
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

1994 

Logic Synthesis with High Testability for Cellular Logic Synthesis with High Testability for Cellular 

Arrays Arrays 

Andisheh Sarabi 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, and the 

Systems and Communications Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Sarabi, Andisheh, "Logic Synthesis with High Testability for Cellular Arrays" (1994). Dissertations and 
Theses. Paper 4752. 
https://doi.org/10.15760/etd.6638 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4752
https://doi.org/10.15760/etd.6638
mailto:pdxscholar@pdx.edu


LOGIC SYN1HESIS WITH 

HIGH TESTABILITY FOR CELLULAR ARRAYS 

by 

ANDISHEH SARABI 

A dissertation submitted for the partial fuI:fillment of the 
requirements for the degree of 

DOCTOR OF PHILOSOPHY 
m 

ELECTRICAL AND COMPUTER ENGINEERING 

Portland State University 
1994 



DISSERTATION APPROVAL 

The abstract and dissertation of Andisheh Sarabi for the Doctor of Philosophy in Electrical 
and Computer Engineering were presented on April 29, 1994, and accepted by the disserta-

tion committee and the department /'J / 

COMMITIEEAPPROVALS: 

ij/e~ A.rP~~owski: _Chair 

W. Robert Daasch 

!/ .__ 
F. Rudolf Beyl , 

Representative of the Office of Graduate Studies 

DEPARTMENT APPROVAL: 

Rolf Schaumann, Chair \ 

Department of Electrical Engineering 

************************************************************************ 

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY 



ABSTRACT 

An abstract of dissertation of Andisheh Sarabi for the Doctor of Philosophy in Electrical 

and Computer Engineering presented on April 29, 1994. 

Title: Logic Synthesis with High Testability for Cellular Arrays 

The new Field Programmable Gate Array (FPGA) technologies and their structures 

have opened up new approaches to logic design and synthesis. The main feature of an 

FPGA is an array of logic blocks surrounded by a programmable interconnection struc

ture. Cellular FPGAs are a special class of FPGAs which are distinguished by their fine 

granularity and their emphasis on local cell interconnects. While these characteristics 

call for specialized synthesis tools, the availability of logic gates other than Boolean 

AND, OR and NOT in these architectures opens up new possibilities for synthesis. 

Among. the possible realizations of Boolean functions. XOR logic is shown to be more 

compact than AND/OR and also highly testable. In this dissertation, the concept of 

structural regularity and the advantages of XOR logic are used to investigate various syn

thesis approaches to cellular FPGAs, which up to now have been mostly nonexistent 

Universal XOR Canonical Forms, Two-level AND/XOR, restricted factorization, as well 

as various Directed Acyclic Graph structures are among the proposed approaches. In 

addition, a new comprehensive methodology for the investigation of all possible XOR 

canonical forms is introduced. Additionally, a new compact class of XOR-based Deci

sion Diagrams for the representation of Boolean functions. called Kronecker Functional 

Decision Diagrams (KFDD), is presented. It is shown that for the standard, hard, 



benchmark examples, KFDDs are on average 35% more compact than Binary Decision 

Diagrams, with some reductions of up to 75% being observed. 



To My Mother and to the Memory of My Grand Mother (KhanoomjAn) 



ACKNOWLEDGEMENT 

I would like to thank Dr. Marek A. PerkowskL my advisor, for his free-spirited 

approach which has provided me with guidance as well as substantial degree of liberty 

du.ring my research. His vision for XOR logic has provided me with much impetus in my 

research direction. I would also like to thank Dr. W. Robert Daasch for being a friend as 

well as a true supporter from the start to this very day. Also my thanks go to Dr. F. 

Rudolf Beyl for his preciseness and his guidance both on my mathematical endevours as 

well as this dissertation. I would also like to thank Dr. Laszlo Csanky, Dr. Michael 

Driscoll, and Dr. Malgorzata Chrzanowska-Jeske for serving in my committee. 

I would also like to acknowledge the collaborative work of our colleagues Rolf 

Drechsler, Prof. Bernd Becker, and Michael Theobald of J. W. Goethe University in 

Frankfurt, Germany. Through our fruitful collaboration, we have been able to demon

strate the potentials of Kronecker Functional Decision Diagrams as compact canonical 

representations for Boolean Functions. 

My thanks also go to the National Science Foundation for their funding of the 

work presented in this dissertation. Also, I would like to acknowledge the travel grants I 

have received from the Academically Controlled Auxiliary Activities Committee at Port

land State University. It was through their generous fundings of my participation in 

DAC'92, ICCD'92, Reed-Muller Workshop'93, and DAC'94 that the direction of this 

dissertation was made possible. Especially my participation in Reed-Muller Workshop 

in Hamburg was very crucial for our collaborative efforts with the German colleagues. 

And finally my special thanks go to Ms. Shirley Clark, Laura Riddell, and all the 

staff in Electrical Engineering office for their supports through these years. This 

-•-·-·------- -------



dissertation is dedicated to my mother without whose support, the work and the writing 

of this dissertation would have not been possible. 



Table of Contents 

Page 

List of Tables . . . . . . . . . . . . . • . . . • . . . • • . . . . . . . • . . . • . . . . . . . . . . . . . . vi 

List of Figures . . . . . . . . . . . . . . . • • • . . . . • . • • . . • . . • . . . . . . • • . . • . . . . . viii 

Chapter 

1 

2 

3 

Introduction ••..•..••.•••.••••••.••..•..••...•..•.. 

Boolean Functions and their Representations ............ . 

2.1 L-itroduction .•....•.......••...•.....•.....•• 

2.2 Models of Switching Circuit Behavior and Structure • 

2.2.1 Boolean functions and Model of Behavior 
2.2.2 Switching Expressions and Models of Structure 
2.2.3 Circuit Realization Based on GF 2 transforms 

. 

1 

15 

15 

16 

2.3 Functional Completeness • . . • . . . . . . . . . . . . . . . . . • . 20 

2.4 Universal XOR Canonical Fomis and their Number. . . 26 

2.5 Generation of Different Families of AND/OR Bases . . 29 

2.5.1 Positive Polarity c:xp Family of Bases 
2.5.2 Consistent Generalized ap Family of Bases 
2.5.3 Generalized ap Family of Bases 
2.5.4 c:xpcr Family of Bases 
2.5.5 1t Operation on ape; Family of Bases 

2.6 AND/XOR Canonical Fonns •.......•......•..•. 

2.7 Summary ........••......................... 

Minimal Realization of Boolean Functions in Fixed Polarity 
AND/XOR Fomis ........•.......................... 

38 

47 

49 

3.1 Introduction • . • . . • • • • • • • . • • . . . • . • • . . . • . . . . • . . . 49 

3.2 Approaches to Minimization... . . . . . . . . . . . . . . . . . . 52 



4 

5 

3.3 Improved Techniques for a Given CGRM Realization 
of a Boolean Function ••.•••.•....•..•......... 

3.3.1 Cube Comparison Method and Spectral 
Methods 

3.3.2 Generation of the Monoterms Representing 
Each of the Disjoint Cubes 

3.3.3 Implementation of the Ring Sum Operation 

3.4 Minimal Polarity Vector •..•..••..•.•.......... 

3.4.1 Subtracting Monoterms of Disjoint Cubes 
3.4.2 Expansion Monoterms 
3.4.3 The Minimal Polarity 

3.5 Minimization Schemes ••..•.•...•...•......... 

3.5.1 The "Exhaustive" Search Approach 
3.5.2 The Heuristic Search Approach 
3.5.3 Analysis of the Minimization Methods 

3.6 Summary ..•.•............................. 

Application of CGRMIN in Minimal Realization of Boolean 
Functions in Generalized AND/XOR Forms ....•........ 

lV 

55 

69 

96 

104 

106 

4.1 Introduction. . • • . • . . • • . • • . . • . • . . . . . . • . . . • . . . . 106 

4.2 Canonical Restricted Mixed Polarity Forms .. .- . . . . . 107 

4.3 Algorithm for Quasi-minimal CRMP Synthesis . . . . . 111 

4.4 Experimental Results . • • . • • . • • . • . . . • . • • . • . . . . . . 113 

4.5 SUIIlIIlaI'Y • . • . • • • • • . • . • • • . . • • . • • . . . . • . • . . . . . . 114 

Complex Maitra Logic A...-ray Approach to CA-Type FPGA 
Synthesis ........•.••.••....•...................... 116 

5.1 Introduction . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

5.2 Maitra terms and Complex terms............ . . . . . . 118 

5.3 Restricted Factorization Theory......... . . . . . . . . . . 120 

5.3.1 Term Combinability 
5.3.2 Realization of functions in Minimized 

Restricted Factorized Form 

5.4 Technology Folding . . . . . . • . . • . . . . . . • . . . . . . . . . . . • 125 

5.5 Summary • • . • . . • • • • . • • . . • . . . • • . . • . . • . . . . . • . . . . . 135 



6 

7 

8 

References 

V 

Minimal Multi-Level Realization of Boolean Functions 
Based on Kronecker Functional Decision Diagrams .••.•••..•••. 136 

6.1 Introduction • . • • • • • • • • • • . • • • • • • • • • • . • • • • • • • • • . . . • . 136 

6.2 Decision Diagrams • • • • • • • • • • . . • • • • • . • • • . . • • • • . . • • • 139 

6.3 Implementation of an OKFDD Package. • • • . • . • • • • • • • • • 147 

6.3.1 Technical Details 
6.3.2 The Construction and Operations on OKFDDs 
6.3.3 Optimization of OKFDD-Size 

6.4 Experimental Results • • • • • • . . • • • . • • . • . • • . . . • • . • • • . . 153 

6.5 Relations Between KFDDs and Two-level AND/XOR 
Fonns. . • . • • . . . • • • • • • • • • . • . • • • . • • . . . . • . • 156 

6.6 Sununary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

Design For Testability Properties of AND/XOR Networks •••.••• 160 

7 .1 Introduction • • • • • . • • • • • • • • • • . . • • . • • • . . . . . • . • • . . • • . 160 

7.2 Detection of Stuck-at-Faults in CGRM Networks . • • . • • • • 162 

13 Detection of Bridging Faults of CGRM Networks • • • • • • • . 167 

7 .4 Detection of Stuck-at-Faults in Mixed-Polarity• 
Netw"orks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 

7.5 Detection of Stuck-at and Bridging Faults in CRMP 
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 

7.6 Detection of Stuck-at-Faults in Reed-Muller Trees...... 172 

7.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 

Conclusion .••..•.•.••••••••••...••••.••..•••.••.•.... 175 

181 



Table 

2.1 

2.2 

23 

24 

2.5 

2.6 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4.1 

5.1 

5.2 

6.1 

6.2 

List of Tables 

List of all binary valued functions •••••••.•••..••.••.•.•••..• 

Properties of Binary Valued Functions •••..••.....•.••.•.•••• 

Minimal Functionally Complete Set of Operations • • ••••.•••.•• 

The only Possible Distnoutive Properties Among Binary Functions 

Examples of Bases for 3-Input Functions .•••••••••••••••...•. 

Positive Monotenns of three variables • • . • • • . . • • • . • • ••••..••. 

Cube Literal Inteisection •••••••••••••..•.••••••••••••..••. 

Basis Functions and Basis Function Q.ibes •••••••••••••••••••• 

Bit-Wise Equivalence Operation Between Two Cubes .•••.•••••• 

Comparison of CGRM ReaJization Programs ••....•.••••...••. 
-

Cube Commonality Operator for a Single Bit ••••...•.••••.•••• 

Cube Literal Difference •••.•..••••••••••.•••....•••••..••• 

Comparison of the Minimi7.a.tion Programs Against 
Bench1Il3Ik Functions ••••••••••••••••••.••••••••.••••.•••• 

Comparison of the Tllllings of Minimization Programs 
Against Benchmark Functions • • . • • • . • • . . • • • . . • • . • • • • . . • __ •• 

Difference of Tenns for Exact and Heuristic CGRM • •••••••••••• 

Two Level AND/OR Compared to Two Level CRMP and ESOP •. 

Complex Tenns for Benchmark Examples ••••••••••••..•.••.• 

The Effect of Folding .•.•.•••.•••..••........•...••.•.. _ . 

Comparison of optimal OKFDD with optimal OBDD and 
optimal OFDD with positive Davio-nodes ••.••......••..•..•• 

Comparison of OKFDD with OBDD for certain benchmark 
functions .•.........•.......•..••..•••..•.......•....... 

Page 

18 

22 

24 

24 

32 

40 

58 

59 

61 

69 

77 

84 

102 

103 

103 

114 

125 

134 

153 

154 



vii 

6.3 Comparison of the Number of Nodes for OKFDD vs OBDD . 155 



Figure 

2.1. 

3.1. 

3.2. 

3.3. 

3.4. 

4.1. 

4.2. 

5.1. 

5.2. 

5.3. 

5.4. 

S.S. 

5.6. 

6.1. 

6.2. 

6.3. 

7.1 

7.2. 

7.3. 

List of Figures 

The AND/XOR Canonical Fonns •••••••••..•••••..••..••.•• 

Example of a "BILBO" barrel shifter •••••••••••••••••••••••• 

All Possible Intersections of Three Sets .••.••••••..•..••..•.• 

The Exact Algorithm .••..••..••..••••••••••••.•...•.•••.• 

The Quasi-Minimal Algorithm •.•••••••••••••••••••.••••••• 

The Calculation of a minimum CRMP from a CGRM •••••.•... 

The CANNES Algorithm ................................ . 

An Example of a Complex Maitra Logic Array ••.••••••..••... 

The Restricted Factorization Algorithm ••.•.••••.•••••.•••.•. 

An Example of a Row Folding •••••••••••••••••••• -••••••.•• 

The Technology Folding Algorithm .•••••••••••••••.••.•••••• 

The Input to Cellular_inap •••.•••...••••.•••••.•••.•...•••. 

The Output of Cellular_inap ••••.•..••••••••••••••.•.••.••• 

Example for OKFDD ••.•••••••••.•.•••••••.•.•.•..••••••• 

Algorithm for XOR-operation •••.•••••••••••••••.•.••••.•.. 

Algorithm for OKFDD-construction ••••.••.•••••••••.•••.... 

The cascade network for RMC •. ••..•......•................ 

Augmentation of the network in Figure 7 .1 for detection of 
OR-bridging faults ....•..••••..•...•••.•••.•.•........•..• 

The Reed-Muller Tree for a 3-variable function •...•.....•...... 

Page 

46 

66 

80 

98 

102 

112 

113 

117 

120 

124 

130 

131 

132 

143 

149 

150 

163 

168 

173 



Chapter I 

Introduction 

The new Field Programmable Gate Array (FPGA) technologies and their structures 

have opened up new approaches to logic design and synthesis. The main feature of an 

FPGA is an array of logic blocks SU1Tounded by a programmable interconnection struc

ture. Cellular FPGAs are a special class of FPGAs which are distinguished by their fine 

granularity and their emphasis on local cell interconnects. While these characteristics 

call for specialized synthesis tools, the availability of logic gates other than Boolean 

AND, OR and NOT in these architectures opens up new possibilities for synthesis and 

expands the confines of Boolean Algebra as the sole structure for realization of switching 

circuits. 

Based on the logic block types and their interconnections, the existing FPGAs can 

be separated into four basic types. These are Look up Table(LUT)-based, Row-based, 

PLA-based, and Cellular Automata(CA) type FPGAs. While the size of programmable 

switch, type and granularity of block, and programmable routing differentiates the 

FPGAs, there is a common thread among all of them, namely it is impossible for them to 

be used without powerful synthesis tools. 

A feature that distinguishes the most FPGAs from the previous technologies is 

their capabilities to incorporate logic gates other than AND, OR, and NOT. In LUT

based FPGAs such as Xilinx 3000 family, the logic blocks can realize any Boolean func

tion of up to 5 input variables. The ACT3 family of Row-based FPGAs from Actel can 

realize a whole group of logic families including Multiplexers as well as combinations of 

AND, OR, NAND, NOR, XOR, XNOR, Implication, Inhibition, etc. The cells in 



2 

ATMEL6000 CA-type FPGA can realize twenty-five combinational states produced by 

ft._'llIT), NAND, XOR, wire, <L,d Multiplexers. Hence, the synthesis methods which are 

soleiy based on AND/OR logic would not yield the most compact realization of the func

tions in these FPGAs. 

The dominant realization up to now, however, has been based on AND/OR priini

tives. Two-level minimizers such as ESPRESSO [111], MINI [67], and P ALMINI [93] 

have been developed to address the AND/OR minimization problem required for utiliza

tion in PLAs. Synthesis tools such as MIS (22], BOLD (18], etc. were later based on 

Boolean and Algebraic methods such as factorization, decomposition, and rectangle cov

ering to result in reduced multi-level representation of the functions. Rule-based systems 

such as LSS (35] and SOCRATES [59] have also been devised for multi-level represen

tations of the functions. However. the main feature of these systems is their dependency 

on AND/OR logic constructs. The only general methods come from the transduction 

method [92] which provides only local minimization capabilities for functions, and func

tional decomposition. 

The logic synthesis systems mentioned above. however, are inadequate for coarse

grain FPGA synthesis. For one, it is not realistic to generate the complete library, 

obtained by enumeration of all possible configurations of the basic logic blocks. Further

more, a library based approach does not allow to benefit from the basic structure and 

therefore leads to less optimized results. Instead, mapping the design directly into logic 

blocks of the target architecture proved to be the more viable synthesis method for such 

FPGAs. Synthesis tools such as mis-pga [90, 91], Chortle [47], ASYL [14], etc. were 

geared towards such an approach. A different approach in such tools as TRADE [150] 

uses functional decompositions for mapping. 

The above methods still would prove insufficient for Cellular Automata type 

FPGAs where the local cell communications is a distinct restriction. These types of 



3 

FPGAs can be found in such architectures as in Motorola MPAlOxx, A1MEL6000 

{adopted by IBM), Algotromx CAL1024 (Now Xilinx), Plessey, Toshiba, etc. As indi

cated, the main features of such FPGAs is their fine-granulari.ty and their emphasis on 

local cell communications. This restriction in cell communications requires for synthesis 

stage to take the routing restrictions into consideration. With separate stages of logic 

synthesis and physical design, the mapping would be very inefficient resulting in many 

cells unused or used solely for routing. 

The cmrent techniques used in the industry either do not provide a systematic 

approach for mapping general-purpose functions or concentrate solely on the technology 

mapping only. One such approach is the "macro blocks" used by A1MEL. In this 

approach basic modules are provided in a library and automatic routing techniques are 

used for connecting the modules. For one, this technique does not provide any means for 

synthesis of general purpose functions where decompositions into submodules are not 

known for. Secondly, the modules are irregular in shape and routing will require many 

cells to be used just for connections. In this approach, on average, about 70% of the area 

occupied by the design is used either for simple connections or not used at all [31]. The 

tool set for MPAlOxx from Motorola is yet to be announced by Neocad Corporation, but 

it is unlikely that any new logic synthesis methods will be utilized in these tools since 

Neocad concentrates on mapping techniques only. 

This dissertation addresses the problem of efficient synthesis and mapping 

methodologies for CA-type FPGAs. The methods proposed essentially are based on the 

concept of regularity to combine the synthesis and physical placement and routing stages. 

The synthesis methods are mostly based on XOR logic as XOR gate is available in these 

FPGAs as a basic logic primitive and is known to result in compact realization of 

Boolean functions and be highly testable. 

Among the methods that is of historical significance is the cellular logic approach. 



4 

Cellular logic deals with mathematical models as well as synthesis and analysis tech

niques of digital networks in cellular a..-rays. "A cellular array is a 1-, 2-, or 3-

dimensional iterative arrangements of similar or identical logic cells with a uniform 

interconnection pattern on the cells" (88]. The limited routability of CA-type FPGAs 

makes these FPGAs to resemble these arrays which were studied in the sixties and seven

ties. As such, various arrays, universal logic modules, and synthesis methods have been 

developed and studied without actual mapping to any device (88, 78, 146, 139, 157, 42, 

83, 84, 85, 86, 76, 95, 152]. 

The cellular arrays can be classified into simple one-dimensional cellular arrays, 

''Multi-rail cascades", and two-dimensional arrays. The simple one-dimensional arrays 

are also known as Maitra Cascades [78]. A Maitra cascade, also known as tributary 

switching network, is a one-dimensional array of 2-input, 1-output binary combinational 

cells. In this cascade, each cell is capable of producing any one of the sixteen possible 

binary functions of two inputs. It was shown. however, by Stone and Korenjak (147] that 

even using redundant cascades, in which certain vertical inputs are connected to more 

than one cell, not all functions are ieaJfaable in this cellular array. The same deficiency 

exists for generalized Maitra cascades in which inputs are multi-valued. 

One attempt to overcome the logical incompleteness of simple one-dimensional 

arrays is that of the two-rail cascades • Short (139] has shown that every binary function 

is realizable by means of 3-input, 2-output cells. In the synthesis methods developed by 

Short, only one of the :final outputs is of interest. Y oeli and Turner [157] extended the 

treatment of the two-rail cascades to both output signals and showed that two-mil cas

cades are functionally complete for realizing an arbitrary pair of Boolean functions of any 

number of variables. Among the synthesis methods for two-rail cascades, four major 

approaches can be noted. These approaches are the ones introduced by Short [139], 

Yoeli (157], Elspas (43] which generalizes Yoeli, and Dvorak [42]. An extension to 



5 

two-rail cascades is that of the multi-rail cascades. Here, instead of two rails, the cells are 

assumed to have more than two horizontal inputs and outputs. The major shortcoming of 

the multi-rail cascades is their serial structure which makes them slow and the fact that 

the methods developed were of exponential growth in the number of variables. 

Two dimensional arrays provide another attempt at overcomming the limitation of 

Maitra cascades. These arrays can be classified into general pmpose and special purpose 

ones. General purpose arrays can be essentially classified into those that realize a Two

level representation of functions and those that realize multi-level realizations. While the 

Two-level representations fit mapping into arrays with regular structures, multi-level 

representations can utilize both regular and irregular structures. Special purpose arrays 

utilize special features of their target structures and include Adder, Multiplier, threshold, 

sorting, coding, interconnection arrays, etc [88]. 

Sum of Products and positive polarity AND/XOR forms have been among the 

Two-level representations of functions which have been investigated before. Some 
-

multi-level representations geared towards specialized cellular arrays have also been 

reported. One such example is the functionally complete cutpoint arrays [83]. These 

arrays are composed of columns of Maitra. cascades where each cell needs to realize only 

six possible functions of two input variables. The "cutpoint" in this array refers to the 

specification bits in each cell to program the type of the operation it will be performing. 

The main deficiency of this architecture is the large number of cells that do not perform 

any actual function. Furthermore, there exists no communication between the input hor

izontal and vertical signals of the cells. 

Variants to cutpoint arrays were introduced to alleviate the d.if:fi.culty of the syn

thesis due to the limited interconnections between the cells. One such variance was to 

add a collector row of Inclusive (or Exclusive) OR gates to the Maitra cascade columns. 

This approach was mostly used for Two-level Sum of Products and positive polarity 

-···------- --------



6 

AND/XOR representations rather than the more general multi-level ones. Another 

attempt at multi-level representation of the functions is that of the Unate Cellular Logic 

by Mukhopadhyay [86]. In this approach the cells are assumed to be unate two-input 

functions, i.e. all functions except XOR and XNOR. Each cascade in this array can real

ize a unate function and the whole array is considered to be a two-dimensional ammge

ment of the unate cascades. In the synthesis method, a test for unate cascade realizability 

is provided. 

Other modifications to the basic structure of the cu1point arrays have also been 

introduced to allow more interconnection among the cells. Minnick introduced the 

cobweb array [84] where the cu1point array is augmented with certain interconnections 

allowing communication between more cells. In the same line, Akers [2) introduced the 

"Rectangular Logic Array" where each cell in the cutpoint array receives an additional 

input from a non-immediate neighboring cell. This in practice makes the array to resem

ble a three-dimensional structure. 

The Directed Acyclic Graph (DAG) structures have also been used as nomectangu

Iar approaches for mapping. The major issue with DAG structures is the number of cells 

which are wasted due to their shape. They, however, provide a fonnidable approach 

which by efficient mapping techniques can prove to be quite useful. 

In summary, although the cellular logic approaches described above provide useful 

techniques that can be incorporated into CA-type FPGA synthesis, they are not adequate 

by themselves. Many of the techniques were developed for particular architectures 

which did not have all the features of the current CA-~e FPGAs. Among these are 

local and global bosses which add more flexibility to the current arrays. The synthesis 

methods also did not utilize the modem techniques which make handling of large func

tions possible. 



7 

In this dissertation, in the realm of the current logic synthesis techniques, four 

basic approaches to CA-type FPGA synthesis are investigated. These approaches are: 

i. Two-level Realizations 

ii. Universal XOR Forms 

iii. Restricted Factorization Technique 

iv. DAG structures 

The :first three are rectangular array shaped and fall under the Complex Maitra Logic 

Array (CMIA) approach. This array is the generalization of the features common to 

CA-Type FPGAs and can be modified to each specific architecture accordingly. The 

complex Maitra terms realized include AND, OR, and XOR of literals and are more gen

eral than PLAs. In general, a CMLA is a Two-Dimensional Logic Array comprised of 

two distinct planes: 

• The Complex (input) Plane; 

• The Collector (output) Plane. 

The input variables run through the vertical buses in the Complex plane and the 

appropriate tenns are realized in the rows of the Complex Plane. The terms generated 

are then· put on the horizontal buses and the appropriate terms are XORed (or ORed) 

together in the Collector Plane. The approach used includes two stages: 

1. Logic optimi7.3.tion which takes the geometry and layout constraints into account 

to create a CMLA in which every output function is an OR or XOR of Maitra 

terms. 

2. Technology-folding which maps CMLA representation of the function to the tar

get architecture, such that the area of the layout is minimized. 

In this dissertation, the logic optimization stage based on Two-level AND/XOR 

representations as well as two multi-level approaches of Universal XOR Forms and 



8 

Restricted Factorization [143] is introduced. The technology folding stage is introduced 

with the emphasis on the special architecture of ATMEL6000. 

The main focus of the Two-level approaches here is, as stated before, on 

AND/XOR realizations of Boolean functions. The Boolean AND/OR representations 

have long been the subject of investigation and efficient minimization s::hemes have been 

developed for this representation. The AND/XOR representations on the other hand have 

only received more attention lately due to the existence of technologies which makes 

their use more practical. They are, however, known to possess special characteristics 

which makes them of major advantage in circuit representations. In many applications, 

the AND/XOR realizations of the circuits require less layout area than their AND/OR 

counterparts [101, 142, 122]. Many such applications can be found in arithmetic, encod

ing, telecommunication, and linear systems. It has been shown also that the AND/XOR 

PLAs often require fewer products than AND/OR PLAs [120]. The major advantages of 

this logic stem from the information processing capabilities of XOR gate and what is 

termed the computational work (62]. These studies have shown th_at XOR gate has the 

highest efficiency of all gates in terms of the useful work. 

Another major advantage of AND/XOR logic is its high testability properties [109, 

105, 118]. A major characteristic of the XOR gate is that any change at its inputs is 

reflected on the output. This characteristic is already used in many testing schemes. This 

testability is inherent in the AND/XOR networks. For certain class of these networks, 

called Reed-Muller networks [110, 89], it has been shown that there exist universal test 

sets, independent of the function, that can detect both single and multiple stuck-at-faults 

as well as various bridging faults. Other universal test sets also exist for various other 

AND/XOR networks which are generally of higher cardinality than the Reed-Muller net

works. With respect to the NP-completeness of the test generation scheme for AND/OR 

networks [52], this is an especially important trait of this logic which is described in 



9 

more detail in chapter 7. 

As Two-level realizations perfectly fit the array structure of the CA-type FPGAs, 

these realizations are first investigated in the dissertation. In particular, fixed polarity 

AND/XOR canonical forms and Generalized AND/XOR canonical forms are studied. 

The fixed polarity forms, including the positive polarity Reed-Muller fonns, are the most 

basic of the AND/XOR forms. Due to their very high testability properties and the fact 

that they can be used in the minimization of the functions in other more general forms, 

the :fixed polarity forms are first studied. Specifically, fast techniques for the 

identification of a minimal realization of Boolean functions in these forms are intro

duced. This scheme is then used in a Generalized AND/XOR canonical form minimiza

tion technique to identify even more compact representations of functions. 

In addition to the Two-level realizations, two multi-level approaches are intro

dueeti and presented. The first approach introduced is that of the Universal XOR forms 

as Boolean techniques which provide more global minimized realizations at the expense 

of more processing requirements. The second approach is that of the Algebraic Factori

zation techniques which are more local but can be performed more efficiently. 

Universal XOR forms (UXF) are nothing but all possible canonical realizations of 

Boolean· functions which are based on Exclusive sum of Maitra terms. In this thesis, a 

new comprehensive methodology for the investigation of all possible XOR canonical 

forms is introduced. The methodology is based on the fact that the set of n-variable 

Boolean functions under addition mod-2 fonns a 2n -dimensional vector space over the 

Galois field of two elements, GF(2). It is then possible to represent any XOR canonical 

form as a basis in this vector space. In the following chapter, the basic traits of UXF as 

an approach for CA-type FPGA synthesis and mapping are provided along with the intro

duction of several new AND/OR/XOR canonical forms. 



10 

The product terms of of Two-level AND/XOR forms arid Sum of Products, as well 

as the terms in the UXF can be directly mapped to the Complex plane of the CMLA 

without any changes necessary. While the UXF can result in more reduced realizations 

than the Two-level representations, the identification of a minimal UXF requires a large 

search space. For this reason, Algebraic factorization techniques are often preferred for 

fast multi-level realizations. The limited interconnection of the cells in CA-type FPGAs, 

however~ would make general factorization techniques to be extremely inefficient. 

To overcome this restriction, certain factorization techniques have been proposed 

which take the architecture restrictions into consideration. One such technique is that of 

the Lexicographical ordering technique [125]. This technique is solely based on 

AND/OR paradigm and also requires a separate place and route stage '1.L"'terwards which 

can be done through COMPASS design automation tool as an example. A different tech

nique which is based on the more general complex terms [143] is that of the restricted 

factorization. In this dissertation, a fast restricted multi-level realization of Boolean 

functions is devi-Sed based on the latter approach. By identifying an ordering for the 

input variables, it will be then possible to directly map the factorized. terms to the CA

type FPGA of interest. 

Once the Logic optimization stage has been performed, the technology folding is 

applied on the Complex plane to further economize the cell utilization in that plane. The 

folding stage is general for CA-type FPGAs while taking the peculiarities of each archi

tecture into consideration. In chapter 5, the method is shown for the A TMEL6000 series 

of FGPAs. It is demonstrated that this stage can reduce the number of cells in the plane 

byupto 33%. 

The DAG approaches to CA-type FPGA synthesis have been applied previously. 

While Hurst [65] mentions the approach, possible synthesis tools have been reported in 

[155] and [131]. In this dissertation the new class of Decision Diagrams, called 



11 

Kronecker Functional Decision Diagrams (KFDD) is presented. These Decision 

Diagrams are the generalization of the popular Binary Decision Diagrams [23] and Func

tional Decision Diagrams [72] and are more compact than both of the former Decision 

Diagrams. While FDDs have been used in [155] and KFDDs in [131], the method intro

duced here is much more efficient and can be applied to very large functions given as 

multi-level netlists. 

In addition, KFDDs, similar to BDDs and FDDs, provide a canonical representa

tion of the functions and can be applied to areas far broader than the CA-type FPGA syn

thesis. Currently, BDDs have been used in many applications in logic synthesis, 

verification, testing, modeling and simulation. KFDDs while being more compact, can 

also be utilized in many of such applications and thus can provide a major improvement 

over the current techniques in these areas. They can also drastically cut on the number of 

nodes in the Decision Diagram for very large functions that up to now have not been able 

to be presented by BDDs. 

For ai,y Decision Diagram to prove to be useful, the compactness of the represen

tation has to be compared with the ease of construction and manipulation. Here, a pack

age for representation and manipulation of functions is presented- a joint project [40, 41] 

with colleagues in J. W. Goethe University of Frankfurt - which shows the compactness 

of the KFDDs together with ease of manipulation and construction. It is shown that for 

the standard, hard, benchmark examples, KFDDs are on average 35% more compact than 

Binary Decision Diagrams, with some reductions of up to 75% being observed. The 

minimization scheme is based on the state of the art minimization schemes for BDDs, 

namely, dynamic variable ordering with sifting algorithm [112]. Here the sifting is per

formed for both the order of variables as well as the type of decompositions. 

Furthermore, a class of functions is presented for which both BDD and FDD 

representations are exponential in size but KFDD is of polynomial size [41]. This pro-



12 

perty together with the canonici.ty and the ease of construction and manipulation distin

guishes the major signi:6.cance of the KFDDs. 

A note has to made on the evaluation of methods developed in the dissertation. 

The developed synthesis and mapping tools are evaluated on the basis of the standard 

benchmarks from Microelectronic Center of North Carolina (MCNC). This is the current 

state of evaluation in logic synthesis community and as such the tools developed have 

been evaluated based on their perfonnance on these benchmarks. 

The synthesis tools developed are integrated as part of the POLO - Portland Logic 

Optimization - package which is geared towards multi-level AND/OR/XOR representa

tion and manipulation of the functions. This package is .interactive and is interfaced to 

the SIS °[133], and will be to HSIS [5] in a later phase, packages from UC Berkeley and 

makes it possible to utilize synthesis capabilities of both systems. While the former is 

geared more towards XOR logic, the latter is concentrated mostly on AND/OR represen

tation and manipulation of the functions. POLO can also be used as the logic synthesis 

component of the DIADES [97] high level synthesis package developed at Portland State 

University. 

In the following chapters the above mentioned approaches are presented. In 

chapters 2 through 5 different logic optimization techniques in CMLA are introduced. 

Chapter 2 is devoted to the Boolean representation of the functions where the new 

Universal. XOR fonns, all possible XOR car.onical forms, and their subset of 

AND/OR/XOR canonical fonns have been introduced. In addition, various Two-level 

AND/XOR realizations are reviewed. In chapter 3 a fast cube-based method for fast 

minimal realization of functions in fixed polarity AND/XOR canonical forms is 

described. Following that, an application of the tools developed in chapter 3 is shown for 

minimal realization of Boolean functions in Generalized AND/XOR canonical forms. 

The application of these synthesis methods as well as the restricted factorization are 



13 

presented in chapter 5. The technology folding stage is also introduced in that chapter. 

Kronecker Functional Decision Diagrams and their manipulation as well as basic proper

ties are given in chapter 6. In chapter 7 the testability of AND/XOR networks is dis

cussed. 

In summary, the dissertation introduces new concepts in synthesis and mapping for 

CA-type FPGAs based on XOR logic which have applications beyond just the synthesis 

for these FPGAs. The synthesis methods introduced by this author alleviate the 

shortcomings of the previous techniques by providing synthesis for any general purpose 

function. They also take full advantage of these architectures not being confined to 

AND/OR logic. As these methods incorporate regular structures, they alleviate the need 

for a separate physical design stage which is a major advantage for the restricted inter

connections within these architectures. 

The new concept of UXF provides the framework for investigation of a larger pos

sibilities of XOR representation of the functions. In particular, the AND/OR/XOR 

canonical forms prove to be quite useful and more compact than either AND/OR or 

AND/XOR representations of the functions. The minimiza.tion schemes for the Two

level representations of fixed polarity and generalized AND/XOR forms are also new and 

provide-efficient methods for reduced representation of functions in these highly testable 

realizations. Also new in the dissertation are the methodologies for the realization of 

Boolean functions in restricted factorized form and the concept of technology folding. 

The popularization of the concept of the Kronecker Functional Decision Diagrams 

as well as the application of the dynamic variable ordering with sifting, introduced by 

Rudell, to KFDDs are the contributions of the author. The iterative generation of the 

Davio nodes were independently developed by the author and the colleagues at J. W. 

Goethe University. The generation of the package is due to these colleagues. 



14 

Also new in this dissertation is the testability analysis and algorithms for fixed 

polarity and the Generali7.ed AND/XOR forms as well as the Reed-Muller trees. 



Chapter2 

Boolean Functions and their Representations 

2.1. Introduction 

A distinguishing feature of the new Field Programmable Gate Array technologies 

is that they break the confines of Boolean Algebra as the sole representation for the 

Boolean functions. Not only the traditional primitives of AND, OR, and NOT can be 

utilized in these technologies, but for some FPGAs the cost of utilizing other gates is the 

same as the above mentioned primitives. Hence, a study and actual practice of incor

poration of other gates into the synthesis is of more importance now than ever before. 

A certain criterion for a set of logic operations to be used in representation of the 

functions is for the set to be functionally complete. That is, every Boolean function 

should be able to be represented by the operations in the set 

Once an appropriate set of logic operations is identified for usage in the technol

ogy, the realization in that set becomes of importance. A given Boolean function can 

have numerous realizations in a given set Based on the optimization criteria, one or 

more realizations can be chosen among different possibilities. An example would be one 

that would require the least number of a selected type of operation in the representation. 

Minimal number of products for Programmable Logic Areas has been one such example 

in the case of Two-level synthesis. A similar problem also exists for the realizations in 

different sets of logic operations. 

Parts of Sections 2.4 and 2.5 have been based on the original paper, M A. Perkowski, A. Sarabi, 
F. R. Beyl, Universal XOR Canonical Fonns of Switching Functions, IFIPWG 10.5 Workshop on 
Applications of the Reed-Muller Expansion in Circuit Design, Hamburg, Gennany, September 
1993. 

. ---··-----------



16 

An important representation of Boolean functions is that of the canonical represen-

tations. In this form, the functions can be uniquely represented thus making it possible 

for fast verification and equivalency checking. 

A major possible representation is that of the XOR logic. The advantages of XOR 

logic in terms of the compactness and high testability were mentioned in chapter 1. 

Based on these properties and the fact that in Cellular FPGAs, the cost of XOR gate is 

mostly the same as any other gate, this logic would be of more interest in this disserta

tion. In sections 2.5 and 2.6, a new methodology to investigate all possible XOR canoni

cal representations of Boolean functions is introduced. 

In this chapter, the representation of Boolean functions is mainly discussed. In 

section 2.2, Boolean function and its different structural representations will be dis

cussed. Section 2.3 is geared towards functional completeness and functionally complete 

set of operations. In section 2.4, XOR canonical forms of Boolean functions will be 

described and in section 2.5 different AND/XOR canonical forms will be presented. 

2.2. Models of Switching Circuit Behavior and Structure 

Boolean functions are a useful mathematical model for representing behavior and 

structure of switching circuits. In this section a Boolean function is first defined and later 

on its relevance to switching algebra is demonstrated. 

2.2.1. Boolean Functions and Model of Behavior 

The behavior of a given system is designated by abstracting the system as a black 

box where the internal structure is not of concern and only the mapping from the inputs 

to the outputs of the system is of interest. This mapping, in terms of the switching cir

cuits is a Boolean function. 

Boolean functions are special cases of discrete functions. Depending on the 

number of input variables, their values, and the number of outputs, Boolean functions are 

----- -------------



17 

classified in different ways. The following definitions, mainly from Davio et al [38], put 

binary multi-variable Boolean functions - the functions of interest in this dissertation -

into perspective: 

Definition 2.1. Let S and R denote two finite non-empty sets. Then 

f:S ➔R (2.1) 

is a discrete function. 

The function f: S ➔ R will be denoted as f (x) where the variable x takes its 

values from the set Sand/ (x) takes its values from the setR. 

When the domain of the function, S, is the Cartesian product of n :finite sets, S;, the 

function 

f:;=o~-1Si ➔R 
can be denoted by f (x ), where x = (xo, x 1, ••• , x0 _ i), each x; taking its value from the 

set Si. 

