
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

10-27-1994

An Analysis of Approaches to Efficient Hardware An Analysis of Approaches to Efficient Hardware

Realization of Image Compression Algorithms Realization of Image Compression Algorithms

Kamran Iravani
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Iravani, Kamran, "An Analysis of Approaches to Efficient Hardware Realization of Image Compression
Algorithms" (1994). Dissertations and Theses. Paper 4821.
https://doi.org/10.15760/etd.6697

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4821
https://doi.org/10.15760/etd.6697
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Kamran Iravani for the Master of Science in Electrical

and Computer Engineering were presented October 27, 1994, and accepted by the

thesis committee and the department.

COMMITTEE APPROVALS:

Dr. Michael Driscoll

ford Crain
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:

Dr. Rolf Schaumann, Chair
Department of Electrical Engineering

*

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

by on "/4114"/!!.U/ /99'5' /,A
I/

.. >

ABSTRACT

An abstract of the thesis of Kamran Iravani for the Master of Science in Electrical

and Computer Engineering presented October 27, 1994.

Title: An analysis of approaches to efficient hardware realization of image compres­

sion algorithms.

In this thesis an attempt has been made to develop a fast algorithm to compress

images. The Reed-Muller compression algorithm which was introduced by Reddy & Pai

[3] is fast, but the compression factor is too low when compared to the other methods.

In this thesis first research has been done to improve this method by generalizing the

Reed-Muller transform to the fixed polarity Reed-Muller form.

This thesis shows that the Fixed Polarity Reed-Muller transform does not improve

the compression factor enough to warrant its use as an image compression method.

The paper, by Reddy & Pai [3], on Reed-Muller image compression has been criti­

cized, and it was shown that some crucial errors in this paper make it impossible to evalu­

ate the quality and compression factors of their approach.

Finally a simple and fast method for image compression has been introduced. This

method has taken advantage of the high correlation between the adjacent pixels of an

image. If the matrix of pixel values of an image is divided into bit planes from the Most

2

Significant Bit (MSB) plane to the Least Significant Bit (LSB) plane, most of the adjacent

bits in the MSB planes (MSB, 2nd MSB, 3rd MSB and 4th MSB) are the same. Using

this fact a method has been developed by Xoring the adjacent lines of the MSBs planes

bit by bit, and Xoring the resulting planes bit by bit. It has been shown that this method

gives a much better compression factor, and can be realized by much simpler hardware

compared to Reed-Muller image compression method.

AN ANALYSIS OF APPROACHES TO EFFICIENT HARDWARE

REALIZATION OF IMAGE COMPRESSION ALGORITHMS

by
Kamran Iravani

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University

1994

TABLE OF CONTENTS

PAGE

ACKN'OWLEDGEMENTS • . . . • . . • • • . • . • • • • . • • • • • • • • • . . . • • iv

LIST OF FIGURES • • . . • . . • • . . • • . • . • • • . • • • . . • . • • • . • • • . . • • v

LIST OF TABLES

CHAPTERl
Introduction

CHAPTER 2

...

vii

1

An overview of image compression methods . • . • • • • . . • . • • • • 7
2.1 Introduction . 7
2.2 Image compression . 7

2.2.1 Mapper . 8
2.2.2 Quantizer . 10
2.2.3 Coder . 11

CHAPTER 3
Run - length Coding . • • • • • • • • • • • . . • • • • • . . • • • • • • • • . . • • • • 13

3.1 Introduction . 13
3.2 Huffman Algorithm . 14
3.3 Run-Length Coding . 17

3.3.1 One dimensional Run-Length Coding (RLC) . 17
3.3.2 Compression efficiency . 18
3.3.3 Relative Address Coding (RAC) . 20

3.3.3.1 Transition Elements . 21
3.3.3.2 Principle of the RAC method 22

3.3.4 Relative Element Address Designate (READ) . 24
3.3.4.1 Transition Elements . 25
3.3.4.2 Coding Modes . 25
3.3.4.3 The coding procedure . 27

CHAPTER4
JPEG Algorithm for lossy image compression • • • 29

4.1 Introduction . 29
4.2 Compression Algorithm . 29

4.2.1 The Discrete Cosine lfansform (DCT) . 29
4.2.2 Quantization . 34
4.2.3 Coding . 36

4.3 Reconstruction of the block at the receiver . 41

CHAPTER 5
Image compression using Haar Transform • • . . . • . • 45

5.1 Introduction . 45

5.2 Orthogonal Representation of Logical Functions 45
5.3 Haar 'Ifansform 49
5.4 Optimal Ordering of Arguments for Haar Expansions 54
5.5 Image Compression 60

CHAPTER 6
Image compression using Reed-Muller Transform •••••••• 61

6.1 Introduction .. . 61
6.2 The Galois field (2) algebra 61
6.3 Reed-Muller Transform 62
6.4 Generalized Reed-Muller 'Ifansform 65
6.5 Image compression using fixed polarity Reed-Muller 'Ifansform 65
6.6 Comments on the LSB planes 67
6.7 Permutation of the elements of the truth vector 68

CHAPTER 7
A critique of the Reddy & Pai approach to Reed-Muller
Image Compression • . • • • • • . • . • • • • . • 72

7 .1 The general method . 72
7 .2 The problem with step (b) . 73
7.3 Problems with step (c) . 74
7 .4 Conclusion . 78

CHAPTER 8
Row Xoring and Plane Xoring Algorithm • . • . • . • . . • . 79

8.1 Introduction . 79
8.2 Compression using Xoring the adjacent lines . 79
8.3 An improvement by Xoring the planes . 82

CHAPTER 9
Discussion of the experimental results • . . • . • • • . • • • • • • • • • • 86

9.1 Evaluation of image compression based on fixed polarity Reed-Muller
transform . 88

9.2 Examples . 90
9.3 Evaluation of image compression method based on Xoring the lines and the

planes . 98

CHAPTER 10
Conclusion 112

REFERENCES • • • . . . • • . • • . • • . • . • . . • . 113

Ill

ACKNOWLEDGEMENTS

I wish to express my appreciation to the individuals who gave assistance to this work.

First, I would like to thank my advisor and the chair of my thesis committee, Dr. Marek

Perkowski, who provided many suggestions vital to this research as well as guidance and

support. I would also like to thank the other members of my committee, Dr. Michael

Driscoll and Dr. Bradford Crain.

I want to express my gratitude to staff of the Electrical Engineering department at

Portland State University for their help and support all the time.

My appreciation is extended to my friends, especially Andisheh Sarabi, Fardin An­

sari and Stoney Vintson, for their help throughout the completion of this thesis.

Finally, I wish to express my appreciation to my family for their support during all

stages of my life.

Portland, Oregon

October 1994

Kamran Iravani

LIST OF FIGURES

FIGURE PAGE

2.1 The block diagram the process of image compression. 7

2.2 The effect of DCT on the input matrix. 8

2.3 Function of the mapper when Haar transform is used 10

2.4 The function for a type of quantizer. 11

3.1 An example of five symboles..................................... 14

3.2 The first step to code the symbols. 15

3.3 The first bit assignment to D and E. 16

3.4 The second step to code the symbols. 17

3.5 The final Huffman tree for the symbols . 17

3.6 The Huffman codes for the symbols. 17

3.7 A sample of 1and0 runs . 19

3.8 STHs and ETHs in a sample of 0 and 1 runs . 20

3.9 Transition elements in a part of a plane matrix . 20

3.10 Examples of Pass Mode, Vertical Mode and Horizontal Mode. 23

4.1 The block diagram of JPEG process for lossy compression. 27

4.2 An example of 8 X 8 matrix of pixel values . 29

4.3 DCT matrix of the example . 29

4.4 A sample of a quantization matrix. 32

4.5 Quantized matrix of the example . 33

4.6 Determination of the DC component of the new matrix 34

4.7 Moving through the matrix in zig-zag form. 35

4.8 Reconstructed Quantized Matrix . 38

4.9 Reconstructed DCT Matrix . 39

4.10 Reconstructed Pixel Matrix . 39

5.1 A combinational circuit in general. 41

5.2 The step function of the example. 43

5.3 The Haar function for m=3 . 45

6.1 The number of ls in b is less, but the number of transition elements

is more . 61

vi

7.1 An example showing contradiction in Reddy & Pai coding 67

9.1 Original image of the lady (8 bits per pixel) . 81

9.2 Compressed image of the lady (2.5 bits per pixel) 82

9.3 Original image of the house (8 bits per pixel) . 83

9.4 Compressed image of the house (2.5 bits per pixel) 84

9.5 Original image of the rose (8 bits per pixel). 85

9.6 Compressed image of the rose (2.5 bits per pixel) 86

LIST OF TABLES

TABLE PAGE

3.1 Sign assignment for relative distances . 24

4.1 The size of different amplitudes . 40

5.1 Truth table of the function. 47

5.2 The results ofthe first steps of the process. 56

5.3 The results of the next steps of the process. 58

7.1 Codes used by Reddy & Pai for relative distances 75

8.1 Five cases which occurs most of the time (after Xoring the lines) 83

8.2 The result from Fig. 8.1 after Xoring the planes..................... 84

9.1 The comparison of fixed polarity Reed-Muller compression and the

compression using Xoring the lines . 87

9.2 The effect of Xoring the planes after Xoring the lines................ 91

9 .3 Huffman codes used for the runs in the MSB and the 2nd MSB

planes after Xoring the lines. 103

9 .4 Huffman codes used for the runs in the 3rd MSB and the 4th MSB

planes after Xoring the lines . 110

Chapter 1

Introduction

In recent decades there has been a great interest in image data compression. This is

due to the fact that digital representation of the images usually requires a large number

of bits, while in many applications it is desired to represent the image with a fewer number

of bits.

Depending on the applications, different compression methods have been developed.

For example in some applications it is important not to lose any information while com­

pressing the images. In other words the reconstructed image is desired to be exactly the

same as the original one. In other applications it is desirable to compress the image as

much as possible. It is only necessary that the quality of the image be good enough for

visual or machine analysis, and loss of some in formation about the image is acceptable.

Based on these applications there are two general categories of image compression

techniques, lossy image compression and lossless image compression. In lossy image

compression the reconstructed image is not exactly the same as the original but the com­

pression factor is high, while in lossless image compression the reconstructed image is

exactly the same as the original one but the compression ratio is not as high. Therefore

there is going to be a trade off between the compression factor and the quality of the

image.

Another important factor in image compression techniques is the speed of the process.

For example in some applications it is important for the process to be fast, while in other

2

applications it is only required that the image is compressed regardless of how fast it is

done. The speed of the process is directly related to the number of operations needed for

the compression, and also to the hardware realization of the compressor. Sometimes to

obtain a good compression factor the circuit has to do many operations which makes the

process slow.

Therefore to choose a compression technique for a specific type of images, four im­

portant factors are considered: The compression factor, the quality of the image, the speed

of the process, and the cost of the technique.

For example, NASA has used Differential Encoding[11] to monitor the surface of the

earth. Differential Encoding is a lossless image compression technique which gives a

good compression factor for these type of images. This method is based on calculating

the difference between the pixel values of adjacent lines in the image.

Run-Length Coding (12] is another lossless method used to compress images. In this

method each sequence of the pixel values is described by two numbers. One number

shows the value of pixels and the other number shows the run-length. This method is

specially used for the images that contain only two different values. For example Run­

Length Coding is implemented for flood maps where the presence of water is represented

by white and the absence of water is represented by black..

In the early 1980s a joint ISO/CCITT committee known as JPEG (Joint Photographic

Experts Group) (15],[16] began working on a new method of image compression that

would greatly outperform the more conventional compression techniques. This method

has become the first international compression standard for continuous-tone still images.

This standard supports a wide variety of applications. The JPEG specification consists

3

of several parts including the specification for both lossless and lossy compression. For

lossless compression the Predicting/ Adaptive coding technique is used. In this method

some information about upcoming pixels is predicted based on the previous pixels seen.

The most interesting part of the JPEG specification is the technique for lossy compres­

sion. This method is based on the Discrete Cosine Transform (DC1), and for continuous­

tone images, it gives a high compression factor with good quality. The only disadvantage

of this method is that the process is slow because it requires a large number of operations.

To obtain a fast method of compression, research has been done on compression using

the Haar Transform [2]. Karpovsky [6] has shown that since expansion coefficients of

logical functions in Haar series depend on the local behavior of this function, such an or­

der of arguments can be found that gives the minimum number of non-vanishing coeffi­

cients. This property has been used to compress the image. This method is a lossless

method but the compression factor is not very high. Although the process requires less

number of operations compared to the JPEG algorithm, this method did not become popu­

lar because it has a low compression factor.

Another approach to obtain a fast method for image compression was made by Reddy

& Pai [3] who used the Reed-Muller transform for this purpose. In this method the pixel

matrix of image is divided into eight matrices from the Most Significant Bit (MSB) plane

to Least Significant Bit (LSB) plane, and on each plane the Reed-Muller transform is per­

formed, and next the run-length coding [l],[4] is used. Although this method is fast it

does not give a good compression factor. The published paper by Reddy & Pai contains

several mistakes which make their results and conclusions unacceptable.

4

It was the purpose of this thesis to improve the Reed-Muller image compression by

using the fixed polarity Reed-Muller transform [7]-[10], [11], which is a more general

case. It was shown that the result is still poor and a good compression factor cannot be

obtained. Solely for the purpose of comparison, a new method was introduced which is

very simple and very fast with a much higher compression factor compared to the Reed­

Muller transform. This method has taken advantage of the correlation between the adja­

cent lines. This method is based upon Xoring the lines and planes, and gives a good com­

pression factor.

In this thesis some of the methods, from above, have been investigated, and the main

goal has been to develop a fast method with reasonable quality and good compression fac­

tor.

In chapter 2, image compression methods in general have been explained and all the

steps involved have been overviewed in more detail. These steps are Mapping, Quantiz­

ing and Coding for lossy compression, but for lossless compression they are just Mapping

and Coding. Because, as it will be explained, the quantization step causes an information

loss.

