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ABSTRACT 

An abstract of the thesis of Karthikeyan Palanisamy for the Master of Science 

in Electrical and Computer Engineering presented October 27, 1994. 

Title:HIGH LEVEL PREPROCESSOR OF A VHDL-BASED DESIGN SYSTEM 

This thesis presents the work done on a design automation system in which 

high-level synthesis is integrated with logic synthesis. DIADESfa design automa­

tion system developed at PSU, starts the synthesis process from a language called 

ADL. The major part of this thesis deals with transforming the ADL -based 

DIADES system into a VHDL -based DIADES system. In this thesis I have 

upgraded and modified the existing DIADES system so that it becomes a preproces­

sor to a comprehensive VHDL -based design system from Mentor Graphics. 

The high-level synthesis in the DIADES system includes two stages: data path 

synthesis and control unit synthesis. The conversion of data path synthesis is done in 

this thesis. In the DIADES system a digital system is described on the behavioral 

level in terms of variables and operations using the language ADL. The digital sys­

tem described in ADL is compiled to a format called GRAPH language. In the 

GRAPH language the behavior of a digital system is represented by a specific 

sequence of program statements. The descriptions in the GRAPH language is com­

piled to a format called STRU CT language. The system is described in the STRU CT 

language in terms of lists of nodes and arrows. The main task of this thesis is to con-

vert the descriptions in the GRAPH language and the descriptions in the STRUCT 
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language to the VHDL format. All the generated VHDL Code will be Mentor 

Graphics VHDL format compatible, and all the VHDL code can be compiled, simu­

lated and synthesised by the Mentor Graphics tools. 
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CHAPTER I 

INTRODUCTION 

In recent years hardware description languages have been playing an important 

role in the synthesis of hardware. The VLSI technology with which modem digital 

systems are designed has advanced at such a tremendous pace within the past few 

years that the engineer is being outstripped of his ability to design complex state-of­

the-art systems. Initially, various CAD tools (circuit analysis, logic minimization, 

layout, etc.) where made available to aid the designer in concurring such increasingly 

more difficult design tasks. Technology has reached a level, however, that calls for the 

realization of design automation system in which high-level synthesis is integrated 

with logic synthesis. DIADES design automation system which starts the synthesis 

process from a language called ADL (Algorthmic Description Language) has been 

developed at PSU in recent years. The main task of this thesis is to upgrade, modify 

and link the DIADES system so that it will become a pre-processor of an commercial 

VHDL -based synthesis/simulation environment from Mentor Graphics Corporation. 

1.1 DIADES 

The DIADES design automation system is a set of programs for the synthesis of 

digital circuits from high-level, behavioral descriptions. A digital system is described 

on the behavioral level in terms of variables and operations using a language called 

ADL. The behavioral description is compiled to a structural description, which is 
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composed of specific hardware units such as adders, buffers, and multiplexors. ADL 

is more like a programming language. It allows for easy description of parallel and 

sequential behavior of hardware. In this respect it is much closer to such specification 

languages as C or PASCAL. The main advantage is that it is easier to express paral­

lelism in ADL than in standard HDL languages such as VHDL or VERILOG. 

A digital system can be described at three levels, behavioral, functional, and 

structural. The language ADL is used for behavioral representation. ADL is a block­

structured, algorithmic language developed especially for DIADES system. So it has 

some properties specific to DIADES design routines and methodologies. "High-level 

synthesis" in this thesis refers to the process of generating a digital circuit description 

on the structural level from a behavioral level description. The High-Level Synthesis 

in DIADES includes two stages: Data Path Synthesis and Control Unit Design. The 

data path unit contains the descriptions of the hardware elements needed to execute 

the behavioral algorithm. 

The control unit controls the flow of data in the data path unit by producing reg­

ister load signals, multiplexor addresses and other control signals. The control unit 

can be implemented as a micro-programmed unit or as a finite state machine using a 

PLA or another standard kind of logic. 

Transformations and optimizations can be applied to the digital system descrip-

tion at all levels. Techniques from optimizing compilers, Boolean minimization, and 
/' 

Finite State machine minimization are some of the techniques that have bee~/ee" 

applied in DIADES. 

The goal of DIADES is to automate the process of digital system design. It is a 

powerful tool with many innovative and unique features. It can be used to design 
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dedicated micro-controllers, digital signal processors, and other types of systems. A 

block diagram of the current DIADES system is shown in Figure 1. 

ADL 

TAG ADL compiler 

MGEN 

Figure 1. DIADES system. 

In Figure 1, TAG is the ADL compiler. GRAPH is the main intermediate for­

mat of DIADES. The data path unit is performed by IMPLEM and MGEN. 

IMPLEM takes the descriptions in the form of GRAPH format as an input and gen­

erates a description in an abstract netlist language called STRUCT. MGEN takes 

STRUCT description as input and generates a netlist in an netlist format called M 

language. The control unit design is created by programs FSM and MICUS. FSM is 

the finite state machine control unit synthesizer, it takes the descriptions in the form 

of GRAPH format as input and generates a truth table data format for the combina­

tional part of the finite state machine. The MICUS is the microprogram control unit 

design program that takes the descriptions in the form of GRAPH format as input and 
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generates the truth table of the control memory as its output. 

1.2 VHDL-BASED DIADES 

In this thesis we modify the existing DIADES system so that it will become a 

VHDL -based system. First the intermediate behavioral format of the DIADES's 

system GRAPH is converted to a VHDL code. Then the descriptions in the form of 

STRUCT format is converted to VHDL code. The block diagram of the new VHDL 

-linked DIADES system is shown in Figure 2. 

All the generated VHDL code is in the Mentor Graphics VHDL format. The 

VHDL code generated by the VHDL-based DIADES system can be compiled by the 

VHDL -based mentor tools. The compiled file can be simulated or can be used for 

implementing it in the FPGAs. If the FPGA implementation option is chosen then 

the code should be synthesised and it fed to the Xilinx FPGA tools for technology 

maping. Then placement and routing can be done and then it can be implemented in 

the FPG A system. The FPG A option was given because of its almost zero turn­

around time and manaf acturing cost. There are also a lot of commercially available 

FPGAs in the market. The Xilinx FPGA is a RAM-based FPGA used by our group. 

The Mentor Graphics system was selected because of its availabilty in the school 

and because of its wide range acceptance in the industry. The Mentor Graphics tools 

have many sophisticated Logic Synthesis, physical design, simulation or FPGA 

related programs that are absent from DIADES. VHDL was chosen because of its 

wide range and increasing use in industry. VHDL is a full form hardware description 

language. It is a very good language for detailed hardware specification. "The results 

(}f recent industry surveys, which indicate an increased project growth in the use of 
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TAG ADL compiler 

GRAPH VHDL-1 

IMP LEM I ,.,VHDL-2 

_____ VHDL-3 

VHDLbased 

Mentor 

Tools 

Figure 2. VHDL linked DIADES system. 

design 

XilinxFPGA 
Tools 

FPGAsystem 
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VHDL, supporting the claim that VHDL is entering its deployment phase. In one sur­

vey 91 % of the respondents presently not using VHDL plan to use the language in 

future [ 1]. In an informal survey the respondents projected an eightfold increase in the 

number of hardware designs using VHDL over the next two years [2]. 

The goal of this thesis is to first modify and improve the DIADES system and 

also to make it an VHDL -based system. The improving and modification for the 
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datapath unit of the DIADES system has been done in this thesis and the 

improvement and modification of the control unit is left for the future research. 



CHAPTER II 

DIADES DESIGN AUTOMATION SYSTEM 

2.1 INTRODUCTION 

The DIADES design automation system is a set of programs for the synthesis of 

digital circuits from high-level, behavioral descriptions [4]. The High-Level Synthe­

sis in DIADES includes two stages: Data Path Synthesis and Control Unit Design. 

The data path synthesis and control unit synthesis start from a parallel program­

G RAPH, the form of description that includes both the control flow and the data flow 

graph. While the control unit is designed to be composed of either a micropro­

grammed unit, or Finite State machines. The Finite State machines are minimized in 

two dimensions (states and inputs), assigned and realized in logic. Several logic syn­

thesis procedures, respective to various design styles and methodologies, can be used 

to design combinational parts of state machines, microprogrammed units and data 

path logic. 

The DIADES system uses the language ADL for the behavioral description of 

the digital system. ADL is a language used to describe a circuit on a high level. A 

circuit's behavior can be described without knowing the basic elements of the circuit, 

or the internal states of the controlling state machine. The description is done in 

terms of arithmetic and logic operations. Control flow is described using if_then _else, 

go, and while statements [5]. A block diagram of the current DIADES system is 

shown in Figure 3. 
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ADL 

TAG ADL compiler 

MGEN 

Figure 3. Current DIADES system. 

The system is organized into four main sections. The first section takes a digital 

system description written in ADL and compiles it to a format called GRAPH. The 

descriptions in the GRAPH format represents the digital system at the behavioral 

level but in an easier to manipulate form. Transformations and high level optimiza­

tions such as decomposition of expressions and macro expansions take place upon the 

descriptions in the GRAPH format 

The descriptions in the GRAPH format is used by the data path and control unit 

generators. Further transformations and optimizations are applied to the digital sys­

tem. Some changes in the data path are fed back into the control unit generator. The 

control unit generator selects one of two design styles, finite state machines and 

micro-programmed control units. 

The fourth section takes the output of the two generator sections. This output, 
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which is an abstract structural form, is translated to a specific structural netlist format. 

Further transformations and optimizations can be applied at this level. 

2.2 DATA PATH SYNTHESIS 

First in DIADES the circuit descriptions in ADL is converted into GRAPH for­

mat, which is the main intermediate format for DIADES. After the descriptive for­

mat has been converted to GRAPH format the operations in the GRAPH format are 

scheduled for execution in specific control steps. The scheduling tool in DIADES 

tries to make the best use of resources, and to increase the concurrency of the descrip­

tions in GRAPH format. The descriptions in GRAPH format is analyzed and the 

order of execution of operations in it is determined. Those operations that can be 

executed at the same time are identified. The scheduler looks for the best sequence of 

operations, resulting in the shortest overall control program. After scheduling, 

DIADES assigns variables to registers and operations to specific functional units. 

After allocation, the design process splits into two separate processes. The data 

path unit is generated by the program IMPLEM and then by the program MG EN. 

The DIADES data path generator, IMPLEM, takes the descriptions in the form of 

GRAPH format as the input. The descriptions in the GRAPH format is mapped to a 

hardware structure in the abstract netlist language STRUCT. The functional units, 

registers, and input/output ports are represented by nodes, while the connections are 

represented by arrows. The STRUCT description is detailized by the program 

MGEN, which means that abstract descriptions of structural blocks are replaced 

with lower level descriptions of blocks and their connections. The output format is in 
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netlist format called M language. For instance, the STRUCT description specifies the 

"abstract block" BLOCKl - COUNTER modulo 5 with loading input A, and clock 

CL. The equivalent M language description will specify all flip-flops and NAND 

gates of this counter and how they are connected, with an accuracy to each wire and 

gate input. 

2.3 CONTROL UNIT SYNTIIBSIS 

Two design styles are used in DIADES to design the control unit: the Micropro­

grammed Units and the Finite State Machines (FSMs). Both of them are designed 

starting from the descriptions in the GRAPH format, the main internal data represen­

tation language in DIADES. The result of the microprogram control unit generation 

is the microcode for control memory. The result of FSM control unit generation is the 

truth table or the Eqn (a set of Boolean equations) data formats for the combinational 

part of the FSM. The FSM synthesizer is composed of two stages, the FSM genera­

tion stage and FSM optimization stage. The first stage is a process to analyze the con­

trol flow GRAPH and assign machine states to the specified operations. It also 

encodes the input and the output signals for FSM structure between the control unit 

and the data path from different variants of the design scheme. The FSM optimiza­

tion is composed of the state minimization program and the state assignment pro­

gram. The state minimization reduces both the number of rows and the number of 

colums of state table, which is a unique feature of DIADES. The state assignment 

program encodes machine states to simplify the hardware implementation of the 

FSM. 
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The microprogrammed unit synthesizer, MICUS, first generates the SIMC 

(symbolic intermediate microcode) language description. Microinstruction com­

paction and optimization are necessary for efficient microcode. To translate SIMC 

further into object microcode a microassembler is used. Ultimately, a TT formatted 

truth table of control memory for logic minimization is generated. The optimization 

of the microcode is not performed separately in the control unit synthesis system, but 

is incorporated in the comprehensive process of data path scheduling and allocation 

and control unit design [6],[7]. 

The DIADES system is available in the PSU Sun network system. It is in the 

directory /stashlpololnewstuff!diades. The DIADES system is made up of several 

programs written in Lisp, C, and Fortran. These programs are in a hierarchical direc­

tory structure in directory of /stash/polo. DIADES is controlled by an interactive 

shell script called diades in the lstashlpololnewstujfldiades directory. Each program 

can be executed seperately or the whole system can be executed automatically. When 

the shell script is executed, the user is presented a menu showing all commands and 

the DIADES framework. 



CHAPTER III 

ADL HARDWARE DESCRIPTION LANGUAGE 

3.1 INTRODUCTION 

AD L is an algorithmic language devoted mainly to describe the behavior of a 

digital system [8],[9]. An ADL program implements some algorithm. An algorithm 

is a step by step procedure for solving a problem or accomplishing some task. The 

procedure is organized into a behavioral series of assignment statements and control 

flow statments. ADL also describes systems at a functional level or structural level. 

Systems can be formulated using a mixed description on all three levels. 

An ADL program is specified by a set of input and output ports, internal or 

intermediate variables, and the algorithm. 

ADL Program: (( Input Ports 

( 

Output Ports 

Internal Variables ) 

Algorithm )) 

The algorithmic description is what sets this system apart from a functional level 

system. An ADL algorithm is similar to an algorithm in a programming language. 

The syntax is different but the semantics is quite close. The main difference is that a 

program algorithm is executed on a general purpose computer. The DIADES system 

generates a hardware processor executing only that specific algorithm. 

Example 3.1.1 - An ADL program. 
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The header sections have been left out. The exact syntax is explained later. The 

program represents a simple system which adds two numbers and outputs the sum. If 

the result is equal to 10, the second number is subtracted from the first and the minu­

end is send to the output This task is continuously repeated. 

Input variables: operand], operand2 - 8 bit numbers. 

Output variables: answer - 8 bit number 

Internal variable: temp - holds answer 

line 1: (((ad/ an example_circuit .... 

line 2: (input (opl (p kl 8))(op2 (p kl 8))) 

line 3: (intern (temp (p kl 8))) 

line 4: (output (answer (p kl 8))) 

line 5: 

line 6: 

line 7: 

((start) a 

10 (temp:= (opl + op2)) 

(if (temp= 10) then (temp:= (opl - op2))) 

line 8: (answer:= temp) 

line9: (go JO) 

line 10: ))) 

line 11: end 

This system requires 3 clock cycles to operate. Statements are explained below: 

Line 1 declares that this is a description in ADL language and the system name 

is "example circuit". The single letter "a" is a unique identifying symbol for the algo­

rithm. Subroutines, if any, have different identifying symbols. 