If the elements of the sets Si and R are integers, the above function will be termed 

an integer function. It is then the mapping: 

f: ;-o~-1 [0, 1, ... , s; -1] ➔ [O, 1, ... , r -1], 

wheres; and r are the cardinalities of the sets Si andR respectively. 

Definition 2.2. An integer function where the sets Si and R have the same cardi

nality is a logic junction. 

Then the logic function is the mapping: 

f: [0, 1, ... , r -1]11 ➔ [O, I, ... , r - 1]. 

where r is the cardinality of the sets Si and R. 

Definition 2.3. A logic function where the cardinality of the sets Si and R is 2 is a 

Boolean function. 



18 

A Boolean function is then the mapping: 

/: [0, 1]" ➔ [O, 1). (2.2) 

At times generalizations of the term ''Boolean function" is used in the literature. A 

multi-valued Boolean function is a logic function where the cardinality of the domain and 

range sets is more than two. A multi-output Boolean function is one that the range of the 

logic function is a Cartesian product of the set R. That is: 

/: [O, 1]" ➔ [0, t]m. 

The most general logic function is the multi-valued, multi-output, and multi-

variable one. The logic functions mostly considered in this dissertation are, however, 

that of the multi-variable Boolean functions. These functions can be related to the propo

sitional logic in fonnal logic. 

For n variables, each being binaty, there are 2" possible states. Since there are 

also 2 possible mappings for each of these states, the total number of Boolean functions 

is 2-zn. Table 2.1 shows all the possible 16 binary valued functions of two variables. For 

reference, Boolean representations of these functions are also included. 

In f(x1~'J) Name of function Symbol 

lo 0 Inconsistency 0 
/1 X1VX2 NOR Xt J.x2 
/2 .X1X2 Inhibition by X2 X1<X2 
/3 .x1 NOTX1 .i"1 
/4 X1.f"2 Inhibition by X 1 X1>X2 

Is .i"2 NOTX2 x'2 

16 X1X2vX1X2 Exclusive OR(XOR) X1EBX2 
/1 X1X2 NAND X1 ix2 
Is X1X2 AND X1X2 
/9 X1X2vx'tx2 Equivalence(XNOR) X1=X2 

/10 X2 Assertion of X2 X2 

/11 .f"1 vx2 Implication from x 2 X2=>X1 

/12 Xt Assertion of x1 Xt 
/13 x1vx'2 Implication from x 1 Xt =>X2 

/14 X1 vx2 OR X1+X2 
f 15 1 Tautology 1 

Table 2.1 List of all binary valued functions 



19 

The complement of a Boolean function is also of importance. The complement of 

a Boolean function/ (x1,x2, ... ,Xn), denoted by f (x1,x2, ••• ,Xn) is a function which 

takes a value of O whenever/ (x 1, x 2, ••• , Xn) takes a value of 1 and takes a value of 1 

when the former takes a value of 0. 

2.2.2. Switching Expressions and Models of Structure 

Boolean function is generated by a switching expression. This is an expression 

that represents each output as a function of a set of inputs. The switching expression can 

not only represent a Boolean function - the model of the behavior of the switching cir

cuits - but can also be used as a suitable model for the structure of the switching circuits. 

A note of distinction is that while the behavior for a given value of the input set is 

unique, there can be different structures displaying the same behavior. However, a given 

structure will result in one and only one behavior given the same input set. Then, for 

every output variable, there will be a corresponding switching expression for a given 

structure. A formal definition of a switching expression is: 

(a) The constants 0, 1, .•. , m - 1, where m refers to the maximum value a vari

able can take. 

~) All the variables and the specific logic functions applied to the variables in 

the algebra 

(c) For A andB being any switching expression,A /; B ,/; representing any of 

the logic functions described in (b ). 

(d) No other form will be a switching expression. 

As it can be noticed, the switching expression can result in multi-valued and 

multi-level representations of the function. A special case of these expressions is for 

binary, Two-level representations which will be discussed in detail later on. 



20 

Switching algebra is one method of representing the structure of switching circuits. 

Development of this algebra is generally attributed to Claude Shannon. In his paper 

(136], he developed four postulates as the calculus of switching circuits for series

parallel, two terminal circuits. Comparing these postolates with Huntington's set of pos

tulates for symbolic logic, he showed the analogy between the calculus of switching cir

cuits and the symbolic logic (or the calculus of propositions). Calculus of propositions 

was thus shown to be another method for representing switching circuits. As the calculus 

of propositions is one interpretation of Boolean algebra, this algebra provides another 

possible representation for the structure of the switching circuits. Yet another representa

tion is through Boolean rings with unit. It has been known (145] that Boolean algebras 

and Boolean rings with unit can be transfonned to one another. In the language of for

mal logic, AND and OR together with NOT are the operators in Boolean algebra while 

XOR and AND are the operators in Boolean rings with unit, 

These two algebras are not the only possible algebras that can represent the 

behavior of a switching ci..reuit. The choice of operators for a structural representation of 

a circuit also depends on the exact type of gates that are used in realization of the circuit. 

NAND, NOR as well as AND, OR, and XOR have been the most often used gates for 

realizing switching circuits. With the new FPGA technologies it is possible to utilize 

other gates too. The criteria for a given algebra to be used as a switching expression is 

reviewed in the following section. 

2.3. Functional Completen~ 

In general, for any algebra to be used as a switching expression, its operations have 

to be able to generate all possible functions. Otherwise, the algebra would be incom

plete. 

Definition 2.4. A set of operations is said to be functionally complete, or universal, 

if and only if every Boolean function can be expressed entirely by means of operations 



21 

from this set. 

The complete set of operations can be further distinguished. as strong and weak. 

Definition 2.5. A set of operations is said to be strong functionally complete if any 

arbitrary Boolean function / (x 1, x 2, .... Xn) can be rea]iz;ed. entirely by these operations. 

If the set of operations can realize all Boolean functions except constants then the set of 

operations is said to be weak functionally complete. 

As summarized. by Klir [73], the necessary and sufficient conditions for function

ally complete set of operations were derived by Yablonskii [156]. Before the main condi

tions are presented in terms of Theorem 2.1, a few properties of the binary operations are 

reviewed. 

Definition 2.6. [Monotonicity] Let A= <a1, a2, ••• , an> andB = <bi, b2, ... , bn> 

be two n-tuples where a;, b; = 0 or 1 V i = 1, 2, ••. , n. If a; ~ b; V i, then A :s;; B. A func

tion/ (x1,x2, ... ,Xn) is said to be monotonic if and only if.ff A) ~f(B) VA ~B. 

Definition 2. 7. [Linearity] A function/ (x 1, x2, •..• Xn) is said to be linear if it can 

be expanded in the form/ (x 1, x 2, ••• , x11 ) = a o EB a 1x 1 EB ... EB a11x11 , where EB stands for 

the ring sum and ai is either 0 or 1; 0 ~ i ~ n. 

Definition 2.8. [Self-Duality] A function/ (x1,x2, •.. ,xn) is said to be self-dual if 

f(X1,X2, .•• ,Xn)=f(X1,X2, ... ,.f;,) (2.3) 

Definition 2.9. [Zero-Preservation] A function / (x 1, x 2, ••• , x11 ) is said to be a 

function preserving zero if 

f (0, 0, ... , 0) = 0. (2.4) 

Definition 2.10. [One-Preservation] A function/ (xi, x2, ... , x11 ) is said to be a 

function preserving one if 

f (1, 1, ... , 1) = 1. (2.5) 

Table 2.2 shows all binary-valued functions and their properties. Among the six-



22 

teen operations, a set would be of interest that is functionally complete. 

The following theorems give the criteria for a set of operations to be functionally 

complete: 

Theorem 2.L [Yablonskii] A set of operations is strong functionally complete if 

and only if it contains 

(1) at least one non-monotonic operation, 

(2) at least one nonlinear operation, 

(3) at least one non-self-dual operation, 

(4) at least one non-zero-preserving operation, 

(5) at least one non-one-preserving operation. 

For proof see [156]. 

1-n .Name of function s M L SD z 
Jo .lnCOnSistency 0 1 1 0 1 
/1 NOR X1 .J..x2 0 0 0 0 -
/2 Inhibition X1 <Xz 0 0 0 1 
/3 NOT .f"1 0 1 1 0 
/4 Inhibition X1>X2 0 0 0 1 
Is NOT .f"2 1 0 0 1 
16 XOR x1ex2 0 1 0 1 
f1 NANO X1 fx2 0 0 0 0 
Is AND X].X2 1 0 0 1 
/9 XNOR X1=X2 0 1 0 0 
/10 Assertion Xz 1 1 1 1 
fu Implication X1~X2 0 0 0 0 
/12 Assertion Xl 1 1 1 1 
/13 Implication Xz~Xl 0 0 0 0 
/14 OR X1 +Xz 1 0 0 1 
f IS TautoloJrV 1 0 1 0 0 

u C A 
0 - -
0 1 0 
0 0 0 
0 - -
0 0 0 
1 - -
0 1 1 
0 1 0 
1 1 1 
1 1 1 
1 - -
1 0 0 
1 - -
1 0 0 
1 1 1 
1 - -

I stands for the function possessing the property and 0 otherwise. M Slands for Monotone, L for Linear, 
SD for Self-Dual, Z for 7.ero-Preserving. 0 for One-Preserving, C for Commutative, and A for Associative. 

- denotes Don't care as the properties are of significance for more than one variable. 

Table 2..2 Properties of Binary Valued Functions 



23 

Theorem 2.2. A set of operations is weak functionally complete if and only if it 

contains: 

(1) at least one non-monotonic operation, 

(2) at least one nonlinear operation. 

Definition 2.11. A complete set of operations is a minimal complete set of logic 

operations if by omitting any one of its operations it becomes incomplete. 

The operation with smallest number of arguments is the unary operation which 

takes only one variable as its argument. Among all the unary operations, the only non

trivial one on the set (0, 1) is the NOT which by itself is not functionally complete. It is 

.known that unary operations are linear and by Theorem 21, they are not functionally 

complete. Therefore, any functionally complete set of operations should include some 

binary operations. 

It.can be seen from Table 2.2 that each of the two binary operations NANO, and 

NOR, is by Theorem 2.1 a minimal complete operation. Table 23 shows all combina

tions of logic operations involving one or two arguments which result in a minimal com

plete set of operations. 

~ Table 23, the set of operations 3, 4, 12, 13, 14, and 15 are weak functionally 

complete while the rest are strong functionally complete. Furthermore, for Boolean func

tions, there are no minimal complete sets of operations with more than three functions. 

The order of operations in each row of Table 23 is also important. In other words, 

if the order of two operations is interchanged, the result would no longer be necessarily a 

complete set of operations. This can be seen as an example in the case of AND, XOR, 

and Tautology. XOR of ANDs of variables is functionally complete while AND of 

Exclusive OR of variables is not 



o. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

L111plicaticn-faconsistency 
Inhibition-Tautology 
Implication-Inhibition 

Inhibition-NOT 
AND-NOT 
OR-NOT 

Implication-NOT 
Inhibition-XNOR 
Implication-XOR 

AND-XNOR-lnconsistency 
OR-XNOR-Inconsistency 

AND-XOR-Tautology 
OR-XOR-Tautology 
AND-XNOR-XOR 
OR-XNOR-XOR 

Table 2.3 Minimal Functionally Complete Set of Operations 

24 

In practice. only those complete sets of operations are used to represent Boolean 

functions that are easy to work with. These would be the operations which have proper

ties that can be utilized in the simplification of functions. Referring back to Table 2.2. it 

can be seen among all possible binary operations. there are only six which are commuta

tive. However, two of them - NOR and NANO - are not associative. This makes them 

not as useful in actual process of minimization and manipulation of Boolean functions 

although they are minimal functionally complete and t!1e dominant gates used in VLSI. 

There remains four operations, namely AND. OR. XOR. and XNOR which are both 

coITuuutative and associative. Moreover, there exist only four possible distributions pos

sible which again involves above four operations. These distributions, as noted by 

Calingaert [29] are shown in Table 2.4. 

o. 
1 x1· x2+x3 = x1·x + x1·x3 
2 x 1+(x2 ·x3)=(x1+x:z)·(x1+x3) 
3 x1 · (x2 Eax3) = Cx1 · x:2) e Cx1 • X3) 
4 X1 + (x2 =X3) = (x1 +xi)= (x1 + x3) 

Table 2.4. The only Possible Distributive Properties Among Binary Functions 



25 

AND, OR and NOT are the Boolean operations and the bulk of switching theory 

deals with Boolean algebra. AND and XOR are operations of Boolean ring with unit and 

are more investigated in this dissertation. The XNOR and OR have been studied by 

Mukhopadhyay and Schmitz [87). Sheffer [137] gave a description of NAND , which he 

called "stroke" and its dual NOR. As it is noted in [153), Whitehead and Russell used 

NOT and OR in their treatment of Principia mathematica. Hillbert and Ackerman used 

the same two operations as well as the pair NOT and AND, or NOT and Implication. 

Some studies have also been reported on other functionally complete sets of operations. 

For example see [140) for Implication and Inhibition, and [141] for Implication and 

XOR. 

Representing a certain Boolean function by a functionally complete set of opera

tions can take different fonns. One standard fonn of representation is called a canonical 

form. In order to give the appropriate definition of a canonical form, a few definitions are 

in order. 

Definition 2.12. A literal is a variable or, in the case that negation is present as 

one of the operatlons, its complement. 

Definition 2.13. A tenn is a sequence of literals which are related by one and only 

one operation. 

Definition 2.14. A nonnal fonn is a sequence of terms which are related by one 

and only one operation. 

A special normal fonn is the canonical fonn. 

Definition 2.15. A canonical fonn is a nonnal fonn in which other forms can be 

reduced to. 

The bulk of the work on canonical fonns has been concentrated on Boolean alge

bra, and more recently on Boolean rings with unit. The latter is mostly known as 

AND/XOR canonical fonns or Reed-Muller fonns. One canonical form has been 



26 

reported for Implication and NOT. 

ne uniqueness provided by these forms supports many useful applications. One 

use of the canonical fonns is in the enumeration and comparison of functions. As each 

function has one and only one unique representation, canonical forms find many useful 

applications in verification. 

In Boolean algebra sum of rnintenns and product of rnaxtenns provide canonical 

representations of functions. In addition, for each of these two Boolean canonical forms, 

new canonical forms can be defined which are equivalent to them and are derived by 

application of the DeMorgan's theorem to each form. Int.lie next section, a framework 

for generation of all possible XOR canonical forms will be introduced. 

2.4. Universal XOR Canonical Forms and their Number 

It has long been known that the set of n -variable Boolean functions under addition 

mod-2 forms a 24 -dirnensional vector space over the Galois field of two elements, GF(2) 

[134, 106, 29, 147]. The vector space representation makes it po~ible to investigate all 

possible XOR canonical forms of Boolean functions. 

Each basis in the vector space 'I' over GF (2) formed by the set of n -variable 

Bool~ functions under addition mod-2 is comprised of 2" vectors. Once a basis has 

been chosen, its vectors are called basis functions. Thus every Boolean function can be 

represented uniquely as a linear combination of the basis functions. The task of the 

identification of all canonical forms of the Boolean functions in this field is same as the 

identification of all possible bases of the 211 -dimensional vector space 'I'. In the follow

ing, a systematic method of identifying all of these bases will be presented. 

First, as an example, one can start with the minterm canonical form presented in 

the previous section. The 2" minterms of the function provide a basis for this vector 

space and each minterm will be a basis function. Any Boolean function can then be 



27 

uniquely represented as a linear combination of these minterms. 

Furthennor~ it is possible to define a transition from one basis to another through 

an appropriate transition matrix. In general, in the space 'I' of Boolean functions, any 

nonsingular matrix of dimension 211 provides the transition matrix to a new basis. All 

bases can be identified through the utilization of appropriate nonsingular matrices. Each 

basis in this vector space is a Universal XOR form (UXF) defined in the following: 

Definition 2.16. Let 'I' be a vector space of n -variable Boolean functions over 

GF (2). A Universal XOR form (UXF) is a basis in this vector space. If a basis function 

in a UXF can be realized as a product of literals, it is called a monoterm. 

In GF (2), the linear combination of the basis functions is the same as XORing of 

these terms. Hence, identification of all possible bases in this vector space translates into 

identification of all possible XOR canonical representations of a Boolean function. 

Although the vector space representation of Boolean functions has long been 

known, only the basis functions which can be reali:zed by product of literals have 

received attention. Here, this concept is generalized to its logical conclusion by extend

ing it to all possible XOR canonical forms. As there exist certain basis functions which 

can not be realized only by product of literals, the UXF is a much broader concept than 

AND/XOR canonical forms. 

The unique representation of a function in a given basis is through the exact basis 

functions that will appear with a coefficient of 1 in the linear combination. These basis 

functions are distinguished from all basis functions in the given basis by the term "uxf

tenn" defined below: 

Definition 2.17. Given a UXF and a Boolean function/, all the basis functions 

which appear with a coefficient 1 are called the uxf-terms off. 

In order to identify the number of all possible XOR canonical forms for a given 

Boolean function of n -variables, the transition matrices, given in Appendix A, can be 



28 

used. As indicated in Appendix ~ one basis can be related to another through the transi-

tion matrix. Starting from the mintenn basis, every possible nonsingular matrix will 

define a transition matrix from the mintenn basis to a new basis. These matrices form a 

group called the general linear group and it is possible to use this group to identify all 

possible bases of 'I' for an n -variable Boolean function. 

Definition 2.18. The group of all nonsingular m -by-m matrices with entries in the 

field k is called the general linear group and denoted by GLm(k) [4]. 

The number of such matrices is given in the following Lemma: 

Lemma 1 Let k==GF (q) be the Galois field with q elements. The order of GLm(k) 

is 

qm(m-I")/2. 11 (qi -1). (2.6) 

Proof: See Theorem 4.11 in [4]. 

Theorem 2.3. Let/ (x 1,.r2, .•. ,xn) be a Boolean function of n variables. The 

number of all possible XOR canonical representations of the function is given by: 

2(2n -l)(2n - 1) fT . 
2n ! f:\ (2' - 1). (2.7) 

Proof: Substituting q = 2 and m = 2n in Lemma 1, the number of such matrices 

would be: 

zC2n -1)(2n -1) Ji (2i _ 1) 

for this special case. This is the number of all ordered bases. As the order of basis func

tions is not relevant to the canonicity of the expansion, it is the number of unordered 

bases that is of interest here. Hence. the number of canonical forms is given by the 

number of unordered bases which is the above quantity divided by m ! = 2n !. QED 

By Theorem 2.3, there exist 20160/4! = 840 different XOR canonical forms for a 

2-variable function alone. This number for a 3-variable function is around 1.326 x 1014 • 

. -·--·-··· ---------



29 

As it is eviden~ the number of canonical fonns grows astronomically with the number of 

variables in this field. Up until now, only AND/XOR canonical forms have been studied 

in the literature. As UXF in general can include gates other than just AND and NOT and 

encompasses much larger number of fonns, it is more likely to find a minimal circuit 

among them. 

There are two problems of practical interest here. The first is to find such families 

of forms which have direct mapping to a given technology. The second is to find the 

fonn(s) among these families which require a minimal number of uxf terms for a given 

function. 

The uxf-tenns can be classified acconling to their realization requirements. In the 

existing technologies, some tenns are more interesting than the others due to their possi

bility of_ direct mapping. These tenns will be separately defined in the following: 

Definition 2.19. A Swn term is a term which can be re.alfaed by only OR gates. 

Definition 2.20. An AND/OR term is a term which can be realized by only AND 

and OR gates. 

In the next section, two operations that generate different AND/OR tenns will be 

introduced. 

25. Generation of Different Families of AND/OR Bases 

AND and OR gates occur in many technologies; hence, developing methods for 

generation of various bases which can be realized with AND and OR terms would be 

most useful in this regard. In the following, certain operational transforms on matrices to 

generate different monoterms and AND/OR terms will be described. The tenns with 

positive polarities will be discussed first with more general tenns, incorporating NOT 

gates, following. The utilization of these forms for cellular arrays will be discussed in 

chapter 5. 



30 

2.5.1. Positive Polarity exp Family of Bases 

Different positive polarity AND/OR bases can be generated by application of two 

basic operations in various orders. These two operations are called the Reed-Muller and 

the AND/OR operators. From now on. the basis of reference consists of the mintenns in 

reverse binary order with reversed bits. 

Definition 2.21. Let R be a nonsingular matrix. The Reed-Muller Operator, p, on 

R is: 

p(R)= [~ ~] (2.8) 

Here O stands for a square matrix of the size of R with all entries O • 

Definition 2.22. Let R be a nonsingular matrix. The AND-OR Operator a on R 

is: 

a(R)= [f ~i (2.9) 

Here 1 stands for a square matrix of the size of R with all entries 1 and O has the 

same meaning as above. 

Theorem 2.4. Reed-Muller and AND-OR operators result in nonsingular matrices 

of a higher dimension. 

Proof: This follows from the fact that both p (R) a.11d a (R) are block triangular 

matrices of the form 

~aj ~~m 
with determinant det (R )2. The value of the matrix denoted by * is irrelevant QED 

The starting transition matrix for a single variable, used in the generation of the 

positive polarity a:p family of bases, is: 

T1 = [} 1] (2.11) 



31 

This matrix essentially gives the basis 

(2.12) 

A special case of applying the p operator is the generation of the Reed-Muller 

Transform. In this case, the repetitive application of the p operator is the same as the 

Kronecker product of the generated nonsingular matrices. 

Table 2.5 shows the basis functions of the Reed-Muller, AND/OR, Reed

Muller/AND/OR, and AND/OR/Reed-Muller expansions for three input variables. 

The Reed-Muller/AND/OR expansion is constructed by a(p(T 1)). Other similar 

constructs are possible - incorporating different orders of application of a and p opera

tors which give rise to various AND/OR/XOR canonical forms. While the order of vari

ables is irrelevant for Reed-Muller basis, for AND/OR and all other combinations of the 

a and p operators, it gives rise to a new basis. 

Definition 2.23. The family of bases generated by applications of a and p opera

tors in all possible orders and all possible pennutations of the variables is the positive 

polarity ap family of bases. 

Example 2.1. The nonsingular transition matrix of AND/OR expansion for a 2-

input function is given as: 

[ ] 
1000 

Ti O 1 1 0 0 
a[T1] = 1 T1 = 1 1 1 0 

1 1 1 1 

The transition matrix above results in the following basis functions: 

1 1 0 0 ab ab 
1000 I~ [ J 1110.a =atb- □ 
1111 ab 1 



Ree -

ac 
C 

ab 
b 
a 
1 

C 

be 
(a +b)c ac 

C C 

ab +c ab+c 
b +c b +c 

a +b +c a +c 
1 1 

Table 2.5 Examples of Bases for 3-Input Functions 

C 

be 
(a +b)c 

C 

ab 
b 

a+b 
1 

32 

As it can be seen, by different order of application and also choice between Reed

Muller and AND/OR operators, it is possible to generate many different positive polarity 

AND/OR/XOR canonical forms. This notion can be further expanded by additionally 

introducing the negative polarities. 

2.5.2. Consistent Generalized ap Family of Bases 

It is possible to generalize all members of the ap family of bases to 211 different 

:fixed polarities. This family will be called the Consistent Generalized ap (CGap) fam

ily of forms. 

In order to introduce negation of variables, two negation operations and a new 

starting transformation matrix need to be introduced. Notice that similar to Equation 

(2.11), it is possible to define a negative polarity basis of a single element This is given 

asT2 below: 

T2= [~ :] (2.13) 

which gives essentially the basis 

(2.14) 

Now, corresponding to the panda operators, panda operators are defined as the 

following: 



33 

Definition 2.24. Let R be a nonsingular matrix. The Negative Reed-Muller 

Operator p on R is: 

- ro Rl 
p(R)= lR Rj (2.15) 

Definition 2.25. Let R be a nonsingular matrix. The Negative AND-OR Operator 

aonR is: 

- fo R] 
a(R)= lR 1 (2.16) 

Theorem 2.5. The p and a operators result in nonsingular matrices of a higher 

dimension. 

Proof.- As in the proof of Theorem 2.4, the detenninants of both p(R) and a(R) 

are det(R'f-, thus nonzero. To this end, column exchanges will transform each of the 

above matrices into a block triangular matrix. of the form (2.10). Moreover, since 

-1 = + 1 in GF (2), column exchanges do not alter the determinant QED 

Now, each variable can take either a positive or a negative operation and thus there 

exist 2n . possible Consistent Generalized forms for each positive ap family of bases. The 

changing of the order of application of the operators and the order of variables transcends 

into column swaps in the transition matrix, this is shown in the following example: 

Example 2.2. In the following, a CGap basis of three variables will be shown. 

Here, the order and the polarity of the variables is given as: bell, where the "natural" 

order of variables is assumed to be abc. Fll"St, the transition matrix for the natural order 

is generated and then the corresponding transition matrix for the given order will be 

shown. 

[- J 0001 _ a[Ti] 0 _ 0 0 I 1 
pa[T 21 = a[T i] a[T ii ; where a[T ii = 0 1 1 1 

1 1 1 1 



34 

The transition matrix above results in the following basis functions: 

00010000 1 

00110000 abc aiic 
0 1 1 1 0 0 0 0 alx be_ 
1 1 1 1 0 0 0 0 ahc (a+b)c 

iibc c_ 
0 0 0 1 0 0 0 1 

. 
abc = ah 

00110011 li1it b_ 
0 1 1 1 0 1 1 1 aJic a+b 
1 1 1 1 1 1 1 1 iibc 1 

The corresponding transition matrix for the "bca" ordering will be: 

00000010 
iica 00001010 abc 

0 0 1 0 1 0 1 0 ab& _ca 
1 0 1 0 1 0 1 0 ab.c (b +c)a 

iibc .a 
0 0 0 0 0 0 1 1 

. 
abc = be 

0 0 0 0 1 1 1 1 abI: _c 
0 0 1 1 1 1 1 1 ahE b+c 
1 1 1 1 1 1 1 1 libc 1 

It can be observed that the order of columns has changed to 1, 5, 2, 6, 3, 7, 4, and 8 

in the two transition matrices. □ 

The change in the order of columns and the permutations in order of the variables 

have the same result. This can be justified by the fact that changing the order of variables 

is same as reassigning mintenns - changing mintenn rows. This change can be done by 

maintaining the original mintenn orders but changing the corresponding columns in the 

transition matrix. 

2.5.3. Generalized ap Family of Bases 

The members of the ap family of bases need not be confined to fixed polarities in 

order to provide new bases. The polarity of the literals can be "inconsistently" varied and 

still result in a new basis. This will be shown by the following example: 

Example 2.3. The basis generated in Example 2.2 can now be inconsistently 

changed for polarity of literals to give the following new basis: 

- -------- --------------



[ bca ~ _ca 
(b +c)a 

~ j. □ 
b+c 

1 

35 

As it can be observed, the literals a. b. and c take different polarities in different 

basis functions. 

This larger family of bases will be termed Generalized ap (Gap). 

25.4. ape, Family of Bases 

A different generalization of the exp family of bases is possible through the intro

duction of a third operator called the Shannon ope:rator, a. This family will then have 311 

different expansions. 

First the starting transfonnation matrix for this · extension will be introduced. 

Again similar to Equation (2.11), the basis for a single element is given as T 3: 

T3= [~ ~i (2.17) 

which gives essentially the basis 

(2.18) 

The cr operator is then defined as the following: 

Definition 2.26. Let R be a nonsingular matrix. The Shannon Operator a on R 

is: 

a(R)=[~ z] (2.19) 

Theorem 2.6. The c, operator results in a nonsingular matrix of a higher dimen-

sion. 



36 

Proof: As in the proof of Theorem 2.4, the detenninant of a(R) is det (R 'P, thus 

nonzero. QED 

Notice that T 1, T 2, and T 3 are three possible nonsingular matrices for a single vari

able function. All other nonsingular matrices for a single variable function can be con

structed from swapping the rows of these three matrices and would not result in any new 

bases. As an example, Similar to a and p operators, it is possible to define a negative a 

operator as shown below: 

Definition 22.7. LetR be a nonsingular matrix. The Negative Shannon Operator 

GonR is: 

- [o Rl 
a(R)= R Oj (2.20) 

The basis for a single element here is: 

T4= [~ ~] (2.21) 

which gives essentially the basis 

[~ [n]-[~- (2.22) 

It· can be observed that T 3 and T 4 define essentially the same basis and no new 

bases will be generated by negative Shannon operator when the corresponding positive is 

present 

Theorem 2.7. The a operator results in a nonsingular matrix of a higher dimen

sion. 

The proof is exactly the same as in Theorem 2.5 and is omitted here. 

2.5.5. 1t Operation on cxpa Family of Bases 

The 1t operation, introduced by Green [58] and symbolized as o, can still further 

allow generalization of the previous family. This operation is defined below and is 



37 

shown to result in nonsingular matrices similar to a, p, and er operations before. 

Definition 2.28. Let R 1, and R 2 be nonsingular matrices of the same size, and let 

T; e {T 1, T 2, Ty. The pseudo-Kronecker Operator, x, on T 1, R 1, and R 2, symbolized 

byois: 

x(r;, R i, R,) = T; o {R 1, R,J = [: ~:]o{R 1, R ,J = [~~ ::~ :] (2.23) 

where 't;jRk refers to a matrix of size R1c where each of its elements is multiplied by the 

scalar 't;j. 

Example 2.4. Let R 1 =Ti. R 2 = T 3; Then 

Theorem 2.8. The x operator results in a nonsingular matrix of a higher dimen-

sion. 

Proof. The proof of the theorem is similar to the the proofs given for Theorems 

2.4 and 2.5. Each of the matrices T; will result in one block matrix of 0. Then similar to 

the proof of the above theorems, it can be argued that the determinant of the larger matrix 

is some multiple of the detenninants of the smaller nonsingular submatrices and therefore 

nonzero. QED 

Introduction of the er, and x operations still extends the possibilities of generating 

new AND/OR bases. Certain other generalizations have been known for the AND/XOR 

bases in the literature. Those generalizations can also be extended to the AND/OR bases 

resulting in even larger classes of AND/OR bases. As the AND/XOR bases have been 

known in the literature and all of them can be used in logic optimization stage for 

CMLA, the next section is devoted to the review of the AND/XOR bases. 

-------- ·-----------------



38 

2.6. AND/XOR Canonical Forms 

AND/XOR canonical fonns have been up to now the oPJy XOR forms t.1lat have 

been studied. These fonns are mostly known as Reed-Muller canonical fonns. Although 

the first of these is first attributed to Zhegalkin [158], they are referred to as Reed-Muller 

forms following Reed [110] and Muller [89]. In the following, they will mostly be 

referred to as AND/XOR fonns in order to put them more into perspective. 

A comprehensive presentation of different AND/XOR canonical forms was given 

by Davio et al [38] and more recently extended by Green [58]. 

The concept of monoterms was defined in the previous section. Here, different 

kinds of monoterms will be given. These monotenns then can be used to define various 

AND/XOR canonical fonns. The tenn "monotenn" has been based on the concept of 

monomials in algebra to convey both the monomial structure of the terms and also desig

nate the specific characteristics of these monomials. 

Definition 2.29. A monomial is an algebraic expression consisting of a single term 

which is a product of numbers and variables. 

Definition 2.30. A monoterm is a monomial in which all the literals occur linearly 

only and the numbers are in GF (2). 

Example 2.5. X1Xif3 is an example of a monoterm, while x1x1x2 (or x12x2) is 

not. In the first case all the literals occur only once while in the second one x1 occurs 

twice. □ 

In order to make distinctions among various possible monoterms, special 

monotenns giving rise to different AND/XOR Canonical forms are defined in the follow

ing. 

Definition 2.3L A positive monoterm is a monoterm in which all the literals occur 

in positive polarity only. 

- ----- ----------------



39 

Example 2.6. x 1x :zX 3 is an example of a positive monoterm. D 

Similar to a positive monoterm, a negative monotenn can be defined. 

Definition 2.32. A negative monoterm is a monotenn in which all the literals occur 

in negative polarity only. 

Example 2.7. x1x2X°3 is an example of a negative monotenn while .x1x2x3 is not 

because x2 occurs in positive polarity. □ 

The above two monotenns can be seen as special cases of the more general con

cept of the monoterm. In a monoterm, in general, variables can occur in either positive 

or negative polarities. 

Example 2.8. .x'1X2,X3 as well as .x1.Y2,X3 and X1X:zX3 are all examples of 

monoterms. The last two tenns are special cases of negative and positive monotenn 

accordingly. □ 

Definition 2.33. Reed-Muller Canonical form (RMC) or positive polarity 

AND/XOR Canonical form is a sum of positive rnonoterms, the sum bei..,g over GF (2). 

RMC results by n - I successive applications of the Reed-Muller operator, p, on 

T 1 ( Equation 2.11 ), for an n -variable Boolean function. Mathematically, the RMC can 

be shown as: 

(2.24) 

where a; e {0, 1} andµ; =Xn nxn-1 n- • • • Xz X1 = Xj J where ej e {0, 1} e e 1 e2 e1 ~ e-

J= 

such that en en _ 1 • · · e ze 1 is a binary number which is equal to i. Moreover x; 0 = 1 and 

x; 1 = x;. e denotes summation over GF (2), the Galois field of two elements. 

If Equation (2.24) is expanded, one gets: 

f (x1,X2, ••• ,Xn) = ao EB a 1X1 EB a2X2 EB a)XJ..X2 EB a4,X3 EB • • • EB a 2n_1X1X2 • • • Xn

As an example, any function of three variables can be uniquely represented in 



40 

RMC form as: 

Depending on the function, different coefficients a; will be either O or 1. Notice that all 

variables retain positive polarity throughout. 

Example 2.9. x 1 e x2 EB x 1x3 EB X1X2;X3 is one example of a function represented 

in this form. In this example the coefficients a 1, a 2, as, and a7 are 1 and the rest are 0. 

□ 

As there are 223 or 28 possible functions of three variables and there are also 28 

possible combinations of a; coefficients being 1, the uniqueness of the representation in 

this case can be seen. For reference, the positive monoterms for three variables are 

shown in Table 2.6. 

1 
2 
3 
4 
5 
6 
7 

onoterm µ,, 
1 µo 

XI µl 
x2 µ2 

X1X2 µ3 
X3 14 

X1X3 J.1.5 
X1X2 Jl6 

X1X2X3 µ7 

Table 2.6 Positive Monoterms of three variables 

A negative polarity AND/XOR Canonical form can be similarly defined: 

Definition 2.34. Negative Reed-Muller Canonical form (NRMC) is sum of negative 

monotenns, the sum being over GF (2). 

This canonical form is the result of n - I successive applications of negative 

Reed-Muller operator, p, on T 2 and is given as; 

211-1 -
f (xi, x2, ..• , Xn) = ; ~0a; µ; (2.26) 

---------



41 

such that en en _ 1 · · · e 2e 1 is a binary number which is equal to i; Xi O = 1 and Xi 1 =Xi. 

Example 2.10. The function in example 2.9 in NRMC form is represented. as: 

.x'1 e.x1.x'2 EB.xiY3 EBx1.x2.x3. 0 

In both RMC and NRM.C, the variables retain the same polarity throughout. If the 

variables occur as either positive or negative, more general forms are possible. One fam

ily of canonical forms, tenns of which are not necessarily positive or negative 

monotenns, is called the Generalized Reed-Muller Canonical forms (GRMJ. A subset of 

GRM forms are the consistent GRM forms. 

Definition 2.35. A Consistent Generalized Reed-Muller Canonical form (CGRM), 

also known as a fixed polarity AND/XOR canonical form, is a sum of monoterms in 

which each variable keeps the same polarity in all the monotenns. Sum is agai."1 over 

GF(2). 

The consistent forms are a subclass of CGap family of forms where only p opera

tors, positive or negative, are used. It is obvious that RMC and NRMC are special cases 

of CGRM where the polarities for all variables are the same. As each variable can take 

either negative or positive polarity, the total number of CGRM forms is 2", where n is 

the number of the variable in the function. These forms can be mathematically 

represented as: 

zn-1 · 
f(x1,x2,---,Xn)= ;!0 a;µ; (2.27) 

where a; e {0, 1} andµ.; =i/n.in-len-l ·· · i2e2i/1= frx/i where ej e {O, 1} 
f=1i 

such that enen -1 · · · e2e1 is a binary number which is equal to i; :i;0 = 1 and .i; 1 =.ii; 

i; standing for x; or Xi but not both. EB again denotes summation over GF (2). 

Expanding Equation (2.27) one gets: 



42 

Example 2.11. Choosing polarity 010, or decimal number 2, among the 8 possi-

bilities for a three variable function, the variables x 1, and X3 will have positive polarities 

andx2 will have a negative polarity. The function in Example 2.9 will then have the fol

lowing CGRM representation for polarity 010: 

1 EBx1 EB.ii EBx1.f"2X3. □ 

Retaining the same polarity for a variable throughout is a condition that is not 

necessaiy for unique canonical representation of Boolean functions. By removing this 

restriction, more general canonical forms can be introduced. One such forms is that of 

the GRM forms. 

Definition 2.36. A Generalized Reed-Muller Canonical Form (GRM) or General

ized AND/XOR Canoni.cal Form is a sum of monoterms in which each variable can occur 

in different polarities in each monotenn; however, a monotenn with the same set of vari

ables can occur once and only once. The sum again is over GF (2). 

GRM forms are given by: 

(2.28) 

where a; e {O, l} andµ; =Xn nXn-l n- • • • x2 --.x-1 = Xj J where ej e {O, 1} • • e • e 1 • e?_~ e 1 ~- e• 

J= 

such thatenen -1 · · · e2e1 is a binarynumberwhichisequal to i;i;0= 1 andi;1 =.i;. i; 

stands for x; or .f; but not both. EB again denotes summation over GF (2). 

The GRM forms are a subset of the ( Gap) family of bases where only p is used. 

One subset of the GRM forms are the Inconsistent forms which are differentiated from 

CGRM forms in that if the variables keep the same polarity throughout, they are not 

included in inconsistent fonns any more. The total sum of consistent and inconsistent 

forms makes up the Generalized Reed-Muller Canonical forms. The number of GRM 

fonns is 2n2n - l where as mentioned previously, 2n of these forms are consistent and the 

rest are inconsistent GRM forms. GRM forms have also been termed as Restricted Mixed 



43 

Polarity forms (CRMP) [34]. 

Example 2.12. The following monoterms provide a canonical representation of 

any three variable function: 

[1 .f"1 X2 X1X2 X3 X1X3 X2,X3 X1X2X3] (2.29) 

These monotenns certainly do not meet the conditions for a fixed polarity form. This 

fonn is an Inconsistent fonn and the function used in Example 2.9 will have the 

representation 1 EB.xi EBx2 EBx1x3 EBx1X-$3 in this form. D 

A larger family of AND/XOR canonical forms which include the fixed-polarity 

forms as a subset are constructed by inclusion of the Shannon operator. It can be noted 

that the mintenn canonical fonns presented in section 2.4 can be seen as a special 

AND/XOR canonical fonn where only Shannon operator is applied on the starting matrix 

T3 (Eq. 2.17). The transition matrix produced by successive applications of a- opera.tor 

starting from T 3 will be nothing but the identity matrix, resulting in the minterms them

selves. A more general class of AND/XOR forms is that of Kronecker Reed-Muller 

Canonical forms (KRM) [38, 57, 58]. The term Kroncker comes the fact that these forms 

can be produced by the Kronecker product of the the three bases given in Equations 

(2.12), (2.14), and (2.18). 

Definition 2.37. A Kronecke.r Reed-Muller (KRM), canonical fonn or Kronecker 

AND/XOR Canonical form is a sum of monotenns where some variables appear only in 

positive polarity; some variables appear only in negative polarity; and some variables 

appear in either positive or negative polarity but they are present in every single 

monotenn. The sum is over GF (2). 

