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ABSTRACT 

An abstract of the thesis of Kamran Iravani for the Master of Science in Electrical 

and Computer Engineering presented October 27, 1994. 

Title: An analysis of approaches to efficient hardware realization of image compres­

sion algorithms. 

In this thesis an attempt has been made to develop a fast algorithm to compress 

images. The Reed-Muller compression algorithm which was introduced by Reddy & Pai 

[3] is fast, but the compression factor is too low when compared to the other methods. 

In this thesis first research has been done to improve this method by generalizing the 

Reed-Muller transform to the fixed polarity Reed-Muller form. 

This thesis shows that the Fixed Polarity Reed-Muller transform does not improve 

the compression factor enough to warrant its use as an image compression method. 

The paper, by Reddy & Pai [3], on Reed-Muller image compression has been criti­

cized, and it was shown that some crucial errors in this paper make it impossible to evalu­

ate the quality and compression factors of their approach. 

Finally a simple and fast method for image compression has been introduced. This 

method has taken advantage of the high correlation between the adjacent pixels of an 

image. If the matrix of pixel values of an image is divided into bit planes from the Most 
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Significant Bit (MSB) plane to the Least Significant Bit (LSB) plane, most of the adjacent 

bits in the MSB planes (MSB, 2nd MSB, 3rd MSB and 4th MSB) are the same. Using 

this fact a method has been developed by Xoring the adjacent lines of the MSBs planes 

bit by bit, and Xoring the resulting planes bit by bit. It has been shown that this method 

gives a much better compression factor, and can be realized by much simpler hardware 

compared to Reed-Muller image compression method. 
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Chapter 1 

Introduction 

In recent decades there has been a great interest in image data compression. This is 

due to the fact that digital representation of the images usually requires a large number 

of bits, while in many applications it is desired to represent the image with a fewer number 

of bits. 

Depending on the applications, different compression methods have been developed. 

For example in some applications it is important not to lose any information while com­

pressing the images. In other words the reconstructed image is desired to be exactly the 

same as the original one. In other applications it is desirable to compress the image as 

much as possible. It is only necessary that the quality of the image be good enough for 

visual or machine analysis, and loss of some in formation about the image is acceptable. 

Based on these applications there are two general categories of image compression 

techniques, lossy image compression and lossless image compression. In lossy image 

compression the reconstructed image is not exactly the same as the original but the com­

pression factor is high, while in lossless image compression the reconstructed image is 

exactly the same as the original one but the compression ratio is not as high. Therefore 

there is going to be a trade off between the compression factor and the quality of the 

image. 

Another important factor in image compression techniques is the speed of the process. 

For example in some applications it is important for the process to be fast, while in other 
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applications it is only required that the image is compressed regardless of how fast it is 

done. The speed of the process is directly related to the number of operations needed for 

the compression, and also to the hardware realization of the compressor. Sometimes to 

obtain a good compression factor the circuit has to do many operations which makes the 

process slow. 

Therefore to choose a compression technique for a specific type of images, four im­

portant factors are considered: The compression factor, the quality of the image, the speed 

of the process, and the cost of the technique. 

For example, NASA has used Differential Encoding[ 11] to monitor the surface of the 

earth. Differential Encoding is a lossless image compression technique which gives a 

good compression factor for these type of images. This method is based on calculating 

the difference between the pixel values of adjacent lines in the image. 

Run-Length Coding (12] is another lossless method used to compress images. In this 

method each sequence of the pixel values is described by two numbers. One number 

shows the value of pixels and the other number shows the run-length. This method is 

specially used for the images that contain only two different values. For example Run­

Length Coding is implemented for flood maps where the presence of water is represented 

by white and the absence of water is represented by black.. 

In the early 1980s a joint ISO/CCITT committee known as JPEG (Joint Photographic 

Experts Group) (15],[16] began working on a new method of image compression that 

would greatly outperform the more conventional compression techniques. This method 

has become the first international compression standard for continuous-tone still images. 

This standard supports a wide variety of applications. The JPEG specification consists 
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of several parts including the specification for both lossless and lossy compression. For 

lossless compression the Predicting/ Adaptive coding technique is used. In this method 

some information about upcoming pixels is predicted based on the previous pixels seen. 

The most interesting part of the JPEG specification is the technique for lossy compres­

sion. This method is based on the Discrete Cosine Transform (DC1), and for continuous­

tone images, it gives a high compression factor with good quality. The only disadvantage 

of this method is that the process is slow because it requires a large number of operations. 

To obtain a fast method of compression, research has been done on compression using 

the Haar Transform [2]. Karpovsky [ 6] has shown that since expansion coefficients of 

logical functions in Haar series depend on the local behavior of this function, such an or­

der of arguments can be found that gives the minimum number of non-vanishing coeffi­

cients. This property has been used to compress the image. This method is a lossless 

method but the compression factor is not very high. Although the process requires less 

number of operations compared to the JPEG algorithm, this method did not become popu­

lar because it has a low compression factor. 

Another approach to obtain a fast method for image compression was made by Reddy 

& Pai [3] who used the Reed-Muller transform for this purpose. In this method the pixel 

matrix of image is divided into eight matrices from the Most Significant Bit (MSB) plane 

to Least Significant Bit (LSB) plane, and on each plane the Reed-Muller transform is per­

formed, and next the run-length coding [l],[4] is used. Although this method is fast it 

does not give a good compression factor. The published paper by Reddy & Pai contains 

several mistakes which make their results and conclusions unacceptable. 
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It was the purpose of this thesis to improve the Reed-Muller image compression by 

using the fixed polarity Reed-Muller transform [7]-[10], [11], which is a more general 

case. It was shown that the result is still poor and a good compression factor cannot be 

obtained. Solely for the purpose of comparison, a new method was introduced which is 

very simple and very fast with a much higher compression factor compared to the Reed­

Muller transform. This method has taken advantage of the correlation between the adja­

cent lines. This method is based upon Xoring the lines and planes, and gives a good com­

pression factor. 

In this thesis some of the methods, from above, have been investigated, and the main 

goal has been to develop a fast method with reasonable quality and good compression fac­

tor. 

In chapter 2, image compression methods in general have been explained and all the 

steps involved have been overviewed in more detail. These steps are Mapping, Quantiz­

ing and Coding for lossy compression, but for lossless compression they are just Mapping 

and Coding. Because, as it will be explained, the quantization step causes an information 

loss. 

In chapter 3, Run-Length Coding has been explained in detail. This method of coding 

is used in most of the image compression techniques. Since all of these coding methods 

use Huffman coding [ 5], the creation of Huffman codes is explained first. Then one di­

mensional Run-Length Coding (RLC) [ 1] and two dimensional Run-Length Coding 

which consists of Relative Address Coding (RAC) [ 4] and Relative Element Address 

Designate (READ) [1] are explained. Two dimensional coding techniques are usually 

more efficient than one dimensional coding, but they are more complicated. 
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In chapter 4, the JPEG algorithm for lossy compression has been explained in detail. 

In this chapter the Discrete Cosine Transform (DCT) has been explained and it has been 

shown that the compression based on DCT requires a large number of operations, al­

though the compression factor is very good. 

In chapter 5, the compression based on Haar transform has been investigated. In this 

chapter the algorithm to find the best order of arguments to give the minimum number 

of nonvanishing coefficients has been explained step by step. Then image compression 

using this technique is presented. 

In chapter 6, compression based on Reed-Muller transform is discussed. First posi­

tive polarity Reed-Muller and fixed polarity Reed-Muller expansion of a Boolean func­

tion is explained. Next, the algorithm for compressing image by this transform is investi­

gated. Finally, comments on the local behavior of Reed-Muller transform and on the 

possibility of finding a good permutation of input vector which gives the minimum num­

ber of nonvanishing coefficients, are made. 

In chapter 7, a discussion on the paper published by Reddy & Pai [3] on Reed-Muller 

image compression is made, and the mistakes in this paper are exposed and analyzed. The 

mistakes are in both transformation and coding which makes the results of this paper total­

ly unacceptable. 

In chapter 8, a new compression method which is realized by Xoring the lines and 

planes is explained, and the reasons for having a relatively good compression factor are 

given. 

In chapter 9, the experimental results of both image compression methods, the fixed 

polarity Reed-Muller transform, and the Xoring of lines and planes, are presented. These 
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results show that the latter method is a better one from the point of view of the quickness, 

hardware realization, and compression factor. In this method the compression factor in 

some planes is more than twice as high as that of the former method. The compression 

has been applied three different natural pictures which are continuous-tone still images. 

In chapter 10, the conclusion of this thesis is given. 



Chapter 2 

An Overview of Image Compression Methods 

2.1. Introduction 

In this chapter image compression methods are explained in general, and all the steps 

involved in the process of compressing an image are discussed. This provides the general 

background needed for the following chapters about image compression techniques. 

2.2. Image compression 

In general, an image compression technique consists of three successive steps: Map-

ping, Quantizing and Coding, which can be modelled by a block diagram from Fig. 2.1. 

In this diagram the matrix of pixel values is shown as a vector form (one dimensional 

array), while it can be also two-dimensional. 

Input Vector Transformed Quantized Binary 
(Pixel Values of image) Vector Vector Code Words 

-bol 

m ['.'.] 
b1 

Lbnj 
Mapper I I Quantizer I I Coder I 

Fig. 2.1 The block diagram of the process of image compression 
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In the following, each of these steps will be briefly described: 

2.2.1 Mapper 

A mapper gets a set of image elements ( pixel values ) as input data and transforms 

it into another set of values. Depending on the type of the transformation the characteris-

tics of the new set are different. 

Some Mappers perform transformations which cause the useful information of the in-

put data to be concentrated into a small number of samples. The Fourier transform and 

the Cosine transform are among those transforms used in these types of Mappers. For 

example in the JPEG compression method, which uses the Discrete Cosine transform 

(DCT) [ 16], the mapper causes the more useful information of the input matrix to be con-

centrated in the upper left corner of the transformed matrix ( Fig. 2.2 ). 

A subset of 

Image elements 

i.e. 

( 
A matrix of ) 

Pixel Values 

More 
Useful 
Info. Less 

Useful 

Information 

Mapper(DC1) 11-----------
Fig. 2.2 The effect of DCT on the input matrix 

If the less useful information in the output matrix is discarded, a high compression 

factor can be obtained. 
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In these transforms usually every single element of the output vector (matrix) depends 

on all elements of the input vector. Consequently the process is quite slow and also the 

hardware for these Mappers is somehow complicated. 

Some other mappers transform the input data in such a way that the redundant in-

formation in the output is decreased. The transform used in the differential encoding 

method is a good example of this type of Mapper. In these transforms usually each ele-

ment of the output vector depends on a subset of the input elements. 

A linear transform can be represented in general as in Eq. (2.1) 

bo I [m11 

m12 b1 m21 

bnl mm1 

T][::] 
mmn an 

( 2.1) 

In black and white images the elements of the input vector [ ac. a1 , • •• an]T are usually 

represented by 8 bits (one byte). In some methods the input matrix is divided into 8 ma-

trices corresponding to bit planes from the most significant bit plane to the least signifi-

cant bit plane, and the transformation is performed on each bit plane separately. These 

transformations are binary, and they usually cause the number of nonzero elements to be 

decreased. The Reed-Muller transform belongs to this group. In this method the map-

ping process is usually performed in two steps. First, a permutation matrix is defined 

to permute the elements of the input bit planes, then the permuted data is transformed by 

the transformation matrix. In other methods such as the Haar transform, these two steps 

are also performed but there is no need for dividing the matrix into binary plane matrices 
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( Fig. 2.3 ). In this method the permutation is done in such a way that the transformation 

gives the minimum number of nonzero elements. 

Mapper 

Input Vector Permutation Haar output vector 
Transform 

Fig. 2.3 Function of the mapper when Haar transform is used 

An important point about the Mappers is that the Mapper operation is reversible. In 

other words the input vector can be reconstructed if the output vector is known. This 

comes from the fact that there is not any information loss in the operation. 

2.2.2. Quantizer 

In general the function of a quantizer is to take some data as the input, and generate 

corresponding data at the output, but the output data can have just a limited number of 

possible values. An example of a quantizer can be a function that generates the integer 

part of a real number. As it is shown in Fig. 2.4, the x variable can have any real number 

but the function y can have just integer numbers whose values are smaller and closest to 

x, i.e. y=[x]. 

It is obvious that the operation of a quantizer is not reversible, in other words knowing 

the output, the input cannot be reconstructed. Therefore, in the case when error-free 

image compression techniques are required, a quantizer cannot be used. When some error 



y 

5 

4 

3 

2 

1 

1 2 3 4 5 6 

Fig. 2.4 The function for a type of quantizer 
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x 

in the reconstructed image is tolerable, quantizing the data is an excellent technique to 

receive a high compression factor. 

It is important to note that for some methods such as the JPEG algorithm, quantization 

of the data must be performed, otherwise no compression can be obtained. For these 

methods the mappers perform transformation in such a way that quantization may be ex­

ploited well. 

For other methods, quantization can be utilized to obtain a better compression factor, 

although without quantization the compression factor still remains higher than one. 

2.2.3. Coder 

A coder in an image compression system takes data from the quantizer ( or from the 

mapper when there is no any quantizer in the system) and generates the codewords which 

usually contain a lower number of bits to represent an image. 
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The operation of a coder is reversible because it assigns a unique codeword C; to each 

input value q; , so that knowing the output, the input value can be reconstructed. 