In chapter 3, Run-Length Coding has been explained in detail. This method of coding

is used in most of the image compression techniques. Since all of these coding methods

use Huffman coding [5], the creation of Huffman codes is explained first. Then one di­

mensional Run-Length Coding (RLC) [1] and two dimensional Run-Length Coding

which consists of Relative Address Coding (RAC) [4] and Relative Element Address

Designate (READ) [1] are explained. Two dimensional coding techniques are usually

more efficient than one dimensional coding, but they are more complicated.

5

In chapter 4, the JPEG algorithm for lossy compression has been explained in detail.

In this chapter the Discrete Cosine Transform (DCT) has been explained and it has been

shown that the compression based on DCT requires a large number of operations, al­

though the compression factor is very good.

In chapter 5, the compression based on Haar transform has been investigated. In this

chapter the algorithm to find the best order of arguments to give the minimum number

of nonvanishing coefficients has been explained step by step. Then image compression

using this technique is presented.

In chapter 6, compression based on Reed-Muller transform is discussed. First posi­

tive polarity Reed-Muller and fixed polarity Reed-Muller expansion of a Boolean func­

tion is explained. Next, the algorithm for compressing image by this transform is investi­

gated. Finally, comments on the local behavior of Reed-Muller transform and on the

possibility of finding a good permutation of input vector which gives the minimum num­

ber of nonvanishing coefficients, are made.

In chapter 7, a discussion on the paper published by Reddy & Pai [3] on Reed-Muller

image compression is made, and the mistakes in this paper are exposed and analyzed. The

mistakes are in both transformation and coding which makes the results of this paper total­

ly unacceptable.

In chapter 8, a new compression method which is realized by Xoring the lines and

planes is explained, and the reasons for having a relatively good compression factor are

given.

In chapter 9, the experimental results of both image compression methods, the fixed

polarity Reed-Muller transform, and the Xoring of lines and planes, are presented. These

6

results show that the latter method is a better one from the point of view of the quickness,

hardware realization, and compression factor. In this method the compression factor in

some planes is more than twice as high as that of the former method. The compression

has been applied three different natural pictures which are continuous-tone still images.

In chapter 10, the conclusion of this thesis is given.

Chapter 2

An Overview of Image Compression Methods

2.1. Introduction

In this chapter image compression methods are explained in general, and all the steps

involved in the process of compressing an image are discussed. This provides the general

background needed for the following chapters about image compression techniques.

2.2. Image compression

In general, an image compression technique consists of three successive steps: Map-

ping, Quantizing and Coding, which can be modelled by a block diagram from Fig. 2.1.

In this diagram the matrix of pixel values is shown as a vector form (one dimensional

array), while it can be also two-dimensional.

Input Vector Transformed Quantized Binary
(Pixel Values of image) Vector Vector Code Words

-bol

m ['.'.]
b1

Lbnj
Mapper I I Quantizer I I Coder I

Fig. 2.1 The block diagram of the process of image compression

8

In the following, each of these steps will be briefly described:

2.2.1 Mapper

A mapper gets a set of image elements (pixel values) as input data and transforms

it into another set of values. Depending on the type of the transformation the characteris-

tics of the new set are different.

Some Mappers perform transformations which cause the useful information of the in-

put data to be concentrated into a small number of samples. The Fourier transform and

the Cosine transform are among those transforms used in these types of Mappers. For

example in the JPEG compression method, which uses the Discrete Cosine transform

(DCT) [16], the mapper causes the more useful information of the input matrix to be con-

centrated in the upper left corner of the transformed matrix (Fig. 2.2).

A subset of

Image elements

i.e.

(
A matrix of)

Pixel Values

More
Useful
Info. Less

Useful

Information

Mapper(DC1) 11-----------
Fig. 2.2 The effect of DCT on the input matrix

If the less useful information in the output matrix is discarded, a high compression

factor can be obtained.

9

In these transforms usually every single element of the output vector (matrix) depends

on all elements of the input vector. Consequently the process is quite slow and also the

hardware for these Mappers is somehow complicated.

Some other mappers transform the input data in such a way that the redundant in-

formation in the output is decreased. The transform used in the differential encoding

method is a good example of this type of Mapper. In these transforms usually each ele-

ment of the output vector depends on a subset of the input elements.

A linear transform can be represented in general as in Eq. (2.1)

bo I [m11

m12 b1 m21

bnl mm1

T][::]
mmn an

(2.1)

In black and white images the elements of the input vector [ac. a1 , • •• an]T are usually

represented by 8 bits (one byte). In some methods the input matrix is divided into 8 ma-

trices corresponding to bit planes from the most significant bit plane to the least signifi-

cant bit plane, and the transformation is performed on each bit plane separately. These

transformations are binary, and they usually cause the number of nonzero elements to be

decreased. The Reed-Muller transform belongs to this group. In this method the map-

ping process is usually performed in two steps. First, a permutation matrix is defined

to permute the elements of the input bit planes, then the permuted data is transformed by

the transformation matrix. In other methods such as the Haar transform, these two steps

are also performed but there is no need for dividing the matrix into binary plane matrices

10

(Fig. 2.3). In this method the permutation is done in such a way that the transformation

gives the minimum number of nonzero elements.

Mapper

Input Vector Permutation Haar output vector
Transform

Fig. 2.3 Function of the mapper when Haar transform is used

An important point about the Mappers is that the Mapper operation is reversible. In

other words the input vector can be reconstructed if the output vector is known. This

comes from the fact that there is not any information loss in the operation.

2.2.2. Quantizer

In general the function of a quantizer is to take some data as the input, and generate

corresponding data at the output, but the output data can have just a limited number of

possible values. An example of a quantizer can be a function that generates the integer

part of a real number. As it is shown in Fig. 2.4, the x variable can have any real number

but the function y can have just integer numbers whose values are smaller and closest to

x, i.e. y=[x].

It is obvious that the operation of a quantizer is not reversible, in other words knowing

the output, the input cannot be reconstructed. Therefore, in the case when error-free

image compression techniques are required, a quantizer cannot be used. When some error

y

5

4

3

2

1

1 2 3 4 5 6

Fig. 2.4 The function for a type of quantizer

11

x

in the reconstructed image is tolerable, quantizing the data is an excellent technique to

receive a high compression factor.

It is important to note that for some methods such as the JPEG algorithm, quantization

of the data must be performed, otherwise no compression can be obtained. For these

methods the mappers perform transformation in such a way that quantization may be ex­

ploited well.

For other methods, quantization can be utilized to obtain a better compression factor,

although without quantization the compression factor still remains higher than one.

2.2.3. Coder

A coder in an image compression system takes data from the quantizer (or from the

mapper when there is no any quantizer in the system) and generates the codewords which

usually contain a lower number of bits to represent an image.

12

The operation of a coder is reversible because it assigns a unique codeword C; to each

input value q; , so that knowing the output, the input value can be reconstructed.

Depending on the method of compression, different types of coding can be used. In

some methods a specific codeword is assigned to each input value, but the length of the

codewords on the average is less than the length of the input values. In chapter 3, Run­

Length coding, which is the most common used type of coding used for image compres­

sion, will be explained.

Chapter 3

Run-Length Coding

3.1. Introduction

Run-length coding is a data compression method which is used to code any type of

repeating character sequences. This method of coding has been widely used in several

fields such as facsimile communication and image compression.

As mentioned before, in Reed-Muller image compression each picture matrix is con­

verted to eight bit plane matrices which consist of two different values of elements, i.e.

0 and 1. Therefore to code the data of a bit plane matrix, methods similar to those used

for facsimile communication can be used, because the facsimile signals also consist of

two different elements (fhe facsimile signals obtained by scanning the document com­

prise just black and white picture elements). We can assume white as 0 and black as 1.

In this chapter, three methods of Run-Length coding used in facsimile communication

and image compression are explained:

1) Conventional Run-Length Coding (RLC)

2) Relative Address Coding (RAC)

3) Relative Element Address Designate (READ)

In each of the above methods there is a need to find Huffman codes for different 0

(white) runs or 1 (black) runs. First the algorithm to generate Huffman codes is ex­

plained.

14

3.2. Huffman Algorithm

Huffman coding is one of the well-known methods for effectively coding symbols.

Huffman coding creates variable length codes that have an integral number of bits, and

symbols with higher probability receive shorter codes. Decoding a stream of Huffman

codes is generally done by following a binary decoder tree.

Using an example this algorithm is shown clearly: assume there are 5 symbols (A,

B, C, D, E) in our stream with different frequencies, for example we have 16 As, 8 Bs,

6 Cs, 6 Ds and 5 Es (Fig. 3.1)

16

A

8

B

6

c

6

D

5

E

Fig. 3.1 Example of five symbols

Now using the following rules we find the Huffman codes for the symbols:

a) The two free nodes with the lowest weights are located. In this example these are

E and D with weights of 5 and 6 (the tie between C and D was broken arbitrarily and it

will not affect the compression ratio).

b) A parent node for these nodes is created. It is assigned a weight equal to the sum

of the two child nodes (Fig. 3.2).

6
D

11

5
E

Fig. 3 .2 The first step to code the symbols

15

c) The parent is added to the list of free nodes, and the two child nodes are removed

from the list Therefore in our example, E and D are removed from the free list

d) One of the child nodes is designated as the path taken from the parent node when

decoding a 0 bit, the other is arbitrarily set to the 1 bit. In our example D is then assigned

to the 0 branch of the parent node and Eis assigned to the 1 branch (Fig. 3.3). These two

bits will be the LSB s of the resulting codes.

11

O I 1

6 5
D E

Fig. 3.3 the first bit assignment to D and E

e) The previous steps are repeated until only one free node is left. This free node is

designated to become the root of the tree.

On the next pass through the list of free nodes, the B and C nodes are then taken as

the two with the lowest weights. These are then attached to a new parent node, and the

16

parent node is assigned a weight of 14, and B and C are removed from the free node list.

At this point the tree is as shown in Fig. 3.4.

On the next pass the two nodes with the lowest weights are the parent nodes for B/C

and DIE pairs. These are tied together with a new parent node which is assigned a weight

of25.

Continuing the steps the final result will be as in Fig. 3.5.

16
A

1

8
B

ROOT

0
14

0

1

0

6
c

25

1

6
D

0

Fig. 3.5 The final Huffman tree for the symbols

11
1

5
E

From the tree the Huffman codes for our symbols will be as in Fig. 3.6.

A: 1

B: 000

C: 001

D: 010

E: 011

Fig. 3.6 The Huffman codes for the symbols

3.3. Run-Length Coding

In general there are two methods of Run-Length Coding:

1) One dimensional coding

2) Two dimensional coding

17

The conventional Run-Length Coding (RLC) is a one-dimensional coding method,

while the Relative Address Coding (RAC) and Relative Element Address Designate are

two-dimensional coding methods. In the following all three methods will be discussed:

3.3.1. One dimensional Run-Length Coding (RLC)

In this method each matrix is regarded as a sequence of alternating independent runs

of 0 (white) and 1 (black) elements. So a table can be formed that consists of two col­

umns, one containing all the 1 (black) run-length values and the other containing all the

0 (white) run-length values. Then the probability of occurrence of each run-length can

be calculated from the table. Now based on these probabilities, Huffman coding can be

performed. It can be shown that Huffman's procedure [x] is the optimum method of

constructing a uniquely decodable and instantaneous code which has the smallest average

code word length for a given independent run.

As an example, assume Fig. 3. 7 shows a part of a facsimile signal from a document.

The RLC code from point A to point B can be computed as follows:

18

A B

t ' 100000000000000111111110000001

Fig. 3.7 A sample of 1and0 runs

If we assume that the value 0 represents white elements and that the value 1 represents

black elements, from A to B there are: a run of 14 white elements, then a run of 8 black

elements, and then a run of 6 white elements. The Huffman code table is used for the

facsimile signals which has been created based on the probability of the occurrence of

different white and black runs in a great number of different documents. According to

this table, the code for 14 white run is 110100, for 8 black run it is 10011 and for 6 white

run it is 1110. So the resulting Run-Length code for the string from A to B is

110100100111110.

3.3.2. Compression efficiency

If each zero run-length value is shown by r 0 and the probability of its occurrence

by P(r0) the average zero run-length value (r0) can be calculated by Eq. (3.1):

n

Fo = L ro.P(ro) (3.1)

r 0 =0

where n is the largest value of r0 •

19

The average amount of information in bits for each Zero Run is given by the entropy

Ho, as in Eq. (3.2).

n

H 0 = - I P(r0). log2P(r0) (3.2)
r 0 =0

In fact Ho is the minimum average number of bits needed to code r 0 s.

Similar equations can be written for the average one (white) run-length value r 1 and

the entropy of the one runs Hi.

To find the maximum theoretical compression factor Qmax for a given set of run-

length values, we see that the average number of bits in a one-run is i 1 and in a zero-run

is f 0, while we need H 1 number of bits to code r 1 and Ho number of bits to code r0 ,

so the maximum compression factor can be calculated by Eq. (3.3):

(3. 3)

In Eq. (3.2), - Iog2P(r0) shows the number of bits required to encode run-

length r 0 , and is not necessarily an integer number. Huffman coding gives a way of

rounding this number to a closed integer value. Because of this, if n(r 0) is the length

of the code word representing the zero run-length r 0 , the average number of bits repre-

sen ting the zero runs will be equal to or more than Ho and less than HO+ 1 as stated in Eq.

(3.4):

20

n

H 0 s L n(r0).P(r0) < H 0 + 1 (3.4)
r 1 =0

Therefore the maximum compression factor as in Eq. (3.3) cannot be obtained.

Another important issue in facsimile communication or in an image compression tech-

nique is that the Huffman codes are not defined specifically for every single document

or matrix. In fact Huffman codes are defined based on statistics averaged over many typi-

cal documents. So these codes usually are not optimum for a specific matrix, and this

causes the compression factor to be decreased.