The KRM forms are constructed by application of p, p, and er operators starting 

from the starting matrices Ti, T 2, or T 3 (Eq. 2.11, 2.13, and 2.17). As each variable can 

be expanded acconling to any of the above three operations, the total number of KRM 

forms is 3n, where n is the number of variables. 



44 

Clearly, not all inconsistent forms are part of the set of KRM forms since in 

KRM s, a monotenn with the same variables can occur more than once though with dif

ferent literal polarities. In addition, there are some inconsis'tent forms which can be not 

be constructed by the application of the three mentioned operators. 

One set of canonical fonns which includes KRM and some inconsistent forms is 

the Pseudo-Kronecker Reed-Muller (PKRM) Canonical forms [37]. 

PKRM forms are based on the operation of 2t on nonsingular matrices produced by 

cr, p, and p operations on T1, Ti, or T3. In addition to the KRM fonns, this results in 

other inconsistent generations of the monoterms as compared to KRM s. It can be 

observed that by a, p, and p operations, the Boolean function f (x1,.x2, .•. ,.xn) can be 

represented with respect to Xn-1 as: 

f =aoo.i;,-1 EBa10Xn-l (2.30) 

f =ao1 EBau.xn-1 (231) 

f =a02EBa12Xn-l• (2.32) 

If the coefficients ao; and a 1i, i = 0, 1, 2 are inconsistently developed with respect 

to the variable Xn-~ ie. each part of the function is again expanded by the three opera

tions a, p, and p independently, there would be 3 x 32 different kind of fonns possible. 

If a Bo~lean function in tmn is expanded in this way with respect to each of its variables, 

( f 2-k) 
there would be 3 k =0 = 321'+1- l possible forms which comprise the PKRM canonical 

fonns. Among th~ 3" of them are KRM forms. 

Example 2.13. The following monoterms give a PKRM fonn: 

where o is the pseudo-Kronecker operator defined in Equation 2.23. D 

PKRM's were introduced by Davio [37] and expanded later in [38]. Green [58] 

and Sasao [123] have provided a more detailed examination of these forms. 



45 

Even higher supersets for PKRM canonical fonns were introduced by Green [58]. 

One immediate superset of these forms was termed the Quasi-Kronecker Reed-Muller 

(QKRM) Canonical forms. These forms are the result of the interchanging of variables in 

a PKRM form. While PKRM fonns can be viewed as inconsistent expansion of 

branches by the three operations, p, p, and c, maintaining an order of the variables, the 

QKRM forms can be viewed as one that the order of variables is also inconsistent. 

Example 2.14. If the variables x 1 and x 2 are interchanged in Equation 2.33, one 

gets a different basis: 

[x1xiJ o{[xz 1], [x2x:ill = [x1[x2x2l] [x1[x21]] = [x2x1 x'2X1 x2x1 .x1] D 

As there are n ! possible permutations for n variables, the total number of QKRM 

forms could be n ! 3zn+1- 1. However, not all of these pennutations will result in new 

forms and therefore, the total number of QKRM forms is actually less than this number. 

Still another superset can be identified for QKRM forms, termed skew forms [58]. 

In these forms, the variables can be inconsistently interchanged to result in even different 

canonical forms. 

Example 2.15. Interchanging variables x1 and x 2 in (2.33) will result in the fol

lowing skew basis: 

[X1X2 X2 X1.X2 Xi) □ 

There are still certain supersets of skew forms which do not show any general 

structure of one-variable modules. Green has termed these forms residual forms and he 

points out that due to their "lack of general structure", it is difficult to enumerate them. 

Many of the above forms are the result of collapsing certain multi-level DAG structures 

into a Two-level form. These DAG structures will be described in chapter 6. 

Since many of the above mentioned forms are defined by operations on single vari

ables, one can conjecture that still more forms can be defined by modules of more than 

one variable. This is an open problem and has not been tackled yet in the literature. 



46 

The most general representation, in which there are no restrictions on the ring sum-

mation of monoterms has been termed the Exclusive Sum of Products (ESOP) [120]. 

ESOP is also used specifically to denote AND/XOR canonical fonns which are not in 

any of the fonns defined above. This is the most often use of the tenn in the literature. 

Still other AND/XOR canonical fonns have been introduced which are not described 

here [100, 123]. 

Definition 2.38. Exclusive Sum of Products (ESOP) is a ring sum of monotenns. 

Figure 2.1, which is a combination of Figure 4.7 in [38] and Figure 9 in [58], 

shows different AND/XOR canonical fonns and the relations amongst them. 

r --------------- ----------, 

E] 
2•0GltM-

L --------------- -- -- ----------J 
3 8DMr-

ESOPa 

Figure 2.1 The AND/XOR Canonical Fonns 

A note on the total number of possible AND/XOR canonical fonns can be made 



47 

here. For two variable binary Boolean functions, there are 81 different AND/XOR 

canonical forms possible. This number for three variable binary Boolean functions has 

been reported as 28 431 [58]. As the number of variables increases, there are much more 

forms possible to define. 

Introduction of the first canonical form in Boolean rings with unit goes back to 

Zhegalkin [158]. Reed [110] and Muller [89] reached at the same results and different 

canonical forms have been known after them. Their work was concentrated on RMC or 

the positive polarity AND/XOR canonical form. Introduction of consistent GRM is due 

to Akers [1]. Inconsistent forms were introduced by Cohn [30]. The KRM and PKRM 

are the contributions of Davio [37, 38]. QKRM, Skew and residual forms were intro

duced by Green [58]. 

2.7. Summary 

In this chapter it was reiterated that the Boolean algebra is not the only possible 

representation for Boolean functions. Moreover, as logics other than Boolean algebra 
. 

can be realized in FPGAs at no extra cost, it is even more imperative to not be confined 

only to Boolean algebra for synthesis purposes. Furthermore, Universal XOR Forms 

were introduced here for the first time as a large family of canonical representations of 

the functions based on XOR logic. It was shown that the UXF comprise a much larger 

family of forms than the known AND/XOR canonical forms. 

Specifically this author introduced various AND/OR/XOR canonical forms which 

can provide more compact representation of the functions than either SOP or ESOP 

representations of the functions. Still other generalizations to the AND/OR/XOR canoni

cal forms are possible by applying the known generalizations in AND/XOR forms 

directly to these UXF. 

It is still an open problem as how to identify a minimal multi-level XOR canonical 

representation of a function without the need for extensive search in the large space of 



48 

the XOR canonical forms. One useful approach proposed by this author can be through 

the investigation of the general linear group and the identification of possible partitions 

of these forms. 

A major advantage of the various AND/OR/XOR UXF for CA-Type FPGA syn

thesis is that they can be directly mapped to the FPGA. As these forms are generated by 

one operation for each variable at a time, the variables do not need any prior reordering. 

--- - ---------



3.L Introduction 

Chapter3 

Minimal Realization of Boolean Functions in 

Fixed Polarity AND/XOR Forms 

It was shown in chapter 2 that a given Boolean function can have numerous reali

zations. Among these realizations, the one with a minimal number of operations will be 

the most economical. In tenns of the cellular synthesis, fewer number of operations 

translates into fewer number of cells. For the case of minimal realization of Boolean 

functions, the task of identification and realization of the minimal realization is directly 

influenced by the data structure used to represent the function. In this chapter a fast 

method for minimal realization of Boolean functions in fixed Polarity AND/XOR forms 

based on Cube Comparison Method (CCM) is presented. It is shown that the 

identification of the minimal polarity as well as the fast realization in this fonn can be 

efficiently perfonned utilizing this technique. 

Two-level fixed polarity AND/XOR forms of the Boolean functions are among the 

most fundamental approaches to CA-type FPGA synthesis. These forms not only are of 

importance as an approach by themselves, but many other synthesis problems can be 

transformed to those utilizing this realization. Examples for these transformations can be 

found in such areas as classification of functions, Ashenhurst and other decomposition 

methods [104, 149], and multi-level design. Minimization of other realizations can also 

be based on the fixed polarity forms. It has been shown [12] that minimization of ESOPs 

This chapter is based on the technique published in abridged form in A. Sarabi. M A. Perkowski, 
proceedings of the 29th ACM/IEEE Design Automation Conference. Anaheim. CA. June 1992. 



50 

can be based on these fonns. GRM minimization can also utilize the fixed polarity forms 

as shown in the next chapter. Of paramount importance is the easily testability properties 

of these fonns which makes them the most easily testable realizations for Boolean func

tions. This aspect which can play a key role in design is discussed further in chapter 7. 

Following Fi.sher [46], the problem of minimization of a Boolean function in 

AND/XOR fixed polarity fonn can be divided into two steps. The first step is to identify 

the optimal polarity for the function and the second is to realize the function in that 

polarity fonn. 

The first step can further be approached in two ways, direct and indirect. In the 

direct approach, certain characteristics of the optimi7.ed polarity are used to identify this 

polarity for the given function. In the indirect approach, a search is involved, where dif

ferent polarities are examined to see whether they meet the criteria of minimization or 

not. This search can be either exhaustive, searehing all possible polarities, or heuristic. 

In heuristic search, certain characteristics are used to guide the search towards the 

minimum solution. Depending on the heuristics, the result can 1;,e the optimum or in 

majority of cases, quasi-optimum. For Boolean functions with small number of variables 

exhaustive search methods can be possible, but as the number of variables increases, this 

task will become impossible. 

The second step of the minimization problem is very much dependent on the data 

structure used to represent the function. Among the factors that need to be considered 

are the ease of manipulation and representation. For large number of variables, any 

minimization scheme has to be amenable to computer use and manipulation. Hence the 

representation mode has to satisfy certain criteria as well. 

The method utilized for the representation of the functions here is that of the Cube 

Comparison Method (CCM) [45, 128, 130]. The cube representation has the advantage 

of less memory requirements than troth vector representation and is easy for computer 



51 

representation and manipulation. It is also very much compatible with existing logic syn-

thesis tools such as ESPRESSO where many cube operations are defined and employed. 

As the problem of identifying the minimal polarity is NP-complete, direct methods 

do not apply in general but only in special cases. Due to the nature of the problem, 

search methods are the only viable solution when one is dealing with functions of a very 

large number of variables. 

The basic approach introduced for the identification of the minimal polarity is 

based on the identification of certain characteristics represented in tenns of disjoint 

cubes. In this way, for some functions it is shown that the polarity of certain literals in 

the minimized polarity vector can be determined without necessarily performing any 

search. Hence, it is possible to cut the number of necessary searches for identification of 

the minimized polarity vector. For other functio~ exhaustive search is performed for 

the literals with unknown minimal polarity to come up with the minimal fonn(s). In the 

case of functions which possess many unknowns in their minimized polarity vector, a 

heuristic search is performed to come up with a quasi-minimal solution. 

This chapter is comprised of six sections. In the next section, the problem of 

minimization as well as certain approaches to the pra..:b!e??? are pres--nted. Next, the reali-

7.ation of the fixed polarity form of any given polarity with improved CCM techniques is 

introduced. In section four, the identification of the minimal polarity vector is discussed. 

In particular, the monotenns in each cube and their commonality for each polarity and 

the minimal polarity as a function of these two is discussed. In the :fifth section, the basic 

algorithms for identification of the minimal and quasi-minimal polarity vectors are 

presented and evaluations on MCNC (Microelectronic Center of North Carolina) bench

marks are discussed. 



52 

3.2. Approaches to Minimi7.ation 

The data structures used to represent the Boolean functions directly influence the 

minimization approaches. The early approaches in 60's and 70's relied on formulations 

based on coding theory, graph theory, and later on Taylor series expansion. The com

plexities of these methods grow quickly with increasing number of variables and most of 

them loose their merits for more than 5 or at best 6 variables in the function. During the 

80's the vector space fonnulations found more attention and seveial fast methods were 

devised. Spectral transfonns and the new Cube Comparison Method were mostly applied 

in 1990 for the generation of fixed polarity forms. One method by Fisher [46], using a 

different tenninology but very similar to the Cube Comparison Method, developed a very 

efficient method of generating these fonns for Boolean functions with a large number of 

variables. Several 2-dimensional map oriented approaches were also devised in the 80's 

which are obviously mostly useful for functions with small number of variables. 

As it was shown in the previous chapter, depending on the polarity of the literals, 

the same Boolean function can have representations with different number of monotenns. 

The goal of the minimization algorithm is to seek the minimal fixed polarity form, or the 

polarity of the literals which results in the smallest number of monoterms. 

Some definitions make the formal presentation of the approaches possible. 

Definition 3.1. Let/ be a Boolean function. The vector X = (i 1, i2, ... ,in) is 

called the polarity vector of/, where i; is either x; or .ij. 

This vector can be represented as an ordered set of l's and O's corresponding to the 

polarity of the literal. If a literal i; takes positive polarity, ie. i; = x;, a 1 will be placed 

in the ith position in the vector. If it takes a negative polarity, or i; =.ij, then a O will be 

placed in that location. As an example, (1, 0, 0) refers to x1,:i2,i3. 

Definition 3.2. For all possible fixed polarity fonns of a Boolean function, the 

minimal polarity vector is the polarity vector for which the fixed polarity form will have 

·---------·--·------



53 

the least number of monoterms. 

Example 3.L The function .f'1.f'2X3 in positive polarity will be represented as: 

.f'1.f'2,f°3 = 1 E9x1 E9x2 E9x1x2 E9x3 E9x1x3 E9X2X3 E9x1x2x3. 
The same function will just be represented as x1x 2X"3 if negative polarities are chosen for 

all the three variables. This CGRM obviously has less number of tenns. D 

As mentioned previously, there can be one or more minimal polarities for a given 

Boolean function. The one(s) which best :fits all minimization criteria can be dis

tinguished from all minimal polarities. The other criteria could be minimal number of 

literals, etc. 

Definition 3.3. For all possible CGRM forms of a Boolean function, the optimal 

polarity vector is the polarity vector which meets all the specified minimization criteria. 

As the RMC, the positive polarity AND/XOR fonn, was introduced in the context 

of coding theory and its applications in Boolean systems, some of the earlier attempts at 

minimizing CGRM forms approached the problem with coding-theoretic schemes. As 

reported in [87], Kautz formulated the problem as an error correction of a certain code. 

The problem with this approach was that with the increasing number of variables, the 

fonnulation became combinatorially more complex to solve. 

It is reported in [80] that Pospelov has reduced the problem to linear integer O - 1 

programming. Some other approaches reported in the same reference are by Hausenblas, 

Wallach, Ceitlin, Tosic, and Pospelov. All these methods, however, can handle Boolean 

functions with small number of variables. 

Mukhopadhyay and Schmitz [87] gave a graph-theoretic approach. In this 

approach, the problem is defined in terms of determination of the maximum clique of a 

linear non-directed graph. The approach requires the exhaustive computation of all the 

2" possible forms in tenns of "polarity functions" and obviously can not again handle 

functions with large number of variables. 



54 

Following the first introduction of CGRM forms, being in Taylor series expansion 

[l], several schemes of minimization in Taylor series fonn were introduced in 70's [17], 

(38]. Marinkovic and Tosic [80] have proposed a non-exhaustive search for identifying 

the minimal CGRM form which allows different minimization criteria to be used. 

Kodandapani and Setlur (75] modified this approach for the case of minimization in 

terms of the number of the monoterms. Page [94] used a different modification to the 

method for minimizing the number of literals appearing in an even number of monotenns 

which proves to have improved testability properties. The essential method here is that 

of a heuristic tree search. Its variants can result both in a minimal or in a quasi-minimal 

solution. 

Vector space approaches to the fixed polarity minimization problem essentially 

rely on linear algebraic techniques to generate all 2n possible CGRM forms. From a :first 

erroneous attempt by Swamy [147] up to late 80's, several fast algorithms have been dev

ised to speed up this exhaustive method and no serious attempt has been made at identi

fying the characteristics of the optimized polarity in this rep~esentation. In these 

approaches basically the structure of the transition matrices is exploited to generate one 

CGRM form from another in afast scheme in different orderings. As reported by Green 

[57] the complexity varies as given below: 

Abso Ute 
fast 

ernarymap 

More recent approaches have utilized more efficient representations of Decision 

Diagrams for the minimization problem. The special relation of CGRM s and Binary 

Decision Diagrams (BDD) were shown in [107]. Minimizations similar to the ones 

presented in the present approach were used in [148] using BDDs rather than cubes and 

Functional Decision Diagrams (FDD) were utilized in [39]. 



55 

3.3. Improved Techniques for a Given CGRM Reali7.ation of a Boolean Function 

As mentioned in the introduction, realization of CGRM fonn of a given polarity is 

one of the two steps involved in any minimization scheme. 1).e more efficient this reali

zation is executed, the faster and more efficient will be the overall minimization scheme; 

especially when a search method involves several CGRM realizations. In this section, 

the Cube Comparison Method and certain improvements to the existing CCM method for 

CGRM realization will be descn"bed. 

3.3.L Cube Comparison Method and Spectral Methods 

Spectral methods and the Cube Comparison Method provide fast methods for gen

eration of CGRM coefficients and overcome the deficiencies of the transform methods 

discussed in the previous section. This method provides a generalized approach to all 

transfonns of Boolean functions and the fixed polarity fonns are one case in point. 

The spectrum of a Boolean function is essentially the representation of the truth 

vector of the function in terms of some basis functions. Similar to Fourier transform of 

functions, the set of coefficients of the transfonn are called the spectrum of the function 

and each coefficient will be referred to as a spectral coefficient. The methods which use 

the transfonn of the truth vector to represent and study the properties of Boolean func

tions are referred to as spectral techniques. In these methods, as pointed out in the previ

ous chapter, there can be various orthogonal transfonns of the truth vector presented. As 

Reed-Muller bases are orthogonal, they were shown in previous chapter to define various 

orthogonal sets of functions. Each CGRM form, being comprised of a CGRM basis, 

defines a set of orthogonal functions and the coefficients of the expansion are the spectral 

coefficients of this CGRM transform. In this terminology then the coefficients of CGRM 

expansion and the spectral coefficients of the CGRM transform refer to the same objects. 

There are certain advantages in representing the truth vector of the Boolean func

tion in spectral domain. As described by Hurst et al. [66], "Each of the 2n ..• spectral 



56 

coefficients contains some information about the behavior of the function at all 2n points, 

but does not contain complete information about any of them. The combination of all the 

values in the spectrum leads to complete information about the whole junction. In this 

sense the spectral coefficients are giving us global information about the function, while 

the Boolean dommn consists of local information. For some applications this global 

information is more directly useful than the Boolean representation of the functions. n 

These applications are mainly those of classification and decomposition of functions as 

well as in logic synthesis. 

The correspondence between vector space representation and orthogonal 

transforms, which in the case of Reed-Muller canonical fonns are the same thing, makes 

the fast transform procedures described in previous section applicable here as well The 

fast methods of :finding the coefficients of the CGRM expansions result in fast generation 
. . 

of spectral coefficients. The goal of minimization in this context is to identify the spec

trum which has the least number of 1 's. 

The Cube Comparison Method is devised for transformation. of Boolean functions 

and its merits stem from the fact that it operates on cube representation of the functions 

rather than the truth vector. All the fast methods discussed previously start from the truth 

vector and perform the operations given in the transformation matrix exploiting certain 

properties of the matrix. Operating on the cube representation of the function reduces the 

number of data points that need to be operated on and is much more efficient. The first to 

use this alternative scheme were Muzio and Hurst. In their work they start from the cube 

representation of the function and present a procedure for generating the coefficients of 

transform in case of Walsh functions. Their method, however, starts from nondisjoint 

cube representation of the Boolean function. The Cube Comparison Method starts from 

disjoint cube representation. In this scheme, additional calculations needed for genera

tion of the coefficients are avoided since there are no overlaps in the cubes and 



57 

coefficients are not re-calculated more than it is necessary. This makes the generation of 

spectral coefficients even faster and more efficient. 

As the CCM is a general method, it is defined in the general case and then the spe

cial case of CGRM transforms is given in this method. Like any representation, some of 

the concepts previously are represented and defined differently here. In order to familiar

ize the reader with basic traits of this method, the tenninology of the method is presented 

in the following. First the spectral coefficients are defined: 

Definition3.4. Each spectral coefficient of a transform is a value representing a 

correlation between the Boolean function and a set of basis functions corresponding to 

this coefficient. 

Basis functions of a given transform in the original derivation were defined as a 

minimal set of orthogonal functions specific to that transform. In this definition, the basis 

functions of Walsh transform are the Walsh functions and in the case of Reed-Muller 

transforms the basis functions are the monoterms of each relevant AND/XOR basis. 

However, as these functions can be defined for non-orthogonal transforms as well, they 

are more loosely defined. In general, basis functions in a cube comparison method are 

set of functions to which the coefficients of the transform are correlated to. 

The co"elation between the coefficients of the transform and the basis functions in 

general is found in two steps. The operations performed for each transform are different 

and this is what results in derivation of different transforms. These general steps are: 

1. Perform a matching operation between the disjoint cubes of the 

Boolean function and the basis functions of the transform; 

2. Perform transform operation on the results of step 1. 

This is the most general way that any transform can be defined. The procedure to 

derive any transform in the Cube Comparison Method is to: 



58 

i) Represent the Boolean function in terms of disjoint cubes. 

ii) Define the basis functions of the transform. 

iii) Perform the matching operation between each cube and the basis func

tions to get partial set of coefficients of the transform. 

iv) Perform the corresponding operation of the transform on the partial set 

above to get all the coefficients of the transform. 

Now, each of these steps will be discussed in more detail. As the concept of dis

joint cubes is a major advantage of this method, this concept will be described in the fol

lowing. The basis functions, the matching operation and transform operation will next be 

described in terms of the RMC transform. Following that, the Equivalence operation and 

the method of generating any CGRM form from the disjoint cubes of the Boolean func

tion will be described. 

Step i) in CCM deals with the representation of Boolean functions in terms of dis

joint cubes. In order to define disjoint cubes, the intersection of two cubes needs to be 

defined: 

Definition 3.5. Let C 1 and C 2 be two cubes. The cube intersection is 

{ 0 if any Cli nC2i =0 
C1 '1 C2= C3 otherwise, where C3; =Ci;(') C2i (3.1) 

where Cki represents the ith literal of the cube Ck and literal intersection is defined in 

Table 3.1. 

1 0 1 1 
0 1 

Table 3.1. Cube Literal Intersection 

Definition 3.6. Let C 1 and C 2 be two cubes. C 1 and C 2 are disjoint if 



Example 3.2. The following examples show the intersection of cubes: 

000 (") 00-= 000 

000 (") 001=000 = 0 

0-1 (")-11=011 □ 

59 

From the definition of intersection, it can be observed that for any two cubes to be 

disjoint, they should at least have one corresponding literal of opposite polarities. The 

disjoint concept can be extended to more than two cubes. 

Definition 3.7. Let C = { C 1, C 2, ••• , Cn} be a set of cubes. Then C is a set of dis

joint cubes if C; ri Ci = 0 'v' 1 Si ,j Sn, i :#: j. 

The disjoint cubes are generated by the technique in [44]. 

Step ii) in the Cube Comparison Method is definition of basis functions of the 

given transform. For any CGRM transform, the basis functions are the monotenns of 

that particular CGRM basis. For operational purposes, it is needed in this method to 

represent the basis functions in cube fonn as well. 
. 

Definition 3.8. A basis function cube is the cube representation of a basis func-

tion. 

Example 3.3. The basis function cubes of RMC transform as well as the 

corresponding spectral coefficients are shown in Table 3.2. 

asis as1s 
Functions Function Cubes 

0 
1 X1 1- S1 
2 x2 -1- S2 
3 X1X2 11- S12 
4 X3 --1 S3 
5 X1X3 1-1 S13 
6 x 2x3 -11 S23 
7 X1X2X3 111 S 123 

Table 3.2 Basis Functions and Basis Function Cubes 
of RMC Transform 



60 

Step iii) of the CCM is performing the matching operation between each cube and 

the basis functions to get partial set of coefficients of the transform. In the case of 

CGRM transforms, the operation which designates which basis functions match, that is 

their corresponding coefficient is 1, was given by Fisher [46]. Although the terminology 

used in [ 46] is different from the terminology of the CCM, he exactly showed the method 

of identifying the partial set of spectral coefficients from each cube. Fisher's method is 

given in Theorem 3.1 without proof. The reader is referred to the paper for the proof of 

the theorem. 

Theorem 3.L (Fisher) Let C = (C 1, C2, ... , C,,) be a cube (C; e {0, 1, -}) and let 

a/' be the j'th coefficient at polarity k. Then al = 1 if and only if (ji, h, ... , j,,) is 

covered by the cube C(C, k) =(Ci, C2, ... , C,,) where 

lo ifC; =-
C; = ~ ~ S = 0 or 1 and q =t: k; 

if C; = 0 or 1 and C; = k; 

A cube C covers vertex v if v; = C; whenever C; =t= -. 

(3.2) 

By Fisher's theorem, the monoterms originating from a cube for the RMC expan

sion are all the cubes that have their 1 'sin th same literal positions as the 1 's of the origi

nal cul>C? and either "1" or "-" in the 0-literal positions of the original cube. For a CGRM 

of a different polarity, Example 3.4 shows the results of the above theorem. 

Example 3.4. For CGRM of polarity vector 1; i.e. RMC, the cube 00-11 wJl 

have the following spectral coefficients as 1 and the rest will be zero: 

Ss6: -11 
S1s6: 1-11 
S256: -1-11 
S 1256: 11-11 D 

The matching operation described by the theorem, and shown in Example 3.4, is 

essentially a pattern matching operation. This operation is performed between each cube 



61 

of the function and the basis function cubes in order to give the partial set of spectral 

coefficients for each function cube. It can be observed from Example 3.4 that the basis 

function cubes have the exact 1' s and -• s as in the function cube and it is only the O" s 

which differ. As a matter of fact, all the basis function cubes are generated by exhausting 

all combinations of replacing every instance of a O in the function cube with either a 1 or 

a-. This is also essentially what the theorem is referring to. 

Example 3.5. All the possible subsets of {a, b } are { } , { a } , { b } , and { ab } . The 

O's in the function cube act similar to the variables a and b above. In Example 3.4 for 

00--11, -11 corresponds to { } , 1-11 to a, -1--11 to b, and 11-11 corresponds to ab. 

□ 

As the number of all possible combinations of elements is 2n, where n is the 

number of the elements, the number of spectral coefficients is also detennined by the 

number of zeros in the cube. To be more exact, this number is equivalent to 2N°, where 

No is the number of O's in the cube. 

In an existing program [129], the matching operation is used to check whether a 

spectral coefficient matches with the cubes of the function. The function cubes are first 

changed to their positive polarity equivalents through the concept of the Equivalence 

operation. Next, the spectral coefficients are matched with the equivalent function cubes 

and later transformed back to the original CGRM polarity. The bit-wise Equivalence 

operation is shown in Table 3.3. 

0 1 0 
C1 1 0 1 

Table 3.3. Bit-Wise Equivalence Operation Between Two Cubes 

The program, however, checks all spectral coefficients and performs the matching 



62 

operation with all cubes of the function. This is unnecessary for many cases and with 2n 

spectral coefficients for any function of n variables, the program becomes very slow. 

Based on the argument that only '2!1° of the coefficients are 1, only these coefficients need 

to be generated. An improvement to the program in [129] has been made in this regard 

which will be discussed in section 4.2. 

Step iv) deals with perfonning the corresponding operation of the transform to the 

partial set in step iii) in order to get all the coefficients of the transform. This operation is 

defined differently for each transfonn, hence, it is termed the operation of the transform. 

This operation in CGRM transforms is the ring swn. By this operation, the pa.rtial spec

tral coefficients which occur in an even number of cubes are removed and only those 

appearing in an odd number of them will be considered as the spectral coefficients of the 

transform. The operation of Walsh transform is the integer addition. 

In order to differentiate the partial spectral coefficients generated in step iii) and 

the final spectrum generated in step iv), the following .terminology will be used. For 

CGRM transform, the partial coefficients will be called the monotenns representing the 

function (or cubes). The monotenns that occur in an odd number of the disjoint cubes 

will be referred to as the expansion monotenns. 

Example 3.6 The monotenns representing the cube 001-10 at polarity 111000 are 

given in the following: 

1) Perform the Equivalence Operation= on the cube: 

111000 
001-10 

001-01 

2) Generate the monoterms representing the cube: 

·-· - ... ---------------



63 

No. Spectral coeff. cube ~resentation 

0. S36 -1-1 
1. S136 1-1-1 
2. S236 -11-1 
3. s1236 111-1 
4. S3s6 -1-ll 
5. S1356 1-1-11 
6. S2356 -11-11 
7. S123S6 111-11 

3) Perfonn the Equivalence Operation= on each monotenn: 

No. Spectral coeff. cube re:eresentation 

0. S36 -1-0 
1. S136 1-1-0 
2. S236 -11-0 
3. S1236 111-0 
4. S3s6 -1-00 
5. S1356 1-1-00 
6. S23S6 -11-00 
7. S12356 111-00 □ 

The Equivalence operation can also be seen as a bitwise mod-2 sum operation, or 

XOR, if the literals in the cube are first inverted. This is shown in the following: 

001-10 ➔ 110-01 

$ 111000 
110-01 

001-01 

which is the same cube as in the first step of Example 3.6. 

As indicated previously, the monoterms representing any cube are the DC- and 1-

literals of the cube with all the combinations of the 0-literals replaced with a 1 or-. The 

number of these monotenns were shown to be ~ 0 where No represents the number of 0-

literals in the cube. As for any polarity vector the 0-literals are exactly those literals 

which do not match with their corresponding literal in the polarity vector, the number of 

resulting monotenns for any cube in a given polarity vector is equal to ZV v where N v is 



64 

the number of non-matching literals in the cube. The following theorem has then been 

proven: 

Theorem 3.2. The number of monoterms representing a given cube for a given 

polarity vector is 'J!v, where N v is the number of non-matching literals of the cube and 

the polarity vector. 

Example 3.7. In Example 3.6, there were 3 non-matching literals in the cube 

001-10 for the polarity vector 111000, namely 1, 2, and S, two matching literals; ie. 3, 

and 6; and one DC-literal; ie. 4. There are 8 resulting monoterms, which is equivalent to 

23, and 3 is the number of non-matching literals. D 

Using the set of disjoint cubes was mentioned to increase the efficiency of this 

method. If the cubes are not disjoint, the coefficients which represent the intersection of 

the cubes will be unnecessarily generated. The method proposed by FlSher [ 46) also uses 

disjoint cubes and as such it can be called a Cube Comparison Method in the case of 

CGRM transfonn long time before CC..'Pvl was introduced. 

In summary, the Cabe Comparison Method is based on spectral techniques and fast 

generation of the spectrum of Boolean functions directly from disjoint cube representa

tion of the function. The disjoint cube representation provides improved overall 

efficiency over the classical transfonn of the truth vector of the function. The cubes are 

"matched" against the basis functions to generate partial spectral coefficients. These par

tial coefficients are then operated on by the operation of the transform to result in the 

final spectrum of the transfonn. 

3.3.2. Generation of the Monoterms Representing Each of the Disjoint Cubes 

In this section, two methods for generation of the monotenns representing the dis

joint cubes of the function will be introduced. One method uses a barrel shifter analogy 

to generate the monoterms from combinations of O's, and the other a Gray code order. It 

----- ------------------



65 

is shown that the second approach is more efficient. 

In the methods introduced, only the monoterms which represent each cube are gen

erated ~ther than the whole spectrum. Thus, although some monotenns are generated 

several times, as they might be common in several cubes, for a very wide range of cases 

the number of total monotenns generated would be much smaller than the whole spec

trum of the function. The approach, however, will be less efficient in cases where there 

are many non-matching literals in the cubes for a given polarity vector. In those cases. 

and especially when all the literals of a given cube are all non-matching, this method not 

only requires the generation of the whole spectrum, but also requires even more opera

tions. This is, however, an extreme case and as mentioned before, for a very wide range 

of cases, there will be far less number of monoterms required to be generated with this 

method as compared with the method in [129]. In any case, the number of operations 

required here is a function of the number of O's in the cubes. The actual number is given 

by 

.fl, Ny. 
L 2 • 
i=l 

where m is the number of cubes and N v- is the number of the non-matching literals in 
I 

cube i. The other extreme, will be the case where there are only a handful of monotenns 

that need to be generated for a function with very large number of variables. In this case, 

this method will be very fast while the previously mentioned method will take a very 

long time to generate the whole spectrum. The overall advantage of this improvement is 

shown later as the programs are compared for different benchmarlc functions. 

For the purpose of generation of the monotenns representing each disjoint cube, 

two approaches were taken where one ~roved to be faster. These methods are based on 

bitwise operations on the literals of the cubes to generate the corresponding monoterms. 

The first method uses a "barrel shifter'' scheme to generate all the possible 2N° combina

tions that give the monoterms representing that cube. Here no special order is required as 



66 

the order does not alter the results. The second method is based on Gray code order of 

generation of the ')]vo combinations which proves to be simpler and faster. This is due to 

the fact that for each new monotenn only one bit needs to be changed at a time. When 

dealing with large number of cubes the speed improvement contributes a lot to the speed 

of the overall method. 

Figure 3.1. Example of a ''BILBO" barrel shifter 

The barrel shifter is essentially a sequence generator that generates 2n different 

combinations of n literals taking values of either 1 or 0. In hardware, this sequence gen

erator is comprised of n filp-:flops and some combiaiational logic 1C? detennine what kind 

of sequence is generated. The outputs of the flip-flops designate the number generated. 

This shifter starts with a value of 1 at the fust flip-flop and continues from that while 

00 ... 0 ~ never produced. Figure 3.1 shows one such generator where the order is not 

necessarily of importance. 

Note that the XOR gate shown should have its inputs as the outputs of the last and 

the next to the last flip-flops to the right for the even number of flip-flops and the last and 

two before the last for the odd number of flip-flops. Otherwise, all the 2n different codes 

would not be generated. 

In software, the 1-literals are set and the position of each of the 0-literals is stored 

for each cube. The location of each of the 0-literals is taken as acting as the flip-flops 

and the bitwise XOR operation on the values of the appropriate bits works as the combi-



67 

national logic part of the barrel shifter. Similarly, the same sequence generator is imple-

mented in software. The values of the 0-literals are changed to O or 1 as required and 

each time one of the possible spectral coefficients (or the monotenns) is generated. The 

procedure here requires n - 1 shift operations and one XOR operation each time and 

depending on the sequence some conditions such as generation of 00 ... 0 has to be taken 

into consideration. 

The second approach uses a Gray code order for generating the spectral 

coefficients. In this approach, each time only one bit will change its value and as such is 

very fast Similar to the :first approach, the !-literals are set and the location of each of 

the 0-literals is stored for each cube. However, rather than using the BILBO analogy, the 

appropriate bit is negated when required in a Gray code order. 

3.3.3. Implementation of the Ring Sum Operation 

The forth step of CCM, in the case of CGRM s, is the operation of the ring sum on 

the partial monoterms generated from the methods in section 4.2. In this section, four 

different schemes are introduced for this purpose. Among these, three of them have been 

implemented and they will be evaluated over several functions. 

In the program REED [129], the ring sum operation is performs each time a spec

tral coefficient is examined. That is every single cube is matched against the spectral 

coefficient and it is discarded unless the coefficient occurs in an odd number of the cubes. 

Since in the methods introduced in section 4.2, the monoterms are generated in a dif

ferent way, this operation can not be applied the way it is performed in [129]. The 

methods examined are described in the following: 

In the first method, each newly generated monoterm is checked against all the 

other disjoint cubes which can have this monoterm as one of their representing 

monoterms. If this monoterm occurs in an even number of cubes, it is discarded, other

wise it is kept as an expansion monoterm of the Boolean function. 



68 

In the second method, first all the monotenns representing each of the cubes are 

generated and are stored in an array. This array is then sorted and the monotenns occur

ring an even number of times are discarded and the ones occurring an odd number of" 

times are retained as expansion monoterms. 

The advantage of the first method is that it requires less memory and each 

monoterm of the Boolean function is stored only once. The second method, however, 

stores all the monotenns of the cubes and there will be several copies of the same 

monoterms leading to a large array to be sorted and processed. The latter, however, is 

faster and does not have to check all the disjoint cubes for each monoterm to see if they 

have that monoterm as common. 

A third method uses the second method but periodically perfonr.s the sorting and 

processing of the monotenns to reduce the memory requirements. 

Another alternative, which is not yet implemented, is to use a combination of the 

first and the second techniques. One can partition the monotenns with some constant 

characteristic such as their number of DC-literals. Then once a new monoterm is gen

erated, it can be compared with all the previous monotenns of the same characteristics to 

see if it needs to be discarded or kept. This has the advantage that is faster than the first 

method· and requires less memory than the second method. Because this alternative is 

not implemented yet, it is not possible to compare its speed with the other two. 

The methods implemented are compared in the Table 3.4 for several functions. 

REED is the program that existed before. reed0 is a program that uses barrel shifter 

approach in generation of the monotenns and the first method for the implementation of 

the ring sum operation. reedl also uses barrel shifter approach in generation of the 

monotenns but uses the second method above in the implementation of the ring sum 

operation. reed2 uses Gray code approach in the generation of the monotenns and the 

second method above in the implementation of the ring sum operation. The functions are 



69 

all evaluated for polarity 111..1, or the RMC expansion. 

e . u s . u . s u . s . u . 
rd842 8 128 0.Su0.ls 2.lu0.2s 1.5u0.2s 1.0u0.ls 
9sym 9 165 1.2u0.2s 2.8u 0.ls 2.0u0.2s 1.3u 0.ls 
rd.844 8 75 0.4u0.2s 0.6u0.1s 0.4u0.ls 0.3u0.1s 
rd841 8 84 0.4u0.2s 1.lu 0.1s 0.9u0.2s 0.Su0.1s 
V 5 25 92 22061.lu 18.6s 107.lu 1.7s 77.lu2.2s 61.7u 1.8s 

Table 3.4. Comparison of CGRM Realization Programs 

The improvement of the new techniques for the case of functions with large 

number of variables is self-evident. For functions with lower number of variables, the 

advantage of the program REED is when the function is comprised of a large number of 

cubes. The comparison of the programs shows that the program reed2 reaches to the 

time performance of REED in these cases as well. The programs were compared on a 

SUN 3 machine and the user and system CPU times in seconds are denoted by "u" and 

"s", respectively. 

3.4. Minimal Polarity Vector 

Toe main part of the minimization scheme is that of the identification of the 

minimal polarity vector. Once the minimal polarity vector is found, with the aid of the 

method· introduced in the previous section, the minimal CGRM realization of the 

Boolean function can be generated. As the Boolean function is represented by a set of 

disjoint cubes, the properties of monotenns representing each cube and the commonality 

of the monoterms among different disjoint cubes are the parameters that determine the 

polarity with the least number of monoterms. Before describing the actual exhaustive 

and non-exhaustive methods developed for this purpose, the above mentioned properties 

of the monoterms representing disjoint cubes are described. In particular, the commonal

ity of the monotenns is described in more detail The search methods developed based 

on the properties of the monotenns for different polarities are then presented. 



70 

The most elementary case for Boolean functions given as disjoint cubes is that of a 

single cube. The monotenns representing a single cube for a given polarity vector were 

discussed before. Based on those results, one can detennine the minimal polarity 

vector(s) which result in the smallest number of monoterms for this cube. The minimal 

polarity vector(s) for this special case are given by Theorem 3.3. 

Theorem 3.3. The minimal polarity vector(s) for a single cube are polarity 

vector(s) which match all the literals in the cube. The number of such vectors is equal to 

t' DC where N DC is the number of DC-literals in the cube. 

