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ABSTRACT 

An abstract of the thesis of Yuchen Huang for the Master of Science in Electrical En

gineering presented January 14, 1994. 

Title: Adaptive Notch Filter 

The thesis presents a new adaptive notch filter (ANF) algorithm that is more accu

rate and efficient and has a faster convergent rate than previous ANF algorithms. In 1985, 

Nehorai designed an infinite impulse response (UR) ANF algorithm that has many advan

tages over previous ANF algorithms. It requires a minimal number of parameters with 

constrained poles and zeros. It has higher stability and sharper notches than any ANF 

algorithm until now. Because of the special filter structure and the recursive prediction 

error (RPE) method, however, the algorithm is very sensitive to the initial estimate of the 

filter coefficient and its covariance. Furthermore, convergence to the true filter coefficient 

is not guaranteed since the error-performance surface of the filter has its global minimum 

lying on a fairly flat region. 

We propose a new ANF algorithm that overcomes the convergence problem. By 

choosing a smaller notch bandwidth control parameter that makes the error-performance 

surface less flat, we can more easily detect a global minimum. We also propose a new 

convergence criterion to be used with the algorithm and a self-adjustment feature to reset 

the initial estimate of the filter coefficient and its covariance. This results in guaranteed 

convergence with more accurate results and more efficient computations than previous 

ANF algorithms. 
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CHAPTER I 

INTRODUCTION 

I.I MOTIVATION 

Detection and elimination of time-varying narrowband or sine wave signals 

embedded among signals and other broadband noises are the major tasks in adaptive sig

nal processing. Applications are in such fields as communications, radar, sonar, seismol

ogy and boimedical engineering. 

A practical example is the case in which a sinusoidal power grid pick up of 50 or 

60 HZ corrupts a measurement signal. Another example is echo cancellation in long dis

tance telephone communication. An echo is created on a telephone circuit because of 

impedance mismatches on a network. It can degrade the quality of communication to 

such a degree that conversation is unintelligible. 

While there are numerous other examples, these two are sufficient to illustrate 

some of the main reasons for the need of adaptive notch filters. In the second example 

above, the impedance mismatch is usually unknown. That is, the share number of local 

telephone lines that must be accessed effectively prohibits the impedance for any one 

local line to be accurately matched to the long distance link. Even if the resources were 

available to match the impedance of each local line to the long distance link, there is still 

the problem that due to aging, inaccurate component values, moisture, ect., the 

impedance of each local line may be unknown and time-varying. 

Indeed, many applications of adaptive notch filtering involve removing sine wave 

signals and noise due to physical processes that are unknown and time-varying. These 
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types of processes represent some of the most difficult problems in transmitting and 

receiving information. Adaptive notch filtering technique provides an approach for 

removing distortion in communications, as well as extracting information about unknown 

physical processes. 

Previous adaptive notch filters were designed by Thompson [2], Kung and Rao 

[3], [4], and Friedlander and Smith [5]. These filters usually satisfied only part of the 

desired properties of the notch filter. For example, the infinite impulse response (IIR) 

notch filters of [2] and [4] did not constrain the zeros to be on the unit circle and required 

2n parameters, where n is the number of input sine waves. Since zeros were not con

strained to be on the unit circle, their convergent angles were, in general, slightly dif

ferent from the sine wave frequencies. Another method in [3] and [4] was based on 

estimating the second-order factors of the IIR transfer function. This method suffers from 

high nonlinearity in the minimization problem, which complicates the algorithm and 

deteriorates its performance. 

In 1985, Nehorai designed an IIR adaptive notch filter [1] which has many advan

tages over the previous notch filters. The filter used a minimal number of parameters 

with constrained poles and zeros, which rendered sharper notches than previously possi

ble. Its special filter structure exhibited high stability, which is different from previous 

adaptive notch filter (ANF) algorithms. Because of the special filter structure and the 

corresponding recursive prediction error (RPE) method, however, the algorithm is very 

sensitive to the initial conditions and can not guarantee convergence. Furthermore, there 

is not a convergence criterion. Nehorai used the number of recursions as a convergence 

criterion. In actual situations, however, the input signal is usually unknown and time

varying. Thus, the number of recursions can not be a sufficient convergence criterion. 

Based on the RPE method of Nehorai's ANF, we design a new ANF algorithm 

which solves the convergence problem of the ANF [1]. We also provide a convergence 
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criterion for the algorithm. Our new algorithm will self-adjust its initial conditions, and 

has the advantages of faster convergence, more accurate results and computational 

efficiency than the previous ANF algorithms. 

I.2 THESIS ORGANIZATION 

This thesis is divided into six chapters. In Chapter II, we introduce the adaptive 

IIR notch filter designed by Nehorai [1]. After a brief derivation of the algorithm, exam

ples are given to test the filter. We find that the algorithm has a convergence problem. 

The non-convergence behavior of Nehorai's ANF leads us to the analysis of the 

error-performance surface of the filter in Chapter III . Error-performance surfaces under 

different signal-to-noise ratios and sampling frequencies are studied. The effect of notch 

bandwidth control parameter on the performance surface is also explored. We find that 

the performance surface has a unique shape with its global minimum lying in a fairly flat 

region. This makes the RPE type of algorithm difficult to find the global minimum. 

In Chapter IV, we re-examine the behavior of Nehorai' s ANF algorithm given the 

type of error-performance surface discussed in Chapter III. We find that there are three 

reasons that make the convergence of the algorithm difficult. First, the special filter struc

ture makes a unique type of performance surface. This type of performance surface is not 

quadratic. Finding a global minimum on such a surface can be very difficult. Second, as 

the number of recursions increases, the value of notch bandwidth control parameter p 

increases. This causes the number of local minima on the performance surface to 

increase. Convergence to a global minimum becomes even more difficult. Third, the 

algorithm is very sensitive to the initial conditions of filter coefficient estimate and the 

covariance of this estimate. 

Chapter V presents a new ANF algorithm with simulation results. The new ANF 

is designed to overcome the drawbacks of the ANF in [l]. By starting the algorithm with 



4 

a smaller p , the sensitivity of the RPE type algorithm will be improved. This makes the 

filter coefficient quickly approach the convergent value. By using the noise-to-signal 

power, the algorithm can self-adjust to reset its initial estimate of filter coefficient and the 

covariance of this initial estimate to overcome the non-convergence behavior of the ANF 

in [ 1]. A convergence criterion is also provided. Simulation results show that the new 

ANF algorithm has a faster convergent rate with more accurate results than previous 

ANF algorithms. Chapter VI concludes the thesis. 



CHAPTER II 

A MINIMAL PARAMETER IIR ADAPTIVE NOTCH FILTER 

WITH CONSTRAINED POLES AND ZEROS 

II.1 INTRODUCTION 

The very difficult problem of eliminating time-varying narrowband or sine wave 

signals has led us to the study of adaptive notch filter techniques. Previous adaptive notch 

filters designed in [2], [3], [4] and [5] usually satisfied only part of the desired properties 

of the notch filter. They either did not have an accurate convergent angle or suffered from 

high nonlinearity in the minimization problem. From these previous adaptive notch 

filters, the IIR ANF designed by Nehorai had more advantages than the others. It requires 

a minimal number of parameters with constrained zeros and poles and uses a time

varying notch bandwidth control parameter to render sharper notches than before. It exhi

bits high stability and the filter structure is the simplest of the previous ANF structures. 

In the reminder of this chapter, we will first describe the ANF structure [ 1] and the 

advantages of this filter in comparison to other ANFs. Next, a brief derivation of the 

algorithm will be given. We will conclude by showing the non-convergence simulation 

results of the algorithm. 

II.2 THE PROPOSED MODEL AND ITS ADV ANT AGES 

In 1985, Nehorai [1] designed an adaptive notch filter of infinite impulse response 

(UR) for elimination of multiple unknown sine waves in a broadband signal. The desir

able pole-zero configuration of such a filter is schematically illustrated in Fig. 1 for the 
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special case of a single sine wave in an additive broadband signal (only the positive ima-

ginary part is shown for convenience). As illustrated in the figure, a desirable property of 

the notch filter is that the zeros of its transfer function will lie on the unit circle. A neces-

sary condition for a polynomial to satisfy this property is that its coefficients have a mir-

ror symmetric form, which can be written as 

A (z-1) = 1+a1z-1 + · · · + anz-n + · · · +a 1z-2n+l + z-2n 

Here z is a complex variable. 

IMGINAP.Y ( z) 

-1 1 REAL (z) 

Figure 1. Pole-zero configuration for a notch filter of a single 
sine wave in an additive broadband process. 

(2.1) 

From Fig. 1, we can see that the second requirement of the notch filter is that its 

poles be inside the unit circle at the same angles and as close as possible to the zeros. 

This can be achieved using filter denominators of the general form A ( p z-1 ), where p is 

a positive real number close to, but smaller than I. To see this, note that if z2n A (z-1) has 

a zero in Zi, then z2n A ( p z-1) will have a zero in p Zi. 

By considering the two properties of the filter structure, Nehorai designed the IIR 

notch filter in the general set 
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H(z-1) = A (z-1) = 1 +a lz-1 + ... + anz-n + ... + z-2n 
A ( p z-1) 1+pa 1z-l + · · · + pn anz-n + ... + p2n 2-211 (2.2) 

where the filter coefficients ai (i = 1 , · · · , n ) are the parameters to be estimated; n is 

the number of input sine waves; p is a parameter that controls the bandwidth of each 

notch. 

Let y (t) be the observed time series at time t. The error output of the algorithm 

will be 

(2.3) 

where q-1 is the unit delay operator, i.e., q-1y (t) = y (t-l), etc. 