Lines 2 through 4 are the declarations. The declarations are similar to variable 

declarations in other languages. The only difference is that the functionality of 
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variables is defined at the start and does not change later in the program, i.e., input 

variables are used only for input. 

Line 5 controls the start of the task. This statement is always executed when the 

system is powered up. However, this statement does not do anything and it is only 

used to initiate the operation of the control unit. 

Line 6 is the first statement executed. It has the label "JO". Labels are always 

numbers. This is a simple arithmetic operation of addition. The result of the addition 

is stored in variable temp. 

Line 7 is a conditional statement. If the relation is true, then statements after the 

"then" keyword are executed. If the relation is false, then the next statement is 

executed at line 7. The value in temp is compared with the value 10. If they are 

equal, then the subtraction is performed and the value stored in temp. There is no 

"else" keyword in this statement, although they are legal. 

Line 8 is a simple assignment statement. The value temp is stored in the variable 

answer. 

Line 9 is a go statement. This is the simplest control flow statement. The sys­

tem will go back up to the statement in line 5 and execute the task again. New data is 

assumed to be at the input. 

Lines 10 and 11 mark the end of this simple program. More complicated pro­

grams may have other lists and program instructions before the last right parenthesis. 

The "end" keyword is always at the very end of all programs. 

As it can be seen, the syntax of the ADL has many parentheses and reminds that 

of Lisp. This is because ADL is an experimental language and we want to make it 

easily expandable. 
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3.2 PROGRAM STRUCTURE 

The ADL language describing a digital system has four sections. The first sec­

tion contains a few lines of parameters for the ADL compiler. The second section 

lists variables used in the program. Variables represent the inputs and outputs of a 

system as well as internal registers or memories. The third section contains the algo­

rithm. The fourth section contains any subroutine descriptions. 

The simple ADL program is first broken down into 2 lists. A declaration list and 

an algorithm list. 

( ( ( Declarations ) 

( Algorithm ) 

) ) 

The declaration list is composed of several lists. 

( program name 

) 

( Input variables ) 

(Internal variables) 

( Output variables ) 

( Other Declarations ) 

The algorithm section is composed of statements. Each statement is a list. 

( ( statement 1 ) 



(statement 2 ) 

(statement n) 

) 

3.3 Declarations 

Formal grammar of declarations 

Declarations : := ( ad/ <symbol> <program name> 

<clock list> 

) ; 

<input variable list> 

<internal variable list> 

<output variable list> 

<subroutine list> 

<constant list> 

<identity list> 

<symb list> 

<clock list> : := ((clock (<natural number>) )) ; 

16 

<input variable list> .. - ( input <variable declaration>+ I 

empty); 

<internal variable list> ( intern <variable declaration>+ I 

empty); 
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<output variable list> ( output <variable declaration>+ / 

empty); 

<variable declaration> ::= ( <description> (<type>)) ; 

<description>::== <name> I <indexed variable>; 

<indexed variable> : := ( <name> [ <size> ] ) ; 

<size> : := <natural number> / <index variable> ; 
,,, 

<type> ::= <p variable>/ <d variable>; 

<p variable> : := ( p kl <number of bits> ) ; 

<number of bits>::= <positive integer>; 

<d variable> : := ( d ) ; 

<subroutine list>::= ( subr <subroutine element>+ I empty) 

<subroutine element> ··­.. - ( <subroutine type> <symbol> 

( <fixfiag> <parameter>+ )) ; 

<subroutine type> : := macro I block I logmacro I log block; 

<fix flag> ::=fix I empty; 

<parameter>::= <number>/ <vector>/ <parameter name>; 

<parameter name> : := <name> ; 

<constant list> ::= ( const <list of parameters> I empty); 

<identity list> ::= ( iden <identity>*/ empty); 

<identity> : := ( <name> <expression> ) ; 

<name> : :=Any combination of letters and numbers ; 

<expression> := <constant> / <variable>/ <arithmetic expression> 

<name> 



/<logical expression>/ <predicate> 

/ <expression> @ <expression> ; 

3.4 VARIABLES 
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Variables in ADL are used to store data. There are 3 variable functions, input, 

output and internal. Input variables are used to input data to the system. Internal vari­

ables store data inside the system. Output variables are used to output data from the 

system. When the system is finally realized, variables are mapped to registers or 

memory. Because the DIADES system optimizes the final system's hardware there is 

not necessarily a one-to-one mapping of variables to registers. 

There are two types of variable data. Parallel variables are vectors of binary 

ordered bits. Values of parallel variables are non-negative integers. Two's comple­

ment negation is done automatically in a statement by placing a minus sign in front of 

a variable. These are generally used for numbers or data. Logical variables are single 

bit variables and have two states, 1 and 0. These are usually used for flags and sig­

nals. 

Example 3.4.1 - Parallel and Logical Variables. 

"a" and "b" are declared as parallel variables. "c" is declared as a logical vari­

able. To the right is a physical implementation. 

(intern (a (p kl 8)) 

(b (p kl 8)) 

(c (d)) ) 
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1 (b :=(and ab) 

2 (b :=(and a c) 

in statement 1, data from "a" and "b" is ANDed in parallel and stored in "b". In 

statement 2, the single bit from "c" is projected onto "a" and stored in "b". 

Each variable can be treated as an array of bits. The array of bits is called a bit 

field. 1 bit binary values can be stored to or accessed from individual positions in a 

variable. 1 bit binary values consist of ls and Os. True and false symbols are not 

available but can be declared as constant ls and Os. 

A range of bits in a variable can also be accessed. A range of bits is treated as a 

decimal number. The maximum value of a range of bits is: 

2"(length of range) 

Example 3.4.2 - Bit Fields and Ranges in Variables 

(intern (a (p kl 8))) - 8 bit variable, values range from 0 to 255. 

(a [ 0 % 0 ] ) - 1st bit in a. 

(a [ 2 % 3 }) - bits 2 and 3 of a. 

(intern (b (p kl 16))) - 16 bit variable, values range from 0 to 65535. 

(b [ 14 % 14}) - 14th bit in b. 
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Array variables are arrays of simple variables. Array variables can only be inter­

nal types. 

Example 3.4.3 - ADL arrays 

(intern ((a [256]) (pram 32)) 

(b (p kl 32))) 

((a [34)) := 8) 

(b :=(a [34))) 

((a [b]) := 10) 

An indexed array variable has the following format for internal variables: 

a) ((<name> [<size>]) ( p <code> <bits>)) 

This form is for array variables with the elements being parallel data. 

OR 

b) (( <name> [ <size>}) ( d )) 

This form is for array variables with the elements being logical data. The code speci­

fication has a different meaning in array variable declarations. The DIADES user can 

specify how the array is to be implemented. There are two ways; 

ram - Random Access Memory 

k I - register file 

If the RAM option is selected, the array will be implemented as a standard RAM 

element with memory size and word size as specified. The user doesn't need to be 

concerned with any details such as addressing and read/write signals. 
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If the kl option is selected, the array is implemented as an array of individual 

registers. Each register can be accessed independently of the others. This option 

results in a much larger area needed for the array variable. 

Example 3.4.4 - Variable declarations 

(a (p kl 32)) - 32 bit binary variable with name "a". 

(b (p kl 6)) - 6 bit binary variable with name "b". 

(c (d)) - single bit logical variable with name "c". 

((d [32]) (pram 8)) - array with 32 words. Each word is 8 bits. 

Variable names start with a letter and can be any combination of letters and 

numbers. The length of the name is unlimited. In the main program, input variables 

are always implemented as input ports. They are always simple variables. They can 

not be assigned values from within the system and new values are determined from 

outside the system. These values can change at any moment of time. However the 

input ports are implemented as clocked buffers so new data is available each cycle. 

Input variables in subroutines receive data from the main program. Depending 

on the subroutine type, the variables are implemented as registers or refer to variables 

in the main program. Internal variables contain values inside of the program, (or digi­

tal system). Data can be assigned to or retrieved, from these variables. Indexed vari­

ables are one dimensional arrays of simple variables. Normally these are specified as 

RAM in an ADL program. When the system is realized, internal variables may be 

mapped to registers or may not exist at all. 

Example 3.4.5 - ADL Variables: 



(intern (a (p kl 32)) 

(k (p kl 8)) 

((b [256]) (pram 32))) 

(a:= (a+ 1)) 

((b [23]) :=(a -5)) 

(a:= (b [k])) 
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Output variables are used to output the data from the system. Unless an output 

variable is also declared as an intern variable, data cannot be retrieved from it 

Depending on how the program is written, an output variable can either be a register 

or wired connection to some system element H feedback into the system from an out­

put variable is required, the variable is declared in both the intern and output declara­

tion lists. The name, type and size are identical. 

Example 3.4.6 - ADL output 

(intern (a (p kl 32))) 

(output (b (p kl 32))) 

(b :=a) 

Example 3.4.7 - Intern and Output Variables 
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This example shows how output variables are also declared internal, so the data 

from the output is also available to the system. 

(intern (a (p kl 16)) (b (p kl 16))) 

(output ( c (p kl 8)) (b (p kl 16))) 

(b := 5) 

(c := b) 

3.5 CONSTANTS 

Any number in ADL can be given a name. Once a constant is declared, the 

name can be used in any expression where the number can be used. Numbers in ADL 

are decimal only. A constant can be either a number or an array of numbers. If an 

array constant is declared, all array elements must be given values. The format for 

constant declarations is: 

( const <constant elements>+ ) 

<constant elements> ::= (<name> <number>) 

Example 3.5.1 - ADL Constants: 

(const(coejf_l 42) 

( coeff_2 9)) 

3.6 IDENTITIES 
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An identity is a symbol or name identical to some value, variable, or expression. 

Different names for the same variable can be used in ADL. Identities are declared in 

the identity list. 

Example 3.6.1 - Identities 

In this example "a" and "b" are declared identical. "e" and the range of bits 1 

through 4 in array dare identical. 

(iden (a b)(e (d fl % 4)))) 

Identities can be declared for expressions. By using an identity for an expres­

sion, the same complicated expressions and fields of bits do not have to be repeatedly 

typed. Expressions are written in the same format as in the main program. Variables 

referred to in expressions are declared normally. The identity name itself doesn't 

need to be declared anywhere else. To avoid error and confusion, an identity name 

should not be used as variable names or a program name. 

Example 3.6.2 - Identities and Expressions 

In this example "idl" is declared to be identical to the expression - (or (x [ 1 % 1 

]) a): 

(iden (idl (or (x { 1 % 1 ]) a))) 

The DIADES system replaces identities by their corresponding values or expres­

sion during compilation of the ADL program. The identity list is similar to #define 

statements in C. 

3.7 SYMB LIST 
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A single statement can be given a symbolic name in ADL. The symbolic name 

can be used in place of the statement in the program. Use of symbolic names reduces 

the amount of repetitive typing in some programs. In the IDEN list only a single 

name was used to represented the identity. In the SYMB list, a whole expression or 

statment can be used for the symbol. Symbolic names and their statements are 

declared in the SYMB list. 

The structure of the SYMB list is similar to the structure of the IDEN list. Sym­

bolic names should not be used as variable names or program names. A symbolic 

name does not have to be a single element. It can be a combination of elements. This 

means whole statements can be replaced automatically with other statements. Vari­

ables in the statement are declared normally. 

Example 3.7.1 - Symbolic List 

(symb (cl (k := (k + 1))) 

((a:= (c + b)) (adderl (a c b)))) 

In the first example, the c 1 symbol would be replaced by the statement (k := (k + 

1)) in the program. In the second example, the statement (a:= (c + b)) is replaced by 

the subroutine call (adderl (a c b)). The subroutine could be a structural description 

of a special adder. 

3.8 SUBROUTINES 

Subroutines can be used in ADL. The subroutine itself is listed at the end of the 

ADL program. Subroutine names and parameters are listed in the declarations 
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section. There are two types of subroutines, macros and blocks. A subroutine can be 

structural or behavioral. Macros and blocks can be behavioral. A logmacro subrou­

tine is a special form of the macro and describes structure only. A macro is a 

sequence of statements which is represented by a single macro call statement in the 

main program. Macros share the same resources with the main program. A block is a 

separate system. DIADES generates a separate data path and control unit for the 

block. 

Each subroutine is declared using the subroutine definition list. A subroutine is 

defined by its type, symbol, name, fix flag, and a list of parameters. The symbol, 

which is the same type of parameter appearing at the beginning of the main declara­

tion block, must be unique to each subroutine and cannot be the same as any other 

symbols in the program. The fix flag protects the subroutine against any transforma­

tions. Transformations optimize the program in various ways. If for some reason, the 

user doesn't want the subroutine to be modified, the fix flag is enabled. 

The parameter list is used to indicate how data is passed between the subroutine 

and the main program. Constants and fixed numbers can be passed to subroutines and 

are declared here. ADL differs from Pascal-type languages in this respect The data 

direction of a variable is specified in the subroutine listing, not here in the main decla­

ration section. 

Variable parameter names can be a legal name and correspond to variable names 

in the subroutine listing. The positions of variables and other parameters must corre­

spond with the positions in the subroutine listing. 

Example 3.8.1 - Subroutine Declarations 

(subr (macro b example_ macro (ab)) 



(block c example_block (4 ab c))) 

The basic grammar for subroutine declarations is: 

<subroutine declaration>::= (subr <subroutine definition>+); 

<subroutine definitions> : := ( <subroutine type> <symbol> 

<name> <fixjlag> 

<parameter list> ) ; 

<subroutine type> : := macro/ block/ logmacro /log block; 

<parameter list> : := ( <parameter>+ ) ; 

<parameter> : := <number> / <vector> I <variable> ; 

<fixjlag> ::=fix I empty; 

3.9 STATEMENTS AND EXPRESSIONS 

3.9.A Introduction 
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ADL is a procedural language. Each statement is executed sequentially, except 

in parallel constructs. DIADES generates a machine from the program. The machine 

begins execution with the first statement in the program. Unless there is a loop, the 

last statement in the program is executed last and the machine stops. Each statement 

is assumed to execute in one clock cycle and is considered one operation. DIADES 

makes allowances for those statements taking more than one cycle to execute. 

Control flow graphs are used in several examples to illustrate program frag­

ments. Each node of a graph corresponds to a one cycle operation. Each edge corre­

sponds to the flow of control through the graph. The following example presents the 

ADL program from the introduction. Following it is the corresponding control-flow 



graph. 

Example 3.9.A.1 - Program and Flow graph 

line 1: ( ( (ad/ a example_ circuit .... 

line 2: (input (opl (p kl 8)) (op2 (p kl 8))) 

line 3: (intern (temp (p kl 8))) 

line 4: (output (answer (p kl 8))) 

line 5: 

line 6: 

liine 7: 

line 8: 

((start) a 

line 9: 

line 10: ))) 

line 11: end 

10 (temp:= (opl + op2)) 

(if (temp= 10) then (temp:= (opl - op2))) 

(answer := temp) 

(go 10) 

Flow graph of the above example is shown in Figure 4. 
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Numbers in ADL are specified as integers or as a vector of bits. Negative inte­

gers are allowed but the form is slightly different than in other high level languages. 