Proof. The proof follows from Theorem 3.2. It was argued that the number of 

monoterms representing a cube is given by ,Jlv, where N vis the number of non-matching 

literals of the cube and the polari.."y vector. For minimal number of monotenns, one just 

needs to minimize the number of the non-matching literals. This will occur when each 

literal in the polarity vector is chosen exactly as the corresponding literal in the cube of 

the function. The DC literals in the cube can be matched by either 0 or 1 in the polarity 

vector, and hence these literals can take any of the two possible values. As the possible 

number of combinations of values for these DC literal positions is 2 to the power of 

number of DC literals, then one has the argument for the theorem. QED 

Example 3.8 In Example 3.6, the minimal polarity vectors are given by 001-10, 

i.e. the vectors 001010 and 001110. To check this> one has: 

001010 
001-10 

111-11 

The resulting monoterm is 111-11, which after performing the equivalence opera

tion, =, with the polarity vector will become 001-10, the cube itself. The same can be 

verified for the polarity vector 001110. □ 



71 

When the Boolean function is represented by more than one cube, one first has to 

observe ·that the changes in the litel'als in the polarity vector are reflected as column-wise 

= operations in the array of disjoint cubes. As the i th literal changes in the polarity vec

tor, the ith position literals in each cube change their values. If the ith literal of one cube 

had value 1, it will change to 0; if it had value 0, it changes to the value 1; and if it is -, it 

stays the same. This is repeated for the next disjoint cube and so on. 

Example 3.9 Let a Boolean function be represented by the following disjoint 

cubes: 

0111-
1011-
00001 
1101-
111-

By CCM analogy, the above cubes will be represented a:s the following for the polarity 

vector <0,1,1,0,1>: 

1110-
0010-
10011 
0100-
011-

It can be observed that there are column-wise changes on the first and the forth columns 

from the left D 

When the number of the disjoint cubes is greater than one, there will be certain 

interactions among the monotenns representing each cube that need to be investigated. It 

was stated in Theorem 3.2 that the number of monoterms representing one cube is equal 

to the 2 to the power of number of non-matching literals of the cube and the polarity vec

tor. When there are more than one disjoint cube involved, the number of expansion 

monoterms is not the simple sum of the number of monotenns representing each cube. 

The actual number is this sum minus the total number of times the monoterms occurring 

. -····-·-········- -----------



72 

in an even number of cubes are represented and the total number of times the monotenns 

occurring in an odd number of cubes are represented more than once in this sum. Hence, 

the commonality of the monotenns among the cubes comes into the picture as well. 

Theorem 3.4 gives the number of expansion monotenns of a Boolean function. 

Theorem 3.4. Let a; be the number of monotenns that are common in i number of 

disjoint cubes. The number of expansion monoterms of a Boolean function for a given 

polarity vector, Np, is given by: 

Nv 
~ c. 

Np= L2 l 

i=l 

. -{ a; · (i - 1) 
A., - a; - i 

- fl; 
i=2 

if i is odd 
if i is even· 

(3.3) 

where 11 is the number of disjoint cubes and N vc _ represents the number of non-matching 
l 

literals of the cube C; and the polarity vector P. 

Proof. The proof follows the argument given by Theorem 3.2. As each disjoint 

cube contributes z'v different monoterms to the monotenns representing the Boolean 

function, the total number of the monotenns will be the sum of each of these monoterms 

if none of them are common. However, there will be some monoterms that occur in 

more than one disjoint cube. These monotenns, which are described in more detail in 

section 5.1, will be part of the monotenns representing the function. However, those 

monotenns that are common in an even number of disjoint cubes will be all subtracted 

from the total number. Those that occur in an odd number of cubes will be counted only 

once and all their other occurrences have to be subtracted as well. 

For the monoterms that occur in an even number of cubes, the number of times that 

Nv 
they are counted in f 2 C; is exactly i. By multiplying the number of these 

i=l 

monoterms, a.i, by i, one obtains the total number of monoterms to be subtracted for 

·-··········-·------------



73 

given i. This is the value of A.; for the case when i is even. For the monotenns occur-

ring in an odd number of cubeSy the number of times they are counted in the total number 

of monotenns is again i. Multiplying the number of these monotenns, a;, by i - I, gives 

the number of times that these monoterms are counted more than once in the total 

number. As these monotenns are among the expansion monotenns, only the number of 

times that they are counted more than once in the total number of monotenns needs to be 

subtracted.. Therefore A; for the case of i being odd is a; · (i - 1). The total number to 

be subtracted is then the summation of all these subtractions for 2, 3, •.. , Tl cubes, which 

is represented by the second summation in Equation (3.3). QED 

From Theorem 3.4, it can be inferred that the minimal polarity vector is the one 

which has the best balance between the least number of the all monoterms of the cubes 

and the number of monoterms that can be subtracted because they are common in several 

cubes. The overall number of monotenns for a given polarity vector was shown to be 

detennined by the number of O's in each cube. Hence, if one just attempts to minimize 

Nv 
the overall number of monoterms, the reduction of f 2 C; would be of interest 

i=l 

As the non-matching literals contribute to the number of overall monoterms and 

the change in polarity vector is a column-wise operation, the number of matches in a 

column plays an important role. One can notice that for a column i in the disjoint cube 

array, all the ith positions of the cubes with the matching value of the polarity literal 

will take the value of 1 and all with non-matching values will take the value 0. The -'s 

remain the same as shown in Example 3.9. So for each column, taking the polarity literal 

as the one which occurs the most in that column will result in the most number of 1 's in 

the array and the least number of O's. This, however, by itself does not guarantee that 

one gets the least number of overall monotenns. 

Example 3.10. For the function given by the disjoint cubes in Example 3.9, 



74 

Choosing the polarity vector <l, 1, 1, 1, 1> will result in more number of 1 'sin the array 

as any other polarity vector. This array which is the same as the original array of disjoint 

cubes is shown below again: 

0111-
1011-
00001 
1101-
111-

It can be seen that the array is comprised of 13 l's, 7 O's and 5 -'s. This is found 

by using the value for a literal in the polarity vector which occurs the most in that column 

position. 

It can be checked, however, that this polarity vector will not result in the least 

number of overall monotenns as one might suspect. The actual number of overall 

monoterms, using Equation (3.3) is 2 + 2 + 16 + 2 + 1 = 23. One can check to see that 

the polarity vectors which will result in the least number of overall monotenns are actu

ally the polarity vectors <l, 0, 1, 1, 1> and <l, 1, 0, 1, l>, each having 19 overall 

monotenns. Tne resulting array for the polarity vector <l, 0, 1, 1, l.> is shown below: 

0011-
1111-
01001 
1001-
101-

The number of monotenns is 4 + 1 + 8 + 4 + 2 = 19 as indicated. The array, how-

ever, is not comprised of more O's than the original polarity. This array is comprised of 

12 l's, 8 O's and the same numberof-'s. D 

As can be seen by the above example, it is not the overall number of O's which 

needs to be minimized but their distribution is important also, when one is striving for the 

least number of overall monotenns. The least number of O's in the array, however, is a 

good starting point and this is actually used for the heuristic search method presented 

later on. 



75 

As indicated by Theorem 3.4, the number of overall monotenns is still not the 

number of exact monotenns that represent the Boolean function. The other factor in this 

regard is the number of monotenns that are common and are subtracted from this number 

of overall monoterms. Example above can be used again to show this point. 

Example 3.lL Although polarity vectors <l, 0, 1, 1, 1> and < 1, 1, 0, 1, 1> are 

the vectors which result in the least number of overall monotenns, they are not the 

minimal polarity vectors. The minimal polarity vector can be checked for this problem 

to be <0, 0, 0, 0, 0> which results in 8 monoterms. <1, 1, 1, 1, 1> results in 21 

monoterms; i.e. only 2 are subtracted from the overall. <l, 0, 1, 1, 1> results in 15 

monoterms; ie. 4 monotenns are subtracted; and <1, 1, 0, 1, 1> also results in 15. □ 

One can then see that for certain functions, the number to be subtracted plays a 

dominant role. There are many functions for which the polarity vector(s) resulting in the 

least number of O's in the array are also the minimal polarity vector(s). For other func

tions, the number of overall monotenns is of determining factor in identification of the 

minimal polarity vector. As the number of the monoterms that are common among cubes 

plays an important role, the characteristics of the commonality is described in more detail 

in the next section. 

3.4.1. Subtracting Monoterms of Disjoint Cubes 

It was mentioned before that the monoterms that are common in disjoint cubes are 

subtracted from the overall number of monotenns. Depending on the number of 

occurrences of these monoterrns, the number of these monoterms can be different The 

monoterms that are common in two cubes are all subtracted, while the ones that are com

mon in three cubes will have two of each of them subtracted. This can be extended for 

all the monoterms that are represented in either an even or an odd number of disjoint 

cubes. In order to identify each of these categories of monoterms, one has to start from 

the commonality of monoterms in two disjoint cubes. Once this commonality is 



76 

established, one can extend this notion to larger number of cubes. 

Commonality is not, however, the only issue that needs to be considered when one 

is dealing with the notion of subtracting monoterms. If one tries to apply Equation (3.3), 

the exact number of monoterms occurring in two, three, ... , 11 number of disjoint cubes 

needs to be precisely indicated. 

In this section the commonality of monotenns of disjoint cubes will be defined and 

its properties discussed. This is done first by defining the operation r between two cubes 

which gives their common monoterms. Properties of this operation are described after

wards. Next, Commonality of monoterms of more than two cubes is presented. lhls is 

followed by the discussion of subtracting monotenns with a study of maximum number 

of subtracting monotenns which follows the discussion. 

3A.1.1. Commonality of Monoterms of Disjoint Cubes 

Two cubes are the most elementary case where common monotenns could exist 

and that is where the issue of commonality is started. A monotetm is called common 

among two cubes if it is a member of both sets of monoterms that represent each cube. 

The cube commonality is a cube representing the monotenns that are common in the two 

cubes. The commonality operation, r, creates this new cube and is given below: 

Definition 3..9. Let C 1 and C 2 be two cubes. The cube commonality operator on 

C1 andC2is: 

{ 0 if any Cu rc2i =0 
C1 rC2= C3 otherwise, where C3i =Cli rc2i (3.4) 

where C1a represents the ith literal of the cube Ck and the commonality opera.tor for a 

single bit is defined in Table 3.5. 

It can be seen from Table 3.5 that no commonality exists between two cubes when 

a DC-literal in one cube corresponds to a 1-literal in the other cube. The table can be 



77 

arrived at by recalling that the monoterms representing a cube match all of its I-literals, 

have DC's in the same positions as DC-literals of the cube and have either 1 or DC in 0-

literal positions of the cube. 

1 

1 1 1 0 
0 

Table 3.5. Cube Commonality Operator for a Single Bit 

Example 3.12. The monoterm commonality of the two cubes 10-00-1 and 

01010-1 is given as: 

r 10-00-1 
01010-1 

11-10-1 

This can be checked as the monotenns representing 10-00-1 are: 

1-1 
1-1-1 
1-1-1 
1-11-1 

and the ones representing 01010-1 are: 

-1-1-1 
-1-11-1 
-111-1 
-1111-1 

11-1 
11-1-1 
11-1-1 
11-11-1 

11-1-1 
11-11-1 
1111-1 
11111-

As it can be seen, the common monotenns of the two cubes are 11-1-1 and 11-

11-1. Expanding the monoterm commonality of the two cubes, i.e. 11-10-1, the result 

will be 11-1--1 and 11-11-1 which matches the expected result D 

Alternatively, one can negate the value of the literals in the cubes and use bit-wise 

AND operation to get the cube that represents the common monotenns. This procedure is 

shown in Example ;3.13 below: 

Example 3.13. The literals in the two cubes 10-00-1 and 01010-1 can now be 

inverted to give 01-11-0 and 10101-0. The bit-wise AND operation on the two cubes 



78 

results in the cube 00-01-0. Again, bit-wise inverted, this cube results in the cube 11-

10-1, found earlier in Example 3.i2. 0 

The monoterm commonality of two cubes has the following properties: 

i) Commutativity: C 1 r C2 = C2 r Ci, where C 1 and C 2 are two cubes. 

From the associativity of r, one can infer the commonality of monoterms of more than 

two cubes. The common monoterms of three disjoint cubes are shown in Example 3.14 

below. 

Example 3.14. The common monoterms of the disjoint cubes 01110, 00110, and 

-1011 are: 

r 01110 
00110 
-1011 

-1111 

Again this result can be evaluated by expanding and observing the common 

monoterms of the cubes. The monoterms representing 01110 are: 

The ones representing 00110 are: 

-111-
-1111 
1111-
11111 

-11- 1-11-
-111 1-111 
-111- 1111-
-1111 11111 

And those representing -1011 are: 

-1-11 
-1111 

As it can be seen, the only common monoterm of.the three cubes is -1111 which 

was given by operation r on them. D 



79 

3.4.1.2. Subtracting Monoterms of More Than Two Cubes 

Subtracting monotenns in the case of 3 or more disjoint cubes are not just the com

mon monoterms and as such require further investigation. When the array of disjoint 

cubes is comprised of only 2 cubes, the subtracting monotenns are exactly the common 

monoterms. As these occur twice, the number to be subtracted is 2 times the number of 

such monotenns. In the case of more than two cubes, however, the subtracting 

monoterms are a function of the common terms and their number varies with their com

monality as well. This section is devoted to the specification of these subtracting 

monoterms. 

For getting a feeling about these subtracting monotenns, some set-d1eoretic a..,alo

gies will be used. Here each cube can be considered as a set with the monoterms 

representing it being the elements of this set. Then the common monoterms can be 

represented simply as the intersections of these sets. This analogy will be shown with the 

use of Venn diagrams. Figure 3.2 shows all possible intersections of three sets. In this 

figure, the sets are represented by A, B, and C respectively. The intersection of the sets is 

represented through their products and the union of any subsets with the sum notation, +. 

The expansion and subtracting monoterms can now be viewed in these figures. In 

Figure 3.2a) the monoterms in A - ( B + C ), B - ( A + C ), and C - (A + B ) all occur 

only once. The monotenns in AB -ABC, AC -ABC, and BC -ABC occur twice. 

Finally, the monoterms in ABC occur three times, as they are common in all three cubes. 

Identifying the subtracting monoterms, from Equation (3.3), one sees that «xi is 

comprised of all the monotenns in AB -ABC, AC -ABC, and BC -ABC. <X3 is 

comprised of the monoterms in ABC. Now the number of subtracting monotenns is 

2 · ( a:z + <X3). Using the notion of symmetric difference, EB, one can confirm that the 

monoterms to be subtracted are those in AB EB AC EB BC. Recall that the symmetric 

difference of two sets is defined as: 



A EBB ={x l(x e A AXE B)v(x e B AXE A)} 

=(A -B)u(B -A) 

80 

(3.5) 

One can verii.""),- that ABC is also included in the symmetric difference of AB, AC, and 

BC. It is actually the <X3 part of the subtracting monotenns. 

a) 

b) 

A B 

c) 

AB+AC+BC+ABC 
C 

B AB+AC+BC 

C 

AB+BC 
e) 

Figure 3.2 All Possible Intersections of Three Sets 

B 

AB 

Empty 

In Figures 3.2b), c), d), and e), the symmetric difference can also be used for the 

subtracting monoterms. The differences are that in b) ABC is not part of the subtracting 

monoterms and it is not in the equation either. Inc), d), and e) the same argument holds 

with the distinction that AC, BC, and AB are absent correspondingly. One then has the 

following theorem: 

subtracting monoterms of the three cubes that occur twice. Then: 



81 

(3.6) 

For more than 3 cubes, the above theorem ca.'l be expa.,ded according to the 

Inclusion-Exclusion Principal of the combinatoriai mathematics. This is shown in 

Theorem 3.6. 

Theorem 3.6. Let C 1, C 2, • • • Cn be n different disjoint cubes. Let 'Pc 1 .c 2, .... c,, 

be the total subtracting monotenns of then cubes and 'Pk c1• c2 ••••• c,. be the subtract

ing monoterms of the n cubes that occur k number of times. Then: 

Lnl~ 2i 
"Pc1,Cz, ... ,Cn= L"P C1,C2, ···,C,.· (3.7) 

i=l 

where q,k c,, C2, .... c., is the symmetric difference of the C;I rc;2 r • • • r C;I; 's for all 

sets of k C;'s andln/~ denotes n/2 for n being even and n ~ 1 for n being odd. 

Proof. The theorem is a variation of the inclusion-exclusion formula where only 

the exclusions ar presented and the proof can be found in e.g. ([154]). 

Example 3.15. For the sets A , B , C , D , and E , the following can be observed: 

'1'2 A,B.C.D,E =ABEB AC $AD $AE$BC $BD EBBE 

EBCD $CE $DE 

'¥4 A. B, c. o. E = JtFICD EB ABCE $ ACDE $ BCDE 

'P -'1'2 e'P4 □ A, B, C, D. E - A, B, C, D, E A, B, C, D. E· 

As monoterms common in an even number of disjoint cubes contribute the most to 

the subtracting monoterms, and the odd ones stay, the polarity vector that results in most 

number of subtracting monoterms can be identified. This is summariz.ed in proposition 

3.1 below: 

Proposition 3.1. For a given number of monoterms representing a set of disjoint 

cubes, the number of subtracting monoterms is largest when there are most number 

of monoterms common in an even number of disjoint cubes and least common in an 

odd number of cubes. 



82 

3.4.2. Expansion Monoterms 

Similar to the subtracting monoterms, one can identify the expansion monoterms 

and the operations that identify these monotenns. In the following, these monotenns are 

described and a simple method for their generation are presented. 

The expansion monoterms can again be determined by application of the 

inclusion-exclusion principal. As exclusion part helped previously in the determination 

of the subtracting monotenns, the inclusion part can be used to identify those monotenns 

that occur an odd number of times and are retained. For the case of three sets, A , B, and 

C, one can verify that the monoterms in A - (B + C), B - ( A + C ), C - ( A + B ) 

which occur only once and ABC are the ones that are retained as the monotenns 

representing the three sets. One can further verify that the monotenns that are common 

in an odd number of sets are nothing but the symmetric difference of these three sets. 

This can be further generalized to include the cases with more than three sets as in Propo

sition 3.2 below: 

Proposition 3.2. The expansion monoterms of a set of disjoint cubes are the result 

of symmetric difference of all the cubes. 

Proof. Induction will be used for the proof of the Proposition. For two cubes, the 

symmetric difference will give the monoterms that are not common in the two, and hence, 

the monotenns occurring in an odd number of cubes. Now, let us assume that it is true 

that the expansion rnonotenns of n cubes result from the symmetric difference of all of 

them. It needs to be shown that by adding one more cube, the expansion monoterms of 

this new function are the result of the symmetric difference of all the n + 1 cubes. For 

the n + 1 cubes, due to the associativity of the symmetric difference, the symmetric 

difference of all n + 1 cubes is the same as the symmetric difference of then+ 1th cube 

with the result of the symmetric difference of the previous n cubes. The symmetric 

difference of the n cubes, by assumption, gives the monoterms that have occurred an odd 



83 

number of times in the n cubes. Now, if there exists a monoterm that occurs in the n + 

1th cube which is also present in the symmetric dlfference of the previous n cubes, the 

symmetric difference will remove it. This monoterm had occurred an odd number of 

times in the n cubes, and with the n + 1th cube it is now occuning an even number of 

times. So the monoterms occurring an even number of times in the n + I cubes are not 

represented in the symmetric difference of the n +1 cubes. Similarly, if there exists a 

monoterm representing then+ 1th cube which does not occur in the symmetric differ

ence of the previous n cubes, the symmetric difference of the n + 1th cube with the first n 

cubes retains this monoterm. This monoterm either did not occur at all or occurred an 

even number of times in the n cubes and now with the n + 1th cube, it is occurring an 

odd number of times. Therefore, the symmetric difference gives only those monoterms 

that occur an odd number of times in the n + 1 cubes. This proves the induction step. 

QED 

Example 3.16. For the sets A, B, C, D, and E, in Example 3.15, the elements in the 

following subsets will be retained. Let Q represent the set of retained elements. 

Then: 

Q = A -(B + C + D + E) + B - (A + C + D +E) + C - (A + B + D + E) 

+ D - (A + B + C + E) + E - (A + B + C + D +)+ABC e ABD e 
ABE e ACD e ACE e ADE e BCD e BDE e CDE e ABCDE 

One can verify that 

Q=AeBe C eD eE. □ 

The symmetric difference proves to be a very useful operation in dealing with 

monoterms representing a set of cubes, this operation will be ~~r discussed. As it is 

evident from the definition of the symmetric difference, the main operation to be defined 

is that of the difference operation, -. This operation is the counterpart of the Sharp 

operation for monoterms and is defined in the following: 



Definition 3.10. Let C 1 and C 2 be two cubes. Their difference is: 

r 
c1 if Ci; -C21 =0forsome i 
0 ifCli -C21 =£forall i 

C 1 - C2 = u (C 11, C 12, ... ,a;, ... ,C 1n) otherwise 
i where the u is for all i for which 

Ci; -C2i =a; e {-, 1) 

84 

(3.8) 

where Cki represents the ith literal of the cube C1 and the literal difference operator is 

defined in Table 3.6. 

0 1 
e 

1 e £ 0 
£ 0 £ 

Table 3.6. Cube Literal Difference 

Example 3.17. The two cubes 10-00-1 and 01010-1 of Example 3.12 will be 

examined for their differences. First the difference of 10-00-1 and 01010-1 will be 

shown. The generation of the monotenns and their commonality were shown in that 

example before. One would expect that Lie difference will give all the monotenns 

representing the cube which are not in their commonality. First Table 3.6 is used bitwise: 

10-00-1 
01010-1 

£-£-EE£ 

In the resultant cube a;*£ (a;=-) for i =2, 4. Then, according to Equation 

(3.8), the results of the Difference operator are created from C 1 = 10-00-1 by inserting 

DC (symbol"-") in positions 2and4consecutively which leads to {1-00-1, 10-0-1}. 

Now, it can be verified that the difference of the two cubes, C 1 and C 2 is exactly 

given by the cube set { 1-00-1, 10--0-1}. The monoterms representing the cube set are: 

1--1 1--11-1 
1--1-1 11-1 
1-1-1 11--1-1 

The monoterms that are not listed above and represent C 1 are 11-1--1 and 11-11-1, 

the commonality of the two cubes. Note that the monoterms in 1--0-1, the commonality 



85 

of 1-00-1 and 10--0-1, occur twice, but due to the property of union in the definition of 

the difference operation, are shown only once. The same can be repeated for the differ

ence of 01010-1 and 10-00-1. This is shown below: 

01010-1 
10-00-1 

-£1222£ 

By inserting DC[-] in the first literal of 01010-17 one gets -1010-1. Inserting 1 in 

the third literal results in 01110-1. This leads to the difference C2-C1 = {-1010-1, 

01110-1} which results in the following monotenns: 

-1-1-1 -1111-1 
-1-11-1 1111-1 
-111-1 11111-1 

Here a~ comparing with Example 3.1~ the monotenns representing 11-10-1 

are absent from 01010-1 which is the commonality of the two cubes 01010-1 and 

10-00-1 which is expected. The symmetric difference will then be C 1 E9 C 2 = { 1-00-1, 

10--0-17 -1010-1, 01110-1}. □ 

Now the monotenns representing any number of cubes can be given explicitly with 

operation of symmetric difference and Proposition 3.2. This can also be regarded as 

another alternative for implementation of the ring sum operation in CCM. Depending on 

the number of disjoint cubes and their symmetric differences, this method of symmetric 

difference of the disjoint cubes can be comparable with other methods. This also 

requires further study. As an example of this metho~ three cubes are evaluated. below: 

Example 3.18. The monotenns representing the three cubes in Example 3.14 are 

now directly presented. The three cubes were 011107 001107 and-1011. Let C 1, C27 and 

C 3 represent these cubes accordingly. First the monotenns present in single cubes will 

be shown. This is simply the union of C 1 - (C2 + C 3}, C2 - (C 1 + C 3), and 

C 3 - (C 1 + C 2). The only commonality of the three cubes is that of C 1 r C 2 r C 3. Now 

each of them is evaluated separately. 



first 

86 

C 1 - (C 2 + C 3) can be represented also as (C 1 - C ,i) r (C 1 - C 3). This is shown 

01110 
00110 

&ett 

The difference is then empty by definition. 

01110 
-1011 

lEn:-

The result is the two cubes 11110 and 0111-. The commonality of these cubes is 

then 0 as one of the cubes is empty. Now (C 2 - CJ) r (C 2 - C 3) will be evaluated. 

resulting in the cube 0-110. 

00110 
01110 

00110 
-1011 

1-££-

The result are the three cubes 10110, 0-110, and 0011-. The commonality of 0-110 

with these three cubes will be the union of commonality of 0-110 with each of them. 

r 0-110 
10110 

1-110 

r 0-110 
0-110 

0-110 

r 0-110 
0011-

0-11-



Now (C3-C1) r (C3-C:z) will be derived. 

resulting in the cube -1-11. 

-1011 
01110 

-1011 
00110 

££-££ 

87 

which is the same as above. The r of the two differences is again -1-11. Tne commonal-

ity of the three cubes was seen in Example 3.14 to be -1111. The monoterms representing 

these three cubes are then union of 0-110, 1-110, 0-110, 0-11-, -1-11, and -1111 which 

can be simplified as 0-110 and-1011. One way to check this result is to generate all the 

monoterms representing each cube and retaining only the ones which occur an odd 

number of times. Another is to notice that the two cubes 01110 and 00110 are adjacent 

and can be combined to form the larger cube 0-110. This new cube and -1011 do not 

have commonality. This matches with the previous result Now direct application of the 

symmetric difference will be examined. 

C1 - C 2 was seen to be empty and C 2 - C 1 was 0-110. The symmetric difference 

of the first two cubes is then the union of 01110 and 0-110 which is again 0-110. One 

can then observe that the difference of this result with the third cube, -1011 and the 

difference of -1011 and 0-110 are both empty. Hence the monoterms representing the 

three cubes are obtained by the union of -1011 and 0-110 which matches with the result 

above. □ 

The total number of monoterms representing a set of disjoint cubes can be found 

through the same inclusion-exclusion principle. Noticing that the inclusion-exclusion 

formula gives the number of elements in a set of sets, one can modify the argument to 



88 

subtract the number of elements that occur in an even number of sets. With this 

modification one has the following proposition giving the number of expansion 

monoterms of a set of disjoint cubes: 

Proposition 3.3. Let {C;1, Ci2, • • • , C;n} be a set of n disjoint cubes. Let Sk 

denote the sum of the number of all monoterms common in all possible k cubes. 

The number of expansion mono terms of the set of cubes equals: 

In the above equation, S 1 denotes the sum of the number of monotenns of individual 

cubes, S 2 denotes the number of all monoterms that are common in any two cubes, etc. 

Proof. As the number of expansion monotenns of the set of cubes is equal to the number 

of monoterms occurring in an odd number of cubes, one seeks to identify this number. 

S 1 gives the sum of the number of the monotenns representing all individual cubes. This 

number includes both the number of the monotenns that repeat more than once and need 

to be subtracted and those that occur only once and need to be· included in the final 

number. Using induction, the number of monotenns that occur. only in one cube are 

counted once, so Equation (3.9) accurately gives the number of monotenns for the case 

of the monotenns which occur only in one cube. It needs to be proven that for a 

monotenn occurring in more than one cube, if it occurs in an odd number of cubes, it is 

counted· once in Equation (3.9) and if it occurs in an even number of cubes, it is not 

counted at all. 

Therefore, in general, let us assume that the monoterms common in m - I cubes 

are accurately represented by Equation (3.9), n being equal to m - 1. Let µ; be a 

monoterm that occurs in exactly m cubes. Using the identity [1) = [m k 1] + [r ~ 1]. 
the net count ofµ; in (3.9) is: 



89 

(3.10) 

As now k can go from 1 tom -1 and substituting l fork -1, the above summation on 

the right can be written as: 

= mf,\-2)k-ifm -1] + ~\-2)1 rm -1] 
k=l l k l=O l / (3.11) 

The first sum in the left is the case of monotenns common in m - 1 cubes. The sum in 

the right can be further simplified using the following binomial expansion: 

(1 +x)m = 1 + [T]x+ [~]x2+ • • • + [:]xm. 
It can be verified that the summation on the right can be written as: 

(3.12) 

Now, as the first sum in Equation (3.11) gives the number of monoterms common in 

m - 1 cubes and it was assumed that this number is correct, then there are two possibili

ties to consider. One that m - 1 is odd and the other that m - 1 is even. 

If m - 1 is odd, then it means that a monotenn such as µ;, which is common in 

exactly m cubes, is counted only once in the left swnmation in Equation (3.11). In addi

tion, m -1 being odd means that in the right summation in Equation (3.11) 

(-l)m - 1 =-1. So the total number of occurrences ofµ; in (3.11) and therefore (3.9) is 1 

+ (-1) = 0. As m -1 is odd, m is even andµ; occurs O times, so Equation (3.9) holds for 

the case of m being even. 

Now, if m - 1 is even, then it means that µ; does not appear in the left summation 

in Equation (3.lD. In the right summation in Equation (3.11), however, (-l)m - l = 1 so 

the total number of occurrences ofµ; in (3.11) and therefore (3.9) is O + 1 = 1. Hence, 

Equation (3.9) for an odd number of cubes gives only 1 occurrence of the monoterm µ; 

and it also holds for an odd number of cubes, proving the induction step. Any monoterm 

that is common in an even number of cubes is not counted and any monoterm that is 

common in an odd number of cubes is counted only once. Equation (3.9) then correctly 



90 

gives the number of expansion monotenns. QED 

3.4.3. The Mmima! Polarity 

Identification of the minimal polarity vector, although being an NP-hard problem, 

is far from being just a blind search. From the material presented up to now, and some 

results to be presented shortly, one can identify cases which the minimal polarity vector 

can be found without the need for an exhaustive search or the search can be reduced. In 

this section, based on the previous results, certain characteristics of the minimal polarity 

vector will be described. These results will be used in devising minimization algorithms 

that are presented in section 6. 

The minimal polarity vector can be basically viewed as one that results in a bal

ance between the small number of overall monoterms and the large number of subtract

ing ones. Theorem 3.4 gave the argument for the number of monotenns representing a 

set of disjoint cubes for a given polarity vector. The least number of overall monoterms 

and the most number of subtracting monoterms were discussed succeedingly. As the 

least number of overall monotenns was shown to be close to the result of the polarity 

vector which results in the least number of zeros in the array of disjoint cubes, the main 

thrust of identification of the minimal polarity vector lies with the subtracting 

monoterms. In other words, the changes in the polarity vector which result in the most 

number of monotenns in an even number of disjoint cubes and the least number in an 

odd number of them are the criteria that require special attention. 

The main characteristic of the may of disjoint cubes is that any two cubes will 

have at least one corresponding literal of opposite polarities. This would mean that if any 

two disjoint cubes have any common monotenns, they would have at least one 1 in their 

commonality. If the commonality of certain disjoint cubes is comprised of all 1 's, the 

commonality of these with any other cube, if the commonality exists, will also be 

comprised of just l's. This is due to the fact that the commonality of 1 with either 1 or 0 

. - ········ .. -------------



91 

is always 1. Another observation is that when the commonality of several cubes is empty. 

the commonality of these cubes with any other cube will also be empty. A thini observa

tion is that the commonality of any number of cubes is always larger than or equal to 

their commonality with additional number of cubes. 1bis can be used as certain heuris

tics to consider the commonality of two and three cubes as the main contributers to the 

subtracting monoterms. For those arrays with large number of cubes. the requirement of 

opposite polarities for corresponding literals makes it more probable to get more 1 's in 

the commonality as the number of cubes is increased. 

As the number of monotenns and their commonality is of interest. the columns in 

the array of disjoint cubes can be divided into those with DC-literals and those without 

The columns with no DC-literals can be further divided into those that are all comprised 

of one value and those that have both O's and l's. These columns will not influence the 

commonality of the cubes but only their sizes. The commonalities or their lack of are 

determined by the columns which include DC-literals as they can cause the commonality 

of cer,.a.in cubes to be empty (if there are corresponding l's and D~'s) or non-empty (If 

there are corresponding O's and DC's). Proposition 3.4 provides a criterion for identify

ing the minimal polarity literal based on the columns of the array of disjoint cubes, using 

Proposition 3.3. 

Before stating that Proposition. a notation of grouping for the cubes in the array 

will be presented. This grouping for any column is used later in the proposition. 

Notation: 

S1.-,. 
So .• 

I • 

SDC .• ,. 
S2.-,. 

S; for the cubes which have a value of 1 in a given column. 
S; for the cubes which have a value of O in a given column. 
S; for the cubes which have a DC value in a given column. 
S; for the cubes which have either a value of 1 or a value of O in a given 
column. 

S l-DC*;: S; for the cubes which have either a value of 1 or a DC value in a given 
column. t 

t The * denotes the fact that in the calculation of these S; •s. the 1 's in that column should be re-



92 

50-Dc i: S; for the cubes which have either a value of O or a DC value in a given 
column. 

These notations will be shown in the following example: 

Example 3.19. Let a function be represented as the array of disjoint cubes shown 

below: 

1 001-110-10 
2 0-10001-11 
3 011101--1-
4 00-1100-1-
5 000-001010 
6 1100--1-11 

For the first column on the right, S 1 refers to the summations regarding the 2nd and 

the sixth cube; s0 to the :first and the fifth; soc to the thiid and the forth; S2 to the first, 

second, fifth, and the sixth; SI-DC- to the second, third, forth, and sixth; and finally 

SO-DC; refers to the first, third, forth, and the fifth cube. □ 

Proposition 3.4. Let a function be given as an array of disjoint cubes. The polar

ity literal corresponding to a column in the array would be minimal if it is only 

changed when 

Sl1-2Sl2+4SI3-8Sl4+ ... +(-2)k-1S1k+ ... + (-2yi-1s1n (3.13) 
-2Sl-DC* 2 +4Sl-DC• 3_gs1-oc- 4 + ... +(-2)k-1S1-DC*k + ... + (-2)n-1Sl-DC- n 

·< 1/2 [S01 -2S02 + 4SD3 - 8S04 + ... + (-2)k- lSOk + · · · + (-2)'1- 1SOn] 

_ 2SO-DC 2 + 4SO-DC 3 _ gsO-DC 4 + ... + (-2)k- 1S0-DC k + ... + (-2)1' - ISO-DC n 

Proof. The proof follows from the fact that when a I-literal in the cube is changed 

to 0, the number of monoterms representing that cube is doubled, and when a 0-literal is 

changed to 1, the number of monoterms is divided by two. Now, for a column, changing 

the polarity has the effect of changing every 1 in the corresponding literal position of 

every cube to O and changing every O into 1 with DC's remaining the same. In order to 

placed with O's. This is due to the changing of polarities. Now with this change, the cubes with 
literal values of 1 and those with DC literal values can have commonalities (referring to Table 35) 
while before the change they could not. 



93 

examine the effect of the change of the polarity literal on the number of monoterms, the 

cubes will be divided into different groups described before the statement of Example 

3.19. Now using Equation (3.9), the number of expansion monoterms of the cubes before 

the change of polarity for the column and after it can be written in terms of these groups. 

Before change, that number is: 
.,:,-· .. 

t (-2)k - 1s1J: + t c-2)k- isoJ: + t (-2)k- isDc k + (3.14) 
J:=l l:=l k=I· 

t c-2)k- is2J: + t c-2)k - isO-DC I: 
k=2 k=2 

The last two summations start from K = 2 because the smallest number of cubes which 

can have either 1 and O or O and DC is 2. As the commonality of any two cubes which 

have a 1 and a DC in the same literal position is 0, given by Table 35, the above 

separate sums are the only possible combinations of 1, 0, and DC groups which contri

bute to the number of monotenns. 

Once the polarity of the corresponding literal is changed, there would be certain 

changes in the number of S;'s. For one, the O's in that columli will become l's, l's 

become O's and the DC's stay the same. This has the effect of doubling the number of 

monoterms in cubes with previous values of 1 in the column and cutting the number of 

expansion monoterms of the cubes with previous values of O in the column into half. 

However, the number of the expansion monoterms of the cubes with values of DC in the 

column stays the same. This is due to the fact that DC's stay the same and DC literals do 

not contribute to the number of monoterms representing a cube. The same is true for the 

S2's, as the commonality of a literal 1 and O is 1. With the change of polarity in the 

column, l's will change to O's and O's change to 1 but the commonality stays 1 as before. 

In tenns of commonalities, the cubes which had a value of O will no longer have com

monality with those cubes that have DC values This is due to the fact that O's are now 

changed to l's. DC's and l's, according to Table 3.5, can not have commonalities. 

Those cubes that had a value of 1 could now have commonality with those cubes with 



94 

DC values unless there are other corresponding literal positions of 1 and DC which 

would prohibit commonalities. These changes will be reflected in the number of 

monoterms to become: 

2 t (-2)k-1S1k + 1/2 t (-2)k-lS0k + t (-2)k-15DC k (3.15) 
k=l k=l k=l 

+ t (-2)"-1S2k + t (-2)"-1S1-0C-k 
k=2 k=2 

Now, if this number of monotenns is less than the number before changing the polarity 

literal, then there should be a change; otherwise, if it results in a larger number of 

monoterms, then there will be no need of changing the polarity. Hence, the criteria will 

be: 

2 t (-2)k-lSlk + 1/2 t (-2)k-1S0k + t (-2)k-lSDCk (3.16) 
k=l k=l k=l 

+ t (-2)k - lS2k + t (-2)k - 151-oc- k 
k=2 k=2 

< t c-2)"-lSlk + t (-2)k-l50k + t c-2)"-lSDC k 
k=l k=l k=l 

+ t (-2)k - 1S2k + t (-2)k - lgO-DC k 
k=2 k=2 

Canceling the equal terms and simplifying, will give the result in (3.13). QED 

For the special case of a column which is comprised of only one value, the follow

ing corollary results: 

Proposition 3.5. For a column comprised of all Us or all l's, the co"esponding 

minimal polarity literal is the same as the value in the col'ID'nn. (If the opposite is clwsen, 

the number of expansion monoterms of the cubes would be doubled.) For a col'ID'nn 

comprised of all DC values, either O or I will be the minimal literal value. 

Proof. This is a special case of Proposition 3.4, where there is only one value involved. 

Assume that the column is all comprised of O's. Then using Equation (3.13), one should 

change the polarity of the column if 

----- -·- - -- ----------



95 

o < 112 t (-2'j- isok 
k=l 

as the number of 1 'sis O and there are no DC values involved. Since this is always true, 

the polarity of the column should be changed to 0. If the coltllTh"l is all comprised of l's, 

then the polarity of the column should be changed if 

t (-2)k-1Slk < 0 
k =l 

as the number of O's is O and there are no DC values involved. Since this is never the 

case, the polarity should stay as 1. When the column is comprised of all DC values, then 

changing the polarity does not change the number of monotenns since the number of 

monotenns representing each cube and the commonalities stay the same. Now, if the 

opposite polarity is chosen for the previous two cases, the number of the monotenns 

representing each cube as well as the commonalities will double. This would be reflected 

in the overall number of monoterms to become equal to 2 • f, (-2)k - 1Sb which is 
k=l 

twice the number of monoterms in the original case. QED 

When DC values are not involved in a column, Equation .(3.13) can be further 

simplified. In this case, the polarity literal corresponding to a column in the array would 

be minimal if it is only changed when 

Sl1-2Sl2+4S13-8Sl4+ ... +(-2)k-1Slk + ... + (-2)"-lSln (3.17) 

< 1/2 [S01 -2S02 + 4S03 - 8S04 + ... + (-2)k-1S0k + ... + (-2y,- isonl 

In general, the existence or lack of commonalities can affect the number of monoterms in 

the cubes which in tum affects the decision of changing the polarity of a column accord

ing to Equation 3.13. This then shows the interrelation between the columns for 

identification of the minimal polarity vector. Changing the polarity of one column will 

result in less monoterms depending on the polarity of the other columns. The changing 

of the same column can result in more number of monotenns for a different polarity of 

other columns. This is the property which results in the NP-hardness of the problem. 