The adaptive estimation algorithm will adjust the coefficients ai so as to minim-

ize the cost function 

Vr( e (t-1)) = i tl B (t' k) £ (k)2 (2.4) 

where B (t, k) is a parameter introduced in time-varying systems that will be explained 

soon. 

Observe that the mirror symmetric form of A (z-1) is not sufficient to guarantee 

that the zeros of H(z-1) will be on the unit circle. However, to minimize the squared 

error function of Eq. (2.4), the convergent filter must place the zeros on the unit circle. 

The adaptive IIR notch filter model designed by Nehorai has several advantages 

over the previous designed IIR notch filters. Previous adaptive IIR notch filters were 

designed by Thompson [2], Kung and Rao [3], [4], and Friedlander and Smith [5]. These 

filters required 2n parameters, where n is the number of input sine waves. For example, 

the IIR filters of [2] and [ 4] did not constrain the zeros to be on the unit circle and 

required 2n parameters. Since zeros were not constrained to be on the unit circle, their 

convergent angles were, in general, slightly different from the sine wave frequencies. 



8 

Another method in [3] and [4] was based on estimating the second-order factors of the 

IIR transfer function. This method suffers from high nonlinearity in the minimization 

problem, which complicates the algorithm and deteriorates its performance. 

The ANF in [ 1] uses a minimal number of parameters equal to n, the number of 

the input sine waves or narrowband signal components. As will be shown soon, the algo

rithm is of the RPE identification schemes. By the parsimony principle [6], among RPE 

algorithms using hierarchical models (i.e., one can be obtained from the other by apply

ing some constraints), the most accurate asymptotically is the one with the simplest 

model. 

The bandwidth of the complex notches created by each pole-zero pair is given by 

B=n:(l-p) 

In the algorithm, the previous fixed modulus p of the poles was replaced by a 

time-varying function p (t) for the following reasons. In actual situations, if no informa

tion is available for the input sine waves, and if the notches are too narrow, the notches 

may not fall over the sine wave frequencies and the algorithm will not 11 sense 11 the pres

ence of the sine waves. Therefore, at the start of the data processing, wider notches 

(smaller values of p) should be applied to the algorithm to increase the filter sensitivity to 

the presence of input sine waves. After convergence, narrower notches are recommended 

to obtain a smaller distortion in the wideband component by the filter. 

The special model designed by Nehorai exhibits high stability, which is different 

from previous ANF algorithms. This saves computations needed to monitor the stability 

of RPE algorithms and enables the use of poles very close to the unit circle, resulting in 

significantly sharper notches than in the previous algorithms. The narrower bandwidth is 

needed to obtain a smaller distortion in the wideband component by the filter. 
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11.3 ALGORITHM DERIVATION 

Let y (t) be the observed time series at time t. The error output of the algorithm is 

expressed in Eq. (2.3). Assume the system is time-varying. To obtain an estimate that is 

representative of the current properties of the system, it is natural to consider the cost 

function expressed in Eq. (2.4). Rewriting Eq. (2.4), we have 

V1 ( 8 ( t-1)) = ~ ~l p (t , k ) E ( k )2 (2.5) 

where p (t, k) is a parameter introduced in time-varying systems. The sequence of esti

mates can be computed recursively only if a certain structure for p (t, k) is introduced 

[7]. Assume that 

p (t, k) = 'A (t) p (t-1, k ), l~k~t-1 (2.6) 

This can also be written as 

~ (t, k) = [ J'J
1 
A (j) J a k (2.7) 

where 

p (k, k) = a k (2.8) 

Typically A (k) ~ 1. In the algorithm, a k is set to 1. A (k) is referred as the forgetting 

factor. 

The filter parameter vector is defined by 

8=[a1 ... an] T (2.9) 

where the superscript T denotes transpose. Let the gradient of E (t) w.r.t. the model 8 be 

'Jf (t)= [\JI 1(t) · · · \JI n(t)] T (2.10) 
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where 

\fl i(t) = dl,a:t) (2.11) 

Let 0 ( t- l) be the estimate at time t-1. We wish to obtain a 0 ( t) that approxi

mately minimizes Vt ( 0 (t-1)). By means of Taylor expansion of Vt ( 0) around 0 (t-1), 

we have 

Vr c 0 ) = vt ( 0 ( t- l)) + vt ' c 0 ct -1)) [ 0 - 0 ct -1) J 

+ ~ [ 0 - 0 (t-l)JTV/' [ 0 - 0 (t-l)J 

+ o c 1 0 - 0u-1)1 2) 

where the prime denotes differentiation with respect to 0 ' and 0 (x) denotes a function 

such that o (x) Ix I ~ 0 as Ix I ~ 0. Minimization of this expression with respect to 0 

gives 

0 ct ) = 0 u-1) - [ v/' c e u-1) J-1 vt ' [ e u-1) J T 

+o I S(t)- S(t-1)1 

From Eqs. (2.5), (2.6), (2.10) and (2.11 ), we have 

[Vi 'c e (t-l))JT = A. (t )[Vt-1 'c e (t-l)JT 

- "'(t, e (t-1)) Eu, e (t-1)) 

and, by differentiating Eq. (2.13) once more, 

(2.12) 

(2.13) 

V/'(0)= A. Vr_((S)+ \Jf(t,0)\JfT (t,8)+ E"(t,0)E(t,0) (2.14) 

In order to evaluate Eq. (2.12), a number of approximation have to be introduced: 

First assume the next estimate 8 (t) is to be found in a small neighborhood of 8 (t-1). 

This should be a reasonable approximation if t is large. That assumption leads to the fol-

lowing approximation: 

Neglect 0 I e (t) - e (t-1) I in Eq. (2.12) and take 
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v/' c e u n = Vr "c e ct - 1 ) ) . (2.15) 

Then assume that 8 ( t-1) is indeed the optimal estimate at time t-1, so that 

Vr -1 I ( e ( t-1)) = 0. (2.16) 

Finally set 

E "(t, e (t-1)) E er, e (t-1)) = o. (2.17) 

This is because close to the true value e' E (t' e) will be almost white noise, so that we 

may approximately consider E (t, 8) to be of zero mean and independent of what hap

pened up to time t-1. Inserting Eqs. (2.15) and (2.17) into Eq. (2.14), and denoting 

R(t) = V/' ( 8 (t)), we have 

R ( t ) = A ( t )R ( t - l ) + "' ( t ) "' T ( t ) (2.18) 

Inserting Eq. (2.16) into Eq. (2.13), we have 

[ Vr ' ( e ( t - 1))] r = - "' ( t , e ( t -1)) E ( t , e ( t - 1 ) ) (2.19) 

Inserting Eq. (2.19) into Eq. (2.12) and neglecting o I 8 (t) - 8 (t-1) I, we have 

S(t)= S(t-l)+R(t)-l'tf(t)E(t) (2.20) 

Letting P (t) = R (t )-1 in Eq. (2.18), we have 

1 
P (t) = ---x-ct)p (t-1) (2.2la) 

- -xtn-P Ct-1)"' ct)["- ct)+ "'r ct )P ct-1)"' ct )r1 "'r ct )P Ct-1) 

e (t) = e (t-1) + P(t) "'(t) E (t) c2.21b) 

From Eq. (2.3), it is possible to write the following differential equation: 

E ( t ) = y ( t ) + y ( t - 2n ) - p 2n E ( t - 2n ) - <j> T ( t ) 8 (2.22) 

where 



and 

<!> i(t) = [ <!> i(t) · · · <1> n(t)]T 

<I> i(t) = -y(t-i)-y(t-2n+i) +pi£ (t-i) 

+ p2n-i £ (t-2n +i ), 

<I> i (t) = -y (t-n) + pn £ (t-n ), 

1::;;;::;;n-l, 

i =n. 

From Eq. (2.3), we have 

A( p q-1) £ (t) =A(q-l)y(t). 

Differentiating both sides of Eq. (2.24) w.r.t. a;, one obtains 

A(pq-1) a E(t) +pi£(t-i)+p2n-i£(t-2n+i) 
da· l 

= y(t-i) + y(t-2n+i) 1::::; i::::; n-1, 

A ( p q-1) a} (t) + pn £ (t-n) = y (t-n) i = n. 
an 

From these expressions and with Eq. (2.23), one obtains 

<1> (t) 
'Jl(t)= A(pq-1) 

YF(t) and eF(t) are correspondingly defined as 

12 

(2.23a) 

(2.23b) 

(2.23c) 

(2.24) 

(2.25a) 

(2.25b) 

(2.26a) 

(2.26b) 

(2.26c) 

Based on the above derivation, the RPE type ANF algorithm will adjust the filter 

coefficients 8 to minimize the cost function of Eq. (2.5). 
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II.4 SIMULATION RESULTS 

In this section, we will test the RPE type ANF algorithm under different condi

tions. We wrote a C program to do the simulation on a SUN-SPARC workstation with 

double precision arithmetic. In all of the simulations, we assume that the algorithm con

verges if the percentage error of notch frequency is less than 0.1 % within 2000 recur

sions. 

The algorithm was tested under different signal-to-noise ratios (SNR) and dif

ferent sampling frequencies. All the initial conditions are set according to the original 

design. We consider the input signal of the filter to be 

y ( t) = C 1 sin 2 1t f 1 t + v ( t) (2.27) 

where C 1 is the sine wave amplitude and v (t) is a zero-mean unit-variance white Gaus

sian noise. The sampling ratio is defined by f slf 1, where f s is the sampling frequency 

and f 1 is the input sine wave frequency. Here f 1 = O. lHZ. The sampling ratio varies 

form 2.0 to 18.0, with 0.1 increment. 