The maximum size of an integer is limited to the size of the variable being used. Oth­

erwise, there is no theoretical limit to the maximum integer size. Negative integers 

require a sub-expression using a "-" sign and a positive integer contained in a set of 

parentheses. For instance, -5 is written as (- 5). 

Binary numbers are allowed in ADL and are referred to as vectors of bits. There 

is a special form for the specification of bits. The format is shown below: 

(vect ( l's and O's)) 
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start 

(temp= 10) 

Figure 4. Flow graph of example 3.9.A.1. 

The bits are specified as 1 's or 0 's, each bit separated by a space. The most sig­

nificant bit is leftmost. Leading O's are not needed. The maximum size is limited to 

the size of the variable being used. 

There are 3 types of statements; assignment, conditional-control flow, and sys­

tem control. Assignment statements include simple variable assignments, arithmetic, 

and logical statements. conditional-control flow statements consist of go, if-then-else, 

while, and cond statements. System control statements control parallelism, process 

control, and starting and stopping the machine. 

The basic grammar for a statement is: 

<statement> ::= <label> <statement> 



I <statement> ; 

<label>::= natural number; 

<statement>::= <system statements>/ 

<assignment statement> I 

<arithmetic statement> I 

<logical statement> I 

<control flow statement> / 

<assertion statement> ; 

30 

Each statement is contained within a set of parentheses. Most statements imply 

their structure but the parentheses are needed to exactly define the limits of state­

ments. Expressions within statements also need parentheses for definition. Each 

level of expression requires two parentheses. Constants, numbers, and variables do 

not require parentheses. 

Example 3.9.A.1 - Example Statements 

(I:= (l + 1)) 

(a : = (and l a) ) 

(if (a= 0) then (l := 4) else (l := 1)) 

(b :=(a+ (b + c))) 

(while (b < 4) do (e := 0) 

(b := b-1)) 

3.9.B Labels 
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Statements can have labels. Labels are used to mark the destinations of "go" 

statements. "go" statements are similar to "goto" statements in BASIC. A label is 

always a number and letters are not permitted. A label is placed on the same line as 

the statement it refers to but outside the parentheses for that statement. A label is 

inside of any parentheses surrounding a block of statements. Each labelled state­

ments must have a different label number. 

Example - Statements with Labels 

10 (a:= 5) 

20 (if(a < 5) then (a:= (a+ 1)) 

30 (c:=5) 

(go20) 

else (a:= 100) 

(go 30) 

) 

3.9.C Assignment Statements 

The most basic statement is the assignment statement. An assignment means the 

transfer of the value of an expression to a variable. An expression can be a number, 

constant, variable, or other operation. The user can split data from one variable into 

two parts and two variables with an assignment statement. This is referred to as data 

path splitting. Two variables can be combined into one vector of bits and the new 

value transferred to another variable. When a program is implemented in hardware, 

the assignment means the loading of a register with data. 



The basic grammar for assignment statements: 

<assignment statement> : := ( <left hand side> 

<assignment operator> 

<expression>); 

<left hand side>::= <variable>/ <concatenation of variables>; 

<concatenation of variables>::= (<variable>@ <variable>); 

<assignment operator> ::= ==I:= I =: ; 

<expression> := <constant>/ <variable>/ <arithmetic expression> 

I <logical expression> I <predicate> 

/<expression>@ <expression>; 

<predicate> : := ( <expression> 

<relation operator> 

<expression> ) ; 
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Variables on the right hand side can not be output variables. The output of an 

output variable goes out of the system and is not available for transfers within the sys­

tem. However, by also declaring an output variable as an intern variable, data from 

the output variable can be transferred within the system. 

The left and right hand statements do not have to represent vectors of bits with 

the same size. It is possible to transfer values between variables with different sizes. 

If the right hand side has more bits than the left hand side, the right hand side is trun­

cated to the correct size by dropping the extra leftmost bits from the connection 

between the two blocks, (Figure 5.). If the left hand side is bigger than the right hand 

side, extra 0 bits are added to the right hand side. These extra bits are the "most 
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significant bits" and are added to the left side. Bits are added until the length of the 

right hand side matches the length of the left hand side, (Figure 6.). 

0 

1 

2 

3 

0 
1 

2 

3 

4 

5 
floating I I 6 

7 

Figure 5. Transfer of values between variables. 
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Figure 6. Transfer of values between variables. 

Truncation of a variable changes the value of the destination while adding extra 

bits does not. The user should avoid these problems by using concatenation opera-

tions where possible. 

Concatenation is a way to combine data moved between variables and expres-

sions. Concatenation in ADL has two meanings. One meaning is the combining of 

two data paths into one data path. The merged data path is input to some hardware 
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element. The other meaning is the splitting of one data path into two data paths. The 

two data paths are input to different hardware elements. The format for the two 

meanings of the concatenation symbol is identical. 

The concatenation operator for ADL is the'@' symbol. The format for concate­

nation is as follows: 

( <varl>@ <var2>) 

or 

( <expression> @ <expression> ) 

<expression> := <constant>/ <variable>/ ( - <variable> ) 

/<arithmetic expression> 

/<logical expression>/ <relation> 

/ <expression> @ <expression> 

I <logical function> ; 

The result of the concatenation can be treated as a variable for assignments and 

expressions. The output from a concatenation is always input to some element or pair 

of elements. It can either be a lhs(lefthand), or rhs(righthand). 

Example 3.9.C.1 - Concatenation 

(A:= (B @C)) 

"A" is an 8 bit variable, B and Care 4 bit variables. The hardware implementa­

tion of this operation is to combine the outputs of the B and C registers and transfer 

the values into the a register, (Figure 7.). B provides the 4 low order bits and C pro­

vides the 4 high order bits into A. Example 3.9.C.2. - Data Path Splitting 
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0 
1 

b 1 
2 
3 2 

3 
a 
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0 5 
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c 6 
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Figure 7. Concatenation operation. 

((B@ C) :=A) 

A, B, and C are variables as above. The hardware representation of this opera­

tion is to split the output of register A into the B and C registers, (Figure 8.). B takes 

the 4 low order bits from A and C takes the 4 high order bits. 

- 0 
I -

0 1 -
I - B 

1 - 2 
I -

2 - 3 
I -

3 
A 

4 
I - 4 5 -
I - 5 6 - c I -

7 - 6 
I -- 7 

Figure 8. Concatenation operation. 
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Specific fields of bits can be used with concatenation operations. This allows 

greater flexibility in controlling the flow of data. If the sizes do not match, then the 

standard defaults apply. However, the user should be careful to avoid these situations 

and the system will give a warning. 

Example 3.9.C.3.- Concatenation with Bit Fields 

((A [3 % 8)) := ((B [2 % 3))@(C [0 % 3)))) 

0 
0 1 

B 1 2 
2 I 3 -3 I - A a - 4 -
0 l - 5 -
1 I - 6 c -
2 I - 7 -
3 I - 8 
J. -

Figure 9. Concatenation with bit fields. 

A, B, and C are variables. The hardware representation of this operation is to 

transfer the specified bits from the Band C registers to the A register, (Figure 9.). 

3.9.D Arithmetic Statements 

Arithmetic statements in ADL are composed of an assignment statement and an 

arithmetic expression. An expression is composed of operators and operands. 

Operands can be expressions, variables, constants, and numbers. Arithmetic opera-

tions use an infix notation. Multi-level expressions are allowed. The order of 
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evaluation for an expression is controlled by the parentheses. 

Data in ADL are always unsigned integers. Two's complement interpretation is 

up to the user. The high order bit is not reserved for a sign bit If the result of an 

operation is negative, the result is in two's complement form. For example, if dis a 4 

bit variable with the following assignment: 

(d := (3 - 5)) 

then: 

(d = 14) ->true 

also with the use of a negation operator: 

(d = (- 2)) ->true 

The maximum value of an integer depends on the number of bits in the variable. 

The grammar for arithmetic expressions: 

<arithmetic statement> ::= (<left hand side> 

<assignment operator> 

<arithmetic expression> ) ; 

<left hand side> : := <variable>/ <concatenation of variables> ; 

<concatenation of variables>::= (<variable>@ <variable>); 

<assignment operator> ::= ==I :=I=: ; 

<arithmetic expression> : := ( <expression> 

<arithmetic operator> 

<expression> ) ; 

<expression> := <constant> I <variable>/ ( - <variable> ) 



/ <arithmetic e.xpression > 

/ <logical expression> / <relation> 

I <expression> @ <expression> ; 

<arithmetic operator> := + / - ; 

Example 3.9.D.1 - Arithmetic expressions 

(a - c) 

(a+ (- b)) 

((a+ 1)-(xly)) 

(((- x) +((a* (- c)) - b)) 

(b +3) 

((5*6)+(a-3)) 
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In the above example, only arithmetic operators are used. Although the gram­

mar for expressions is extensive, the only other operators allowed in arithmetic state­

ments are logical operators and concatenation. 

Example 3.9.D.2 - Complex Arithmetic Expressions 

( (a + I) - (and x y ( r @ u))) 

((or ab c) +(and (x + y) b)) 

There is no type checking in DIADES. Source operands and destination vari­

ables can be different sizes, creating some problems. Two 32 bit operands can be 

added and stored to an 8 bit operand. Only the lower 8 bits of the result will be saved 

and the upper 24 bits lost. DIADES automatically adds an overflow bit to the result 

of any addition or subtraction operations. Thus, the addition of two 8 bit operands 
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results in a 9 bit result. 

Subtraction operation converts the subtrahend into a two's complement represen­

tation and adds it to the minuend. If the result is negative, the result will be a two's 

complement number. If the subtrahend is the result of another subtraction operation 

and is negative, it is still converted into a two's complement and added to the minu­

end. 

Multiplication and division operations are included in ADL even though they are 

not implemented in the DIADES system. There are no corresponding hardware ele­

ments for multiplication and division so these two operations cannot be used. 

The size of the result of an arithmetic operation is always equal to the size of the 

largest operand. Problems can arise when two large numbers are used and the result 

is too large for the destination. 

3.9.E Logical Operations 

Logical statements in ADL are composed of an assignment statement and a logi­

cal expression. A logical expression takes any number of operands and maps them 

onto a logical operator. Any expression can be an operand. The number of operands 

is unlimited except for "exor" which takes two operands and "not" which takes one 

operand. Logical expressions use a prefix notation. 

Example 3.9.E.1 - Logical Operation 

If all the operands of an expression have one bit, the result of the logical opera­

tor is one bit If the operands have different sizes, the result of the logical operator is 

equal to the size of the largest operator. Smaller operands have Os added to the more 
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(a:= (and b c)) 

bl cl b2 c2 b3 c3 b4 c4 

al a2 a3 a4 

Figure 10. Logical operation. 

(a:= (orb cd)) 

bl cl dl b2 c2 d2 b3 c3 d3 b4 c4 d4 

al a2 a3 a4 

Figure 11. Logical operation. 

significant sides. 

There are two types of variables in ADL, "d" and "p" types. The "d" type is a 

logical variable and is not used for numbers. It is always one bit. The "p" type is an 

array of bits and can be used for numbers. The important difference between them is 

their interpretation in logical expressions. "p" type operands are mapped onto the 

logical operator. The operator is applied to each set of bits from the operands. "d" 

type operands have one bit. If the other operands are "p" type, the "d" bit is projected 

onto the bits of the other operands and the logical operator is applied. 

Example 3.9.E.2 - Logical Expressions 



In this example: 

"p" type: 

"d" type: 

a= 0111=3 

b = 0110 = 6 

c = 011101=29 

d = 10 = 2 

e=l=l 

f=O 

g=l 

(not a) = 1000 

(and ab)= 0110 

(orcd) =011111 

(anded)= 00 

(and ef) = 0 

(nor (a+ b) c) = 000010 

(and (a+ b)(c - d)) = 001001 

The grammar for logical statements: 

<logical statement> ::= (<left hand side> 

<assignment operator> 

<arithmetic expression> ) ; 

<left hand side> ::= <variable>/ <concatenation of variables> ; 

<concatenation of variables> ::= (<variable>@ <variable>); 
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<assignment operator> ::= ==I:= I=:; 

<logical expression> : := ( <logical operator> 

<expression>+ ) ; 

<expression> := <constant> / <variable> / ( - <variable> ) 

I <arithmetic expression> 

I <logical expression> / <relation> 

I <expression> @ <expression> ; 

<logical operator> := and I nand I or I nor/ exor I not; 

3.10 CONTROL FLOW STATEMENTS 
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Control flow statements are used to control execution of branches in the pro­

gram. Go statements branch unconditionally. 

If-then-else and while-do statements allow the program to have several branches. 

The branch executed depends on the value of the predicate in the control statement 

Cond statements select one of several branches depending on the value of a predicate 

at the beginning of each branch. Wait statements hold the system in a loop for a spe­

cific time or until some input value changes. 

The basic grammar of control flow statements is: 

<control flow statement> : := <go statement> / 

<if then else statement> I 

<while statement> I 

<cond statement>/ 
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<wait statement>; 

Each statement, except go, uses a predicate to control branching. Predicates are 

expressions which have two values, true and false. True is represented by one bit 

with value 1 and false by one bit with value 0. A predicate consists of one or more 

relations linked with a logical connective such as "and" or "or". A relation consists of 

a relational operator and two operands. An operand can be a number, constant, vari­

able, or expression. The basic grammar for a predicate is: 

<predicate> : := ( <expression> 

<relational operator> 

<expression> ) 

or 

( <expression> ) ; 

<expression>:= <constant>/ <variable>/ ( - <variable>) 

/ <arithmetic expression> 

/<logical expression>/ <predicate> 

I <expression>@ <expression>; 

<relational operator>:= =I< I> I; 

Example 3.10.1 - Predicates 

a=3b=lc=2 

(a= 3) 

(a= b) 

(a> 7) 

->true 

->false 

->false 



( b < 8) 

(a=(b+c)) 

->true 

->true 

( (5 - a) > (c + 4)) ->false 

(and (a= 3) (b < 8)) ->true 

(or (a= b) (a> 7)) ->false 

(not (b < 8)) ->false 

(nor (a= (b + c)) (b = 1)) ->false 

3.10.A Go Statements 
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Go statements are used to unconditionally branch to a labelled statement Go 

statements and their corresponding destination statements can occur anywhere in the 

program. Jumps out of if-then else statements and while loops are allowed. 

Although it is not a good programming practice, the destination statement can be 

inside of a while loop. The "value" of a label cannot be created using an expression. 

For example: (i := 99) and (go i) is invalid. The basic grammar for the go statement 

is: 

<go statement> : := (go <label> ) ; 

Example 3.10.A.1 - Program with Go Statements 

(((ad/ a example 

) 

(input (a (p kl 8)) (b (p kl 8))(c (p kl 8))) 

(intern (j (p kl 8)) (k (p kl 8)) (l (p kl 8))) 

(output (x (p kl 8))(y (p kl 8)) (z (p kl 8))) 
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((start) a 

10 (j:=(a+l)) 

(go 30) 

20 (k:=(a+b)) 

(go 40) 

30 (I:= (b + c)) 

(go 20) 

40 (x := (j - k)) 

(go 10) 

))) 

end 

The flow graph of the above program is shown in Figure 12. 