Depending on the method of compression, different types of coding can be used. In 

some methods a specific codeword is assigned to each input value, but the length of the 

codewords on the average is less than the length of the input values. In chapter 3, Run­

Length coding, which is the most common used type of coding used for image compres­

sion, will be explained. 



Chapter 3 

Run-Length Coding 

3.1. Introduction 

Run-length coding is a data compression method which is used to code any type of 

repeating character sequences. This method of coding has been widely used in several 

fields such as facsimile communication and image compression. 

As mentioned before, in Reed-Muller image compression each picture matrix is con­

verted to eight bit plane matrices which consist of two different values of elements, i.e. 

0 and 1. Therefore to code the data of a bit plane matrix, methods similar to those used 

for facsimile communication can be used, because the facsimile signals also consist of 

two different elements (fhe facsimile signals obtained by scanning the document com­

prise just black and white picture elements). We can assume white as 0 and black as 1. 

In this chapter, three methods of Run-Length coding used in facsimile communication 

and image compression are explained: 

1) Conventional Run-Length Coding (RLC) 

2) Relative Address Coding (RAC) 

3) Relative Element Address Designate (READ) 

In each of the above methods there is a need to find Huffman codes for different 0 

(white) runs or 1 (black) runs. First the algorithm to generate Huffman codes is ex­

plained. 
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3.2. Huffman Algorithm 

Huffman coding is one of the well-known methods for effectively coding symbols. 

Huffman coding creates variable length codes that have an integral number of bits, and 

symbols with higher probability receive shorter codes. Decoding a stream of Huffman 

codes is generally done by following a binary decoder tree. 

Using an example this algorithm is shown clearly: assume there are 5 symbols (A, 

B, C, D, E) in our stream with different frequencies, for example we have 16 As, 8 Bs, 

6 Cs, 6 Ds and 5 Es ( Fig. 3.1 ) 

16 

A 

8 

B 

6 

c 

6 

D 

5 

E 

Fig. 3.1 Example of five symbols 

Now using the following rules we find the Huffman codes for the symbols: 

a) The two free nodes with the lowest weights are located. In this example these are 

E and D with weights of 5 and 6 ( the tie between C and D was broken arbitrarily and it 

will not affect the compression ratio ). 

b) A parent node for these nodes is created. It is assigned a weight equal to the sum 

of the two child nodes ( Fig. 3.2 ). 



6 
D 

11 

5 
E 

Fig. 3 .2 The first step to code the symbols 
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c) The parent is added to the list of free nodes, and the two child nodes are removed 

from the list Therefore in our example, E and D are removed from the free list 

d) One of the child nodes is designated as the path taken from the parent node when 

decoding a 0 bit, the other is arbitrarily set to the 1 bit. In our example D is then assigned 

to the 0 branch of the parent node and Eis assigned to the 1 branch (Fig. 3.3). These two 

bits will be the LSB s of the resulting codes. 

11 

O I 1 

6 5 
D E 

Fig. 3.3 the first bit assignment to D and E 

e) The previous steps are repeated until only one free node is left. This free node is 

designated to become the root of the tree. 

On the next pass through the list of free nodes, the B and C nodes are then taken as 

the two with the lowest weights. These are then attached to a new parent node, and the 
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parent node is assigned a weight of 14, and B and C are removed from the free node list. 

At this point the tree is as shown in Fig. 3.4. 

On the next pass the two nodes with the lowest weights are the parent nodes for B/C 

and DIE pairs. These are tied together with a new parent node which is assigned a weight 

of25. 

Continuing the steps the final result will be as in Fig. 3.5. 

16 
A 

1 

8 
B 

ROOT 

0 
14 

0 

1 

0 

6 
c 

25 

1 

6 
D 

0 

Fig. 3.5 The final Huffman tree for the symbols 

11 
1 

5 
E 

From the tree the Huffman codes for our symbols will be as in Fig. 3.6. 

A: 1 

B: 000 

C: 001 

D: 010 

E: 011 

Fig. 3.6 The Huffman codes for the symbols 



3.3. Run-Length Coding 

In general there are two methods of Run-Length Coding: 

1) One dimensional coding 

2) Two dimensional coding 
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The conventional Run-Length Coding (RLC) is a one-dimensional coding method, 

while the Relative Address Coding (RAC) and Relative Element Address Designate are 

two-dimensional coding methods. In the following all three methods will be discussed: 

3.3.1. One dimensional Run-Length Coding ( RLC ) 

In this method each matrix is regarded as a sequence of alternating independent runs 

of 0 (white) and 1 (black) elements. So a table can be formed that consists of two col­

umns, one containing all the 1 ( black) run-length values and the other containing all the 

0 ( white ) run-length values. Then the probability of occurrence of each run-length can 

be calculated from the table. Now based on these probabilities, Huffman coding can be 

performed. It can be shown that Huffman's procedure [x] is the optimum method of 

constructing a uniquely decodable and instantaneous code which has the smallest average 

code word length for a given independent run. 

As an example, assume Fig. 3. 7 shows a part of a facsimile signal from a document. 

The RLC code from point A to point B can be computed as follows: 
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A B 

t ' 100000000000000111111110000001 

Fig. 3.7 A sample of 1and0 runs 

If we assume that the value 0 represents white elements and that the value 1 represents 

black elements, from A to B there are: a run of 14 white elements, then a run of 8 black 

elements, and then a run of 6 white elements. The Huffman code table is used for the 

facsimile signals which has been created based on the probability of the occurrence of 

different white and black runs in a great number of different documents. According to 

this table, the code for 14 white run is 110100, for 8 black run it is 10011 and for 6 white 

run it is 1110. So the resulting Run-Length code for the string from A to B is 

110100100111110. 

3.3.2. Compression efficiency 

If each zero run-length value is shown by r 0 and the probability of its occurrence 

by P(r0) the average zero run-length value ( r0 ) can be calculated by Eq. (3.1): 

n 

Fo = L ro.P(ro) ( 3.1) 

r 0 =0 

where n is the largest value of r0 • 
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The average amount of information in bits for each Zero Run is given by the entropy 

Ho, as in Eq. (3.2). 

n 

H 0 = - I P(r0). log2P(r0) ( 3.2) 
r 0 =0 

In fact Ho is the minimum average number of bits needed to code r 0 s. 

Similar equations can be written for the average one ( white ) run-length value r 1 and 

the entropy of the one runs Hi. 

To find the maximum theoretical compression factor Qmax for a given set of run-

length values, we see that the average number of bits in a one-run is i 1 and in a zero-run 

is f 0, while we need H 1 number of bits to code r 1 and Ho number of bits to code r0 , 

so the maximum compression factor can be calculated by Eq. ( 3.3 ): 

( 3. 3) 

In Eq. (3.2), - Iog2P(r0) shows the number of bits required to encode run-

length r 0 , and is not necessarily an integer number. Huffman coding gives a way of 

rounding this number to a closed integer value. Because of this, if n(r 0) is the length 

of the code word representing the zero run-length r 0 , the average number of bits repre-

sen ting the zero runs will be equal to or more than Ho and less than HO+ 1 as stated in Eq. 

(3.4): 
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n 

H 0 s L n(r0).P(r0) < H 0 + 1 ( 3.4) 
r 1 =0 

Therefore the maximum compression factor as in Eq. (3.3) cannot be obtained. 

Another important issue in facsimile communication or in an image compression tech-

nique is that the Huffman codes are not defined specifically for every single document 

or matrix. In fact Huffman codes are defined based on statistics averaged over many typi-

cal documents. So these codes usually are not optimum for a specific matrix, and this 

causes the compression factor to be decreased. 

3.3.3. Relative Address Coding ( RAC ) 

Relative Address Coding ( RAC ) is a two dimensional coding method which was 

first used to code facsimile signals. In conventional Run Length Coding ( RLC ) the 

address of every kind of transition element is represented by the distance from the preced-

ing transition element in the same line in terms of the number of picture elements, making 

a good use of the statistical intra-line correlation. Relative Address Coding not only has 

taken advantage of the intra-line correlation but also exploited the inter-line correlation 

of the signals of the picture. So RAC can cause a remarkable reduction of redundant in-

formation in the data. Since each matrix plane consists of two kinds of information (0& 1) 

and the information of each line is highly correlated to that of its adjacent lines, RAC can 

be a very useful coding method for this type of case. Before explaining the principle of 

RAC, some important terms need to be defined. 
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3.3.3.1. Transition Elements 

As it has been described before, to reconstruct a matrix plane at the receiving end, it 

is sufficient to encode and transmit the addresses of only the transition elements (a transi­

tion element is the element which is different from its previous element in the same line). 

In RAC the transition elements are classified into three types, as shown in Fig. 3.8. 

n 

n+l 

n+2 

STH ---ETH 

1 0 0 ... 

\ \ 
.1111110011111 ... 

Fig. 3.8 STHs and ETHs in a sample of 0 and 1 runs 

I) Starting Transition element of Head run ( STH ): 

A head run is a One Run or a Zero Run that there exists no elements on the preceding 

line which are of the same type and are adjacent to the run. An STH is the first element 

of a head run. 

For example Fig. 3.8 shows a part of a plane matrix. In this figure in Row number 

n+ 1 there are 3 Zero Runs and 2 One Runs. The first One Run of this line is a head run 

because a 1 does not exist in line number n, i.e. preceding line, adjacent to this run. There-
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fore, the first element of this run is an STH. While the other runs in this line are not head 

run. Another head run is the Zero Run in Row number n+2, because there is no zero in 

Row number n+ 1 adjacent to this run. 

II) Ending Transition element of a Head run ( ETH ): 

An ETH is the transition element next to the head run. For example in Fig. 3.6 we 

have 2 of ETHs because we have 2 head runs. 

III) Displacement Transition element ( DTE ): 

A DTE is a transition element which is neither STH nor ETH. For example in Fig. 

3.8 there are 2 STHs, 2 ETHs and the rest of the transition elements are DTEs. 

3.3.3.2. Principles of the RAC method 

Fig. 3.9 shows a part of a plane ~ Using this example the principle of RAC 

method will be shown. ~~ 

c ·~ .• ~ 

t ~~ ~~~. t 
. 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 

... 1100000001111000000 

4 ~ ~ 
A B D 

Fig. 3.9 Transition elenl ~!1 a part of a plane matrix 
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In Fig. 3.9 the transition element Bis shown. In regard to the transition element B, 

two reference elements are selected according to the following rules: 

a) The first reference element A is the preceding transition element on the same line 

to the transition element B. In the case that the first reference element defined above does 

not exist, the first element on the line is to be the first reference element. 

b) The second reference element C is the transition element that has the same direc­

tion of transition as the transition element B and is the nearest to the first reference element 

A on its right side. In the case that the element defined above does not exist, the second 

reference element is the imaginary element next to the last element on the preceding line. 

The address of transition element B is encoded by the distance from the standard ele­

ment that is selected between the two reference elements A and B according to the follow­

ing rules: 

a) If the transition element is an STH, the standard element is A. 

b) If the transition element is an ETH, the standard element is A. 

c) If the transition element is a DTE, in the case that the distance from the first refer­

ence element A to the transition element B is more than one element and that the first ref­

erence element A is nearer to B than the second reference element C, the first reference 

element A is selected to be the standard element, and the distance is expressed by the num­

ber without sign. In all other cases, the second reference element C is selected to be the 

standard element, and the distance from C to B is expressed by the number with "+" if 

C is just upon or to the left of B, and is expressed by the number with"-" if C is to the 
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right of B. Table 3.1 shows the summary of this sign assignments. 

position of the reference element in sign 
relation to the transition element 

On the same line No sign 

On the preceding line, just upon or left + 

On the preceding line, right -

Table 3.1 Sign assignment for relative distances 

For example in Fig. 3.9 in the case of coding the transition element B, since the dis-

tance AB(= 7) is greater than the distance BC(= 1 ), C is selected to be the standard element, 

and since C is on the right of B the address of B is encoded with a"-" sign. As a result 

the number used for the address of Bis "-1". In a similar manner it can be shown that 

the address of transition element D will be "4" because the distance DB(=4) is smaller 

than DE(=5) and Bis also on the same line as D, so there is no sign for that. 

To encode the address of each transition element Huffman codes can be used. By 

finding the probability of the occurrence of every distance to be coded by computer simu-

lation, it is possible to find the best Huffman code for this method. 

3.3.4. Relative element address designate ( READ ) 

READ is a two dimensional coding technique which is the most efficient method to 

code the facsimile signals. In this section this method is explained and later its efficiency 



for bit plane matrices will be discussed . 

3.3.4.1. Transition elements 
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In READ, the transition elements are classified into five types. Taking the example 

given in Fig. 3.10, these elements are explained. 

3o: The transition element on the coding line whose position is defined by the pre­

vious coding mode which is described later. This element is the reference element. 

31: The next transition element on the coding line to the right of ao. 

3 2: The next transition element on the coding line to the right of 31. 

b1: The first transition element on the reference line to the right of ao whose color is 

opposite to ao. 

b1: The next transition element on the reference line to the right of b1. 

If any of the above coding elements are not detected at any time during the coding of 

the line, then they are set on an imaginary element positioned just after the last actual ele­

ment. 

4.3.4.2. Coding Modes 

There are three kinds of coding modes defined for READ: 

1) Pass Mode: As shown in Fig. 3.10 (a), the state where b2 lies to the left of 3 1 is defined 

as the Pass Mode. However when the position of b2 is just upon 31, it is not regarded as 

the Pass Mode. 