Results from the experiment show that for the case when SNR = 40 and the sam

pling ratio is one of the following values: 2.0, 2.1, 2.6, 2.7, 2.8, 6.8, 7 .0, 7 .2, 7.4, 7 .6, 7 .8, 

8.0, 8.2, 8.4, 8.6, 8.8, 9.0, the algorithm will not converge. Also for the case when 

SNR = 10 and the sampling ratio is one of the following values: 2.0, 2.1, 2.5, 2.7, 2.9, 

3.1, 3.3, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, 8.2, 8.4, 8.6, 8.8, 

9.0, 9.2, 9.4, 9.6, 9.8, 10.0 , the algorithm will not converge. From the experiment, there 

seems to be no general rule what value of sampling ratio will make the algorithm con

verge. Table I shows the results. The non-convergence percentage value is calculated by 

the number of non-convergent experiments divided by the total number of experiments. 
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TABLE I 

SIMULATION RESULTS 

SNR 
Number of non- Number of total Non-convergent 

convergent experiments experiments percentage 

40 26 160 16.25 

10 31 160 23.13 

The purpose of designing the ANF is to track time-varying and unknown sine 

wave signal. Both the sine wave signal amplitude and frequency are unknown. Conse-

quently, we do not know the sampling ratio. If the sampling ratio happens to be one of 

the non-convergent sampling ratios mentioned earlier, the filter coefficient will not con-

verge to the true value. From Table I, we see that the probability of non-convergence 

ranges from 16% to 23% for different SNRs. 

Why will the filter coefficient not converge under some conditions? Recall that 

the RPE type algorithm is developed by minimizing the cost function of Eq. (2.4). The 

RPE algorithm is shown in [7] to converge to a local minimum of the cost function. This 

implies that if some other local minima exist on the error-performance surface, there is 

no guarantee that the algorithm will converge to the global minimum. Thus, it is very 

important to study the error-performance surface of the cost function in order to analyze 

the convergence performance of the algorithm. In the following chapter, the error

performance surface for the filter structure will be examined and analyzed. 



CHAPTER III 

ERROR-PERFORMANCE SURFACE 

III.1 INTRODUCTION 

As we discussed in Chapter II, the RPE type IIR ANF algorithm will adjust the 

filter coefficients e to minimize the cost function in Eq. (2.4). Rewriting the cost func

tion, we have 

Vt( 0 (t-1)) = i ti~ (t, k) E (k)2. (3.1) 

The RPE type algorithm converges to a local minimum of the cost function as t 

approaches infinity [7]. Since the algorithm is based on local minimum search, we can 

not expect convergence to a global minimum if the cost function has several local 

minima. The number of local minima will depend on the character of the model set used. 

In order to investigate the non-convergence of Nehorai's algorithm (we will call it the 

original algorithm later), it is important to study the error-performance surface for the 

model set used in [1]. In the reminder of this chapter, error-performance surfaces with 

different SNRs, different sampling frequencies and different notch bandwidth control 

parameters p will be analyzed. We will start with the description of the method to plot 

the error-performance surface, followed by examples and analysis. 

III.2 ERROR-PERFORMANCE SURFACE EXPERIMENT 

III.2.1 Method to plot error-performance surface 

For simplicity, we first exam the error-performance surface for the input signal 
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containing only one sine wave signal plus white noise. Thus, the error-performance sur

face plot is a two-dimensional plot. Similar analysis can be applied to multi-dimensional 

error-performance surfaces. 

Recall that in the example of Chapter II, we tested the original algorithm using an 

input signal 

y(t) = C1sin21tf 1t + v(t) (3.2) 

where v (t) is a zero-mean unit-variance white Gaussian noise. This implies that the input 

signal is time-invariant. So, in this particular example, the system is time-invariant. In 

Chapter II, we mentioned that A (t) is a parameter introduced in time-varying systems. 

For a time-invariant system, A (t) should always be 1. Correspondingly, 

p(t,k)=l, for 1 ~ k ~ t. (3.3) 

For our experiment, the input signal y (t) is determined by Eq. (3.2). From Eq. 

(2.2), the system function of the filter can be written as 

H(z-l)= l+a1z-l+z-2 
1 + p a 1 z - l + p 2z -2 

(3.4) 

From Eq. (2.22), the output of the filter £ (t) will be 

£ (t) = y(t) +a 1Y(t-l) + y(t-2)- pa 1 £ (t-1)- p 2 £ (t-2) (3.5) 

From Eqs. (3.3) and (2.4), we have 

v, ( e ) = ~ A:i e (k )2. (3.6) 

Equation (3.6) is an estimate of the system behavior during the time period 

1 ~ k ~ t. Since the system is time-invariant, the estimate of the system behavior during 

the time period N 1 ~ k ~ N 2, where N 1 and N 2 represent different times, is the same as 

that during the time period 1 ~ k ~ t . 
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We wrote a C program to examine the error-performance surface. In the program, 

we use the following equation to calculate the cost function for a particular filter 

coefficient a 1 · 

Vt( 0) = 
2
1 ~o E (k)2 

k~O 
(3.7) 

In the program, we vary filter coefficient from -10 to 10, with 0.1 increment. For 

each value of filter coefficient, the program takes y (t) in Eq. (3.2) as the input starting 

from time t = 0, let y (t) filter through Eq. (3.5) to obtain the filter output E (t) at each 

time, use Eq. (3. 7) to calculate the cost function for the corresponding filter coefficient. 

Then change the filter coefficient to a different value, use the above steps to calculate the 

corresponding cost function again. 

111.2.2 Zero of the system function 

Letting z = e Jw in Eq. (3.4 ), we have 

. 1+a1e-Jro + e-2jro 
H(elro) = (3 8) 

1 + P a1e-Jro+ p2e-2Jro . 

_ ( 1 + a 1 cos ro + cos 2 ro ) - j (a 1 sin ro + sin 2 ro ) 
- (1 + p a 1 cos ro + p 2cos 2 ro ) - j ( p a 1 sin ro + p 2sin 2 ro ) 

The magnitude response of H ( e J ro) is 

1 

I H (ejco) I = [(1 +a 1cos ro +cos 2 ro )2 +(a1sin ro +sin 2 ro )2f2 
1 (3.9) 

[(1 + pa 1cos ro + p 2cos 2 ro )2 + (pa isin ro + p2sin 2 ro )2f2 

Letting the numerator in Eq. (3.9) to be zero, we have 

a 12 +4a 1cos ro + 4cos ro2 = 0. 

Solving Eq. (3.10), we have 

a1 
cos ro=-2· 

(3.10) 

(3. lla) 



Thus, the zero of the system function is at 

ai 
co= arccos (-2 ). 

III.3 ERROR-PERFORMANCE SURFACE ANALYSIS 
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(3.llb) 

Figures 2 - 7 show the ANF error-performance surface of the cost function under 

different signal-to-noise ratios and sampling ratios. The sampling ratio is defined by 

f slf 1, where fs is the sampling frequency and f 1 is the notch frequency. We randomly 

choose the value of the sampling ratio to be 19.1 and 13.8. The SNR condition was 

obtained by SNR (dB)= 10/og (Cr 12), where C 1 is the sine wave amplitude. The input 

signal used here consists of one sine wave signal plus white Gaussian noise. 

As mentioned before, the input signal is 

y(t)=C1sin21tf1t +v(t). 

Sampling y (t ), we have 

y [n] = C1sin(21tf 1Tsn) + v [n] 

= C 1sin (2 1t f 1 }s n) + v [n ]. (3.12) 

Here Ts is the sampling period and f s is the sampling frequency. Defining ns = f slf 1, 

where f 1 is the input sine wave frequency, and letting 

ro = 2 7t n . 
s 

Equation (3.12) becomes 

y [ n ] = C 1 sin ( 2 
1t n ) + v [ n ] 

ns 

= C 1sin (con)+ v [n ]. 

(3.13) 

(3.14a) 

(3.14b) 

From Eq. (3.llb), we know the zero of the filter. Considering both Eqs. (3.llb) and 

(3.13), the true filter coefficient should be 



a 1 = -2cos ro = -2cos 2
1t . 

ns 
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Figure 2. Error-performance surface for p = 0.8, SNR = 40. 
fslf 1=19.1. (a) Error-performance surface. (b) Enlargement 
portion of error-performance surface near the true filter 
coefficient. 
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(3.15) 
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Figures 2 - 5 show that the error-performance surface has several different types 

of shape corresponding to different values of the filter coefficient. On these performance 

surfaces, we use p = 0.8. In Fig. 2, ns = 19.1. According to Eq. (3.15), the true filter 

coefficient should be -1.892756. As shown in Fig. 2, when the filter coefficient a 1 is far 

away from its true value and is approaching its true value, the cost function V will gen-

erally decrease. This is shown in region A and F of Fig. 2. As the filter coefficient a 1 is 

closer to its true value, V will pass a flat region, see region B of Fig. 2. In this flat region, 

V changes little. As a 1 is closer to its true value, V will go through a transient region, see 

region C of Fig. 2. In this region, V will gradually decrease. As a 1 is closer to the true 

value, V decreases quickly, see region D and E of Fig. 2. At the true value of a 1, the 

value of the cost function V is the minimum. This is shown in the convergent region G of 

Fig. 2. Thus, the cost function V will generally have a unique unconstrained global 

minimum. However, this minimum lies in a fairly flat region. 



> 
c: 

.S: 

10200 

10150 

> 
.§ 
~ 10100 
u. 

0 
u 

1050 

100 
-10.0 -5.0 0.0 5.0 10.0 

Filter Coefficient al 

(a) 

1oom I [ ~ I I r 

g 10000 
u:: 
"' 0 
u 

100~4~0;--~--:~~n:;--~--:~~n::--~~~.A-:--~~-i_~~~--'-~~__J~~~-'--~~_J 
-3.v -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

Filter Coefficient al 

(b) 

Figure 6. Error-performance surface for p = 0.985, SNR = 40, 
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We also notice from Figs. 2 - 5 that when the absolute value of the filter 

coefficient is greater than 2, the value of cost function becomes very large. This is 

because the pole of the ANF filter is outside the unit circle. This means the filter is in an 

unstable region. 