3.3.3. Relative Address Coding (RAC)

Relative Address Coding (RAC) is a two dimensional coding method which was

first used to code facsimile signals. In conventional Run Length Coding (RLC) the

address of every kind of transition element is represented by the distance from the preced-

ing transition element in the same line in terms of the number of picture elements, making

a good use of the statistical intra-line correlation. Relative Address Coding not only has

taken advantage of the intra-line correlation but also exploited the inter-line correlation

of the signals of the picture. So RAC can cause a remarkable reduction of redundant in-

formation in the data. Since each matrix plane consists of two kinds of information (0& 1)

and the information of each line is highly correlated to that of its adjacent lines, RAC can

be a very useful coding method for this type of case. Before explaining the principle of

RAC, some important terms need to be defined.

21

3.3.3.1. Transition Elements

As it has been described before, to reconstruct a matrix plane at the receiving end, it

is sufficient to encode and transmit the addresses of only the transition elements (a transi­

tion element is the element which is different from its previous element in the same line).

In RAC the transition elements are classified into three types, as shown in Fig. 3.8.

n

n+l

n+2

STH ---ETH

1 0 0 ...

\ \
.1111110011111 ...

Fig. 3.8 STHs and ETHs in a sample of 0 and 1 runs

I) Starting Transition element of Head run (STH):

A head run is a One Run or a Zero Run that there exists no elements on the preceding

line which are of the same type and are adjacent to the run. An STH is the first element

of a head run.

For example Fig. 3.8 shows a part of a plane matrix. In this figure in Row number

n+ 1 there are 3 Zero Runs and 2 One Runs. The first One Run of this line is a head run

because a 1 does not exist in line number n, i.e. preceding line, adjacent to this run. There-

22

fore, the first element of this run is an STH. While the other runs in this line are not head

run. Another head run is the Zero Run in Row number n+2, because there is no zero in

Row number n+ 1 adjacent to this run.

II) Ending Transition element of a Head run (ETH):

An ETH is the transition element next to the head run. For example in Fig. 3.6 we

have 2 of ETHs because we have 2 head runs.

III) Displacement Transition element (DTE):

A DTE is a transition element which is neither STH nor ETH. For example in Fig.

3.8 there are 2 STHs, 2 ETHs and the rest of the transition elements are DTEs.

3.3.3.2. Principles of the RAC method

Fig. 3.9 shows a part of a plane ~ Using this example the principle of RAC

method will be shown. ~~

c ·~ .• ~

t ~~ ~~~. t
. 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

... 1100000001111000000

4 ~ ~
A B D

Fig. 3.9 Transition elenl ~!1 a part of a plane matrix

23

In Fig. 3.9 the transition element Bis shown. In regard to the transition element B,

two reference elements are selected according to the following rules:

a) The first reference element A is the preceding transition element on the same line

to the transition element B. In the case that the first reference element defined above does

not exist, the first element on the line is to be the first reference element.

b) The second reference element C is the transition element that has the same direc­

tion of transition as the transition element B and is the nearest to the first reference element

A on its right side. In the case that the element defined above does not exist, the second

reference element is the imaginary element next to the last element on the preceding line.

The address of transition element B is encoded by the distance from the standard ele­

ment that is selected between the two reference elements A and B according to the follow­

ing rules:

a) If the transition element is an STH, the standard element is A.

b) If the transition element is an ETH, the standard element is A.

c) If the transition element is a DTE, in the case that the distance from the first refer­

ence element A to the transition element B is more than one element and that the first ref­

erence element A is nearer to B than the second reference element C, the first reference

element A is selected to be the standard element, and the distance is expressed by the num­

ber without sign. In all other cases, the second reference element C is selected to be the

standard element, and the distance from C to B is expressed by the number with "+" if

C is just upon or to the left of B, and is expressed by the number with"-" if C is to the

24

right of B. Table 3.1 shows the summary of this sign assignments.

position of the reference element in sign
relation to the transition element

On the same line No sign

On the preceding line, just upon or left +

On the preceding line, right -

Table 3.1 Sign assignment for relative distances

For example in Fig. 3.9 in the case of coding the transition element B, since the dis-

tance AB(= 7) is greater than the distance BC(= 1), C is selected to be the standard element,

and since C is on the right of B the address of B is encoded with a"-" sign. As a result

the number used for the address of Bis "-1". In a similar manner it can be shown that

the address of transition element D will be "4" because the distance DB(=4) is smaller

than DE(=5) and Bis also on the same line as D, so there is no sign for that.

To encode the address of each transition element Huffman codes can be used. By

finding the probability of the occurrence of every distance to be coded by computer simu-

lation, it is possible to find the best Huffman code for this method.

3.3.4. Relative element address designate (READ)

READ is a two dimensional coding technique which is the most efficient method to

code the facsimile signals. In this section this method is explained and later its efficiency

for bit plane matrices will be discussed .

3.3.4.1. Transition elements

25

In READ, the transition elements are classified into five types. Taking the example

given in Fig. 3.10, these elements are explained.

3o: The transition element on the coding line whose position is defined by the pre­

vious coding mode which is described later. This element is the reference element.

31: The next transition element on the coding line to the right of ao.

3 2: The next transition element on the coding line to the right of 31.

b1: The first transition element on the reference line to the right of ao whose color is

opposite to ao.

b1: The next transition element on the reference line to the right of b1.

If any of the above coding elements are not detected at any time during the coding of

the line, then they are set on an imaginary element positioned just after the last actual ele­

ment.

4.3.4.2. Coding Modes

There are three kinds of coding modes defined for READ:

1) Pass Mode: As shown in Fig. 3.10 (a), the state where b2 lies to the left of 3 1 is defined

as the Pass Mode. However when the position of b2 is just upon 31, it is not regarded as

the Pass Mode.

2)Vertic31 Mode: In this mode the position of a1 is coded relative to the position of b1.

The relative distance a1b1 is equal to or less than three elements, so it can assume one of

26

b1 b2

t t
... 110000011100000000011110 .. .

100000000000000001111110 .. .

~ ~ ~
ao a1 a2

(a) Pass Mode

b1 b2

t t
110000011100000000011110 .. .

100000000000000001111110 .. .

~ ~ ~
ao ai a2

(b) Vertical Mode

b1 b2

t t
110000011100000000000110 .. .

100000000000000001111110 .. .

~ ~ ~
ao a1 a2

(c) Horizontal Mode

Fig. 3.10 Examples of Pass Mode, Vertical Mode and Horizontal Mode

the seven values V(O), Vr(l), Vr(2), Vr(3), V1(l), V1(2), V1(3) each of which is repre-

sented by a separate codeword. The subscripts r and I indicate that a1 is to the right or

27

left of b 1 respectively. The number in brackets shows the value of the distance 81b1. For

example in Fig. 3.10 (b) a1b1 is coded by codeword used for V1(2).

3)Horizontal Mode: If the Pass mode and the Vertical mode cannot be used to code

the position of 8i, then the Horizontal mode coding is used, Fig. 3.10 (c). In this method

the run-lengths aoa1 and 8182 are coded.

3.3.4.3. The coding procedure

When one of the Pass, Vertical, and Horizontal modes is detected, codes based on the

following are generated.

-If Pass Mode is detected, i.e. b2 is detected before 8i, then it is coded by pass mode

code '0001 '. Then the reference element ao is set on the element just below b2 as the new

starting element for the next coding.

-If Pass Mode is not detected, two cases are possible:

8) If 181 b 11 ~ 3 then vertical mode coding is selected, and ao is set on the position

of 8 1 for the next coding procedure. The codes for this case are the following :

V(O): 1

Vr(l): 011

Vr(2): 000011

Vr(3): 0000011

V1(l): 010

V1(2): 000010

V1(3): 0000010

28

b) If 131 b 11 > 3 then Horizontal mode coding is selected, and positions of 31 and 32

are coded. 32is then regarded as the new position of the reference element ao. The code­

word to code 31 and 32 is found from the term H+M(3o31)+M(3132). In this term H is

coded as '001 ',and M(aoa1) and M(3132) are defined by Huffman code tables that have

been generated based on the probability of the occurrence of those runs in the picture.

An important point about two-dimensional coding methods is that since the coding

of each transition element depends on the elements in the preceding line, if an error occurs

in one place it could cause errors in the following lines. In order to prevent this undesir­

able situation, a mixing of two-dimensional coding and one dimensional coding is used.

Usually after one line is coded one-dimensionally, K-1 successive lines are coded two­

dimensionally. In READ coding, the value of K is usually 2 or 4.

29

Chapter 4

JPEG Algorithm for lossy image compression

4.1. Introduction

In this chapter the steps involved in the JPEG algorithm (15],[16] for lossy image

compression are explained. This method is the best existing compression method for con­

tinuous-tone still images from the point of view of compression and quality factors. But

this process requires a large number of summations and multiplications which make the

process slow. Therefore if the speed is not important for us this method is the best.

4.2. Compression Algorithm

In JPEG algorithm for lossy image compression each image is considered as a matrix

of pixel values. Then this matrix is divided to submatrices of size 8 X 8, and on each sub­

matrix the steps shown in Fig. 4.1 are applied.

4.2.1. The Discrete Cosine Transform (DCT):

The key to the compression process based on JPEG is the Discrete Cosine Transform

(DCT). The DCT is one of the mathematical transforms that includes Fast Fourier Trans­

form (FFT). The basic operation of these transforms is to take a signal and transform

it from one type of representation into another. In an electric signal each point of the sig­

nal shows the amplitude (e.g. the voltage level) of the signal in time domain. The FFT

30

8x8 DCT compressed__
Quantization

......._
Coding

......._
~ ~ ~ ~

Blocks Transform data
A~

A~

table table

specifications specifications

Fig. 4.1 The block diagram of JPEG process for lossy compression

transforms this signal into a set of frequency values that describes exactly the same signal.

The DCT is closely related to the Fourier Transform. It takes a set of points from the

spatial domain and transforms them into an identical representation in the frequency do-

main. In our case the signal is a graphical image, so instead of a two-dimensional signal

plotted on the X and Y axis, the DCT will operate on a three dimensional signal. In fact,

in this case X and Y axes are the two dimensions of the screen and the amplitude (Z axis)

of the signal is the value of the pixel at a particular point on the screen. So the value on

the Z axis denotes the color on the screen. In the case of black and white images the value

of each pixel can vary in the range of 0 to 255 because we assign 8 bits (1 byte) for each

pixel, and in the case of color images we assign 8 bits for each of red, green and blue

colors so 24 bits are assigned for each pixel.

31

The formula for the two dimensional DCT is as in Eq. (4.1).

N-lN-l

DCT(i,J) = JNC(i).C(J) I I Pixel(x,y).cos (2.x ~I)ill cos (2y + I)jll (4.1 l
x=Oy=O 2N

1
C(x) = /2

C(x) = 1

if x = 0

if x > 0

Where Pixel(x,y) represents the amplitude (intensity) of the pixel at point (x,y). In

other words Pixel(x,y) is the value of the element in the xth column and yth row of the

8 X 8 block (Pixel matrix). Eq. (4.1) is the mathematical definition of the N X N DCT.

Since in the case of JPEG each block is 8x8, the equation will be as in Eq. (4.2):

7 7

DCT(i,j) = iC(i).C(J) I I Pixef(x,y).cos (2x :6l)ill cos (2y + l)}II (4.2)

x=Oy=O 16

1 C(x) = f2

C(x) = 1

if x = 0

lf x > 0

As an example if the input consists of an 8 X 8 matrix of pixel values as in Fig. 4.2,

the DCT matrix using equation (4.2) will be as in Fig. 4.3.

32

139 144 149 153 155 155 155 155

144 151 153 156 159 156 156 156

150 155 160 163 158 156 156 156

159 161 162 160 160 159 159 159
Pixel= 1

159 160 161 162 162 155 155 155

161 161 161 161 160 157 157 157

162 162 161 163 162 157 157 157

162 162 161 161 163 158 158 158
L

Fig. 4.2 An example of 8 x 8 matrix of pixel values

235.6 - 1 - 12.1 - 5.2 2.1 - 1.7 - 2.7 1.3

- 22.6 - 17.5 - 6.2 - 3.2 - 2.9 - 0.1 0.4 - 1.2

- 10.9 - 9.3 - 1.6 1.5 0.2 - 0.9 - 0.6 - 0.1

- 7.1 - 1.9 0.2 1.5 0.9 - 0.1 0 0.3
DCTpixel = I - 0.6 - 0.8 1.5 1.6 - 0.1 - 0.7 0.6 1.3

1.8 - 0.2 1.6 - 0.3 - 0.8 1.5 1.0 - 1.0

- 1.3 - 0.4 - 0.3 - 1.5 - 0.5 1.7 1.1 - 0.8

- 2.6 1.6 - 3.8 - 1.8 1.9 1.2 - 0.6 - 0.4

Fig. 4.3 DCf matrix of the example

The DCT matrix shows the spectral compression characteristics. The position (0,0)

in the upper left-hand comer of the matrix shows the "DC coefficient" which in our ex-

ample is 235.6. This value represents an average of the overall magnitude of the input

matrix. We should note that the DC coefficient is almost an order of magnitude greater

than any of the other values in the DCT matrix, and also as the elements move farther and

farther from the DC coefficient, they tend to become lower and lower in magnitude. This

means that by performing the DCT on the input data, we have concentrated the represen-

tation of the image in the upper left coefficients of the DCT matrix, with the lower right

coefficients of the DCT matrix containing less useful information.

33

To reconstruct the image sample from the DCT matrix, we can use the formula for

Inverse Discrete Cosine Transform (IDCT) which is given in Eq. (4.3).

N-lN-1

Pixel(x,y) = JiN ,2: L C(i).C(J).DCT(i,J).cos (2x :-. !)ill cos <2Y :-. !)jII (4.3)

i=O 1=0

1 C(x) = ./2

C(x) = 1

if x = 0

if x > 0

And for the case of JPEG the equation will be as in Eq. (4.4):

7 7
Pixel(x,y) = -! L L C(i).C(j).DCT(i,J).cos (2x : _ l)iII cos (2y + l)jII

i=Oj=O

1
C(x) = /2

C(x) = 1

if x = 0

if x > 0

(4.3)

From Eq. (4.2) we see that the creation of DCT matrix is straightforward and actually

is a doubly nested loop. The C code to create the DCT should be something as:

for(i=O ; i<8 ; i++)

for(j=O; }<8; j++) {

temp=O;

for(x=O; x<8; x++)

for(y=O; y<B; y++)

34

temp += pixel[x][y] * cosine[x][i] * cosine[y][j];

temp*= (114) * coefficient[i][j];

DCT[i] [j]=temp;

}

One can observe that the inner element of the loop gets executed 8*8=64 times for

every DCT element that is calculated.

