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ABSTRACT 

An abstract of the thesis of Dirk Voelker for the Master of Science in Physics presented 

July 6, 1994. 

Title: Interactions of Ruthenium Red with Phospholipid Vesicles 

We have studied the electrostatic and other interactions of the inorganic, 

hexavalent dye Ruthenium Red (RR) with phospholipid vesicles composed of 

phosphatidylcholine (PC) and phosphatidylserine (PS) or phosphatidylinositol (Pl) in 

various mixtures and concentrations. Experiments were based on spectrophotometric 

absorption measurements which compared RR concentrations in the presence and in the 

absence of liposomes at different dye concentrations. Multilamellar liposomes were 

obtained by handshaken preparations. Five freeze-and-thaw cycles of the lipid-RR 

suspension produced an ion equilibrium distribution at the membrane-water interface. 

Results are given in terms of the Gouy-Chapman-Stem adsorption theory with the linear 

partition coefficient and a newly introduced effective ion valency as parameters. Data 

on the time stability of RR solutions and their interaction with laboratory equipment are 

given. Furthermore, we characterize the freeze-and-thawing process and present an 

electron micrograph of liposomes. 
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Two main results were found. First, the Gouy-Chapman-Stem theory correctly 

describes adsorption of a hexavalent ion to charged phospholipid vesicles if an effective 

valency is introduced. The effective valency accounts for the finite size of the ions and 

the repulsion between the ions. Values ranged between 2.9 and 4.1. Effective 

valencies decrease with increasing membrane surface charge density and are 

independent of the lipid concentration. Second, Ruthenium Red adsorbs to 

phospholipids and the adsorption is strongly related to the surface charge density of the 

membrane. Vesicles made from a mixture of PC and PI adsorb significantly less than 

vesicles made from a mixture of PC and PS. The second result is of special interest 

for molecular biology since biological membranes consist to a large extent of 

phospholipids. Sarcoplasmic reticulum (SR) membranes are discussed as an example. 

Liposomes (PC:PS 20: 1) with surface charge densities comparable to SR membranes 

adsorb a maximum of about 9±3nmol RR per mg lipid. 
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CHAPTER I 

INTRODUCTION 

Membranes are essential for all forms of life; they separate cells from their 

environment. Membranes also play an important role in biological communication 

since they are able to process or generate chemical or electrical signals. Photosynthesis 

and oxidative phosphorylation, the most important biological energy conversion 

processes, are carried out by membranes. 

Biological membranes are mainly composed of lipids and proteins. The lipids 

form a sheetlike structure in which the proteins are embedded. The proteins work as 

pumps, gates, receptors, energy transducers, and enzymes (Stryer 1981). This way, 

membranes serve as a highly selective permeability barrier. Ions and molecules present 

in the environment of the membrane can disturb the proper function of the membrane 

in two ways: they can adsorb to the lipid bilayer and change the transmembrane 

potential or they can adsorb to the membrane proteins and alter their function. Drugs 

take advantage of these two effects. An understanding of adsorption is therefore 

essential for the understanding of membranes. 

Biological membranes are complex and difficult to simulate. Since 20 to 80 % 

of the membrane mass are phospholipids, artificial membranes made from well defined 
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mixtures of various phospholipids (and occasionally some proteins) are the systems of 

choice for many adsorption studies (Smejtek and Wang 1993 and 1991, Langner et al. 

1990, Chung et al. 1985 among others). All effects observed in artificial lipid bilayers 

have also been observed in biological membranes (Benz 1985). 

Sarcoplasmic reticulum (SR) is a biological membrane that regulates the uptake 

and release of Ca2+ ions during contraction and relaxation in skeletal, cardiac, and 

smooth muscle (see Inesi et al. 1990 for a review). SR consists of approximately equal 

parts (mass) of proteins and phospholipids (mainly PC and PS). The native surface 

charge of SR is equivalent to approximately 20: 1 PC:PS. Ca2+ uptake and release are 

done by two different proteins, the Ca2+, Mg2+ -ATPase and the Ca2+ release protein, 

but the mechanisms are not completely understood yet. Several molecules stimulate or 

inhibit Ca2+ uptake or release in SR. Among them is the hexavalent ion Ruthenium 

Red (RR) which stimulates Ca2+ uptake and inhibits Ca2+ release. Numerous authors 

have examined the interaction of RR with SR and the membrane proteins (Corbalan­

Garcia et al. 1992, Charuk et al. 1990, Howell 1982 among others). RR also causes 

similar effects in other membrane systems. It inhibits Ca2+ uptake in mitochondria 

(Vasington et al. 1972, Moore 1971), in erythrocytes (Watson et al. 1971), and in 

chloroplasts (Kreimer et al. 1985). RR also stimulates Ca2+ release in mitochondria 

(Luthra and Olson 1977). Moutin et al. (1991) have studied the effect of RR on the 

Ca2+ -ATPase of SR. They mention that the "interaction of the dye with lipids should 

not be excluded", but they didn't investigate this. Another work has shown that there 

is an association between the Cai+ -A TPase and particular lipids of the SR membrane 
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(Bick et al. 1991). However, no study of interactions between RR and membrane 

phospholipids has been done so far. 

This study intends to answer two questions: 

(i) Does RR adsorb to phospholipid bilayers and what is the driving force for this 

effect? 

(ii) Does the Gouy-Chapman-Stem (GCS) theory describe adsorption of the 

hexavalent ion RR to phospholipid bilayers correctly? 

The GCS theory describes adsorption and electrostatic interaction of ions or 

molecules with charged or uncharged membrane surfaces. Despite the simplicity of the 

model behind this theory, it is still capable of describing adsorption of monovalent ions 

(Winiski et al. 1986, Eisenberg et al. 1979), divalent ions (Lau et al. 1981, McLaughlin 

1977), and tetravalent ions (Chung et al. 1985). No test of the GCS theory for a 

hexavalent ion was found in literature. 

We measured adsorption of RR to neutral phosphatidylcholine (PC) and to 

mixtures of PC with negatively charged phosphatidylserine (PS) or phosphatidylinositol 

(Pl). Experimental results were fitted with the GCS theory. Influences of the various 

parameters of the GCS theory on the shape of the adsorption isotherm were discussed. 

Furthermore, experiments were done to characterize RR, its impurities, and its 

interactions with spectrophotometer cells and laboratory glassware. Electron 

micrographs of phospholipid bilayer vesicles (liposomes) were taken and the effects of 

freeze-and-thaw (FAT) cycles on the liposomes were measured. Results are given in 
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chapter IV. Chapter II introduces the theoretical background for the different 

experiments and chapter III describes the main experimental procedures. 

Our adsorption measurements are based on a spectrophotometric comparison of 

the light absorption• of two samples. The first one contains RR in buffer solution. 

The second one contains the same RR concentration but additional liposomes. Prior to 

the measurement this sample is processed by FAT to achieve an equilibrium distribution 

of RR at the membrane-water interface. The liposomes are then pelleted in a 

centrifugation step and the supernatant is compared to the first sample. The difference 

in absorption reflects a concentration difference of RR and together with the liposome 

concentration it characterizes adsorption. The strength of adsorption is given in terms 

of the linear partition coefficient f3mRR' a parameter in the GCS theory, and an effective 

RR ion valency qeff· 

We have found that RR adsorbs to phospholipid bilayers and that this adsorption 

is strongly related to the membrane surface charge density. Membranes made from PC 

and PI adsorb significantly less than membranes made from PC and PS. Adsorption 

isotherms are surprisingly well described by the GCS theory if an effective valency is 

used. Effective valencies are independent of the lipid concentration and decrease with 

increasing membrane surface charge density. 