Also, for the case when p is very close to 1 (p = 0.985), there exists several local 

minima on the error-performance surface. Fig. 6(a) shows the error-performance surface 

for p = 0.985, SNR = 40 and f s/f 1=19.1. Fig. 6(b) is the enlargement portion of Fig. 

6(a) near the true filter coefficient. Fig. 6(b) shows that there are several local minima 

near the global minimum. As the value of p is closer to 1, the number of local minima 

on the performance surface increases. Fig. 7(a) is the error-performance surface for 

p = 0.995 , SNR = 40 and fs/f 1=19.1. Fig. 7(b) is the enlargement portion of Fig. 7(a) 

near the true filter coefficient. Comparing Fig. 6(b) and Fig. 7(b), we see that the number 

of local minima on the performance surface for p = 0.995 is more than that for p = 0.985. 

Also, there are not many local minima on the performance surface for p = 0.8 under the 

same conditions. This is shown in Fig. 2(a) and Fig. 2(b). Therefore, the value of p also 

plays an important role on the error-performance surface. 

Given this type of error-performance surface, it is very difficult for the RPE type 

algorithm to search the global minimum of the cost function since the global minimum 

lies in a very flat region. Also, it is possible that the estimated filter coefficient will be far 

away from its true value for a limited number of recursions. In the next chapter, we will 

re-examine the performance of the original algorithm given the type of error

performance surface described above. 



CHAPTER IV 

PERFORMANCE ANALYSIS OF THE ORIGINAL ANF 

IV.1 INTRODUCTION 

In this chapter, we will re-examine the performance of the original ANF algo

rithm given the special error-performance surface described in Chapter III. In Chapter III, 

we concluded that it is very difficult for the RPE type of algorithm to search the error

performance surface for the global minimum of the cost function. With this in mind, we 

will analyze the algorithm performance in two steps: first, with respect to different initial 

conditions; second, with respect to different values of the notch bandwidth control 

parameter. We then will summarize the reasons for non-convergence of the original ANF 

algorithm. The convergence criterion will also be evaluated. We will conclude by 

addressing the problems of the original algorithm and their causes. 

IV.2 PERFORMANCE ANALYSIS OF THE ORIGINAL ANF 

We wrote another C program to do the simulation of the original ANF on a 

SUN-SPARC workstation with double precision arithmetic. In all of the simulations, we 

assume that the algorithm converges if the percentage error of notch frequency is less 

than 0.1 % within 2000 recursions. Assume the input data 1s 

y (t) = C 1sin (2 rc f 1t) + v (t ), where v (t) is a zero-mean unit-variance white Gaussian 

noise. f 1 is the input sine wave frequency and f 1 = O. IHZ. 
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IV .2.1 Performance vs. different initial conditions 

Experiment 1. We modify the original algorithm by setting P [O] ranging from 

1.0e -6 to l .Oe +5. Results show that for each SNR and sampling ratio, there are certain 

values of P [O] that can ensure convergence. For example, for SNR = 40 and 

f 5 /f 1 = 11.1, only when the initial covariance P [O] is within l .Oe -4 to l .Oe -2, the algo

rithm converges. If P [O] is chosen to be any value outside of this range, the algorithm 

will not converge. This indicates that the value of P [O] will affect the performance of the 

algorithm. 

Experiment 2. A close examination of the non-convergence case shows that the 

initial value of the filter coefficient a 1 [OJ and the initial covariance P [O] are crucial to the 

performance of the algorithm. The convergence analysis of RPE type of algorithm is 

shown in [7] to converge to a local minimum of the cost function V as t approaches 

infinity. The estimated parameter a 1 will converge in distribution to the normal distribu

tion with zero mean and asymptotic covariance matrix P [t ]. Thus, P [t] is an important 

information to update a 1 [ t]. a 1 [O] can be considered as a prior estimate of filter 

coefficient a 1, and the covariance of this estimate is P [O]. 

In Chapter III, we discussed the error-performance surface of the cost function. 

This surface has a unique shape with its global minimum lying in a fairly flat region. In 

this experiment, we choose a 1 [O] to be in different regions on the error-performance sur

face. For each a 1[0], we examine the performance as the value of P [O] varies. The sam

pling ratio is randomly chosen to be 19.l. According to Eq. (3.15), the true filter 

coefficient is -1.892756. We encounter the following different types of performance. 

Case 1. a 1 [O] = 4, where a 1 [0] is in region A of Fig. 2(a). 

(a) P [O] = 1.0e-6 to 1.0e-4, a 1 does not converge. For the first 8 to 15 recur

sions, a 1[t] approaches region B of Fig. 2(a), then stays in region B. The 
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non-convergence is because of the mismatch of the relationship between 

a 1 [O] and P [O]. Since a 1 [0] is far away from the true value, P [O] should 

be large in order to make a 1 converge. As P [O] is small, too much 

confidence is placed on a 1 [O] and a 1 does not converge. Region B is a 

fairly flat region. Because of the special shape of the performance surface, 

the RPE algorithm considers a 1 [t] has already reached a local minimum. 

(b) P [O] = 1.0e-3 to l.Oe-2, a 1 converges. The transient behavior of a 1[t] 

shows that it passes through regions B-F-E-D-G for P [O] = l.Oe-3 and F

E-D-G for P [O] = l.Oe-2. It converges because the value of P [O] is 

chosen properly to match the prior estimate a 1[0] and when the number of 

recursions increases, each P [t] matches a 1 [t ]. Here the word "match" 

means that if the filter coefficient is far away from its true value, its covari

ance should be large in order to ensure convergence; on the other hand, if 

the filter coefficient is close to the true value, its covariance should be 

small in order to ensure convergence. 

( c) P [O] ~ I .Oe -1, a 1 does not converge. The transient behavior demon

strates a very interesting point. a 1 [t] passes through regions E-D or F-E-D 

after only a few recursions (t = 8 to 9). At that time, P [t] is already too 

small to update a 1 [t] to the convergent region G. a 1 stays in region D with 

very small variations. We also notice that a 1 [ 1] jumps from a 1 [O] = 4 in 

region A to region E or F. The large change of a 1 is because P [O] is a 

large covariance. 
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Case 2. a 1[0J = 1, where a 1[0J is in region B of Fig. 2(a). 

(a) P [O] = l .Oe -6 to l .Oe -4, a 1 does not converge. Transient behavior shows 

a 1 (t J will always stay in region B. Since a 1 [OJ is in a fairly flat region, 

and P [OJ is too small to update a 1 to other regions, the RPE algorithm 

determines a 1 is minimized. This is similar to case 1 (a). 

(b) P [OJ= 1.0e-3 to 1.0e-2, a 1 converges. Transient behavior shows that 

a1[tJ passes through regions B-F-E-D-G for P[OJ = 1.0e-3 and F-E-D-G 

for P [OJ= 1.0e-2. This case is similar to case l(b). 

( c) P [OJ 2 1. Oe -1, a 1 does not converge. Transient behavior shows a 1 passes 

through regions F-E-D after a few recursions (t = 8 to 9) and P [t] 

becomes very small. a 1 stays in region D with very small variations. This 

is similar to case 1 ( c). 

Case 3. a 1[0J = -1.65, where a 1[0J is in region C of Fig. 2(a). 

(a) P [OJ= 1.0e-6 to 1.0e-4, a 1 converges. Transient behavior shows that 

a 1 [t] passes through regions C-D-E-G for P [OJ = l .Oe -6~ C-D-G for 

1.0e -5 s P [O] s l.Oe -4. Because a 1 [OJ is close to the true value, covari

ance of the prior estimate should be small. Thus, when P [O] is small, a 1 

converges. 

(b) P[OJ 21.0e-3, a 1 does not converge. Performance is similar to case l(c). 

When a 1 (OJ is close to the true value, P [OJ should be small. If P [OJ is 

large, a 1 does not converge. 

Case 4. a 1 [OJ= -1.88, where a 1 [OJ is in region D of Fig. 2(a). 

Performance is similar to case 3(a) for l.Oe-6 s P [OJ ::;1 .Oe-3 and case 

3(b) for P [O] 2 l.Oe-2. 
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Case 5. a 1 [O] = -1.98, where a 1 [0] is in region E of Fig. 2(a). 

(a) P [O] = 1.0e-6 to I.Oe-3, a 1 converges. Transient behavior shows that 

a 1 [t] passes through regions E-G for P [O] = l .Oe -6; E-D-G for 

l.Oe -5 ~ P [O] ~ l.Oe-4; F-E-D-G for P [O] = l.Oe -3. This case is similar 

to case 3(a). 

(b) P [O] :2: l.Oe-2, a 1 does not converge. Performance is similar to case 3(b). 

Case 6. a 1[0] = -9, where a 1[0] is in region F of Fig. 2(a). 

(a) P [O] = l .Oe -6, a 1 does not converge. Transient behavior shows that a 1 [t] 

passes through regions F-E. After a few recursions (t = 15), a 1[t] is in 

region E, and at that time P [t] is too small to update a 1 to region G. 

(b) P [O] :2: l.Oe-5, a 1 does not converge. Transient behavior is the same as 

case l(c). 