2)Vertic31 Mode: In this mode the position of a1 is coded relative to the position of b1. 

The relative distance a1b1 is equal to or less than three elements, so it can assume one of 
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b1 b2 

t t 
... 110000011100000000011110 .. . 

100000000000000001111110 .. . 

~ ~ ~ 
ao a1 a2 

(a) Pass Mode 

b1 b2 

t t 
110000011100000000011110 .. . 

100000000000000001111110 .. . 

~ ~ ~ 
ao ai a2 

(b) Vertical Mode 

b1 b2 

t t 
110000011100000000000110 .. . 

100000000000000001111110 .. . 

~ ~ ~ 
ao a1 a2 

( c) Horizontal Mode 

Fig. 3.10 Examples of Pass Mode, Vertical Mode and Horizontal Mode 

the seven values V(O), Vr(l), Vr(2), Vr(3), V1(l), V1(2), V1(3) each of which is repre-

sented by a separate codeword. The subscripts r and I indicate that a1 is to the right or 



27 

left of b 1 respectively. The number in brackets shows the value of the distance 81b1. For 

example in Fig. 3.10 (b) a1b1 is coded by codeword used for V1(2). 

3)Horizontal Mode: If the Pass mode and the Vertical mode cannot be used to code 

the position of 8i, then the Horizontal mode coding is used, Fig. 3.10 ( c ). In this method 

the run-lengths aoa1 and 8182 are coded. 

3.3.4.3. The coding procedure 

When one of the Pass, Vertical, and Horizontal modes is detected, codes based on the 

following are generated. 

-If Pass Mode is detected, i.e. b2 is detected before 8i, then it is coded by pass mode 

code '0001 '. Then the reference element ao is set on the element just below b2 as the new 

starting element for the next coding. 

-If Pass Mode is not detected, two cases are possible: 

8) If 181 b 11 ~ 3 then vertical mode coding is selected, and ao is set on the position 

of 8 1 for the next coding procedure. The codes for this case are the following : 

V(O): 1 

Vr(l): 011 

Vr(2): 000011 

Vr(3): 0000011 

V1(l): 010 

V1(2): 000010 

V1(3): 0000010 
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b) If 131 b 11 > 3 then Horizontal mode coding is selected, and positions of 31 and 32 

are coded. 32is then regarded as the new position of the reference element ao. The code­

word to code 31 and 32 is found from the term H+M(3o31)+M(3132). In this term H is 

coded as '001 ',and M(aoa1) and M(3132) are defined by Huffman code tables that have 

been generated based on the probability of the occurrence of those runs in the picture. 

An important point about two-dimensional coding methods is that since the coding 

of each transition element depends on the elements in the preceding line, if an error occurs 

in one place it could cause errors in the following lines. In order to prevent this undesir­

able situation, a mixing of two-dimensional coding and one dimensional coding is used. 

Usually after one line is coded one-dimensionally, K-1 successive lines are coded two­

dimensionally. In READ coding, the value of K is usually 2 or 4. 
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Chapter 4 

JPEG Algorithm for lossy image compression 

4.1. Introduction 

In this chapter the steps involved in the JPEG algorithm (15],[16] for lossy image 

compression are explained. This method is the best existing compression method for con­

tinuous-tone still images from the point of view of compression and quality factors. But 

this process requires a large number of summations and multiplications which make the 

process slow. Therefore if the speed is not important for us this method is the best. 

4.2. Compression Algorithm 

In JPEG algorithm for lossy image compression each image is considered as a matrix 

of pixel values. Then this matrix is divided to submatrices of size 8 X 8, and on each sub­

matrix the steps shown in Fig. 4.1 are applied. 

4.2.1. The Discrete Cosine Transform (DCT): 

The key to the compression process based on JPEG is the Discrete Cosine Transform 

( DCT ). The DCT is one of the mathematical transforms that includes Fast Fourier Trans­

form ( FFT ). The basic operation of these transforms is to take a signal and transform 

it from one type of representation into another. In an electric signal each point of the sig­

nal shows the amplitude (e.g. the voltage level) of the signal in time domain. The FFT 
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8x8 DCT compressed ......._ ......._ 
Quantization 

......._ 
Coding 

......._ 
~ ~ ~ ~ 

Blocks Transform data 
A~ 

A~ 

table table 

specifications specifications 

Fig. 4.1 The block diagram of JPEG process for lossy compression 

transforms this signal into a set of frequency values that describes exactly the same signal. 

The DCT is closely related to the Fourier Transform. It takes a set of points from the 

spatial domain and transforms them into an identical representation in the frequency do-

main. In our case the signal is a graphical image, so instead of a two-dimensional signal 

plotted on the X and Y axis, the DCT will operate on a three dimensional signal. In fact, 

in this case X and Y axes are the two dimensions of the screen and the amplitude (Z axis) 

of the signal is the value of the pixel at a particular point on the screen. So the value on 

the Z axis denotes the color on the screen. In the case of black and white images the value 

of each pixel can vary in the range of 0 to 255 because we assign 8 bits ( 1 byte ) for each 

pixel, and in the case of color images we assign 8 bits for each of red, green and blue 

colors so 24 bits are assigned for each pixel. 
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The formula for the two dimensional DCT is as in Eq. (4.1). 

N-lN-l 

DCT(i,J) = JNC(i).C(J) I I Pixel(x,y).cos (2.x ~I)ill cos (2y + I)jll ( 4.1 l 
x=Oy=O 2N 

1 
C(x) = /2 

C(x) = 1 

if x = 0 

if x > 0 

Where Pixel(x,y) represents the amplitude (intensity) of the pixel at point (x,y). In 

other words Pixel(x,y) is the value of the element in the xth column and yth row of the 

8 X 8 block (Pixel matrix). Eq. ( 4.1) is the mathematical definition of the N X N DCT. 

Since in the case of JPEG each block is 8x8, the equation will be as in Eq. (4.2): 

7 7 

DCT(i,j) = iC(i).C(J) I I Pixef(x,y).cos (2x :6l)ill cos (2y + l)}II ( 4.2) 

x=Oy=O 16 

1 C(x) = f2 

C(x) = 1 

if x = 0 

lf x > 0 

As an example if the input consists of an 8 X 8 matrix of pixel values as in Fig. 4.2, 

the DCT matrix using equation ( 4.2) will be as in Fig. 4.3. 
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139 144 149 153 155 155 155 155 

144 151 153 156 159 156 156 156 

150 155 160 163 158 156 156 156 

159 161 162 160 160 159 159 159 
Pixel= 1

159 160 161 162 162 155 155 155 

161 161 161 161 160 157 157 157 

162 162 161 163 162 157 157 157 

162 162 161 161 163 158 158 158 
L 

Fig. 4.2 An example of 8 x 8 matrix of pixel values 

235.6 - 1 - 12.1 - 5.2 2.1 - 1.7 - 2.7 1.3 

- 22.6 - 17.5 - 6.2 - 3.2 - 2.9 - 0.1 0.4 - 1.2 

- 10.9 - 9.3 - 1.6 1.5 0.2 - 0.9 - 0.6 - 0.1 

- 7.1 - 1.9 0.2 1.5 0.9 - 0.1 0 0.3 
DCTpixel = I - 0.6 - 0.8 1.5 1.6 - 0.1 - 0.7 0.6 1.3 

1.8 - 0.2 1.6 - 0.3 - 0.8 1.5 1.0 - 1.0 

- 1.3 - 0.4 - 0.3 - 1.5 - 0.5 1.7 1.1 - 0.8 

- 2.6 1.6 - 3.8 - 1.8 1.9 1.2 - 0.6 - 0.4 

Fig. 4.3 DCf matrix of the example 

The DCT matrix shows the spectral compression characteristics. The position (0,0) 

in the upper left-hand comer of the matrix shows the "DC coefficient" which in our ex-

ample is 235.6. This value represents an average of the overall magnitude of the input 

matrix. We should note that the DC coefficient is almost an order of magnitude greater 

than any of the other values in the DCT matrix, and also as the elements move farther and 

farther from the DC coefficient, they tend to become lower and lower in magnitude. This 

means that by performing the DCT on the input data, we have concentrated the represen-

tation of the image in the upper left coefficients of the DCT matrix, with the lower right 

coefficients of the DCT matrix containing less useful information. 
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To reconstruct the image sample from the DCT matrix, we can use the formula for 

Inverse Discrete Cosine Transform ( IDCT) which is given in Eq. (4.3). 

N-lN-1 

Pixel(x,y) = JiN ,2: L C(i).C(J).DCT(i,J).cos (2x :-. !)ill cos <2Y :-. !)jII ( 4.3) 

i=O 1=0 

1 C(x) = ./2 

C(x) = 1 

if x = 0 

if x > 0 

And for the case of JPEG the equation will be as in Eq. (4.4): 

7 7 
Pixel(x,y) = -! L L C(i).C(j).DCT(i,J).cos (2x : _ l)iII cos (2y + l)jII 

i=Oj=O 

1 
C(x) = /2 

C(x) = 1 

if x = 0 

if x > 0 

( 4.3) 

From Eq. ( 4.2) we see that the creation of DCT matrix is straightforward and actually 

is a doubly nested loop. The C code to create the DCT should be something as: 

for( i=O ; i<8 ; i++ ) 

for( j=O; }<8; j++) { 

temp=O; 

for( x=O; x<8; x++) 

for( y=O; y<B; y++) 



34 

temp += pixel[x][y] * cosine[x][i] * cosine[y][j]; 

temp*= (114) * coefficient[i][j]; 

DCT[i] [j]=temp; 

} 

One can observe that the inner element of the loop gets executed 8*8=64 times for 

every DCT element that is calculated. 

A more efficient method to create DCT matrix is to use Cosine Transform Matrix, 

C=[Ci,j], which is defined as follows: 

C··= lJ 

1 
IN 

{i C [(2j + l)in] vN os 2N 

and the DCT matrix can be calculated as follows: 

DCT = C * Pixel * er 

if i = 0 
(4.5) 

if i > 0 

(4.6) 

which er is the C transpose, and * operator refers to matrix multiplication. If we do 

this method for pixel matrix of Fig. 4.2, the result will be as in Fig. 4.3. 

4.2.2. Quantization 

The goal of this processing step is to discard information which is not visually signifi-

cant. Quantization is defined as the division of each DCT coefficient by its corresponding 
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quantizer step size in the Quantization Matrix, followed by rounding to the nearest inte-

ger: 

Quantized Value(i,J) = Q . D~(i;} . C ~ rounded to the nearest integer (4 7) 
uantizaion atnx l,J · 

Each element of the Quantization Matrix can be any integer value from 1 to 255 

which specifies the step size of the quantizer for its corresponding DCT coefficient. 

Since the quantization matrix can be defined at runtime when the compression talces 

place, JPEG allows for the use of any quantization matrix; however, the creators of JPEG 

have developed a standard set of quantization values supplied for use by the implementers 

of the JPEG code. These tables are based on extensive testing by members of the JPEG 

committee and they provide a good baseline for levels of compression. It is obvious that 

if we choose high step sizes for most DCT coefficients, we will obtain excellent compres-

sion ratios and poor picture quality. Conversely if we choose low step sizes, the compres-

sion ratios would not be very good, but the picture quality should be excellent. And based 

on these step sizes, the quality factor of the process is defined which can be up to 100. 

If the quality factor is 100 it means all of the elements of quantization matrix are 1 and 

in fact the reconstructed image will be the same as the original, so that we do not gain 

anything from the process. For the quality factors less than 25, although the compression 

ratio is excellent, the picture quality has degraded far enough to make further degradation 

of the quality factor unacceptable. 

Fig. 4.4 shows the example quantization table for gray scale components included in 

the informational annex of the draft JPEG standard. 
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If we quantize the DCT matrix from Fig. 4.3 by the quantization matrix from Fig. 4.4 

using Eq. (4.7), the quantized matrix will be as in Fig. 4.5. 

15 0 - 1 0 0 0 0 0 
-2 - 1 0 0 0 0 0 0 
- 1 - 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Quantized Matrix= I 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

L 

Fig. 4.5 The quantized matrix of the example 

It can be seen that most of the elements in the quantized matrix are Zero so the data 

from this matrix can be compressed by the entropy encoding process which will be dis-

cussed in the next section. 

4.2.3. Coding 

Coding the quantized images is the final step in the JPEG process. This step itself 

consists of three steps. 

The first step is the DC coding, in fact the DC coefficient is treated separately from 

the 63 AC coefficients. Because there is usually a strong correlation between the DC coef-

ficients of adjacent 8x8 blocks, the quantized DC coefficient is encoded as the difference 

from the DCT term of the previous block in the encoding order. In our example ( Fig. 

4.5 ) the DC component is 15, and if the DC component of the previous block is for exam-
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ple 12, then 15-12=3 will be the DC component of our new code. 

DC;-1 DC· 
' 

Block(i - 1) Block(i) 
DC = DC· - DC· 1 I 1-

Fig. 4.6 Determination of the DC component of the new matrix 

The second step is that all of the quantized coefficients are ordered into the zig-zag 

sequence. Since in the quantized matrix so many values are set to zero ( Fig. 4.5 ), the 

JPEG committee decided to handle zero values differently from other coefficient values. 

In fact for zero values they use Run-Length Encoding ( RLE ) algorithm, while for other 

values they use Huffman or arithmetic coding. 