• According to Random House Webster's College Dictionary (1992) 'absorption' 
is "the removal of energy or particles from a beam by the medium through which the 
beam propagates" and 'adsorption' is "the process by which an ultrathin layer of one 
substance forms on the surface of another substance". 



CHAPTER II 

LIPID MEMBRANES AND RUTHENIUM RED 

RUTHENIUM RED 

Ruthenium Red (RR) was discovered in 1892 (Joly 1892). It is an inorganic, 

intensely colored compound prepared from RuC13 in a NH3-solution (Gmelin 1938) and 

never occurs in nature. Mangin first described the staining properties of RR to 

visualize pectin in plant cells (Mangin 1893), and since then it has been widely used in 

biology. Light microscopy still uses RR as a generic stain for polyanions with a high 

charge density (Murano et al. 1990), or as a selective stain for mitochondria and muscle 

fibrils (Hirabayashi 1990). Reimann published the first electron micrographs employing 

RR as a stain (Reimann 1961) and several authors extensively discussed its usage for 

electron microscopy (Dierichs 1979, Luft 1971a and 1971b). Charuk et al. (1990) 

reported the usage of RR as a gel stain for Ca2 + -binding proteins. RR is used in 

medicine as well. Amann and Maggi ( 1991) reviewed its use in sensory neuron 

research, especially as a capsaicin antagonist. Currently capsaicin is discussed as a 

potential new pain reliever. Anghileri et al. (1986) showed that RR inhibits tumor cell 



6 

growth and Oberc-Greenwood et al. (1986) used RR to visualize tumors based on the 

affinity of RR to the mucopolysaccharide coat of these tumor cells. 

Besides its staining properties, RR is widely used in molecular biology, often 

in connection with sarcoplasmic reticulum (SR) membranes. In low concentrations '(80 

to 200 nM), RR blocks the Caz+ release channels of SR (Chiesi et al. 1988, Antoniu 

et al. 1985). A stimulatory effect of RR on the Ca2+ uptake by SR was also observed 

(Chu et al. 1987, M'esz'aros and Ikemoto 1985, Seiler et al. 1984 among others). 

However, Reed and Bygrave (1974) have shown that inhibition of mitochondrial Ca2+ 

transport is mostly due to an impurity of RR present in even purified samples. A 

detailed description of this particular impurity can be found in Emerson ( 1993). Yet 

another impurity causes the stimulation of electron transport in mitochondria previously 

ascribed to RR (Hochmann et al. 1981). 

The molecular formula of RR is [Ru30 2(NH3) 14]Cl6 • 4H20 as proposed by 

Fletcher et al. (1961) with a molecular weight of 858.5. Fig.1 shows a structural 

formula of the hexavalent cation. X-ray crystal structure determinations are difficult 

for the chloride since it does not form a crystal. Smith et al. (1971) and Carrondo et 

al. (1980) have examined similar structures and found the Ru-0 bonds to be about 

l.85A, the Ru-N bonds to be about 2. lA, and the overall length of the backbone to be 

approximately 11. 7 A. Fletcher et al. (1961) also indicate that RR is easily oxidized to 

Ruthenium Brown (RB). The average oxidation number of the Ru atoms is + 10/ 3 for 

RR and + 11 / 3 for RB. J0rgensen and Orgel (1961) discuss ?r-bonds as reasons for the 

stability of these two compounds. Ruthenium Violet (RV) is also present in all RR 
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6+ 
H3N NH 3 H3N NH 3 H3N NH 3 

\/ \/ \/ 
H 3N----Ru~-O---Ru---O---Ru---NH3 

/\ /\ /\ 
H3N NH 3 H3N NH 3 H3N NH 3 

Fig.1: Structure formula of Ruthenium Red. 

preparations. Luft (197la) suggests that this might be a higher polymer of RR with 

four or five oxygen-bridged Ru atoms. 

Commercially available RR is most often between 10 and 30 % pure. Fletcher 

et al. (1961), Luft (197la), and Hochmann et al. (1981) describe methods for 

purification. Solutions in water or buffer have a red magenta color and are the most 

stable near neutrality (Luft 197la). For lower pH, RR is often oxidized to RB and for 

higher pH it decomposes. No effect of temperature on the stability was found in the 

literature or observed during the experiments (20-90°C). According to Luft (l 97la), 

absorption peaks can be found at 360nm for RB, at 533nm for RR, and at 734nm for 

RV. 

In addition to RR there are several other ionic dyes that are active in SR 

membranes: the anionic dye Rose Bengal (Stuart 1992, Xiong 1992) and the cationic 

dye Alcian Blue (Abramson 1988) both induce Ca2+ release from SR. It might be of 

interest to do similar research with these stains, especially Alcian Blue, since some 

similarities with RR were pointed out by Luft (197la). Alcian Blue as well as RR are 
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both metal-containing basic dyes which interact similarly with various substances and 

both bind primarily by electrostatic forces. 

PHOSPHOLIPIDS 

All biological membranes consist of mainly proteins and lipids. While proteins 

serve as pumps, gates, receptors, energy transducers, and enzymes, the lipid molecules 

form a bimolecular layer and serve as barrier to the flow of polar molecules (Stryer 

1981). 

Lipids are divided into three major classes: sterols, glycolipids, and 

phospholipids. Fig.2 shows the molecular structure of the three different phospholipids 

used in this study. Phosphatidylcholine (PC) is neutral but has a polar headgroup, 

whereas phosphatidylserine (PS) and phosphatidylinositol (PI) are monovalent anions. 

These, are all composed of two fatty acid hydrocarbon chains that usually contain 

between 14 and 24 carbon atoms, glycerol, a phosphate group, and an alcohol. The 

polar headgroup is hydrophilic whereas the hydrocarbon tails are hydrophobic. Due 

to their amphipathic nature, these lipids form sheetlike structures in an aqueous 

environment, referred to as lipid bilayer vesicles or liposomes (Fig.3). The thickness 

of these bilayers ranges from 4 to 6nm, depending on the length of the hydrocarbon 

chains (Flewelling and Hubbell 1986). 



0 
II 

R-C-0-CH I 2 

R'-C-0-CH 0 
II I II + 
0 H C-0-P-0-CH -CH -N(CH ) 

2 I 2 2 3 3 
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0 
II 

R-C-0-CH I i 

R'-C-0-CH 0 H 
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0 H C-0-P-0-CH -C-NH + 

OH 

2 I 2 I 3 

o- coo-
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II 
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H 

H OH 
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Fig.2: Structure formulas of the phospholipids used in this study. 
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An early reference for liposomes can be found in a British patent in 1932. 

Probably without knowing the cause of this effect, the patentholder found that 

"pharmaceutical preparations for injection . . . can be prepared by combining 

medicaments with liquids, such as fats or fatty oils, ... with water" (cited from 

Bangham 1972). Bangham et al. (1965) first described the properties of liposomes. 