96 

3.5. Mininmation Schemes 

With the characteristics of the minimal polarity vector at hand, it is possible to 

devise schemes for the identification of this vector. An may of disjoint cubes can be 

evaluated for certain characteristics and based on these characteristics, the minimal 

polarity vector can be found. Based on these characteristics, two different algorithms are 

devised for the identification of the minimal polarity vector. Both of these algorithms 

involve searching, one being "exhaustive" to give the exact solution, the other being 

"heuristic" to give a quasi-minimal solution. These algorithms are then used to come up 

with programs which are presented and evaluated against some benchmark functions. At 

the end, the algorithms are evaluated in tenns of their complexity. 

Proposition 3.5 provided the criteria for minimal polarity literal for a column com

posed of only one value. If such a column exists, the search space will be reduced by 

two to the power of number of such columns. 

In addition, Equation (3.17) provided the criteria for the changing of polarity in 

columns with no DC values. Notice that if the number of OCCUl'.(ences of one value is 

much higher than the opposite value, it will be more likely that the polarity with the same 

value as the most occurring value in the column will result in less number of monoterms. 

That is,. for example, if more than 80% of the cubes have a 1 in a column and 20% have a 

0, then adding the number of the monotenns in the first group will be more than half the 

number of monoterms in the second group. The more the number of cubes, the higher is 

the likelihood of this characteristic. One can then use this as a heuristic for dealing with 

columns with such a property. The less the number of cubes and the less the ratio of the 

number of cubes with one value to the opposite value, the least uncertain one will be 

about the minimal polarity literal of that column. 

Proposition 3.1 provided the characteristics of the polarity which results in more 

number of subtracting monoterms. It was conjectured that there would be more subtract-



97 

ing monotenns when there are more commonalities in an even number of cubes and less 

in an odd number of them. In addition, it was shown that a lower ·number of overall 

monoterms results in the polarity literal which matches the value of the most occurring 

value in each column. The minimization scheme can then start with the lower number of 

overall monoterms as a starting point The polarity can then be altered, depending on the 

patterns of values in the columns, to increase the number of subtracting monoterms. 

Although the number of overall monotenns could increase for many cases as shown in 

Example 3.11, the increasing number of subtracting monotenns still would yield a 

minimal solution. Identification of the pattern which results in most commonalities in an 

even number of cubes and least commonalities in an odd number of the cubes is essen

tially the major part of the minimization scheme. 

As searching for patterns of commonalities involves mutual comparison of all the 

cubes, for large number of cubes and literals, this becomes essentially a time-consuming 

task. For functions comprised of relatively small number of literals, it is possible to per

form an exhaustive search to yield the mi..-umal solution. Certain ~olumns can be possi

bly preset to their minimal polarities, i.e. columns which are comprised of only one 

value; the other columns can be searched exhaustively for their minimal polarity values. 

Moreov_er, for the functions which have large number of unknown minimal polarity 

literals. a heuristic search method has been developed. This method starts from the 

polarity with low overall number of monoterms and then uses certain heuristics to alter 

the polarity of certain columns to increase the number of subtracting monoterms. 

3.5.1. The "Exhaustive" Search Approach 

Although this section is titled exhaustive, in essence the method is not always 

exhaustive. As described in the previous section, there are arrays of disjoint cubes which 

include columns comprised of only one value. The "exhaustive" search method identifies 

these columns and presets these columns to their minimal polarity literals. In the cases 



98 

where the ratio of the number of occurrences of one value in a column to that of its oppo-

site value are high, and no DC values are involved, again these columns are preset to the 

polarity of the most occurring value as their minimal polarity literals. The method is 

only exhaustive for the cases where neither of these cases exist in the array. 

For all the columns which can not be preset to their corresponding minimal polar

ity literals, the exhaustive method will generate all possible combinations of polarity 

literals for these columns and detennines the one(s) with the least number of monotenns. 

The monotenns for the given polarity are re.aJiz:ed by the methods presented in section 4. 

The procedure for generation of the polarities for the undetennined columns is through a 

Gray code scheme. This method, which is similar to the method presented in section 4.2, 

requires one change of polarity literal at a time and hence is very fast The exact method 

is presented in Figure 3.3: 

/"" ine exact algonthm "'I 
CGRMIN EXACT 
{ 

If ( tJ,.e function is comprised of one or t.vo cubes ) 
{ 

Preset the columns to the minimal polarity; 
Generate the CGRM of the array; 

} 
else 
{ 

Preset the columns 
to minimal polarity literals if possible, or 
to polarity O otherwise; 

for ( all combinations of the columns with undetermined polarities ) do { 
Set one column to its opposite polarity using Gray-code order; 
Generate the CGRM of the array; 
if ( The number of expansion monoterms of the array decreases) 

} 
min _yolarity == polarity _of_cw-rent _ CGRM; 

Generate the CGRM of min_yolarity; 
} 

J 

Figure 3.3. The Exact Algorithm 

The method is of order 2UJJ.JJreset , where un _yreset is the number of columns which their 



99 

corresponding minimal polarity liteials can not be identified without search. 

35.2. The Heuristic Search Approach 

In this section, a fast heuristic approach to the minimization problem is introduced. 

The corresponding heuristics combine the characteristics of the two parts of Equation 

(3.3), ie. the overall number of monoterms and the subtracting on~ to identify the 

minimal CGRM polarity for a given array of disjoint cubes. Based on these heuristic~ a 

method based on a priority of search for different polarities is devised and a minimization 

algorithm is introduced. 

Here, similar to the Exact method, the columns minimal polarities of which can be 

identified without any seareh are :first pre-set Nex~ for all the remaining columns in the 

array of disjoint cubes, the polarity literals are chosen such that there will be the least 

number of O's in each column. This is the polarity which is equivalent to the value that 

occurs the most in that column. Since the overall number of monotenns is detennined by 

the number of zeros in the cu~ this polarity is used as a starting point for the minimiza

tion. For many functions it was shown experimentally that this first choice gives the 

minimal solution. For other case~ however, a search scheme is required. The general 

heuristics below use the results of the previous section and can be used in any minimiza

tion scheme: 

Heuristics based on the number of monoterms: 

• Heuristic L As the number of monoterms for a cube is '1?0, where No is the 

number of O's in the cube. if a cube has a relatively large number of 

O's. some polarity literals slwuld be changed to reduce the contri

bution of this cube to the number of expansion monoterms. 

•Heuristic 2. By Equation (3.13), if the number of occurrences of one value in a 

column with no DC values is much higher than the opposite value, it 



100 

is more likely that this value will be the minimal polarity literal for 

that column. A ratio of 4 to I for the most occurring and least 

occurring values almost guarantees this likelihood. 

• Heuristic 3. When there are DC values involved in a colwnn, the greater the 

number of the DC values. the less will be the overall number of 

monoterms affected if the polarity is changed. 

Heuristics based on the subtracting number of monoterms: 

• Heuristic 4. The monoterms common in two cubes and three cubes are the major 

contributing subtracting monoterms for large nwnber of cubes with 

large number of literals. 

Now, based on the above heuristics, a priority is calculated for every column which 

can not be preset to its minimal polarity using the previous theorems. The column with 

the highest priority is the first one for which the polarity is changed. This priority is used 

to guide the search towards the minimal polarity. As indicated, this is a heuristic search 

and is based on certain weights assigned to the above heuristics. As the heuristics based 

on the subtracting number of monoterms requires a row-wise as well as a column-wise 

search, this heuristic will not be used in the minimization method described below. The 

main heuristics to consider are those based on the number of monotenns. The basic 

approach is to combine the second and third heuristics to come up with an order of priori

ties for column change based on column-wise considerations. This priority is checked 

against the rows with most number of o• s each time to include the first heuristic in the 

method. 

One scheme for prioritizing column changes based on column considerations is to 

include the number of DC values in a column and the ratio of 1 and O values into one 

number. When the columns are adjusted to the polarity which results in the least overall 

monotenns, the majority of the values in every column will be 1. Of course that is when 



101 

not all literals in a columns are DC's or the number of O's and 1 'sis equal. Then, when-

ever the polarity of a column is changed, the number of O's will become the majority. As 

the number of l's determines the number of O's after change, the number of l's in a 

column at polarity of the least overall monoterms is a number useful in heuristic priority. 

The ratio of the number of l's to the total number of l's and O's in a column combines 

both the ratio criteria and the number of DC's in the column. The larger the denomina

tor, the less will be the number of DC's and hence the column should be considered later. 

The larger the number of l's, the change will make more O's in the array, making it more 

likely to increase the number of monoterms. This ratio is multiplied by the number of 

l's in the column and the smaller this number, the higher the priority for the column to 

be changed. 

Let the priority of the column i be represented by -». Let the number of the 1 's in 

that column be represented by N 1;, and the number of O's by NO;. Then 

_ (Nl;)2 
'Yi - Nl. NO. (3.18) 

- '+ ' 
The Quasi-minimal method can now be presented fonnally as shown in Figure 3.4. 

In this algorithm, the number of the searches required for the worst case is of order 

2n for ~ function of n variables, which significantly contributes to its speed. In general, 

the order depends on the patterns of O's and l's in the disjoint cube array. 

35.3. Analysis of the Minimization Methods 

The exhaustive and heuristic methods developed are evaluated against MCNC 

benchmarks in this section. The evaluations include the quality of the heuristics as well 

as the timing performance of the programs. It is shown that the heuristic program, while 

providing a very fast metho~ is also not far from the exact solution for many of the func

tions tested. 



equas1-
CGRMJN 
{ 

Preset the columns 
to minimal polarity literals if possible, else 
to most occurring values in the columns; 

Find the values of column priorities. ys; 
Sort"( sin a descending order; 
for (k = 1; k < number _of_columns_with_undetermined_polarity; k++) 
{ 

} 

Set the column with priority k to its opposite polarity; 
Generate the CGRM of the array; 
if ( The number of expansion monoterms or 

the overall number of monoterms decreases) 
{ 
· min_polarity = po/arity_of_current_CGRM; 

continue; 
} 
else 

change the column bac1c to its previous polarity; 

Generate the CGRM of minyolarity; 

Figure 3.4. The Quasi-Minimal Algorithm. 

102 

Table 3.7 shows the comparison of the exact and heuristic fixed polarity fonn with 

Two-level AND/OR. In this table "in" stands for the number of the input variables in the 

functions. The minimal Two-level AND/OR is achieved by ESPRESSO [111], the dis

joint representation by DISJOINT (44], and the fixed polarity forms by CGRMIN • 

• . Quasi-~- ., 

No. Function in ESPRESSO DISJOINT CGRM CGRM 
l. :>xpl 7 65 71 61 71 
2. 9sym 9 85 145 173 173 
3. bw 5 22 26 22 22 
4. conl 7 9 10 17 21 
5. duke2 22 87 103 255 
6. f51m 8 76 78 56 77 
7. rd53 5 31 31 20 20 
8. rd73 5 127 127 63 63 
9. rd84 8 255 255 107 107 

10. sao2 10 58 93 100 100 
11. misexl 8 12 14 20 20 
12. misex2 25 28 28 87 

Table 3.7. Comparison of the Minimization Programs Against Benchmark: Functions 

... ---- . -·----------



103 

The comparison of the timing performance of the heuristic and exact CGRMIN are 

shown in Table 3.8. 

lvhmmal uas1-Mimmal 
No. Function CGRM CGRM 
1. 5xpl . u . s .lu . s 
2. 9sym 252.8u 13.6s 3.2u 0.ls 
3. bw 0.2u 0.0s 0.0u 0.0s 
4. conl 0.lu 0.0s 0.0u 0.0s 
5. duke2 0.5u 0.ls 
6. f5lm 9.3u 0.8s 0.2u 0.0s 
7. rd53 0.2u 0.0s 0.0u 0.0s 
8. rd73 28.4u 0.8s 
9. rd84 187.0u 8.0s 6.2u 0.2s 
10. sao2 29.lu 1.4s 0.5u 0.0s 
11. misexl 0.2u 0.0s 0.0u 0.0s 
12. misex2 0.lu 0.0s 

Table 3.8. Comparison of the Timings of Minimization Programs Against 
Benchmark Functions 

The times given in the table are in seconds and the user and system CPU times are 

designated with "u" and "s" respectively. These results were obtained by running the 

programs on a Spare 10. It can be observed. that while the heuristic program provides 

exact solutions in may instances, the time it requires is substantially less than the 

exhaustive method. 

The heuristic and exhaustive CGRMIM were compared for 112 single output func

tions generated from the MCNC benchmarks to evaluate the quality of the heuristics. 

These results are presented in Table 3.9. 

Exact D erence o 
one Tenn 

erenceo 
TwoTenns 

D erenceo 
Ten or More Terms 

Table 3.9 Difference of Terms for Exact and Heuristic CGRM 

As shown in Table 3.9, for majority of the functions, 66 out of 112 to be precise, 

the heuristic program found the exact minimal solutions. There were only 6 functions 

that differed by more than 10 terms. Further possible improvements to the program 

would include addition of backtracking and additional searching. Classification of 

. --·- ·-~--·--·-··-------



104 

functions can also be used to determine useful heuristics for special types of functions. 

As indicated in the timing performance, the required time for exact programs for 

functions that have limited number of undetermined poJarity literals is very low. This 

can be used in combining the heuristic and minimal features in one program. From the 

results in Table 3.8, it can be infell'ed that for functions that have up to 12 undetermined 

polarity literals, i.e. do not have any of the features described in section 5.3, the timing is 

not very significant. This can be used to find minimal solution for the functions with up 

to 12 undetermined polarity literals and then use the heuristics for functions with more 

undetermined polarity literals for quasi-minimal solution with faster speed. 

3.6. Summary 

In this chapter, this author introduced sevei:al improved techniques for the realiza

tion as well as identification of the minimal representation of Boolean functions in fixed 

polarity AND/XOR follllS. After early introduction of the CCM methodology, all the 

theorems, definitions, and algorithms have been developed solely by this author. The 

techniques developed rely on the characteristics of the functions as represented as an 

array of disjoint cubes. The programs developed based on these results, show great ver

satility and in great majority of cases, major improvement in timing performance. 

Realization part of the CGRM forms shows major improvement over the previous 

methods. Further improvements in this aspect can still result in faster minimization 

schemes. Incorporation of the versatility of the programs over brute force has shown to 

be of positive consequence. The Quasi-minimal program shows in many cases to be the 

actual minimal solution. The future improvements to the heuristics can still result in 

solutions closer to the minimal for more functions. 

There is room for further research in this area. These can be divided into improve

ment of realization of CGRM, improvement of the implementation of the programs, and 

improvement of the heuristics in the Quasi-Minimal program. Other research includes 



105 

extension of the programs into incompletely specified functions. Multi-valued functions 

can also be investigated. Minimization of incompletely-specified functions in CGRM 

form has been studied in the literature [56]. This topic is not presented here as it will be 

basically an extension of the methods for future study. 

A further note should be made on the techniques developed following the one 

presented here which incorporate decision diagrams. It has been conjectured that for 

many examples, the decision diagrams can provide more compact representations than 

the cubes. It is the opinion of this author that the techniques presented in this chapter 

have provided major advantage over all the previously generated methods and can still be 

incorporated into the methods using decision diagrams. 



Chapter4 

Application of CGRl\fiN in Minimal Realization of 

Boolean Functions in Generalized AND/XOR Forms 

4.1. Introduction 

The Generalized AND/XOR canonical forms, referred here to as CRMP forms, 

were shown in Chapter 2 to be a large class of AND/XOR canonical forms. Due to the 

large number of canonical fonns embedded in this class, finding a minimal realization of 

Boolean: functions in CRMP fonns allows for a much reduced realization than the fixed 

polarity forms. These forms, similar to fixed polarity forms have high testability proper

ties which are described in chapter 7. They are also known to be on average smaller than 

the SOP realizations of functions. In this chapter some of the properties of these forms 

are reviewed without giving any proofs. Furthermore an application of the program 

CGRMIN from the previous chapter for identification of a minimal CRMP form is 

presented. 

The basic properties of the CRMP foimS are due to Csanky [33, 34]. In these stu

dies, the concepts of prime terms and nonexisting tenns have been introduced. Prime 

terms are independent of the realization of the function and exist in all forms. Nonexist

ing terms, on the other hand. are the terms which will not exist in any CRMP form. This 

allows to start from any CRMP form, and in our case the fixed polarity fonns, and based 

on the above concepts, devise a minimization scheme. Furthermore, in the above studies 

the lower and upper bounds for the number of terms in CRMPs were presented. It was 

This chapter is based on the technique published in M.A. Perkowski, L. Csanky, A. Sarabi, and L 
SchMer, proceedings of the IEEE International Conference on Computer Design, Cambridge, MA, 
October 1992. 



107 

shown that the upper bound for CRMP forms are 3/4 of those for SOP forms. 

Based on the above properties, a program to identify the minimal CRMP forms has 

been devised by Perkowski and Schli.fer [101, 34]. In this program, CANNES, the above 

concepts have been used to decompose a representation in a CRMP form into component 

CGRM forms and minimize the components in these CGRM forms repeatedly in order to 

identify a minimal CRMP realization of the function. The program CGRMIN, described 

in the previous chapter, has been used in the newest version of CANNES to speed up this 

approach. 

In this chapter, the basic properties of CRMP forms are reviewed without going 

into details and the basic approach of CANNES is presented. The application of 

CANNES on MCNC benchmark functions is also given. 

4.2. Canonical Restricted Mixed Polarity Forms 

Definition 4.1. The Boolean difference of function f with respect to variable x; is 

denoted by f x; and defined as 

f x- =f (xi , ... , X; , ••• , Xn) EB f (x 1 , ... , X; , ••• , Xn)-
' 

Definition 4.2. The Boolean difference of function f with respect to term 

t =i;ii · · · ik is denoted by f, and defined as: 

ft = ( .. (f i)i- .. · >it· 
J 

For further details on the Boolean difference see [1]. 

Definition 4.3. Let t be a term. The term set S (t) oft is S (t) = {x; Ii; appears in 

t}. 

Definition 4.4. Term t is a prime term with respect to function f iff / 1 = 1, where 

= stands for identical equality. 

Theorem 4.1. Tenn t is a prime term with respect to function f iff in any CRMP 



108 

fonn off there exists exactly one tenn ( such that S (t) = S (() and there exists no term 

(' such thatS(t) cS(f'). 

Some of the implications of this theorem are the following properties. 

1. The minimal CRMP (and of course fixed polarity) forms of/ will 

also have one such tenn ( that S (t) = S (() and there is no tenn (' 

such that S (t) c S ((' ). 

2. For all existing tenns l. of a CRMP form off there is a prime term t 

off such that S (!_) ~ S (t ). 

3. Every function in a CRMP fonn has at least one prime term. 

Definition 4.5. Term t is a nonexisting term with respect to function f iff /, = 0. 

Theorem 4.2. Term t is a nonexisting tenn with respect to function f iff in any 

CRMP form off there is no term ( such that S (t) ~ S (( ). 

Definition 43. A function /(xi, .•• ,x,J is odd iff fx 1 ···xn is identically 1. A 

function f (x 1, ••• , Xn) is even iff f x1 ••• x,. is identically 0. 

It can be proven that the following properties are true. 

4. Every even function/ in a CRMP fonn has at least one nonexisting 

term. 

5. If function f is odd, it has no nonexisting tenns in a CRMP form. 

Example 4.1. f 1 =x1x2x3 and f 2 =x 1X2X3 e X1X2 are odd functions. Function 

f 3 =x 1x 2 e X:z.X3 e X:z.X3 is an even function and x 1x2x3 is an nonexisting term of this 

function. 

It is possible to devise certain properties for the tenn-wise upper and lower bounds 

for the CRMP form. It is known that any Boolean function f of n variables can be 

described by at most 2n-l terms in disjunctive or conjunctive fonn. Moreover, the value 



109 

2n-l is the least upper bound, since there are functions whose description needs exactly 

2n-l tenns. 

The CRMP fonn can be proven to be more economical in the sense that it has an 

upper bound with lower number of tenns. 

Theorem 4.4. Any Bo~lean function of n variables (n ~ 3) can be described by at 

most ¾c2n-l) tenns in a CRMP fonn. 

Furthennore, for any function f given in positive AND/XOR form, there is an algorithm 

to find this CRMP fonn which takes ! (2n-1) steps. 

The same upper bound was obtained for ESOP forms in [120), which shows that 

for difficult functions, the CRMP fonns are as good as ESOP. 

Definition 4.5. A Term t 1 is a proper subcombination of term t2 iff 

S (t1) C S (t,). 

Example 4.2. In function/ =x1X2X~4 e x1x3, the term x1x3 is a proper sub

combination of the term x 1X2X~4- □ 

Theorem 4.6. All tenns of a Boolean function/ of n variables given in a CRMP 

fonn which are not subcombinations of other tenns in the same CRMP fonn will exist in 

any CRMP form off (possibly they will exist with another polarity of variables). 

Corollary 4.1. The prime tenns will exist in the minimal CRMP fonn too. 

Corollary 4.2. All existing terms in any CRMP fonn of a Boolean function / of 

n variables are subcombinations of prime tenns. 

Corollary 4.3. For a given Boolean function f of n variables, the prime tenns are 

entirely determined by f and they do not depend on the CRMP fonn from which they are 

determined. 

Corollary 4.4. There exists a Boolean function of n variables for which the 



110 

minimal CRMP fonn contains as many as 

tenns if n is even, and 

tenns if n is odd. 

This proves that the conjectured upper bound on the number of terms in a tenn

wise minimal CRMP fonn cannot be fmther decreased. 

Theorem 4.7. If tenn t of a Boolean function f of n variables, given in a CRMP 

fonn, does not exist and is not a subcombination of the prime terms off, then in no 

CRMP form off can there be a tenn ( such that S (t) = S (( ). 

Example 4.3. There are some functions given below with the prime terms under

lined and the nonexisting terms listed. 

There are no nonexisting tenns. 

~) l$x1$X~z$X~3$X~3 -- -- -

Nonexisting terms: none. 



111 

(W) X1$X2X3$X2X4$X~4 ------

It can be observed that if there exist only prime terms in the expression, then this 

expression is a both tenn-wise and literal-wise minimal CRMP fonn. If one can merge 

every other tenns into the prime terms so that the resultant form has the same number of 

terms as the prime terms, the resultant form is also an exact minimum one. 

Example 4.4. For case (ii) in previous example, 

f =l$x1EBx1x2$x1x3$x2x3 after merging x1 and x1x2 becomes 

1 $x1x2 $xJ.X3 $x2X3. Now one can see that variablex2 occurs in both fonns. Also 

addh,g x 2 to the form would pennit to merge it with 1 in onier to create X2, which in tum 

could be merged with x1x2. Therefore, the above fonn becomes: 

= = 
x1x2 e x1.x3 e x2x3. All terms are prime, so the solution is an exact minimum 

CRMP form. D 

4.3. Algorithm for Quasi-minimal CRMP Synthesis 

Based on the above theorems and the properties indicated,. a depth-first search 

algorithm has been devised. This algorithm, called CANNES (CANonic Nor Exor Syn

thesizer) [34], is based on the fact that all prime terms are entirely determined from the 

Boolean function, f, and they do not depend on any CRMP form and that all existing 

terms in a CRMP fonn of f are subcombinations of prime terms. In this sense, 

CANNES is an algorithm which generates the minimal CGRM fonn for the prime tenns 

and their subcombinations. 

The algorithm is shown in Figure 4.1. 



'-'Ul''-"''ation o mzmmum 
Begin 
; ·-1 /1 ·-/· ·--~ .-, 
while (/;+1) * 0 do 

begin 
decompose/; =/;+1 $/;p, where/ip 
is the modulo 2 sum of pnme tenns with respect to/; such that: 
(i) Tenns t and ( occurring in/ ip imply that S (() a: S (t ), 
(ii) (/;), = 1 implies (/;p), = 1, 

i :=i + 1. 
end; 

Print solution:/= I lp e l2p e ... e/;p; 
End. 

Figure 4.L The Calculation of a minimum CRMP from a CGRM 

112 

The above algorithm can be implemented in many different forms. An implemen

tation by Ingo Schlfer, called CANNES (CANonic Nor Exor Synthesizer) is based on a 

depth-first tree searching algorithm that makes use of the above theory and particularly 

the properties stated in Corollaries 4.2 and 4.3. Those Corollaries stated that all prime 

terms are entirely detemli."led by the Boolean function / and do not depend on the 

CRMP fonn and that all existing terms in a CRMP fonn off are subcombinations of 

prime terms. Thus, CANNES is based on an algorithm which generates the minimal 

CGRM form for the prime terms and their subcombinations. 

The simplified recursive minimization procedure of CANNES is shown in Fiugre 4.2. 

CANNES-2 uses the heuristic CGRM minimizer, CGRMIN from the previous 

chapter to find minimal CGRM fonns for subsets of variables. For the exact CGRM 

minimizer, while the method requires searching all polarities of a CGRM, and even 

several times during the CRMP minimization, it is usually done on a subfunction of the 

initial function. Only in the worst case of a single prime tenn, the polarities of all input 

variables are searched. Concluding, with an amount of search that is comparable to that 

of a CGRM, it is possible to find a form that is not worse than the CGRM. 



Notation: 

L • .., :s .. 
NewList 
prime term 
subset 
minsubset 

complete list of terms describing the function. 
starting List of next recursion. 
prime term of the List 
subset of tenns for a prime term. 
minimal CORM fonn of the subset. 

minimize( List) 
{ 

} 
} 

} 

for each prime term of the List; 
{ 

// calculate the subset for the prime tenn 
subset := subset _of (prime term); 

// calculate the minimal CORM fonn of the subset 
minsubset :=minimal_ CGRM (subset); 

// compare number of terms 
if ( lminsuhset I < fsubset I ) 
{ 

NewList := List; 
replace subset in NewList by minsubset; 
minimize( NewList ); 

Figure 4.2 The CANNES Algorithm 

4.4. Experimental Results 

113 

CANNES-2 was tested on 100 single output functions generated from the MCNC 

benchmarks. Table 4.1 shows the number of terms for ESPRESSO, CANNES-2, and 

EXORCISM [142], an ESOP minimizer, for some of these functions. In this table, n 

stands for the number of variables in the functions. 

For the functions tested, the compactness of AND/XOR fonns is confirmed. While 

for the 100 functions overall, ESPRESSO resulted in 1001 terms, CANNES-2 gave 845 

and EXORCISM 652. For 40 percent of the functions, CANNES-2 gave better results 

than ESPRESSO while for 30 percent, ESPRESSO gave fewer terms. For the rest, they 

both gave the same number of terms. Some of the examples of these cases are shown in 



114 

Table 4.1. Moreover, for all small functions that can be verified (such as all single output 

functions of three and many functions of four variables), the algorithm produced the 

exact CRMP solutions. Whether the algorithm always gives the exact solution needs to 

be studied further. 

xp 
9sym 
majority 
bw7 
con12 
duke8 
f51m4 
rd532 
rd.732 
rd.842 
mis70 
vg28 
z42 

9 
5 
5 
7 

22 
8 
5 
5 
8 
5 

25 
7 

8S 
5 
6 
5 
s 

10 
16 
64 

128 
6 
s 

28 

131 
6 
5 
4 
4 
6 
5 
7 
8 
7 
9 
9 

51 
5 
5 
4 
5 
5 
5 
7 
8 
5 
7 
9 

Table 4.1 Two Level AND/OR Compared to Two Level CRMP and ESOP 

As seen in the table (and in many other benchmark results) there exist real-life 

functions for which CRMP is more compact and there are other where SOP is more com

pact. CRMP forms are however always much better testable. 

Unfortunately, although it is possible to create whole classes of functions for which 

the proposed approach will lead to minimum solutions without much search, the MCNC 

benchmark examples show that on real-life examples the number of prime tenns is much 

smaller than the number of terms in the minimal solution. This results in the decomposi

tions given in the algorithm to occur I3.I'ely, and the cost evaluations to be too pessimis

tic. However, for some functions it is always possible to confinn an exact minima. 

4.5. Summary 

In this chapter, the application of the fixed polarity minimization technique of 

CGRMIN was introduced for the minimization of functions in Generalized AND/XOR 

canonical forms. The concepts in [33] [34] were used to decompose a CRMP into 



115 

component CGRM fonns. Then the minimization technique from the previous chapter 

was utilized as a scheme to identify a minimal representation in CRMP fonn. 

The advantage of CRMP forms is that they provide a more compact representation 

of the functions than SOP s in general. In addition, it is easy to devise testing schemes 

for these forms which do not exist for SOP s. A new testability scheme is presented in 

chapter 7. 



5.L Introduction 

Chapters 

Complex Maitra Logic Array Approach to 

CA-Type FPGA Synthesis 

Complex Maitra Logic Array (CMLA) approach to CA-Type FPGA Synthesis is a 

rectangular array approach which combines the logic synthesis and physical design 

stages together. By combining the two, and maintaing the regularity of the architecture 

in the synthesis part, it is possible to devise efficient mappings for these type of FPGAs. 

This characteristic is especially important for the limited and local connections among 

the cells. The proposed. rectangular array utilizes two-input AND, OR and XOR cells 

with local connectivity and limited horizontal and vertical buses. This approach not only 

takes the placement and routing directly into synthesis stage, but also uses a combination 

of AND, OR. and XOR cells resulting in more efficient synthesis than traditional 

Boolean AND/OR logic. 

CMLA is based on the Maitra terms. originating from Mama cascades [78]. A 

Maitra tennis the generalization of the product term and is a sequence (row) of AND, 

OR and XOR operators with corresponding literals. In the CMLA, the input variables of 

the Boolean function are in vertical buses. The Maitra tenns are realized horizontally 

and their outputs are given to horizontal buses. The plane where the Maitra terms are 

realized comprises the complex (input) plane of the CMLA. The terms are then XORed 

(or ORed) together in the collecting (output) plane. Complex Maitra Logic Array is a 

This chapter is based on the techniques published in A Sarabi, N. Song, M. Chrz.anowska-Jeske, 
and M. A Perkowski, proceedings of the 31st ACM/IEEE Design Automation Conference. San 
Diego. CA, June 1994. 



117 

powerful generali7.ation of PLAs and XPLAs. The CMLA concept is shown in Figure 

5.1. 

The comprehensive approach to the logic and layout synthesis for CA-Type 

FPGAs µicludes two stages: 

1. Logic optimiution which takes the geometry and layout constraints into 

account to create a CMLA in which every output function is an OR or XOR 

of Maitra tenns. 

2. Technology-folding which maps CMLA representation of the function to 

the target architecture, such that the area of the layout is minimized. 

abcdefghij 

a a a I I I I I 8 I f 

~ 
Figure 5.L An Example of a Complex Maitra Logic Array 

The fixed polarity and Generalized AND/XOR canonical fonns and 

AND/XOR/XOR UXFs presented in chapter 2 can readily be used for the Logic optimi

zation stage. In the AND/OR/XOR canonical fonns presented, by each application of 

operations a, a, p, p, a, and ,c, a new literal is either ANDed or ORed with the existing 

terms. Therefore, the cascade realizability is guaranteed during the generation of the 

uxf-tenns. As these AND/OR/XOR canonical forms are much more general than the 

simple AND/XOR fonns, it is obvious that the same result holds for all AND/XOR reali

zations. 



118 

A faster multi-level algebraic method has been introduced by Song [143, 144]. In 

this method, called the restricted factorization, basic factorization techniques are applied 

on a Two-level SOP or ESOP term to produce a multi-level AND/OR/XOR term while 

maintaining the cascade realizability restrictions. While factorization techniques in gen

eral produce local minimal solutions, they have the advantage of being fast techniques. 

The basic concepts of restricted factorization theory are reviewed here and an algorithm 

to generate a minimal factorized form is introduced in section 5.3. 

The folding stage is a "technology independent" approach that is always used after 

the optimization stage. In this stage, the basic architectural characteristics of each CA

Type FPGA are taken into account and the complex plane is further compacted. The 

main feature is to take the advantage of the local buses in the architectures to realize 

more than one Maitra tenn in a cascade inside the complex plane. The application of this 

folding technique is shown for the specific case of ATMEI.6000 in section 5.4. 

In section 5.2, the concepts of Maitra and Complex Maitra tenns are defined. sec

tion 5.3 provides a review of the restricted factorization theory and introduces a logic 

optimization algorithm based on this theory. The solution method to the technology fold

ing problem is discussed in section 5.4. 

The concepts that are new in this chapter are the generalizations of the Maitra 

terms to include more than just the forward terms, the algorithm to generate the restricted 

factorized form of the functions as well as its implementation, and the concept of tech

nology folding. 

5.2. Maitra terms and Complex terms 

Definition 5.1. A forward Maitra term is defined recursively as follows: 

1. a literal is a forward Maitra term. 

2. if M is a forward Maitra term, then M · a, M · a, M EB a, M EB a, M + a , 



119 

and M + a are also forward Maitra terms if no literal or its complement 

appears in the string more than once. 

Example 5.L Each of the following expressions represents a forward Maitra tenn: 

(a ii)+c, (a +b )c, (a E9b )+c, ((c ii)+a )E9d. D 

Definition 5.2. A reverse Maitra tennis defined recursively as follows: 

1. a literal is a reverse Maitra tenn. 

2. if Mis a reverse Maitra tenn, then a· M, a· M, a E9M, aE9M, a +M. 

and a + M are also reverse Maitra tenns if no literal appears in the string 

more than once. 

Example 5.2. Each of the following expressions represents a reverse Maitra term: 

c +(a ii), c (a +b ). D 

Forward and reverse Maitra terms are called simple Maitra terms. 

Definition 5.3. A bidirectional Maitra term has the fonn: 

M1 a.M2 

where a. is a Boolean function of two arguments, M 1 is a forward Maitra, and M 2 is a 

reverse Maitra term, such that M 1 and M 2 have different sets of variables and do not 

exhaust together all input variables of the function. 

Example 5.3. M 1 E9 M 2 =(ab)+ c EB e (f + g) is a bidirectional term of function 

f (a, b, c, d, e, f, g) since M 1 is a forward term on variables a, b , and c; M 2 is a 

reverse Maitra term on variables e, f, and g; and sets {a, b, c } and { e, f, g } are non

overlapping. Variable d is not used in any of these sets. D 

Definition 5.4. A complex Maitra tenn ( complex term) is a forward Maitra term, a 

reverse Maitra term, or a bidirectional Maitra tenn. 

·····•------------------



abc 

be 

(a+b)c 

ac 

ab+c 

120 

Figure 5.2. An Example of a Complex_Plane of a CMLA 

Example 5.4. The expression ((ab )+b)c is not a Maitra term because the 

literal b. appears twice. Similarly, a +(b c)+d is not a forward Maitra term because it 

cannot be generated from the forward Maitra term definition (analyzing the expression 

from right to left, a + ( b c) is not a forward Maitra term). However, if the order of vari

ables is changed to b, c, a, d, then ( b c) + a + d becomes a forward Maitra term. □ 

Example 5.5 shows that whether a given logic expression is a Maitra term or not, 

depends on the order of variables in this expression. Some expressions which are not 

Maitra tenns can become Maitra terms by changing their order of variables. For every 

order of input variables, a Boolean function can be decomposed to an OR or XOR of 

Maitra terms. This is always possible, since the AND tenns (used in SOPs and ESOPs) 

are particular cases of the Maitra terms. The example of CMLA is shown in Figure 5.2. 

5.3. Restricted Factori7.ation Theory 

The Restricted Factorization Theory is based on the identification of complex term 

combinabilities and devising a method for their combination to result in a minimal 

number of terms. In this section, the conditions for the term combinability are reviewed 

·•·----~----------



121 

and an algorithm for the minimal reaJiz-ation of Boolean functions based on this factored 

fonns is introduced. 

5.3.1. Term Combinability t 

The notion of identification of the complex tenns is based on the distance and 

difference of the cubes representing these terms. The conditions for generation of the 

complex tenns are given in the following: 

Definition 5.5. Let T; and Tj be two product tenns. The distance of the two 

terms, distance(T;, Tj) =ti', is the number of variables for which the corresponding 

literals of these terms have different polarities. 

Definition 5.6. Let T; and T; be two product terms. The difference of two terms, 

di/ f erence (T;, T;) =ti, is the number of variables for which the corresponding literals 

of these terms have different values. 

Example 5.6. Let T 1 = ae, T 2 =bee, and T 3 = alic. The difference of T 1 and T 2 

is 4, because all literals are different. The distance of T 1 and T 2 is-1, because the literals 

of variable e have different polarities. The difference of T 2 and T 3 is also 4. Their dis

tance however is 2, as b and c occur in opposite polarities in each. D 

Definition 5.7. Two product terms T 1 and T2 are directly combinable, if these 

two product terms are in one of the following fonns: 

T1 =.i1.i2 · · • Xi-l Xi+l • • • Xn 

T2 = YiYi+l ···in 
i; =Yj forj ;;::i+l 

T 1 =.i1.i2 · · • i;-1.i; i;+1 ···in 
T2= Yi+l · • • Yn 

i; =J; for j;;:: i+l 

t This section is based on the paper: N. Song and M.A. Perkowski, A Method for Logic Mapping 
for Fme Grain FPGAs, IWLS'93, Taho, CA. May 1993. 

(5.1) 

(5.2) 



ExampleS.7. abde @cde =(ab@c)de. □ 

In Equation (5.1), the two product terms can be combined to 

In Equation (5.2), the two product terms can be combined to 

(.i1.i2 · · • .i;-1.i; e l).i;+1 ···in= 
(.i'1+.i2+ • •· +.i;-1+.i'; ).i;+1 ••• .in 

here .i; indicates the negation of .i;. 

122 

Example 5.8. abcde e de = (abc e l)de = (a +b + c )de, the two product terms 

are directly combinable. □ 

For convenience, two given product tenns in the fonns Ti =:£1£2 ···::in and 

T 2 = :£ 1 :£ 2 • • • ::in are assumed. Without loss of generality, it is assumed that the pairs of 

literals which have different values appear at the left side in the tenns. 

Case when difference(I 1, T 2) = 0. 

Difference = 0 means these two tenns are identical. In case of an ESOP, since 

A ED A = 0, these two product terms can be removed. In case of a SOP, since A + A = 
A , one of the terms can be removed. 

Case when dijference(I 1, T 2) = 1. 

(1) If distance(T 1, Ti) = 0, then .i 1 appears only in one tenn. Since 1 ED a = li .. these 

two product tenns are directly combinable. 

(2) If distance(T 1, Ti) = 1, then .i 1 appears in both terms, but in different polarities. 

Since a e ii = 1, these two product terms are also directly combinable. 

Theorem 5.1 If the difference of two product tenns is greater than 1, then these 

two product tenns are directly combinable if and only if their distance is O and from all 

the literals that do not appear concurrently in both tenns only one literal can appear in a 

term. 

,, ____________________ _ 



123 

Definition S.S. Two product terms are referred as combinable either when these 

two product terms are directly combinable or if they can become directly combinable by 

reshaping them. 

Theorem 5.2. If difference(T i, T -i) ~ 2, terms T 1 and T 2 are combinable. 

Theorem 5.3. If difference(T i, T v = 3, terms T 1 and T 2 are combinable if and 

only if clistance(T 1, T v < 2, and if clistance(T 1, T v = 1, both.£ 1 and:£2 occur in one term 

and are missing in the other. :£1 and.i2 are the two "other'' literals which cause the differ

ence to be 3. 

It can further be shown that if clifference(T 1, T v > 3, two product tenns can be 

combined if and only if 

(1) clistance((T 1, T v = 0, and the two terms can be manged to the form 

of Equation 5.2. Or 

(2) clistance((T 1, T -i) = 1, and the two terms can be manged to the form 

of Equation 5.1. 