In Run-Length Encoding a simple code is developed that gives a count of consecutive 

zero values in the image. Since over half of the coefficients are quantized to zero in many 

images, this gives an opportunity for excellent compression. 

When the coefficients in the zig-zag sequence are reordered, it increases the length 

of runs so the compression ratio increases. In the zig-zag sequence the JPEG algorithm 

moves through the block along diagonal paths selecting what should be the highest value 

elements first, and working its way toward the values which are likely to be the lowest. 

Fig. 4. 7 shows the zig-zag sequence for our example. 
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Fig. 4.7 Moving through the matrix in zig-zag form 

Now we continue the coding process of JPEG algorithm by introducing one of the 

JPEG standards after the zig-zag sequence step. This method is called "Baseline Sequen­

tial Coding", and in this method the Huffman coding will be used. The first step is to 

represent some symbols for sequences of values that exist after the zig-zag sequence. 

These symbols are elements of what is called the Intermediate Symbol Sequence. In the 

Intermediate Symbol Sequence, each nonzero AC coefficient is represented in combina­

tion with the runlength (consecutive number) of zero-valued AC coefficients which pre­

cede it in the zig-zag sequence. Each runlength I nonzero-coefficient combination is 

represented by a pair of symbols: 

Symbol 1 Symbol 2 

( Runlength , Size ) ( Amplitude ) 
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In Symbol 1 "Runlength" is the number of consecutive zero-valued AC coefficients 

in the zig-zag sequence preceding the nonzero AC coefficient which is presented. "Size" 

is the number of bits used to encode the" Amplitude", and" Amplitude" is simply the am­

plitude of the nonzero AC coefficient. 

For our example ( Fig. 4. 7 ) we can find the symbols as follows: 

The first number of the block (3) is the DC term which must be encoded differently. For 

this term the Intermediate representation is (2)(3) because the amplitude is 3 which re­

quires 2 bits (Size). (See Table 4.1). 

Next the quantized AC coefficients are encoded. If we follow the zig-zag order, the 

first nonzero coefficient is -2 preceded by a Zero Run of 1, so the intermediate symbol 

for this term is (1,2)(-2). 

Next encountered in the zig-zag order are three consecutive nonzeros of amplitude 

-1. This means each is preceded by a zero-run oflength zero, so the intermediate symbols 

are (0,1)(-1). The last nonzero coefficient is-1 preceded by two zeros so the symbol is 

(2,1)(-1). Since this is the last non-zero coefficient, the final symbol should represent 

the End Of Block (EOB) which is (0,0) 

The intermediate symbol sequence for our example is then as follows: 

(2)(3), (1,2)(-2), (0,1)(-1), (0,1)(-1), (0,1)(-1), (2,1)(-1), (0,0) 

Now to encode the intermediate symbols we use the following rules: 

a) Each Symbol I is encoded with a Variable-Length Code ( VLC) from the Huffman 



40 

Size I Amplitude 

1 I -1 , 1 

2 I -3,-2 , 2,3 

3 I -7 ...... -4 , 4 ...... 7 

4 I -15 ...... -8 , 8 ...... 15 

5 I -31.. .... -16 , 16 ..... .31 

6 I -63 ...... -32 , 32 ...... 63 

7 I -127 ...... -64 , 64 ...... 127 

8 I -255 ...... -128 , 128 ...... 255 

9 I -511.. .... -256 , 256 ...... 511 

10 I -1023 ...... -512 , 512 ...... 1023 

Table 4.1 The size of different amplitudes 

table set assigned to the 8x8 block's image component. For our example the codes 

will be as the following: 

The differential-DC VLC is: 

(2): 011 

The AC luminance VLCs are: 

(0,0): 1010 

(0,1): 00 

(1,2): 11011 

(2,1): 11100 
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b) Each Symbol 2 is encoded with a Variable-Length Integer ( VLI ) code whose 

length in bits is given in Table 1. The codes for symbol 2 for our example are then the 

following: 

(3): 11 

(-2): 01 

(-1): 0 

The bit stream for given 8x8 block (Fig. 4.2) will be then as follows: 

0111111011010000000001110001010 

which is 31 bits, while the 8x8 block consists of 8*8*8=512 bits. 

The compression ratio for this example is then 512/31 or about 16.5, which is significant­

ly high. 

This was the final step of the process and after this the compressed data will be trans­

mitted. 

4.3. Reconstruction of the block at the receiver 

Entropy decoding process is the first step which is performed in the receiver. When 

the transmitted stream of data is received, it can easily be decoded by the Huffman code 

table at the receiver which is exactly the same as that in the transmitter. For example when 

the above stream is received, the first thing coded is 011, which according to the Huffman 

table corresponds to the differential-DC VLC of (2). So it realizes that the next two bits 

represent the value of differential-DC, and since the next two bits are 11 it knows from 
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another table that the value must be (3). The next thing coded is 11011 which corresponds 

to AC VLC of (1,2), so the decoder knows that there must be a Zero Run of length one 

before the nonzero element is decoded, and the nonzero element has to be 2 bits long. So 

it checks the next two bits which are 01 and according to the table it corresponds to the 

value of (-2). In a similar way all of the bits in the stream are decoded and finally after 

DC decoding a matrix exactly the same as the quantized matrix is reconstructed as in Fig. 

4.8: 

15 0 - 1 0 0 0 0 0 
-2 - 1 0 0 0 0 0 0 
- 1 - 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Reconstructed Quantized Matrix = I 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Fig. 4.8 The Reconstructed Quantized Matrix 

The next step is to dequantize the Reconstructed Quantized Matrix and for the de-

quantization the following formula is used: 

DCT(i,J) = Quantized Matrix(i,J) *Quantization Matrix(i,J) (4.8) 

The matrix of Fig. 4.8 after dequantization using Eq. (4.8) gives then the DCT matrix 

as in Fig. 4.9. 
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240 0 -10 0 0 0 0 O' 
- 24 - 12 0 0 0 0 0 0 
- 14 - 13 0 0 0 0 0 0 

Reconstructed DCTpixels = I 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Fig. 4.9 The Reconstructed DCT Matrix 

Now to reconstruct the image sample from Fig. 4.9, Eq. (4.4) is used, which is the 

equation for IDCT, and the result will be as in Fig. 4.10. 

144 146 149 152 154 156 156 156' 
148 150 152 154 156 156 156 156 
155 156 157 158 158 157 156 155 
160 161 161 162 161 159 157 155 

Reconstructed Pixels = 1
163 163 164 163 162 160 158 156 
163 164 164 164 162 160 158 157 
160 161 162 162 162 161 159 158 
158 159 161 161 162 161 159 158 

Fig. 4.10 Reconstructed Pixel Matrix 

Now if one compares the reconstructed sample values (Fig. 4.10) with the original 

image sample ( Fig. 4.2 ) a remarkable similarity can be observed, while the number of 
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bits transmitted from transmitter to receiver is much smaller than the number of bits need­

ed to transmit an un-decoded block of pixels. 

Therefore it can be seen that the JPEG algorithm is an excellent method to compress 

images. The only disadvantage of this method is that the process of compression is slow. 

It is because of the fact that the number of operations required to compress the image is 

very large. 
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Chapter 5 

Image compression using Haar transform 

5.1. Introduction 

Spectral methods are one of the methods to analyze logical functions and other dis­

crete mappings. Walsh and Haar functions are two important functions which have al­

ready been used for this purpose. An advantage of the Haar function, as will be explained 

in detail, is that the expansion coefficients of a logical function in Haar series depend on 

the local behavior of the function. Using this fact, Karpovsky [ 6] has shown that such 

an order of arguments can be found that gives the minimum number of nonvanishing co­

efficients. Image compression based on Haar function takes advantage of this minimiza­

tion. In fact, the pixel values of an image are reordered in such a way that the number 

of nonvanishing coefficients in their Haar series gets minimized. In this chapter the Haar 

method will be clearly explained. 

5.2. Orthogonal Representation of Logical Functions 

Since Boolean functions are the only type of functions dealt with in this thesis, only 

this particular case is investigated. A combinational circuit with m inputs and k outputs 

(Fig. 5.1) can be described by Eq. (5.1): 



Z(O) 

z<l) 

z<m 

Combinational 

circuit 

-1) 

y<O) 

yo> 

y<k-1) 

Fig. 5.1 A combinational circuit in general 

y<s> = fs>(z<0>, z0 >, • •• 'z<m-l>) s = 0, 1, ... , k - 1 ; y<'>, z<s> E {0, 1) 
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(5.1) 

The logical function shown by Eq. (5.1) can also be described by a discrete function 

asin Eq. (5.2): 

Y = f(z) (5.2) 

where 

m-1 

z = L z<s>2m-l-s z E [0,2m) (5.3) 
s=O 

k-l 
y = _Ly<s)2k-l-s (5.4) 

s=O 

Now a step function <l>(z) of a real argument, defined on a half-open plane interval 

[0,2m), can represent our logical function as in Eq. (5.5): 

<P(z) = f(o) z E [o,o + 1) (5.5) 
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All systems of logical functions can be analyzed by their step function representa-

tions. 

To make the above notations more clear, let us consider a system described by the fol­

lowing Boolean functions. 

y<o> = z<o> E9 z<o 

y<o = z<o> E9 z<2> 

Table 5.1 describes this function, and Fig. 5.1 shows the corresponding step function 

<l>(z). 

z(O) z<O z<2> y<O) y<t> z y = f(z) 

0 0 0 0 0 0 0 

0 0 1 0 1 1 1 

0 1 0 1 1 2 3 

0 1 1 1 0 3 2 

1 0 0 1 0 4 2 

1 0 1 1 1 5 3 

1 1 0 0 1 6 1 

1 1 1 0 0 7 0 

Table 5 .1 Truth table of the function 

The step function <l>(z) can be expanded as an orthogonal series or Fourier series as 

in Eq. (5.6): 
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00 

<l>(z) = I S(w)'Pw(z) (5.6) 

w=O 

<l>(z) • 

4 

3 

2 

1 

0 1 2 3 4 5 6 7 8 z 

Fig. 5.2 The step function of the example 

where 'Pw(z) is a complete system of orthogonal step functions defined on [0,2m), i.e.: 

zm zm 

cf l/Fw(z)W:,(z)dz)-'(f l/Fw(z)l/l';(z)dz) = { ~ 
0 0 

where l/l*(z) is the complex conjugate to lJl(z). 

if w=r 
if W¢r 

The coefficients S(c.o) are the Fourier coefficients defined as in Eq. (5.8) 

2m zm 

S(w) = ( f lJFw(z)lJi;.(z)dz)- 1 f l/Fw(z)W:,(z)dz 

0 0 

(5.7) 

(5.8) 
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Sequence of S(O), S(l), ... is called the spectrum of the system relative to 'l'{J)(z) . 

It can be seen that there is a one to one correspondence between the original logical func-

tion, Eq. (5.1), and its spectrum S(oo). So the original function may be analyzed by find-

ing the spectrum of the system. This method is called a spectral method. 

5.3. Haar Transform 

The set of Haar functions is a complete orthogonal system defined as follows: 

H(O)::: 1 
0 

1 

H(q) = ~ - 1 
l 

if Z E [(2q - 2)2m-l-l,(2q - 1)2m-/-l) 

if z E [(2q _ 1)2m-l-1,2q.2m-l-1) 

0 at other points of [0, 2m) 

I= 0, 1, .. . ,m - 1 ; q = 1,2, .. . ,21 

Fig. 5.3 shows the the Haar functions for m=3. 

(5.9) 

Any system of Boolean function of m arguments represented by a step function <I>(z), 

can be shown by the Haar series as follows: 

m-1 21 

<l>(z) = 5(0)H(O)(z) + ~ ~ 5(q)H(q)(z) 
o o LL z z 

l=Oq=l 

where s~q) is the spectrum of the function defined below: 

zm-1 

S(q) = 2-m+l ~ <l>(z)H(q)(z) 
U> L z 

z=O 

(5.10) 

(5.11) 
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H~•>:)1 .. 
1 2 3 4 5 6 7 8 z 

lfl,O(z)l 

I • z 

H\"(z)l 

I I • z 

H\"(z)l 
I I .. 

z 

Jr,''(z)j 
I I • z 

Hi"(z)I 
I I I • z 

H~'(z)I 
I I I • z 

H\
4

'(z)l 
I I I • z 

Fig. 5.3 The Haar functions for m=3 
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From equations (3.11) and (3.9) it can be observed that: 

s<q> = 2 - 1(<P(2q - 2) - <P(2q - 1)) 
m-1 

(q = 1,2, ... ,2m-l) 

s~~2 = 2-2(<P(4q - 4) + <P(4q - 3) - <P(4q - 2) - <P(4q - 1)) (q = 1, ... ,2m-2) 

21 21-1 

s<q> = 2 - 1< "'°' <P(21q - k) - "'°' <P(21q - k)) 
m-1 L L (5.12) 

k=21- 1 +1 k= 1 

(I= 1,2, .. . ,m - 1 q = 1,2, .. . ,2m-l) 

From Eq. (5.12) it can be seen that coefficient S~~ 
1 

depends only on two consecu-

tive values <I>(2q-2), <I>(2q-l) of <I>(z), and coefficient S~~2 on four consecutive values 

<I>(4q-4), <I>(4q-3), <I>(4q-2), <I>(4q-l). In general, each of the coefficients S~~ 1 de-

pends on the behavior of <I>(z) on the interval [21q-21, 21q-l). Therefore the expansion 

coefficients of <I>(z) in Haar series depend only on the local behavior of the function. 

