenest 

pigmentation within longitudinal strands and in the deepest, oldest tips of sinkers. 

These results differ from those for the juniper dwarf mistletoe, A. oxycedri (Rey et al. 

1992), in which endophytic chlorophyll content was only 11 % that of aerial tissue. 

Additionally chlorophyll alb ratios were similar in all A. oxycedri tissues. These 

differences could be due to species variation. The ratios of pigments within the 

endophytic systems of these mistletoes as well as in the bark tissue of Tsuga 

heterophylla were very much alike and may indicate the resuh of being in the same types 

of tissue and therefore a similar light regime. 
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Chloroplast Wtrastructure 

Ultrastructure of the chloroplasts from the mistletoes Striga hermonthica, 

Viscum album and Tapinanthus dodoneifolius, based on size, starch content and 

location in the plant body, show them to be of typical C3 flowering plants (Tuquet and 

Salle 1991) but to have a decreased relative amount and length of stroma lamellae 

compared with grana lamellae. The stroma lamellae is known to contain photosystem I 

(PSI). This low amount of relative stroma lamellae, coupled with having fewer 

chloroplasts per cell, (Tuquet and Salle 1991) lowers the overall efficiency of 

photosynthesis for these mistletoes. I examined transmission electron micrographs of 

cited PSI deficient chloroplasts and determined a normal ratio of stroma lamellae to 

grana lamellae to be about 1:1to2:1versus2.5:1 for chloroplasts known to be deficient 

in PSI. Similar determinations of low relative stroma lamellae, 2.6:1, were made here 

for aerial chloroplasts of Phoradendron juniperinum and strengthens the point that it is 

partially heterotrophic (Marshall and Ehleringer 1990). Endophytic-chloroplasts were 

found deep within P. juniperinum 's endophytic system, most prominently in 

longitudinal strands and the deeper, older ends of sinkers (as deep as lcm and up to 8 

years old for those plants examined). The very enlarged thylakoid channel and the 

obstruction of thylakoid by starch grains made microscopic interpretation of the 

functionality of relative photosystems, based on proportional amounts of grana and 

stroma lamellae difficult Examination of transmission electron micrographs of the 

endophytic systems of P. macrophyllum (Calvin, personal communication) and 

Korthalsella lindsayi (Fineran 1987) showed plastids with thylakoid development. 

However, I am hesitant to make conclusions as to the nature and presence of these 

endophytic-chloroplasts, as no mention of chlorophyll was documented, and the proper 

dark processing of the tissue in darkness was unlikely. 

Dark Experiments 

Spectroscopy of the Phoradendron juniperinum infections that had their aerial

shoots-removed for 11 months (whether within dark boxes or not) indicated a low 

amount of chlorophyll within their endophytic system. Starch was less abundant, and 

the observance of thylakoid more readily made than in control sections. After 11 

months without aerial shoots only 80 % of endophytic cells contained cytoplasmic 

contents. Though cytoplasmic content of the cells was less dense then controls, there 

were abundant mitochondria with well developed cristae. Tetrazolium application to this 



26 

tissue indicated that the cells were still respiring. Carbohydrates, believed to delay the 

loss of chlorophyll (Mohanty 1991), taken up from the host xylem stream might have 

been responsible for maintaining chlorophyll within the endophytic system. It might 

also have made it possible for the mistletoe having retained living and metabolizing 

tissue during 11 months without aerial shoots. However, since the aerial portions of the 

plants were removed, no transpiration occurred, and so, any influx of host carbon is 

probably low (evaporation from the unsealed ends of cut shoots might have contributed 

to the uptake of xylem sap). The lower amount of starch seen in these cells implies that 

it was metabolized during the 11 months. If this was the sole source of carbohydrates 

(to survive for 11 months) metabolism must have been very low, and the tissue in a 

dormant, latent condition to minimize energy needs. This is likely the case, as no tissue 

growth was noted. P.juniperinum, restricted to sap wood, can become embedded 

within its host and remain living for 219 years (Meinecke 1912), the presence of 

chlorophyll was not documented. 