5.3.2. Realization of functions in Minimized Restricted Factorized Form 

In order to realize a function in a minimal factorized fonn, it is important to iden

tify the combinable terms and the ordering of the variables which would result in most 

combinabilities. Here, a combinability graph is constructed and based on the maximum 

cliques in the graph, the ordering is chosen. Combinability graph is a graph, G (V, E ), 

where the vertices are the product tenns and the edges indicate whether two terms are 

combinable or not The algorithm to generate the complex terms is presented in Figure 

5.3: 



124 

1. For each pair of product terms Ti and Tj, if the terms are combinable. record all 
possible variable orderings for the pai,r; 

2. Build the adjacency matrix for the combinability graph; 
3. Create a priority list of complex terms in the decreasing order of the number of 

adjacents and adjacents of their adjacents in. the combinability graph. 
4. Choose the ordering of the input variables as the order of the variables in a max

imum clique which does not violate all possible combinabilities in the clique. 
5. Start with the product terms with the least priority and generate the possible com

plex terms with the chosen order of input variables. Generate the new terms 
which are not common among the co"esponding output functions. 

6. Repeat the procedure of generating the complex terms for the remaining terms 
until no complex terms can be generated. 

Figure 5.3. The Restricted Factorization Algorithm 

As indicated. the ordering plays an important role in the number of terms that can 

be combined. For this purpose, the maximum cliques in the graph are used to identify 

the most number of tenns that can be combined - having the same order of variables. A 

further restriction on the clique is put for the terms to hold in order to make them a candi

date. That is any two of them would not have a conflicting literal position requirement. 

The order of all the variables is then chosen based on an ordering that fits such a max

imum clique. 

The terms are then sorted in the decreasing order according to the number of com

binables. When r.:vo terms have an equal number of combinables, they are sorted accord

ing to the total number of combinables of their combinables. That is the number of com

binables for each of their combinables are added up and the one with a larger number is 

given a higher priority in the list. The terms with low number of combinabilities are then 

compared with the higher ones in the list and if possible, are combined. 

It has to be noted that for the multi-output functions, in the process of combining 

two terms, the new complex term will only belong to the common outputs and all outputs 

that are not common, still need to have their corresponding product terms present in the 

list. This then results at times in more terms being generated. Overall, however, for 



125 

many benchmark examples, it was observed that the method results in less number of 

terms. The procedure of combining terms is continued until there are no possible com

binabilities. 

The method has been tested and the results for several benchmark functions are 

presented in Table 5.1 

#in 

8 5 31 30 
9 5 63 57 
8 8 87 84 
8 8 61 54 
8 5 69 52 

cu 14 11 16 15 
f51m 8 8 31 30 
inc 7 9 26 26 
rnlp3 6 6 18 17 
rd53 5 3 14 13 
rd.73 4 3 38 36 
sao2 10 4 28 26 
t481 16 1 23 18 

25 18 184 179 
7 1 7 

Table 5.L Complex Terms for Benchmark Examples 

The above method can be improved in many directions. The choosing of the vari

able o$ring can be investigated for other possibilities. The combination of terms can 

be improved by introducing backtracking techniques. Reshaping of the terms can also be 

perfonned to restart the cubes in different distances and differences. Another frnprove

ment is to decompose the tenns into clusters which can use different variable orderings, 

possibly resulting in further reductions in size. 

5.4. Technology Folding 

Once an optimized set of complex tenns has been identified - either through factor

ization, UXF, or Two-level representation - folding techniques are used to even more 

economically utilize the FPGA cells. To minimize the area, a proper matching of 



126 

complex terms is found such that the number of rows occupied by complex terms is 

minimized. These folding techniques depend on the specific architecture of the FPGA 

which could allow different compatible terms to be placed on the same row. The row 

folding technique will be shown for the case of A TMEI..600O in order to illuminate the 

details of the technique. 

The possible gates that can be utilized in A TMEL600O are an inverter, an AND, 

OR, XOR, NAND gate, a wire and their combinations [7]. The number of available 

inputs is limited to three and outputs to two. Only one input can be taken from the local 

bus, and the number of local busses is limited to four. Each cell has connections to four 

neighboring cells. Based on the above architecture limitation, the number of complex 

terms which can be folded into one row is six. The complex terms can be accessed from 

the left-most cell, the right-most cell, and the two local busses. As each cell has two 

immediate outputs, A and B, two terms can be accessed from the right- and left-most 

cells. It is assumed that the vertical local busses in the complex_plane cany both input 

variables and their negations for each column. The cell personallze;_d to the OR gate uses 

only output of type A 

AB Parallelism 

The following roles provide all the possibilities for placing two terms in one row of 

ATMEL using the A and B inputs and outputs going horizontally through the row. 

In the following, certain terminologies which will be used to define various fold

ings based on AB parallelism will be given. As the input variables are assumed to follow 

certain order in the row, an increasing order from the left is used as a convention. In this 

way, the leftmost input variable will be in lowest order and the ones in the right will have 

increasing orders. Moreover, the instance of a literal in a uxf-term which has the lowest 

order will be referred. to as the initial literal and will be denoted by Ci where C is some 

tenn. The literal with the highest order will be referred to as the last literal and will be 



127 

denoted by C 1• The set of all literals appearing in a tenn will be referred to as the literal 

set and will be denoted by SLj, where j refers to that particular term. 

As the tenns can be products, sums, or their combinations, these will be separately 

designated below. A monote~ which is a product of literals, will be referred to as a 

product-line and will be denoted by P. A term which is only comprised of a summation 

of literals will be referred to as a sum-line and will be denoted by S. A tenn which is 

comprised of both sums and products of literals will be referred to as a sum-product-line 

and will be denoted by C. 

Designating the relations between the literals of the terms will also be useful. The 

distance between two literals is the difference between their indices. As an example the 

distance between h and i will be 1. This distmce is denoted by d. A tenn which has a 

continuous literal set, i.e. for any literal besides the initial and final, there exist two 

literals of distance 1 with that literal in the literal set (for initial and final literals there 

exist one literal with this property), will be referred to as continuous and will be denoted 

byQ. 

Using the above notations, it is now possible to define different AB-Parallel fold

ings. The two terms which can be placed on the same row via AB-Parallel folding will 

be denoted by <C;, Cj > where C; and Cj are the two tenns. 

TYPE_l. <P1.P2> such that SL1uSL2=SL eQ and SL1riSL2=P1i. e.g. 

<P 1, P 2> = <a, abcde >; <ae, abed>; <ade, abc >; <acde. ab>; · · · 

where SL= {a,b, c, d, e }. 

TYPE_2. <S, P > such that SLp e SLs. SLp e Q, and S I e SLp. e.g. <S, P > 

= <a + b + c + d, abed>; 

<a +b +c +d,d>. 

<a +b + c +d, bed>; <a +c +d, cd>; 

TYPE_3. <P, S > such that SLs e SLp, and SLp e Q. e.g. <S, P > 



=<abcd,a +b +c +d>; 

<abcd,a +c>. 

<abcd,b +c +d>;. 

128 

<abed, b +d>; 

TYPE_4. <C,S> such that d(Cs 1,Cpi)'?! 1,Cs e Q,Cp eQ and SLs e SLcp• e.g. 

<C,S>=<(a +b +c)defg,d +/>. 

TYPE_S. <Ci, C2> such that SLs1 =SLs2,SLp1 uSLp2eQ, SLp1 r)SLp2=SLpi 

and d (SLs i', SLp i) '?! 2 Where SLp 1 denotes the product part of the first 

term. e.g. <C1, C2> = <(a +b +c}d, (a +b +c}dfg>. 

TYPE_6. <C1• C2> such that SLs 1 =SLs2> SLp1 uSLp2=eQ and Cs 1 < (Cpi -1) 

and Cs 1 < Cp2;. e.g. <C 1, C2> = <(a +b + c)ef, (a+ b + c)gh >. 

Some of the terms, or for that matter AB-Parallel terms, can be put on a local bus. 

Again this is due to the particular architecture of the ATMEL and they are given below: 

L Placeability 

L Placeability refers to the terms that can be placed on one of the local buses based 

on the architecture constraints. The following cases are the possibilities for 

ATMEI..6000: 

1. An AB-Parallel set of terms of TYPE_l is L-placeable. 

2 The OR part of AB-Parallel set of terms of TYPE_2 is L-placeable. 

3. A single primary input is L-placeable. 

Now, with AB_parallelisms and L-placeabilities listed above, it is possible to 

investigate the possibilities of placing two or more uxf-terms on the same row of 

A TMEL6000. The terms that can be placed in one row will be referred to as being row 

compatible or R-compatible. These conditions as well as the corresponding cells that 

makes them possible are listed as follows: 



129 

Row Compatibility 

• Two AB-Parallel tenns are R-compatible. If the tenns belong to more than 

one output, they have to be L-placeable in order to be R-compatible. 

• An L-placeable set of TYPE_! and another AB-Parallel set are R-compatible 

if the distance between the last literal of the first set and the first literal of the 

second set is at least two. e.g. <ad, abc > and </ + g + h + i, f ghi > are 

R-Compatible. 

• An L-placeable term of TYPE_2 and AB-Parallel pair of terms of TYPE_5 

are R-compatible if the sum-lines of all three terms are identical. 

e.g. <a + b + c > and <(a + b + c )e, (a + b + c )ef g > are R-compati.ble. 

• An L-placeable term of TYPE_2 and a sum-line which includes the L

placeable term as lower order literals and its higher order literals start with a 

distance of two from last literal of the L-placeable term and are continuous 

are R-compatible. <S 1. S 2> such that SL 1 e SL2, 

d(SL11,SL (S2-S1)i) ~2 S2-S1 e Q. "-" denotes the difference of the 

literal sets; ie. all literals which are in the first set and not in the other. 

e.g. <a + c + d> and <a + c + d + f + g + h > are R-compatible. 

• An L-placeable term of TYPE_2 and an AB-Parallel set of terms of TYPE_l 

are R-compatible if the distance between the last literal of the sum-line and 

the first literal of the AB-Parallel set of terms is at least two. 

e.g. <a + b + c > and <e, eg > are R-compatible. 

An L-placeable term of TYPE_2 and a sum-product-line which includes the 

L-placeable term as summation part and its product literals start with a dis

tance of two from the last literal of the summation part and are continuous 

are R-compatible. <S, C > such that Cs = S, d (SLs 1, SLp i) ~ 2 C p e Q. 

e.g. <a + c + d> and <(a + c + d)fgh > are R-compatible. 



130 

• All R-compatibilities involving L-placeable terms of TYPE_2 are applicable 

to L-placeable terms of TYPE_3. The difference is that the sum_lines in 

terms of TYPE_2 are replaced by a single variable. 

• Two L-placeable terms are R-compatible only if they belong to disjoint out

puts. 

One possible row folding is shown in Figme 5.4. 

a I, d • 
a ♦ b ♦ c ♦ d ♦ e 

Figure 5.4. An Example of a Row Folding 

Main Algorithm 

Based on the compatibilities that are characteristic to the ATMEL architecture, the 

general approach to folding for CA-Type FPGAs is shown in Figure 5.5. 

The compatibility graph refers to a graph where the nodes represent the terms and 

edges indicate whether two tem1S are R-compatible or not. Clique partition refers to 

identification of cliques of si2:e 6 in the case of A TMEL6000. 

As it can be observed, the method is general while the type of R-compatibilities 

and the size of the clique of interest varies with different architectures. 

Implementation Considerations 

In order to implement the above algorithm, certain input fonnat for the sum

product terms is used. As the PLA fonnat is devised for product tenns alone, it is neces

sary to modify this format so that more complex terms can be represented. In this 

approach the following convention is used: 

----- ···- ·-···------------



131 

1. Sort the teims in a descending order according to the most occurrence of the 
literals and the number of outputs. 

2. Identify the teims which are R-compatible and those which are do not have any 
compatibles. Assign the latter terms to a different row each and remove them from 
the list of the teims. 

3. Construct the compatibility graph. 
4. Find an optimum clique covering, with clique sizes smaller or equal to the max

imum number of the terms which can be realiz.ed in the same row of a given archi
tecture. 

5. Sort the cliques according to decreasing size and increasing degree of the vertices. 
6. Assign the cliques in the list to one row of the input plane at a time if none of the 

vertices in the clique has already been assigned. Delete the assigned vertices and 
edges from the graph. 

7. Assign all remaining vertices which are connected with at least one edge in the 
graph to the different rows of the plane. 

8. Assign all the remaining unconnected vertices to different rows. 

Figure 5.5. The Technology Folding Algorithm 

The input is a modified PLA fonnat. In this format the number of inputs and out-

puts are given early on. Each term then has the following form: 

input cube operation cube output cube 

The input cube and output cube are the same as in the PLA format. The operation 

cube uses a 1 for product, a O for sum, and - for no operation. As an example, a tenn 

such as (a +b)c+e is represented as 110-1 101-0 1. The first cube designates the 

polarity of the literals. The second indicates that b and e are smrimed and c is ANDed. 

The 1 for the location of 1 is optional, however, it is always designated as a 1 for the ini

tial literal in the tenn. The final cube l indicates that this is an uxf-tenn of a single

output function. 

Each term has the following attributes: 

The ls of the term; 
The DCs of the term; 
The outputs; 
The products; 
The sums; 
The row the term is assigned to; 
The number of terms compatible with the term; 
The number of L-placeable cubes with the term. 



132 

The output gives the rows with the compatible tenns which are assigned to them. 

As an example, the input and output data for a given problem are shown in Figures 5.6 

and 5.7. Here, the input terms are accordingly: ad, abc, (f + g + h + i),f ghi, 

(a + b + c + d), (a + b + c + d + f + g), (a + b + c )/, (a + b + c )ef g, (a + b + c ), 

(a + b + c + d + e + f ), 

(d + f ), abed, hi, h. 

# test input for Cellular-map 
# 

((a +b)d +e)f, 

# J 9 detennines that there are 9 input variables 

ae, (a +c +d), cd, (ae +/), 

# .o 2 detennines 'l' ON-, '0' OFF- and '-' DC-cube for each of the two outputs 
# 'O' in second row cubes designates product and 'l' sum 
# .e detennines the end of the file 
j9 
.o 3 
.p 19 

1-1-
111-
-1111 
-1111 
1111-:-
1111-11-
111-1-
111-111-
111-
111111-
11-111-
1-1-
1-11-
-11-. 
1-11-
-1-1-
1111-
---11 
--1-

.e 

0-0-- 001 
000-- 101 
-1111 111 
-0000 011 
1111- 101 
1111-11- 001 
111-0-- 011 
111-000- 011 
111- 100 
111111- 001 
11-010-- 101 
0--0--- 101 
1-11- 101 
-00--- 001 
1-01- 001 
-1-1- 011 
0000-- 101 
--CO 010 
---0- 011 

Figure 5.6. The input to Cellular_map 

As it can be observed from Figure 5.7, the 15 original uxf-terms are folded into 8 

rows. The numbers refer to the numbers assigned to the terms in the input file. As an 

example, 1 2 3 4 refers to the first four input terms which can be placed in one row. 



133 

# output file of Cellular map 
.i9 
.o 3 
.c 10 
1234--
12171819- -
5 14- - - -
8- 8 16- -
-10-9--
6 
7 
11 
13 
15 
.e 

Figure 5.7. The output of Cellular_map 

There are many areas for improvement in the method presented. These possible 

improvements are listed below: 

• The method can be further extended to column permutation and XOR

column folding. Hence, bidirectional Maitra terms can also be utilized. 

Presently, only row folding techniques have been addressed. 

• The row assignment algorithm can be further improved based on graph

theoretic methods. This can be based on other methods of ordering and 

clique assignment 

• The notions of R-compatibility can be built into the synthesis stage for initial 

array. So, the two stages are not completely unrelated. 

• Fast methods of identification of multiple R-compatibilities can be devised. 

In addition, other compatibilities including other serial compatibilities -

placing several terms one after another in the same row - and checking of 

compatibles of degrees higher than 2 - three or more terms - could be inves

tigated. 



5.2. 

134 

• The output format can be geared towards the appropriate manipulations. 

Currently, the results of the folding are shown as the terms that can be put in 

the same row. The output format can further be augmented with an indexed 

array of cells. Each cell having a 5 bit number designating the combina

tional function it is perfonning. In addition, each cell can have 4 two bit 

numbers designating A, B, and Lin and Lout. 

• Once the synthesis method has been implemented. the number of cells can 

be compared with other mapping methods such as trees, compact irregular 

multi-level mapping, etc. 

The same functions in Table 5.1 are again shown with folding included in Table 

#in 
xp 7 

cadr4 8 5 31 30 29 
clip 9 5 63 51 52 
clog8 8 8 87 84 69 
cmlp4 8 8 61 54 48 
cnrm4 8 5 69 52 46 
cu 14 11 16 15 13 
f51m 8 8 31 30 27 
inc 7 9 26 26 23 
mlp3 6 6 18 17 13 
rd53 5 3 14 13 10 
rd73 4 3 38 36 28 
sao2 10 4 28 26 24 
t481 16 1 23 18 15 
V 25 18 184 179 179 
To 7 7 

Table 5.2. The Effect of Folding 

As indicatecL the average improvement over Two-level ESOP realization on this 

set of benchmarks is 17%. For majority of the tested examples the improvement is 

significant and for some as high as 33%. It has to be emphasized that the reduced 

number of terms is multiplied by the number of input variables, as these would be the 

actual number of cells that will be reduced. Hence, any reduction of the number of terms 

. _,_ . ·- -----------



135 

contributes a multiple of the input variables to the number of cells saved. 

S.S. Summary 

The comprehensive logic synthesis and physical design for CA-Type FPGAs was 

presented in this chapter. It was shown that through Complex Maitra Logic Arrays, the 

UXF, fixed polarity and Generalized AND/XOR forms of chapters 3 and 4, as well as the 

restricted factored fomis can be directly mapped to these FPGAs. Hence, there is no 

need for placement and routing stage after synthesis. The folding technique was shown 

also to be advantageous in reducing the number of cells utilized. Both the concept of the 

folding of CMLA and the development of the particular folding technique presented are 

due to this author. 

The restricted factorization technique and the technology folding were shown to 

provide. a fast and in many times efficient techniques. While these techniques can be 

both much improved, the factorized fonns were shown to be more compact than ESOPs. 

The folding also showed to be a definite advantage in these cases. These are the first 

results of this type ever published. There is room for much improvement for both tech

niques, however, they have been shown to be promising techniques. Again, the main 

advantage here is the combining of logic synthesis and physical design as well as the 

applicability of the technique to any general purpose function. Moreover, the logic util

:i7.ed takes advantage of two input AND, OR, and XOR and results in more compaction 

than either AND/OR or AND/XOR. 



Chapter6 

Minimal Multi-Level Reali:ration of Boolean Functions 

Based on Kronecker Functional Decision Diagnuim 

6.1. Introduction 

Directed Acyclic Graphs provide another important structure for CA-type FPGA 

synthesis. These structures similar to the rectangular have the advantage of the regularity 

of the structure which is of importance in CA-type FPGA synthesis. If reduction tech

niques are not applied, it is possible to directly map the DAG to the FPGA requiring little 

routing resources. This, however, results in wastage of cells both as unreduced realiza

tion and also the cells left unused due to the "triangular" shape of the mapping. The chal

lenge, however, is to generate a reduced DAG structure and devise efficient routing tech

niques to allow for more global connections. In this chapter, techniques for reduced 

DAG structure reaii:zarions are presented. These DAG structures not only find applica

tions in CA-type FPGA synthesis, but are also of major significance in other areas of syn

thesis •. 

There has been several studies on layout of graphs on planes which are also of 

value in CA-type FPGA mapping [10, 15, 64, 53, 54). A typical approach is that of H-

The Kronecker Functional Decision Diagrams were first published in A. Sarabi, F. Ho, K. Iravani, 
W. R. Daasch, and M. A. Perkowski, Minimal Multi-level Representation of Switching Functions 
Based on Kronecker Functional Decision Diagrams. IWLS'93, Taho, CA. 1993. The earlier con
cepts for KFDDs were developed in papers by Perkowski (99.100] under different terminologies. 
This chapter is mostly based on the joint work with the colleagues at J. W. Goethe University in 
Frankfurt Germany. It is based on the two papers R. D.rechsler, A. Sarabi. M. Theobald, B. Beck
er, and M. A. Perkowski, Efficient Representation and Manipulation of Switching Functions 
Based on Ordered Kronecker Functional Decision Diagrams, DAC'94, San Diego. CA. 1994, and 
On the Computational Power of Oredered Kronecker Functional Decision Diagrams by the same 
authors. 

-------·· ·- -·----·····------



137 

tree embedding of a complete binary tree [10]. More compact schemes such as Hexago-

nal and Square-Connected Arrays have been also reported [54]. Here, the main focus 

will be that of efficient representation and manipulation of functions in form of DAG 

structures. 

DAG structures used in logic synthesis are special kind of DAGs called Decision 

Diagrams. The most popular Decision Diagram is that of the Binary Decision Diagrams 

(BDD) popularized by Bryant [23]. While earlier works of Lee [77] and Akers [3] drew 

the foundations of BDDs, it was the reduction of and operations on BDDs introduced by 

Bryant which paved to way for the adoption and popularity of these decision diagrams. 

Bryant showed that through application of reduction techniques and assignment of orders 

to the variables, it is possible to devise a canonical representation of Boolean functions. 

As pointed out by Bryant [25], solution to a large class of complex problems can 

result from efficient representation and manipulation of Boolean functions symbolically. 

Binary Decision Diagrams as a distinct method of representing functions symbolic-..ally 

has attracted special attention in many areas of synthesis, verification, testing, modeling. 

etc. Based on BDDs, problems for symbolic representation of matrices, integer program

ming, and spectral methods have been t.ackled. BDDs have found applications in such 

:fields as combinatorial optimization, mathematical logic and Artificial Intelligence. 

However, the representation of large functions has been especially problematic; 

since for certain classes of functions, notably multi.pliers, it has been known that BDDs 

will be of exponential size irrespective of the order of the variables. Thus research has 

been geared towards variations of BDDs as well as more efficient techniques for their 

construction. The criteria have been the ease of construction and manipulation compared 

with the compactness of the representation. 

The more recent techniques have made it possible to handle large functions 

without any basic variation of the BDD itself. The dynamic variable ordering with sift-



138 

ing introduced by Rudell [112) bas made it possible to represent certain hard examples 

which could not be represented by any previous heuristic methods. Moreover, the vari

able ordering in [112) is handled by the package itself, alleviating the need for variable 

ordering before the actual processing. Other techniques such as the ones used in zero

suppressed BDDs [82), utili7.e new reduction rules in order to produce a more compact 

BDD representations. 

Other researches have been concentrated on variations in BDDs to make realiza

tion of large functions possible. Among these variations there are those that utilize less 

restricted Decision Diagrams and there are other ones which augment BDDs with addi

tional constructs. 

The constructs such as General BDDs [26], or pBDDs [49), IBDDs [69), XBDDs 

[70], and free BDDs [151], [11] (also .known as "1-time branching programs") remove 

the ordering constraint on BDDs at the expense of loosing the canonicity of the structure. 

Other Decision Diagrams such as Ternary Decision Diagrams [124] modify the BDDs by 

introducing a third edge for each node in the BDD. 

There have also been recent attempts at varying the nodes in BDDs. These include 

the FDDs [72] and FBDs [138]. While the FBDs are free and thus not canonical, FDDs 

like BDDs provide a canonical representations of the functions. The new Kronecker 

Functional Decision Diagrams (KFDD) are the generalization of BDDs and FDDs and 

similarly provide a canonical representation for Boolean functions. Furthermore, they 

are more compact than both BDDs and FDDs and are shown in section 6.4 to be on aver

age 35% more compact than BDDs for hard benchmark examples. 

The advantage of using KFDDs over BDDs and FDDs is shown by the fact that 

there exists a class of functions for which BDDs are exponential while FDDs are polyno

mial and vice versa. Hence, just using BDDs or FDDs will prove inefficient in these 

cases. Furthermore, there exists a class of functions for which both BDDs and FDDs are 



139 

exponential while KFDDs are polynomial in size. These results will be described in sec-

tion 6.2. 

For the KFDDs to be utilized in many applications, it is of paramount importance 

for them to be easy to construct and manipulate. It is shown in section 6.3 that it is possi

ble to define recursive structures such as if then else constructs in BDDs to produce an 

efficient package for easy construction and manipulation of KFDDs. 

The compactness of KFDDs together with ease of construction and canonicity of 

KFDDs should provide a strong argument for utilization of KFDDs in many applications 

where BDDs have been traditionally used. 

In section 6.2, the basic structure of KFDDs as well as their computational power 

compared to BDDs and FDDs will be presented. The efficient package for easy construc

tion and manipulation of KFDDs is described in section 6.3. The compactness of KFDDs 

over BDDs and FDDs is shown over MCNC benchmark in section 6.4. A short descrip

tion of the relation between KFDDs and various Two-level AND/XOR forms is given in 

section 6.5. 

6.2. Decision Diagrams 

~ this section, essential definitions and properties of OKFDDs are presented. As 

OKFDDs are generalizations of OBDDs and OFDDs, these two structures are described 

further and compared with one another. Procedures for reduction of the OKFDDs are 

also presented. 

The core of the data structures is a decision diagram (DD), which is a directed acy

clic graph with some additional properties. 

Definition 6.1. A decision diagram (DD) over Xn := {xi,x2, .•. ,xnJ is a rooted 

directed acyclic graph G = (V, E) with vertex set V containing two types of vertices, 

non-terminal and terminal vertices. A non-terminal vertex v is labeled with a variable 



140 

from X,,, called the decision variable for v, and has exactly two successors denoted by 

low (v ), high (v) e V. A tenninal vertex v is labeled with a O or 1 and has no successors. 

The size of a DD, denoted by IDD I, is given by its number of nodes. If DDs are 

to be used as data structures in design automation, it turns out that further restrictions on 

their structure will be necessary. Two such restrictions are defined below: 

Definition 6.2. A DD is free if each variable is encountered at most once on each 

path in the DD from the root to a terminal vertex. A DD is complete if each variable is 

encountered exactly once on each path in the DD from the root to a terminal vertex. A 

DD is ordered if it is free and the variables &-e encountered in the same order on each 

path in the DD from the root to a terminal vertex. 

In the following, letter "F' will be used to describe free DDs, letter "C" to describe 

complete DDs, and letter "O" to denote ordered DDs. 

It is possible to define certain reductions on the decision diagrams in order to 

reduce their size. In the following, three reduction types are given which can be partially 

combined: 

1: Delete a node v' with sub-DDs isomorphic to sub-DDs of another node v 

and redirect the edges pointing to v' to point to v. 

2: Delete a node v whose two outgoing edges point to the same node and con

nect the incoming edges of the deleted node to the corresponding successor. 

3: Delete all nodes v whose successor high (v) points to the terminal O and con

nect the incoming edges of the deleted node to the corresponding successor. 

Definition 6.3. A DD is (ti )-reduced if no reductions of type i can be applied to 

the DD. DD is (t;j )-reduced if no reductions of type i and type j are applicable to the 

DD. 



141 

Definition 6.4. Let i e {l, ... , 3). Two DDs, G 1 and G2, are called (t; )-equivalent 

iff G2 results from G 1 by repeated applications of reductions and inverse reductions of 

type i. A DD, G2, is called the (t;}-reduction of a DD, G1, if G2 results from G1 by 

repeated applications of reductions of type i and G2 itself is reduced. 

Analogously, the (t1jrreduction (j e { 2, 3)) of a DD is defined. 

A careful analysis of the proofs in [23] [ 60] shows that the following lemma is 

valid for DDs: 

Lemma 6.1. The (tk)-reduction (k = 1, 2, 3, 12, 13) of a free DD, G, is uniquely 

detennined and can be computed in linear time in the size of G. 

Until now it has not been defined how DDs can be related to Boolean functions. 

To do this, the following notions are helpful Let f: Bn ➔ B be a Boolean function over 

the variable setXn. All nodes labeled with the same variable are denoted as a level in the 

following. Then /; 0 denotes the cofactor of f with respect to x; = 0, defined by 

J;O(x):=f(xi, .. ,X;-1,0,X;+t,--,Xn) for X =(x1,X2, ... ,Xn)E Bn. Similarly, /; 1 

denotes the cofactor for x; = 1. Fmally, J; 2 is defined as J; 2 := 1;0 EB f; 1• (Notice that 

the three functions J;0,J;1,/;2 can naturally be interpreted as Boolean functions from 

Bn - l to B defined over the variables xi, · · · , x; _ 1, x; + 1, • · • , Xn .) Using the above 

definitions, the following decompositions can be proven for an arbitrary Boolean func

tion/: 

f =x;f;0 +x;/;1 

I =f;0 EBx;/; 2 

f =f;l EBxiJ;2 

Shannon decomposition 

positive Davio decomposition 

negative Davio decomposition 

(6.1) 

(6.2) 
(6.3) 

It can be observed that Shannon, positive, and negative Davio decompositions are 

counterparts of a, p, and p operators of chapter 2 in multi-level 

Furthermore, these are the only possible single-variable decompositions which can 

lead to the unique representation of the functions, up to negation. Single-variable 



142 

decompositions refer to all the decompositions to subfunctions / i which totally remove a 

single variable from both subfunctions. It has to be mentioned that the uniqueness of the 

representation is only under the condition that all negations are transformed as described 

later on by complemented edges. 

Now, the ordered Kronecker Functional Decision Diagrams can formally be 

defined as follows: 

Definition 6.5. Each ordered DD over Xn with a uniquely determined decomposi

tion type list (D1L), d;, assigned to each variable x; (i - (1, .. , n }) is an OKFDD over 

Xn. Nothing else is an OKFDD when the function f G: Bn ➔ B represented by an 

OKFDD G over Xn is given as: 

If G consists of a single node labeled with O (1), then 

G is an OKFDD for/ = 0 (f = 1). 

If G has a root v with label x;, then G is an OKFDD 

for 

!X;f 1owcv) +x;f high(v) iff d; is Shannon; 
f 1owcv> $x;fhigh(v) if/ d; is positive Davio; 
f low(v) $ 'x;f high(v) if/ d; is negative Davio 

where/1owcv) <fmgh(v)) are the functions represented by the OKFDD rooted at low(v) 

(high(v)). 

If at every node in above definition only Shannon decomposition is applied, the 

OKFDD will be an OBDD. If only Davio decompositions are applied, the OKFDD will 

be an OFDD. As it is evident, the OKFDD is the more general decision diagram than 

both OBDD and OFDD. 

Definition 6.6. A node in an OKFDD is called a Shannon-node if it is expanded 

by Shannon decomposition - Equation (6.1). It is called a Davio-node if it is expanded 



143 

by Davio decompositions - Equations (6.2) or (6.3); the latter being negative Davio-node 

and the former positive Davio-node. 

Example 6.1. An OKFDD is shown in Figure 6.1, where the left outgoing edge at 

each node denotes f1ow(v)• The OKFDD represents the function 

x1X2X4 EB x1x2.x3 EB x1.f3 EB .x1X2X4. The Shannon-node decomposes the function into 

X2X4 and X2X4 EBxi.x3 EBx3, respectively. The latter is in turn decomposed into .x3 and 

.x3 EBx4 through the positive Davio-node, X2- The negative Davio-nod X3 on the right 

results in x4 and 1. □ 

Empty nodes denote Shannon-nodes 

+ denotes positive Da.vio-nodes 

- denotes negative Davio-nodes 

Figure 6.1 Example for OKFDD 

Utilizing reductions, it is possible to define canonical representations of functions 

based on OKFDDs. The combination of reduction types 1 and 2 is well-known for 

OBDDs. This reduction has also been applied to OFDDs [72]. It can be shown that the 

reduction obtained by combination of types 1 and 3 is more natural for OFDDs since 



144 

only those nodes that are not further needed for the calculation are deleted [9). This is 

analogous to the representation known for OBDDs. In contrast, the (t12.)-reduced 

OFDDs require additional operations to reconstruct the function from the graph descrip

tion. 

The notion, f G, is well defined for OFDD in the sense that f a1 = f a 2 iff G 1 is 

(t13)-equivalent to G2. It has been proven in [72) that (t1:z)-reduced OFDDs define 

canonical representations for a fixed ordering 1t. Using Lemma 6.1, this can also be pro

ven for (t 13)-reduced OFDDs and following OKFDDs: 

Lemma 6.2 (t13)-reduced OFDDs are canonical representations for Boolean func

tions. Furthermore, OKFDDs with (t1z)-reduced Shannon-nodes and (t13)-reduced 

Davie-nodes are also ca.,onical representations for Boolean functions if the decomposi

tion types are fixed for every variable. 

OBDDs and OFDDs are special cases of OKFDDs for which either Shannon 

decomposition or the Davio decompositions are used for all decision variables, respec

tively. In the case of OKFDDs in general, each variable can be split by any of the three 

decompositions given in Equations (6.1), (6.2), and (6.3). Hence, they can provide a 

more compact representation of the functions than either of the OBDDs or OFDDs. The 

advantage of using OKFDDs over just OBDDs or OFDDs is for example that there are 

classes of functions for which OBDDs are exponential in size while OFDDs with only 

positive Davio-nodes are polynomial and vice versa. Using the OKFDDs, it is possible to 

achieve a reduced size DD which is not restricted by the type of decomposition. These 

relations are presented next. 

For the following consider a DD, G. As defined before, the function represented by 

the KFDD G with DTI., d is denoted by f Gd. In addition, positive Davio is represented 

by pD, negative Davio by nD, and Shannon with S. The following cases are of special 

interest: If d with d; e {pD ,nD} is fixed, the KFDD is an FDD and f Gd := f Gd is called 



145 

the FDD-function of G (for DTL d). 

Analogously, fGpFDD :=[Gd is the pFDD-function of G (for D1L 

d = (pD. pD, ... ,pD)) and f GBDD := f Gd is the BOD-function of G (for D1L 

d = (S, S, • • ·, S)). 

It is possible to establish a close relation between the functions f GBDD and f GFDD 

for G being a complete DD. For an intuitive approach to this problem, :first an example is 

given which provides a graph-theoretic interpretation for the relation between fGBDD 

and/ GpFDD [9]. 

Example 6.2. Consider any complete DD, G. (For simplicity one may assume that 

G is the complete bimuy tree with 2n leaves.) Then fix an assignment a = (a 1, ... , an) to 

the variables x 1, ••• , Xn • Let v be any non-terminal node of G labeled with a variable x;. 

The edge (v, low (v)) ((v, high (v ))) is called BDD-active iff a; = 0 (a; = 1). The edge 

(v, high (v)) is pFDD-active iff a; = 1 whereas the edge (v, low (v)) is always pFDD

active. A path in G is called BDD-active ( pFDD-active) iff it leads from the root to a 

terminal node and only contains BDD-active (pFDD-active) edges. 

Obviously, for a fixed assignment, a, there is exactly one BDD-active path in G 

and this path leads to a terminal node labeled by f GBDD (a). Furthermore, since G is 

complete, it can be conclude that each pFDD-active path for (a1, ... , an) corresponds 

exactly to a BDD-active path for an assignment b =(bi. ... , bn) with b; Sa; for all i. 

Thus, f GpFDD (a) = EBJGBDD (b) and the relation between the functions represented by 
bS 

G if G is viewed as BDD and pFDD, respectively. D 

Motivated by the above example, the generalized -c-operator 'Cd (d is a D1L), has 

been introduced by Becker [41] to relate the BOD-function of G and the KFDD-function 

of G with D1L d For the exact definition consider the relation ~ on Bn, where 

The 't-Operator 'ta for the special case d = (pD , .•• , pD ) was already used in [96] to analyze 
circuits over {v, EB}, in [13] (~ theReed-MullerTransfonn) to synthesize two level circuits and 
in [8] to show the relation between the BOD-function and the pFDD-function. 



146 

(a 1, ••• ,an)~ (b 1, ••• , bn) iff all components i satisfy a; ~- b;. Hereby, a; ~- b; means 
I I 

a; S b; (a; S ii;, a; = b;) iff d; = pD (d; = nD , d; = S ). 

Definition 6.7. Let/ e Bn and d := (di, · · ·, dn) with d; e {S ,pD, nD} for all 

i. The generalized .:.-operator 'td (f) is defined by 

T.J(/)(r) := EB/(y). 
y Sri 

It can be shown that T.J is bijective and its inverse is given by 

'tJ-1(/)(x) = EBx~JY f (y). Through induction on the number of nodes in G, it can be 

concluded that the BOD-function and the KFDD-function of a complete DD G can be 

computed from each other via the generalized t-operator. 

Theorem 6.1. [41] For each complete DD, G, and each D1L d, it holds that 

fGd ='tJifGBDD) andfGBDD ='tJ-lifGd). 

Theorem 6.1 is valid only for complete DDs. Fortunately, with a similar proof as in 

[8], it can been shown [41] that each free (ordered) KFDD can be transformed into an 

equivalent complete KFDD the size of which grows at most by a factor of O (n ). Com

bining Theorem 6.1 together with this property, it is possible to transfer results about 

(free, ordered) BDDs to KFDDs and vice versa. In particalar, the existence of classes of 

functions can be proven which are good for OFDDs and bad for OBDDs and vice versa: 

Theorem 6.2. [ 41] Consider OFDDs for a fixed D1L, d, with d; e {pD, nD} for 

all i. There exist families of Boolean functions (f m )m e N, N denoting the set of natural 

numbers, such that each OBDD (OFDD) for f m has size exponential in m (2D.<.m >), while 

for each ordering of the variables, there exists an OFDD (OBDD) of polynomial size for 

Im• 
It follows from the above theorem that it is advantageous to consider both 

OKFDDs with Shannon and OKFDDs with Davio nodes than using only type of these 

Decision Diagrams. This section is concluded by showing that mixed-type OKFDDs, ie. 



147 

OKFDDs containing both Shannon and Davio nodes in one single DD, are even more 

powerful. 

Theorem 6.3. [41] Let the D1L d be fixed with d; e (pD, nD} for all i. There 

exists a family of Boolean functions (/ 111 ) 111 e N, such that each OFDD (with D1L d) and 

each OBDD for/,,, has size exponential in m, while there exist OKFDDs for f m of poly

nomial size. 

Proof. The outline of the proof given by Becker [41] is as follows: Let81 (g-i) be 

a function that can be represented efficiently by an OBDD (OFDD), but only has OFDDs 

(OBDDs) of exponential size (see Theorem 6.2). One may further assume that 81 and 82 

depend on disjoint sets of variables. Then the function/ =x1 • 81 EBx2 • 82 (x1,x2 being 

new variables) can obviously be represented efficiently by an OKFDD. However, neither 

a small OBDD nor a small OFDD exists for f: Assume that there exists a small OBDD 

(OFDD) for/. Since cofactoring is an efficient operation, an efficient OBDD (OFDD) 

for 8 2 (g i) should be obtained in contradiction to the assumption. QED 

The OKFDDs can further be reduced in size by using complemented edges. The 

constraints of complemented edges to maintain a canonical fonn for BDDs were given in 

[19]. Similarly, complemented edges can be used for the representation of a function and 

its complement by the same node in the case of Davio-nodes [9]. 

The difference between the Shannon-nodes and Davio-nodes is that different res

trictions have to be imposed on where complemented edges are set in order to obtain a 

canonical fonn. These restrictions are given in [9]. The OKFDDs with complemented 

edges given in [19) for Shannon-nodes and those shown in [9] for Davio-nodes are 

unique. 

6.3. Implementation of an OKFDD Package 

In this section, implementational details of the OKFDD package are described and 



148 

OKFDD manipulation algorithms are introduced. The package is built on top of the 

OFDD package in [9]. 

6.3.1. Technical Details 

The programming techniques and methods of implementation used to speed-up the 

package are similar to other packages used for representation and manipulation of 

OBDDs and OFDDs [19, 81, 9]. Hence, these techniques are only briefly reviewed. 

For the fast availability of the functions, a hash-based unique table is used to store 

the nodes. A computed table is implemented for the optimization of the synthesis algo

rithms. Furthermore, level lists are used for the management of the nodes of each stage. 