Experiment 3. In this experiment, we randomly choose the sampling ratio to be 

f slf 1 = 13.8, and do the same simulation as in Experiment 2. Results are similar to those 

off slf 1 = 19.1 except for the non-convergence cases when P [O] is large. For example, 

when P [O] = 100, a 1 [t] passes through regions F-E on the error-performance surface, 

and stays in region E without changing much, instead of staying in region D. We notice 

that a 1 [t] passes into region E only after a few recursions (t = 10), and P [t] is already 

very small at that time. While a 1 is in region E, its value still oscillates slightly. 



30 

IV .2.2 Performance vs. different notch bandwidth control parameter 

Experiment 4. As discussed in Chapter II, p is a parameter that controls the 

bandwidth of the notch frequency. In Chapter III, we have shown that p plays an effect 

on the error-performance surface. Increasing p causes the number of local minima on 

the performance surface to increase. This experiment is to show the effect of p on the 

performance of the algorithm. The input signal is the same as that of Experiment 1. We 

use f slf 1=19.1, SNR = 40, P [O] = 10. After about 300 recursions, p is around 0.985, 

and a 1 is always around -1.84 while the true value of a 1 should be -1.892756. Fig. 6(a) is 

the corresponding error-performance surface for p = 0.985. Fig. 6(b) is the enlargement 

portion of Fig. 6(a) near the true filter coefficient. Notice that a 1 = -1.84 is in between 

several local minima and is in a fairly fiat region on the performance surface. Thus, as the 

number of recursions increases, it will be even more difficult for a 1 to converge to the 

global minimum. When we modify the algorithm by fixing p = 0.8, the performance is 

better than using a time-varying p because there are not several local minima on the 

error-performance surface for p = 0.8 as shown in Fig. 2. But a 1 does not converge 

either because P [O] and a 1[0] are the major crucial factors on the performance of the 

algorithm. 

IV.2.3 Non-convergence performance analysis 

From the above experiments, we summerize that there are three reasons that the 

algorithm is difficult to converge. First, the special filter structure makes a unique type of 

error-performance surface. This type of performance surface is not quadratic, but has a 

global minimum lying in a very fiat region, which is very difficult for the algorithm to 

search the global minimum. Second, as the number of recursions increases, the notch 

bandwidth control parameter p makes the convergence even more difficult. This means 

that at the start of the algorithm, p = 0.8. The error-performance surface for p = 0.8 
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does not consist of several local minima. There is only a global minimum on the perfor

mance surface. As the number of recursions increases, p becomes larger and closer to 1. 

When the value of p increases, the error-performance surface will have several local 

minima. As p becomes larger, the number of local minima on the performance surface 

will increase. The performance surface with several local minima will make the algo

rithm even more difficult to search the global minimum because the RPE algorithm can 

only guarantee to search a local minimum. Third, the algorithm is very sensitive to the 

initial estimate of filter coefficient a 1 [O] and the covariance of this initial estimate P [O]. 

Whenever a mismatch of a 1 [O] and P [O] occurs, a 1 can not converge. In other words, if 

the initial estimate of filter coefficient is far away from the true value, the initial covari

ance of this estimate should be large in order to ensure convergence; if the initial covari

ance is small, the algorithm will not converge. Also, if the initial estimate of the filter 

coefficient is ,close to the true value, the initial covariance should be small in order to 

ensure convergence; if the initial covariance is large, the algorithm will not converge 

either. 

Because of the above three reasons, there are two types of non-convergence per

formance for the original ANF. First, P [O] is too large to match the prior estimate a 1 [O], 

a 1 will stay in region D or E on the performance surface without changing much. When 

a 1 is in region D or E, its value oscillates slightly. Second, P [O] is too small to match the 

prior estimate a 1[O],a 1 will either stay in the flat region B or region E, D, C. 

From Experiment 2 and 3, we can also see that for the non-convergence cases, 

even though the algorithm did not converge, if the initial covariance P [O] is chosen to be 

very large, for example, if P [O] = 100, the filter coefficient a 1 will pass into region D or 

E on the error-performance surface only within a few recursions no matter a 1 [O] is near 

or far away from the true filter coefficient. The reason a 1 can pass into region D or E 

quickly is because P [O] is considered to be a large covariance of the initial filter 
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coefficient estimate. A large P [O] can always update a 1 to the unstable region on the 

error-performance surface quickly. As discussed in Chapter II, the algorithm is based on 

the gradient search of the error-performance surface; when a 1 is updated to the unstable 

region on the performance surface, the value of the cost function V will be very large. 

This can increase the sensitivity of the algorithm to search the global minimum and a 1 

can pass into region D or E on the performance surface quickly. After a 1 passes into 

region D or E on the error-performance surface, it stays there with very small variations. 

The non-convergence is because of the reason that at the time a 1 passes into region D or 

E, P [t] is already too small to update a 1 to the true filter coefficient. 

IV.3 CONVERGENCE CRITERION EVALUATION 

For the original ANF algorithm, there is no self-adjusted criterion to determine 

whether the algorithm converges or not; and if it converges, how close the estimated 

filter coefficient is to the true filter coefficient. Nehorai used the number of recursions N 

as a criterion to analyze convergence [1]. Since for the simulation in [1], the input sine 

wave was actually known, the true filter coefficient 0 was also known. Nehorai set the 

length of N to be 100, 500, 1000 respectively and compared the filter coefficient from the 

algorithm to the true filter coefficient. But in actual situations, the input data is usually 

unknown and time-varying. Thus, the number of recursions can not be a sufficient con

vergence criterion. 

From the above experiments and analysis, we conclude that the original ANF 

algorithm has two drawbacks. First, it can not guarantee convergence. Second, it does not 

have a convergence criterion. In the next chapter, we will develop a new ANF algorithm 

in order to overcome the drawbacks of the original algorithm. 



CHAPTER V 

A FAST ALGORITHM FOR ADAPTIVE NOTCH FILTERING 

V.1 INTRODUCTION 

In this chapter we address the primary goal of this thesis: to demonstrate a fast 

algorithm for adaptive notch filtering. Through the topics in Chapter IV, we analyze the 

reasons that the original ANF algorithm is difficult to converge. There are three reasons 

that cause the original algorithm difficult to converge. First, the filter structure makes a 

unique type of error-performance surface with its global minimum lying in a fairly flat 

region, which makes the algorithm very difficult to search the global minimum. Second, 

as the number of recursions increases, the number of local minima on the performance 

surface increases because of the increasing value of notch bandwidth control parameter 

p. Third, the algorithm is very sensitive to the initial filter coefficient estimate and the 

covariance of this estimate. Results of this investigation demonstrate that we can improve 

the convergent rate of the original ANF algorithm by improving its error-performance 

surface and by properly controlling the relationship between its initial filter coefficient 

estimate and the covariance of this estimate. 

With this in mind, we will pursue a fast ANF algorithm based on the original 

ANF by the following new designs: we will improve the error-performance surface of the 

filter by designing a new notch bandwidth control parameter; we will increase the con

vergent rate by resetting the initial filter coefficient estimate and the covariance of this 

estimate; we will design a new criterion to provide information on the algorithm conver

gence and when to reset initial conditions. 
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In the reminder of this chapter, we will present the details of our efforts to design 

a fast ANF algorithm. Section V .2 describes the designs of the new ANF algorithm. In 

Section V.3 we present the new ANF algorithm description. Simulation results will be 

given in Section V.4. 

V.2 DESIGN OF A FAST ALGORITHM FOR ADAPTIVE NOTCH FILTERING 

V .2.1 Design of notch bandwidth control parameter 

In Chapter III, we described that the error-performance surface for the original 

ANF is very difficult for the RPE type of algorithm to search the global minimum 

because the global minimum lies in a very flat region. Fig. 2 and Fig. 6 are the error-

performance surface for p = 0.8 and p = 0. 985. Fig. 8 and Fig. 9 are the corresponding 

frequency magnitude response when a 1 = 0. 
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As discussed in Chapter II, p is a notch bandwidth control parameter. The closer 

p is to 1, the narrower the bandwidth is. In practical situations, if no information is avail-

able on the input sine waves and if the notches are too narrow, the notches may not fall 

over the sine wave frequences and the algorithm will not "sense" the presence of the sine 

waves. This may prevent the algorithm from converging to the desired transfer function. 

The filter coefficient a 1 only determines the location of notch frequency. As 

explained in Eq. (3 .11 b ), for each a 1, the corresponding notch frequency w is such that 

w = arccos (- a2
1 

), provided a 1 is in the stable region. 
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If the filter coefficient a 1 is still far away from the true filter coefficient, and if the 

notch is too narrow, the input sine wave can not be cancelled out, sine wave signal will 

dominate the output of the filter, resulting in the flat region B on the error-performance 

surface in Fig. 2(a). The value on region B mainly reflects the input sine wave signal. 

In order to increase the sensitivity of the ANF algorithm, wider notch (i.e. smaller 

values of p) should be used at the start of the data processing. After convergence, it is 

recommended that a larger modulus of poles (narrower notch) be used in order to obtain 

a smaller distortion in the wideband component of the input signal by the filter. 

Since applying p = 0.8 in the ANF structure still results a fairly flat region on the 

error-performance surface, 0.8 is not small enough to increase the sensitivity of the algo

rithm. Our design is to use a value of p less than 0.8 in order to improve the shape of the 

error-performance surface, thus increasing the algorithm sensitivity to the best. 