The persistence of the chlorophyll found within the endophytic system from the 

dark boxes was surprising. Chlorophyll breakdown in the dark depends on the rate of 

chlorophyll turnover and is fast, beginning within 24 hours, in normally green tissues, 

such as leaves (Bennett 1981; Hendry and Stobart 1987). Virgin and Sundqvist (1992) 

found potato tubers accumulate a "stable" form of chlorophyll when continuously 

irradiated for one month then, after one month in darkness, little chlorophyll destruction 

had occurred. A large amount of protochlorophyllide always accompanied the 

chlorophyll found in the potato. Similarly, P.juniperinum' s endophytic system acts as 

a storage organ, as noted by the large amount of starch found. However, unlike potato 

tubers, the endophytic system is, like leaves, persistently green except for the area near 

the cambium, and no protochlorophyllide was ever detected. If the chlorophyll found in 

sinkers is a form of light-stimulated "stable" chlorophyll, it was stable for 11 months 

without light. Chlorophyll degradation is rapid in darkness and increases with rising 

temperature (Okada et al. 1992). Yet, chlorophyll was maintained within endophytic 

tissue, in the dark, throughout the wann summer months. 

There are two possible pathways of chlorophyll synthesis, light-dependent and 

light-independent No recognizable light conductive cells were noted in the juniper cork 

or bark tissue nor in any mistletoe tissue that would have accounted for the transmittance 

of light into the endophytic tissue of P horadendron juniperinum. The thin, loose 

arrangement of cork cells covering longitudinal strands may allow for light penetration, 
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but the absorbance capacity of the chlorophyll within the longitudinal strands would 

preclude light from the deeper tissue of sinkers (V ogelmann 1989). Yet observations 

showed more green pigmentation at the deepest, oldest areas of sinker tips. This tissue 

would have been without light for several years, since the time of the sinker's inception, 

when it might have been close enough to the surface of the host stem to receive light. If 

the chlorophyll of P. juniperinum is formed in darkness, it is not necessarily "stable" 

for years but is constantly being resynthesized. Gymnosperms and other non-flowering 

plants are typically able to synthesize chlorophyll in the dark (Castelfranco and Beale 

1983). However, normal angiosperm chlorophyll production via the C5 chlorophyll 

biosynthesis pathway is dependent on two light reactions (appendix A). 

There are studies where the "absolute" requirement of light absorption for the 

synthesis of chlorophyll in angiosperms is questioned (Boardman 1966; Kirk and 

Tilney-Bassett 1978). The most often cited found that when previously illuminated 

Tradescantia albiflora (Adamson 1980) and Z.Ostera capricomii (Adamson 1985) were 

transferred into darkness, chlorophyll continued to accumulate for nine days in the same 

proportions as plants grown in light. It has been postulated that the photoreduction of 

protochlorophyllide to chlorophyllide can occur by means of a protochlorophyllide 

oxidoreductase that doesn't need light activation (Adamson and Packer 1984). These 

claims have been disputed as, in the dark, all 14C labeled 5-aminolaevulinic acid in 

barley was found to be synthesized into protochlorophyllide not chlorophyll (Apel et al. 

1984). However, Rudoi and Chkanikova (1989) found that 14C labeled 5-

aminolaevulinic acid is synthesized into chlorophyll in Tradescantia . Noteworthy is 

that in these documented cases of "dark" chlorophyll biosynthesis involving 

angiosperms, plant tissue required an initial exposure to light; only then did plants put 

into darkness accumulate chlorophyll. This suggests that light must still be effecting the 

formation or activation of protochlorophyllide oxidoreductase and/or phytochromefr' 

and the accumulation of chlorophyll can only happen while these compounds are 

functioning. This could account for the time limit of nine days for chlorophyll 

accumulation as found by Adamson (1980 and 1985). 