A more efficient method to create DCT matrix is to use Cosine Transform Matrix,

C=[Ci,j], which is defined as follows:

C··= lJ

1
IN

{i C [(2j + l)in] vN os 2N

and the DCT matrix can be calculated as follows:

DCT = C * Pixel * er

if i = 0
(4.5)

if i > 0

(4.6)

which er is the C transpose, and * operator refers to matrix multiplication. If we do

this method for pixel matrix of Fig. 4.2, the result will be as in Fig. 4.3.

4.2.2. Quantization

The goal of this processing step is to discard information which is not visually signifi-

cant. Quantization is defined as the division of each DCT coefficient by its corresponding

35

quantizer step size in the Quantization Matrix, followed by rounding to the nearest inte-

ger:

Quantized Value(i,J) = Q . D~(i;} . C ~ rounded to the nearest integer (4 7)
uantizaion atnx l,J ·

Each element of the Quantization Matrix can be any integer value from 1 to 255

which specifies the step size of the quantizer for its corresponding DCT coefficient.

Since the quantization matrix can be defined at runtime when the compression talces

place, JPEG allows for the use of any quantization matrix; however, the creators of JPEG

have developed a standard set of quantization values supplied for use by the implementers

of the JPEG code. These tables are based on extensive testing by members of the JPEG

committee and they provide a good baseline for levels of compression. It is obvious that

if we choose high step sizes for most DCT coefficients, we will obtain excellent compres-

sion ratios and poor picture quality. Conversely if we choose low step sizes, the compres-

sion ratios would not be very good, but the picture quality should be excellent. And based

on these step sizes, the quality factor of the process is defined which can be up to 100.

If the quality factor is 100 it means all of the elements of quantization matrix are 1 and

in fact the reconstructed image will be the same as the original, so that we do not gain

anything from the process. For the quality factors less than 25, although the compression

ratio is excellent, the picture quality has degraded far enough to make further degradation

of the quality factor unacceptable.

Fig. 4.4 shows the example quantization table for gray scale components included in

the informational annex of the draft JPEG standard.

36

If we quantize the DCT matrix from Fig. 4.3 by the quantization matrix from Fig. 4.4

using Eq. (4.7), the quantized matrix will be as in Fig. 4.5.

15 0 - 1 0 0 0 0 0
-2 - 1 0 0 0 0 0 0
- 1 - 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Quantized Matrix= I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

L

Fig. 4.5 The quantized matrix of the example

It can be seen that most of the elements in the quantized matrix are Zero so the data

from this matrix can be compressed by the entropy encoding process which will be dis-

cussed in the next section.

4.2.3. Coding

Coding the quantized images is the final step in the JPEG process. This step itself

consists of three steps.

The first step is the DC coding, in fact the DC coefficient is treated separately from

the 63 AC coefficients. Because there is usually a strong correlation between the DC coef-

ficients of adjacent 8x8 blocks, the quantized DC coefficient is encoded as the difference

from the DCT term of the previous block in the encoding order. In our example (Fig.

4.5) the DC component is 15, and if the DC component of the previous block is for exam-

37

ple 12, then 15-12=3 will be the DC component of our new code.

DC;-1 DC·
'

Block(i - 1) Block(i)
DC = DC· - DC· 1 I 1-

Fig. 4.6 Determination of the DC component of the new matrix

The second step is that all of the quantized coefficients are ordered into the zig-zag

sequence. Since in the quantized matrix so many values are set to zero (Fig. 4.5), the

JPEG committee decided to handle zero values differently from other coefficient values.

In fact for zero values they use Run-Length Encoding (RLE) algorithm, while for other

values they use Huffman or arithmetic coding.

In Run-Length Encoding a simple code is developed that gives a count of consecutive

zero values in the image. Since over half of the coefficients are quantized to zero in many

images, this gives an opportunity for excellent compression.

When the coefficients in the zig-zag sequence are reordered, it increases the length

of runs so the compression ratio increases. In the zig-zag sequence the JPEG algorithm

moves through the block along diagonal paths selecting what should be the highest value

elements first, and working its way toward the values which are likely to be the lowest.

Fig. 4. 7 shows the zig-zag sequence for our example.

38

Fig. 4.7 Moving through the matrix in zig-zag form

Now we continue the coding process of JPEG algorithm by introducing one of the

JPEG standards after the zig-zag sequence step. This method is called "Baseline Sequen­

tial Coding", and in this method the Huffman coding will be used. The first step is to

represent some symbols for sequences of values that exist after the zig-zag sequence.

These symbols are elements of what is called the Intermediate Symbol Sequence. In the

Intermediate Symbol Sequence, each nonzero AC coefficient is represented in combina­

tion with the runlength (consecutive number) of zero-valued AC coefficients which pre­

cede it in the zig-zag sequence. Each runlength I nonzero-coefficient combination is

represented by a pair of symbols:

Symbol 1 Symbol 2

(Runlength , Size) (Amplitude)

39

In Symbol 1 "Runlength" is the number of consecutive zero-valued AC coefficients

in the zig-zag sequence preceding the nonzero AC coefficient which is presented. "Size"

is the number of bits used to encode the" Amplitude", and" Amplitude" is simply the am­

plitude of the nonzero AC coefficient.

For our example (Fig. 4. 7) we can find the symbols as follows:

The first number of the block (3) is the DC term which must be encoded differently. For

this term the Intermediate representation is (2)(3) because the amplitude is 3 which re­

quires 2 bits (Size). (See Table 4.1).

Next the quantized AC coefficients are encoded. If we follow the zig-zag order, the

first nonzero coefficient is -2 preceded by a Zero Run of 1, so the intermediate symbol

for this term is (1,2)(-2).

Next encountered in the zig-zag order are three consecutive nonzeros of amplitude

-1. This means each is preceded by a zero-run oflength zero, so the intermediate symbols

are (0,1)(-1). The last nonzero coefficient is-1 preceded by two zeros so the symbol is

(2,1)(-1). Since this is the last non-zero coefficient, the final symbol should represent

the End Of Block (EOB) which is (0,0)

The intermediate symbol sequence for our example is then as follows:

(2)(3), (1,2)(-2), (0,1)(-1), (0,1)(-1), (0,1)(-1), (2,1)(-1), (0,0)

Now to encode the intermediate symbols we use the following rules:

a) Each Symbol I is encoded with a Variable-Length Code (VLC) from the Huffman

40

Size I Amplitude

1 I -1 , 1

2 I -3,-2 , 2,3

3 I -7 -4 , 4 7

4 I -15 -8 , 8 15

5 I -31.. -16 , 1631

6 I -63 -32 , 32 63

7 I -127 -64 , 64 127

8 I -255 -128 , 128 255

9 I -511.. -256 , 256 511

10 I -1023 -512 , 512 1023

Table 4.1 The size of different amplitudes

table set assigned to the 8x8 block's image component. For our example the codes

will be as the following:

The differential-DC VLC is:

(2): 011

The AC luminance VLCs are:

(0,0): 1010

(0,1): 00

(1,2): 11011

(2,1): 11100

41

b) Each Symbol 2 is encoded with a Variable-Length Integer (VLI) code whose

length in bits is given in Table 1. The codes for symbol 2 for our example are then the

following:

(3): 11

(-2): 01

(-1): 0

The bit stream for given 8x8 block (Fig. 4.2) will be then as follows:

0111111011010000000001110001010

which is 31 bits, while the 8x8 block consists of 8*8*8=512 bits.

The compression ratio for this example is then 512/31 or about 16.5, which is significant­

ly high.

This was the final step of the process and after this the compressed data will be trans­

mitted.

4.3. Reconstruction of the block at the receiver

Entropy decoding process is the first step which is performed in the receiver. When

the transmitted stream of data is received, it can easily be decoded by the Huffman code

table at the receiver which is exactly the same as that in the transmitter. For example when

the above stream is received, the first thing coded is 011, which according to the Huffman

table corresponds to the differential-DC VLC of (2). So it realizes that the next two bits

represent the value of differential-DC, and since the next two bits are 11 it knows from

42

another table that the value must be (3). The next thing coded is 11011 which corresponds

to AC VLC of (1,2), so the decoder knows that there must be a Zero Run of length one

before the nonzero element is decoded, and the nonzero element has to be 2 bits long. So

it checks the next two bits which are 01 and according to the table it corresponds to the

value of (-2). In a similar way all of the bits in the stream are decoded and finally after

DC decoding a matrix exactly the same as the quantized matrix is reconstructed as in Fig.

4.8:

15 0 - 1 0 0 0 0 0
-2 - 1 0 0 0 0 0 0
- 1 - 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Reconstructed Quantized Matrix = I
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 4.8 The Reconstructed Quantized Matrix

The next step is to dequantize the Reconstructed Quantized Matrix and for the de-

quantization the following formula is used:

DCT(i,J) = Quantized Matrix(i,J) *Quantization Matrix(i,J) (4.8)

The matrix of Fig. 4.8 after dequantization using Eq. (4.8) gives then the DCT matrix

as in Fig. 4.9.

43

240 0 -10 0 0 0 0 O'
- 24 - 12 0 0 0 0 0 0
- 14 - 13 0 0 0 0 0 0

Reconstructed DCTpixels = I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 4.9 The Reconstructed DCT Matrix

Now to reconstruct the image sample from Fig. 4.9, Eq. (4.4) is used, which is the

equation for IDCT, and the result will be as in Fig. 4.10.

144 146 149 152 154 156 156 156'
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155

Reconstructed Pixels = 1
163 163 164 163 162 160 158 156
163 164 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158

Fig. 4.10 Reconstructed Pixel Matrix

Now if one compares the reconstructed sample values (Fig. 4.10) with the original

image sample (Fig. 4.2) a remarkable similarity can be observed, while the number of

44

bits transmitted from transmitter to receiver is much smaller than the number of bits need­

ed to transmit an un-decoded block of pixels.

Therefore it can be seen that the JPEG algorithm is an excellent method to compress

images. The only disadvantage of this method is that the process of compression is slow.

It is because of the fact that the number of operations required to compress the image is

very large.

45

Chapter 5

Image compression using Haar transform

5.1. Introduction

Spectral methods are one of the methods to analyze logical functions and other dis­

crete mappings. Walsh and Haar functions are two important functions which have al­

ready been used for this purpose. An advantage of the Haar function, as will be explained

in detail, is that the expansion coefficients of a logical function in Haar series depend on

the local behavior of the function. Using this fact, Karpovsky [6] has shown that such

an order of arguments can be found that gives the minimum number of nonvanishing co­

efficients. Image compression based on Haar function takes advantage of this minimiza­

tion. In fact, the pixel values of an image are reordered in such a way that the number

of nonvanishing coefficients in their Haar series gets minimized. In this chapter the Haar

method will be clearly explained.

5.2. Orthogonal Representation of Logical Functions

Since Boolean functions are the only type of functions dealt with in this thesis, only

this particular case is investigated. A combinational circuit with m inputs and k outputs

(Fig. 5.1) can be described by Eq. (5.1):

Z(O)

z<l)

z<m

Combinational

circuit

-1)

y<O)

yo>

y<k-1)

Fig. 5.1 A combinational circuit in general

y<s> = fs>(z<0>, z0 >, • •• 'z<m-l>) s = 0, 1, ... , k - 1 ; y<'>, z<s> E {0, 1)

46

(5.1)

The logical function shown by Eq. (5.1) can also be described by a discrete function

asin Eq. (5.2):

Y = f(z) (5.2)

where

m-1

z = L z<s>2m-l-s z E [0,2m) (5.3)
s=O

k-l
y = _Ly<s)2k-l-s (5.4)

s=O

Now a step function <l>(z) of a real argument, defined on a half-open plane interval

[0,2m), can represent our logical function as in Eq. (5.5):

<P(z) = f(o) z E [o,o + 1) (5.5)

47

All systems of logical functions can be analyzed by their step function representa-

tions.

To make the above notations more clear, let us consider a system described by the fol­

lowing Boolean functions.

y<o> = z<o> E9 z<o

y<o = z<o> E9 z<2>

Table 5.1 describes this function, and Fig. 5.1 shows the corresponding step function

<l>(z).

z(O) z<O z<2> y<O) y<t> z y = f(z)

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 2 3

0 1 1 1 0 3 2

1 0 0 1 0 4 2

1 0 1 1 1 5 3

1 1 0 0 1 6 1

1 1 1 0 0 7 0

Table 5 .1 Truth table of the function

The step function <l>(z) can be expanded as an orthogonal series or Fourier series as

in Eq. (5.6):

48

00

<l>(z) = I S(w)'Pw(z) (5.6)

w=O

<l>(z) •

4

3

2

1

0 1 2 3 4 5 6 7 8 z

Fig. 5.2 The step function of the example

where 'Pw(z) is a complete system of orthogonal step functions defined on [0,2m), i.e.:

zm zm

cf l/Fw(z)W:,(z)dz)-'(f l/Fw(z)l/l';(z)dz) = { ~
0 0

where l/l*(z) is the complex conjugate to lJl(z).

if w=r
if W¢r

The coefficients S(c.o) are the Fourier coefficients defined as in Eq. (5.8)

2m zm

S(w) = (f lJFw(z)lJi;.(z)dz)- 1 f l/Fw(z)W:,(z)dz

0 0

(5.7)

(5.8)

49

Sequence of S(O), S(l), ... is called the spectrum of the system relative to 'l'{J)(z) .

It can be seen that there is a one to one correspondence between the original logical func-

tion, Eq. (5.1), and its spectrum S(oo). So the original function may be analyzed by find-

ing the spectrum of the system. This method is called a spectral method.