G := a+t) 

(I:= b+c) 

Figure 12. Flow graph for example 3.10.A.1. 

3.10.B If-Then-Else Statements 
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There are two forms of the conditional if statement: with an "else" and without 

an "else". The statement consists of an "ir' keyword, followed by a predicate. The 

predicate is followed by a "then" keyword. If the predicate is true, the statements fol­

lowing it are executed. The "else" keyword follows those statements. H the predicate 

is false, statements following the "else" keyword are executed. If there is no "else", 

statements after the if-then block are executed. The basic grammar of the if statement 

IS: 

<if statement> : := ( if <predicate> then <statement>+ ) / 

or 

(if <predicate> then <statement>+else <statement>+ ) ; 

Unlike C or Pascal, there are no explicit symbols defining the extent of the if­

then-else statement. In Pascal, begin and end keywords mark the sequence of state­

ments being executed. In ADL the "then" keyword and either the "else" keyword or 

right parenthesis mark the sequence of statements executed if the predicate is true. 

The "else" keyword and the right parenthesis mark the sequence of statements 

executed if the predicate is false. 

Example 3.10.B.1. - Program with If Statements 

( (( adl a example 

(input (a (p kl 8))(b (p kl 8))) 

(intern (j (p kl 8)) (k (p kl 8))) 

(output (x (p kl 8)) (y (p kl 8))) 

) 

((start) a 



(if(a=3) 

) 

then 

(j:=(a+b)) 

(k := (andj (or (a+ b) a))) 

else 

(x := 5) 

(y := 8) 

(if (k >(}+a)) 

then 

) 

))) 

end 

(y := 32) 

The flow graph of the above program is shown in Figure 13. 

3.10.C While Loops 
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ADL supports while loops. A while statement consists of the while keyword fol­

lowed by a predicate and the do keyword. Statements between the do keyword and 

the right parenthesis are executed repeatedly until the predicate is false. If the predi­

cate is false before the start of the loop, the statements in the loop are not executed. 

The basic grammar is shown below: 

<while statement> ::= (while <predicate> do <statements>+); 
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(x:=S) 

Figure 13. Flow graph for example 3.10.B.1. 

Example 3.10.C.1 - Program with While Loop 

( ( (ad/ a example 

(input (a (p kl 8)) (b (p kl 8))) 

(intern (j (p kl 8)) (k (p kl 8))) 

(output (x (p kl 8))(y (p kl 8))) 

) 

((start) a 
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(while (a= 3) do 

(J:=(a+b)) 

(k :=(and} (or (a+ b) a))) 

) 

(y := 8) 

(while (k > (} + a)) do 

(y := 32) 

) 

))) 

end 

The flow graph of the above program is shown in Figure 14. 
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Any statements can be executed in the while loop except return, drop, and 

stopadl. Jumps into and out of the loop with the go statement are allowed. Nested 

while loops are allowed. 

If the predicate variables are input variables, they do not have to be initialized. 

If they are intern variables, they should be initialized before the while statement is 

executed. The predicate is evaluated first If true, the statements within the loop are 

executed and the predicate is evaluated again. If the predicate is false, execution con­

tinues with the statement following the while statement. 

Normally, the predicate variable should change in the body of the loop so that 

the loop is exited. This is true for intern variables. It is not true for input variables 

because their values are changed from outside the system and the user cannot change 

those from within the program. 



Figure 14.Flow graph for example 3.10.C.1. 

Example 3.10.C.2 - Nested While Loops 

(((adl a example 

(input (a (p kl 8)) (b (p kl 8))) 

(intern (j (p kl 8)) (k (p kl 8))) 

(output (x (p kl 8)) (y (p kl 8))) 

) 

((start) a 

(while (a= 3) do 

(j:=(a+b)) 
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) 

))) 

end 

(k :=(and} (or (a+ b) a))) 

(while (j > JO) do 

(j := (j + 1)) 

(x := (nor ab c)) 

) 

The flow graph of the above program is shown in Figure 15. 

3.10.D Cond Statement 
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The cond statement is a an extension of the if-then-else statement Within the 

cond statement can be several branches, but only one is executed. Each branch has its 

own predicate controlling execution of that branch. When a cond statement is 

encountered, the predicate of the first branch is executed. If it is true then that branch 

is executed and program execution continues with the next statement after the cond 

statement. If the first predicate is false then the next branch is executed. This process 

goes on until one of the branches is executed or the end of the cond statement is 

reached. There is no "default" branch. There must be at least two branches in a cond 

statement. Jumps out of a cond statement using the "go" statement are allowed. The 

basic grammar for the cond statement is presented below: 

<cond statement> ::= ( cond <cond branch>+); 

<cond branch> ::= ( <predicate> <statement>+) ; 
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Figure 15. Flow graph for example 3.10.C.2. 

Example 3.10.D.1 - Cond Statements 

(((ad! a example 

(input (a (p kl 8 ))(b (p kl 8))( c (p kl 8))) 

(intern(} (p kl 8))(k (p kl 8))(1 (p kl 8))) 

(output (x (p kl 8))(y (p kl 8))(z (p kl 8))) 
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((start) a 

10 (cond((b=O) (x:=l)) 

))) 

end 

((not (b = 0)) (y := 0) (z := 0))) 

(cond ((a= O)(go 10)) 

((a= 1) (while (j > 10) do (j := (j + 1)) 

(x := (nor ab c)) 

) ) 

(( c = 23) (I:= 1)) 

((j = 3) (x :=OJ (k := (k + 2)) 

) 

The flow graph of the above program is shown in Figure 16. 

3.11 SPECIAL STATEMENTS 
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This section describes statements which are unique to ADL. They provide more 

control over hardware operations. These statements include a wait statement which 

holds the digital system in a timing loop until some condition is met and set and reset 

statements which assert output values. 

3.11.A A Wait Statements 

The wait statement is used to hold the digital system in a timing loop for a fixed 

amount of cycles or until some external condition is met. The wait statement with a 
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start 

Figure 16. Flow graph for example 3.10.D.1. 

number is used to hold the system for a fixed time. The wait while statement with a 

predicate is used to hold the system until an external condition is met. Variables used 

in a wait while statement must be input variables because internal variables will not 

change during the timing loop. The wait statement is an extension of a for loop or 

while loop. The basic grammar for this statement is presented below: 

<wait statement> ::= (wait <number>)/ 



( wait while <predicate> ) ; 

Example3.ll.A.l -WaitStatements 

(wait while reservoir Juli) 

(wait while (and (x [ 1 % 1 }) r )) 

(wait 1000) 

3.11.B Set and Reset Statements 
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Set and reset statements control the turning on and off of many one bit signals. 

Set means an output variable is 1 and reset means an output variable is 0. This appli­

cation is common in industrial control circuits. The basic grammar is shown below: 

<set and reset statements> : := ( set <logical variable>+ ) / 

(reset <logical variable>+ ) ; 

Only logical variables can be set and reset because they are one bit signals. 

Once a variable is set or reset , it holds that value until the variable is changed. 

Example 3.11.B.1 - Set and Reset 

(set a be) 

(reset x y z) 

3.11.C System Control Statements 

System control statements are divided into two groups, statements controlling 

the starting and stopping of the digital system, and statements controlling parallel 
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operations. 

3.11.D Parallel Execution Statements 

In DIADES the user can design a system with parallel operations. Parallel oper­

ations use the same control unit but multiple hardware elements are enabled at the 

same time. An ADL program can be written so that individual statements or blocks 

of statements operate in parallel. Multiple statements can be directed to execute in 

the same cycle. An algorithm can be split into parallel blocks of statements. Control 

statements join parallel blocks back into one process. 

3.11.E A Multiple Statement Execution 

The sim instruction is used to execute more than one assignment instruction in 

the same cycle. Sim stands for simultaneous execution of statements. All statements 

within the scope of the sim instruction are executed in the same cycle. Only assign­

ment statements can be executed. The basic grammar for the sim instruction is: 

<sim instruction> ::= ( sim <assignment instruction>); 

Example 3.11.E.1 - Sim Instructions 

In this example, x and k are incremented in parallel. 

(sim (x := (x + 1)) 

(k:=(k-1)) 

) 

In this example, x is loaded with 1, a is loaded with 5, and bis anded with x and a. 



(sim (x := 1) 

(a:= 1) 

(b := (andx a)) 

) 
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At least two statements must be within the sim instruction. If the same variable 

appears on the left side of one assignment statement and on the right side of another 

in the same sim instruction, the TAG compiler will print a warning about conflicting 

variables. This is not an error but a warning to possible problems with this kind of 

instruction in the next phases of system design. An warning is also printed if the 

number of bits doesn't match in a field specification. 

3.12 PARALLEL PROGRAM EXECUTION 

An algorithm is a process. Using parallel control instructions, a process can be 

split into two or more branches. Each branch executes in parallel with the other 

branches. Each branch operates independently of the other branches and communica­

tion between branches is through internal variables. When one or all branches are fin­

ished, they can be joined together into one process or just stop. A branch can stop 

when it is finished, wait for other branches to finish, or cause other branches to stop. 

Fork is the name of the branching instruction and the basic granunar is described 

below [10]. 

<fork instruction> ::= (fork <branch>+ <branch control>); 

<branch> ::= (<instructions> <drop control>); 

<drop control> : := ( drop ) ,· 
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<branch control> : := dand / dexor ; 

The fork instruction is composed of the keyword fork, followed by each branch 

which is enclosed in a set of parentheses. After the branches are described, the 

branch control parameters are described. Control parameters indicate how control 

passes from the branches to a single process. 

There must be at least two branches in a fork instruction. Each branch is made 

up of almost all ADL statements, including parallel control statements. The restric­

tions are the following: 

1. Labels can not be placed on the last statement in a branch. 

2. Jumps out of, into, and within the branch are allowed. Jumps out of 

and into the fork statement are also allowed. However, programming like 

this causes problems and the user should be very careful. 

3. Instructions drop, return, and stopadl cannot be the only instruction 

in a branch. 

Branches can be joined into a single process. When one or more branches have 

completed execution, the overall execution process continues with the next statement 

after the fork statement. The branch control instructions indicate how this is done. 

The drop instruction individually controls each branch and appears as the last state­

ment in a branch. Dand and dexor instructions control all branches and are normally 

placed in the fork statement after all the branch statements. 

1. drop - When the branch is finished executing and drop instruction is 

reached, control is terminated in this branch. Program control is left to 

the other branches. If all the other branches have drop instructions, then 
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the execution of the next statement after the fork takes place when the 

last branch has finished. If the other branches are controlled by dand or 

dexor instructions and finish before the branch with the drop, the branch 

with the drop keeps executing in parallel with the rest of the program. 

2. dand - When any of the branches is finished executing, this instruc­

tion is reached and execution of the next statement after the fork does not 

take place until all branches have completed execution. H a branch has a 

drop instruction, that branch is ignored for the scope of the dand. 

3. Dexor - When any of the branches is finished executing, this instruc­

tion is reached and control passes to the next statement after the fork. 

All other branches stop execution immediately except for branches with 

drop instructions. These will continue executing until finished. There 

are some special cases where parallel branches continue executing after 

the dexor instruction is reached. 

Example 3.12.1 - Fork Example 

(((ad/ a example382 

) 

(input (a (p kl 8)) (b (p kl 8)) (c (p kl 8))) 

(intern (j (p kl 8)) (k (p kl 8)) (/ (p kl 8))) 

(output (x (p kl 8))(y (p kl 8))(z (p kl 8))) 

( (start) a 

111 (x := 10) 

(fork 



) 

))) 

end 

((x := 4) (go 111)) 

((y := 33) (x := (b + 34)) (drop)) 

((z :=(and ab)) (k := (j + e)) 

((j := 45) (while (j > 23) do (j := (j-1)))) 

dexor 

60 

The flow graph of the above program is shown in Figure 17. The first branch 

ends with the jump out of the branch and fork statements to some other point of the 

program. The second branch ends when the two assignments are completed and the 

drop instruction is reached. The third and fourth branches are controlled by the 

dexor instruction. When one of them finishes, the other branch is stopped and the 

program execution continues with the first statement after the fork instruction. In this 

particular example, it is obvious that the third branch finishes first. The variable x 

will have the last value calculated before the branch was stopped. 

When the dexor instruction is reached within a fork statement, all other 

branches within the scope of the fork statement stop. The dexor instruction only 

affects statements inside the fork statement. If a jump is made out of the fork state­

ment to another section of the program, that section will be executing in parallel with 

the branches inside of the fork statement. When one branch is finished and the dexor 

instruction is reached, branches within the fork statement stop but the section outside 

of the fork statement continues to execute. 

There is a special form of the dexor instruction. If labels are placed at the 
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Figure 17. Flow graph for example 3.12.1. 

beginning of branches, (within the parentheses), the dexor instruction only affects the 

control of specified branches. The dexor statement is placed outside of the fork 

statement as a separate labeled statement. The syntax for this is shown below: 

<label> ( dexor <label>+ ) 

Example 3.12.2 - Fork with Dexor Specification 

( ( ( adl a example 

(input (a (p kl 8)) (b (p kl 8)) (c (p kl 8))) 

(intern (j (TJ kl 8)) (k (TJ kl 8)) (I (TJ kl 8))) 



(output (x (p kl 8)) (y (p kl 8)) (z (p kl 8))) 

) 

((start) a 

1 (x := 10) 

(fork 

((x := 4) (y := 5) (drop)) 

(4 (y := 33) 5 (x := (b + 34)) (go 3)) 

(6 (z :=(and a b))(go 3)) 

((j := 45) (go 1))) 

3 (dexor4 5 6 3) 

))) 

end 
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Tokens in nodes 4, 5, 6, and 3 are canceled if any one of them finishes and a 

jump is made to the dexor statement. All other branches started from this fork state­

ment continue. The flowgraph for this example is shown in Figure 18. 
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start 

Figure 18. Flow graph for example 3.12.2. 



CHAPTER IV 

GRAPH LANGUAGE 

4.1 INTRODUCTION 

GRAPH language is a format used in DIADES to represent the behavior of a 

digital system. The behavior is represented by a specific sequence of program state­

ments. GRAPH is based on a standard directed graph. It basically consists of a set 

of nodes and arrows. A node represents an operation or program statement. An oper­

ation can be a variable transfer, arithmetic operation, logical operation, or compari­

son. An arrow represents the flow of control from one node to another. For example, 

an arrow from node 1 to node 2 means node 1 is executed first and then node 2 is 

executed. Control of the digital system is transferred from node 1 to node 2. The 

GRAPH is not evaluated as a whole but a path can be traced through the GRAPH 

representing a sequence of operations. 

Control can flow through the GRAPH in several ways. Each node is executed 

sequentially, following the path of the arrows. Some nodes are condition checks. The 

value of a variable is compared to some expression. The control flow can split into 

two branches. One branch is when the result of comparison is true and another is 

when result of the comparison is false. The execution of the branches is mutually 

exclusive. Only one branch will be executed at a time. Some nodes represent multi.­

way branches. Each condition is checked until a true one is found. The correspond­

ing branch is executed and the others skipped. 
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Normally only one node is executed at a time. There is a way to execute nodes 

simultaneously. Multiple branches can be defined and executed concurrently. The 

control flow splits to go in parallel through the branches. The parallel control flows 

can be joined together in different ways resulting in a single control flow. 