In these few studies of "dark" synthesis of chlorophyll in angiosperms, 

chlorophyll a/b ratios were similar in both dark and light grown tissue (Adamson 1980 

and 1985). Angiosperms that are grown at low illumination have lower chlorophyll a/b 
ratio than those grown at high light intensity (Anderson 1986). The main factor 

controlling changes in chlorophyll a/b ratios is illumination. At decreased illumination 
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chlorophyll b increases because it more readily absorbs low energy light. On the other 

hand, when gymnosperm tissue is grown in darkness (Jansson et al. 1992), 

chlorophyll a/b ratios tend to be higher. Comparison of these three scenarios would 

indicate that the lower chlorophyll a/b ratio seen in the endophytic system, compared to 

aerial shoots of Phoradendronjuniperinum, is the result of chlorophyll synthesis in low 

light. Yet this seems unlikely, since the chlorophyll found is deep within tissue and was 

stable in metabolizing tissue even after 11 months of darkness. 

Role of Chlorophyll 

Chlorophyll is not known to have a role other than that involved with 

photosynthesis. However, it was found in the endophytic system of Phoradendron 

juniperinum in tissue, which, at best, receives little light. Proposals for the presence of 

chlorophyll within stems (Bossard and Rejmanek 1992) suggest that chlorophyll: 

1. extends the period of carbon gain during drought, heat, or shading when leaves are 

nonfunctional due to being drought deciduous stomatal closure or low light; 2. increases 

inceptional growth rates of leaves and blossoms; 3. allows for rapid recovery from leaf 

herbivory and; 4. offsets respiration in the stem. Any one or more of these could 

explain the presence of chlorophyll within longitudinal strands, if indeed, light is 

penetrating host cells, but can not explain its unexpected presence in sinkers, which 

appear to be too deep to receive light. 

Conclusions 

The results that seemed to indicate that the chlorophyll present within the 

endophytic system was produced via light stimulation were: the similarity of pigment 

ratios in similarly located tissue (endophytic and Tsuga heterophylla bark) and the 

resemblance of these ratios to the low chlorophyll ratios seen in plant tissues growing in 

shaded conditions; the relatively thin host cork layer observed over longitudinal strands 

may allow light penetration into subsequent endophytic tissue; and the fact that light, at 

least initially, is required for chlorophyll biosynthesis in angiosperms. 

Results that indicated a light-independent pathway for chlorophyll synthesis 

were the observations that: chlorophyll was found far from the illuminated surface, 

deep within host tissue; chlorophyll was not broken down after 11 months of darkness; 

the similarity of the chlorophyll concentrations in the endophytic tissues of those plants 
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which had had their aerial shoots removed, whether within dark boxes or left exposed to 

light; and no light conductive cells were noted in either the host or its parasite. 

Although a definitive answer as to the pathway of chlorophyll biosynthesis in 

the three mistletoes was not resolved, much data was obtained for the presence of 

chlorophyll within the endophytic systems. The result obtained for aerial shoots 

confirm earlier reports on chlorophyll characterization of these mistletoes. However, 

comparisons between chlorophyll within aerial and endophytic tissues for Arceuthobium 

tsugense were dissimilar to A. oxycedri (Rey et al. 1992). This is the first time 

spectroscopy has confirms the green pigmentation seen in the endophytic system of 

Phoradendron to be chlorophyll. Plastid ultrastructural examination of the endophytic 

system of P. juniperinum showed the likeliest source for the chlorophyll to be 

chloroplasts with a loose enlargement of thylakoid channels. These plastids were 

termed endophytic-chloroplasts. More data must be collected to determine the mode of 

chlorophyll synthesis and what possible role it plays in the endophytic tissue. 