They are nowadays a common tool in biology, medicine and other areas. Their ability 

to trap and gradually release molecules makes them useful as drug delivery systems in 

cancer therapy (Sugarman and Perez-Soler 1992), ophthalmology (Niesman 1992), and 

vaccines (Gregoriadis and Florence 1993). Liposomes are used for gene transfer 

instead of viruses (Pickering et al. 1994) and by the cosmetics industry in skin care 
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products (Sloan 1990). Furthermore, there is a potential to use liposomes as artificial 

blood substitutes (Mobed et al. 1992), as artificial odor receptors (Kashiwayanagi et al. 

1990), or in food products, e.g. as enzyme carriers, to accelerate cheese ripening or 

to supplement food products with nutritious additives (Vuillemard 1991). 

Since 20 to 80 % of the mass in biological membranes are lipids (Stryer 1981), 

liposomes represent interesting model membranes widely used in adsorption studies 

(Smejtek and Wang 1993, Chung et al. 1985, Eisenberg et al. 1979 among others). 

Singer and Nicolsen ( 1972) proposed a fluid mosaic model for biological membranes 

(Fig.4) where the lipid bilayer serves as a solvent for membrane proteins and as a 

permeability barrier. Proteins are free to laterally diffuse in the lipid matrix but are not 

;··· .. 

Fig.4: Fluid mosaic model of biological membranes (after Singer and Nicolson). 
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free to rotate. Some lipids also may interact with particular membrane proteins and 

affect their function. 

There are several different methods to produce liposomes, each resulting in 

vesicles with special characteristics. One has to distinguish between large multilamellar 

vesicles (MLV), and large or small unilamellar vesicles (LUV, SUV); however, all real 

samples will be mixtures with certain dominant forms. ML Vs are usually obtained by 

handshaken preparations, as in our experiment, with typical diameters in the µm range 

(Gruner et al. 1985, Westman et al. 1982). LUVs can be prepared by detergent 

dialysis (Jiang et al. 1991) or by extrusion through filters (MacDonald 1991). SUVs 

are obtained by fragmentation of MLVs in an ultrasonic bath (Johnson 1971). 

Winterhalter and Lasic (1993) discuss influences of the various preparation methods on 

stability, formation, and size distribution of liposomes. 

Some small lipophilic anions easily penetrate through lipid bilayers (Benz et al. 

1976) if added to a liposome suspension. For most other atoms and molecules this is 

not the case. However, for measuring adsorption to lipid membranes it is necessary 

to reach an equilibrium distribution at the membrane-water interface. One way to reach 

this is to freeze and thaw (FAT) the liposome suspension repeatedly. Three to five 

FAT cycles seem to be sufficient (Mayer et al. 1985, compare also chapter IV). 

Expansion of water during the freezing process breaks the liposomes which then reseal 

upon warming. This process does not affect the properties of the bilayer membrane 

(Smejtek and Wang 1993). It is important for lipids to be in the fluid phase for fusion 
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to occur (Papahadjopoulos 1973). FAT makes the particle size distribution more 

homogeneous and the average diameters smaller (Westman et al. 1982). 

ADSORPTION THEORY 

The theory used in this study to describe adsorption of ions to membranes is 

based on the Gouy-Chapman-Stem (GCS) theory. It combines Langmuir adsorption 

isotherms with the Gouy-Chapman theory of the diffuse double layer. We have adopted 

a version of a model proposed by McLaughlin and Harary (1976) which was previously 

used by Smejtek and Wang (1993, 1991). 

Gouy-Chapman Theory 

The diffuse double layer theory was independently proposed by Gouy (1910) and 

Chapman (1913). It considers an infinite plane surface carrying a smeared surface 

charge in contact with an electrolyte containing ions which are regarded as point 

charges. This theory relates the surface charge to the surface potential as a function 

of the ionic composition of the solution. 

The statistical distribution of point charges with regard to a charged surface is 

expressed approximate! y by the Boltzmann relation 

n(x) = n(oo)exp(- q~(x)) 
k T . 

B 

(1) 
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where n(x) is the volume density of the ion at a distance x from the surface and n( oo) 

is the volume density in the bulk solution, q is the charge of the ion including the sign, 

<I> is the electrostatic potential, k8 is the Boltzmann constant and T the temperature of 

the electro I yte. 

The electrostatic interactions between the surface and the charges are given by 

the Poisson equation 

d2~(x) = 

dx2 
__ l_p(x) (2) 

EwEo 

Ew is the dielectric constant of the electrolyte, Eo is the permittivity of free space, and 

p, the volume charge density, is given by 

p(x) ::; E z;eni(x) (3) 

where e is the proton charge and zi is the valence of the ion including the sign. 

Boundary conditions for this problem require that the potential at the surface is 

specified (<I>0} and that the potential and its slope are zero at infinity. A combination 

of the boundary conditions with the above equations allows to solve for <I>. For 

q<I>0 ~ 2k8 T this may be linearized to 

<l>(x) ::; Cb0 exp(-Kx) (4) 

where K = I 2 eweoksT E (z;e)2Ci . 
(5) 
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L(zie)2Ci is the ionic strength, 1/ K is the Debye length, and Ci is the bulk concentration 

of ions (McLaughlin 1977). 

Electroneutrality implies o = - J p(x)dx (6) 

0 

where <J is the surface charge density. Finally we obtain Grahame's equation (Aveyard 

and Haydon 1973) 

(J = 
-z;e ~o 

(2eweoksT) L C;[exp( ) - 1] . 
kBT 

(7) 

Grahame (1947) first solved the problem for an asymmetrical electrolyte. 

Gouy-Chapman-Stem Theory 

The adsorption model describes non-competitive adsorption of RR (or other ions) 

to a charged or uncharged membrane surface in the presence of buffer or salt ions. It 

can be characterized in five equations. 

The Langmuir adsorption isotherm relates the RR volume concentration at the 

aqueous side of the membrane-solution interface, [RR]u, and the membrane surface 

density of adsorbed ions, (RR)m. 

(RR),. = K,.[RRJi/ ( ~ -(RR),.) 
s 

(8) 
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Km is the intrinsic association constant which describes the strength of the interaction 

between the adsorbing molecule and the membrane (Smejtek 1990) and Ps is the 

membrane surface area per RR ion adsorption site. 

Analogous to the derivation of Grahame's equation, the Boltzmann relation has 

to be used to relate [RR]if with [RR]eq, the bulk aqueous concentration of RR in the 

equilibrium after adsorption of the ions to the membrane. 

[RR]if _ ( -qtffvm) 
-- - exp ------
[RR]eq kBT 

(9) 

V m is the effective potential at the membrane surface (analogous to <1> 0). For the 

hexavalent cation RR it was necessary to introduce an effective charge of the ion, qem 

to take care of the effect that the RR ions are not idealized point charges. 

The membrane surface charge density am is given by 

CJm = Oo +qeff(RR)m (10) 

where a0 is the native surface charge density. Grahame's equation (Eq.7) relates am to 

vm. 

In contrast to other adsorption studies it is necessary to introduce a balance 

equation because the adsorption significantly reduces the initial ion concentration 

[RR]init· 

[RR]init = [RR]eq + (RR)m [L] p L (11) 

where [L] is the volume density of lipids and PL is the membrane surface area per lipid. 