As an example, the Haar expansion of the system described by Table 5.1 using equations 

(5.10) and (5.11), is as follows: 

<P(z) = 1.5 - H~1\z) + H~2>(z) - 0.5Hi1>(z) + 0.5Hi2>(z) - 0.5H~>(z) + 0.5Hi4>(z) 

From Eq. (5.11) another expression can be derived to find spectrum of Haar functions 

which is actually the same equation as Eq. (3.12) but in a simpler formula (Eq. 5.13): 

S = 2-m+lHm<P (5.13) 
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where Hm is the Haar transform matrix whose elements can be calculated by Eq. (5.9), 

and <I> is the step function that defines our logical system. The important point about Eq. 

(5.13) is that the value of 2-m+l is different for different rows of the matrix because I is 

different. 

For example for the system described in Table 5.1 the spectrum of the Haar function 

can be calculated as follows: 

Since m=3, the Haar transform matrix Hm using Eq. (5.9) or from Fig. 5.3 will be: 

1 1 1 1 1 1 1 1 
1 1 1 1 -1-1-1-1 
1 1 - 1 - 1 0 0 0 0 
0 0 0 0 1 1 - 1 - 1 

H3 =Ii - 1 0 0 0 0 0 0 
0 0 1 - 1 0 0 0 0 
0 0 0 0 1 - 1 0 0 
0 0 0 0 0 0 1 - 1 

and the spectrum of the function will be: 

S= 

2-3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 2-3+0 0 0 0 0 0 0 1 1 1 1 -1-1-1-1 
0 0 2-3+1 0 0 0 0 0 1 1 - 1 - 1 0 0 0 0 
0 0 0 2-3+1 0 0 0 0 0 0 0 0 1 1 - 1 - 1 
0 0 0 0 2-3+2 0 0 0 1 - 1 0 0 0 0 0 0 
0 0 0 0 0 2-3+2 0 0 0 0 1 - 1 0 0 0 0 
0 0 0 0 0 0 2-3+2 0 0 0 0 0 1 - 1 0 0 
0 0 0 0 0 0 0 2-3+2 0 0 0 0 0 0 1 - 1 

2 - 3(12) 
2 - 3(0) 1.5 

2- 2(-4) 0 
- 1 

2- 2(4) 
~s= 

1 
s = 12-1(- 1) -0.5 

2-1(1) 0.5 
-0.5 

2-1c- 1) 0.5 
2 - 1(1) 

0 
1 
3 
2 
2 
3 
1 
0 
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From the spectrum vector S the Haar expansion will be: 

<l>(z) = 1.5 - Hi1>(z) + Hi2>(z) - 0.5Hi1>(z) + 0.5Hi2>(z) - 0.5H~>(z) + 0.5Hi4>(z) 

which matches the result obtained before. 

Haar expansion coefficients can also be calculated through a recursive method which 

has the minimum complexity (requiring minimum number of additions or subtractions) 

compared to other algorithms. If cl>(z) is the step function representing our Boolean sys-

tern, the Haar spectrum of the function can be calculated as in Eq. (5.14): 

s<q) = 2-ka (2m-k - 1 + q) 
m-k k 

(5.14) 

where: 

a0(t) = <P(t) (t = 0, 1, ... , 2m - 1) 

ak(t) = ak- l (2t) + ak- l (2t + 1) (t = 0, 1, ... , 2m-k - 1) 

ai2m-k + t) = ak_ 1(2t) - ak_ 1(2t + 1) (k = 1,2, ... ,m) 

The previous example can be solved by this method which gives the same result. 

If in our original function the order of the arguments is changed, the Haar coefficients 

will change. For example, one can change the order of the arguments in such a way that 

the number of nonvanishing coefficients decreases. Karpovsky[6] has shown that be-

cause of the local behavior of the Haar functions, it is possible to find such an order of 

arguments that gives the minimum number of nonvanishing coefficients. The next section 

will discuss this issue. 
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5.4. Optimal Ordering of Arguments for Haar Expansions 

The idea of image compression based on Haar transform comes from the fact that it 

is possible to find the optimal ordering of arguments which gives the minimum number 

of nonvanishing Haar coefficients. This property is due to the local behavior of Haar 

functions. In this section the algorithm to find such ordering of the arguments will be 

explained. 

The objective is to find a matrix Oopt in such a way that the number of Haar coeffi-

cients is minimum when the function is expanded over z00P, = a opt ® z 

In the following the algorithm is clearly explained step by step: 

1) For a system of k Boolean functions of m arguments /m-l)(z) , a characteristic 

function fm-l)(z) (i = 0, 1, ... , 2k - 1) is defined as follows: 
I 

1;m-l)(z) = { ~ if 
if 

/m-l)(z) = i 
/m-l)(z) ~ i 

Table 5 .2 shows the characteristic functions for our example. 

(5.15) 

2) An auto-correlation function B ~m - 1\r) for each characteristic function 

fm-l)(z) is defined as follows: 
I 

2m-1 

B~m-l)(r) = 'fm-l)(z) fm-l)(z ffi r) 
I LI I 

(5.16) 

z=O 
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where zffi't shows the modulo-2 bit by bit addition of z and 't bit by bit. Table 5.2 shows 

the aut~orrelation functions for our example. 

(m-1) 3) The values of B (r) are calculated by Eq. (5.17) , 

2Ll 

B(m-1)(-r) = I B~m-1)(-r) 
i=O 

and the value of im-1 is obtained in such a way that it satisfies Eq. (5.18). 

Max B(m-1)(-r) = B(m-l)(rm-1) where i #- 0 

Table 5.2 shows B(m-
1\r) for our example, and it can be seen that 'tm-1=1. 

4) A nonsingular matrix Om-1 is determined so that: 

0 

am-1 ® im-1 = ·o 
1 

where ® denotes modulo-2 multiplication. 

Since in our example rm_ 1 = r 2 = 7 , Om-1 is determined as follows: 

am-1 © rn = [~] 

(5.17) 

(5.18) 

(5.19) 
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z ?' f2>(z) 
1;2>(z) B~2>(z) B<2>(-r) f;d(z) 

i = 0 1 2 3· i = 0 1 2 3· 

0 0 0 1 0 0 0 2 2 2 2 8 0 

1 1 1 0 1 0 0 0 0 0 0 0 0 

2 2 3 0 0 0 1 0 0 0 0 0 1 

3 3 2 0 0 1 0 0 0 0 0 0 1 

4 4 2 0 0 1 0 0 0 0 0 0 2 

5 5 3 0 0 0 1 0 0 0 0 0 2 

6 6 1 0 1 0 0 0 0 0 0 0 3 

7 7 0 1 0 0 0 2 2 2 2 8 3 

Table 5.2 The results of the first steps of the process 

For this example Um-I can be: 

[
1 1 OJ am-1 = az = 0 1 1 
0 0 1 

5) Construct the function f (m- l)(z) in such a way that: 
am-1 

f,m - l)(z ) = fm - l)(z) 
am-1 am-1 

and z =a '°' am-1 m-1 \Cl z (5.20) 

for our example t<2>(z) is shown in Table 5.2. 
a2 
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6) The function fm- 2)(z), defined at 2m- 1 points, is obtained as follows: 

fm-2)(z) = tm-1)(2z) + t,m-1)(2z + 1) 
O'm-1 O'm-1 

(5.21) 

for our example f 1)(z) will be as shown in Table(5.3) 

7) The above procedure is applied to fm - 2\z) , and the resulting matrix is 

called a<m- 2) whichisofsize (m-l)X(m-1). Nowthematrix am_ 2 isdefinedasfol-

lows: 

a = [q~":-::> _!_o_] 
m-2 0 : 1 

(5.21) 

For our example, the results of this step will be as in Table (5.3), where a 1 is: 

[a(l): OJ [1 1 0] 
al= co:-i = g 6 ~ 

8) Theabovestepsarerepeatedtofind am_ 1, am_ 2, .. . , a 1 . Then aopt iscalcu-

lated by Eq. (5.22): 

aopt =al® ... ®a;® ... ®am-2 ® am-1 (5.22) 
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z 'f /O(z) B(l>(-r) fo1{(z) 

0 0 0 4 0 

1 1 2 0 4 

2 2 4 0 6 

3 3 6 0 2 

Table 5.3 The results of the next steps of the process 

where 

f
0 Ci>: ~ _ -] ... ---

O; = O-: Em-i-1 (5.23) 

and Em-n-l is the identity matrix of order m-n-1. So in our example we have: 

[
0<1> : 0 ~ [1 1 o] [1 1 o] [1 o 1] a opt = a 1 ® a 2 = - 0 --:- - ® a 2 = 0 1 0 ® 0 1 1 = 0 1 1 

,1 0 0 1 0 0 1 0 0 1 

This was the last step of the algorithm to find a opt • 

Now we can calculate Za
0
p, = Oopt ® z and expand our function over the new order 

of the arguments. Therefore for our example we have: 

Zaopt = Oopt ® Z = 0 1 1 ® z(l> = z<t> EB z<2> 
[
1 0 1] [z<

0
>] [z<

0
> EB z<2>] 

0 0 1 z<2> z<2> 



and therefore: 

0 
0 
3 
3 

f(zao) = I 2 

2 
1 
1 
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The spectrum of the function can then be calculated as follows: 

s = a opt 

2--3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 2 -3+0 0 0 0 0 0 0 1 1 1 1 -1-1-1-1 
0 0 2-3-t-I 0 0 0 0 0 1 1 - 1 - 1 0 0 0 0 
0 0 0 2-3+1 0 0 0 0 0 0 0 0 1 1 - 1 - 1 
0 0 0 0 2-3+2 0 0 0 1 - 1 0 0 0 0 0 0 
0 0 0 0 0 2-3+2 0 0 0 0 1 - 1 0 0 0 0 
0 0 0 0 0 0 2-3+2 0 0 0 0 0 1 - 1 0 0 
0 0 0 0 0 0 0 2-3+2 0 0 0 0 0 0 1 - 1 

1.5 
0 

- 1.5 

s -1 0 
<Jopt - 0 

0 
0 
0 

0 
0 
3 
3 
2 
2 
1 
1 

It can be observed that the number of non-vanishing coefficients for the nevv ordering 

has been significantly decreased. The corresponding Haar expansion of the function will 

be as follows: 

<P(za
0
,,) = 1.5 - l .5Hi1)(Za

0
P) 
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5.5. Image Compression 

To compress image by the Haar transform, the pixel matrix is considered as our dis­

crete functionf(z). Therefore the matrix can be converted to a vector (one dimensional 

matrix), and the same process as explained in the previous section can be performed. 

Therefore, the first step will be the calculation of a opt • Usually in black and white 

images each pixel value can be represented by 8 bits. In this case we only have 8 inputs, 

so a opt will be an 8 X 8 matrix. According to that the pixel elements are reordered, then 

Haar transform is taken, and the resulting vector usually has a much smaller number of 

nonzero elements. Then the zero elements can be coded by Run-Length coding, which 

in general needs a smaller number of bits to represent the data. 

The work which has been done in this area [2] does not show how good this method 

is in the sense of the compression factor. They just show that the number of nonvanishing 

coefficients decreases significantly. This does not necessarily mean that the compression 

factor is significantly improved. The point is, we do not lose any information in this meth­

od of compression, in other words the reconstructed image is exactly the same as the origi­

nal one. 
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Chapter 6 

Image compression using Reed-Muller Transform 

6.1. Introduction 

In this chapter image compression based on Reed-Muller transform is investigated. 

First the basic topics needed as background are covered , then the compression method 

based on fixed polarity Reed-Muller transform is discussed. 

6.2. The Galois field (2) algebra 

Galois field algebra is actually a modulo-2 algebra, which has the following proper­

ties: 

If a,b,c E {O, 1} , and EB and 8 represent modulo-2 addition and multiplication: 

1) affibE{O,l} and a8bE{0,1} 

2) affi(bffic )=(affib )ffic=aEBbEBc and 

a8(b8c)=(a8b)8c=a8b8c 

3)a8(bffic)=a8bEBa8c 

4) aEBb=bEBa and 

5) aEBO=a 

6) affia=O 

and 

and 

a8b=b8a 

a81=a 

a8a=a 

The first five properties are the same as boolean algebra's, but the sixth property re­

veals the differences between the two. 
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It can be seen for both algebra the operation of multiplication is the same, i.e. 

a0b=a.b, but the operation of addition is different so that we have aEBb=a.b+a.b. Substi­

tuting 1 for b in the latter equation gives affi 1 =a. Using de Morgan theory and the last 

two equations one can easily derive that a+b=a0bffiaffib. 

So we can observe all basic operations in Boolean algebra, i.e. addition, multiplica­

tion and negation, have equivalent in modulo-2 algebra. Therefore every Boolean func­

tion can be implemented over GF(2) too. 

6.3. Reed-Muller Transform 

Any switching function of n variables can be defined by 2n coefficients in a sum of 

product form as Eq. (6.1): 

f(Xo,X1,···,Xn-l) = doX"n-1.Xn-2··.Xo + dl.Xn-1··.X1Xo + ··· + d1n-1Xn-1Xn-2···Xo (6.1) 

where ( do, di. d2, .... , d2n_1 ) are the coefficients of the products which represent the val­

ues in the output column of the truth table of the function. These coefficients can be repre-

sented in vector form D , called truth vector. 