The data structure for GRAPH is more complicated than a simple di-graph. 

There are several node and arrow types, each with different properties. Each property 

affects how the GRAPH description is interpreted and executed. For example, some 

nodes are data transfer type operations and some are condition checks. Some node 

properties affect how arrows are interpreted. Some arrows represent sequential 

execution, while others represent concurrent execution. 

The implementation of GRAPH consists of several Lisp lists. The three main 

lists are the COPLISSET, the NALISSET, and the PLISSET. The COPLISSET 

represents arrows. The NALISSET represents nodes containing regular operations 

and data transfers. The PLISSET represents nodes containing comparison opera­

tions. Because it is not a pure graph implemented with pointers, all nodes are 

assigned numbers. Each of the lists uses these numbers to refer to nodes. Some 

nodes are not listed in either the NALISSET or PLISSET lists. These nodes usually 

are used to control execution and are described in the auxiliary lists, NOLISSET and 

ANLISSET. Nodes which are identical to some other node are not listed in the 

NALISSET list. Instead, they are listed as being equivalent to other nodes in the 

NOLISSET list. The other lists contain infonnation about variables, the number of 

blocks, and any structural descriptions. The entire ADL description is also contained 

in one list for reference by some DIADES programs that use GRAPH language. 

4.2 COPLISSET LIST 
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The COPLISSET list contains all the arrows in the GRAPH The arrows indi­

cate how control flows through the GRAPH in GRAPH. Control can flow from one 

node to another or it can depend on the results of a comparison, (a condition check). 

An element consists of a symbol indicating the control transfer type, the source node 

number and the destination node number. These numbers reference to elements of 

other lists. The formal definition of a COPLISSET entry follows: 

<COPUSSET element> ::= 

(<conuoltransfertype> 

<source> 

<destination> 

) ; 

<control transfer type> : := e Ix 

I <node number> 

I (not <node number>) ; 

<source> : := <node number> ; 

<destination> : := <node number> ; 

The source and destination nodes can not be the same. The implementation of a 

conditional loop requires the use of a dummy node. Dummy nodes are described in 

the NOLISSET list. An x type transfer means control is transferred unconditionally 

from the source node to the destination node. An e type transfer means there are par­

allel execution paths from the source node. There will be at least one other arrow 

with an e transfer type from the same source node to a different destination node. If a 

node number is given as the transfer type, this means that node is a comparison 
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operation. The destination node depends on the comparison result. If the result of the 

comparison is true, then the control transfers to the destination node. If it is false, 

then the control is not transferred. If the not keyword precedes the node number and 

is in a sublis4 then the control is transferred to the destination node if the comparison 

result is false. Regular condition checks require two arrows, one for true and one for 

false. 

Example 4.2.1 - Conditional and Unconditional Control Transfer 

(x 1 2) 

(x 2 3) 

(3 3 4) 

((not 3) 3 5) 

(x4 5) 

(x5 6) 

The flow graph of the above example is shown in Figure 19. 

Figure 19.Flow graph for example 4.2.1. 



Example 4.2.2 - Parallel Control Transfer 

(x 1 2) 

(x2 3) 

(e3 4) 

(e3 5) 

(x5 6) 

(x6 7) 

(e 3 8) 

(x8 9) 

The flow graph of the above example is shown in Figure 20. 

Figure 20. Flow graph for example 4.2.2. 
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A cond structure represents multi-way branching. The cond implementation is 

a little complicated. One comparison node is used to represent the source node for all 

the comparison operations for the cond. The control flow goes through this node and 

then to the resulting branch nodes. All of the comparison operations in the cond are 



69 

not listed explicitly in the GRAPH. The first comparison node is listed in the 

GRAPH. The control flows through the operation preceeding the cond to this node. 

The first comparison is made. If it is true then control is passed to its corresponding 

branch. If it is false, then the next comparison is evaluated. There is an arrow point­

ing to the first comparison node. There are no arrows pointing to the other compari­

son nodes. There are arrows using the other comparisons between the original source 

node and the corresponding branch of each comparison. The only way to find these 

other arrows is to look at all the arrows in a GRAPH description for an element with 

the same source node. In this case that will be the original source node for the com­

parison. The order of execution for the other comparisons in the cond structure is 

determined by their node numbers. 

Example 4.2.3 - Cond Structure 

(6 6 7) 

(86 9) 

(10 6 11) 

(12 6 13) 

The flow graph of the above example is shown in Figure 21. 

Nodes 6, 8, 10, and 12 are comparison nodes. The comparison check at node 6 

is the source node when transferring control to any of the branches. First the compar­

ison at node 6 is checked. If it is true, then control is transferred to node 7. If it is 

false, then the control is passed to the comparison at node 8. The only way to know 

that 8 is the next node is to look at all the arrows in a graph description for an element 

with the same source node. In this case that is node 6. The order of execution for the 
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Figure 21. Flow graph for example 4.2.3. 

other comparisons in the cond structure is determined by their node numbers. 

4.3 NALISSET LIST 

The NALISSET list describes all of the assignment type operations. Compari­

son operations are listed in the PLISSET list. Each operation consists of an assign­

ment type, a destination for the results of the operation, and an expression. An 

expression can either be a variable, arithmetic or logical expression, or a concatena­

tion of expressions. An element of the nalisimp list has the following form: 

NAUSSET element::= 

(<node number> (<assignment operator> 

<destination> 

<expression> 



) 

) ; 

<assignment operator>::= 

·-/- ·/-- . . - -. -- ' 

<destination> : := 

<variable> /<concatenation of variables> ; 

<concatenation of variables> : := ( <variable> @ <variable> ) ; 

<variable> : := <name> / 

(<name> [<index>]) I 

(<name> [<low bit>% <high bit>]) 

<expression> := <operand> I <expression> 

/ <expression> @ <expression> ; 

<operand> : := <constant> / <variable> 

/<concatenation of variables>; 

<expression> : := 

(<operator> <operand>+) ; 

<operator> : := plus I minus / times / and/ nand 

I or I nor I not I exor ; 

Example 4.3.1 - Nalisset List 

(2(:=x10)) 

Which means (x := 10). Where 2 is the node number. 

(6 (:= x (plus b 34 ))) 

Which means (x := (b + 34)). Where 6 is the node number. 
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(8 (:= z (and ab))) 

Which means (z := (and a b)). where 8 is the node numer. 

( 12 (:= j (plus j (minus 4 )))) 

Which means (j := (j - 4)). Where 12 is the node number. 

4.4 PLISSET LIST 

The PLISSET list contains the node descriptions for comparison operations. A 

comparison operation, also called a condition check, takes two operands. The result 

of the comparison is either true or false. This is represented by a single bit, which is 

sent to the control unit. The format of a PLISSET element is as follows: 

<predicate> : := ( <expression> 

<relation operator> 

<expression> ) ; 

Example 4.4.1 Plisset List 

(3 (and (equal a 5) (equal b 3))) 

Which means (if ( and ( a = 5) (b = 3). The node number for this example 

is 3. 

4.5 NOLISSET LIST 

The NOLISSET list describes properties of each node. Nodes not described in 

the NALISSET and PLISSET can be found here. The NOLISSET also indicates 



73 

equivalent nodes. Equivalent nodes are defined as two or more nodes which accom­

plish the same function with the same operands and variables. Equivalent nodes may 

be executed at different times so the numerical results of the function may be differ­

ent. For example, nodes 11and13 represent the operation, r3 := x. The NALISSET 

will contain the element, (11 (:= r3 x)). There is no element for node 13. Instead 13 

is described as being equivalent to node 11. The format of a NOLISSET element is 

as follows: 

<NOUSSEI' element>::= 

(<property> <node number>) ; 

<property>::= contin I cond I start I <node number>; 

There are 4 basic properties. Each node can only have one property. The first 

item in the NOLISSET is the property. The second item is a node number. This is 

the node which has the specified property. 

Contin indicates a dummy node. The source and destination nodes in an arrow 

can not be the same. Wait operations continuously check a condition. A contin node 

serves as a destination node for the condition check. Another arrow connects the con­

tin node with the condition check. A con tin node doesn't take any time to execute. 

For example, (con tin 16 nil) means that node 16 is a dummy node. 

cond indicates a comparison node. Each node that performs a comparison is 

listed in the NOLISSET except for comparisons in a cond structure. Only the first 

comparison of a cond structure is listed. The others are not. For example, (cond 6 

nil) means node 6 is a comparison. If node 6 was the first comparison in a cond 

structure, then the other comparisons would not be listed. 
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start indicates a start node. A digital system begins executing with the start 

node. It doesn't take any time to execute. It is defined to make setting up a state 

machine easier. For example, (start 1 nil) means that the state machine starts with 

node 1. Node 1 will always be a start node and there will be only one start node for 

each GRAPH. 

If the property is a node number, then that node is an assignment type node. 

These nodes are described in the NALISSET. The second item in the NOLISSET 

element is another node number. In this case the first and second items in the 

NOLISSET element are the same. For example, (2 2 nil) means node 2 is an assign­

ment type node described in the NALISSET. 

If a different node number is the second item, then that node is equivalent to the node 

represented by the first node number. H a given node is listed as being equivalent to 

some node, then the given node will not be listed in the NOLISSET. For example, 

(11 13 nil) and (11 11 nil) are NOLISSET elements. Both are assignment type nodes 

and node 13 is equivalent to node 11. There is no other element in the noliset for 

node 13. Node 11 has an entry and node 13 does not because 11 comes before 13. 

A complete example consisting of an ADL program and its GRAPH format is 

shown below. 

Example 4.5.1 

ADLprogram 

listing 

ad/ 

graph 



subgraph 

( ( (ad/ c classification 

( (clock ( 1000))) 

(input ((x [ j ])(p kl 8))) 

(intern (j (p kl 6))(y (p kl 2))) 

(output (y (p kl 2)) (j (p kl 6)))) 

((start) c 

(j := 49) 

(while (j > 0) do 

(if (x < 125) then 

(y := 3) 

(go 11)) 

(if (x < 126) then 

(y := 2) 

(goll)) 

(if (x < 127) then 

(y := 1) 

(go 11 )) 

(if (x < 128) then 

(y := 2) 

else 

(y := 3 )) 

11 

(j := (j-1))) 

(y := 0) 
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(stopadl)))) 

end 

The flow diagram for the above program is shown in Figure 22. 

F 

(y:=2) 

Figure 22. Flow graph for example 4.5.1. 
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Corresponding GRAPH fonnat 

(data 

(coplisset 

(l(xl415) 

((not 3) 3 14) 

(x 13 3) 

(x 5 13) 

(x 7 13) 

(x 913) 

(x 1113) 

(xl213) 

((not 10) JO 12) 

(101011) 

((not 8) 8 JO) 

(8 8 9) 

((not 6) 6 8) 

(6 6 7) 

((not 4) 4 6) 

(4 4 5) 

(3 3 4) 

(x2 3) 

(x 1 2))) 

( nolisset 

( 1 (stopadl 15 nil) 

( 14 14 nil) 
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(13 13 nil) 

(5 12 nil) 

(7 11 nil) 

(cond 10 nil) 

(9 9 nil) 

(cond 8 nil) 

(7 7 nil) 

(cond 6 nil) 

(5 5 nil) 

(cond 4 nil) 

(cond 3 nil) 

(2 2 nil) 

(start 1 nil))) 

(nalisset 

(1 (14 (:= y 0)) 

( 13 (:= j (plus j (minus 1 )))) 

(9(:=y1 )) 

(7 (:= y 2)) 

(5 (:= y 3)) 

(2 (:= j 49)))) 

(plisset 

(1 (10 (lessp x 128)) 

(8 (lessp x 127)) 

(6 (lessp x 126)) 

(4(lesspx125)) 
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(3 (lessp 0 ))))) 

(anlisset 

(1 (stopadl (15)) 

(14 (14)) 

(13(13)) 

(5 (5 12)) 

(7 (7 11 )) 

(cond (3 4 6 8 10)) 

(9 (9)) 

(2 (2)) 

(start (1 )))) 

( structlisset (I)) 

(decset 

(1 ad! 

c 

classification 

((clock (1000))) 

(input ((x (})) (p kl 8))) 

(intern (j (p kl 6)) (y (p kl 2))) 

(output (y (p kl 2)) (j (p kl 6))))) 

(bod.set 

(1 (start) 

c 

(j := 49) 

(while (j > 0) 
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do 

(if(x < 125) then (y := 3) (go 11)) 

(if (x < 126) then (y := 2) (go 11)) 

(if (x < 127) then (y := 1) (go 11)) 

(if (x < 128) then (y := 2) else (y := 3)) 

11 

(j := (j - 1))) 

(y := 0) 

( stopadl))) 

(symlis (c 1)) 

(nnrset ( 1 16)) 

(lzmset (1 (y j))) 

(inde.xlisset ( 1)) 

( asslisset ( 1 )) 

(wlis 1) 

( blc. 

6 )) 

The flow chart for the GRAPH output is shown in Figure 23. 
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start 

(j:=49) 

(j>O) 

(x<125) 

(x<126) 

(x<127) 

(x<128) 

(y:=3) 

(j:=(j-1)) 

(y:=O) 

end 

__ .J I (y:=3) 

I (y:=2) 

I (y:=l) 

>----- (y:=2) 

Figure 23. Flow graph for example 4.5.1. 

81 



CHAPTER V 

STRUCT LANGUAGE 

5.1 INTRODUCTION 

The STRUCT language is composed of lists of nodes and arrows [12]. The node 

(abstract block) is a digital network with one or more inputs and one output. The 

arrows connect the outputs to the inputs of the various abstract blocks. There are two 

types of abstract blocks, functional blocks (F-type) and memory blocks (M-type). 

Functional blocks represent "combinational" logic functions since its outputs depend 

upon the present value of inputs. On the other hand, an M-type module is a "sequen­

tial" module, with an explicit clock input to control and updates. The arrows do not 

directly imply a particular input of a given node. H more than one arrow terminates on 

a particular input, a data selector is implied which selects one of the arrows to be con­

nected with the input. 

The STRUCT language consists of several lists which are: 

VARLISTA - list of memory blocks (variables) 

NODLISTA - list describing the nodes (abstract blocks) 

COPLISTA - list describing the arrows (data transmission paths) 

PLISOUT - list of predicates 

NALISIMP - auxiliary list containing assignment statements together with the pro­

gram number. 
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In each program, the lists are stored in the compound list VARLISTASET, 

NODLISTASET, COPLISTASET, PLISOUTSET and NALISIMPSET respectively. 

5.2 SYNTAX OF VARLISTA. 

The "VARLISTA" list is a list consisting of pairs of the form: 

where: 

(NVARNRN) 

NV AR - name of variable or parametric constant in the description. 

NRN - number of a node corresponding to a given variable or parametric 

constant. 

Example 5 .2 .1 - variables 

VARUSTA = ((RP2 4) (RPI 3) (B 2) (A 1)) 

Describing four registers. Register RP2 is node 4. 