A value for PL of about 70A2 for PC and PS is most often found in recent literature 
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(Small 1986, Chung 1984, Eisenberg 1979). We assume that PL for PI is about the 

same. 

In the limit of low surface coverage with RR ( 1/Ps ~ (RR)ro) the linear partition 

coefficient {3mRR can be derived from eq.(8): 

- Km ( = (RR)m ) 
PmRR - Ps [RR]if 

(12) 

Limitations. Generalizations and Tests of the GCS Theory 

The model allows computation of [RR]eq as a function of [RRlnit with P8 , l<ui, 

and qeff as parameters. Several assumptions had to be made in this simplest model: 

(i) Adsorption of buffer or salt ions is negligible compared to RR adsorption. 

Competitive adsorption could be included for ions with known parameters by 

accounting for their contribution to the membrane surface charge density in Eq. ( 10). 

Eqs. (8), (9), and (11) would be analogous for all ions (Westman et al. 1981). 

(ii) The surface density of adsorption sites (1/P8) has to be much greater than 

the surface density of adsorbed ions (RR)m if Langmuir adsorption isotherms are used. 

If both quantities become comparable, more general Vollmer adsorption isotherms could 

be used instead (McLaughlin 1977). 

(iii) It is assumed that the whole membrane surface could be covered with 

adsorbed RR ions. However, due to repulsive electrostatic interactions, each RR ion 

excludes another ion from its vicinity (Smejtek 1993); thus, if the areas covered by one 



18 

ion are considered circular disks which are not allowed to overlap with one another, the 

whole membrane could not be covered by RR. To include this in the model, (1/Ps) in 

Eq.(8) had to be replaced by (SFF/Ps), where SFF is the space filling factor. For 

hexagonal packing SFF would be 0.907 (Beiser 1969). 

(iv) The derivation of Grahame's equation also requires some assumptions. It 

is assumed that neither the standard chemical potential nor the activity coefficient varies 

with distance from the membrane. Also, the dielectric constant of the aqueous solution 

is assumed to be constant up to the membrane surface, image charge effects are ignored 

and ions are considered point charges. Carnie and McLaughlin (1983) and Alvarez et 

al. (1983) discussed finite size effects. They found that large divalent cations have 

smaller effects on the potential of a negatively charged bilayer membrane than small 

divalent cations (i.e. large divalent cations adsorb less) and that the magnitude of this 

discrepancy is proportional to the ionic strength. McLaughlin (1989) suggests ignoring 

the finite size of ions if they are smaller than the Debeye length. Grahame's equation 

also requires the charges to be smeared uniformly over the membrane surface. 

Discretness of charge effects should be most important for low membrane charge 

densities and high ionic strengths (McLaughlin 1977). Winiski et al. (1986) tested for 

those hypotheses and found that their experimental results agreed much more closely 

with the GCS theory than with a modified theory that accounted for discrete charges. 
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LIGHT ABSORPTION AND SCA TIERING 

For a long time, spectrophotometry was the most important tool for analytical 

chemists. This is based on the fact that every atomic or molecular structure has a 

fingerprint-like set of energy states which produce a distinct absorption spectrum. The 

Bohr-Einstein frequency equation 

aE = E2 -E1 = hv (13) 

relates the discrete atomic or molecular energy states E1, Bi to electromagnetic radiation 

with frequency v. Absorption of electromagnetic radiation induces a transition from a 

lower (E1) to a higher {E2) energy level if equation (13) is fulfilled. Relaxation from 

the Bi level occurs shortly after excitation and involves either radiative or non-radiative 

transitions. For atoms and molecules in solution, non-radiative transitions are 

dominant. Although optical spectroscopy covers only a very narrow range of the 

electromagnetic spectrum (wavelengths typically between 200 and 900nm), this range 

is of extreme importance since it corresponds to the electronic transitions. 

The basis of light-absorption measurements is the Bouguer-Lambert-Beer law 

(Perkampus 1992): 

I 
A(l) = log(~) = e(l)·c·d 

I 
(14) 

A is the absorbance, I0 is the intensity of the monochromatic light entering the sample 

and I is the intensity of this light emerging from the sample. c is the concentration of 
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the light-absorbing substance and d is the path length in the sample. e, the molar 

decadic extinction coefficient, is characteristic for the substance. The linear form of this 

law is limited to dilute solutions, for concentrated solutions, e becomes dependent on 

the refractive index of the solution (Kortum 1962). 

If suspensions rather than solutions are used in spectrophotometric 

measurements, a second phenomenon occurs: scattering. A measure for the relative 

intensity scattered is the total scattering cross section <J. It links the incident intensity 

10 to the emerging intensity I: 

I = I e -Nod (15) 
0 

N is the number of particles per volume. A detailed discussion of scattering 

phenomena can be found in Hulst (1981) or Bohren and Huffman (1983). One has to 

distinguish three classes of scattering: First, Thomson scattering for particle sizes much 

bigger than the incident wavelength A.. Here, aT is independent of A.. Second, Rayleigh 

scattering for particle sizes much smaller than A.. Here, the particles are considered 

electric and magnetic multipoles (induced by the incident electromagnetic field) which 

radiate energy in directions other than the direction of incidence. aR is proportional to 

A.4 • Third, Mie scattering, the exact theory derived from Maxwell's equations is 

applicable to all particles. This general theory of scattering is used for regions between 

Thomson and Rayleigh scattering domains. aM is strongly dependent on size and 

material of the scatterer. 

Comparing (14) and (15) one finds a proportionality between a and A. 

Absorbance measurements in conj unction with Mie scattering computations make it 
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possible to determine size, concentration, and other parameters for particles comparable 

to the wavelength (Hulst 1981). In practice, this is not exactly applicable for 

complicated particles such as liposomes, but the dependence of absorbance on the 

wavelength and changes in absorbance values for one wavelength, could give a relative 

measure for the average diameter of the particles and changes in their concentration. 

Angstrom (1929) introduced the empirical formula 

A - 1-cx (16) 

for meteorological studies of haze and light mist. Johnson and Kaler ( 1986) used this 

concept to characterize aging of vesicular dispersions. The synthetic surfactant sodium 

4-(l '-heptylnonyl)benzenesulfonate which they used forms, analogous to phospholipids, 

vesicles consisting of a single bilayer in an aqueous environment. The bigger a, the 

smaller the average diameter of the particles. In the limit for small particles, a =4 

describes Rayleigh scattering and in the limit for large particles, a =O describes 

Thomson scattering. In our experiment Angstrom's formula was used to monitor 

changes in the size distribution of liposome suspensions due to FAT. 