5.3. Haar Transform

The set of Haar functions is a complete orthogonal system defined as follows:

H(O)::: 1
0

1

H(q) = ~ - 1
l

if Z E [(2q - 2)2m-l-l,(2q - 1)2m-/-l)

if z E [(2q _ 1)2m-l-1,2q.2m-l-1)

0 at other points of [0, 2m)

I= 0, 1, .. . ,m - 1 ; q = 1,2, .. . ,21

Fig. 5.3 shows the the Haar functions for m=3.

(5.9)

Any system of Boolean function of m arguments represented by a step function <I>(z),

can be shown by the Haar series as follows:

m-1 21

<l>(z) = 5(0)H(O)(z) + ~ ~ 5(q)H(q)(z)
o o LL z z

l=Oq=l

where s~q) is the spectrum of the function defined below:

zm-1

S(q) = 2-m+l ~ <l>(z)H(q)(z)
U> L z

z=O

(5.10)

(5.11)

50

H~•>:)1 ..
1 2 3 4 5 6 7 8 z

lfl,O(z)l

I • z

H\"(z)l

I I • z

H\"(z)l
I I ..

z

Jr,''(z)j
I I • z

Hi"(z)I
I I I • z

H~'(z)I
I I I • z

H\
4

'(z)l
I I I • z

Fig. 5.3 The Haar functions for m=3

51

From equations (3.11) and (3.9) it can be observed that:

s<q> = 2 - 1(<P(2q - 2) - <P(2q - 1))
m-1

(q = 1,2, ... ,2m-l)

s~~2 = 2-2(<P(4q - 4) + <P(4q - 3) - <P(4q - 2) - <P(4q - 1)) (q = 1, ... ,2m-2)

21 21-1

s<q> = 2 - 1< "'°' <P(21q - k) - "'°' <P(21q - k))
m-1 L L (5.12)

k=21- 1 +1 k= 1

(I= 1,2, .. . ,m - 1 q = 1,2, .. . ,2m-l)

From Eq. (5.12) it can be seen that coefficient S~~
1

depends only on two consecu-

tive values <I>(2q-2), <I>(2q-l) of <I>(z), and coefficient S~~2 on four consecutive values

<I>(4q-4), <I>(4q-3), <I>(4q-2), <I>(4q-l). In general, each of the coefficients S~~ 1 de-

pends on the behavior of <I>(z) on the interval [21q-21, 21q-l). Therefore the expansion

coefficients of <I>(z) in Haar series depend only on the local behavior of the function.

As an example, the Haar expansion of the system described by Table 5.1 using equations

(5.10) and (5.11), is as follows:

<P(z) = 1.5 - H~1\z) + H~2>(z) - 0.5Hi1>(z) + 0.5Hi2>(z) - 0.5H~>(z) + 0.5Hi4>(z)

From Eq. (5.11) another expression can be derived to find spectrum of Haar functions

which is actually the same equation as Eq. (3.12) but in a simpler formula (Eq. 5.13):

S = 2-m+lHm<P (5.13)

52

where Hm is the Haar transform matrix whose elements can be calculated by Eq. (5.9),

and <I> is the step function that defines our logical system. The important point about Eq.

(5.13) is that the value of 2-m+l is different for different rows of the matrix because I is

different.

For example for the system described in Table 5.1 the spectrum of the Haar function

can be calculated as follows:

Since m=3, the Haar transform matrix Hm using Eq. (5.9) or from Fig. 5.3 will be:

1 1 1 1 1 1 1 1
1 1 1 1 -1-1-1-1
1 1 - 1 - 1 0 0 0 0
0 0 0 0 1 1 - 1 - 1

H3 =Ii - 1 0 0 0 0 0 0
0 0 1 - 1 0 0 0 0
0 0 0 0 1 - 1 0 0
0 0 0 0 0 0 1 - 1

and the spectrum of the function will be:

S=

2-3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 2-3+0 0 0 0 0 0 0 1 1 1 1 -1-1-1-1
0 0 2-3+1 0 0 0 0 0 1 1 - 1 - 1 0 0 0 0
0 0 0 2-3+1 0 0 0 0 0 0 0 0 1 1 - 1 - 1
0 0 0 0 2-3+2 0 0 0 1 - 1 0 0 0 0 0 0
0 0 0 0 0 2-3+2 0 0 0 0 1 - 1 0 0 0 0
0 0 0 0 0 0 2-3+2 0 0 0 0 0 1 - 1 0 0
0 0 0 0 0 0 0 2-3+2 0 0 0 0 0 0 1 - 1

2 - 3(12)
2 - 3(0) 1.5

2- 2(-4) 0
- 1

2- 2(4)
~s=

1
s = 12-1(- 1) -0.5

2-1(1) 0.5
-0.5

2-1c- 1) 0.5
2 - 1(1)

0
1
3
2
2
3
1
0

53

From the spectrum vector S the Haar expansion will be:

<l>(z) = 1.5 - Hi1>(z) + Hi2>(z) - 0.5Hi1>(z) + 0.5Hi2>(z) - 0.5H~>(z) + 0.5Hi4>(z)

which matches the result obtained before.

Haar expansion coefficients can also be calculated through a recursive method which

has the minimum complexity (requiring minimum number of additions or subtractions)

compared to other algorithms. If cl>(z) is the step function representing our Boolean sys-

tern, the Haar spectrum of the function can be calculated as in Eq. (5.14):

s<q) = 2-ka (2m-k - 1 + q)
m-k k

(5.14)

where:

a0(t) = <P(t) (t = 0, 1, ... , 2m - 1)

ak(t) = ak- l (2t) + ak- l (2t + 1) (t = 0, 1, ... , 2m-k - 1)

ai2m-k + t) = ak_ 1(2t) - ak_ 1(2t + 1) (k = 1,2, ... ,m)

The previous example can be solved by this method which gives the same result.

If in our original function the order of the arguments is changed, the Haar coefficients

will change. For example, one can change the order of the arguments in such a way that

the number of nonvanishing coefficients decreases. Karpovsky[6] has shown that be-

cause of the local behavior of the Haar functions, it is possible to find such an order of

arguments that gives the minimum number of nonvanishing coefficients. The next section

will discuss this issue.

54

5.4. Optimal Ordering of Arguments for Haar Expansions

The idea of image compression based on Haar transform comes from the fact that it

is possible to find the optimal ordering of arguments which gives the minimum number

of nonvanishing Haar coefficients. This property is due to the local behavior of Haar

functions. In this section the algorithm to find such ordering of the arguments will be

explained.

The objective is to find a matrix Oopt in such a way that the number of Haar coeffi-

cients is minimum when the function is expanded over z00P, = a opt ® z

In the following the algorithm is clearly explained step by step:

1) For a system of k Boolean functions of m arguments /m-l)(z) , a characteristic

function fm-l)(z) (i = 0, 1, ... , 2k - 1) is defined as follows:
I

1;m-l)(z) = { ~ if
if

/m-l)(z) = i
/m-l)(z) ~ i

Table 5 .2 shows the characteristic functions for our example.

(5.15)

2) An auto-correlation function B ~m - 1\r) for each characteristic function

fm-l)(z) is defined as follows:
I

2m-1

B~m-l)(r) = 'fm-l)(z) fm-l)(z ffi r)
I LI I

(5.16)

z=O

55

where zffi't shows the modulo-2 bit by bit addition of z and 't bit by bit. Table 5.2 shows

the aut~orrelation functions for our example.

(m-1) 3) The values of B (r) are calculated by Eq. (5.17) ,

2Ll

B(m-1)(-r) = I B~m-1)(-r)
i=O

and the value of im-1 is obtained in such a way that it satisfies Eq. (5.18).

Max B(m-1)(-r) = B(m-l)(rm-1) where i #- 0

Table 5.2 shows B(m-
1\r) for our example, and it can be seen that 'tm-1=1.

4) A nonsingular matrix Om-1 is determined so that:

0

am-1 ® im-1 = ·o
1

where ® denotes modulo-2 multiplication.

Since in our example rm_ 1 = r 2 = 7 , Om-1 is determined as follows:

am-1 © rn = [~]

(5.17)

(5.18)

(5.19)

56

z ?' f2>(z)
1;2>(z) B~2>(z) B<2>(-r) f;d(z)

i = 0 1 2 3· i = 0 1 2 3·

0 0 0 1 0 0 0 2 2 2 2 8 0

1 1 1 0 1 0 0 0 0 0 0 0 0

2 2 3 0 0 0 1 0 0 0 0 0 1

3 3 2 0 0 1 0 0 0 0 0 0 1

4 4 2 0 0 1 0 0 0 0 0 0 2

5 5 3 0 0 0 1 0 0 0 0 0 2

6 6 1 0 1 0 0 0 0 0 0 0 3

7 7 0 1 0 0 0 2 2 2 2 8 3

Table 5.2 The results of the first steps of the process

For this example Um-I can be:

[
1 1 OJ am-1 = az = 0 1 1
0 0 1

5) Construct the function f (m- l)(z) in such a way that:
am-1

f,m - l)(z) = fm - l)(z)
am-1 am-1

and z =a '°' am-1 m-1 \Cl z (5.20)

for our example t<2>(z) is shown in Table 5.2.
a2

57

6) The function fm- 2)(z), defined at 2m- 1 points, is obtained as follows:

fm-2)(z) = tm-1)(2z) + t,m-1)(2z + 1)
O'm-1 O'm-1

(5.21)

for our example f 1)(z) will be as shown in Table(5.3)

7) The above procedure is applied to fm - 2\z) , and the resulting matrix is

called a<m- 2) whichisofsize (m-l)X(m-1). Nowthematrix am_ 2 isdefinedasfol-

lows:

a = [q~":-::> _!_o_]
m-2 0 : 1

(5.21)

For our example, the results of this step will be as in Table (5.3), where a 1 is:

[a(l): OJ [1 1 0]
al= co:-i = g 6 ~

8) Theabovestepsarerepeatedtofind am_ 1, am_ 2, .. . , a 1 . Then aopt iscalcu-

lated by Eq. (5.22):

aopt =al® ... ®a;® ... ®am-2 ® am-1 (5.22)

58

z 'f /O(z) B(l>(-r) fo1{(z)

0 0 0 4 0

1 1 2 0 4

2 2 4 0 6

3 3 6 0 2

Table 5.3 The results of the next steps of the process

where

f
0 Ci>: ~ _ -] ... ---

O; = O-: Em-i-1 (5.23)

and Em-n-l is the identity matrix of order m-n-1. So in our example we have:

[
0<1> : 0 ~ [1 1 o] [1 1 o] [1 o 1] a opt = a 1 ® a 2 = - 0 --:- - ® a 2 = 0 1 0 ® 0 1 1 = 0 1 1

,1 0 0 1 0 0 1 0 0 1

This was the last step of the algorithm to find a opt •

Now we can calculate Za
0
p, = Oopt ® z and expand our function over the new order

of the arguments. Therefore for our example we have:

Zaopt = Oopt ® Z = 0 1 1 ® z(l> = z<t> EB z<2>
[
1 0 1] [z<

0
>] [z<

0
> EB z<2>]

0 0 1 z<2> z<2>

and therefore:

0
0
3
3

f(zao) = I 2

2
1
1

59

The spectrum of the function can then be calculated as follows:

s = a opt

2--3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 2 -3+0 0 0 0 0 0 0 1 1 1 1 -1-1-1-1
0 0 2-3-t-I 0 0 0 0 0 1 1 - 1 - 1 0 0 0 0
0 0 0 2-3+1 0 0 0 0 0 0 0 0 1 1 - 1 - 1
0 0 0 0 2-3+2 0 0 0 1 - 1 0 0 0 0 0 0
0 0 0 0 0 2-3+2 0 0 0 0 1 - 1 0 0 0 0
0 0 0 0 0 0 2-3+2 0 0 0 0 0 1 - 1 0 0
0 0 0 0 0 0 0 2-3+2 0 0 0 0 0 0 1 - 1

1.5
0

- 1.5

s -1 0
<Jopt - 0

0
0
0

0
0
3
3
2
2
1
1

It can be observed that the number of non-vanishing coefficients for the nevv ordering

has been significantly decreased. The corresponding Haar expansion of the function will

be as follows:

<P(za
0
,,) = 1.5 - l .5Hi1)(Za

0
P)

60

5.5. Image Compression

To compress image by the Haar transform, the pixel matrix is considered as our dis­

crete functionf(z). Therefore the matrix can be converted to a vector (one dimensional

matrix), and the same process as explained in the previous section can be performed.

Therefore, the first step will be the calculation of a opt • Usually in black and white

images each pixel value can be represented by 8 bits. In this case we only have 8 inputs,

so a opt will be an 8 X 8 matrix. According to that the pixel elements are reordered, then

Haar transform is taken, and the resulting vector usually has a much smaller number of

nonzero elements. Then the zero elements can be coded by Run-Length coding, which

in general needs a smaller number of bits to represent the data.

The work which has been done in this area [2] does not show how good this method

is in the sense of the compression factor. They just show that the number of nonvanishing

coefficients decreases significantly. This does not necessarily mean that the compression

factor is significantly improved. The point is, we do not lose any information in this meth­

od of compression, in other words the reconstructed image is exactly the same as the origi­

nal one.

61

Chapter 6

Image compression using Reed-Muller Transform

6.1. Introduction

In this chapter image compression based on Reed-Muller transform is investigated.

First the basic topics needed as background are covered , then the compression method

based on fixed polarity Reed-Muller transform is discussed.

6.2. The Galois field (2) algebra

Galois field algebra is actually a modulo-2 algebra, which has the following proper­

ties:

If a,b,c E {O, 1} , and EB and 8 represent modulo-2 addition and multiplication:

1) affibE{O,l} and a8bE{0,1}

2) affi(bffic)=(affib)ffic=aEBbEBc and

a8(b8c)=(a8b)8c=a8b8c

3)a8(bffic)=a8bEBa8c

4) aEBb=bEBa and

5) aEBO=a

6) affia=O

and

and

a8b=b8a

a81=a

a8a=a

The first five properties are the same as boolean algebra's, but the sixth property re­

veals the differences between the two.