Figs. 10 - 13 show the error-performance surface for different values of p for the 

same signal-to-noise ratio SNR = 40. The error-performance surface plots in Figs. 10 - 13 

and Fig. 2 show that for p ~ 0.2, performance surface consists a flat region; but for 

p ::; 0.1, the flat region on the performance surface gradually disappears. This is because 

we use a smaller p, widen the notch bandwidth, and thus improve the error-performance 

surface shape and the sensitivity of the algorithm. From the experiments, p = 0.001 is a 

reasonable value that will improve the shape of the performance surface and increase the 

sensitivity of the algorithm. The following example confirms the above analysis. 
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In this example, we modify Experiment 2 of Chapter IV by using p < 0.8 instead 

of using a time-varying p starting at p = 0.8. As in Experiment 2 of Chapter IV, we test 

the original ANF by choosing the initial filter coefficient estimate a 1 [OJ at different 

regions on the performance surface. Results show that by using a large initial covariance 

P [O], for example, P [O] = 100, it takes only 2 recursions for a 1 to pass into region D or E 

on the performance surface with p = 0.001 and it takes 4 recursions for a 1 to pass into 

region D or E with p = 0.1 while in Experiment 2 of Chapter IV, it took 8 to 10 recur

sions. So using p = 0.001, it takes fewer recursions for a 1 to pass into region Dor Ethan 

using p > 0.001. We also try to use p < 0.001, results show that it takes 2 recursions for 

a 1 to pass into region Dor Eon the error-performance surface. Figures. 12 and 13 show 

that the error-performance surface shapes for p = 0.001 and p = 0.0001 are almost the 

same. Thus, using a p less than 0.001 will improve the sensitivity of the algorithm as 

much as using a p which equals to 0.001. That is the reason it takes the same number of 

recursions for a 1 to pass into region D or E on the error-performance surface for 

p = 0.001 and p < 0.001. Therefore, p ~ 0.001 will be a reasonable value to increase the 

algorithm sensitivity. In the new algorithm, we use p = 0.001. 

The above example confirms that by using a smaller value of p, the sensitivity of 

the algorithm increases and the convergent rate of the algorithm is improved. So our first 

design of the new algorithm is to use a smaller fixed-value of p at the start of the data 

processing until the filter coefficient is near the true value. Then we will use a time

varying p as proposed by the original ANF. By using a smaller p at the beginning of the 

data processing, the sensitivity of the algorithm will increase. After the filter coefficient 

is near the true value, a larger time-varying p will make the convergent notch narrower 

and minimize the distortion in the wideband component by the filter. 
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V.2.2 Design of initial conditions 

Using a smaller fixed-value of p will increase the sensitivity of ANF algorithm 

and improve the performance of the algorithm. As analyzed in Chapter IV, the algorithm 

is very sensitive to the initial conditions. If the initial filter coefficient estimate and the 

initial covariance of this estimate are not chosen properly, the algorithm will not con

verge even if the error-performance surface is improved. In the example of Section 

V .2.1, we notice that for the non-convergence cases, once the filter coefficient a 1 passes 

into region Dor E on the error-performance surface, it stays there. This is because at the 

time a 1 passes into region D or E, P [ t] is already too small to update a 1 to the true 

value. 

In order to have the original algorithm converge, the initial values of a 1 [O] and 

P [O] must be chosen properly to match the relationship with each other. Specifically, if 

the prior estimate of filter coefficient is far from its true value, the initial covariance 

should be large in order to ensure convergence. On the other hand, if the prior estimate of 

filter coefficient is near the true value, the initial covariance should be small in order to 

ensure convergence. We also notice that if P [O] is too large to match a 1 [O], a 1 will 

passes into region D or E on the error-performance surface within a few recursions, 

where it will stay without change much. While a 1 is in region D or E, its value still oscil

lates slightly. This transient behavior occurs after only a few recursions (k = 2 for 

p = 0.001). The reason a 1 can pass into region D or E quickly is because P [O] is a large 

covariance, which will update a 1 to the unstable region on the error-performance surface 

quickly. As discussed in Chapter II, the algorithm is based on the gradient search of the 

error-performance surface. After a 1 is updated to the unstable region of the performance 

surface, the value of cost function V will be very large. This will increase the sensitivity 

of the algorithm to search the global minimum. The reason a 1 does not change much 

once it passes into region Dor Eis because P [t] is already too small to update a 1 to the 
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true value. The slow or non-convergence performance is because of the small P [t J after 

a few recursions. This type of performance is actually consistent with the convergence 

analysis of RPE type of algorithm. RPE type of algorithm will converge to a local 

minimum as t approaches infinity. The analysis of the asymptotic rate of convergence 

usually does not provide any hints about how large t has to be for the results to be appli

cable. It may bet= 100 or t = l.Oe+6, which clearly makes a large difference in real

time processing. For an adaptive notch filter, we need a fast convergent rate. Otherwise, 

the filter is no longer adaptive. 

We also discover that at the time a 1 is in region Dor E of the error-performance 

surface, it is actually not very far from the true value. It is the small P [t J that causes the 

slow convergence or non-convergence. In order to overcome the convergence problem, 

we reset the initial conditions of the new algorithm such that a 1 [OJ =a 1 [t J and 

P [OJ > P [t]. 

Based on the above idea, the new ANF algorithm will reset the initial conditions 

of a 1 [OJ and P [OJ whenever P [t J is too small to update a 1 to the true value. But what 

kind of information can be used to decide when to reset a 1 [O] and P [O]? This question 

will be answered following the design of convergence criterion in the next section. 

V .2.3 Design of convergence criterion 

V.2.3.1 Relationship between noise-to-signal power and frequency error 

Assume Fig. 14 is the frequency magnitude response for the ANF with p = 0.8. In 

Fig. 14, assume ro1 is the zero frequency on the frequency response, ro0 is the input sine 

wave frequency . .dro is the frequency difference between ro1 and ro0. In other words, .dro 

is the frequency error. Referring to Eq. (3.1 la), we have 



cos ffi1 = -~ 2' 

sin ro
1 
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Figure 14. Relationship between frequency magnitude response 
and frequency error. 
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(5.1 a) 

(5.1 b) 

Denoted= I H(eiffi()) I. If the input sine wave amplitude is large, in other words, 

if the signal-to-noise ratio is large, the filter output is mainly the attenuated sine wave 

with an amplitude off C 1, where C 1 is the input sine wave amplitude. 

Let y (t) be the filter input and £ (t) be the filter output, the noise-to-signal power 

can be expressed as 

E £ (t)2 
E y (t)2 = d 2

. (5.2) 

The above equation relates the filter noise-to-signal power to the frequency magnitude 

response at ro = ro0. From Fig. 14, we can see that the smaller ~ro is, the smaller the 

noise-to-signal power is. 



From Eq. (3.9), we have 

d = IH(ej ro 0)1 = IH(ej(coi-~ro))I 
1 

[(l +a 1cos w o+ cos 2 w o)2 +(a1sin w o+ sin 2 w o)2f2 
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(5.3) 

= 1 

[(l + pa 1cos w o+ p 2cos 2 w o)2 + (pa 1sin w o+ p2sin 2 w 0) 2] 2 

Letting ro0 = w1 - ~w in the above equation and using 

cos ( w1 - ~w) =cos w1cos ~w +sin ro1sin ~w 

cos 2( W1 - ~w ) = 2cos ( w1 - dro )2 - 1 

sin ( W1 - dW) =sin W1COS dW - cos W1sin dW 

sin 2( W1 - dW ) = 2sin ( W1 - ~w )cos ( W1 - ~w ) 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

Substituting Eq. (5.la) and (5.lb) into Eq. (5.4), and substituting Eq. (5.4) into Eq. (5.3), 

we can express I H ( e j Ct>o) I in terms of dro. We can also calculate I H ( e j Ct>o) I for different 

values of dro. Since the filter coefficient a 1 only determines the location of zero of the 

transfer function, it does not effect the overall shape of the frequency response for a 

given p. For a certain value of p, the value of IH(ejroo) I will only be effected by ~w, not 

by a 1• 

Combining Eqns. (5.2) and (5.3), we have 

E E (t )2 . 
Ey(t)2 = IH(e1Cro1-~ro))l2 (5.5) 

Equation (5.5) expresses the noise-to-signal power in terms of the frequency error ~ro. 

Each ~ro corresponds to a certain value of the noise-to-signal power. The larger the ~w, 

the larger the noise-to-signal power. 

Equation (5.5) is derived with the assumption that SNR is large. The higher the 

SNR, the smaller dro that can be applied to Eq. (5.5); the lower the SNR, the less smaller 

~w that can be applied. Denote the smallest dro that can be applied to Eq. (5.5) by dWmin· 

This value varies as the SNR varies. When w < dW min' the difference between E E (t l2 

Ey(t) 
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and I H (ei < coi - ~ro >) 12 will become significant. Equation (5.5) will no longer be valid 

since when co < Aromin' white noise dominates the filter output instead of the attenuated 

sine wave signal. The variance of the white noise is constant at Aro= 0, so is the noise-

to-signal power ~; (~W . Denote E~ E Hl at l'.\ro = O by eoylimit. The SNR will be 

approximately 10/og-11. . .. 
eoy 1m1 

Table II shows Aromin and eoylimit for different SNRs. Signal-to-noise ratio SNR o 

is calculated by 
c 2 

SNRo= 10/og+. SNR-err is calculated 

SNR -err = I SNR,,~: SNR I . The data in Table II is obtained in the following way. 

TABLE Il 

CONVERGENCE CRITERION REFERENCE TABLE 

SNR 0 ~OOmin eoylimit SNR SNR-err 

90 6.0e-5 I. I 03699e-9 89.571493 4.761189e-3 

70 7.0e-4 l.103733e-7 69.571359 6. l 23443e-3 

50 6.0e-3 I . I 04064e-5 49.570059 8.598820e-3 

30 6.0e-2 I.1065 l 4e-3 29.560432 l .465220e-2 

10 3.5e-l l .047749e- l 9.797426 2.025740e-2 

5 5.0e-1 2.869670e- l 5.421676 8.433520e-2 

by 

Suppose that the input signal of the filter is y (t) = C 1sin 2 1t f 1r + v (t ), where f 1 

is the input sine wave frequency and v (t) is a zero-mean unit-variance white Gaussian 

noise. Here f 1 = O.IHZ. We randomly choose the sampling frequency to be fs = 0.7HZ 
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to sample y (t ). According to Eq. (3.15), the true filter coefficient should be -2cos ( 2 
7
rc ). 