CHAPTER III 

MATERIALS AND METHODS 

CHEMICALS 

All experiments were carried out in either B-3 or HEPES buffer solutions. s-3 

is a buffer containing potassium-phosphate, -citrate, and -borate in a molar ratio of 

0.002:0.002:0.0005. Potassium-phosphate-dibasic-trihydrate (K2HP04 • 3H20) and boric 

acid (H3B03 , Mallinckrodt Chemicals, St.Louis, MO), potassium-citrate-monohydrate 

(K3C6H50 7 • H20, Matheson Coleman & Bell Manufacturing Chemists, Norwood, OH), 

HEPES (N-2-HydroxyEthyI-riperazine-N'-2-.Ethane-.Sulfonic Acid, Research Organics 

Inc., Cleveland, OH), and chloroform (American Burdick and Jackson, Muskegon, Ml) 

were at least reagent grade. L-a-phosphatidylcholine (egg yolk, PC, m. w. 760.09), L­

a-phosphatidyl-serine (brain, PS, m. w. 810.03), and L-a-phosphatidylinositol (bovine 

liver, PI, m.w. 909.12) were bought in various concentrations from Avanti Polar 

Lipids, Birmingham, AL. The phospholipids were dissolved in chloroform and were 

all 99 % pure. Ruthenium Red (RR) was obtained from Sigma (Sigma Chemical 

Comp., St.Louis, MO; listed purity 35%) and Fluka (Fluka Chemie AG, Buchs, 

Switzerland; listed purity 90-95%, 99.5% for this batch). 
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All chemicals were used without further purification. Deionized water 

( > lOMOcm-1) was used for all preparations. 

SAMPLE PREPARATION 

Liposomes 

Chloroform solutions of PC, PS, and PI were mixed in different mass ratios in 

50 or lOOml round bottom flasks and diluted with chloroform to a final volume of no 

more than half the flask volume. The chloroform was slowly evaporated in a rotary 

flash evaporator (Buchler Instruments, Fort Lee, NJ) leaving a thin lipid film on the 

inside wall of the flask. Remaining chloroform was removed from the flask with a 

rotary pump connected to the flask for one hour (more for higher lipid concentrations). 

In the next step a certain volume of the buffer solution was added to the flask which 

was then filled with nitrogen gas. Gentle shaking removed the lipid film and produced 

a suspension of multilamellar liposomes with a predetermined lipid concentration. For 

all experiments the buffer solution was B-3, titrated to pH 7. 3 with KOH. All 

experiments were carried out at room temperature. None of the phospholipids had a 

phase transition temperature close to room temperature. 

Solution pH was measured with a digital pH-meter (model 6072, Jenco 

Electronics Ltd., Taipei, Taiwan). Prior to each measurement the meter was calibrated 

with pH 7 and pH 10 standard solutions (VWR Scientific, Portland, OR). 
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Ruthenium Red 

RR was dissolved in buffer solution in a polycarbonate tube and heated to 60°C 

under continuous stirring. The solution was then centrifuged at 100,000xg (20°C) for 

two hours. The higher concentrations resulted in formation of a black pellet. Stock 

solutions were prepared at least one day in advance and not used for more than 5 days. 

They were kept in dark bottles in the refrigerator. 

Actual concentrations were determined spectrophotometrically by the method 

described by Luft ( 197 la). He measured the absorbance of purified RR in water to be 

1.583 for a concentration of 2.34xl0-5M in lOmm quartz-cells at 533nm. Further, he 

published a formula to correct the absorbance at the RR-peak (533nm) for overlaps of 

Ruthenium Brown (RB, peak at 360nm) and Ruthenium Violet (RV, peak at 734nm). 

ARR. comcted= AS33nm -(0.20A360nm +0.25A734nm) (17) 

Since we found similar absorbance values of RR in water and in B-3
, this method was 

used. A calibration curve showed that, within the range of concentration used, there 

is a linear relationship between RR concentration and absorbance. This formula was 

not usable for centrifuged liposome suspensions since remaining lipids caused additional 

absorption at 360nm. A360nm was replaced by A *360nm for these suspensions. 

A3~nm = ratio* AS33nm (18) 

where 'ratio' is the ratio of A360nm over A533nm for RR solutions without liposomes. 

When the spectrophotometrically obtained concentration was compared with the 

concentration obtained from weighing, significant differences between listed and actual 
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dye contents were found. Sigma-RR (listed dye content 35 % ) contained about 30% of 

the dye. Fluka-RR (listed dye content 90-95%, 99.5% for this batch) actually contained 

only about 20-25 % . Fluka uses a chlorine-titration as purity test. This method fails 

because most impurities contain chlorine as the counterion (see chapter IV). 

ADSORPTION MEASUREMENTS 

All adsorption measurements were done by comparing two samples of the same 

initial RR concentration, one containing liposome-buffer solution, the other containing 

just buffer. Ultracentrifugation removes most of the liposomes as well as the adsorbed 

RR molecules. The resulting absorption difference between both solutions is 

determined spectrophotometrically and allows a calculation of the amount of RR 

adsorbed. 

Experimental Procedure 

RR stock solutions were diluted to appropriate concentrations and mixed with 

the same volume of liposomes or buffer in 8ml round bottom polypropylene tubes. 

Final volumes were between 2 and 4ml. For dilutions and repeated volumes, 

Finnpipettes with adjustable volume (50 to 200µ1 and 200 to 1000µ1) were used 

(Labsystems, Helsinki, Finnland). The tubes were filled with nitrogen and vortexed 

briefly. Tubes containing the lipids were frozen in liquid nitrogen, thawed in water at 



26 

25°C, and vortexed for a few seconds. It was found that five freeze-and-thaw cycles 

(FAT-cycles) are sufficient to reach an equal distribution of RR on the surface of the 

liposomes. Tubes made from glass or polystyrene tended to break during this process. 

Next, the lipid containing solution was transferred to 13.5ml open-top, thick­

walled ultracentrifuge tubes made from polycarbonate (Nalgene Company, Rochester, 

NY) and centrifuged at 100,000xg (20°C) for two hours. A Beckman L2-65B 

Ultracentrifuge with a type 50 Ti rotor (Beckman Instruments, Inc., Palo Alto, CA) 

was used at 40,000rpm. Pellet and supernatant were separated directly after 

centrifugation and the supernatant was kept in closed polypropylene tubes until 

measurements were taken. 

It has been shown several times that neither FAT nor the centrifugation protocol 

had a measurable influence on the RR concentration. 

For spectrophotometric measurements a Beckman DU-7 spectrophotometer was 

used (Beckman Instruments, Irvine, CA). Calibration of the meter was done with an 

absorbance standard (model 202, Gilford Instrument Laboratories, Inc., Oberlin, OH). 

The absorbance values were also compared to several other spectrophotometer. 

Either semi-micro cells made from UV grade methacrylate (minimum 

wavelength 275nm) or selfmasking micro cells made from Spectrosil (minimum 

wavelength 190nm) were used. These were bought from VWR Scientific, Portland, 

OR. Each cell had lOmm optical path length. Due to the variations in pathlength, the 

plastic cells were compared to saturated quartz cells. From this a correction factor was 
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determined. Because they showed less interaction between solution and cell walls (see 

chapter IV), plastic cells were used whenever possible. 

We preferred to use the spectrophotometer for absorbance units in the range of 

0.1 and 1.5 only. Denser solutions were diluted 10 or 100 times and the actual dilution 

factor was figured spectrophotometrically. For less dense solutions it would have been 

better to use cells with larger path lengths, but this would have required much larger 

volumes of the expensive solutions. 

It was found that absorbance values vary slightly with the position of the cell in 

the cell holder, therefore the cell was always inserted in the same direction and each 

measurement was repeated at least three times. If not stated otherwise, all absorbance 

values were measured with the same cell filled with buffer solution as background. 