5.3 SYNTAX OF NODLISTA 

"NODLISTA" is a list of node descriptions. The list of nodes corresponds to 

list of abstract hardware blocks. There are two types of blocks, functional blocks (F­

type) and memory blocks (M-type). Functional blocks represent "combinational" 

logic functions because the block output depends on the present value of input and is 

synchronous. An F-type block can range from a simple logic gate to a complex itera­

tive circuit. On the other hand, a memory block is a sequential module, with an 
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explicit clock input to control loading. An M-type block is either a register or set of 

registers or ROM or RAM. 

Each node has one of the following forms: 

(NRN f FUNCI' /NP RI Cl LI) 

- Functional node 

(NRN m FUNCI' /NP RI Cl LI) 

- Simple register node 

(NRN m FUNCI' /NP RI Cl LI R2 C2 L2) 

-Array register node 

(NRN m FUNCI' /NP RI ram LI (Words IND)) 

- Ram based array 

(NRN m CONST /NP Rl Cl Li) 

- Simple constant 

(NRN m CONST /NP Rl Cl Ll R2 C2 L2) 

- Indexed constant 

(NRN min ()Rl Cl Ll) 

- input node 

(NRN out FUNCI' /NP RI Cl Ll) 

- output node 

NRN - unique node number, assigned by IMPLEM 

FUNCT - list of all operations that can be peiformed at this node. 

!NP - list of inputs to the node, the elements of which have the form: 

( (NRINP, NRC ... NRC) ... .) 

NRINP - internal name of the input for that type of node. Data inputs are 
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consecutively numbered from 1. Control input names include the fallow­

ing: 

ad - address for RAM 

rw - read/write 

r- read only 

w - write only 

z - clear 

Ip - increment 

Ir -decrement 

I - register load 

sel - mux select 

NRC - a number of an arrow reaching this input, corresponds to "COPLISTA" 

RI - type of data being output from a node 

p - parallel array of logical bits 

Cl - code of data being output from a node 

kl - standard binary data 

k2 - gray coded data 

LI - number of bits being output from a node 

R2 - type of data used for index or address 

C2 - code of data used for index or address 

L2 - number of bits in index or address 

IN - special code for input nodes, considered a memory node 

OUT- special code for output nodes 

CONST - special code for constants. The value is contained in "COPLISTA" and the 
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value never changes 

The input number "1" is the main input or the memory block. Input number "2" 

exists in the case of blocks corresponding to array variables and it is an address input 

The rest of the inputs of the block are one bit inputs. The second form of the node 

description corresponds to the subscripted variable. 

In the case of functional blocks, the succeeding inputs have succeeding numbers. 

Data transmitted into the inputs all have the same form. 

Example 5.2.1 - of node descriptions: 

(2 MIN NILP Kl 4) 

This describes node 2 which is an input node (IN) with type M. There are no internal 

inputs (NIL). It is a 4-bit binary (Kl) parallel (P) input. 

(3M(:=:=:= (Z := )) ((L 8104) (17913)(Z1)) P Kl 4) 

This describes node 3 which is a register (M-type) node. It can be zeroed by the con­

trol unit ((Z := )) with arrow connected to input Z(Z 1). The register will be loaded 

from input 1 when corresponding L input is activated by the control unit For exam­

ple, if arrow 8 is active then the data on arrow 7 will be loaded into the register via 

input 1. Input 1 is a 4-bit parallel binary input. 

(5 F (PLUS) ((111) (2 12)) p Kl 5) 

This describes node 5 which is a function (F-type) node. It performs the addition of 

data on arrow 11 and 12 applied to input 1 and 2 respectively. Both inputs are 5-bit 

parallel binary inputs. 
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5.4 SYNTAX OF COPLISTA 

The list "CO PLIST A" is a list of arrows. Arrows are data transmission paths 

between blocks and they are implemented as wires between blocks. The description 

of an arrow has one of the following forms: 

(NRC NRN (DZO GZO) (DZ! GZJ)R C) 

- standard data connection 

(NRC (vect VALUE) (DZO GZO) (DZ! GZI) R CJ 

- a vector or constant value 

(NRC s SJ 

- set of control signals from a control unit. 

NRC - unique arrow number assigned by IMP LEM 

NRN - the node number from where this arrow originates or the output 

of node number NRN 

VALUE - the binary value of a constant or vector, in the fonn of 1 s and Os 

with no leading Os 

DZO - the lower bit position from the origination node 

GZO - the upper bit position/ram the origination node 

DZ! - the lower bit position at the node where the arrow tenninates 

GZI - the upper bit position at the node where the arrow terminates 

R - A code describing the type of information conveyed by the arrow 

p - parallel data 

d - 1 bit logical value 

C - a code describing the representation of the transmitted information 
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S - The number of control signals from the control unit 

The value of DZO, GZO, DZI, and GZI allow the selection of a specific range of 

bits from or to a node. 

Example 5.4.1 - arrow descriptions: 

(93 (13) (02)P Kl) 

This describes arrow number 9 which leaves node 3 and connects output bits 1 to 3 of 

node 3 to input bits 0 to 2 of the destination node. The bits are in parallel binary for­

mat. 

(21 (VECT (0)) (0 0) (0 3) P Kl) 

This describes arrow number 21 which connects the one bit vector constant 0 from 

output 0 to input 0 of the destination node. Inputs 1 to 3 of the destination node 

default to zero since they are unused. 

(1 S) 

This describes arrow number 1 which comes from the external control unit. 

The control signal arrow stands for the transmission of control signals into the 

appropriate control input of memory and certain functional blocks. 

5.5 SYNTAX OF PLISOUT 

The "PLISOUT" list is the description of outputs from conditional predicates. 

Elements of this list are the predicates and have the following form: 



(NRP PUS NRC) 

where: 

NRP - number of a predicate from plislist. 

PUS - The contents of a predicate from plislist. 
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NRC - The number of an arrow transferring the value of the given predi­

cate. 

Example 5.5.1 - description of PLISOUT 

(5 (EQUALRP2 9) 22) 

This describes predicate number 5 which compares variable RP2 to the constant zero. 

The result is sent to the control unit via arrow 22. 

(7 (AND (LESSP B 4) (EQUALB C))S) 

This describes predicate number 7 which checks for the condition where both predi­

cate B is less than 4 and predicate B is equal to variable C. The result is sent to the 

control unit via arrow 5. 

5.6 SYNTAX OF NALISTh1P 

The "NALISIMP" list is an auxiliary list indicating all operations talcing place 

in the implementation of the machine, the elements of which have the following form: 

(NRNVAL NAllS ((DRNC GRNC))) 

- operations involving simple registers with one input 

(NRNVAL NALIS ((DRNC GRNC) ((CONTROL NRC ))) 

where: 



NRNAL - number of assignment statement from NALIS list. 

NALJS - contents of assignment statement from NALIS list. 

DNRC & GNRC - scope of numbers of arrows included in the abstract 

implementation of the given statement. 

NRC - arrow number for control signal. 

90 

CONTROL - symbol indicating the type of control signal _used for this 

operation. These symbols include the following: 

ad - address for RAM 

rw - read/ write 

sel - mu.x select 

NALISTh1P list allows fast searching of arrows included in abstract implemen­

tation of the given assignment statement. It may be useful for optimization and imple­

mentation of digital systems gating the inputs to abstract blocks. 

Example 5.6.1 - an element of the NALISIMP list 

(4(:= RP2 B) (15 16)) 

This describes assignment statement 4 from the NALIS list The assignment state­

ment is (RP2 := B) and requires arrows 15 and 16. 

(9(:= RPI (PLUS RPI A)) (1114)) 

This describes assignment statement 9 from the NALIS list The assignment state­

ment is (RPI :=(RPI +A) and requires arrows 11, 12, 13 and 14. 

Example 5.6.2 General examples 

Description of arrows 



(11(03) P Kl) 

(2 (VECT ( 110)) (0 2) (0 2) P Kl) 

Description of node 

(3 2 (04) (04)P Kl) 

(2 F (PLUS)((l l)(2 2)) P Kl 4) 
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In the above example node 1 corresponds to A which is a four bit parallel variable 

with code Kl and node number 2 corresponds to constant number 6, The implementa­

tion of (PLUS A 6) is shown above. 

The graphical representation of the above example is shown in Figure 24. 

1 

1 

PLUS 

2 

3 

CT (110)) 

2 

2 

Figure 24. Graphical representation of example 5.6.2. 

Description of arrows 

(l 1(03)(03)PK1) 

(2 (VECT (0)) (0 0) (0 0) P Kl) 

(3 3 (0 0)(0 0) P Kl) 

(4(VECT(l 1))(01)(01)PKJ) 

Description of nodes 

(2 M (:=) ((14) ( L3)) (P Kl 4) 
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(3 F (EQUAL) ((11) (2 2)) P Kl 4) 

In the above example node 1 corresponds to Variable A, and node 2 corresponds to 

variable B. It is for the statement (IF (EQUAL A 0) THEN(:= B 3)) 

The graphical representation of the above example is shown in Figure 25. 

1 (yect(O)) 

1 2 w w 

EQUAL 3 

I 
(VECT(l 1)) 

, ~ 

- L 
~ 

- 2 

Figure 25. Graphical representation of example 5.6.2. 

Example 5.6.3 - GRAPH file and its converted STRUCT form. 

GRAPH format 

(data 

(coplisset 

(1 (x 3 4) 

(x2 3) 

(x 1 2))) 



(nolisset 

( 1 ( stopadl 4 nil) 

(3 3 nil) 

(2 2 nil) 

(start 1 nil))) 

(nalisset 

(1 (3 (:= h (not/ g)) 

(2 (:= e (and ad)))) 

(plisset ( 1 )) 

( anlisset ( 1 ( stopadl ( 4)) ( 3 ( 3)) (2 (2)) (start ( 1)))) 

( structlisset ( 1)) 

(decset 

(1 ad/ 

c 

classification 

((clock ( 1000))) 

(input (a (d)) (b (d)) (f (d)) (g (d))) 

(output (e (d)) (h (d))))) 

(bods et 

(1 (start) 

c 

(e :=a and d) (h :=/not g) 

(stopadl))) 

( symlis ( c 1)) 
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(nnrset (I 5)) 

(lzmset (1 (he))) 

(indexlisset ( 1 )) 

(asslisset (1 )) 

(wlis 1) 

( blc. 6 )) 

The flow chart for the above GRAPH file is shown in Figure 26. 

Start 

e :=a and b 

h := f not g 

stop 

Figure 26. Flow graph for example 5.6.3. 

The corresponding STRUCT format 

(( 

(input (a ( d)) (b ( d)) (f ( d)) (g ( d))) 

nil 

(output ( e ( d)) (h ( d))) 
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nil 

) 

(nodlista (5 out(:=) ((19) (18)) p kl l) 

(6 out(:=) ((17) (1 6)) p kl l) 

( 4 m in nil p kl 1)(3 m in nil p kl 1) (2 m in nil p kl 1) 

( 1 m in nil p kl 1)) 

(coplista (9s1) (8 1(00) (0 0) p kl) 

(7 s 1) (6 3 (0 0) (0 0) p kl)) 

(varlista (h 6) (e 5) (g 4) (f 3) (b 2) (a 1)) 

(plisout) 

(nalisimp (2 (:= e (a and b)) ((8 9))) 

(3 (:= h (/not g)) ((6 7)))) 

) 
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The graphical representation for the above STRUCT file is shown in Figure 27. In the 

Figure all the numbers are node numbers. 
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~ ~ 

a b 

1 i ~2 

and 

!s 
clock - e enable signal 

- -

" t 

f g 

3 ~ ~4 

or 

l 6 

h - enable signal 
---

Figure 27. Graphical representation of the STRUCT file. 



CHAPTER VI 

VHDL TO ADL COMPARISON 

6.1 INTRODUCTION 

VHDL is a hardware description language used to document an electronic sys­

tem design created in late eighties and being currently an industry standard (13]. A 

VHDL design consists of several separate design units, each of which is compiled 

and saved in a library. The four main design units are: entity, architecture, configura­

tion, and package. The interface signals for the design are described in entity. The 

design's behavior is specified in an architecture. A configuration selects a variation of 

a design from a library. For convenience, certain frequently used specifications can 

be stored together in a package [14]. For description of ADL refer to chapter 3. 

Example 6.1.1 A VHDL program 

package exam is 

constant unit_ delay : time 

end exam 

entity compare is 

port ( x,y : in bit; 

z: out bit); 

Package 

Entity 



end compare; 

library mgc _library; 

Use mgc _library.exam.all; 

architecture gate of compare is 

begin 

Architecture 

c <=Nill' (a XOR b) after unit_delay; 

end gate; 

In the above example 

package exam - Provides a sharable constant. 

Entity compare - Names the design and signal ports. 

Architecture gate of compare - Provides details of the design. 

A configuration of compare - Designates flow as the latest compiled architecture. 

6.2 THE FEATURES THAT ARE IN ADL BUT NOT IN VHDL 

6.2.A Identities 
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An identity is a symbol or name identical to some value, variable, or expression. 

Different names for the same variable can be used in ADL. Identities are declared in 

the identity list. 

Example 6.2.A.1 - Identities 
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In this example "a" and "b" are declared identical. 11e 11 and the range of bits 1 

through 4 in array dare identical. 

(iden (ab) (e (d [1%4]))) 

6.2.B SYMB List 

A single statement can be given a symbolic name in ADL. The symbolic name 

can be used in place of the statement in the program. Use of symbolic names reduces 

the amount of repetitive typing in some programs. In the iden list only a single name 

was used to represent the identity. In the symb list, a whole expression or statment 

can be used for the symbol. Symbolic names and their statements are declared in the 

symb list. 

Example 6.2.B.1 - Symbolic List 

(symb (cl (k := (k + 1))) 

((a:= (c + b)) (adder] (a c b)))) 

In the first example, the c 1 symbol would be replaced by the statement (k := (k + 

1)) in the pro gram. In the second example, the statement (a := ( c + b)) is replaced by 

the subroutine call (adderl (a c b)). The subroutine could be a structural description 

of a special adder. 

6.2. C Labels 

Statements can have labels. Labels are used to mark the destinations of 11 go 11 

statements. 11 go" statements are similar to 11 goto 11 statements in BASIC. A label is 
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always in numeric and alphabets are not permitted. A label is placed on the same line 

as the statement it refers to, but outside the parentheses for that statement. A label is 

inside of any parenthesis surrounding a block of statements. Each labeled statement 

must have a different label number. 

Example 6.2.C - Statements with Labels 

10 (a:= 5) 

20 (if (a< 5) then (a:= (a+ 1)) 

(go 20) 

else (a:= 100) 

30 (c := 5) 

6.2.D Go Statements 

(go 30) 

) 

Go statements are used to unconditionally branch to a labeled statement. Go 

statements and their corresponding destination statements can occur anywhere in the 

program. Jumps out of if-then else statements and while loops are allowed. The 

"value" of a label cannot be created using an expression. For example: (i := 99) and 

(go i) is invalid. The basic grammar for the go statement is: 

<go statement> : := (go <label> ) ; 

6.2.E Cond Statement 
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The cond statement is an extension of the if-then-else statement. Within the 

cond statement can be several branches, but only one is executed. Each branch has its 

own predicate controlling execution of that branch. When a cond statement is 

encountered, the predicate of the first branch is executed. If it is true then that branch 

is executed and program execution continues with the next statement after the cond 

statement. If the first predicate is false then the next branch is executed. This process 

goes on until one of the branches is executed or the end of the cond statement is 

reached. There is no "default" branch. There must be at least two branches in a cond 

statement. Jumps out of a cond statement using the " go " statement are allowed. 