In this way, fast access to the nodes is possible by the algorithms and efficient local 

transformations can be performed. The memory management is done by garbage collec

tion. The nodes are only deleted if the storage place is needed for other nodes. Thus, it 

would not be needed to recompute the results each time if they were used earlier on. By 

the unique table, different OKFDDs can share the same sub-OKFDDs. Therefore, 

several functions can efficiently be represented at the same time. 

6.3.2. The Construction and Operations on OKFDDs 

First, the XOR-operation is presented as it provides the basis for construction of 

certain other operations. Notice that for two functions, f and g, decomposed by positive 

Davio expansion, one has: 

/ EB g = (f oex;J i) e (go ex; gi) =(foe go) ex;(f 2 e gi) (6.4) 

This equation makes it possible to recursively split up a positive Davio-node into 

its left and right subgraphs. The algorithm for negative Davio-nodes is performed analo

gously. This provides an efficient algorithm for Davio-nodes while the basic XOR

operation for Shannon-nodes is based on the following equation: 

(6.5) 



kfdd xor kfdd (F, G) { 
TJ = (terminal case) { 

return result; 
} else if ( computed-table has entry (F, G )) { 

return result; 
} else { 

let v be the top variable of (F, G ); 
if Shannon(v) { 

low(v) = kfdd_xor_kfdd (Fo, Go); 
high(v) = kfdd_xor_kfdd (F 1, G1); 
if(high(v)==low(v)) return low(v); 

} else if pos _Davio (v) { 
low(v) = kfdd _ xor _ kfdd (F o, Go); 
high(v) = kfdd_xor_kfdd (F 2, Gi); 
if (high(v )==0) return low(v ); 

} else { 

} 

low(v) = kfdd xor kfdd (F 1, G i); 
high(v) = kfdd_xor_kfdd (F2, Gi),· 
if (high(v J:==0) return low(v ); 

R = jind_or _add_unique_table (v, low(v), high(v)); 
insert_computed_table (F, G,R); 
returnR; 
} 

}} 

Figure 6.2.Algorithm for XOR-operation 

149 

The resulting algorithm for XOR-operation on two OKFDDs is presented in Figure 6.2. 

The efficient XOR-operation allows the construction of OKFDDs from OBDDs. 

Here, one starts with a recursive computation in the OBDD. At each Shannon-node, v 

(labeled x; ), which is to be transformed into a positive Davio-node, the Davio-node, v', 

corresponding to the function represented by v is constructed. The successor low (v) can 

be directly used for low (v') in positive Davio-node since it represents the cofactor with 

respect to x; = 0. For the case of negative Davio-node, high (v) needs to be used. For the 

successor high (v' ), the XOR-operation has to be performed on the successors of v. But 

this operation can be performed efficiently for OBDDs and OKFDDs. The construction 

algorithm is given in Figure 6.0. In this scheme, a list with the decomposition type of the 

variable is passed to the function. The algorithm is based on static order and decomposi-



150 

tion types of variables. Although the operations for each node can be performed 

efficiently, the algorithm has exponential worst case behavior. 

bdd to ifdd (F) { 
-if (terminal case) { 

return result; 
} else if(computed-table has entry (F)) { 

return result; 
} else { 

}} 

let v be the top variable of (F); 
if Shannon(v) { 

low(v) = bdd to ifdd (F o); 
high(v) = bdd_to_kfdd (F 1 )); 
if(higM~==low(v))retumlow~~ 

} else ifpos_Davio (v) { 
low(v) = bdd to !cfdd (F o); 

high(v) = bdd_to _kfdd (ite(F o, Fi, Fi)); 
if (high(v) == 0) return low(v); 

} else { 

} 

low(v) = bdd_to_kfdd (Fi); _ 
high(v) = bdd_to _kfdd (ite(F o, F 1, Fi)); 
if (higMv) == 0) return low(v ); 

R =find_or _add unique_table (v, low(v), high(v)); 
insert_ computet[table (F, R); 
returnR; 

Figure 6.3. Algorithm for OKFDD-construction 

An algorithm to transform OKFDDs to OKFDDs with other choice of decomposi

tion rules easily follows from the algorith.-n in Figure 6.3 with a slight modification. 

Here. only the recursive call of ite has to be substituted with the procedure 

kfdd_:xor _kfdd (). Additionally, different cases for the availability of the successors 

should be distinguished. For instance, if a negative Davio-node must be transferred to a 

Shannon-node, the function f O must first be computed. 

The realization of the AND-operation turns out to be more complicated for Davio

nodes in comparison to the XOR-operation. The following recursive equation holds for 

positive Davio-nodes: 



f . g =(/Off) x;f -i) • (go ff) x;g-i) 

= if o · go) ex;((f 2 • g-i) EB (f o · gi) e (go·/'])_) 

151 

(6.6) 

This equation again defines a recursive algorithm similar to the one from Figure 6.2 

which has exponential worst case running time [9]. The same results hold for negative 

Davio-nodes. However, for OKFDDs with a constant number of levels, where the Davio 

expansion is performed, the operation is polynomial. 

The negation of a function,/, for a Davio-node can be computed by observing that 

f = I e /. Thus, the operation requires an XOR-operation with the constant 1 in the 

OKFDD. Since the package uses complemented edges, this operation can be performed 

in constant time. 

Now, using the algorithms for the XOR-, AND-, and NOT-operations, any binary 

operation can be realized. 

For an OKFDD, G, the restriction G IX;= c for variable X; and constant c can be 

computed by traversing the graph and performing the corresponding substitutions. The 

case for Sha.'Ulon-nodes is given in [19]. For t.,e case of positive Davio-nodes, if x; = 0, 

edges from nodes v with label x; to high (v) have to be deleted. If nodes with indegree 0 

result, they and their outgoing edges are also deleted. All this can be done in linear time. 

If x; = l, then at each node, v, with label x; and subfunctions go and g 1, the following 

has to be done. As before, the high-edge has to be deleted, at the /ow-edge an OKFDD 

for go e g1 must be rooted, ie., an XOR-operation has to be executed. For negative 

Davio-nodes, a similar procedure is required. 

6.3.3. Optimization of OKFDD-Size 

While the variable ordering plays a dominant role in the identification of the 

minimal OBDD representation of the functions, in OKFDDs both the ordering and the 

decomposition type are important Depending on the order of the variables and the par

ticular decomposition among the possible three, the size of the OKFDD can vary from 

----------~ ---------



152 

linear to exponential [9]. It is well-known that in the case of OFDDs and OBDDs, the 

size of the decision diagram can be minimized by an exchange of adjacent variables [51, 

9]. It can be proven that this idea can be extended to OKFDDs. Therefore, it is also possi

ble to use all techniques based on exchanging of adjacent variables for OKFDDs. Espe

cially the sifting algorithm, window permutation, and exact minimization algorithms 

[ 112, 68] can be used. 

By the sifting algorithm, the variables are sorted into decreasing order based on the 

number of nodes at each level and then each variable is traversed through the DAG in 

order to locate its local optimwn position while all other variables remain fixed. 

The dynamic variable ordering based on sifting algorithm can be utilized in the 

minimization of OKFDD sizes as well. In this scheme, the sifting algorithm is modified 

so that at each position all three types of decompositions are tested and the local 

optimum is chosen based on both the position and the type of the decomposition of the 

variable. Thus, each time a variable changes the decomposition rule, the new local 

optimal position is determined by exchange of adjacent variables. 

It is also possible to use a restricted sifting operator for the dynamic variable order

ing, i.e. to only exchange the variable with new decomposition type. This method 

guarantees that the new sifting operator differs from the original sifting only by a small 

constant factor, since all experiments performed have shown that the time for additional 

XOR operation needed for the change of the decomposition type is negligible compared 

with the time needed to exchange variables. 

Since sifting can be very time consuming, in a variation of sifting operator, lower 

and upper bounds are allowed for the reordering [41], i.e. one parameter gives the maxi

mal growth and a second parameter gives the lower bound on when to stop the sifting. 

The minimization scheme can be summarized as follows: A heuristic or random 

order OBDD is constructed initially. If the size of the OBDD exceeds a chosen number 

--- --·-----------



153 

of nodes, the reordering is applied. Here, each variable traverses through the levels, 

exchanging its level with its adjacent variable of lower level With each exchange, an 

OKFDD is constructed with the chosen variable expanded with each of the Davio decom

positions respectively and the optimal position of the variable is found by sifting. This is 

repeated for all levels and the local optimum position and type of decomposition is desig

nated. The procedure is repeated for a next variable, and so on. Thus, only one variable 

is changed in each step and from this point of view the heuristic is very simple. 

6.4. Experimental Results 

The experimental results confinn the advantage of OKFDDs over OBDDs and 

OFDDs and show the efficiency of the approach presented. 

Herein the size of OKFDDs is compared with the size of OBDDs and OFDDs. 

First, the minimal size for arithmetical benchmark: circuits [21] is considered. The bench

marks are minimi7.ed by an algorithm similar to the one presented in [68]. The results 

are given in Table 6.1. The optimal size can only be determined for small benchmarks 

due to the exponential running time of the minimization algorithm. For small functions 

there is only a minor improvement. But for larger functions there are larger gains, e.g. 

ZS:xpl. 

ame D 

c17 5 2 6 8 6 
cm82a 5 3 11 9 9 
majority 5 1 7 7 7 
rd53 5 3 16 13 13 
rd73 7 3 30 21 21 
wim 4 7 19 22 17 
ZS 1 7 10 41 45 28 

Table 6.1. Comparison of optimal OKFDD with optimal OBDD and optimal 
OFDD with positive Davio-nodes 



154 

lil out KFDD 
1 7 44 
48 37 296 360 266 
26 11 535 727 431 
29 7 322 459 279 

cps 24 109 1040 1293 766 
f51m 8 8 38 35 25 
intb 15 7 656 624 480 
mlp4 8 8 134 107 106 
radd 8 5 33 20 19 
tslO 22 16 193 155 155 
to 1 2 571 

Table 6.2. Comparison of OKFDD with OBDD for certain benchmark functions 

In a next series of experiments, medium size benchmarks are considered for which 

the optimal ordering can not be detennined. For this purpose, some benchmarks from 

[21] and MCNC are used. These results are shown in Table 6.2. 

For all types of decision diagrams (OBDDs, OFDDs and OKFDDs), dynamic vari

able ordering [112], starting from the original variable ordering were used. In the last row 

the total sum of nodes for all the considered benchmarks is given. As it can be 

observed. the average gain is 25% when the simple ordering heuristic from previous Sec

tion is used. 

In the next set of test, hard benchmark functions were examined. Here, a node 

limit of 140,000 nodes (and for larger benchmarks a limit of 280,000 nodes) were set 

Sifting is performed when the OKFDD becomes larger than 70,000 nodes and a garbage 

collection would not delete more than 30% of the nodes. During sifting, the OKFDD is 

allowed to double in size. A lower bound for the sifting is not set The results are 

presented in Table 6.3, where the numbers in the table denote thousands of nodes. 



155 

out 
7 . . 1. 

C499 41 32 30.3 44.8 16.3 
C880 60 26 4.5 9.1 4.0 
C1355 41 32 29.S 36.2 16.3 
C1908 33 25 7.1 12.4 4.9 
C2670 233 140 6.6 6.6 3.8 
C3540 233 140 24.0 27.2 23.1 
C5315 178 123 2.7 3.1 1.8 
C7552 207 108 26.0 8.2 20.9 
s1423 91 79 4.9 5.7 1.5 
des 256 245 3.0 3.3 2.9 
pair 173 137 3.3 4.S 2.9 
rot 137 107 9.4 5.0 3.8 
to 

Table 6.3. Comparison of the number of nodes for OKFDD vs OBDD. 

In column OBDD, the results for OBDDs using the sifting operator are presented. 

All siftings started with the initial ordering as it occurs in the benchmarks. The OBDDs 

obtained by the presented method are also compared with the OBDDs obtained in [112), 

where additionally an initial topology-based heuristic was used. In all cases but one, 

C7552, t."ie OBDDs show equal or better results. The results for the OKFDDs are given in 

the last column. The improvements observed reach up to 75%. In the last row the total 

sums of nodes for all the considered benchmarks are given. As it.can be observed, even 

despite the huge effect of initial random ordering, especially in the case of C7552, the 

average gain of OKFDDs over OBDDs is about 35% when the simple ordering heuristic 

from Section 3 is used. As reported by Rudell in [112], the heuristic start can make sub

stantial difference in certain cases. The random start for C7552 is reported to result in 

23,700 nodes in [112]. 

It is further possible to incorporate more sophisticated schemes such as changing 

several decompositions in parallel. From the available results it can be inferred that the 

use of OKFDDs can potentially have drastic influence on realizations for which efficient 

OBDDs do not exist. 



156 

6.5. Relations Between KFDDs and Two-level AND/XOR Forms 

Many Two-level AND/XOR canonical forms can be constructed by flattening cer

tain KFDDs. These forms range from sum of minterms to QKRM forms. In this section, 

a brief description of these relations will be presented. 

OKFDDs can be considered to be the counteipart of the multi-level KRM fonns. It 

can be recalled that the KRM forms are constructed by the application of p, p, and a 

operators starting from the three matrices T 1, T 2, and T 3. These operators result in the 

same equations as positive Davio, negative Davio and Shannon, Equations (6.2), (6.3), 

and (6.1). In flat forms, OKFDDs translate into KRM forms where the order of variables 

is not of importance. If only Equation (6.2) is used for decomposition, the corresponding 

Two-level fonn would be that of RMC. If both Equations (fc.2) and (6.3) are used, the 

DD will be that of FDD and the corresponding Two-level fonn will be that of fixed 

polarity AND/XOR fonns. If only Equation (6.1) is used, the corresponding Two-level 

fonn will be that of sum of minterms. 

When FKFDD and variations in ordering are used, larger families of Two-level 

fonns can be identified. When the KFDD is ordered in tenns of the variables but each 

branch can have different decomposition, the DD could be tenned PKFDD as it 

corresponds to the Two-level PKRM fonn in flattened fonn. When KFDD is also free, 

then the corresponding Two-level fonn will be that of QKRM. Of course, it is possible 

to identify other Two-level fonns where the order of the decomposition is fixed but the 

order of the variables is free, etc. The reference [100] can be referred for more discus

sion on these relations. 

In the following, some relations between an OKFDD and its corresponding KRM 

fonn will be introduced. These can be used for the investigation between a minimal 

KRM representation and a corresponding KFDD • The results are mainly for single out

put functions. 



157 

Theorem 6.4. Let Q be a OKFDD corresponding to a given Two-level KRM form 

of a Boolean function. Let the number of times a literal, x;. appears in the monoterms at 

any level Li be given by Lj (x;) and let r be the level at which x; is split. Then 

Lk(x;) =L,.(x;), V k Sr. 

Proof. Let v be a vertex in the OKFDD. Let Xj be the decision variable at that 

vertex and let us assume that this variable is Shannon_type. Then/1owcv) will include all 

those terms which have Xj in negative polarity and /1ugh(v) will include all the terms 

which have Xj in positive polarity. As these terms are mutually exclusive, the terms will 

be divided between the two successors exclusively. With these tenns, all variables x;, 

other than the decision variable, Xj, will be just separated exclusively. So there will be 

no change in the number of times x; occurs from one vertex to the next level This is true 

for all vertices in the same level, so the total number of occurrences of x; is preserved 

from one level to the next. 

The same result holds for Davio-nodes. This will be shown for positive Davio

nodes. Negative ones are similar. Again let v be a vertex in the DD. Let Xj be the deci

sion variable for this vertex and assume the vertex is a positive Davio-node. As the 

Two-level KRM and the OKFDD correspond to each other, the decision variable in the 

OKFDD will have the same polarity as it appears in the Two-level form. Therefore, 

f Iaw(v) will include all those tenns which do not include the decision variable Xj and the 

exclusive sum of /1awcv) and/ high(v) will include all those terms which will include Xj

Again these terms are mutually exclusive and similarly as above, the total number of 

occurrences of any other literals x; will be preserved from one level to the next. 

The decomposition process continues until the variable x; is split and in that case, 

it will not occur in any of the subsequent levels. QED 

This means that the number of times a literal occurs at any level can be found 

directly from the corresponding Two-level expression. 



158 

Theorem 6.5 shows the independency of the nodes at certain level of the DD with 

the order of the prior decision variables. 

Theorem 6.5 Let .Q be an OKFDD corresponding to a Two-level KRM form of a 

Boolean function. Let x 1• X:z. •••• Xn be the variables expanded in the OKFDD. Let N, 

be the number of the nodes at the rth level Then Nn will be the same no matter in what 

order the variables are split Furthermore, the nodes will be the same with only differ

ence of their locations in that level 

The proof is rather involved and will not be given here. It, however, follows basic 

Properties of Boolean difference, ie. 'iPf = 'iPf and d(/ EB g) = 'iJ/ EB .2K.... 
~ ~ dXi d.Xj ax;. 

In addition, due to the correspondence between the OKFDD and the two-level KRM 

6.6. Summary 

In this chapter, this author presented KFDDs, a compact multi-level representation 

of functions as a decision diagram. KFDDs introduced were shown to be a generaliza

tion of both BDDs and FDDs. Their compaction was presented both theoretically and 

experimentally. 

The main personal contribution of this author was the application of the sifting and 

dynamic ordering to KFDDs. In this way, it was possible to show experimentally the 

compactness of these decision diagrams. While KFDDs were popularized before by the 

author, it was the compactness for the case of large functions as well as the ease of con

struction and manipulation that needed to be demonstrated. This task was accomplished 

in a joint effort with colleagues at J. W. Goethe University at Frankfurt. While, iterative 

generation of the Davio nodes was independently developed by the author and these col

leagues, the package itself was developed based on their FDD package. In the final sec

tion, the relation between various DDs and Two-level AND/XOR forms were given. 



159 

Two theorems were introduced by this author for the relation between the OKFDD and 

its corresponding Two-level KRM fonn. 

As the MUX, and AND/XOR nodes of KFDDs are available in many CA-Type 

FPGAs, using graph embedding techniques, it is possible to map these diagrams to the 

FPGA architectures. They can also be used for other FPGAs as for example in a bin 

packing approach to LUT-Type FPGAs. The application of KFDDs is. however, more 

general than just FPGAs as they can be investigated for many applications where BDDs 

are currently being used. Their main advantage is being canonical as well as more com

pact than BDDs with ease of manipulation and construction. It is the opinion of this 

author that this is a very important contribution to logic synthesis at large to which the 

author actively participated in. 



Chapter7 

Design For Testability Properties of AND/XOR Networks 

7.1. Introduction 

The XOR forms are highly testable and provide a major advantage over AND/OR 

logic in this regard. Testability of XOR gates has long been known. However, 

AND/XOR functions have the special property that their required test set is independent 

of the actual function being realized. This property is of major importance in the design 

process. Among all the AND/XOR forms, it is the CGRM that has the least number of 

tests required. 

The testability properties are of major importance in VLSL However, for FPGAs 

still testability is considered to be of a high value. While it is claimed that the FPGAs are 

fault free themselves, and taking this claim as a fact, there are still arguments for testing. 

The problems with programming the FPGA, defects that might be caused during their 

usage, etc. are among these arguments. The testing problem is of major concern in other 

technologies. The problem of test generation is known to be NP-complete [52), Hence, 

for large functions this becomes quite a formidable task. Having a universal set of tests 

for any function obviously reduces this problem drastically. Realization of Boolean 

functions in AND/XOR forms is exactly the case which results in an independent test set. 

This property will be presented in this chapter. Before presenting the testability charac

teristics of these forms, certain terms and concepts related to testing will be provided. 

This chapter is based on the original paper, A. Sarabi, and M A. Perkowski. Design for Testabili
ty Properties of AND/XOR Networks, IFIP WG 10.5 Workshop on Applications of the Reed
Muller Expansion in Circuit Design, Hamburg, Gennany, September 1993. 



161 

The basic aim of testing at the chip level is the identification of faults in a circuit. 

A fault of a circuit is a physical defect of one or more components. The basic faults in 

any VLSI integrated circuit can be classified into two major categories, that of perimetric 

faults and logical faults. While the perimetric faults are related to the physical defects, 

the logical faults are associated with the logical aspects of the circuits. Perimetric faults 

are those responsible for alterations in the magnitudes of a circuit parameter, causing a 

change in some factor such as the circuit speed, current, or voltage. Logical faults on the 

other hand, are the ones that cause changes in the logic function of a circuit element or an 

input signal to some other logic function. The perimetric faults are of concern in the 

structural level design of logic circuits and the logical faults are associated with the func

tional level and this is precisely where the properties of the AND/XOR forms are of 

paramount importance. Other faults include those of delay faults, e.g. slow gates which 

usually only affect the timing performance and could result in hazards or critical :races, 

and intermittent faults which occur only in some intervals and are very difficult to detect. 

The logical faults in their place can be also divided into two classical classes of 

bridging faults and stuck-at-faults. Bridging faults occur particularly in MOS LSI cir

cuits. These are mainly due to a short connection in the circuit between two or more 

lines resulting in circuit malfunction. This short circuit can be modeled as either a 

wired-AND or wired-OR function. The stuck-at-faults are themselves divided into 

stuck-at-I and stuck-at-0 which occur at the inputs of the logic gates and cause the inputs 

to remain either at 1 or O permanently. 

AND/XOR forms, due to the testability characteristics of the XOR, have major 

properties of interest in design for testability. The small number of test sets and their 

independence of the Boolean function itself, as well as their controllability and observa

bility are the major factors. This is due to the property of XOR that any change over one 

of its inputs is directly reflected on its output. Among all of these forms, Reed-Muller 



162 

canonical forms require the least number of test sets for detecting stuck-at and bridging 

faults. It will be shown in the next section that the CGRM forms have also the same 

number because the input variables retain the same polarity throughout the expansion. 

The other forms are known [105] to require larger test sets. In the following, the testabil

ity properties of the RMC, CGRM, and CRMP forms will be presented. This will be 

next contrasted. with other forms. The presentation will be divided into discussion of 

stuck-at-faults and bridging faults. Each of these faults will also be divided into further 

subdivisions. The testability of the circuits realized from KFDDs has been studied by our 

colleagues in Frankfurt and this topic will not be mentioned here. 

7.2. Detection of Stuck-at-Faults in CGRM Networks 

The discussion of stuck-at-faults (SAF) can be presented in terms of single SAF 

and multiple SAF. Single SAF can further be investigated depending on whether the pri

mary inputs are fault-free or not. These cases will be described in the following. 

The first author to find the testability properties of Reed-Muller forms was Reddy 

(109]. The results obtained by Reddy for single SAFs are summarized in the following: 

1) "[ffhe primary inputs leads are fault-free, then there exists a realization for 

an arbitrary n -variable logic junction that requires a fault detection test set 

with only n + 4 tests and this test is independent of the function being real

ized. 

2) If the primary input leads could be faulty, then only n + 4 + 2ne tests are 

required for detecting faults, where ne is the number of variables appearing 

in an even number of terms in the Reed-Muller expansion for the function 

being realized. 



163 

3) If the primary input leads could be faulty, then by adding an extra observ-

able output and an extra AND gate, the (n +4) tests of 1) will be sufficient 

and these tests will again be independent of the function being realized." 

The circuit here is assumed to be composed of a cascade. of XOR gates with a 

secondary input from AND gates each composed of different combinations of variables. 

An example of the this scheme for the function 

Figure 7.1 The cascade network for RMC 

In order to detect single SAF in a cascade of XOR gates, it is sufficient to apply a 

set of tests covering all possible input combinations to each cell [109]. The following 

test set satisfies this purpose: 

0000 .•. 0 
0111 ... 1 
1000 ... 0 
1111 ... 1 

Any stuck-at-0 fault at any AND gate input or output can be detected by applying 

either of the test inputs (0111...1, 1111...1]. Similarly, any stuck-at-I fault at output of 

any AND gate can be detected by applying either of the test inputs [0000 ... 0, 1000 ... 0]. 

A stuck-at-1 fault at any input of the AND gates can be detected by the set T 2: 



164 

dOll ... 1 
dlOl ... 1 
dllO ... l 

T2= d 1 1 1 ... 1 

. . 
dlll ... O 

where d stands for don't care. The total number of the tests in T = T 1 u T 2 is then the 

sum in T 1 and T 2 which is 4 +n. 

The above results are true when none of the primary inputs are faulty. If any of the 

primary inputs are faulty as well, additional tests are required. As the XOR gate detects 

an odd number of changes, the n + 4 tests above detect faults at those primary inputs that 

occur in an odd number of AND gates. For the primary inputs that occur in an even 

number of AND gates, as is suggested by Reddy, it is required to apply two tests for each 

of these inputs. In this method, the inputs of interest that occur in products with the smal

lest number of literals are chosen. The stuck-at-one is identified by choosing the inputs 

occurring in the products one at a time and assigriJng them zero along with t11e literals 

that do not occur in this product. The other variables in the product are assigned the 

value of 1. Detection of stnck-at-z.eros is similar with the difference that the input vari

able of interest is assigned the value of 1 instead. These tests detect the stuck-at-0 and 

stuck-at-I faults in the faulty primary inputs occurring in an even number of times. This 

leads to the point 2) above. 

The idea behind point 3) is that having an additional AND gate with its inputs 

being the primary inputs that occur in an even number of products can reflect the faults at 

these primary inputs. The test set in point 1) will then be adequate to detect all the SAFs. 

In order to make sure the faults detected are not due to the primary inputs, another AND 

gate can be added exactly the same as above. For further discussion the reader can refer 

to (109]. 



165 

The test sets given by Reddy above were shown by Kodandapani [74] to be reduci-

ble. Kodandapani has shown that by assigning specific values to. the don't cares in the 

matrix T 2, and a certain scheme of reorganizing the tenns, one of the tests in T 1 can be 

reduced. In this way, the number of tests required to detect any single stuck-at-fault in an 

AND gate or a single faulty XOR gate can be reduced ton + 3. 

The above results were for the cases where only single SAFs are involved. When 

there are multiple faults involved, the test set is again shown to be independent of the 

function. Saluja and Reddy [114] have shown that to detect t faults, t ~ 1, only 

(6) 

tests are required to detect all t-multiple stuck-at-faults (where LxJ stands for the integer 

part of x ). With addition of an extra AND gate and one observable output, the single 

stuck-at-faults can be detected as well. Fmthermore, Saluja has shown that by addition 

of extra observable outputs, the same n + 4 independent tests can detect all single and 

multiple stuck-at-faults [113]. 

It can be easily shown that any universal test set generated for detection of single 

stuck-at-faults of an RMC fonn can be modified for any CGRM fonn by just inverting the 

test bi~ for those variables which are of negative polarlty in the CGRM. As the input to 

the AND gates are the complements of the test bits for the case of complemented vari

ables, this inversion makes the test bit to be equivalent to the RMC network described 

above. Hence the same results hold true for the CGRM networks. This is shown by an 

example below: 

Example 7.L Let a network be represented by 1 E9x1x2 E9x1x4 E9x1X:zX3 

EBX:aX3X4 EBxix2x3X4. This is an RMC network with the following universal tests for 

detection of the stuck-at and bridging faults: 

-· ----------- --~----



f 
00000 
0 1 1 1 1 
1 0 0 0 0 
1 1 1 1 1 

d O 1 1 1 
d 1 0 1 1 
d 1 1 0 1 
d 1 1 1 0 

166 

Now let us assume a CGRM network has been given in the form 

1 EB.x1x2 EB.xJ74 tB.x1x2x3 EBx2,X3X°4 tB.x1X2,X3X°4. In this form,x1 andx4have negative 

polarities and thus their respective columns are complemented with respect to the above 

RMC network. The universal tests for detection of the stuck-at and bridging faults of the 

CGRM network will be: 

0 1 0 0 1 
0 0 1 1 0 

T1=1100l 
1 0 1 1 0 

d 1 1 1 0 
d O O 1 0 

T2= d O 1 0 0 
d O l 1 1 

□ 

If the inversions are to be generated internally, an extra AND gate with observable 

output can be added to the network. This AND gate should have as input all the vari

ables that appear with negative polarity in the CGRM fonn. This gate will detect the 



167 

faults produced by any of the inverters. 

It has to be noted that the same tests would detect the stuck-at-faults of a multi

output CGRM network. The difference is that the observable points will be the same as 

the outputs and they have to be examined for each of the functions being realized. 

7.3. Detection of Bridging Faults of CGRM Networks 

The RMC networks not only have universal test sets for detection of stuck-at

faults, but there exist similar schemes for detection of the bridging faults. It has been 

shown [16] that with certain modifications the same universal tests for detection of 

stuck-at•:.faults can be utilized to detect bridging faults of the RMC networks. 

Before describing the bridging fault detection schemes, certain classification of the 

bridging faults will be described. Bridging faults result from short connections in the cir

cuits. These shorts can occur at the inputs of logic gates, input lines to different logic 

gates, or between the lines of the same logic level These bridging faults are called intra

gate, intergate, and intra/eve/ respectively. The bridging faults can in turn be either 

wired-AND or wired-OR function, depending on positive or negative logic. 

The results obtained by Bhattacharya, et al regarding the bridging faults detection 

of RMC networks are as follows: 

Theorem [Bhattacharya] An RMC network of n variable function can be aug

mented by adding an extra AND gate, with all input variables as its input, so that the 

universal test set T, of cardinality n + 4 is sufficient to detect the different intralevel 

OR-bridging faults, as well as all single stuck-at-faults. 

This augmentation for the network in Figure 7 .1 is shown in Figure 7 .2. 

Theorem [Bhattacharya] An RMC network of n variable function can be aug

mented by adding an extra OR gate so that the universal test set Tu, of cardinality 2n + 4 

is sufficient to detect the different intralevel AND-bridging faults, as well as all single 



stuck-at-faults. Tu =TUT u where 

dlOO •.• O 
d010 ... 0 
dOOl •.. O 

Tu=d000 •.. 0 

. . . . . . . . 
d000 ... 1 

168 

The scheme for addition of the OR gate is similar to the one shown in Figure 7.2 

with the difference that the augmented AND gate is replaced with an OR gate of all input 

variables. 

For the case of CGRM networ~ Bhattacharya, et al propose a different circuit 

augmentation scheme. In this case for detection of OR-bridging faults, it is proposed that 

three additional gates be added to the network. These gates are one n -input AND gate of 

all primary inputs, one n-input OR gate of all pThua..-y i.,puts. and an n 1-input AND gate, 

where n 1 is the number of complemented literals in the CGRM expansion. The inputs to 

this AND gate are derived from the outputs of the inverters producing the negated inputs. 

The test set devised for the RMC network to detect AND-bridging faults can then be 

applied to detect the OR-bridging faults of the CGRM network. A similar augmentation 

can be devised for detection of the AND-bridging faults for the CGRM network. 

Figure 7.2 Augmentation of the network in Figure 7 .1 for detection of OR-bridging faults 

If no augmentation is to be incorporated, Damarla and Karpovsky [36] give an 



169 

upper bound for the number of test patterns to detect all single Stuck-at-faults and all sin

gle detectable AND and OR bridging faults of an RMC network. In this scheme for an 

RMC network with k outputs and n inputs (k s;in ). at most 3n + 5 test patterns are 

needed to detect all single stuck-at-faults and both AND and OR bridging faults which 

are detectable. 

7.4. Detection of Stuck-at-Faults in Mixed-Polarity Networks 

Pradhan [105] has given a universal test set for multiple fault detection of mixed 

polarity AND/XOR networks when the inversion of inputs is produced internally using 

XOR gates. This universal test set which is independent of the function was shown to be 

of cardinality 

(7) 

where n is the number of variables of order j. the maximum number of literals contained 

in any product term in the AND/XOR expression. This universal test set is comprised of 

T 3, T 4, and T 5, where 

T 51 o o o ... ol 
31 =10 1 1 1 . . . tJ 

1100 ... 0 
1010 ... 0 
1001 ... 0 

T32= ... 0 

. . 
1001 ... 1 



0 0 I I ... 1l 
170 

o 1 o 1 ... }I· 
0110 ... -

T33= 

. . 
0111 ... 0 

0000 ... 0 
T 1000 ... 0 

4= 0 1 1 1 ... 1 
1000 ... 0 

and Ts = T .j, where T .j is the set of n-vectors with the number of l's in the vectors 

being less than or equal to j. 

7.5. Detection of Stuck-at and Bridging Faults in CRMP Networks 

The Canonical Restricted Mixed Polarity AND/XOR networks are the largest class 

of AND/XOR canonical networks where a product tenn of certain literals occurs only 

once in the network. Moreover, a CRMP network can be decomposed into its component 

CGRM networks. Each CGRM network can be then examined with its universal test sets 

for detection of stuck-at and bridging faults using the procedures described in previous 

sections. In this way, it is possible to devise a method for the case of CRMP networks 

which can result in a reduced number of tests as compared to the result obtained. by 

Pradhan in the general case. 

In chapter 4, it was mentioned that in CRMP form, certain terms include literals of 

the same polarity and hence can be grouped together as component CGRM forms of that 

CRMP . For r component CGRM networks, the number of tests required to detect 

stuck-at and bridging faults can be r times the number of test sets for each component, 

provided that there are r observable outputs corresponding to the component CGRMs. 

However, as some of the variables occur in different polarities in different component 

- ------------------



171 

CGRM networks, there will be some tests which would occur more than once. There will 

also exist tests which are termed compatible. By combining the compatible tests and 

applying the repeated tests only once, it is possible to reduce the overall number of tests. 

Definition two tests are compatible if all corresponding bits in the two test vectors 

are compatible. Two test bits are compatible if one of them is don't care or they are both 

the same. 

Example 7.2. 10-0100 and 1-0-1-0 are compatible while 10-0100 and 1010000 are 

not. □ 

With identification of the compatible tests, it is possible to construct a compatibil

ity graph. In this graph the nodes represent the tests and the nodes that are compatible 

will be adjacent The problem of reducing the number of tests for a CRMP network can 

then be formulated as follows: 

• Decompose the CRMP network into its component CGRM networks. 

• Generate the test sets for each of the component CGRM networks. 

• Remove the repeated occurrences of the same tests. 

• Construct the compatibility graph of the tests. 

•- Find the disjoint covering of the graph with maximum cliques. 

Once the covering is chosen, a single test is created for each group of compatible 

tests by combining them ( 0 and d gives 0, 1 and d gives 1). As an example, the test used 

for the two compatible tests dlO and ldd will be 110. 

The test reduction method will be shown by Example 7.3 below: 

Example 7.3. Let a CRMP network be represented by 1 EB.x1x2 EBx1.x4 EBx1x2x3 

EB.f:i:X3,X°4 EBx1x 2xJX4• This network can clearly be represented by 3 component CGRM 

networks given by: C1 = 1 EBY1x2EB.x1x2XJX4, C2 =x1.x4 EB.x2XJX4, and C3 =x1x2x3. 

The test sets for each of the component CGRM networks are then: 

--- - - - ------------



ro 1 o o ol 
0 0 1 1 ~, 
1 1 0 0 0 
1 0 1 1 1 

C1:dllll 
d O O 1 1 
d O 1 0 1 
dOllO 

d O 1 0 1 
d 1 0 1 0 
d O O i 0 

C2: d 1 1 1 0 
d 1 0 0 0 
d 1 0 1 1 

dOOOd 
d I 1 1 d 
d 0 1 1 d 
d 1 0 1 d 
d 1 1 0 d 
d 1 1 1 d 

172 

It can be seen that dl 1 ld in C 3 occurs twice and one of them will be used. It is the same 

case with d0101 in C 1 and the one in C2. The compatible tests are {01000, dlO00}, 

{00111, d0lld}, {11000, dlO00}, {10111, d0lld}, {d1111, dllld}, {d0llO, d0lld}, 

{d1010, dlOld}, {dlll0, dllld}, and {dlOll, dlOld} while d00ll, d0101, d0010, and 

dl 10d are not compatible with any ot.1ier tests. Now, a minimal number of non

redundant tests can be devised where only one test will be created from each set of com

patible tests. D 

As it can be seen, in this method the test sets would no longer be universal: how

ever, depending on the number of component CGRM networks, the variables present and 

their polarities, it may be possible to reduce the number of tests drastically. The merits 

of the method vary with the type of the CRMP network and will not always yield the 

same gains. It also requires as many observable points as the number of component 

CGRM networks. 

7.6. Detection of Stuck-at-Faults in Reed-Muller Trees 

The basic tree structure realizing the Reed-Muller trees is shown in Figure 7.3. In 

this structure, the inputs to any AND gate is one of the input variables and the output of 

one XOR gate from a previous level The inputs to an XOR gate is either an AND gate 

or another XOR gate. The tree expansion tenninates with 0 or 1 at certain branches. In 

this case, the constants will be the input to one of the XOR gates and that branch will 

stop from expanding. 



173 

x3 x2 x1 

Figure 7.3 The Reed-Muller Tree for a 3-variable function 

Let us observe that applying ls to the input variables will result in all the AND 

gates to become transparent; i.e. the tree will be one of XOR-tree. It has been shown 

[61) that four tests are necessary and sufficient to detect all single stuck-at-faults of an 

XOR-tree. Moreover, it has been shown [135) that at most L3n/2J + 1 tests would detect 

all multiple-stuck-at faults of XOR-trees. For detecting stuck-at-faults of the AND 

gates, it can be seen that applying Os for all the constant inputs to the XOR gates and ls 

for all input variables and constant inputs to the AND gates will detect stuck-at-Os at the 

AND input gates. Detecting stuck-at-1 faults at the inputs to AND gates requires a set of 

n + 1 ~sts shown below: 

1 .. 011 .. 1 
1 .. 101 •. 1 
1 .. 110 .. 1 

T"= 1 •. 1 1 1 .. 1 

- . . . . - . . . 
1 .. 111 .. 0 

where a 1 through am represent the constant inputs to the XOR gates and a p represents 

the constant to the last level AND gate. 



174 

Similar to the CGRM forms, for the case of CGRM trees, there are some input vari-

ables that will be in negative polarities but the structure is similar to the Reed-Muller 

tree. Here, for those variables that occur in negative polarity, the tests need to be the 

bit-wise opposite to the corresponding test bit in the Reed-Muller tree. If the inversions 

are to occur inside the chip, an extra AND gate with obsezvable output having all the 

negated inputs as its input would be required. 

7.7. Summary 

In this chapter, the testability of AND/XOR fonns was reiterated and extended for 

certain of these forms. Specifically, it was shown for the first time that the universal test 

vector for detection of stuck-at-faults and bridging faults in Reed-Muller cascades can be 

directly used in fixed polarity forms with slight modffication. In addition, a scheme for 

identification of a minimal test vector for Generalized AND/XOR forms was introduced. 

While investigation of the testability of multi-level XOR forms is new, a step in this 

direction was introduced by this author for the case of Reed-Muller trees. 



Chapters 

Conclusion 

This dissertation introduced new concepts in synthesis and mapping for CA-type 

FPGAs based on XOR logic which have applications for logic synthesis in general. 

While the synthesis and mapping to LUT-Type and row based FPGAs have attracted 

considerable attention, the CA-Type FPGAs have been essentially lacking adequate syn

thesis methods. This is in contrast to the increasing attention the CA-Type FPGAs have 

received as major FPGA architectures. In this dissertation, the author developed several 

new methodologies for synthesis and mapping to these fine-grained FPGAs with mostly 

local interconnections. 

As mentioned earlier, the main characteristics of the CA-type FPGAs is their fine 

granularity and their emphasis in local communications. The logic blocks in most of 

these architectures are capable of realizing a large number of functions of two - or three 

inputs. Therefore, the architecture supports a much wider array of logic operations than 

the simple AND/OR logic. Furthermore, the local communications among the cells 

create restrictions on the placement and routing which need to be considered. In this 

dissertation, XOR logic and the concept of regularity were used by this author to address 

the fine granularity and local interconnections of these type of FPGAs. 

XOR logic has long been known to be, in general, more compact than AND/OR 

and possess high design for testability properties. This knowledge was extended in this 

dissertation to reaffirm the compactness of the XOR logic on new synthesis methods and 

provide new synthesis tools to make the utilization of this logic more practical. 