Spectrophotometer 

Fig.5 shows an optical diagram of the DU-7 spectrophotometer. The instrument 

is designed for the visible and the near UV region of the optical spectrum. Scans 

between 190 and 800nm are possible. The optical path starts with two source lamps: 

a deuterium gas discharge lamp for UV and a tungsten lamp for visible light. A mirror 

is used to switch between both lamps. A collimator focusses the beam onto the 

holographic grating that works as a single monochromator. The grating reflects a 

diffracted beam and out of this, the exit slit isolates a beam with a narrow wavelength 

range. The width of this slit determines the wavelength resolution of the 

spectrophotometer. The beam passes next through a series of filters which control the 
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Fig.5: The DU-7 spectrophotometer. 

amount of energy that proceeds through the system from that point on. Two transfer 

mirrors focus the beam into the sample compartment where the cell is fixed on the cell 

holder. The remaining part of the beam is focussed onto a photomultiplier tube that 

converts the optical beam into an electronic signal. This signal is amplified, and finally 

displayed as an absorbance value. 

This spectrophotometer has a single beam system. That means that the back-

ground has to be determined separately, stored, and then automatically subtracted. An 

automatic calibration done before each use of the instrument ensures that measurements 

are independent of contamination or the position of the cell holder. We observed 

however, different absorbance values depending on the position of the cell holder. This 

is caused by a reduction in beam intensity when the focus of the beam is outside the 
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cell and therefore parts of the beam are blocked by the cell holder. During all 

absorption measurements the beam focus was in the cell and the cell holder was not 

moved. Neither holder nor cell walls were struck by the beam. To check that, the 

grating was set in such a way as to reflect the zero order of the spectrum. This 

produced a beam that was bright enough to be seen with the unaided eye. 

ELECTRON MICROSCOPY 

Pictures of liposomes were taken on a Hitachi HS-7S transmission electron 

microscope (TEM, Hitachi Instruments, San Jose, CA) at 50KV acceleration voltage. 

The specimens were prepared on 300-mesh copper grids coated with a very thin carbon 

film, about 300A thick. To produce such a thin carbon film, the grids were coated first 

with a parlodian film and then with a thin layer of carbon. Shortly before specimen 

preparation the parlodian film was dissolved in acetone and the grid washed in ethanol. 

This method produced easily and reproducibly stable thin carbon films with best quality 

for TEM imaging. Samples were stained by adding Ruthenium Red and processed as 

for the adsorption measurements. Drops containing 3 to 5µ1 of the suspension were 

brought onto a grid and dried. 



CHAPTER IV 

RESULTS AND DISCUSSION 

RUTHENIUM RED SPECTRUM 

Fig.6 shows a typical spectrum of commercially available RR: a main peak at 

535 ± lnm (RR) with a slight shoulder at about 480 to 500nm, a very broad peak at 

735 ±5nm (RV), a small peak (sometimes without decrease to lower wavelengths) at 

362±3nm, and a sharp peak at 256± lnm with a broad shoulder around 300nm. 

Spectrophotometric concentration determination gives a purity of 21 ± 3 % for the batch 

used in our experiments. 

The spectrum can be understood qualitatively when compared to the spectra of 

pure RR impurities given by Luft (197la). He found RR at 533nm, RV at 734nm, and 

RB at 360 and 460nm. An overlay between the 533nm RR peak and the 460nm RB 

peak accounts for the slight shoulder and the average 2nm offset of the RR peak 

observed in our batch. RR shows another smaller peak at 376nm. Luft gives for the 

ratio of these peaks 533nm:376nm=l0.9 (Fletcher et al. 1961: 9.8). Since we found 

a constant value of 5 ±0.6 for the ratio of the RR peak and the RB peak it is probable 
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that half of the RB peak is caused by RR. The 376nm RR peak also causes the average 

2nm offset of the RB peak. 

Luft gives three other potential impurities: ruthenium (III) hexamine trichloride 

(273nm), ruthenium (III) chloropentamine dichloride (327nm), and nitrosylruthenium 

(250nm). Hochmann et al. (1981) measured 275nm for the peak of ruthenium (Ill) 

hexamine trichloride and 323nm for ruthenium (III) chloropentamine dichloride. Our 

observed 256nm peak might be caused by nitrosylruthenium. This is supported by an 

experimental observation: the black pellet, obtained during RR preparation, was only 

weakly soluble and the spectrum showed a single sharp peak at 258 ±2nm in either 
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Fig.6: Ruthenium Red spectrum in S-3 (1.34 • 10·5M RR, lcm quartz cell). 
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distilled water or buffer solution. Fletcher et al. (1961) describe nitrosylruthenium as 

a weakly soluble substance obtained during centrifugation of a RR preparation. The 6 

to 8nm shift of this peak compared to the literature values is due to a solvatochromic 

effects since Luft measured the spectra in O. lM NH.iOAc. No other spectra of 

nitrosylruthenium were found in literature. The shoulder of the 256nm peak in our 

batch is probably caused by ruthenium (III) hexamine trichloride. No shoulder was 

observed in the absorption spectra of the pellet. This agrees with ruthenium (III) 

hexamine trichloride being easily soluble in water (Gmelin 1938). 

TEST OF EXPERIMENTAL PROCEDURES 

Time Stability of RR Solutions 

RR solutions were observed for 50 days. During this time they changed their 

color from magenta to reddish brown to clear. For s-3 as well as for HEPES buffer 

solutions an exponential decay of the 533nm RR peak was observed (Table I, Fig. 7). 

RR in HEPES buffer seemed to decay a little bit faster than in s-3 buffer. A previously 

observed anomalous behavior of RR in s-3 buffer (increase in absorbance during the 

first 100 hours) was found to be due to solvation of undissolved RR that was not 

centrifuged down. In preparations which were centrifuged for 2 hours at 100,000xg 

this effect was not observed. The peaks at 256nm and 362nm were stable during the 
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Table I: Exponential fit of RR decay in buffer solution. 

I model: a· exp(-b ·time) I 
I II a [ • 10-11 I b [. 10-31 I 

I 
B-3 

I 
1.73±0.01 1.35±0.03 

HEP ES 1.94±0.03 1.58±0.09 

50 days of observation, although they fluctuated up to 17% of the mean. The peak at 

734nm showed a slight decay. 

The unstable behavior of RR solutions after preparation demanded some 

compromise for their usage. We prepared stock solutions at least one day in advance 

and they were used for no more than 5 days. 
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Fig.7: Time-dependent decay of the 533nm RR peak in s-3 and HEPES buffer solution 
at pH 7.4. Exponential fits are given in Table I. 
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Interaction of RR with Glassware 

RR strongly interacted with all the glassware used in the experiment. Pyrex glass 

seemed to adsorb less than Kimax glass but either one introduced large measurement 

errors. All beakers and tubes used in connection with RR were therefore replaced by 

plastic ones. No measurable adsorption to polycarbonate, polypropylene, or 

polystyrene was found. Corbalan-Garcia et al. (1992) used a different approach to 

solve this problem. Instead of measuring free RR they measured directly the RR bound 

to the membrane by dissolving pelleted vesicles in SDS. 