Regrowth of aerial shoots within the dark box experiments could have resolved 

whether chlorophyll is being synthesized via a light-independent means. A modification 

of the dark box experiment to enclose just one mistletoe shoot and measurements of any 

new growth for pigment concentrations might help to clarify the synthesis of this 

unusual occurrence of chlorophyll. As would detennination of the end product of dark 

administered 14C labeled 5-aminolaevulinic acid to be either protochlorophyllide or 

chlorophyll. The two photosystems in the endophytic system could be examined to 

determine their functionality. The observation that endophytic chlorophyll 

concentrations were higher than in aerial shoots of Arceuthobium tsugense are 

intriguing and would be worth pursuing as an option to P horadendron juniperinum. 
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Chlorophyll is an intensely green pigment that acts as a photoreceptor to light 

energy in the light reaction of photosynthesis. In angiospenns chlorophyll synthesis is 

converted via the C5 pathway in a series of steps, from 5-aminolaevulinic acid (ALA) to 

protochlorophyllide which, in the presence of light, is immediately photoreduced by the 

enzyme protochlorophyllide oxidoreductase to chlorophyllide. The chlorophyllide thus 

produced is then esterified into chlorophyll a (Castelfranco and Beale 1983) (figure 11). 

Chlorophyll production in angiosperms is dependent on two light reactions. 

They are the photoreduction of protochlorophyllide to chlorophyllide (Castelfranco and 

Beale 1983) and the photoconversion of phytochrome from phytochromer to the 

physiological active fonn phytochromefr (Mohr 1982). The active form of 

phytochrome has several roles in the synthesis of chlorophyll: it is believed responsible 

for increasing the rate of ALA synthesis, increasing the activity of ALA dehydrase, 

increasing the rate of esterification of chlorophyllide to chlorophyll a, and increasing the 

synthesis of chlorophyll b. The actual photoreduction of protochlorophyllide is also 

believed to be controlled by phytochrome (Virgin 1972). A third of the chlorophyll a 

and all of the chlorophyll b are incorporated into chlorophyll alb protein complexes. 
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To determine if chlorophyll is fonned in the dark, plants needed to be grown in 

the dark. As P horadendron juniperinum is hard to culture away from its host, boxes 

were constructed to enclose established infections on the stems of Western Juniper. 
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A dark box (figure 13) was constructed using four pieces of l"x4"x7" fir. To 

allow the two sides of the box to be fitted firmly, a rabbet joint was cut on the long side 

of the top and bottom pieces. Two 3/8" dados were cut 1/4" deep, 3/4" from the ends 

on the inside of each of the four sides of the box. Precisely down the middle of the 

dados, a 1/8" groove was routed to a total depth of 3/8". This groove allows for the 

eventual placement of a piece of slotted 1/8" thick hard wood. Two other pieces of 

slotted 1/8" thick hard wood were eventually fitted (at the time of placement on trees) on 

either side, one each in the two resulting 1/8" gaps. Each of these three-piece sets was 

slotted and was used as an entrance or an exit for the infected portion of the host branch. 

Slots in the hard wood were cut to resemble the silhouette of a thick stemmed lollipop. 

The lollipop portion was cut 1" round and in the center of the piece. 

Oriented slotted side up, one of the entrance pieces and one of the exit pieces were glued 

into their appropriate slots on the bottom of the box. To this, both sides of the box were 

glued, nailed, and caulked to fonn an open box, making sure the entrance and exit 

pieces were correctly placed in the appropriate groves. The other two pieces were 

removable and would be fitted to enclose the host stem. The inner surface of the box 

was painted black. The outer surface was painted white. Air holes, 7/8" in diameter, 

were drilled through both sides of the box. Galvanized pipe (7 /8" outer diameter ( o.d.), 

1(2" inner diameter (i.d.), 1 1(2" long, including threads) was put through each of the 

air holes and secured on the inside with electrical pipe nuts. To prevent light leakage, 

thick rubber washers were threaded onto the outside of the galvanized pipe. They were 

held in place by plastic elbows treaded onto the galvanized pipe. Attached to each of 

these elbows was a section of (approximately one meter long 3/4" i.d.) black irrigation 

tubing, painted white. These two hoses had a slight bow which was directed inwards 

as they hung below the box. At the end of each tube was attached another plastic 

elbow, pointing down. 