The function can also be represented by the Reed-Muller canonical form over Galois 

field (2) as Eq. (6.2): 

f(xo,X1, ... ,xn-1) = ao EB alxo EB a~l EB a3XoX1 EB··· EB a1n-1XoX1··.xn-l (6.2) 

where EB denotes modulo-2 addition and ( ao, a1, a2, .... ,a2n_1 ) are the coefficients of the 

expansion. These coefficients can be represented in vector form A , called the function 

vector. 
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These two representations are related to each other by a transform matrix T as Eq. 

(6.3): 

A= TD (6.3) 

For a function with three variables Eq. (6.3) is as follows: 

'd 
"o 

0 
10000000 d 

"1 1 1 0 0 0 0 0 0 1 

a2 1 0 1 0 0 0 0 0 d2 
a3 1 1 1 1 0 0 0 0 d3 
a4 = 10001000 d4' over GF(2) 

as 11001100 ds a, 1 0 1 0 1 0 1 0 
a, 1 1 1 1 1 1 1 1 d, 

d, 

An important property of matrix T is that T is the inverse of itself, i.e. T = T- 1. 

So Eq. (6.4) is also true: 

D= TA (6.4) 

Matrix T can be written in a recursive form as Eq. (5.5): 

[
Tn-1 0 ] 

T = Tn = Tn-1 Tn-1 for n >= 1 

(6.5) 

T 0 = 1 

So T n can also be written as Eq. (6.6): 
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T -T*T -T*T*T* *T · n - 1 n -1 - 1 1 1 • • • 1 n times (6.6) 

Where * represents the Kronecker matrix product. 

As an example consider the Boolean function f(x0,x1,x2) = x1x0 + xi-r1 , Which in 

terms of minterms will be f(x0,x1,x2) = x2x1x0 + xix-1x0 + xi-r1x0 + xi-r1x0 • From 

this function the truth vector is A = [0 1 0 0 0 1 1 1] . Now to find the 

Reed-Muller Canonical form of the function, T 3 must be calculated using Eq. (5.5). 

Then from Eq. (6.3), D can be calculated: 

d 0 

dl 
d1 
d3 

D =Id 
4 

ds 
d6 
d, 

0 
1 
0 
1 
0 
0 
1 
0 

= 

10000000 0 
11000000 1 
10100000 0 
1 1 1 1 0 0 0 0 g, 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 1 
1 0 1 0 1 0 1 0 1 
1 1 1 1 1 1 1 1 1 

over GF(2) 

So the RM canonical form of the function is f(x0,x1,x2) = x0 EB xor1 EB X1X2 • 
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6.4. Generalized Reed-Muller Transform 

In the previous section the Reed-Muller expansion was explained and its form was 

shown as Eq. (6.2). In that form all the variables are in the positive form, while any vari­

able X; can be substituted with its negation~' and still retain the canonical form. In the 

case that the variables are allowed to take negative polarities, we have the Generalized 

Reed-Muller (ORM) canonical form. And if each variable is restricted to retain the same 

polarity in all terms, i.e. either positive or negative but not both, the canonical form is 

called the Fixed Polarity Reed-Muller form. 

For a function with n variables the number of possible arrangements of polarities is 

2n, so there are 2n possible fixed polarity Reed-Muller forms. For a specific function the 

number of terms varies based on the polarity of the variables. For instance, in the previous 

example the Reed-Muller form of the function was found to 

be f(x0 ,x1,x2) = x0 ffi XoX1 ffi x 1x2 • If the polarity of the variables was selected as 

XoX1.X2 , the result would be f(x0,x1,x2) = 1 ffi x0 ffi x~1 ffi x 1x2 • 

By finding the appropriate polarities one can reduce the number of terms of a function 

in fixed polarity RM form. The best polarity gives the least number of terms in a specific 

function. 

6.5. Image Compression Using Fixed Polarity RM Transform 

In the last section it was explained that if the best polarities for the variables are se­

lected, the number of terms of each function will be reduced. Using this fact we are going 

to investigate if it can be used to compress the data of an image. 
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It was mentioned in the previous chapter that for a black and white picture, one byte 

is allocated for each pixel. So in a picture matrix each element consists of 8 bits which 

can be either 1 or 0. Therefore the picture matrix can be converted to 8 matrices from 

the most significant bit plane, to the least significant bit plane (each element of these ma­

trices is either 1 or 0). The algorithm for the compression technique will be explained 

as follows: 

for( i = Most significant bit plane to least significant bit plane ) 

{ 

} 

for( each plane ) 

{ 

} 

fetch a block of size ( NXN) 

find the best polarity of the variables 

Compute RM trans/ orm of the block 

use Run-Length coding to code the data of the transformed block 

In this method each block of size (N X N) is considered as a Karnough map, so the 

number of 1 sin each block shows the number of min terms. After finding its fixed polarity 

RM form with the minimum number of terms, which is done exhaustively [9], [10], [14], 

the new map usually contains fewer number of ls. But there is an important point which 

is worth noting: 
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When Run-length coding is used, the compression ratio mostly depends on the num­

ber of transition elements in a bit plane matrix and not on the number of nonzero elements. 

For example in a 16 bit row of a block, it is possible to have 8 zeros and 8 ones with just 

one transition element as in Fig. 6.1 (a), alternatively it is possible to have 13 zeros and 

3 ones with six transition elements as in Fig. 6.1 (b ). Obviously the latter one will be less 

compressed than the previous one, while the number of nonzero elements in it is much 

less. So the pattern of the elements is also important, and just reducing the number of 

nonzero elements might not be sufficient to obtain a higher compression ratio. 

As it will be explained in chapter 9, the compression factor using this method is not good, 

and the main reason is, what was mentioned above. 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

(a) 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 

(b) 

Fig. 6.1 The number of ls in bis less, but the number of transition elements is more. 

6.6. Comments on LSB planes 

As mentioned before the least significant bit planes do not have as much effect on 

the values of pixels as the MSB planes. Therefore we can allow loss of information in 

these planes. 
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The simplest way to compress the data based on losing information is to consider 

some specific area and calculate if the number of ls is more or less than that of zeros. If 

it is more, we change all the elements to 1, otherwise all the elements are changed to zero. 

For example in the LSB plane, areas of 5 bits can be specified. Then the above rule is 

applied. 

Another method could be based on performing some small changes in the elements 

of each block of size NxN so that the resulting Karnough map would give a much smaller 

number of terms. Since finding the best fixed polarity RM form requires checking many 

different cases, and we do not know the desired polarity in advance, changing the ele­

ments will not work very good, unless changing the elements is based on a specific Reed­

Muller form with predefined polarities. The latter method has not been attempted in this 

work. 

6. 7. Permutation of the elements of the Truth vector 

In the following, the possibility of performing a permutation on the Reed-Muller 

transform is investigated. 

It was explained that in a switching function the truth vector D is related to the func­

tion vector A by a transform matrix T as in Eq. (6.3). For example for a switching function 

with three variables the equation is as follows: 
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·ao 
"d 

10000000 ° 
ai 1 1 0 0 0 0 0 0 4

1 

al 1 0 1 0 0 0 0 0 d2 
a3 _ 1 1 1 1 0 0 0 O d3 I 
a4 - 1 0 0 0 1 0 0 O d4 

over GF(2) 

as 1 1 0 0 1 1 O O d 
a6 1 0 1 0 1 0 1 0 4

5 

a, 1 1 1 1 1 1 1 1 6 

d, 

From the above equation the local behavior of the Reed-Muller transform can be ob-

served. It is obvious that only a1 is globally sensitive, i.e. depends on all elements of the 

truth vector. The other elements of the function vector, i.e. "6 to "6, all are locally sensi-

tive, which depend on a subset of the elements of the truth vector. Therefore the value 

of the elements of the function vector can be changed by a permutation of the elements 

of the truth vector. Therefore the best permutation of the elements of the truth vector can 

minimize the number of nonzero elements of the function vector. 

As a result, a permutation matrix a can be determined so that the permuted truth vector 

is given as Eq. (6.7): 

Da = a.D ( 6.7) 

Now the Reed-Muller transform of the permuted truth vector can be determined using 

Eq. (6.8 ): 

Aa = TDa ( 6.8) 

a should be determined in such a way that Aa contains the least number of 1 s. D can be 
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reconstructed using Eq. ( 6.9 ): 

D = a-1r-1Aa ( 6.9) 

As an example assume that the truth vector of a switching function is D=[O 0 1 1 

0 1 0 l]. If the permutation matrix o is chosen in such a way that the permuted truth 

vector is as Da=[l 0 1 0 1 0 1 O], o and the Reed-Muller transform of Da will be as 

follows: 

a= 

00010000 
01000000 
00100000 
10000000 
00000100 
00001000 
00000001 
00000010 

10000000 
11000000 
1 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 

Aa = I 1 0 0 0 1 0 0 0 
11001100 
1 0 1 0 1 0 1 0 
1 1 1 1 1 1 1 1 

1 1 
0 1 
1 0 
0 g, over GF(2) 1 = 

0 0 
1 0 
0 0 

It can be seen that the number of nonzero elements in Aa is smaller than that in D , 

and in general this method gives a much smaller number of nonzero elements compared 

to the method of the fixed polarity RM transform. 

The problem with this method is how to determine the permutation matrix o, and so 

far no method has been found. To find the best permutation it is required to check (;) 
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different cases, where n is the number of elements of the truth vector, and p is the number 

of nonzero elements in the truth vector. Therefore this method is not practical although 

it might give a very good result. 



Chapter 7 

A critique of the Reddy & Pai approach to Reed-Muller 

Image Compression 

72 

In this chapter the published paper on Reed-Muller image compression [3] is investi­

gated. There are some mistakes in this paper which cause the results of this paper to be 

unacceptable. 

7.1. The general method 

In the paper by Reddy and Pai [3] the algorithm for image compression is as follows: 

for ( i = most significant bit plane to least significant bit plane ) do 

begin 

for ( each plane ) do 

begin 

end; 

(a)fetch a block of size ( n x n) 

(b) compute the Reed-Muller transform of this block 

( c) employ runlength coding on the resultant trans/ orm domain bit plane 

end; 
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As it can be seen, the body of the inner loop consists of three steps. There is nothing 

wrong with the first step (a), but the problems with step (b) and (c) cannot be ignored. 

7 .2. The problem with step (b) 

In the paper the authors, Reddy & Pai, have not clearly explained what they have 

done, but from what they have written, it is obvious that it must be one of the following 

cases and nothing else. 

1) The authors have just simply computed the positive polarity Reed-Muller trans­

form of the block. 

2) The authors have performed a permutation on the input sequence (as was explained 

in section 6. 7), and then computed the positive polarity Reed-Muller transform. 

In the first case we cannot get a good compression factor by just computing the Reed­

Muller transform of the block. As a matter of fact, in this case even for the MSB plane 

the compression factor on the average is less than 1.6, which is not good at all. We can 

get a better compression factor even if we don't use a transformation, and just directly 

encode the plane. 

In addition to that, in this thesis fixed polarity RM transform has been used, and al­

though it is much better than the RM transform, still the result was not that good, so that 

the compression factor for the MSB plane is less than 2. 

In the second case although the authors have mentioned something about permuta­

tion, they have not found a method to find the best permutation and still this problem is 

unsolved. The authors have clearly suggested this problem for those who are interested 

in this issue and want to work on that in the future. Therefore if they have applied a per-
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mutation, it was done exhaustively which is not acceptable. It is obvious that finding the 

best permuted input sequence exhaustively cannot be realized by any hardware because 

it requires many cases to be checked, which is impossible. 

7.3. Problems with step (c) 

In this step there are some obvious mistakes, and in the following these mistakes are 

discussed: 

The authors have used Relative Address Coding to code the data after performing the 

Reed-Muller transform. 

The code used by Reddy & Pai is in Table 7 .1. In the following, four problems with 

the data in this table have been explained in the order of their importance. 

1) In chapter 3 Relative Address Coding has been explained in detail, and it was men­

tioned that in this method the relative address is computed either with respect to the transi­

tion elements in the current line or those in the previous line. And then for all runlengths 

a method of coding must be used. For example as it was shown before in the fixed polarity 

RM transform, Huffman coding was used which is the best method for coding. In the pa­

per by Yamazaki [4] about RAC, other codes have been used which are not as good as 

Huffman codes but they take less memory space. In any case, all of these coding methods 

must satisfy the following condition: 

" Each code must not be equal to a first part of another code. " 

Huffman coding satisfies this condition and also the method used by Yamazaki does 

this too. Otherwise the codes cannot be detected. 
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Relative Positive Negative 
distance distance distance 

1 00 10 

2 01 11 

3 0000 1010 

4 0001 1011 

5 0100 1110 

6 0101 1111 

7 000000 101010 

Table 7 .1 Codes used by Reddy & Pai for relative distances 

Obvious! y the codes in Table 7 .1 do not satisfy this condition, so they cannot be used 

to code the data. To make the problem clear assume a part of a block after Reed-Muller 

coding is as in Fig 7 .1. According to Table 8.1 the code for element A must be 01 because 

the relative distance is + 2, and the same code will be chosen for element B because the 

relative distance for Bis +2 as well. Since A and Bare adjacent transition elements, the 

code for them will be 0101. From the table it can be seen that the code for relative distance 

+6 is also 0101. Now if the receiver get the code 0101 it cannot identify if it is the code 

for the relative distance +6 or it is the code for two relative distance +2. This problem can 

be seen in all of the codes in this table. 