Refer example 3.10.D.1 for example on cond statement. 

6.2.F Set and Reset Statements 

Set and reset statements control the turning on and off of many one-bit signals. 

Set means an output variable is 1 and reset means an output variable is 0. Only logi­

cal variables can be set and reset because they are one bit signals. Once a variable is 

set or reset, it holds that value until the variable is changed again. 

Example 6.2.F.1 - Set and Reset 

(set ab c) 

(reset x y z) 

6.2.G Parallel Execution Statements 

In ADL the user can design a system with parallel operations. Parallel 
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operations use the same control unit but multiple hardware elements are enabled at 

the same time. An ADL program can be written so that individual statements or 

blocks of statements operate in parallel. Multiple statements can be directed to 

execute in the same cycle. An algorithm can be split into parallel blocks of state­

ments. Control statements join parallel blocks back into one process. Parallel opera­

tion is done by the instruction fork, it is explained in chapter 3, section 3.12. Multiple 

execution statement is done by the instruction sim , it is explained in chapter 3, sec­

tion 3.11.E. 

6.3 THE FEATURES THAT ARE IN VHDL NOT IN ADL. 

6.3.A process statement 

The process statement is a concurrent statement that defines the scope of each pro­

cess The process statement defines a specific behavior to be executed when that pro­

cess becomes active [15],[16]. The syntax is: 

process _label: 

process 

declarations 

begin 

statements 

end process; 

The process-label defines a named label for the process. The declarations sec­

tion defines the local data environment needed by the process. The statements sec­

tion of the process is the sequential program which defines the behavior of the 
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process. Each process statement defines a specific action, or behavior, to be per­

formed when the value of one of its sensitivity signals changes. This action is defined 

by the sequentially ordered execution statements in the process. 

Example 6.3.A.1 - Process statement 

Entity lo_ w is 

port(a,b,c: in integer); 

end lo_w; 

architecture be have of lo_ w is 

begin 

process 

variable low: integer:= 0; 

begin . 

wait on a,b,c; 

if a < b then low := a; 

else low := b; 

end if; 

if c < low then 

low:= c; 

end if 

end process; 

end behave; 
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, 6.3.B Case Statement 

The case statement is a form of conditional control provided in VHDL. The 

case statement is used to select a collection of statements based on the range of values 

of a given expression. The designer gives the expression and identifies a collection of 

expressions for each possible value of the type of the expression. 

Example 6.3.B.1 - Case Statement 

process 

begin 

case selector is 

When "00" = > 

output < = inO; 

when "01" => 

output < = inl; 

when "JO"=> 

output < = inl; 

when "11" => 

output<= in3; 

end case; 

wait on selector; 

end process; 

The when conditions are called the arms of the case statement. There may be 

any number of these, but no two arms can have the same value and every value in the 

range of the type must be represented. 
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6.3.C Next Statement 

The next statement skips execution to the next iteration of an enclosing loop 

statement. The syntax for the next statement is: 

next [loop _label] [when condition]; 

The loop-label and when condition are both optional. When this statement is 

executed, control goes to the bottom of the loop identified by the label and the loop is 

begun again. 

Example 6.3.C.1 - Next statement 

For i in 0to10 loop 

if (i = 5) then 

next; 

end if; 

end loop; 

6.3.D Exit Statement 

The exit statement completes the execution of an enclosing loop statement. The 

exit statement has two general forms: 

exit loop _label; 

exit loop label when condition; 

The first form exits the enclosing loop with the given loop label. The second form 

does the same thing but only if the condition is true. 

Example 6.3D.l - Exit Statement 

) 



For i in 0 to JO loop 

if ( i = 5) then 

exit; 

end if; 

end loop; 

6.3.E Assert Statement 
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The assert statement checks to detennine if a specified condition is true, and 

displays a message if the condition is false. The syntax is: 

assertion statement 

assert condition 

[report expression] 

[severity expression]; 

assert writes out text messages during simulation. There are four levels of severity: 

failure, error, warning, note. The assert statement is useful for timing checks, out-of­

range condition, etc. 

6.3.F Enumerated TYPeS 

The Enumerated type declaration lists a set of names or values defining a new 

type. The syntax is: 

enumeration_ type_ definition 

type identifier ( enumeration_literal {, enumeration_literal} ); 

enumeration literal 

identifier 
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character literal 

This feature allows the user to declare a new type using character literals or 

identifiers. 

Example 6.3.F.1 Enumerated Types 

type tools is (hammer, saw, drill, wrench); 

6.4 Semantic difference between ADL and VHDL 

In VHDL its design is always running in a simulated time, and events occur in 

successive time steps. VHDL has concurrency and component netlisting, which are 

not present in ADL. VHDL supports concurrency using the concept of concurrent 

statements running in simulated time. In VHDL , the design hierarchy is accom­

plished by separately compiling components that are in a higher-level component. 

ADL is like a progranuning language where as VHDL is a full form hardware 

description language. Parallelism in ADL is obtained easily where as it is difficult in 

VHDL 

6.5 WHY VHDL WAS CHOSEN 

VHDL is the most used hardware description language in industries. The indus­

tries use VHDL for the following reasons 

1. 

VHDL allows the user to design, model, and test a system from a high level of 

abstraction down to the structural gate level. 



2. 

3. 

4. 

5. 

6. 

7. 
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VHDL descriptions created following by VHDL synthesis guidelines can be run 

through a synthesis tool to create gate-level implementations of designs. 

The VHDL tool that is available at PSU is integrated into one overall design envi­

ronment from Mentor Graphics. It is possible to do a system-level simulation mix­

ing high-level abstract descriptions with detailed gate-level models. 

VHDL supports top-down design methodology, describing the behavior of the 

high-level blocks, analyzing them, and refining the high-level functionality as 

required before reaching the lower abstraction levels of design implementation. 

VHDL supports modularity, the principle of partitioning a hardware design and the 

associated VHDL description into smaller units. 

VHDL supports abstraction, which is grouping details that describe the function of 

a design unit but do not describe how the design unit is implemented. 

VHDL supports information-hiding, by which the implementation details of one 

module is hidden from other modules. 

Because of the above mentioned properties, VHDL is a very good language 

for detailed hardware specification, and it is commonly used in logic synthesis, 

technology mapping and layout systems (17]. On the other hand ADL allows for 

very easy description of "program-like" parallel and sequential behavior of hard­

ware. In this respect it is much closer to such specification languages as C, 
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PASCAL, microprogrammed notation and VERILOG. The DIADES system 

includes several system-level and high-level transformations that are missing in the 

Mentor tools. On the other hand, Mentor tools have many sophisticated Logic Syn­

thesis, physical design, Simulation or FPGA related programs that are absent from 

DIADES. Integrating these two large systems allows to create a very comprehen­

sive and complete system of system/high level/logic/technology/physical design 

that is not comparable to anything that exists in industry. In the next chapters the 

translation from DIADES internal format to Mentor's VHDL will be presented in 

all necessary detail. Integration of the two systems allows us to compare various 

variants of design where different trade-offs between DIADES designed and Men­

tor designed design phases are considered. 



CHAPTER VII 

COMPILATION OF GRAPH LANGUAGE TO VHDL 

7.1 INTRODUCITON 

Compilation of GRAPH format to VHDL is done by program gvhdl. This pro­

gram translate the descriptions in the GRAPH format to a VHDL description. Input 

data to the program is a description of the system under design in the form of familiar 

GRAPH language lists stored in the compound lists: COPLISSET, NOLISSET, 

NALISSET, PLISSET, ANLISSET, and STRUC1LISSET. Output data from the pro­

gram will be the corresponding VHDL description. The program uses the informa­

tion in the various lists in the GRAPH format to create the VHDL description. 

7.2 CONVERSION OF GRAPH TO VHDL 

The program is divided into different subprograms: nali.c, noli.c, cop.c, pli.c and 

/oop.c . The subprogram entity.c creates the entity information for the VHDL 

description from the decset which is present in GRAPH file. The decset has the 

input, output, and intern informations of the digital system. The input will be trans­

formed as input port and the output as the output port in the entity declaration in the 

VHDL description. The intern which is basically like a temporary variable will be 

declared in the architecture part of the VHDL description, as a variable. 

Example - conversion of entity 



Graph input output declaration 

(input (a( d))(b( d))) 

(output ( c(d))) 

Corresponding entity declaration 

entity c/as is 

port( 

a,b: in bit; 

d: out bit); 

end clas; 
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The subprogram cop.c accesses the COPLISET list in the GRAPH file and cre­

ates two intermediate files pli and na/. The COPLISET list in the GRAPH file repre­

sents arrows. The arrows indicate how control flows through the GRAPH. The cre­

ated intermediate file nal has all the state change information. The state change infor­

mation has the node numbers which need state change. If the arrow in the COPLISET 

has "x" as the control transfer type then the second item in the COPLISET which is a 

node number that needs a state change. The program writes the node numbers of the 

arrows which has "x" as the control transfer type into the nal file. The pli file has the 

conditional control information. The arrows which have a node number as the control 

transfer type are the arrows which represent comparison operation. If a comparison 

result is false, then the arrow corresponding to the node number which has keyword 

will be the destination node. The program writes the node numbers of the arrows 

which have the keyword not into the pli file. 

Example - 7 .2 



(coplisset 

(x 1 2) 

(x2 3) 

(111112) 

((not 11) 1113) 

The pli file will have 

1113 

112 

It means that 11 is a conditional control node and if the result of the comparison node 

is false then the control jumps to node 13. 

The nal file will have 

12 

23 

In the above file if we consider line 1 which is "1 2", it means there is an uncondi­

tional control transfer between node 1 and node 2. If there is an control transfer 

between two nodes then in the corresponding VHDL description it will be reflected 

as a state change. 

The program noli.c accesses the NOLISSET list in the GRAPH file and plays an 

important role in the creation of the VHDL file. The NOLISSET list describes prop­

erties of each node. The nodes that are not described in other lists are described in 

NOLISSET. The NOLISSET also has the sequence of the nodes. The program noli.c 

accesses each line in the NOLISSET starting fn?m the line which has node 1 and 

accesses the other lines according to the sequence of the nodes. Since each nodes 

properties are described in NOLISSET, the program can find out whether the node is 

an assignment node, a conditional node, or an equivalent node. 



Example 7.3 

(nolisset 

(7 11 nil) 

(cond 10 nil) 

(9 9 nil) 

(start I nil) 
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The first item in the NOLISSET is the property. The second item is a node num­

ber, which has that specific property. If the first item is the keyword then it is a com­

parison node, if it has the keyword then it is a start node. ff the first item is a node 

number as in the second item, then it is an assignment node. ff the first item is a node 

number and the second item is a different node number then it is an equivalent node. 

In the above example (start 1 nil) means the state machine starts with node 1. (9 9 nil) 

means 9 is an assignment type node. (cond 10 nil) means it is an comparison node. (7 

11 nil) means it is an equivalent node, where nodes 7 and 11 are assignment type 

nodes and node 11 is equivalent to node 7. 

The program after finding the property of the node calls either one of the pro­

grams nali.c or pli.c. If the node is of assignment type then the program noli.c calls 

the program nali.c. If the node is of comparison type then the program noli.c calls the 

program pli.c. If the node is of equivalent type then the program, depending on the 

type of the first item in the NOLISSET which is a node number, calls either nali.c of 

pli.c. The program nali.c accesses the NALISSET list. The NALISSET list describes 

all of the assignment type operations. Each operation consists of a assignment type, a 

destination for the results of the operation, and an expression. The first item of a 

NALISSET will be a node number. 
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When the program noli.c calls the program nali.c, it also sends the node num­

bers to nali.c in a sequence as in the NOLISSET. Then the program nali.c takes this 

node number and accesses the NALISSET. From the NALLISSET it finds the assign­

ment statement corresponding to that node number and prints out the VHDL format 

in the output file. The program just matches the given node number with the first item 

in the NALISSET, and finds the corresponding assignment statement From the 

assignment statement, the program checks for the type of the destination. Then the 

program looks into the assignment operator and finds the equivalent of it in the 

VHDL format. Once all these information is obtained the program prints the VHDL 

format of the assignment statement in the output file. 

Example 7.4 

(nalisset 

(2 (:=j49)) 

(7 (:= y 2)) 

( 13 (:= j (plus j (minus 1 )))) 

From the above example, if the program nali.c is called and given the node num­

ber 2 then it will take the line (2 ( := j 49)) and will convert it into j <= 49 in VHD L 

format. If it is given the node number 13 then it will take the line (13 (:= j (plus j 

(minus 1)))) and will convert it into j <= j - 1 in the VHDL format. 

The program pli.c accesses the PLISSET. The PLISSET list contains the node 

descriptions for comparison operations. Each operation consists of an predicate, a 

destination for results of the operation, a relation operator, and an expression. The 

first item in the PLISSET will be a node number. When the program noli.c calls the 

program pli.c it send a node number according to the sequence of the NOLISSET. 
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The program pli.c gets the node number and finds the corresponding node descrip­

tions from the PLISSET and the comparison operation for that particular node. Then 

program pli.c finds the comparison type by calling the program loop.c. 

The program loop.c accesses the BODSET which has the ADL description of 

the GRAPH file. When the program pli.c calls the program loop.c, it also sends the 

conditional statement expression along. The program loop.c matches this given 

expression with the conditional statement expression in the BODSET, finds the corre­

sponding type of comparison operation, and sends it back to the program pli.c. Once 

the program pli.c gets the type of the comparison operation it prints the corresponding 

VHDL format in the output file. 

Example 7.5 

(plisset 

(3 (lessp 0 j)))) 

(6 (lessp x 126)) 

(8 (lessp x 127)) 

Let us assume that the above PLISSET is an argument of program pli.c. When 

node number 3 is passed to pli.c, and a statement (while (j > 0)) is included in the 

BODSET list, then the VHDL format printed in the output file will be while(j > 0). If 

the given node number is 8 and the BODSET has the statement (if (x < 127)), then the 

VHDL format printed in the output file will be if(x < 127)then. 

Before calling the programs nal.c and pli.c the program noli.c checks the node 

number with the intermediate files pli and nal. The intermediate file pli will have the 

info about the end of conditional control statements. If the node number is present in 
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the pli file then the program prints the end of conditional control info on the output 

file. The intermediate file nal has the state change information in it. If the node num­

ber is present in the file nal then the program prints the state change information in 

the output file according to the VHDL format. 