176 

This author introduced. a new concept of Universal XOR Forms which provides the 

framework for investigation of all possible XOR canonical representations of the 

Boolean functions. Up to now, only AND/XOR representations of functions were 

known. It was long known that the set of -variable Boolean functions under addition 

mod-2 forms a space over the Galois field of two elements, GF(2). It was also known 

that different AND/XOR canonical forms form bases in this vector space. However, this 

study had remained confined to AND/XOR bases only. In this dissertation, this approach 

was taken to its logical conclusion and was extended to all possible XOR canonical 

forms including various AND/OR/XOR canonical forms. 

In terms of the logic blocks in CA-Type FPGAs and many architectures in general, 

AND, OR, and XOR are more available than other gates. Hence, among all UXF, vari

ous AND/OR/XOR canonical forms were more concentrated on. The author has shown 

ity and Generalized AND/XOR canonical forms. 

A fast method for reali7.a.tion of functions in fixed polarity AND/XOR canonical 

form was introduced. These forms are the basis for many other forms and are the most 

easily testable of all forms. The method utilized special characteristics of functions 

given as an array of disjoint cubes in order to identify a minimal polarity. Both exhaus

tive and heuristic methods were presented. Various operations and techniques in this 

chapter were presented which are new and are all solely based on the works of this 

author. 

In addition, the larger class of Generalized AND/XOR forms were presented and 

the utilization of the fixed polarity forms in minimization of functions in these forms 

were shown. The Generalized AND/XOR forms comprise a large class of forms and 

their testability is of smaller cardinality than the ESOP representations of functions. This 

author has contributed to the minimization methodology and the test generation where 

the testing properties are totally new. 



177 

While the Boolean techniques for identification of a minimal UXF representation 

of a function could result in more compact representation, these techniques are usually 

very slow. For this purpose, algebraic methods were also investigated. Based on the 

fonner work of Song [143], this author introduced an algorithm which identifies a 

minimal restricted factored representation of the functions. The generalizations to the 

complex terms introduced in [143] are also new here. Next, it was shown experimentally 

by this author that through the factored fo11I1Sy it is possible to devise a multi-level 

AND/OR/XOR representation of functions which is more compact than ESOPs, which 

are generally themselves more compact than SOPs. The advantage for CA-Type FPGAs 

is that these factored forms would directly map to them while general factorization will 

be difficult to rout. 

All of the above synthesis methods fit within the framework: of Complex Maitra 

Logic Arrays. In this approach, which is a generalization of PLA and XPLAs, the two 

stages of logic synthesis and physical design are combined alleviating the routing stage 

wf,Jch is of problem in CA-Type FPGAs. The CMLA was presented as an OR or XOR 

of complex terms which include AND, OR, and XOR of literals. With limited intercon

nection among the cells, this approach, while being multi-level, provides a direct map

ping 5trcltegy which is the main problem with CA-Type FPGAs. This author has also 

contributed to the concept of CMLA, and in particular, he is the author of a general fold

ing technique which results in further compaction of the mapping. Experimental results 

of the algorithms developed by this author illuminated the advantage of these techniques. 

A different regular structure-based synthesis method was that of the Ordered 

Kronecker Functional Decision Diagrams. In this dissertation the concept of the 

Kronecker Functional Decision Diagrams was presented as a generalization of the Binary 

Decision Diagrams and Functional Decision Diagrams. The main contribution of this 

author was the application of the dynamic variable ordering with sifting, introduced by 



178 

Rudell, to the KFDDs. I have also contributed to various topological heuristic techniques 

for the identification of a minimal KFDD only partly discussed here and partly in [117]. 

The latter reference first popularized these decision diagrams in the research community. 

By using the sifting technique, it was possible to evaluate the compactness of this 

representation as compared to BDDs. While, compactness of KFDDs was known intui

tively, the theoretical work by Becker et al. [41] has illuminated their advantages. They 

showed that there exists a class of functions for which BDDs are exponential while FDDs 

are polynomial and vice versa. Hence, using KFDDs as a generalization of both of these 

is more advantageous than using only one. Furthennore, they showed that there exists a 

class of functions for which both BDDs and FDDs are exponential while KFDDs are 

polynomial. 

For, the KFDDs to have practical use, it is important to be of ease of construction 

and manipulation. While the iterative generation of the Davio nodes was independently 

developed by the author and the colleagues at J. W. Goet.1ie University, the generation of 

the package is due to t.iese colleagues. Utilizing the dynamic variable ordering with sift

ing, it was possible to experimentally substantiate the advantages of the KFDDs. For 

large benchmark functions, it was shown that on average KFDDs are 35% more compact 

than BI?Ds with reductions of up to 75% being observed. · 

As KFDDs are canonical, easy to construct and manipulate and more compact than 

BDDs, they can potentially be of major value in logic synthesis in general. As there exist 

hard functions that have not been able to be represented by BDDs, it could be of interest 

to evaluate KFDDs whether they are able to represent these functions. In addition, it is 

possible to develop more efficient applications in the areas where BDDs have been gen

erally used. These include areas in synthesis, verification, modeling, testing, etc. 

The MUX and AND/XOR nodes of KFDDs are available in most CA-Type 

FPOAs. Hence, it is possible to use KFDDs for synthesis and utilize graph embedding 



179 

techniques for mapping to these FPGAs. In this dissertation, the synthesis aspect was 

emphasized on. 

The logic synthesis techniques also possess high testability properties. These pro

perties were illuminated in the dissertation by introducing testability schemes for some of 

these forms. Specifically, it was shown for the :first time in this dissertation that the 

universal test vector for detection of stuck-at-faults and bridging faults in Reed-Muller 

cascades can be directly used in fixed polarity forms with slight modification. In addi

tion, a scheme for identification of a minimal test vector for Generalized AND/XOR 

fomlS was introduced. While investigation of the testability of multi-level XOR forms is 

new, a step in this direction was introduced for the case of Reed-Muller trees. This result 

by the author is among the very few recent studies on testability of multi-level 

AND/XOR networks. 

The methodologies presented in this dissertation can be still extended further, how

ever, they provide new frameworks which can contribute to the investigation of CA-Type 

FPGA synthesis and synthesis with XOR. It can be claimed that utilization of XORs has 

gained much more credibility already from the time that the work on this dissertation 

started. This can be observed from the new groups that work in this area as well as the 

organizing of the first workshop devoted to this logic. It can further be claimed that the 

work of our group and this author as part of the group has had some impact in the popu

larization of the concepts of XOR synthesis. This dissertation is just illuminating the 

areas which are of high research potential in future. 

In summary, this dissertation provided general methodologies for CA-Type FPGA 

synthesis which until now were less than adequate. As mentioned. in the introduction, the 

available methods with one exception of the lexicographical ordering method were very 

inefficient and could not handle general purpose functions. The methodologies intro

duced here have addressed this problem. In addition, as a result of this research, general 



180 

synthesis tools and concepts were developed which are of value to research community 

at large. Kronecker Functional Decision Dia~ the concept of UXFs, and the 

approaches presented for the minimization of Boolean functions in fixed polarity 

AND/XOR canonical forms can be considered the major contributions by this author. 



181 

References 

1. S. B. Akers, "On a Theocy of Boolean Fu.11ctlons," J. of SIAM, vol 7, pp. 487-498, 
1959. 

2. S. B. Akers, ''A Rectangular Logic Array," IEEE Trans. on Comput., vol C-21, 
No.8,pp.848-857,1972. 

3. S. B. Akers, "Binary Decision Diagrams," IEEE Trans. on Comput., vol 27, pp. 
509-516, 1978. 

4. E. Artin, Geometric Algebra, Interscience Publishers, Inc., 1957. 

5. A. Aziz, F. Balarin, R. K. Brayton, S. Cheng, R. Hojati, S. C. Krishnan, R. K. Ran
jan, A. Sangiovanni-Vincentelli, and T. R. Shiple, ''HSIS: A BDD-Based. Environ
ment for Formal Verification," Proc. 31st ACM/IEEE Design Automation Conf, 
1994. 

6. P. Ashar, A. Ghosh, S. Devadas and AR. Newton, "Combinational and Sequen
tial Logic Verification Using General Binary Decision Diagrams," IEEE Int. 
Workslwp on Logic Synthesis, 1991. 

7. AT.MEL Corporation, CMOS Integrated Circuit Data Book, 1994. 

8. B. Becker, R. Drechsler, and R. Werchner, "On the Relation Between BDDs and 
FDDs," Technical report, Universitlit Frankfurt, Fachbereich Informati.k, 1993. 

9. B. Becker, R. Drechsler, and M. Theobald, "On the Implementation of a Package 
for Efficient Representation and Manipulation of Functional Decision Diagrams," 
Proc. of the IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expan
sion in Circuit Design, pp. 162-169, Hamburg, Germany, Sept 1993. 

10. 1: Bentley and H. T. Kung, "A Tree Machine for Searching Problems," Proc. 
IEEE Int. Conf Parallel Processing, pp. 257-266, 1979. 

11. J. Bern, J. Gregov, C. Meinel, and A. Slobodova, "Boolean Manipulation with 
Free BDDs - First Experimental Results," Proc. IEEE Europ. Conf on Design 
Automation, 1994. 

12. Ph. W. Besslich and M. W. Riege, "An efficient Program for Logic Synthesis of 
Mod-2 Sum Expressions," Proc. of IEEE EUROASIC,pp.136-141, 1991. 

13. Ph. W. Besslich and E. A. Trachtenberg, A Three-Valued Quasi-Linear Transfor
mation for Logic Synthesis, C. Muroga and R. Creutzburg (eds.). Spectral Tech
niques: Theory and Applications, Elsevier, North Holland, 1992. 

14. T. Besson, H. Bousouzou, M. Crastes, I. Floricica, and G. Saucier, "Synthesis of 
Multiplexer-based FPGA Using BDD," Proc. IEEE Int. Conf. on Comput. Design, 



182 

pp. 163-167, October 1992. 

15. S. N. Bhatt and C. E. Leiserson, "How to Assemble Tree Machines ," Proc. 14th 
ACM. Symp. Theory Comput., pp. 77-84, 1982. 

16. B. B. Bhattacharya, B. Gupta, S. Sarkar, and A. K Choudhury, "Testable Design 
of RMC Networks with Universal Tests for Detecting Stuck-at and Bridging 
Faults," Proc. IEE Pt. E., vol 132, No. 3, pp. 155-161, 1985. 

17. G. Bioul, and M. Davio, "Taylor Expansions of Boolean Functions and of their 
Derivatives," Philips Res. Rep., vol 27, No. 1, pp. 1-6, 1972. 

18. D. Bostick, G. Bachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C.R. Morrison, 
and D. Ravenscroft, "The Boulder Optimal Logic Design System," Proc. IEEE 
Int. Conj. on CAD, pp. 62-65, 1987. 

19. K. S. Brace, R. L. Rudell, and R. E. Bryant, "Efficient Implementation of a BOD 
Package," Proc. of the 27th ACM/IEEE Design Automation Conj., pp. 40-45, 
1990. 

20. K. S. Brand and T. Sasao, "Minimization of AND-EXOR Expressions Using 
Rewrite Rules," IEEE Trans. on Comput., vol C-42, No. 5, pp. 568-576, 1993. 

21. R. K. Brayton, G. D. Bachtel, C. McMullen, and A. Sangiovanni-Vincentelli, 
Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 
1984. 

22. R. K. Brayton, R. L. Rudell, A. Sangiovanni-Vincentelli. and A. R. Wang, "MIS: 
Multi-Level Interactive Logic Optimization System," IEEE Trans. on CAD, vol 6, 
No. 6, pp. 1062-1082, 1989. 

23. R. E. Bryant, ''Graph-Based Algorithms for Boolean Function Manipulation,'' 
IEEE Trans. on Comput., vol C-35, No. 8, pp. 667-691, 1986. 

24. R. E. Bryant, "On the Complexity of VLSI Implementations and Graph Represen
tations of Boolean Functions with Application to Integer Multiplication," IEEE 
Trans. on Comput., vol C-40, pp. 205-213, 1991. 

25. R. E. Bryant, "Symbolic Boolean Manipulation with Ordered Binary Decision 
Diagrams," ACM Comput. Surveys, vol 24, pp. 293-318, 1992. 

26. K. M. Burch, "Multiplier Verification Using BDDs," Proc. 28th ACM/IEEE 
Design Automation Conj., pp. 408-412, 1991. 

27. K. M. Butler, D. E. Ross, R. Kapur, and M. R. Mercer, "Heuristic to Compute 
Variable Orderings for Efficient Manipulation of Ordered Binary Decision 
Diagrams," Proc. 28th ACM/IEEE Design Automation Conj., pp. 417-420, 1991. 



183 

28. A. Calazans, Q. Zhang, R. Jacobi, B. Yemaux, and A. M. Trullemans, "Advanced 
Ordering a.,d Ma..-upulati.on Techniques for Binary Decision Diagrams." Proc. 
IEEE Europ. Conj. on Design Automation, pp. 452-457, 1992. 

29. P. Calingaert, "Switching Function Canonical Forms Based on Commutative and 
Associative Binary Operations," Trans. of A/EE, vol 80, pp. 217-224, 1961. 

30. M. Cohn, "Inconsistent Canonical Fonns of Switching Functions," IRE Trans. on 
Elec. Comput., vol. EC-11, pp. 284, 1962. 

31. Concurrent Logic, Inc., A Seminar at Portland State University, Portland Oregon, 
Nov.1992. 

32. M. Crastes, K. Sak:outi, and G. Saucier, '' A Technology Mapping Method Based 
on Perfect and Semi-Perfect Matchings," Proc. 28th ACM/IEEE Design Automa
tion Conj., pp. 93-98, San Francisco, CA, June 1991. 

33. L. Csanky, On the Generalized Reed-Muller Canonical Form of Boolean Func
tions, M.S. Thesis, University of California, Berkeley, 1972. 

34. L. Csanky, M. A. Perkowski, and L SchMer, "Canonical Restricted Mixed Polarity 
Exclusive-OR Sums of Products and the Efficient Algorithm for their Minimiza
tion," Proc. IEE Pt. E., vol 140, No. 1, pp. 69-77, 1993. 

35. J. Darringer, D. Brand, J. Gerby, W. Joyner, and L. Trevillyan, "LSS: A System 
for Production Logic Synthesis," IBM J. Res. Develop., pp. 537-545, 1984. 

36. T. Damarla and M. Karpovksy, "Detection of Stuck-at and Bridging Faults in 
Reed-Muller Canonical (RMC) Networks," Proc. IEE Pt. E., vol 136, No. 5, pp. 
430-433, 1989. 

37. M. Davio, "Ring-Sum Expansions of Boolean Functions," Proceedings of the 
Symposium on Computers and Automata, pp. 411-418, Polytechnic Institute of 
Brooklyn, 1971. 

38. M. Davio, J. P. Deschamps, and A. Thayse, Discrete and Switching Functions, 
McGraw-~ 1978. 

39. R. Drechsler, M. Theobald, and B. Becker, "Fast FDD Based Minimization of 
Generalized Reed-Muller Forms," Personal Communication , 1993. 

40. R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski, "Efficient 
Representation and Manipulation of Switching Functions Based on Ordered 
Kronecker Functional Decision Diagrams," Proc. 31st ACM/IEEE Design Auto
mation Conf., 1994. 

41. R. Drechsler, A. Sara.bi, M. Theobald, B. Becker, and M.A. Perkowski, "'On the 
Computational Power of Ordered Kronecker Functional Decision Diagrams," Sub
mitted to IEEE Int. Conj. on CAD, 1994. 

--------------------· -------



184 

42. V. Dvorak, ••A Two-Rail Cascade Synthesis of Boolean Functions," IEEE Trans. 
on Comput., voL C-17, No. 6, pp. 592-596, 1968. 

43. B. Elspas, The Theory of Multirail Cascades. pp. 315-367, Recent Developments 
in Switching Theory, Ed. A. Mukhopadhyay, Academic Press, 1971. 

44. B. J. Falkowski, L Schf!fer, and M. A. Perkowski, "Fast Computer Algorithm for 
the Generation of Disjoint Cubes for Completely and Incompletely Specified 
Boolean Functions," IEEE 33rd Midwest Symp. on Circuits & Systems, 1990. 

45. B. J. Falkowski, Spectral Methods for Boolean and Multiple-Valued Input Logic 
Functions, PhD Dissertation, Portland State University, Portland Oregon, 1991. 

46. L. T. F"ISher, .. Unateness Properties of AND-Exclusive-OR Logic Circuits," IEEE 
Trans. on Comput., vol C-23, No. 2, pp. 166-172, 1974. 

47. R. J. Francis, J. Rose,. and Z. Vranesic, "Chortle-crf: Fast Technology Mapping for 
Lookup Table-Based FPGAs," Proc. 28th ACM/IEEE Design Automation Con/., 
pp. 227-233, San Francisco, CA, June 1991. 

48. S. J. Friedman and K. J. Supowit, "Finding the Optimal Variable Ordering for 
Binary Decision Diagrams," Proc. of the 24th ACM/IEEE Design Automation 
Co,if.,pp.348-356,1987. 

49. S. J. Friedman, Efjicient Data Structures for Boolean Function Representation, 
PhD Dissertation, Dept of Comput. Sciences, Princeton University, 1990. 

50. Froessl, J. and Eschermann, B., "Module Generation for AND/XOR-Fields 
(XPLAs)," Proc. of Int Co,if. on Comput. Design, pp. 26-29, 1991. 

51. M. Fujita, Y. Matsunga and T. Kakuda, "On Variable Ordering of Binary Decision 
Diagrams for the Application of Multi-Level Synthesis," Proc. IEEE Europ. Co,if. 
on Design Automation, pp. 50-54, 1991. 

52. H. Fujiwara, Logic Testing and Design for Testability, MIT Press, 1985. 

53. D. Gordon, L Koren, and G. M. Silbennan, "Embedding Tree Structures in VLSI 
Hexagonal Arrays," IEEE Trans. on Comput., vol C-33, pp. 104-107, 1984. 

54. D. Gordon, "Efficient Embeddings of Binary Trees in VLSI Arrays ," IEEE 
Trans. on Comput., vol. C-36, pp. 1009-1018, 1987. 

55. D. Green and P. W. Foulk, "Adaptive Logic Trees for Use in Multilevel-Circuit 
Design/' Electron. Letters, vol 5, pp. 83-84, 1969. 

56. D. Green, "Reed-Muller Expansions of Incompletely Specified Functions," Proc. 
IEE Pt. E. , vol. 134, No. 5, pp. 228-236, 1987. 



185 

57. D. Green, ''Reed-Muller Canonical Fonns With Mixed Polarity and Their Manipu
lations," Proc. IEE Pt. E., voL 137, No. 1, pp. 103-113, 1990. 

58. D. Green, "Families of Reed-Muller canonical fonns," Int. J. Elect., pp. 259-280, 
Feb.1991. 

59. D. Gregory, K. Bartlett, A de Geus and G. Hachtel, "Socrates: A System for 
Automatically Synthesizing and Optimizing Combinational Logic,'' Proc. of the 
23rd ACM/IEEE Design Automation Con[., pp. 79-85, 1986. 

60. J. Gregov and C. Meinel, Efficient Analysis and Manipulation of OBDDs Can be 
Extended to Read-Once-Only Branching Programs, WG'92, LNCS, 1992. 

61. Hayes, J.P., "On Realization of Boolean Functions Requiring a Minimal or Near
Minimal Number of Tests," IEEE Trans. on Comput., vol. C-20, No. 12, pp. 
1506-1513, 1971. 

62. L. Hellerman, "A Measure of Computational Work," IEEE Trans. on Comput., 
vol C-21, 1972. 

63. M. Helliwell and M. A. Perkowski, "A Fast Algorithm to Minimize Multi-Output 
Mixed-Polarity Generalized Reed-Muller Fonns," Proc. of the 25th ACM/IEEE 
Design Automation Conj., pp. 427-432, 1988. 

64. E. Horowitz and A Zorat, "The Binary Tree as an Interconnection Network: 
Applications to Multiprocessor Systems and VLSI," IEEE Trans. on Comput., vol 
C-30, pp. 247-253, 1981. 

65. S. L. Hurst, The Logical Processing of Digital Signals, pp. 364-391, Crane Russak, 
1978. 

66. S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital Logic. 
Academic Press, 1985. 

67. S. J. Hong, R. G. Cain, and D. L. Ostapko, "Mini: A Heuristic Approach for Logic 
Minimization," IBM J.Res. Develop., pp. 443-458, 1974. 

68. N. Ishiura, H. Sawada, and S. Yajima, "Minimization of Binary Decision 
Diagrams Based on Exchanges of Variables," Proc. IEEE Int. Conj. on CAD, pp. 
472-475, 1991. 

69. J. Jain, M. Abadir, J. Bitner, D. S. Fussell and J. A Abraham, "An Efficient Func
tional Representation for Digital Circuits," Proc. IEEE Europ. Con[. on Design 
Automation, pp. 440-446, 1992. 

70. S. Jeong, B. Plessier, G. Hachtel, D. S. Fussell, and F. Somenzi, "Extended BDDs: 
Trading off Canonicity for Structure in Verification Algorithms," Proc. IEEE Int. 
Conf. on CAD, pp. 464-467, 1991. 



186 

71. S. Jeong, B. Plessier, G. Hachtel. D.S. Fussell and F. Somenzi, ''Variable Order
fag for Bii":ia..-y Decision Diagrams," Proc. of IEEE Europ. Design Automation 
Conj., pp. 447-451, 1992. 

72. U. Kebcshull, E. Schubert, and W. Rosenstiel, "Multilevel Logic Synthesis Based 
on Functional Decision Diagrams," Proc. of IEEE Europ. Design Automation 
Conj., pp. 43-47, 1992. 

73. G. J. Klir, An Approach to General Systems Theory, pp. 281-285, Van Nostrand 
Reinhold Company, 1969. 

74. K. L. Kodandapani, "A Note on Easily Testable Realizations for Logic Func
tions,'' IEEE Trans. on Comput., vol C-23, pp. 332-333, 1974. 

7 5. K. L. Kodandapani, and R. V. Setlur, '' A Note on Minimal Reed-Muller Canonical 
Forms of Switching Functions," IEEE Trans. on Comput.,. vol C-26, pp. 310-313, 
1977. 

76. S. N. Kukreja and L Chen, "Combinational and Sequential Cellular Structures," 
IEEE Trans. on Comput., vol C-22, No. 9, pp. 813-823, 1973. 

77. C. Y. Lee, "Representation of Switching Circuits by Binary-Decision Programs," 
Bell System Technical J., voL 38, pp. 985-999, 1959. 

78. M. K. K. Maitra,. "Cascaded Switching Networks of Two-Input Flexible Cells," 
IRE Trans. Electron. Comput., vol EC-11, pp. 136-143, 1962. 

79. S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, "Logic 
Verification using Binary Decision Diagrams in a Logic Synthesis Environment," 
Proc. of Int. Conj. on CAD, pp. 6-9, 1988. 

80. S. B. Marinkovic, and Z. Tosic, "Algorithm for Minimal Polarized Polynomial 
Form Determination," IEEE Trans. on Comput., vol C-23, No. 12, pp. 1313-1315, 
1974. 

81. S. Minato, N. Ishiura, and S. Yajima, "Shared Binary Decision Diagram with 
Attributed Edges for Efficient Boolean Function Manipulation," Proc. of the 27th 
ACM/IEEE Design Automation Conj., pp. 52-57, 1990. 

82. S. Minato, "Zero-Suppressed BDDs for Set Manipulation in Combinatorial Prob
lems," Proc. of the 30th ACM/IEEE Design Automation Conj., pp. 272-277, 1993. 

83. R. C. Minnick. "Cutpoint Cellular Logic." IEEE Trans. on Electron. Comput., 
vol. EC-13, pp. 685-698, 1964. 

84. R. C. Minnick, "Cobweb Cellular Arrays," AFIPS Conf Proc., 1965. 

85. R. C. Minnick, "A Survey of Microcellular Research," J. of ACM, vol. 14, No. 2, 
pp. 203-241, 1967. 



187 

86. A. Mukhopadhyay, "Unate Cellular Logic," IEEE Trans. on Comput., vol C-18, 
No. 2, pp. 114-121, 1969. 

87. A. Mukhopadhyay and G. Schmitz, "Minimization of Exclusive-OR and Logical 
Equivalence Switching Circuits," IEEE Trans. on Comput., vol C-19, pp. 132-
140, February 1970. 

88. A. Mukhopadhyay and H. S. Stone, Cellular Logic~ pp. 281-285, Recent Develop
ments in Switching Theory, Ed. A. Mukhopadhyay, Academic Press, 1971. 

89. D. E. Muller, "Application of Boolean Algebra to Switching Circuit Design and to 
Error Detection," IRE Trans. on Elec. Comput., voL EC-3, pp. 6-12, 1954. 

90. R. Murgai, N. Shenoy, K. Brayton, and A. Sangiovanni-Vincentelli, "Improved 
Logic Synthesis Algorithms for Table Look Up Architectures," Proc. IEEE Int. 
Conf. on CAD, pp. 564-567, 1991. 

91. R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, "An Improved Syn
thesis Algorithm for Multiplexor-based FPGAs," 29th ACM/IEEE Design Auto
mation Conf., pp. 380-386, June, 1992. 

92. S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney, "The Transduction 
Method - Design of Logic Networks Based on Permissible Functions," IEEE 
Trans. on Comput., vol C-38, pp. 1404-1424, 1989. 

93. L.B. Nguyen, M.A. Perkowski and N. B. Goldstein, "PALMINI- Fast Boolean 
Minimizer for Personal Computers," 24th ACM/IEEE Design Automation Con/., 
pp.615-621,1987. . 

94. E.W. Page, "Minimally Testable Reed-Muller Canonical Fonns," IEEE Trans. on 
Comput., vol C-29, No. 8, pp. 746-750, 1980. 

95. G. K. Papakonstantinou, "A Synthesis Method for Cutpoint Cellular Arrays," 
IEEE Trans. on Comput., vol EC-21, No. 12, pp. 1286-1292, 1972. 

96. M. S. Paterson, "On Razborov's Result for Bounded Depth Circuits over {EB,=}," 
Technical report, University Warwick, Warwick, 1986. 

97. M.A. Perkowski, M. Driscoll, J. Liu, D. Smith, J. Brown, L Yang, A. Shamsa
pour, M. Helliwell, B. Falkowski, P. Wu, M. Ciesielski, and A. Sarabi, "Integra
tion of Logic Synthesis and High-Level Synthesis into the DIADES Design Auto
mation System," Proc. of IEEE Int. Symp. on Circuits and Systems , pp. 748-751, 
Portland, OR, May 1989. 

98. M. A. Perkowski, A. Sarabi, and L Schifer, "Application of Orthogonal 
Transforms in Image Processing," Proc. of Northcon , pp. 307-309, Portland, OR, 
October 1991. 



188 

99. M.A. Perkowski, and P. D. Johnson. "Canonical Multi-Valued Input Reed-Muller 
Trees and Fonns," Proc. 3rd NASA Symposium or. VLSI Design, pp. 11.3.1-
11.3.13, Moscow, Idaho, October 1991. 

100. M. A. Perkowski, "The Generalized Orthononnal Expansion of Functions With 
Multiple-Valued Inputs and Some of its Applications,'' Proceedings of the 22nd 
ISMVL,pp.442-450,1992. 

101. M. A. Perkowski, L. Csanky, A. Sarabi, and L Sch!ifer, "Fast Minimization of 
Mixed-Polarity AND/XOR Canonical Networks," Proc. IEEE Int. Conf. on Com
put. Design, pp. 33-36, 1992. 

102. M. A. Perkowski, A Sarabi, and F. R Beyl, '"XOR Canonical Forms of Switching 
Functions," Proc. of the IFIP WG 105 Workshop on Applications of the Reed
Muller Expansion in Circuit Design, pp. 27-32, Hamburg, Germany, Sept 1993. 

103. M. A. Perkowski, L SchMer, A. Sarabi, and M. Chrzanowska-Jeske, "Multi-level 
Synthesis Based on Kronecker Decision Diagrams and Boolean Ternary Decision 
Diagrams for Incompletely Specified Functions," Accepted for Publication in 
VLSI J., 1994. 

104. J. Poswig, "Disjoint Decomposition of Boolean Functions/' Proc. IEE Pt. E., vol 
138, No. 1, pp. 48-56, 1993. 

105. D. K. Pradhan, "Universal Test Sets for Multiple Fault Detection in AND-EXOR 
Arrays," IEEE Trans. on Comput., vol C-27, No. 2, pp. 181-187, 1978. 

106. F. P. Preparata, "State-Logic Relations for Autonomous Sequential Networks," 
IEEE Trans. on Elec. Comput., vol EC-13, pp. 542-548, 1964. 

107. S. Purwar, ''An Efficient Method of Computing Generalized Reed-Muller Expan
sions from Binary Decision Diagram," IEEE Trans. on Comput., vol C-40, No. 
ll,pp.1298-1301,1991. 

108. A. A. RazQ.orov, "Lower Bounds on the Size of Bounded Depth Networks over the 
Basis { EB, 7," Technical report, Moscow State University, Moscow, 1986. 

109. S. M. Reddy, "Easily Testable Realization for Logic Functions," IEEE Trans. on 
Comput., vol. C-21, No. 11, pp. 1183-1188, 1972. 

110. I. S. Reed, "A Class of Multiple-Error-Correcting Codes and Their Decoding 
Scheme," IRE Trans. on Inf. Theory, vol. PGIT-4, pp. 38-49, 1954. 

111. R L. Rudell, and A. Sangiovanni-Vincentelli, ''Multiple-Valued Minimization for 
PLA Optimization," IEEE Trans. on CAD, pp. 727-750, 1987. 

112. R L. Rudell, ''Dynamic Variable Ordering for Ordered Binary Decision 
Diagrams," Proc. IEEE Int. Conj. on CAD, pp. 42-47, 1993. 



189 

113. K K Saluja, A Study of Combinational Networks Based on Reed-Muller Canonic 
Forms, PhD Dissertation, Un;versity of Iowa. Iowa City, Iowa, 1973. 

114. K. K. Saluja and S. M Reddy, "Fault Detection Test Set for Reed-Muller Canonic 
Networks," IEEE Trans. on Comput., vol C-24, No. 10, pp. 995-998, 1975. 

115. A Sarabi and M. A. Perkowski, "Fast Exact and Quasi-Minimal Minimization of 
Highly Testable Fixed-Polarity AND/XOR Canonical Networks,'' Proc. of the 
29th ACM/IEEE Design Automation Conj., pp. 30-35, 1992. 

116. A Sarabi and M. A. Perkowski, "Cube Based Method for Optimal and Quasi
Optimal Minimization of Consistent Generalized Reed-Muller Expansions,'' Sub
mitted to IEEE Trans. on Comput., 1992. 

117. A Sarabi, P. F. Ho, K Iravani, W.R. Daasch, and M.A. Perkowski, "Minimal 
Multi-level Realization of Switching Functions Based on Kronecker Functional 
Decision Diagrams," IEEE Int. Workshop Logic Synthesis, pp. P3-1, 1993. 

118. A. Sarabi and M. A Perkowski, "Design for Testability Properties of AND/XOR 
Networks," Proc. of the IFIP WG 10.5 Workshop on Applications of the Reed
Muller Expansion in Circuit Design, pp. 147-153, Hamburg, Gennany, Sept. 1993. 

119. A Sarabi, N. Song, M. Chrzanowska-Jeske, and M. A. Perkowski, "A 
Comprehensive Approach to Logic Synthesis and Physical Design for Two
Dimensional Logic Arrays," Proc. 31st ACM/IEEE Design Automation Conj., 
1994. 

120. T. Sasao and Ph. Besslich, "On the Complexity of MOD-2 Sum PLAs," IEEE 
Trans. on Comput., vol C-39, No. 2, pp. 262-266, 1990. 

121. T. Sasao and T. Amada, "A Design Method of AND-OR-EXOR circuits," Int. 
Symp. on Logic Synthesis and Microprocessor Arch., 1992. 

122. T. Sasao, "EXMIN 2: A Simplification Algorithm for Exclusive-Sum-Of-Products 
Expressions for Multiple-Valued-Input Two-Valued-Output Functions,'' IEEE 
Trans. on CAD, vol 12. No. 5, pp. 621-632, 1993. 

123. T. Sasao, AND-EXOR Expressions and their Optimization, in Sasao(ed.), Logic 
Synthesis and Optimization, Kluwer Academic Publishers, 1993. 

124. N. Sasao, "Ternary Decision Diagrams and Their Application,," IEEE Int. 
Workshop Logic Synthesis, p. 6c, 1993. 

125. G. Saucier, J. From, and P. Abouzeid, "Lexicographical Expressions of Boolean 
Functions with Application to Multilevel Synthesis," IEEE Trans. on CAD, vol. 
12. No. 11, pp. 1642-1654, 1993. 

126. J. M. Saul, "An Improved Algorithm for the Minimization of Mixed Polarity 
Reed-Muller Representation," Proc. IEEE Int. Conf on Comput. Design, pp. 372-



190 

375, Cambridge, MA, Oct. 1990. 

127. J.M. Saul, "Towards a Mixed Exclusive/Inclusive OR Factored Form," Proc. of 
the IFIP WG 105 Workshop on Applications of the Reed-Muller Expansion in Cir
cuit Design, pp. 2-5, Hamburg, Germany, Sept. 1993. 

128. L SchMer, An Efficient Cube Comparison Method for Discrete Spectral Transfor
mations of Logic Functions, M.S. Thesi~ Portland State University, Portland, OR, 
1990. 

129. L SchMer and M.A. Perkowski, "Multiple-Valued Input Generalized Reed-Muller 
Forms," Proc. of IEEE Int. Symp. on Multi-Valued Logic, pp. 40-48, 1991. 

130. L SchMer, Orthogonal and Nonorthogonal Expansions for Multi-Level Logic Syn
thesis for Nearly Linear Functions and their Application to Field Programmable 
Gate Array Mapping, PhD Dissertation., Portland State University, Portland Ore
gon, 1992. 

131. L SchMer, M. A. Perkowski, and H. Wu, "Multilevel Logic Synthesis for Cellular 
FPGAs Based on Orthogonal Expansio~" Proc. of the IFIP WG 105 Workshop 
on Applications of the Reed-Muller Expansion in Circuit Design, pp. 42-51, Ham
burg, Germany, Sept. 1993. 

132. E. Schubert, U. Kebcshull, and W. Rosenstiel, "FDD Based Technology Mapping 
for FPGA," Proc. of IEEE EUROASIC, pp. 14-18, 1992. 

133. E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. 
Sangiovanni-Vincentelli, "Sequential Circuit Design Using Synthesis and Optimi
zation," Proc. IEEE Int. Conj. on Comput. Design, pp. 328-323, October 1992. 

134. S. Seshu and F. E. Hohn, "Symmetric Polynomials in Boolean Algebras," Har
vard Comp. Lab. Annals, vol XXX. pp. 225-234, 1957. 

135. S. C. Seth, K. L. Kodandapani, "Diagnosis of Faults in Linear Tree Networks," 
IEEE Trans. on Comput., vol C-26, No. 1, pp. 29-33, 1977. 

136. C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," Trans. 
AIEE, vol. 57, pp. 713-723, 1938. 

137. H. M. Sheffer, "A Set of Five Independent Postulates for Boolean Algebras, With 
Application to Logical Constants," Trans. American Math. Society, vol. 14, pp. 
481-488, 1913. 

138. A. Shen, S. Devadas, and A. Ghosh, "Probabilistic Construction and Manipulation 
of Free Boolean Diagrams," Proc./EEE Int. Conj. on CAD, pp. 544-549, 1993. 

139. R. A. Short, "Two-Rail Cellular Arrays," AF/PS Conf Proc., vol. 27, pt 1, pp. 
355-369, 1965. 



191 

140. A. Shukla, ''A Set of Axioms for the Propositional Calculus with Implication and 
Converse Non-L11lplication," Notre Dt111'.e J. of F om:a! Logic, voL V, pp. 123-128, 
1965. 

141. A. Shukla, "A Set of Axioms for the Propositional Calculus with Implication and 
Non-Equivalence," Notre Dame J. of Formal Logic, vol vn, No. 3, pp. 281-286, 
1966. 

142. N. Song and M.A. Perkowski, "EXORCISM-MV-2: Minimization of Exclusive 
Sum of Products Expressions for Multiple-Valued Input Incompletely Specified 
Functions," Proc. of IEEE Int. Symp. on Multi-Valued Logic, pp. 132-137, 1993. 

143. N. Song and M. A. Perkowski, "A Method for Logic Mapping for Fine Grain 
FPGAs," IEEE Int. Workslwp Logic Synthesis, p. P9a, 1993. 

144. N. Song, M. A. Perkows.ld, M. Chrzanowska-Jeske, and A. Sarabi, "A New 
Design Methodology for Two-Dimensional Logic Arrays," Accepted for Publica
tion in VLSI J., 1994. 

145. M. H. Stone, ''The Representation of Boolean Algebras," Proc. Nat. Acad. Sci., 
vol. 22, pp. 37-111, 1936. 

146. H. S. Stone and A. J. Korenjak, "Canonical Fonn and Synthesis of Cellular Cas
cades," IRE Trans. Electron. Comput., vol EC-14, No. 6, pp. 852-862, 1965. 

147. S. Swamy, "On Generalized Reed-Muller Expansion," IEEE Trans. on Comput., 
vol. C-21, pp. 1008-1009, 1972. 

148. C. C. Tsai and M. Marek-Sadowska, "Efficient Minimization Algorithms for Fixed 
Polarity AND/XOR Canonical Networks," Great Lake Symp. VLSI, pp. 76-79, 
1993. 

149. D. Varma, and E. A. Trachtenberg, "Design Automation Tools for Efficient Imple
mentation of Logic Functions by Decomposition," Proc. IEEE Int. Conf. on CAD, 
pp. 901-916, 1989. 

150. W. Wan and M.A. Perkowski, "A New Approach to the Decomposition of Incom
pletely Specified Multi-Output Functions Based on Graph-Coloring and Local 
Transformations and its Application to FPGA Mapping," Proc. European Design 
Automation Conf, pp. 293-298, Hamburg, Germany, Sept. 1992. 

151. I. Wegener, "On the Complexity of Branching Programs and Decision Trees for 
Clique Functions," J. of ACM, vol 35, No. 2, pp. 461-471, 1988. 

152. C. D. Weiss, "Optimal Synthesis of Arbitrary Switching Functions with Regular 
Arrays of 2-input 1-output Switching Elements," IEEE Trans. on Comput., vol. 
C-18, No. 9, pp. 839-856, 1969. 



192 

153. W. Wernick, "Complete Set of Logical Functions," Trans. American Math. 
Society, vol 51, pp. 117-132, 1942. 

154. S. G. Williamson, Combinatorics for Computer Science, Computer Science Press, 
Inc., 198S. 

155. L. Wu and M. A. Perkowski, Minimization of Permuted Reed-Muller Trees for 
Cellular Logic Programmable Gate Array. pp. 78-87, H. Gruenbacher and R. Har
tenstein (eds.), LNCS, No. 705, Springer Verlag, 1993. 

156. S. V. Yablonskii, "Functional Constructions in K-valued Logic," Trudy mathema
tichekovo instituta im. StekkJva, voL 51, pp. S-142, 19S8. 

157. M. Yoeli, "A Group-Theoretic Approach to Two-Rail Cascades," IRE Trans. 
Electron. Comput., vol EC-14, pp. 815-822, 1965. 

158. 1 L. Zhega1kin, "Arifmetizatsiya simbolicheskof logiki (Arithmetization of Sym
bolic Logic)/' Matematicheskii Sbornilc, voL 35, 36, pp. 311-373, 205-338, 1928, 
1929. 


	Logic Synthesis with High Testability for Cellular Arrays
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1551899887.pdf.mQ4nN