One might say that the codes in Table 7 .1 are just supplementary codes for the dis-

tances, and the first part of the codes are different (like what Yamazaki has done). But 

in this case according to Table 7 .1 the codewords will be so long that not only does it not 
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compress the data, but it also creates more bits than what the original image needs. 

c E 

t t 
0111111000000. 

00001111110000··· 

~ ~ 
A B 

Fig. 7.1 An example showing contradiction in Reddy & Pai coding 

2) The authors have mentioned that depending on the probability of the occurrence, 

the RAC distances (0, + 1, -1) are given special code words. According to Table 7 .1 the 

authors have defined the codewords for + 1 and -1 but not for 0. Anyway, the obvious 

thing is that all the codes must be predefined. It would be impractical to first find the prob-

ability of the occurrence of the runlengths for every single matrix of an image and then 

according to that, find the codewords for them. 

Another important problem is that usually the most common relative distance is 0, so 

it should have the shortest codeword, which in most of the cases consists of just one bit, 

i.e. either 0 or 1, or two bits. But according to Table 7 .1 it is impossible to have a short 

codeword for relative distance 0, because in this case the condition explained previously 

cannot be satisfied. 

3) Since the size of the blocks has been chosen to be 16 X 16, when the RAC method 

is used, there is a need to define the codes for at least 16 positive relative distances, and 

not just for 8. From Table 7 .1 it seems that the authors have not understood the RAC meth-

od sufficiently well. Probably they have thought that since the distance of each transition 
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element from one of the row ends is less or equal to 8, it is enough to just define 8 positive 

relative distances. But it is impossible to decode the data this way, and 16 positive relative 

distance have to be defined, although for negative relative distance 8 codes are enough. 

4) In Relative Address Coding, as mentioned in chapter 3, sometimes we need to 

compute the relative distance with respect to the transition elements in the current line, 

but according to Table 7 .1 it seems that the authors of this paper have not defined them. 

In any case there are two possibilities: 

a) They have defined them and used them but they just did not mention it in the paper. 

In this case, either their codes are all wrong like those in Table 7 .1, or the authors use very 

long codewords, because the condition mentioned for the coding should not be contra­

dicted at least for the rest of the codewords. 

b) They have not defined the relative distances, and so have not used any codewords 

for the relative distance in the current line. In this case the coding will not be optimum. 

And the method is not the RAC method any more. Some modification has to be done 

to make the method work at the price of a decreased compression factor. 

From the above discussion it is obvious that the reconstruction of the image is impos­

sible with this type of coding. 

The final point about this paper is that the quality of the picture is not that good even 

with the compression factor of 2.5 bit per pixel. It seems that there is a loss of information 

in more than 4 bit plane matrices to get 2.5 bit per pixel. 
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7 .4. Conclusion 

This paper has given a new idea for image compression, although the method pro­

posed by the authors is not good. Unfortunately, many crucial mistakes in this paper cause 

the readers not to be able to evaluate the quality and usefulness of the idea of using Reed­

Muller transform for image coding. 
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Chapter 8 

Row Xoring And Plane Xoring Algorithm 

8.1. Introduction 

In this chapter a method is introduced which takes a good advantage of the correlation 

between the adjacent pixels. This method is based on Xoring the adjacent lines and the 

adjacent planes. The process is very fast with a much better compression factor compared 

to the method based on the Reed-Muller transform. 

In the following, first the compression based on Xoring the lines, and then the compres­

sion based on Xoring the lines and the planes will be explained. 

8.2. Compression using Xoring the adjacent lines 

In most images the values of the adjacent pixels are highly correlated. Therefore most 

of the time the value of a pixel in a line is very close to its adjacent pixel at the adjacent 

line. Because of this fact, when a picture matrix is converted to the eight matrices, from 

the most significant bit plane to the least significant bit plane, the information of the two 

adjacent lines in MSB planes is very much the same, and as we go towards LSB planes 

the correlation becomes lower. Therefore it can be seen that the properties of the bit 

planes are different and we should treat them differently. 

We can summarize the behavior of the bit planes from MSB planes towards LSB 

planes as follows: 
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1) In MSB planes the data of adjacent lines are very similar, so we can also take advan­

tage of that to compress the data. But in the LSB planes the information of adjacent lines 

is not that much similar so that in the LSB and the second LSB planes, the information 

can be assumed random, and there is almost no correlation between them (specially in 

pictures from nature). 

2) Any change in the value of elements in the MSB planes will change the value of 

the corresponding pixel greatly. Therefore for MSB planes the effort should be taken not 

to lose any information while compressing the data. But changes in the values of elements 

in LSB planes do not have much effect on values of the corresponding pixels, so that 

changes in the LSB and the second LSB planes are almost invisible to us. 

From the above discussion we can develop a method to improve the data compression. 

We know that adjacent lines in MSB planes are very similar specially in the MSB and the 

second MSB planes. Therefore by Xoring the adjacent lines bit by bit, the resulting line 

will contain many Os and few 1 s, so that the number of nonzero elements and also the 

number of transition elements are substantially decreased. H this method is used for the 

first two MSB planes the result will be much better than by using the fixed polarity RM 

transform, because if the fixed polarity RM transform is used, although in most cases the 

number of nonzero elements is decreased, the number of transition elements is much 

higher comparing to the case of Xoring the lines. 

Therefore, for the Most Significant Bit planes, the following algorithm can be used 

to improve the compression factor: 



for( i = Most Significant bit planes ) { 

for( each plane ) { 

fetch a Row 

if( first Row) 

put it in the first Row of the new plane without changing 

else 
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Xor the fetched Row with the preceding Row bit by bit and put in 

the new plane 

} 

Use Run-Length coding to code the data of the resulting plane 

} 

There are some points on Run-Length coding that should be noted. As mentioned 

before, the properties of the bit planes for the same picture are different so they should 

be treated differently. ff RLC is used to code the data, different Huffman code tables 

should be defined for different planes. For example in the MSB plane of a picture there 

exist long runs even with more than 200 bits while in the second MSB plane the number 

of such runs is much smaller, and in the third MSB plane one can hardly find runs longer 

than 100 bits. Huffman codes for the first four MSB planes are shown at the end of Chap­

ter 9. These codes have been defined based on the information from 10 different pictures. 

The use of different Huffman code tables requires more memory space but in exchange 

improves the compression factor. 
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The method that has been used for RLC for our bit planes is a little different from the 

method explained in Chapter 3. In this method the Huffman code table used for zero runs 

is the same as the table used for One Runs. The only thing that distinguishes the Zero Runs 

from the One Runs is that we assume every row of a matrix to start with a Zero Run, and 

for the case that a row starts with a One Run it is assumed that it starts with a Zero Run 

of length zero. Assuming that the first run is a Zero Run, the type of the rest of the runs 

in the line is clearly determined. 

Also, an End Of Line ( EOL) code can be inserted at the end of each line for line syn­

chronization. This reduces compression factor slightly but in exchange if some error hap­

pens in the transmission line, EOL causes this error not to be distributed to the whole data, 

and just this single specific line is affected. 

8.3. An improvement by Xoring the planes 

In the previous method it has been taken advantage of the fact that the adjacent pixels 

are similar. But we can take more advantage of this fact. 

It can be experimentally shown that in most of the pictures the difference between the 

adjacent pixels in more than 95% of the cases is less than 16. Knowing this fact we can 

improve the previous method. 

For instance, let us assume the previous method has been used, and the planes with 

Xored lines are ready. Now considering that the difference between the adjacent pixels 

is usually less than 16, we can see if an element in the 3rd MSB plane (with the exception 

of the first line ) is one, the corresponding elements in the 4th MSB plane will be in most 

cases one as well. And if an element in the 2nd MSB plane is one the corresponding ele-
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men ts in the 3rd and the 4th MSB planes in most of the cases are one. And if an element 

in the MSB plane is one, the corresponding elements in the 2nd, 3rd and 4th MSB planes 

in most of the cases are one. Therefore it is a good idea to Xor the resulting planes after 

xoring the lines, because the number of 1 s and the number of transition elements will de-

crease. 

Tables 8.1 and 8.2 show the above issue more clearly. The five different cases that 

are listed in Table 8.1 happen in most of the cases, and after Xoring the planes the results 

will be as in Table 8.2. It can be clearly seen that the number of 1 s and therefore the num-

ber of transition elements are both decreased. 

Case MSB 2ndMSB 3rdMSB 4thMSB 

Corresponding #1 0 0 0 0 
elements 

in the #2 0 0 0 1 

planes #3 0 0 1 1 
after 

xoring #4 0 1 1 1 

the lines #5 1 1 1 1 

Table 8.1 Five cases which occur most of the time 

Therefore the following procedure can be used to obtain a better compression factor 

comparing to the previous methods: 
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Case MSB 2ndMSB 3rdMSB 4thMSB 

Corresponding #1 0 0 0 0 
elements in the 

resulting #2 0 0 0 1 
planes 
after #3 0 0 1 0 

xoring 
the planes #4 0 1 0 0 
with Xored 

lines #5 1 0 0 0 

Table 8.2 The result from Table 8.1 after Xoring the planes 

for( i = Most Significant bit planes tAble 5.1 

{ 

for( each plane ) 

{ 

fetch a Row 

if( first Row) 

put it in the first Row of the new plane without changing; 

else 

Xor the fetched Row with the preceding Row bit by bit and put in 

the new plane; 

} 

} 

for( i = new planes with Xored lines ) 

{ 



} 
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if ( ! first plane) 

{ 

} 

Xor each element with corresponding element of the previous 

matrix and put the results in a new matrix; 

Use Run-Length coding to code the data of the resulting planes; 

The experimental results (next chapter) show that this method decreases the number 

of transition elements by 20-30%, and increases the compression factor by almost the 

same factor. 

For LSB planes, the same method, explained in chapter 6, can be used. 
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Chapter 9 

Discussion of the experimental Results 

In this chapter the simulation results of the two methods (fixed polarity Reed-Muller 

transform and Xoring the lines and planes) are discussed. For the method based on Reed­

Muller transform the size of the blocks has been taken to be 16x16. 

In Table 9 .1 compression factors of the four MSB planes from the two methods are 

shown. These factors have been calculated based on 10 different pictures of natural 

scenes. Also the number of transition elements for a typical image in both cases are 

shown. As we see the number of transition elements in the case of using Reed-Muller 

transform is much higher than in the case of using Xoring the lines, so the compression 

ratio for the former case is lower. 

The data in this table are based on the fact that there is no any information loss after 

compression of the bit planes. 

There are some points about Huffman coding that should be explained: 

1) For the case of Xoring, Huffman codes have been computed for the MSB and the 

2nd MSB planes separately from those of the 3rd MSB and 4th MSB planes (see the end 

of the chapter), and each Huffman table contains two types of codewords: Terminating 

Codewords (TC) and Make Up Codewords (MUC). For each bit plane, the runs between 

0 and N are transmitted using a single terminating codeword, and the runs longer than N 

bit are transmitted by a MUC and a TC. 

For the case of MSB and 2nd MSB, N is taken as 256 .. 



For the case of 3rd MSB and 4th MSB, N is taken 64. 

Bit Plane MSB 2ndMSB 3rdMSB 4thMSB 

Xoring 
with 3.9 2 1.4 1.15 

Compression RLCcoding 

Factor Reed-Muller 
Transform 1.9 1.2 1 1 
with RAC 

#of Xoring 4000 9300 15500 21500 
Transition 
Elements 
Fo~ a typical 

image 
Reed-Muller 256X256 11000 19000 25500 29000 
Transform 

Table 9 .1 The comparison of Fixed Polarity Reed-Muller compression and the 
compression using Xoring the lines 
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The reason for the above assignment is that as we start from MSB to LSB, the number 

of long runs becomes smaller and smaller. For example in the 4th MSB planes most of 

the runs (more than 95%) are less than 64 bits so it would be waste of memory space if 

we define the Huffman codes for 256 bits, and the improvement would not be that much. 

2) In the case of Reed-Muller transform, like in the previous case, Huffman codes 

have been computed for MSB and the 2nd MSB separately from the 3rd MSB and 4th 

MSB. 
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9.1. Evaluation of image compression based on fixed polarity Reed-Muller Trans 

form 

As mentioned before, there are two major things that stop us from obtaining the maxi­

mum compression factor, while Run-Length coding. In the following, this issue will be 

explained in more detail. 

1) As explained before, Huffman coding gives an integer number of bits for each co­

deword r, and it is equal to or greater than - log2P(r). This causes the compression fac­

tor to be decreased. 

As an example assume that there are just three different Runs of 0, 1 and 00 in some 

bit planes. If the probability of the occurrence of the Run 0 is not less than the other two, 

the Huffman code will be something as follows: 

Run Huffman code 

0 0 

1 10 

00 11 

Obviously in this case it would be much better if Huffman coding were not used be­

cause the compression factor will be less than one. In other words not only does the data 

not get compressed, but there will be more bits after coding. In the case that the probabili­

ty of the occurrence of each code is equal, i.e. 1/3, the compression factor would be 

4/5=0.8, and the reason for such bad results is that two of the Runs have to be coded by 

two bit codes. 
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2) The Huffman codes are defined based on the probability of the occurrence of Run-

Lengths over many typical documents and it is not necessarily optimum for each specific 

case. 