Example - 7 .6 

Graph file 

(data 

(coplisset 

(1 (x34) 

(x2 3) 

(x 1 2))) 

(nolisset 

( 1 ( stopadl 4 nil) 

(3 3 nil) 

(2 2 nil) 

(start 1 nil))) 

(nalisset 

(1 (3 (:= h (for g)) 

(2 (:= e (and ab)))) 

(plisset ( 1 )) 

( anlisset (1 (stopadl (4 )) (3 (3 )) (2 (2)) (start (1 )))) 

( structlisset ( 1)) 



(decset 

(1 ad/ 

c 

classification 

((clock ( 1000))) 

(input (a (d)) (b (d)) (f (d)) (g (d))) 

(output (e (d)) (h (d))))) 

(bods et 

(1 (start) 

(e :=a and d) (h :=f not g) 

( stopadl))) 

(symlis (c 1)) 

(nnrset (1 5)) 

(lzmset ( 1 (he))) 

(inde.xlisset ( 1 )) 

( asslisset ( 1 )) 

(wlis 1) 

( blc. 6 )) 

The flow chart for the above GRAPH file is shown in Figure 28. 

The corresponding VHDL description 

entity clas is 

port( 

CLOCK:in bit; 
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Start 

(e :=a and b) 

(h :=for g) 

end 

Figure 28. Flow graph for example 7 .6. 

a,bf,g :in bit ; 

e,h:out bit); 

end clas; 

architecture ad/l of clas is 

type state_ type is ( sO,sl ,s2 ,s3 ); 

signal current _state,nex,t _state:state _type; 

begin 

pro] :process 

begin 

wait until CLOCK' event and CWCK=' J'; 

current_state <= next_state; 

end process pro]; 

pro2: 
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process( current state,a,bj,g) 

begin 

next_ state < = sO; 

case current state is 

when sO=> 

next _state < = sl; 

when sl=> 

e <= aandb; 

next _state < = s2; 

when s2=> 

h <=!or g; 

next _state < = s3; 

when s3=> 

end case; 

end process pro2; 

end adll; 
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CHAPTER VIII 

COMPILATION OF STRUCT LANGUAGE TO VHDL 

8.1 INTRODUCTION 

Programs svhdl and mvhdl translate a STRUCT format description of a digital 

system into a VHDL format description. The program svhdl creates a VHDL code as 

it is described in the STRUCT format. The program mvhdl creates a VHDL code in 

which all the operations are implemented in gate level. STRUCT format is an 

abstract block description of a digital hardware structure. A block with function and 

size information represents each hardware operation. Abstract arrows with size and 

transmitted information type represent data transmission paths between blocks. There 

are inputs and outputs for communicating with the outside world. Input data to the 

program is in the form of STRUCT language lists stored in the compound lists: 

VARLISTA, NODLISTA, COPLISTA, PLISOUT, and NALISIMP. Output data from 

the program will be the corresponding VHDL description. The program uses the 

information in the various lists in the STRUCT format description to get the VHDL 

description. 

8.2 CONVERSION OF STRUCT TO VHDL 

The program svhdl is divided into different subprograms: port.c, nod.c nali.c, 

pli.c. The program port.c creates the entity information for the output VHDL file. 



121 

The program port.c accesses the input and output information described in the 

STRUCT file and transforms it into corresponding input port and output port. The 

input and output port information in the STRUCT file will be in the declaration sec­

tion. For each input list, output list, and constant list in the declaration section of the 

STRUCT file a node is created in the NODLISTA set 

The converted port information will be written in the entity section of the output 

VHDL file by the program. 

Example 8.2.1 - Conversion of entity 

STRUCT input output declaration 

(input (a(d)) (b (d))) 

(output (c(d))) 

Corresponding entity declaration 

entity clas is 

port( 

a,b: in bit; 

c: out bit); 

end clas; 

The program nod.c comes into effect once the entity information is created. The 

program nod.c accesses the NALISTh1P list and PLISOUT list in the STRUCT file. 

The NALISIMP list is an auxiliary list indicating all the operations talcing place in the 

implementation of the machine, it has the information of the assignment statements. 

For more information on NALISIMP list refer to section 5.5. The first item of the 
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NALISIMP list is a number of an assignment statement. The PLISOUT is a list of 

predicates and corresponding arrows, it has the information of the conditional state­

ments. For more information on PLISOUT list refer to section 5.4. The first item of 

the PLISOUT list will be a number of a predicate. 

The program nod.c when accessing the lists NALISIMP and PLISOUT creates 

an intermediate file called nal. The nal file will have the first items of the NALISIMP 

list and PLISOUT list. When the program writes the first item of the NALISIMP list 

in the nal file it adds a letter "a" to it, when it writes the first item of the PLISOUT list 

it adds a letter "c" to it. 

Example 8.2.2 Creation of the nal file 

(nalisimp 

(2 (: j 49) (( sel 2) ( 14 15))) 

(5 (: y 3) (( sel 4) (12 13))) 

(7 (: y 2) (( sel 4) (10 11))) 

(Plisout 

(3 (lessp 0 j) 30) 

(4 (lessp x 125) 27) 

(6 (lessp x 126) 24) 

The nal file created by the program nod.c, when it accesses the NALISIMP list 

and PLISOUT list in the above example, is shown below. 

2a 

Sa 



7a 

3c 

4c 

6c 
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The program first writes the assignment statement numbers from the NALISIMP 

list and then it writes the predicate numbers from the PLISOUT list. Then the pro­

gram nod.c rearranges the contents of the nal file in an ascending order. The program 

accesses the contents of the nal file line by line and it scans for the first item in the 

line which is a number and then it arranges it in ascending order. The rearranged nal 

file is shown below. 

2a 

3c 

4c 

5a 

6c 

7a 

The program nod.c then accesses the rearranged nal file one line at a time start­

ing from the first line and calls one of the programs nali.c or pli.c. If the line in the 

nal file has the letter "a" then it calls the program nali.c and if the line has the letter 

"c" it calls the program pli.c. The program nali.c accesses NODLISTA list, 

COPLISTA list and NALISIMP list. The program nali.c is used to implement the 

assignment operations. The program pli.c accesses NODLISTA list, COPLISTA list 

and PLISOUT list. The program pli.c is used to implement conditional control 
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statements. The NODLISTA list is a list of node descriptions. For more information 

on NODLISTA list refer to section 5.3. The COPLISTA list is a list of arrows. For 

more information on COPLISTA refer to section 5.4. The programs nali.c and pli.c 

gets the node and arrow information from the NODLISTA list and COPLISTA list, 

then the programs accesses the NALISIMP list if it is nali.c or PLISOUT list if it is 

pli.c and writes the VHDL code in the output file. 

The program nali.c implements the addition operations, subtraction operations, 

multiplication operations using shift registers. The addition operation is done using 

two shift registers. The two shift registers will hold the numbers to be added. Both the 

shift registers are connected to a common clock. At each clock time, the shift registers 

give out one bit. The bits given out by the shift register is fed to a full adder. The out­

put of the full adder is given to an shift register which holds the result. This whole 

addition operation is written as an component in VHDL and it is called in the main 

VHDL program when it is needed. Subtraction operation is done in the same way as 

addition operation by adding the 2's complement of the number to be subtracted. The 

block digram of the addition operation is shown in Figure 29. 

- shift register 1 

' 

Control 
-~ 

shift register full adder -
unit - for result 

1 
shift register 2 :; 

I 

Oock ~ cany ~ 
~l_ 

Figure 29. Addition operation. 
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The multiplication operation is implemented using two registers. The multiplier 

is stored in a shift register and the multiplicand is stored in an register. Both the regis-

ters are connected to an AND block. For each clock time the shift register gives out 

one bit. The bit given out by the shift register is fed to the AND block which already 

has all the multiplicant bits. The output of the AND block is fed to an adder and result 

holder block. This whole multiplication operation is written as an component as addi­

tion operation and it is incorporated in the main VHDL program when it is needed. 

The block diagram of the multiplication operation is shown in Figure 30. 

multiplicant 
"D Pcrieot"'r -.... 

Control - multiplier - and - -
unit shift register 

'' 
.... 

w I~ 

Clock 

adder 

I~ I~ 

.. 
1' ~ ~ 

- shift register 
-

for result 

Figure 30. Multiplication operation. 

This program is in the directory /ulpalinisaladl!compstrlcompstrl. 

The program mvhdl bascially works in the same way as svhdl except for the sub­

programs nali.c and pli.c. The programs nali.c and pli.c implement all the operations 

in terms of gates. The program nali.c generates equations for each assignment 
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operations. If the program nali.c implements an addition operation (2 (/:=/ e (plus a 

b)((8 9))) as shown in example 8.2.3 then the program will create the equations shown 

below. These equations will be created as a component in VHD L, and this compo­

nent can be called whenever it is needed. 

d[O] = a[O] or b[O] 

carr[O] = a[O] and b[O] 

d[l] = a[l] or b[l] or carr[O] 

carr[l] = (a[l] and b[l]) or ((a[l] and b[l]) and carr[O]) 

d[2] = a[2] or b[2] or carr[l] 

carr[2] = (a[2] and b[2]) or ((a[2] and b[2]) and carr[l]) 

d[3] = a[3] or b[3] or carr[2] 

carr[3] = (a[3] and b[3]) or ((a[3] and b[3]) and carr[2]) 

d[4] = carr[3] 

The program nali.c creates different equations for different assignment state­

ments and puts them in a component in VHDL. The component is called inside the 

main VHDL code. For subtraction operations, the program nali.c generates a 2's 

complement for the number to be subtracted and does addition. To implement a -b, 

the 2 's complement of b is added to a. To implement the multiplication operation, the 

program nali.c creates a set of equations. If the program implements an multiplication 

operation shown in example 8.2.3, then the program will create the equations shown 

below. These equations will be created as a component as in addition operation. 

d[O] = a[O] and b[O] 

d[l] = (a[l] and b[O]) or (a[O] and b[l]) 
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carr[l] = (a[l] and b[O]) and (a[O] and b[l]) 

d[2] = (a[2] and b[O]) or (a[l] and b[l]) or (b[2] and a[O]) or carr[l] 

carr[2] = ((a[2] and b[O]) and (a[l] and b[l]) and (b[2] and a[O])) or (((a[2] and b[O]) 

or (a[l] and b[l]) or (b[2] and a[O])) and carr[l]) 

d[3] = (b[l] and a[2]) or (b[2] and a[2]) or carr[2] 

carr[3] = ((b[l] and a[2]) and (b[2] and a[2])) or (((b[l] and a[2]) or (b[2] and a[2])) 

or carr[2]) 

d[ 4] = (b[2] and a[2]) or carr[3] 

carr[4] = (b[2] and a[2]) and carr[3] 

d[5] = carr[ 4] 

Once all the operations are implemented it is included in the output VHD L file. 

The program mvhdl is in the directory lu/palinisaladl/compst. 

Example-

STRUCT file 

(( 

(input (a (p kl 3 ))(b (p kl 3 )) (c (p kl 3 )) (d (p kl 3 ))) 

(intern (e (p kl 3 )) (f (p kl 6)) (g (p kl 3 ))) 

(output (e (p kl 3))(/ (p kl 6)) (g (p kl 3))) 

nil 

) 

(nodlista (5 m (/:=/) ((19) (1 8)) p kl 3) (6 m (/:=/) ((17) (16)) p kl 6) 

(7 m nil ((I)) p kl 3) ( 4 m in nil p kl 3) ( 3 m in nil p kl 3) 



(2 m in nil p kl 3) (1 m in nil p kl 3)) 

(coplista (9 s 1) (8 1(05) (0 5) p kl) (7s1) (6 3 (0 5) (0 5) p kl)) 

(varlista (g 7) (f6) (e 5) (d 4) (c 3) (b 2) (a 1)) 

(plisout) 

(nalisimp (2 (/:=/ e (plus a b)((8 9))) 

(3 (/:=/ f (c and d) ((6 7)))) br) 

The corresponding VHDL description 

entity clas is 

port( 

a,b,c,d:in bit_ vector(O to 3); 

CLOCK:in bit; 

f :inout bit_ vector(O to 6); 

e,g:inout bit_vector(O to 3)); 

end clas; 

architecture adll of clas is 

component addr port( 

a,c:inout bit_ vector(O to 3); 

elk: in bit; 

b:out bit_ vector(O to 3)); 

end component; 
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component mult port( 

a,c:inout bit_ vector(O to 3); 

elk: in bit; 

b:out bit_ vector(O to 6)); 

end component; 

for all: ecou use entity work.ecou(acou); 

for all: emult use entity work.emult(amult); 

begin 

process 

begin 

wait until CLOCK='l '; 

end process; 

al:addr 

portmap ( a =>a, b => b, c => e, 

elk => CLOCK); 

a2:mult 

portmap (a =>c, b => d, c => f, 

elk => CLOCK); 

end adll; 
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The example shown above is the output of the program svhdl. The output of the 

program mvhdl will be bascially the same except the change in the components. The 



0£1 



CHAPTER IX 

CONCLUSIONS 

In this thesis I have upgraded and modified the existing DIADES system so that it 

becomes a pre-processor for the commercially available VHDL- based synthe­

sis/simulation system from Mentor Graphics Corporation. All the generated VHDL code 

is of Mentor Graphics VHDL format All the generated VHDL code was compiled and 

simulated using the VHDL based Mentor tools. The results where discussed in the thesis. 

The results in this thesis show that the VHDL code generated by the VHDL- based 

DIADES was complex and large compared to ADL. So the results prove that it is easier 

to program hardware using ADL than using VHDL. The results also show that it is diffi­

cult to describe parallel behavior of hardware using VHDL. The code generated by the 

VHDL- based DIADES for parallel behavior of hardware was very big and complex 

compared to the descriptions in ADL. So the results prove that it is very easy to use 

ADL to describe parallel behavior of hardware. In this way, by combining the existing 

ADL- based DIADES system and the features of VHDL, I have developed a new system 

in which an user can program hardware easily using ADL. The semantics of ADL lan­

guage is similar to that of most of the programming languages, so that an user with little 

exposure to hardware description languages and with some experience with programming 

languages can program hardware using VHDL- based DIADES. 

There are three paths a designer can chose from the VHDL- based DIADES system. 

The first one is through the output of the of the program gvhdl, which will be of behav­

ioral design and this design is technology independent. The second second one is 
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through the output of the program svhdl, which will be of structural design and this 

design is technology dependent. The third one is through the output of the program 

mvhdl, which will be of data fl.ow design and this design is also technology dependent 

So by using VHDL- based DIADES system an user can select any of the three paths 

depending on the requirement 

The improving and modification for the datapath unit of the DIADES system is 

done and the improvement of the control unit of the DIADES system is left for the future 

research. The compiled file of a VHDL code can be simulated or can be used for imple­

menting it in the FPGAs. The simulation is done in this thesis and the implementation of 

the design in FPG As is left for future research. Extending the new approach presented 

for the parallelism problem for parallel descriptions with nested fork instructions is also 

left for future research. 

The results prove that the combined through my work DIADES/Mentor system 

works correctly and is able to compile hardware from abstract parallel specification in 

ADL down to low level netlists. The results also prove that ADL allows for easy descrip­

tion of parallel and sequential behavior of hardware. To finally conclude, in this thesis a 

comprehensive and complete system has been developed that integrates the design on 

algorithmic level ( DIADES ), register transfer and logic level (Mentor Graphics tools). 

The system developed by me is not comparable to anything that currently exists in indus­

try. 
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