62

It can be seen for both algebra the operation of multiplication is the same, i.e.

a0b=a.b, but the operation of addition is different so that we have aEBb=a.b+a.b. Substi­

tuting 1 for b in the latter equation gives affi 1 =a. Using de Morgan theory and the last

two equations one can easily derive that a+b=a0bffiaffib.

So we can observe all basic operations in Boolean algebra, i.e. addition, multiplica­

tion and negation, have equivalent in modulo-2 algebra. Therefore every Boolean func­

tion can be implemented over GF(2) too.

6.3. Reed-Muller Transform

Any switching function of n variables can be defined by 2n coefficients in a sum of

product form as Eq. (6.1):

f(Xo,X1,···,Xn-l) = doX"n-1.Xn-2··.Xo + dl.Xn-1··.X1Xo + ··· + d1n-1Xn-1Xn-2···Xo (6.1)

where (do, di. d2, , d2n_1) are the coefficients of the products which represent the val­

ues in the output column of the truth table of the function. These coefficients can be repre-

sented in vector form D , called truth vector.

The function can also be represented by the Reed-Muller canonical form over Galois

field (2) as Eq. (6.2):

f(xo,X1, ... ,xn-1) = ao EB alxo EB a~l EB a3XoX1 EB··· EB a1n-1XoX1··.xn-l (6.2)

where EB denotes modulo-2 addition and (ao, a1, a2, ,a2n_1) are the coefficients of the

expansion. These coefficients can be represented in vector form A , called the function

vector.

63

These two representations are related to each other by a transform matrix T as Eq.

(6.3):

A= TD (6.3)

For a function with three variables Eq. (6.3) is as follows:

'd
"o

0
10000000 d

"1 1 1 0 0 0 0 0 0 1

a2 1 0 1 0 0 0 0 0 d2
a3 1 1 1 1 0 0 0 0 d3
a4 = 10001000 d4' over GF(2)

as 11001100 ds a, 1 0 1 0 1 0 1 0
a, 1 1 1 1 1 1 1 1 d,

d,

An important property of matrix T is that T is the inverse of itself, i.e. T = T- 1.

So Eq. (6.4) is also true:

D= TA (6.4)

Matrix T can be written in a recursive form as Eq. (5.5):

[
Tn-1 0]

T = Tn = Tn-1 Tn-1 for n >= 1

(6.5)

T 0 = 1

So T n can also be written as Eq. (6.6):

64

T -T*T -T*T*T* *T · n - 1 n -1 - 1 1 1 • • • 1 n times (6.6)

Where * represents the Kronecker matrix product.

As an example consider the Boolean function f(x0,x1,x2) = x1x0 + xi-r1 , Which in

terms of minterms will be f(x0,x1,x2) = x2x1x0 + xix-1x0 + xi-r1x0 + xi-r1x0 • From

this function the truth vector is A = [0 1 0 0 0 1 1 1] . Now to find the

Reed-Muller Canonical form of the function, T 3 must be calculated using Eq. (5.5).

Then from Eq. (6.3), D can be calculated:

d 0

dl
d1
d3

D =Id
4

ds
d6
d,

0
1
0
1
0
0
1
0

=

10000000 0
11000000 1
10100000 0
1 1 1 1 0 0 0 0 g,
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1

over GF(2)

So the RM canonical form of the function is f(x0,x1,x2) = x0 EB xor1 EB X1X2 •

65

6.4. Generalized Reed-Muller Transform

In the previous section the Reed-Muller expansion was explained and its form was

shown as Eq. (6.2). In that form all the variables are in the positive form, while any vari­

able X; can be substituted with its negation~' and still retain the canonical form. In the

case that the variables are allowed to take negative polarities, we have the Generalized

Reed-Muller (ORM) canonical form. And if each variable is restricted to retain the same

polarity in all terms, i.e. either positive or negative but not both, the canonical form is

called the Fixed Polarity Reed-Muller form.

For a function with n variables the number of possible arrangements of polarities is

2n, so there are 2n possible fixed polarity Reed-Muller forms. For a specific function the

number of terms varies based on the polarity of the variables. For instance, in the previous

example the Reed-Muller form of the function was found to

be f(x0 ,x1,x2) = x0 ffi XoX1 ffi x 1x2 • If the polarity of the variables was selected as

XoX1.X2 , the result would be f(x0,x1,x2) = 1 ffi x0 ffi x~1 ffi x 1x2 •

By finding the appropriate polarities one can reduce the number of terms of a function

in fixed polarity RM form. The best polarity gives the least number of terms in a specific

function.

6.5. Image Compression Using Fixed Polarity RM Transform

In the last section it was explained that if the best polarities for the variables are se­

lected, the number of terms of each function will be reduced. Using this fact we are going

to investigate if it can be used to compress the data of an image.

66

It was mentioned in the previous chapter that for a black and white picture, one byte

is allocated for each pixel. So in a picture matrix each element consists of 8 bits which

can be either 1 or 0. Therefore the picture matrix can be converted to 8 matrices from

the most significant bit plane, to the least significant bit plane (each element of these ma­

trices is either 1 or 0). The algorithm for the compression technique will be explained

as follows:

for(i = Most significant bit plane to least significant bit plane)

{

}

for(each plane)

{

}

fetch a block of size (NXN)

find the best polarity of the variables

Compute RM trans/ orm of the block

use Run-Length coding to code the data of the transformed block

In this method each block of size (N X N) is considered as a Karnough map, so the

number of 1 sin each block shows the number of min terms. After finding its fixed polarity

RM form with the minimum number of terms, which is done exhaustively [9], [10], [14],

the new map usually contains fewer number of ls. But there is an important point which

is worth noting:

67

When Run-length coding is used, the compression ratio mostly depends on the num­

ber of transition elements in a bit plane matrix and not on the number of nonzero elements.

For example in a 16 bit row of a block, it is possible to have 8 zeros and 8 ones with just

one transition element as in Fig. 6.1 (a), alternatively it is possible to have 13 zeros and

3 ones with six transition elements as in Fig. 6.1 (b). Obviously the latter one will be less

compressed than the previous one, while the number of nonzero elements in it is much

less. So the pattern of the elements is also important, and just reducing the number of

nonzero elements might not be sufficient to obtain a higher compression ratio.

As it will be explained in chapter 9, the compression factor using this method is not good,

and the main reason is, what was mentioned above.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(a)

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

(b)

Fig. 6.1 The number of ls in bis less, but the number of transition elements is more.

6.6. Comments on LSB planes

As mentioned before the least significant bit planes do not have as much effect on

the values of pixels as the MSB planes. Therefore we can allow loss of information in

these planes.

68

The simplest way to compress the data based on losing information is to consider

some specific area and calculate if the number of ls is more or less than that of zeros. If

it is more, we change all the elements to 1, otherwise all the elements are changed to zero.

For example in the LSB plane, areas of 5 bits can be specified. Then the above rule is

applied.

Another method could be based on performing some small changes in the elements

of each block of size NxN so that the resulting Karnough map would give a much smaller

number of terms. Since finding the best fixed polarity RM form requires checking many

different cases, and we do not know the desired polarity in advance, changing the ele­

ments will not work very good, unless changing the elements is based on a specific Reed­

Muller form with predefined polarities. The latter method has not been attempted in this

work.

6. 7. Permutation of the elements of the Truth vector

In the following, the possibility of performing a permutation on the Reed-Muller

transform is investigated.

It was explained that in a switching function the truth vector D is related to the func­

tion vector A by a transform matrix T as in Eq. (6.3). For example for a switching function

with three variables the equation is as follows:

69

·ao
"d

10000000 °
ai 1 1 0 0 0 0 0 0 4

1

al 1 0 1 0 0 0 0 0 d2
a3 _ 1 1 1 1 0 0 0 O d3 I
a4 - 1 0 0 0 1 0 0 O d4

over GF(2)

as 1 1 0 0 1 1 O O d
a6 1 0 1 0 1 0 1 0 4

5

a, 1 1 1 1 1 1 1 1 6

d,

From the above equation the local behavior of the Reed-Muller transform can be ob-

served. It is obvious that only a1 is globally sensitive, i.e. depends on all elements of the

truth vector. The other elements of the function vector, i.e. "6 to "6, all are locally sensi-

tive, which depend on a subset of the elements of the truth vector. Therefore the value

of the elements of the function vector can be changed by a permutation of the elements

of the truth vector. Therefore the best permutation of the elements of the truth vector can

minimize the number of nonzero elements of the function vector.

As a result, a permutation matrix a can be determined so that the permuted truth vector

is given as Eq. (6.7):

Da = a.D (6.7)

Now the Reed-Muller transform of the permuted truth vector can be determined using

Eq. (6.8):

Aa = TDa (6.8)

a should be determined in such a way that Aa contains the least number of 1 s. D can be

70

reconstructed using Eq. (6.9):

D = a-1r-1Aa (6.9)

As an example assume that the truth vector of a switching function is D=[O 0 1 1

0 1 0 l]. If the permutation matrix o is chosen in such a way that the permuted truth

vector is as Da=[l 0 1 0 1 0 1 O], o and the Reed-Muller transform of Da will be as

follows:

a=

00010000
01000000
00100000
10000000
00000100
00001000
00000001
00000010

10000000
11000000
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

Aa = I 1 0 0 0 1 0 0 0
11001100
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

1 1
0 1
1 0
0 g, over GF(2) 1 =

0 0
1 0
0 0

It can be seen that the number of nonzero elements in Aa is smaller than that in D ,

and in general this method gives a much smaller number of nonzero elements compared

to the method of the fixed polarity RM transform.

The problem with this method is how to determine the permutation matrix o, and so

far no method has been found. To find the best permutation it is required to check (;)

71

different cases, where n is the number of elements of the truth vector, and p is the number

of nonzero elements in the truth vector. Therefore this method is not practical although

it might give a very good result.

Chapter 7

A critique of the Reddy & Pai approach to Reed-Muller

Image Compression

72

In this chapter the published paper on Reed-Muller image compression [3] is investi­

gated. There are some mistakes in this paper which cause the results of this paper to be

unacceptable.

7.1. The general method

In the paper by Reddy and Pai [3] the algorithm for image compression is as follows:

for (i = most significant bit plane to least significant bit plane) do

begin

for (each plane) do

begin

end;

(a)fetch a block of size (n x n)

(b) compute the Reed-Muller transform of this block

(c) employ runlength coding on the resultant trans/ orm domain bit plane

end;

73

As it can be seen, the body of the inner loop consists of three steps. There is nothing

wrong with the first step (a), but the problems with step (b) and (c) cannot be ignored.

7 .2. The problem with step (b)

In the paper the authors, Reddy & Pai, have not clearly explained what they have

done, but from what they have written, it is obvious that it must be one of the following

cases and nothing else.

1) The authors have just simply computed the positive polarity Reed-Muller trans­

form of the block.

2) The authors have performed a permutation on the input sequence (as was explained

in section 6. 7), and then computed the positive polarity Reed-Muller transform.

In the first case we cannot get a good compression factor by just computing the Reed­

Muller transform of the block. As a matter of fact, in this case even for the MSB plane

the compression factor on the average is less than 1.6, which is not good at all. We can

get a better compression factor even if we don't use a transformation, and just directly

encode the plane.

In addition to that, in this thesis fixed polarity RM transform has been used, and al­

though it is much better than the RM transform, still the result was not that good, so that

the compression factor for the MSB plane is less than 2.

In the second case although the authors have mentioned something about permuta­

tion, they have not found a method to find the best permutation and still this problem is

unsolved. The authors have clearly suggested this problem for those who are interested

in this issue and want to work on that in the future. Therefore if they have applied a per-

74

mutation, it was done exhaustively which is not acceptable. It is obvious that finding the

best permuted input sequence exhaustively cannot be realized by any hardware because

it requires many cases to be checked, which is impossible.

7.3. Problems with step (c)

In this step there are some obvious mistakes, and in the following these mistakes are

discussed:

The authors have used Relative Address Coding to code the data after performing the

Reed-Muller transform.

The code used by Reddy & Pai is in Table 7 .1. In the following, four problems with

the data in this table have been explained in the order of their importance.

1) In chapter 3 Relative Address Coding has been explained in detail, and it was men­

tioned that in this method the relative address is computed either with respect to the transi­

tion elements in the current line or those in the previous line. And then for all runlengths

a method of coding must be used. For example as it was shown before in the fixed polarity

RM transform, Huffman coding was used which is the best method for coding. In the pa­

per by Yamazaki [4] about RAC, other codes have been used which are not as good as

Huffman codes but they take less memory space. In any case, all of these coding methods

must satisfy the following condition:

" Each code must not be equal to a first part of another code. "

Huffman coding satisfies this condition and also the method used by Yamazaki does

this too. Otherwise the codes cannot be detected.

75

Relative Positive Negative
distance distance distance

1 00 10

2 01 11

3 0000 1010

4 0001 1011

5 0100 1110

6 0101 1111

7 000000 101010

Table 7 .1 Codes used by Reddy & Pai for relative distances

Obvious! y the codes in Table 7 .1 do not satisfy this condition, so they cannot be used

to code the data. To make the problem clear assume a part of a block after Reed-Muller

coding is as in Fig 7 .1. According to Table 8.1 the code for element A must be 01 because

the relative distance is + 2, and the same code will be chosen for element B because the

relative distance for Bis +2 as well. Since A and Bare adjacent transition elements, the

code for them will be 0101. From the table it can be seen that the code for relative distance

+6 is also 0101. Now if the receiver get the code 0101 it cannot identify if it is the code

for the relative distance +6 or it is the code for two relative distance +2. This problem can

be seen in all of the codes in this table.

One might say that the codes in Table 7 .1 are just supplementary codes for the dis-

tances, and the first part of the codes are different (like what Yamazaki has done). But

in this case according to Table 7 .1 the codewords will be so long that not only does it not

76

compress the data, but it also creates more bits than what the original image needs.

c E

t t
0111111000000.