For example assume in some bit planes there are just four different Runs of 000, 111, 

001 and 100, and based on the statistics averaged on all the planes, the Huffman codes 

are 0, 10, 110 and 111 respectively. Now if in a specific plane the probability of the occur-

rence of the runs are equal, i.e. %25, the predefined Huffman codes are not the best cod-

ing, and the increase in the number of bits required to compress the data comparing to 

the best Huffman codes will be equal to: 

(0.25 x 1) + (0.25 x 2) + (0.25 x 3) + (0.25 x 3) = 1 125 
4 x (0.25 x 2) . 

which shows 12.5% increase. 

The problem with fixed polarity RM transform is that it cannot substantially decrease the 

number of transition elements, specially for the case of 3rd MSB toward LSB s the number 

of transition elements is still too high, and that is because of the fact that in fixed polarity 

RM forms just 2° different cases are checked, where n is the number of variables. In other 

words since in fixed polarity RM neither the permutation of the variables nor the inconsis-

tent polarity of the variables is allowed, a substantial decrease in the number of terms can-

not be expected. 

In general if Dt is the number of transition elements in a bit plane, and Ht is the average 

number of bits needed to code a run in the bit plane, the compression factor will be greater 

than one if the product of Dt x Ht is less than the number of elements of the plane. For 
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example, for a 256 x 256 image, each plane contains 65536 bits, so in order to have the 

compression factor greater than one for each plane, Dt x Ht must be less than 65536. In 

the case of using Reed-Muller transform usually the number of transition elements in 

each plane from the 3rd MSB to LSBs is higher than 20000. So Ht must be about 3 or 

less. But because of what was mentioned above, Ht is not very low, so that usually for 

these planes the compression factors are very low and sometimes less than 1. In other 

words the number of bits needed to code a run on the average is longer than the average 

length of the run, i.e. the numerator of the term in the right side of Eq.(9 .1) becomes less 

than the denominator. 

Ti+ To 
Qma.x= u

1 
+ H

0 

9.2. Examples 

(9.1) 

In this section simulation results on three different pictures are shown. Table 9 .2 

shows the compression factor for the first four MSB planes. As it can be seen, we can 

get a significant improvement by Xoring the planes, and the quality of the images with 

compression factor 8/2.5 is very good. It should be noted that the following pictures have 

been printed by laser printer, so they are not the accurate representations of the images 

as shown on a gray-scale screen. Subjective quality estimates are the only effective 

technique discovered to date for comparing images. 



91 

Image MSB 2ndMSB 3rdMSB 4thMSB 

# of transition 
elements 4021 9216 15455 21460 

# of bits after 
Lady compression 17296 32627 47034 57547 

Compression 
3.8 2.0 1.4 factor 1.1 

# of transition 
Xoring elements 3496 8402 13405 20625 

# of bits after 
the Rose compression 15731 31582 43377 55668 

lines 
Compression 

4.2 2.1 factor 1.5 1.2 

# of transition 
elements 3396 7312 13294 20342 

House # of bits after 
compression 14077 26080 40774 53634 

Compression 
4.7 2.5 factor 1.6 1.2 

# of transition 
elements 4021 6499 10290 14018 

# of bits after 
Xoring Lady compression 17296 24434 34646 42536 

the 
Compression 

3.8 2.7 factor 1.9 1.5 

# of transition 
lines elements 3496 5746 7589 14019 

# of bits after 
+ Rose compression 15731 23529 31507 44924 

Xoring 
Compression 

4.2 2.8 2.1 factor 1.5 

# of transition 
the elements 3396 5404 10528 16053 

planes House # of bits after 
compression 14077 20408 35578 46345 

Compression 
4.7 3.2 1.8 1.4 factor 

Table 9.2 The effect of Xoring the planes after Xoring the lines 
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9.3. Evaluation of image compression method based on Xoring the lines and the 

planes 

The most important advantage of the method based on Xoring the lines and the planes 

is its simplicity which ultimately causes the process to be fast. The only logic gate needed 

for the mapping process is Exclusive-OR gate. And since affib=c=>b=affic, to recon­

struct the matrix, again just Exclusive-OR is needed .. 

Table 9.3 shows the comparison between the method based on JPEG algorithm and 

that based on the Xoring the lines and the planes. 

Speed Compression Factor Complexity 

JPEG Slow Excellent Complicated 

Xoring Fast Good Simple 

Fig. 9.3 The comparison between the JPEG algorithm and Xoring The lines and the planes. 

The mapping process requires just 2 Exclusive-ORs for each bit of the bit planes. 

Therefore for each pixel it requires 16 XOR gates, while for the case of the JPEG, the 

algorithm explained in 4.2.1 shows that for each pixel, an expression containing one addi­

tion and two multiplications needs to be executed 64 times. 

Therefore the mapping process for the case of JPEG is much more complicated than 

that for the case of Xoring the lines and the planes, and this makes the JPEG Process much 

slower than Xoring the lines and the planes. 
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The most important advantage of the JPEG algorithm is the fact that with JPEG it is 

possible to obtain a very high compression factor, specially for the continuous-tone 

images. Xoring the lines and the planes to obtain a high compression factor (more than 

5), requires loss of information from the 4th and sometimes even the 3rd MSB planes 

which has a bad effect on the quality of the picture. However, figures 9 .2, 9 .4, 9 .6 shows 

that we can have a good quality images with compression factor 8/2.5. Figures 9.7, 9.8 

and 9. 9 show the compressed images with compression factor 8/2.5 using JPEG. 
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table 9.3: Huffman codes used for the runs in the MSB and the 2nd MSB planes after Xoring the lines. 

#of bits Huffman-code #of bits Huffman-code 

0 000011100 19 00010101 

1 1 20 00101001 

2 011 21 00101011 

3 0011 22 01001001 

4 00011 23 01001011 

5 01011 24 01000101 

6 001001 25 000011101 

7 010011 26 000011011 

8 010101 27 000011001 

9 0000101 28 000010011 

10 0000011 29 000010010 

11 0010110 30 000000111 

12 0010111 31 000100011 

13 0100011 32 000100001 

14 0101001 33 000100101 

15 00001111 34 000100010 

16 00000101 35 000100100 

17 00000001 36 000101001 

18 00010011 37 000101111 
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#of bits Huffman-code #of bits Huffman-code 

38 000101101 57 0000000011 

39 000101110 58 0000001100 

40 001000101 59 0000001101 

41 001000001 60 0001000001 

42 001010001 61 0001010001 

43 001010100 62 0001011000 

44 001010101 63 0001011001 

45 010001001 64 0010001111 

46 010000111 65 0010001001 

47 010000101 66 0010000100 

48 010000110 67 0010000101 

49 010000011 68 0010000110 

50 010100001 69 0010000111 

51 010000001 70 0010000001 

52 010100011 71 0010100000 

53 0000110101 72 0010100001 

54 0000100011 73 0100101011 

55 0000100001 74 0100101010 

56 0000010001 75 0100001000 
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#of bits Huffman-code #of bits Huffman-code 

76 0100001001 95 00000010101 

77 0100000101 96 00010000001 

78 0100000001 97 00010100001 

79 0101000001 98 00100011011 

80 0101000100 99 00100011100 

81 0101000101 100 00100011101 

82 00001100011 101 00100010001 

83 00001101001 102 00100011001 

84 00001000001 103 00100011010 

85 00001000100 104 00100000001 

86 00001000101 105 01001010011 

87 00000100101 106 01001000001 

88 00000100110 107 01001010000 

89 00000100111 108 01001010001 

90 00000100001 109 01001010010 

91 00000100000 110 01000100010 

92 00000100100 111 01000100011 

93 00000010110 112 01000001001 

94 00000010111 113 01000100000 
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#of bits Huffman-code #of bits Huffman-code 

114 01000100001 133 000000100011 

115 01010000000 134 000000100100 

116 01010000001 135 000000100101 

117 01000000001 136 001000100001 

118 000011010001 137 001000110000 

119 000011000101 138 001000110001 

120 000010000001 139 000101000001 

121 000011000000 140 000101000000 

122 000011010000 141 010010001001 

123 000011000001 142 010010001010 

124 000011000010 143 010010001011 

125 000011000011 144 010010001100 

126 000011000100 145 010010001101 

127 000000100110 146 010010001110 

128 000000100111 147 010010001111 

129 000000101000 148 010010000001 

130 000000101001 149 010010000000 

131 000100000001 150 010010000100 

132 000000100010 151 010010000101 
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#of bits Huffman-code #of bits Huffman-code 

152 010010000110 171 0010000000000 

153 010010000111 172 0010000000001 

154 010010001000 173 00000000011100 

155 010000010001 174 00000000011101 

156 010000000001 175 00000000011110 

157 010000000000 176 00010000000001 

158 010000010000 177 00000000011111 

159 0000001000001 178 00000000000001 

160 0000001000010 179 00000000010000 

161 0001000000001 180 00000000010001 

162 0000001000011 181 00000000011000 

163 0000000001011 182 00000000011001 

164 0000000001001 183 00000000011010 

165 0000000001010 184 00000000011011 

166 0000001000000 185 000000001000000 

167 0010000000010 186 000000001000001 

168 0010001000000 187 000000001000010 

169 0010001000001 188 000000001000011 

170 0010000000011 189 000000001000100 
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#of bits Huffman-code #of bits Huffman-code 

190 000000001000101 209 00010000000000 

191 000000001000110 210 000000001011000 

192 000000001000111 211 000000001011001 

193 000000001001000 212 000000001011010 

194 000000001001001 213 000000001011011 

195 000000001001010 214 000000001011100 

196 000000001001011 215 000000001011101 

197 000000001001100 216 000000001011110 

198 000000001001101 217 000000001011111 

199 000000001001110 218 000000000001111 

200 000000001001111 219 000000000010000 

201 000000001010000 220 000000000010001 

202 000000001010001 221 000000000010010 

203 000000001010010 222 000000000010011 

204 000000001010011 223 000000000010100 

205 000000001010100 224 000000000010101 

206 000000001010101 225 000000000010110 

207 000000001010110 226 000000000010111 

208 000000001010111 227 000000000011000 
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#of bits Huffman-code #of bits Huffman-code 

228 000000000011001 247 000010000000000 

229 000000000011010 248 000010000000001 

230 000000000011011 249 000010000000010 

231 000000000011100 250 000010000000011 

232 000000000011101 251 000010000000100 

233 000000000011110 252 000010000000101 

234 000000000011111 253 000010000000110 

235 000000000000001 254 000010000000111 

236 000000000001110 255 0000000000000000 

237 000000000000100 256 0000000000000001 

238 000000000000101 

239 000000000000110 

240 000000000000111 

241 000000000001000 

242 000000000001001 

243 000000000001010 

244 000000000001011 

245 000000000001100 

246 000000000001101 
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table 9.4: Huffman codes used for the runs in the 3rd MSB and the 4th MSB planes after Xoring the lines. 

#of bits Huffman~ode #of bits Huffman~ode 

0 010000100 19 00001101 

1 1 20 00001100 

2 011 21 010000101 

3 001 22 000000111 

4 0001 23 000000101 

5 01011 24 000000001 

6 010011 25 000010011 

7 010001 26 000010010 

8 010101 27 000010001 

9 000001 28 000010000 

10 0100101 29 0100100011 

11 0101001 30 0100000011 

12 0101000 31 0000001101 

13 0000101 32 0000001100 

14 0000111 33 0000000001 

15 01001001 34 01001000001 

16 01000011 35 01001000011 

17 01000001 36 01001000101 

18 00000001 37 01000000101 
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#of bits Huffman-code #of bits Huffman-code 

38 01000000001 57 0100000000001 

39 01000000011 58 0100000010000 

40 01000000010 59 0100000010001 

41 00000010001 60 0100000010010 

42 00000010011 61 0100000000000 

43 00000010010 62 0000000000001 

44 00000000001 63 0000000000000000 

45 010010000001 64 0000000000000001 

46 010010000101 128 0000000000000010 

47 010010001001 192 0000000000000011 

48 010010000100 256 0000000000000100 

49 010010001000 320 0000000000000101 

50 010000000001 384 0000000000000110 

51 000000100001 448 0000000000000111 

52 000000100000 

53 000000000001 

54 0100100000001 

55 0100100000000 

56 0100000010011 
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Chapter 10 

Conclusion 

An image compression method based on fixed polarity Reed-Muller Transform was 

created and analyzed in order to improve the method introduced by Reddy & Pai [3]. It 

was shown that this method cannot provide a good compression factor, therefore it cannot 

be a good candidate for image compression, although the method is fast. 

It was also shown that, the paper published by Reddy & Pai on Reed-Muller image 

compression contains several errors which make the paper invalid. 

A fast algorithm for image compression based on Xoring the adjacent elements of the 

bit planes and Xoring the corresponding bits of the resulting planes was introduced, and 

it was demonstrated that this method provides a much better compression factor than the 

method based on Reed-Muller transform, so that the quality of the reconstructed image 

for the compression factor of 8/2.5 is very good. Remarkably, in addition to high com­

pression factor the hardware to realize this technique is very simple, and requires the 

minimum number of operations, comparing to the other methods. 

If an efficient algorithm is developed for optimum permutation of the input sequence 

in Reed-Muller image compression, the result might be good, but nobody has developed 

any method yet. Therefore for future work it can be a subject to work on. 
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