Foam pluming pipe insulation (3/4" i.d. 1 1/2" o.d.) was cut into 5 cm hollow 

tubes. Using a soldering iron, a 3/8" wide groove was made around the circumference. 

These spool shape tubes were split longitudinally so they could be wrapped around the 

host branch, as detailed below. 
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Working under a red safe light, a small strip of f2 photosensitive paper, covered 

with a red plastic filter, was placed on the bottom of the box, active side up, and 

covered with black paper. This paper was taped all around to prevent light from 

prematurely exposing the paper. The paper was attached to a string that was extended 

through one of the side air hole and down through the end of one of the plastic air pipes. 

The purpose of the photoactive paper was to test if any light leaked into the box during 

the duration of the experiment. 

Five dark boxes were so constructed. 

At each area where the infected host branch would enter and/or exit a box was 

placed on one of the notched pieces of foam pipe insulation. A dark box was then put 

around the infected portion of the host branch so that the box's slotted entrance and/or 

exit fit around the foam insulation notch. The two removable slotted pieces for each of 

the entrances and exit sets were then fitted, slot side down, as appropriate around the 

foam insulation notch. The top piece of the box was then heavily caulked and fitted into 

place. The box was then wrapped around tightly with twine to hold the box together 

and allow time for the caulk to set. Areas where light might leak in were caulked at this 

time: entrances, exits, and around box edges. The box was then wrapped well with 

aluminum foil. 

Both lateral and pseudoterminal infections as (defined by Calvin et al. 1991) 

were examined. If the mistletoe was a lateral infection on the host branch, the branch 

was fitted into the slots for both the entrance and the exit of the host branch. If the 

mistletoe was pseudotenninal on the host branch, the exit of the box was sealed with 

two unslotted exit pieces. 

After the aluminum wrapped boxes were in place, the string that was attached to 

the paper covering the light-sensitive paper was gently pulled through the end of the air 

tube until it came away from the photosensitive paper, thereby exposing it to any light 

leakage that might occur throughout the experiment. 

Experiments were initiated in April, 1993. Dark boxes number one, two and 

four were collected on October 13, 1993. Dark boxes number three and five were 

collected on March 4, 1994. The boxes were collected after sunset using a minimum of 

flash light illumination. Host branches holding dark boxes were removed from the tree 

approximately 10 cm away from both the points of entrance and/or exit of a box. The 

air hoses were removed with the flashlight off to prevent exposure of the photoactive 

paper, and rubber stoppers were put into the air holes. The boxes were than put in a 



cooler, on ice, and kept cold and in the dark until the time of pigment extraction and 

tissue fixation for electron microscopy (within 24 hours). 
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The removal of the dark boxes from around the infected host branch was done in 

complete darkness just prior to examination. The photoactive paper was removed from 

the bottom of the box, labeled and stored in a light proof container. After all plant tissue 

work was completed, the light exposure of the paper was tested by processing. Any 

degree of darkening of developed paper indicated light leakage. After 11 months on 

trees, only one box showed that light exposure had occurred. 

Three types of controls were established at the time dark boxes were set-up. 

N onnal mistletoes were left undisturbed to compare changes in pigments and 

chlorophyll ultrastructure with those of experiments. Some mistletoe had their aerial 

portions removed, similar to those put into dark boxes. This provided a way for 

determining if regrowth of aerial shoots occurred and for determining if removal of the 

aerial shoots had any effect on the chlorophyll content of the endophytic system. The 

last control involved host stems, which were wrapped with aluminum foil adjacent to an 

infection. This allowed an indirect detennination for the presence of any light 

conductive tissue that might be providing illumination of the mistletoes endophytic 

system and, therefore, stimulate chlorophyll synthesis. 
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