When the filter coefficient is its true value, ~ro = 0. Accordingly, when the filter 

coefficient is -2cos ( 2 
7
rc + ~co), the frequency difference between the input sine wave 

frequency and the notch frequency of the filter is ~co. 

We use y(t) as the filter input, sample it by fs = 0.7HZ, filter it through the origi

nal ANF with p = 0.8anda 1 = -2cos ( 2 
7
rc + ~co). We vary Lico from 0 to 0.5. Each ~co 

corresponds to a different a 1• For each a 1, we calculate the noise-to-signal power 

~ E (t ~2 . Thus, each ~co is related to a certain value of the noise-to-signal power. 
y (t) 

Denote the noise-to-signal power by eoy . The noise-to-signal power is calculated by 

N 

eoy = EE (t)2 J; E [k]2 
Ey(t)2 = ;/ 

kt;/ [k]2 

(5.6) 

where Nw is an integer and should be a large value in order to minimize the window 

effect. If Nw is large enough, the sampling frequency should not effect the value of eoy. 

According to our experimental results, Nw = 200 will be a reasonable value to use. 

Each eoy corresponds to a different value of ~co. We use the same Lico in Eq. 

( 5. 3) to calculate the corresponding I H ( e j C 001 - ~co )) I . Since I H ( e j C coi - ~co )) I is only 

effected by ~co for a given p, we use a 1 = 1 to calculate I H (ej( coi - ~co)) I with p = 0.8. 

For different SNR, there is a range of ~co that can be applied to Eq. (5.5). In other 

words, eoy should be equal to I H (ej( coi - ~co)) 12 for a certain range of ~co. The LlCOmin in 

Table II is obtained such that the difference between eoy and I H (ej C co, - ~co)) 12 is less 

than l.Oe-3. 

Table II can be used as a convergence criterion reference table for obtaining con

vergence criterion. For a given SNR, if the maximum allowable frequency error ~COmax of 
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the filter is larger than L'.icomin in Table II, use Lico= L'.iCOmax in Eq. (5.3) to calculate the fre

quency magnitude response I H ( e J (Wt - ~w )) I , use I H ( ei (Wt - ~w )) 1
2 as the convergence 

criterion eoylimit since Eq. (5.5) is still valid for Lico= L'.iCOmax· If L'.iCOmax < L'.icomin' Eq. 

(5.5) is not valid for Lico= Lico max' use the eoylimit in Table II as the convergence cri-

terion. 

V.2.3.2 Fast Fourier transform of the input signal 

Table II can be used as a convergence criterion reference provided the SNR is 

known. But in actual situations, the input sine wave is unknown. The amplitude of the 

sine wave is unknown, so is the signal-to-noise ratio. 

Fast Fourier transform (FFT) provides a method to estimate the sine wave signal 

amplitude. Suppose a signal is y (t) = C 1 sincoot, where C 1 is the amplitude of the sine 

wave. y [ n ] is the sampled sequence of y ( t), 

y [n] = C 1sincoon = C 1cos (coon - ~ ). (5.7) 

By applying a rectangular window w [n] of length N1 toy [n ], we have the windowed 

sequence d [ n ] , 

d[n] = C 1w [n ]cos (coon - ~ ). (5.8) 

To obtain the Fourier transform of d [n ], we expand Eq. (5.8) in terms of complex 

exponentials, 

d [ n ] = C 1 w [ n ] cos (coon - ~ ) 

C1 J(-Il) . C1 -J(-Il) . = 2 w [n ]e 2 eJWon + 2 w [n ]e 2 e-1roon. (5.9) 

Taking the Fourier transform of d [n] and utilizing the frequency-shifting property in Eq. 

(5.9), we have 
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D(ei 00) = ~1 ej(-~)W(eJ(w-roo>) (5.10) 

+ ~1 e -JC-f)W(eJ(w+roo>). 

The maximum value M on the frequency magniturle response is M = ; 1 N1 . The 

sine wave signal amplitude is 

c 1 = 2M 
NJ 

(5.11) 

If the signal contains both sine wave and white noise, Eq. ( 5 .11) can still be used 

as a rough guess of the input sine wave magnitude. So our design of the new ANF will 

start by taking the FFT of the input signal, obtain an estimate of the SNR, then choose 

the closest SNR 0 in Table II to obtain the convergence criterion eoylimit. 

V.2.4. Design of criterion to reset initial conditions 

In Section V .2.2, we analyze that in order to make the algorithm converge, we 

need to reset the initial condition of the filter coefficient estimate a 1 [O] and the covari-

ance of the initial estimate P [O]. If the algorithm starts with a small fixed-value of p 

(p = 0.001) and a large P [0], within only a few recursions the filter coefficient will pass 

into region D or E on the error-performance surface. But once it passes into region D or 

E, it stays there without going further toward the true filter coefficient. This is because at 

that time P [t] is already too small to update a 1 fast enough to the true value. 

From Section V.2.3, we know that each value of filter coefficient corresponds to a 

value of noise-to-signal power eoy . Thus, at the time a 1 stays in region D or E with very 

small variations, eoy also changes slightly. 
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From Section V.2.3, we also know that by using FFT technique and Table II, one 

can always obtain a convergence criterion eoylimit . This is the value of the noise-to-

signal power at the desired filter coefficient. 

Let eoyvar reflect the variation of eoy and how fast eoy can move toward the 

convergent criterion eoylimit, in other words, eoyvar reflects how fast a 1 can converge 

to the true value. 

In our design, eoyvar is defined by 

k1-l 

eoyvar = i =1;_N 'eoydif f ( i ) 

Ni ' 
k1=6, 7, 8, ... 

where eoydif f (i) is calculated by 

eoydif f (i-1) = Eeoy (ti) - Eeoy (ti-1), i = 2, 3, 4, ... 

and Eeoy (ti ) is 

11.T ' 
i = 1, 2, 3, ... 

and N = 10, N 1 = 5. 

Suppose the algorithm can be said to have a slow convergent rate if after Nlimit 

number of recursions, it can not converge. Here Nlimit is an integer. Define 

eoycom (k, Nlimit) as 

eoycom (k, Nlimit) = eoy (t) + (Nlimit - k )eoyvar (5.12) 

where k denote the kth recursion. The eoyvar reflects the current variation of eoy; in 

other words, it reflects the current convergent rate. The eoycom (k, Nlimit) gives an esti-

mate that based on the current convergent rate, after Nlimit number of recursions, how 

small eoy can reach. For each recursion, compare eoycom (k, Nlimit) with eoylimit. If 

eoycom (k, Nlimit) > eoylimit, that means eoy can not reach the desired convergent cri-
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terion even after Nlimit number of recursions. Since if after Nlimit number of recursions, 

the algorithm can not converge, it can be considered as having a slow convergent rate 

and the algorithm needs to reset its initial conditions of a 1 [OJ and P [OJ since this is the 

time P [t J is already too small to update a 1 to the true value. 

The eoycom is an application dependent parameter. Its value depends on the 

definition of Nlimit. Different applications have different definition of slow convergent 

rate and Nlimit . 

V.3. A FAST ALGORITHM FOR ADAPTIVE NOTCH FILTERING 

Based on the designs in the previous sections, we present the following new ANF 

algorithm. Fig. 15 shows the flow chart of the new algorithm. 

The new algorithm starts from taking the FFT of the input signal, thus obtaining 

an estimate of the signal-to-noise ratio as explained in Section V.2.3.2. By using the SNR 

and the maximum allowable frequency error Liromax' we can obtain the convergence cri

terion eoylimit as described in Section V.2.3.1. We will compare the noise-to-signal 

power eoy with the convergent criterion eoylimit in each recursion. If it is less than eoy

limit, the algorithm converges. 

We set the initial estimate of filter coefficient to be a 1 [OJ = 0 and the initial 

covariance to be P [OJ = 100. Set p = 0.001. All the other initial conditions are set accord

ing to the original algorithm. A large initial covariance of P [O] = 100 makes the filter 

coefficient pass into region D or E on the error-performance surface only within a few 

recursions. A small fixed value of p improves the error-performance surface as explained 

in Section V .2.1. 
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Figure 15. New ANF algorithm flowchart 
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As the number of recursions increases, we check if eoy < 0.75 or not. If it is not 

less than 0.75 after M recursions, P [O] is increased by 10 and we start the algorithm 

again. This procedure will be repeated until a P [O] is found such that it can make 

eoy < 0.75 within M recursions. As discussed in Section V.2.2, a large P [O] can always 

makes the filter coefficient pass into region D or E of the error-performance surface only 

within a few recursions. In the algorithm we use M = 10. 

As soon as we detect eoy (k) < 0.75, we increase the value of p to be 0.8 and use 

the time-varying p scheme as proposed in the original algorithm. Since eoy (k) less than 

0.75 means the filter coefficient is near its true value (in region D or E on the perfor

mance surface), a larger value of p at this time can render faster convergent rate and nar

rower notch that can minimize the distortion to the wideband component of the input sig

nal by the filter. Near the true filter coefficient, the slope of the error-performance surface 

is steeper for p = 0.8 than for p = 0.001. An error-performance surface with a steeper 

slope will have a faster convergent rate if the filter coefficient is near the true value. The 

reason for using 0.75 as a comparison criterion instead of using a value less than 0.75 is 

because at the time eoy < 0.75, the filter coefficient a 1 is already near the true value; if p 

is not increased, the error-performance surface is still the one with p = 0.001. Notice 

from Fig. 12 that near the true filter coefficient, the slope of the performance surface with 

p = 0.001 is not as steep as that with p = 0.8. Thus, the convergent rate will be slower if p 

is not increased at this time. Results from experiments show that 0.75 is a good value to 

choose. In our design, we use eoy < 0.75 as a condition to change the value of p. 