00001111110000···

~ ~
A B

Fig. 7.1 An example showing contradiction in Reddy & Pai coding

2) The authors have mentioned that depending on the probability of the occurrence,

the RAC distances (0, + 1, -1) are given special code words. According to Table 7 .1 the

authors have defined the codewords for + 1 and -1 but not for 0. Anyway, the obvious

thing is that all the codes must be predefined. It would be impractical to first find the prob-

ability of the occurrence of the runlengths for every single matrix of an image and then

according to that, find the codewords for them.

Another important problem is that usually the most common relative distance is 0, so

it should have the shortest codeword, which in most of the cases consists of just one bit,

i.e. either 0 or 1, or two bits. But according to Table 7 .1 it is impossible to have a short

codeword for relative distance 0, because in this case the condition explained previously

cannot be satisfied.

3) Since the size of the blocks has been chosen to be 16 X 16, when the RAC method

is used, there is a need to define the codes for at least 16 positive relative distances, and

not just for 8. From Table 7 .1 it seems that the authors have not understood the RAC meth-

od sufficiently well. Probably they have thought that since the distance of each transition

77

element from one of the row ends is less or equal to 8, it is enough to just define 8 positive

relative distances. But it is impossible to decode the data this way, and 16 positive relative

distance have to be defined, although for negative relative distance 8 codes are enough.

4) In Relative Address Coding, as mentioned in chapter 3, sometimes we need to

compute the relative distance with respect to the transition elements in the current line,

but according to Table 7 .1 it seems that the authors of this paper have not defined them.

In any case there are two possibilities:

a) They have defined them and used them but they just did not mention it in the paper.

In this case, either their codes are all wrong like those in Table 7 .1, or the authors use very

long codewords, because the condition mentioned for the coding should not be contra­

dicted at least for the rest of the codewords.

b) They have not defined the relative distances, and so have not used any codewords

for the relative distance in the current line. In this case the coding will not be optimum.

And the method is not the RAC method any more. Some modification has to be done

to make the method work at the price of a decreased compression factor.

From the above discussion it is obvious that the reconstruction of the image is impos­

sible with this type of coding.

The final point about this paper is that the quality of the picture is not that good even

with the compression factor of 2.5 bit per pixel. It seems that there is a loss of information

in more than 4 bit plane matrices to get 2.5 bit per pixel.

78

7 .4. Conclusion

This paper has given a new idea for image compression, although the method pro­

posed by the authors is not good. Unfortunately, many crucial mistakes in this paper cause

the readers not to be able to evaluate the quality and usefulness of the idea of using Reed­

Muller transform for image coding.

79

Chapter 8

Row Xoring And Plane Xoring Algorithm

8.1. Introduction

In this chapter a method is introduced which takes a good advantage of the correlation

between the adjacent pixels. This method is based on Xoring the adjacent lines and the

adjacent planes. The process is very fast with a much better compression factor compared

to the method based on the Reed-Muller transform.

In the following, first the compression based on Xoring the lines, and then the compres­

sion based on Xoring the lines and the planes will be explained.

8.2. Compression using Xoring the adjacent lines

In most images the values of the adjacent pixels are highly correlated. Therefore most

of the time the value of a pixel in a line is very close to its adjacent pixel at the adjacent

line. Because of this fact, when a picture matrix is converted to the eight matrices, from

the most significant bit plane to the least significant bit plane, the information of the two

adjacent lines in MSB planes is very much the same, and as we go towards LSB planes

the correlation becomes lower. Therefore it can be seen that the properties of the bit

planes are different and we should treat them differently.

We can summarize the behavior of the bit planes from MSB planes towards LSB

planes as follows:

80

1) In MSB planes the data of adjacent lines are very similar, so we can also take advan­

tage of that to compress the data. But in the LSB planes the information of adjacent lines

is not that much similar so that in the LSB and the second LSB planes, the information

can be assumed random, and there is almost no correlation between them (specially in

pictures from nature).

2) Any change in the value of elements in the MSB planes will change the value of

the corresponding pixel greatly. Therefore for MSB planes the effort should be taken not

to lose any information while compressing the data. But changes in the values of elements

in LSB planes do not have much effect on values of the corresponding pixels, so that

changes in the LSB and the second LSB planes are almost invisible to us.

From the above discussion we can develop a method to improve the data compression.

We know that adjacent lines in MSB planes are very similar specially in the MSB and the

second MSB planes. Therefore by Xoring the adjacent lines bit by bit, the resulting line

will contain many Os and few 1 s, so that the number of nonzero elements and also the

number of transition elements are substantially decreased. H this method is used for the

first two MSB planes the result will be much better than by using the fixed polarity RM

transform, because if the fixed polarity RM transform is used, although in most cases the

number of nonzero elements is decreased, the number of transition elements is much

higher comparing to the case of Xoring the lines.

Therefore, for the Most Significant Bit planes, the following algorithm can be used

to improve the compression factor:

for(i = Most Significant bit planes) {

for(each plane) {

fetch a Row

if(first Row)

put it in the first Row of the new plane without changing

else

81

Xor the fetched Row with the preceding Row bit by bit and put in

the new plane

}

Use Run-Length coding to code the data of the resulting plane

}

There are some points on Run-Length coding that should be noted. As mentioned

before, the properties of the bit planes for the same picture are different so they should

be treated differently. ff RLC is used to code the data, different Huffman code tables

should be defined for different planes. For example in the MSB plane of a picture there

exist long runs even with more than 200 bits while in the second MSB plane the number

of such runs is much smaller, and in the third MSB plane one can hardly find runs longer

than 100 bits. Huffman codes for the first four MSB planes are shown at the end of Chap­

ter 9. These codes have been defined based on the information from 10 different pictures.

The use of different Huffman code tables requires more memory space but in exchange

improves the compression factor.

82

The method that has been used for RLC for our bit planes is a little different from the

method explained in Chapter 3. In this method the Huffman code table used for zero runs

is the same as the table used for One Runs. The only thing that distinguishes the Zero Runs

from the One Runs is that we assume every row of a matrix to start with a Zero Run, and

for the case that a row starts with a One Run it is assumed that it starts with a Zero Run

of length zero. Assuming that the first run is a Zero Run, the type of the rest of the runs

in the line is clearly determined.

Also, an End Of Line (EOL) code can be inserted at the end of each line for line syn­

chronization. This reduces compression factor slightly but in exchange if some error hap­

pens in the transmission line, EOL causes this error not to be distributed to the whole data,

and just this single specific line is affected.

8.3. An improvement by Xoring the planes

In the previous method it has been taken advantage of the fact that the adjacent pixels

are similar. But we can take more advantage of this fact.

It can be experimentally shown that in most of the pictures the difference between the

adjacent pixels in more than 95% of the cases is less than 16. Knowing this fact we can

improve the previous method.

For instance, let us assume the previous method has been used, and the planes with

Xored lines are ready. Now considering that the difference between the adjacent pixels

is usually less than 16, we can see if an element in the 3rd MSB plane (with the exception

of the first line) is one, the corresponding elements in the 4th MSB plane will be in most

cases one as well. And if an element in the 2nd MSB plane is one the corresponding ele-

83

men ts in the 3rd and the 4th MSB planes in most of the cases are one. And if an element

in the MSB plane is one, the corresponding elements in the 2nd, 3rd and 4th MSB planes

in most of the cases are one. Therefore it is a good idea to Xor the resulting planes after

xoring the lines, because the number of 1 s and the number of transition elements will de-

crease.

Tables 8.1 and 8.2 show the above issue more clearly. The five different cases that

are listed in Table 8.1 happen in most of the cases, and after Xoring the planes the results

will be as in Table 8.2. It can be clearly seen that the number of 1 s and therefore the num-

ber of transition elements are both decreased.

Case MSB 2ndMSB 3rdMSB 4thMSB

Corresponding #1 0 0 0 0
elements

in the #2 0 0 0 1

planes #3 0 0 1 1
after

xoring #4 0 1 1 1

the lines #5 1 1 1 1

Table 8.1 Five cases which occur most of the time

Therefore the following procedure can be used to obtain a better compression factor

comparing to the previous methods:

84

Case MSB 2ndMSB 3rdMSB 4thMSB

Corresponding #1 0 0 0 0
elements in the

resulting #2 0 0 0 1
planes
after #3 0 0 1 0

xoring
the planes #4 0 1 0 0
with Xored

lines #5 1 0 0 0

Table 8.2 The result from Table 8.1 after Xoring the planes

for(i = Most Significant bit planes tAble 5.1

{

for(each plane)

{

fetch a Row

if(first Row)

put it in the first Row of the new plane without changing;

else

Xor the fetched Row with the preceding Row bit by bit and put in

the new plane;

}

}

for(i = new planes with Xored lines)

{

}

85

if (! first plane)

{

}

Xor each element with corresponding element of the previous

matrix and put the results in a new matrix;

Use Run-Length coding to code the data of the resulting planes;

The experimental results (next chapter) show that this method decreases the number

of transition elements by 20-30%, and increases the compression factor by almost the

same factor.

For LSB planes, the same method, explained in chapter 6, can be used.

86

Chapter 9

Discussion of the experimental Results

In this chapter the simulation results of the two methods (fixed polarity Reed-Muller

transform and Xoring the lines and planes) are discussed. For the method based on Reed­

Muller transform the size of the blocks has been taken to be 16x16.

In Table 9 .1 compression factors of the four MSB planes from the two methods are

shown. These factors have been calculated based on 10 different pictures of natural

scenes. Also the number of transition elements for a typical image in both cases are

shown. As we see the number of transition elements in the case of using Reed-Muller

transform is much higher than in the case of using Xoring the lines, so the compression

ratio for the former case is lower.

The data in this table are based on the fact that there is no any information loss after

compression of the bit planes.

There are some points about Huffman coding that should be explained:

1) For the case of Xoring, Huffman codes have been computed for the MSB and the

2nd MSB planes separately from those of the 3rd MSB and 4th MSB planes (see the end

of the chapter), and each Huffman table contains two types of codewords: Terminating

Codewords (TC) and Make Up Codewords (MUC). For each bit plane, the runs between

0 and N are transmitted using a single terminating codeword, and the runs longer than N

bit are transmitted by a MUC and a TC.

For the case of MSB and 2nd MSB, N is taken as 256 ..

For the case of 3rd MSB and 4th MSB, N is taken 64.

Bit Plane MSB 2ndMSB 3rdMSB 4thMSB

Xoring
with 3.9 2 1.4 1.15

Compression RLCcoding

Factor Reed-Muller
Transform 1.9 1.2 1 1
with RAC

#of Xoring 4000 9300 15500 21500
Transition
Elements
Fo~ a typical

image
Reed-Muller 256X256 11000 19000 25500 29000
Transform

Table 9 .1 The comparison of Fixed Polarity Reed-Muller compression and the
compression using Xoring the lines

87

The reason for the above assignment is that as we start from MSB to LSB, the number

of long runs becomes smaller and smaller. For example in the 4th MSB planes most of

the runs (more than 95%) are less than 64 bits so it would be waste of memory space if

we define the Huffman codes for 256 bits, and the improvement would not be that much.

2) In the case of Reed-Muller transform, like in the previous case, Huffman codes

have been computed for MSB and the 2nd MSB separately from the 3rd MSB and 4th

MSB.

88

9.1. Evaluation of image compression based on fixed polarity Reed-Muller Trans

form

As mentioned before, there are two major things that stop us from obtaining the maxi­

mum compression factor, while Run-Length coding. In the following, this issue will be

explained in more detail.

1) As explained before, Huffman coding gives an integer number of bits for each co­

deword r, and it is equal to or greater than - log2P(r). This causes the compression fac­

tor to be decreased.

As an example assume that there are just three different Runs of 0, 1 and 00 in some

bit planes. If the probability of the occurrence of the Run 0 is not less than the other two,

the Huffman code will be something as follows:

Run Huffman code

0 0

1 10

00 11

Obviously in this case it would be much better if Huffman coding were not used be­

cause the compression factor will be less than one. In other words not only does the data

not get compressed, but there will be more bits after coding. In the case that the probabili­

ty of the occurrence of each code is equal, i.e. 1/3, the compression factor would be

4/5=0.8, and the reason for such bad results is that two of the Runs have to be coded by

two bit codes.

89

2) The Huffman codes are defined based on the probability of the occurrence of Run-

Lengths over many typical documents and it is not necessarily optimum for each specific

case.

For example assume in some bit planes there are just four different Runs of 000, 111,

001 and 100, and based on the statistics averaged on all the planes, the Huffman codes

are 0, 10, 110 and 111 respectively. Now if in a specific plane the probability of the occur-

rence of the runs are equal, i.e. %25, the predefined Huffman codes are not the best cod-

ing, and the increase in the number of bits required to compress the data comparing to

the best Huffman codes will be equal to:

(0.25 x 1) + (0.25 x 2) + (0.25 x 3) + (0.25 x 3) = 1 125
4 x (0.25 x 2) .

which shows 12.5% increase.

The problem with fixed polarity RM transform is that it cannot substantially decrease the

number of transition elements, specially for the case of 3rd MSB toward LSB s the number

of transition elements is still too high, and that is because of the fact that in fixed polarity

RM forms just 2° different cases are checked, where n is the number of variables. In other

words since in fixed polarity RM neither the permutation of the variables nor the inconsis-

tent polarity of the variables is allowed, a substantial decrease in the number of terms can-

not be expected.

In general if Dt is the number of transition elements in a bit plane, and Ht is the average

number of bits needed to code a run in the bit plane, the compression factor will be greater

than one if the product of Dt x Ht is less than the number of elements of the plane. For

90

example, for a 256 x 256 image, each plane contains 65536 bits, so in order to have the

compression factor greater than one for each plane, Dt x Ht must be less than 65536. In

the case of using Reed-Muller transform usually the number of transition elements in

each plane from the 3rd MSB to LSBs is higher than 20000. So Ht must be about 3 or

less. But because of what was mentioned above, Ht is not very low, so that usually for

these planes the compression factors are very low and sometimes less than 1. In other

words the number of bits needed to code a run on the average is longer than the average

length of the run, i.e. the numerator of the term in the right side of Eq.(9 .1) becomes less

than the denominator.