Fig. 8 shows the interaction of RR with the two different kinds of cells used in 

our spectrophotometer. Clean quartz cells strongly adsorbed RR and were saturated 
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after about 15 min. When the saturated cells were filled with the same RR solution 

without intermediate cleaning almost no adsorption was observed. Clean plastic cells 

showed far less interaction with RR than clean quartz cells. A difference in optical path 

length between both cells is causing the offset in Fig.8. All plastic cells were calibrated 

with two saturated quartz cells to get comparable results. 

FAT-Cycle Characterization 

We did two experiments to test and optimize our FAT procedure. In the first 

experiment we measured the RR concentration in the supernatant of centrifuged RR­

liposome suspension as a function of the number of FAT cycles (Fig.9). Adsorption 

is proportional to the difference between final equilibrium concentration of RR and 

initial RR concentration when the adsorbing species are completely separated from the 

final solution. Only very small adsorption was observed without FAT. This indicates 

that the liposomes were mostly multilamellar and adsorption could only occur to the 

outermost layer. For up to 4 FAT cycles the adsorption increased with FAT cycle 

number. The solid line in Fig.9 represents an exponential fit with the data for 0 to 4 

FAT cycles. For 6 or more FAT cycles adsorption seems to decrease; this is an 

experimental artifact. FAT causes an increasing number of very small particles which 

are difficult to pellet by our centrifugation method. As a result the equilibrium 

concentration of RR increases. In agreement with Mayer et al. (1985) we considered 

5 FAT cycles ideal. 
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Fig.9: FAT cycle dependent adsorption of RR to liposomes (lmg/ml lipids PC:PS 10: 1, 
1.03 • 10-5M RR, 2h centr. at 100,000xg). 

The second experiment characterized liposome particle size as a function of FAT 

cycles. According to Angstrom's proportionality (Eq. ( 16)) scattering should produce 

a line in a log-log plot if the absorbance is plotted as a function of the wavelength. The 

slope of this line gives qualitative information about the particle size. For a given 

sample, increase of absorbance at a certain wavelength indicates increase in the density 

of particles with a diameter comparable to that wavelength. Fig.10 shows a log-log 

plot of absorbance due to scattering as a function of the wavelength for liposome 

suspensions with different numbers of FAT cycles. Fits of the data are given in Table 

II. An increase in the wavelength-exponent a indicates decrease in the average 

liposome size. The values for 0 FAT cycles differ most from the predicted form of a 
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Fig.10: Influence of FAT cycles on the wavelength dependence of absorption due to 
scattering of liposomes (0.17mg/ml lipid, PC:PS 10: 1 in B·3, pH7.3) 

line. FAT causes a decrease of absorbance values for large wavelengths and an 

increase for small wavelengths indicating a decrease respectively increase in particle 

density for particle sizes comparable to the wavelength. 

Table II also gives the interception point of two fits each. Although 

measurement errors increase with increasing FAT cycle number this point might 

provide some valuable information about the liposome size. The interception point of 

two fits (Ip) corresponds to the interception point of the two particle size distributions 

{10 ) which produced the scattering. Fig.13 in 'Electron Micrographs' shows a typical 

theoretical size distribution. Only for 10 , particles smaller than this point (that is the 

left side of 10 ) increase and particles larger than 10 decrease if the transition from (n-1) 



38 

Table II: Fits and interception points for the FAT cycle dependence of scattering. 

I model: A=a·'A.-a. [A. in nm]* I 
I FAT n II a I ~ I lp(n,n+ l) [in nm] I 

FATO (2.43 ±0.66) .10-9 1.22±0.02 495 

FAT 1 (1. 70±0.49). 10-13 1.88±0.02 352 

FAT 2 (6.83±1.91) • 10-16 2.25±0.02 376 

FAT 3 (3.47±1.06) .10-11 2.45±0.02 283 

FAT4 (3.33 ±0.87) • 10-18 2.61 ±0.02 252 

FAT 5 (2.11±0.57).10-18 2.64±0.02 224 

FAT 7 (2.95 ±0.90) .10-19 2.77±0.02 229 

FAT9 (6.60± 1.84). 10-20 2.87±0.02 

•The model originates in eq.(16); a is a parameter without physical significance. 

to n FAT cycles is considered. For small changes in IF the maximum of a size 

distribution for n FAT cycles (that is the most probable size) is the average of the two 

fit interceptions IF(n-1,n) and lp(n, n + 1). The result for 5 FAT cycles (238nm) comes 

close to the size distribution maximum found on the electron micrograph (about 290nm 

diameter). It would be interesting to test this predicted relation more extensively since 

it would be an easy and cheap method to estimate liposome size. 

Measurement Errors 

Table III summarizes systematic and statistical errors which occur in our 

experiment. If not stated otherwise, errors are calculated or measured. Estimated 

values are values for the worst case. 
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Table III: Systematic and statistical measurement errors. 

I cause of error II description of error I effect* I 
I systematic errors I 

spectrophotometer absorbance values are about 5 to shift of adsorption isotherm 
10 % too large along the abscissa (about 5 to 

10%) 

remaining lipids < lµg/ml lipid remain in the < 1 % less adsorption 
supernatant after centrifugation 

RR trapping <0.7% RR per mg/ml might be < 1 % more adsorption ( < 7 % 
trapped by pelleted liposomes for high lipid concentrations) 

laboratory equipment adsorption to beakers, tubes, or not measured 
cells 

competitive adsorption simultaneous adsorption of other smaller RR adsorption (see text) 
molecules than RR 

I statistical errors I 
spectrophotometer noise, position of cell in cell absorbance error 

holder 0.00-0.02 20% 
0.02-0.05 8% 
0.05-0.10 5% 
0.10-0.50 3% 
0.50-2.00 2% 

pipettes reproducibility of dilutions 1: 10 0.5% 
1:2 0.3% 

liposome preparation+ lipid concentration estimated 3 % 

lipid composition estimated 10-15 % 

• 'effect' compares the experimental result including the particular measurement 
error to the ex~ct result. Standard deviations are obtained by multiplication with the 
respective value. 

+ these errors affect the isotherm as a whole, not single measurement points. 
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We calibrated the spectrophotometer with one absorption standard. Results 

indicate that our instrument might give about 5 to 10% too large absorbance values. 

However, no second standard was available and compared to other spectrophotometers 

the values were within their fluctuation. Larger absorbance values cause a shift of the 

adsorption isotherm in the direction of greater concentration. 

Pelleting of liposomes in the centrifugation protocol was not completely 

successful for very small particles. This effect was larger for high ionic strengths (high 

RR concentrations) and larger for high surface charges but almost independent of the 

lipid concentration. Assuming a linear relation between lipid concentration and 

absorption we estimated the remaining lipid concentration to be smaller than lµg/ml. 

If lipids remain in the sample the RR equilibrium concentration is higher and therefore 

adsorption values are smaller. Tortorella et al. (1993) describe a centrifugation method 

which is capable of pelleting even small particles by centrifugation. They aggregate 

particles by adding streptavidin. Smejtek and Wang (1993) separated liposomes by 

ultrafiltration. However, we considered ultracentrifugation the most convenient and 

exact. 

Lipid membranes are permeable for small molecules (like water) but 

impermeable for large ones (like RR). Therefore there might be a possibility of RR 

being trapped in pelleted liposomes but the water released. This would cause higher 

adsorption values since the equilibrium concentration would decrease. Mayer et al. 