For each recursion, eoy (k) is compared with the convergent criterion eoylimit. If 

eoy (k) < eoylimit, the algorithm converges; otherwise, we check whether it is the time 

to reset the initial conditions of a 1 [OJ and P [O] or not. 

As explained in Section V.2.4, we check the resetting condition by comparing 

eoycom (k, Nlimit) with eoylimit. If it is larger than eoylimit, that means according to 
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the current convergent rate, eoy can not reach the convergent criterion eoylimit even 

after Nlimit number of recursions because P [t] is already too small to update a 1 to the 

convergent value; this is the time to reset the initial conditions. 

Suppose at the s th recursion the initial conditions need to be reset, where s is an 

integer. The initial conditions are reset such that a 1[O]=a 1 [s] and P [0] = 2P [s- I]. 

P [s-I] is the value of P [t] at (s-l)th recursion. Since for each recursion, the condition 

eoycom (k, Nlimit) < eoylimit will be checked to decide whether the convergent rate is 

too slow or not, and s - I is the most recent recursion at which the convergent rate is still 

fast enough. So at the (s -1 )th recursion, P [ s - I] is still a proper covariance to update a 1. 

As at the s th recursion, the convergent rate is detected to be too slow because of the 

small P [s ], we will exponentially increase P [s] to be the doubled value of P [s-I]. The 

increased value is given to the new P [O]. At the time a 1 [O] and P [0] are reset, a 1 [s] and 

P [s-I] are saved as well. The reason for saving them is because we are not sure whether 

2P [s-I] is a proper increasement value for P [s] or not. This will be known after we 

rerun the algorithm and compare eoycom (k, Nlimit) with eoylimit. If it is larger than 

eoylimit, then that means using the current increasement value of P [O], eoy can not con

verge to the desired value eoylimit even after Nlimit recursions. 2P [s-I] is still too 

small to update a 1 to its convergent value. Thus, reset P [O] again to be the doubled value 

of the current P [0]. Now, P [O] = 4P [s-I]. We will use a 1[O]=a 1 [s] and P [O] to run 

the ANF algorithm again. The above steps will be repeated until a proper P [O] is found 

to make a 1 converge within Nlimit recursions. 

The advantage of the new ANF algorithm is its fast convergent rate. By redesign

ing the error-performance surface and resetting the initial conditions, the new algorithm 

will have better sensitivity to the presence of the input sine wave signal, faster conver

gent rate and more accurate results than the original ANF algorithm. Simulation results in 

the following section will show the superior performance of the new ANF algorithm over 
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the original ANF algorithm. 

V.4 SIMULATION RESULTS 

We tested the new ANF algorithm under different SNRs and sampling frequen

cies. Simulation results show that the new ANF algorithm has a faster convergent rate 

than the original ANF algorithm. The following are two representative examples of the 

simulation results. In each example, we will compare the convergent rate with the origi

nal ANF algorithm. In the examples, we use N1 = 128, Nw = 200, N = 10, N 1 = 5, 

M = 10, ~ w max = l.Oe -6, Nlimit = 2000. 

Example 1. This example is to show that for the convergence cases of the origi

nal ANF, under the same conditions, the new algorithm has a faster converge rate than 

the original algorithm. 

Assume the input signal is y(t) = C 1sin2rcf1t + v(t), where f 1 = O.lHZ and 

v (t) is a zero-mean unit-variance white Gaussian noise. The sampling frequency ratio is 

f sf! 1 = 19 .1. We test the algorithm under different SNRs. Results are shown in Table III. 

Table IV shows the results of the original ANF under the same conditions. 

We set the convergence condition to be that the frequency error is less than 

l .Oe -6. Table III and IV show that our new algorithm has a faster convergent rate for 

different SNRs than the original algorithm. Especially for low signal-to-noise ratio condi

tion, the convergent rate is dramatically improved compared to that of the original algo

rithm. For SNR = 10, it only takes 609 recursions for the new algorithm to converge 

while even after 2000 recursions, the original algorithm still has an frequency error of 

0.130931. 
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TABLE III 

NEW ANF RESULTS FORfslf I= 19.1 

SNR f/f1 f-error Number of recursions 

50 19.1 < 1.0e-6 315 

30 19.1 < l.Oe-6 390 

IO 19.l < 1.0e-6 609 

TABLE IV 

ORIGINAL ANF RESULTS FORfslf I= 19.1 

SNR f/f1 f-error Number of recursions 

50 19.1 < l.Oe-6 1880 

30 19.1 < l.Oe-6 1926 

IO 19.l > l.Oe-1 >2000 



55 

TABLE V 

NEW ANF RESULTS FORfslf 1=7.0 

SNR f/f1 f-error Number of recursions 

50 7.0 < l.Oe-6 217 

30 7.0 < l.Oe-6 226 

10 7.0 < l.Oe-6 226 

TABLE VI 

ORIGINAL ANF RESULTS FORfslf 1=7.0 

SNR fs/fl f-error Number of recursions 

50 7.0 < l.Oe-6 130,763 

30 7.0 > 2.0e-1 > le+4 

10 7.0 > 3.5e-l > le+6 

Example 2. This example is to show that for the slow or non-convergence cases 

of the original ANF, under the same conditions, the new algorithm not only converges 

but also has a fast convergent rate. 

The input signal is the same as that of the previous example, here the sampling 

ratio is f s If 1 = 7 .0. Table V and VI show the results under different SNRs and the com

parison with the original ANF under the same conditions. 

For high SNR, for example, SNR = 50, it takes 130,763 recursions for the original 

ANF to converge while it only take 217 recursions for the new ANF to converge. The 
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convergent rate of the new ANF is about 600 times faster than that of the original ANF. 

For lower SNR, for example, SNR = 10, it takes 226 recursions for the new algorithm to 

converge while for the original algorithm, even after 1,000,000 recursions, there still has 

an frequency error of 0.367996. From the experiments, the new algorithm can converge 

under a wide range of sampling frequency and signal-to-noise ratio. 

Results from simulation show that the fast convergent rate is the biggest advan

tage of the new algorithm. The new ANF algorithm has all the advantages of the original 

algorithm, in addition, it overcomes the disadvantages of the original algorithm. It has a 

very narrow and accurate notch. A representation plot is shown in Fig. 16 for SNR = 30 

andfslf 1=19.1. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

VI.1 SUMMARY AND CONCLUSIONS 

In the preceding chapters we have presented a new ANF algorithm. The algorithm 

is optimal in the sense that it can meet the desired properties of an adaptive notch filter. It 

has a fast convergent rate and accurate results. Four new designs that achieve these goals 

have been demonstrated: first, increasing the sensitivity of the algorithm by applying a 

wider notch (smaller p) at the start of the data processing; second, improving the conver

gent rate by properly resetting the initial filter coefficient estimate and the covariance of 

this estimate; third and fourth, achieving accurate results and fast convergent rate by 

developing a new convergence criterion and a criterion to reset the initial conditions. By 

applying the above new designs to the original algorithm, the convergent rate is greatly 

improved. From the results of this thesis, we present the following conclusions: 

First, the error-performance surface is an important key for the analysis and 

understanding of the performance of the ANF algorithm. As the ANF algorithm is of 

RPE type, it is based on local minimum search. Error-performance surface can provide 

direct information on the convergence behavior of the algorithm. 

Second, the algorithm is very sensitive to the initial conditions. If the initial esti

mate of the filter coefficient is far from the true value, the initial covariance needs to be 

large in order to ensure convergence; if the initial estimate of filter coefficient is close to 

the true value, the covariance should be small in order to ensure convergence. 

Finally, the filter output-to-input power (noise-to-signal power) reflects the fre-
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quency error. From the variation rate of the noise-to-signal power, we can predict the 

convergent rate, and thus decide whether it is necessary to reset the initial conditions of 

the algorithm or not, as well as when the algorithm converges. 

All of these aspects are important and necessary to design a RPE type of ANF 

algorithm with a fast convergent rate and accurate results. However, in this thesis we 

only concentrated on the study and design of the ANF algorithm applying one input sine 

wave. In the next section we suggest areas for future study on ANF applying multi input 

sme waves. 

VI.2 SUGGESTIONS FOR FUTURE WORK 

In this thesis we have demonstrated, in principal, a fast ANF algorithm for elim

inating one input sine wave plus white noise. In our research we have investigated all 

aspects that are important and necessary to design a fast ANF algorithm. But we have not 

applied the algorithm with multi input sine waves plus white noise yet. As a result of our 

efforts we see the following topics as those of greatest importance for ANF algorithm 

applying multi input sine waves. 

First, the error-performance surface is still an important key for understanding the 

algorithm behavior; second, a cascaded ANF structure can be investigated. Since by tak

ing the FFf of the input signals, we can obtain the frequency estimate and amplitude esti

mate of each sine wave signal. We can apply a one dimensional ANF to the input signal 

with the initial filter coefficient estimate close to the true filter coefficient of the input 

sine wave with the highest SNR and use a small initial covariance. After cancelling one 

sine wave, apply another one dimensional ANF to eliminate the input sine wave with the 

second highest SNR. This cascaded ANF process continues until all the input sine waves 

are eliminated. The cascaded structure provides an effective way to use multi-processors 

for real-time processing. With VLSI, this approach appears to be very promising. How-
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ever, if the input sine wave frequencies are very close to each other, how good this struc

ture can perform needs future work and investigation. 
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