Ti+ To
Qma.x= u

1
+ H

0

9.2. Examples

(9.1)

In this section simulation results on three different pictures are shown. Table 9 .2

shows the compression factor for the first four MSB planes. As it can be seen, we can

get a significant improvement by Xoring the planes, and the quality of the images with

compression factor 8/2.5 is very good. It should be noted that the following pictures have

been printed by laser printer, so they are not the accurate representations of the images

as shown on a gray-scale screen. Subjective quality estimates are the only effective

technique discovered to date for comparing images.

91

Image MSB 2ndMSB 3rdMSB 4thMSB

of transition
elements 4021 9216 15455 21460

of bits after
Lady compression 17296 32627 47034 57547

Compression
3.8 2.0 1.4 factor 1.1

of transition
Xoring elements 3496 8402 13405 20625

of bits after
the Rose compression 15731 31582 43377 55668

lines
Compression

4.2 2.1 factor 1.5 1.2

of transition
elements 3396 7312 13294 20342

House # of bits after
compression 14077 26080 40774 53634

Compression
4.7 2.5 factor 1.6 1.2

of transition
elements 4021 6499 10290 14018

of bits after
Xoring Lady compression 17296 24434 34646 42536

the
Compression

3.8 2.7 factor 1.9 1.5

of transition
lines elements 3496 5746 7589 14019

of bits after
+ Rose compression 15731 23529 31507 44924

Xoring
Compression

4.2 2.8 2.1 factor 1.5

of transition
the elements 3396 5404 10528 16053

planes House # of bits after
compression 14077 20408 35578 46345

Compression
4.7 3.2 1.8 1.4 factor

Table 9.2 The effect of Xoring the planes after Xoring the lines

Z6

£6

P6

~6

96

l6

98

9.3. Evaluation of image compression method based on Xoring the lines and the

planes

The most important advantage of the method based on Xoring the lines and the planes

is its simplicity which ultimately causes the process to be fast. The only logic gate needed

for the mapping process is Exclusive-OR gate. And since affib=c=>b=affic, to recon­

struct the matrix, again just Exclusive-OR is needed ..

Table 9.3 shows the comparison between the method based on JPEG algorithm and

that based on the Xoring the lines and the planes.

Speed Compression Factor Complexity

JPEG Slow Excellent Complicated

Xoring Fast Good Simple

Fig. 9.3 The comparison between the JPEG algorithm and Xoring The lines and the planes.

The mapping process requires just 2 Exclusive-ORs for each bit of the bit planes.

Therefore for each pixel it requires 16 XOR gates, while for the case of the JPEG, the

algorithm explained in 4.2.1 shows that for each pixel, an expression containing one addi­

tion and two multiplications needs to be executed 64 times.

Therefore the mapping process for the case of JPEG is much more complicated than

that for the case of Xoring the lines and the planes, and this makes the JPEG Process much

slower than Xoring the lines and the planes.

99

The most important advantage of the JPEG algorithm is the fact that with JPEG it is

possible to obtain a very high compression factor, specially for the continuous-tone

images. Xoring the lines and the planes to obtain a high compression factor (more than

5), requires loss of information from the 4th and sometimes even the 3rd MSB planes

which has a bad effect on the quality of the picture. However, figures 9 .2, 9 .4, 9 .6 shows

that we can have a good quality images with compression factor 8/2.5. Figures 9.7, 9.8

and 9. 9 show the compressed images with compression factor 8/2.5 using JPEG.

(~X!d n d Sl!q ~·G)
03df 2~sn ~2'91.ll! p~SS~ldUIO~ f 6 ·2!t1

()OJ

101

WI

103

table 9.3: Huffman codes used for the runs in the MSB and the 2nd MSB planes after Xoring the lines.

#of bits Huffman-code #of bits Huffman-code

0 000011100 19 00010101

1 1 20 00101001

2 011 21 00101011

3 0011 22 01001001

4 00011 23 01001011

5 01011 24 01000101

6 001001 25 000011101

7 010011 26 000011011

8 010101 27 000011001

9 0000101 28 000010011

10 0000011 29 000010010

11 0010110 30 000000111

12 0010111 31 000100011

13 0100011 32 000100001

14 0101001 33 000100101

15 00001111 34 000100010

16 00000101 35 000100100

17 00000001 36 000101001

18 00010011 37 000101111

104

#of bits Huffman-code #of bits Huffman-code

38 000101101 57 0000000011

39 000101110 58 0000001100

40 001000101 59 0000001101

41 001000001 60 0001000001

42 001010001 61 0001010001

43 001010100 62 0001011000

44 001010101 63 0001011001

45 010001001 64 0010001111

46 010000111 65 0010001001

47 010000101 66 0010000100

48 010000110 67 0010000101

49 010000011 68 0010000110

50 010100001 69 0010000111

51 010000001 70 0010000001

52 010100011 71 0010100000

53 0000110101 72 0010100001

54 0000100011 73 0100101011

55 0000100001 74 0100101010

56 0000010001 75 0100001000

105

#of bits Huffman-code #of bits Huffman-code

76 0100001001 95 00000010101

77 0100000101 96 00010000001

78 0100000001 97 00010100001

79 0101000001 98 00100011011

80 0101000100 99 00100011100

81 0101000101 100 00100011101

82 00001100011 101 00100010001

83 00001101001 102 00100011001

84 00001000001 103 00100011010

85 00001000100 104 00100000001

86 00001000101 105 01001010011

87 00000100101 106 01001000001

88 00000100110 107 01001010000

89 00000100111 108 01001010001

90 00000100001 109 01001010010

91 00000100000 110 01000100010

92 00000100100 111 01000100011

93 00000010110 112 01000001001

94 00000010111 113 01000100000

106

#of bits Huffman-code #of bits Huffman-code

114 01000100001 133 000000100011

115 01010000000 134 000000100100

116 01010000001 135 000000100101

117 01000000001 136 001000100001

118 000011010001 137 001000110000

119 000011000101 138 001000110001

120 000010000001 139 000101000001

121 000011000000 140 000101000000

122 000011010000 141 010010001001

123 000011000001 142 010010001010

124 000011000010 143 010010001011

125 000011000011 144 010010001100

126 000011000100 145 010010001101

127 000000100110 146 010010001110

128 000000100111 147 010010001111

129 000000101000 148 010010000001

130 000000101001 149 010010000000

131 000100000001 150 010010000100

132 000000100010 151 010010000101

107

#of bits Huffman-code #of bits Huffman-code

152 010010000110 171 0010000000000

153 010010000111 172 0010000000001

154 010010001000 173 00000000011100

155 010000010001 174 00000000011101

156 010000000001 175 00000000011110

157 010000000000 176 00010000000001

158 010000010000 177 00000000011111

159 0000001000001 178 00000000000001

160 0000001000010 179 00000000010000

161 0001000000001 180 00000000010001

162 0000001000011 181 00000000011000

163 0000000001011 182 00000000011001

164 0000000001001 183 00000000011010

165 0000000001010 184 00000000011011

166 0000001000000 185 000000001000000

167 0010000000010 186 000000001000001

168 0010001000000 187 000000001000010

169 0010001000001 188 000000001000011

170 0010000000011 189 000000001000100

108

#of bits Huffman-code #of bits Huffman-code

190 000000001000101 209 00010000000000

191 000000001000110 210 000000001011000

192 000000001000111 211 000000001011001

193 000000001001000 212 000000001011010

194 000000001001001 213 000000001011011

195 000000001001010 214 000000001011100

196 000000001001011 215 000000001011101

197 000000001001100 216 000000001011110

198 000000001001101 217 000000001011111

199 000000001001110 218 000000000001111

200 000000001001111 219 000000000010000

201 000000001010000 220 000000000010001

202 000000001010001 221 000000000010010

203 000000001010010 222 000000000010011

204 000000001010011 223 000000000010100

205 000000001010100 224 000000000010101

206 000000001010101 225 000000000010110

207 000000001010110 226 000000000010111

208 000000001010111 227 000000000011000

109

#of bits Huffman-code #of bits Huffman-code

228 000000000011001 247 000010000000000

229 000000000011010 248 000010000000001

230 000000000011011 249 000010000000010

231 000000000011100 250 000010000000011

232 000000000011101 251 000010000000100

233 000000000011110 252 000010000000101

234 000000000011111 253 000010000000110

235 000000000000001 254 000010000000111

236 000000000001110 255 0000000000000000

237 000000000000100 256 0000000000000001

238 000000000000101

239 000000000000110

240 000000000000111

241 000000000001000

242 000000000001001

243 000000000001010

244 000000000001011

245 000000000001100

246 000000000001101

110

table 9.4: Huffman codes used for the runs in the 3rd MSB and the 4th MSB planes after Xoring the lines.

#of bits Huffman~ode #of bits Huffman~ode

0 010000100 19 00001101

1 1 20 00001100

2 011 21 010000101

3 001 22 000000111

4 0001 23 000000101

5 01011 24 000000001

6 010011 25 000010011

7 010001 26 000010010

8 010101 27 000010001

9 000001 28 000010000

10 0100101 29 0100100011

11 0101001 30 0100000011

12 0101000 31 0000001101

13 0000101 32 0000001100

14 0000111 33 0000000001

15 01001001 34 01001000001

16 01000011 35 01001000011

17 01000001 36 01001000101

18 00000001 37 01000000101

111

#of bits Huffman-code #of bits Huffman-code

38 01000000001 57 0100000000001

39 01000000011 58 0100000010000

40 01000000010 59 0100000010001

41 00000010001 60 0100000010010

42 00000010011 61 0100000000000

43 00000010010 62 0000000000001

44 00000000001 63 0000000000000000

45 010010000001 64 0000000000000001

46 010010000101 128 0000000000000010

47 010010001001 192 0000000000000011

48 010010000100 256 0000000000000100

49 010010001000 320 0000000000000101

50 010000000001 384 0000000000000110

51 000000100001 448 0000000000000111

52 000000100000

53 000000000001

54 0100100000001

55 0100100000000

56 0100000010011

112

Chapter 10

Conclusion

An image compression method based on fixed polarity Reed-Muller Transform was

created and analyzed in order to improve the method introduced by Reddy & Pai [3]. It

was shown that this method cannot provide a good compression factor, therefore it cannot

be a good candidate for image compression, although the method is fast.

It was also shown that, the paper published by Reddy & Pai on Reed-Muller image

compression contains several errors which make the paper invalid.

A fast algorithm for image compression based on Xoring the adjacent elements of the

bit planes and Xoring the corresponding bits of the resulting planes was introduced, and

it was demonstrated that this method provides a much better compression factor than the

method based on Reed-Muller transform, so that the quality of the reconstructed image

for the compression factor of 8/2.5 is very good. Remarkably, in addition to high com­

pression factor the hardware to realize this technique is very simple, and requires the

minimum number of operations, comparing to the other methods.

If an efficient algorithm is developed for optimum permutation of the input sequence

in Reed-Muller image compression, the result might be good, but nobody has developed

any method yet. Therefore for future work it can be a subject to work on.

113

REFERENCES

1. Hunter, R., Robinson, A.H. International digital facsimile coding standards. In Pro­

ceedings of the IEEE, Vol. 68, No. 7, July 1980, pp. 854-867.

2. Reddy, B. R. K., Siddiqi, M. U., Mullick, S. K. Image data compression using local

behavior of Haar Transform. In J. INSTN. ELECTRONICS & TELECOM. ENGRS.,

Vol. 29, No. 5, 1983, pp. 204-210.

3. Reddy, B. R. K., Pai, A. L., Reed-Muller Transform Image Coding, Computer Vision,

Graphics, and Image Processing, Vol. 42, 1988, pp. 48-61.

4. Yamazaki, Y., Wakahara, Y., Teramura, H. Digital Facsimile equipments "Quick­

FAX" using a new redundancy reduction technique. In National Telecommunications

Co1·?ference. 1976, pp. 6.2.1-6.2.5

5. Huffman, D. A. A method for the construction of minimum redundancy codes. In

Proceedings IRE, Vol. 40, 1962, pp.1098-1101.

6. Karpovsky, M. G. Finite orthogonal series in the design of digital devices, Halsted

Press, 1976.

7. Reed, I. S. A class of multiple-error correcting codes and their decoding scheme, In

IRE Transactions on Information The01y, Vol. PGIT-4, 1954, pp. 38-49.

114

8. Muller, D. E., Application of Boolean algebra to switching circuit design and to error

detection, In IRE Transactions on Electronic Computers, Vol. EC-3, September

1954, pp. 6-12.

9. Green, D. H., Modem Logic Design, Electronic Systems Engineering Series, 1986.

10. Zhang, Y. Z., Rayner, P.J.W., Minimization of Reed-Muller polynomials with fixed

polarity, In IEE proceedings, Vol. 131, Pt. E, No. 5, September 1984, pp. 177-186.

11. Duan, J. R., Wintz, P. A., Information Preserving Coding for multi spectral scanner

data, TR-EE-74-15, School of Electrical Engineering, Purdue University, Indiana,

1974.

12. Chen, P. H., Wintz, P. A., Data compression for satellite images, TR-EE-76-9,

School of Electrical Engineering, Purdue University, Indiana, 1976.

13. Gonzales, R. C., Wintz, P. A., Digital Image Processing, Addison-Wesley Publishing

Company, 1983.

14. Sarabi, A., Perkowski, M. A., Cube based method for optimal and quasi-optimal

minimization of Consistent Generalized Reed-Muller expansions, School of electri­

cal Engineering, Portland State University, 1992.

15. Wallace, G. K., The JPEG still picture compression standard, Multimedia Engineer­

ing Digital Equipment Corporation, 1991.

16. Nelson, M., The Data Compression Book, Redwood City, CA: M&T Books, 1991.

	An Analysis of Approaches to Efficient Hardware Realization of Image Compression Algorithms
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1554333673.pdf.CS5i7