(1985) give as trapping volume 5µ1 per µmol lipid for FAT liposomes. This limits the 
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RR concentration change due to trapping in pelleted liposomes to less than 0. 7% per 

mg/ml lipid concentration. 

Probably the largest measurement error is caused by competitive adsorption of 

RR impurities. Our spectrophotometric "window" monitors three molecules besides 

RR: adsorption of RV was too small for quantitative measurements; nitrosylruthenium 

did not seem to adsorb; RB clearly showed adsorption. Apart from differences for very 

small absorbance values (caused by remaining lipids) the peak-ratio of RR:RB was the 

same for the initial and the equilibrium RR concentration suggesting that both molecules 

behave similarly. The structure of RR and RB differs only in valence ( +7 for RB, +6 

for RR, Fletcher et al. 1961). We therefore regard RR and RB as one kind of 

adsorbing molecule. The sum of both molecule concentrations gives the actual 

concentration of RR-like adsorbing molecules which may be up to 45 % larger than the 

spectrophotometric determined RR concentration. Similar to the error caused by the 

spectrophotometer, this effect would shift the adsorption isotherm along the abscissa up 

to 45 % . It is rather probable that other ions compete with RR, too. Ruthenium (III) 

hexamine trichloride, a comparably weak absorbing substance, might be one of them. 

Since it is trivalent the adsorption should be smaller for this ion than for RR but its 

presence might still alter the shape of the adsorption isotherm slightly. Adsorption of 

monovalent potassium ions (from the B-3 buffer solution) and adsorption of anions are 

negligible. 

Noise in the spectrophotometric measurements, the position of the cell in the cell 

holder, pipetting of solutions, and the liposome preparation protocol caused some 
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statistical errors. The overall statistical error was estimated 15 to 30 % , depending on 

the absorbance value. 

ELECTRON MICROGRAPH 

Electron micrographs provided valuable information on shape, size and size 

distribution of our liposomes. A typical electron micrograph of liposome suspension, 

shows three different features (Fig.11): First, dark, mostly spherical or ellipsoidal 

structures confined by one or two black lines are liposomes. Second, large areas in 

different grey shades with irregular boundaries are sections with more or less stain. 

Third, black dots with diameters less than one mm are impurities. It was a problem 

to obtain high quality pictures since our preparation method frequently produced layers 

that were too thin or too thick. 

We believe that the liposomes showed here are single layered. According to 

Johnson et al. (1971), the occurrence of two black lines at the edge of most liposomes 

could be understood in terms of Fig. 12: a spherical monolayer vesicle in solution (A) 

collapses during drying of the sample to form a cup-like structure (B) which appears 

as a particle with a double lined boundary on the micrograph (C). The picture is 

comparable to pictures of liposomes reported in the literature (Papahadjopoulos and 

Miller 1967). 
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Fig. 11: Electron micrograph of liposome vesicles at 8000x. The bar indicates 2µm. 
lOmg/ml lipids, PC:PS 10: 1, 2 • 10-5M RR, 5 FAT cycles. 

Winterhalter and Lasic (1993) discuss a theoretical approach to describe the size 

distribution of lipid vesicles starting from their thermodynamical equilibrium properties 

CJ>(R) = ~exp[ -( __!_ )2] 

~ 2Rm 
(19) 



44 

- - ~-... 

A B c 
Fig.12: Interpretation of the electron micrograph (after Johnson et al. 1971). 

w is the probability to find a vesicle with radius R (R in nm) and Ru1 corresponds to 

the maximum in the distribution (the most probable radius). Size distributions are 

obtained from this by multiplication with a factor S which has the dimension of a 

length. A fit of this model to our data is shown in Fig.13. S was found to be 23nm, 

Rn was found to be 103nm, and the actual maximum of the theoretical distribution was 

found to be at about 150nm. Total number of particles counted was 268. The 

experimental distribution shows slightly larger particles than expected from the 

theoretical distribution. For particle radii greater than 600nm the model fails. 

Particle sizes for SR vesicles (Scales and Inesi 1976, Arrio et al. 1974) are 

smaller than our liposomes by a factor of about two . However, particle sizes of 

liposomes vary with preparation method. Heavy sonication, for example, produces 

particles with average radii of 12nm (Johnson et al. 1971). 

Air dried samples are not ideal for size determinations since the drying process 

may change the structure of the samples. 
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Fig.13: Size distribution of the liposomes showed in Fig. 11 (excluding the three very 
large liposomes). 

MAIN FEATURES OF THE ADSORPTION MODEL 

Our studies of adsorption of RR to liposomes with various surface charge 

densities and lipid concentrations were based on spectrophotometric measurements of 

the aqueous concentrations of RR in the absence ([RRlniJ and in the presence ([RR]eq) 

of liposomes. Adsorption isotherms are plots of the following ratio RRR as a function 

of the initial RR concentration. 
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RRR = (20) 

RRR varies between 0 and 1; the larger RRR the smaller the adsorption. Experimental 

data are fitted with theoretical adsorption isotherms by means of two parameters: qeff, 

the effective valency of a RR molecule, and l3mRR' the linear partition coefficient. l3mRR 

is the ratio of the association constant Km to adsorption site area P8 • The choice of l3mRR 

as a parameter is not ideal since ~ is not proportional to Ps. However, the changes 

are too small (Fig.14) to allow a simultaneous determination of~ and Ps from the 

fitted curves for the experimental data. The legend in Fig.14 shows the factor by which 

~and Ps are multiplied. All our theoretical adsorption isotherms assume a constant 

adsorption site area of 5nm2 and a variable association constant Km. 

Effects of qerr and /3mRR on the adsorption isotherms are depicted in Fig. 15 and 

Fig.16. Changes in qerr drastically changed the adsorption isotherm for low RR 

concentrations but had less of an effect at high concentrations indicating electrostaticall y 

driven adsorption that is limited by available adsorption sites. Changes in {3111RR resulted 

in similar effects at low RR concentrations as the changes in qem but in addition, 

affected the distribution isotherm close to saturation. 
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1 Q-2 

Fig.14: Effect of simultaneous changes of Km and Ps for a constant !3mRR (legend: factor 
'1 ': Km= 1.5 l/M, P5=5nm2
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Fig.16: Dependence of adsorption isotherms on the linear partition coefficient {3mRR [in 
M·1nm·2

], (qerr=3.5, lmg/mlPC:PS 10: 1). 

ADSORPTION TO LIPOSOMES 

We determined adsorption of RR to PC, PC: PS, and PC: PI membranes in 

various lipid concentrations (0.3, 1.0, 3.0, lOmg/ml at a ratio 10: 1 of uncharged to 

charged lipids) and various ratios of uncharged to charged lipids (20: 1, 10: 1, 5: 1 at 

lmg/ml lipid concentration). Buffer solution was B-3 at pH 7.3. No salt was added to 

the solution. Concentrations were calculated from the absorbance data using Luft's 
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formula (Eq.17) for RR solutions and the modified formula (Eq.18) for lipid containing 

solutions. Fits of the experimental data were done numerically with a computer 

program written by Dr. Smejtek and the quality of the fits was checked visually and by 

minimizing a weighted x2
• R0 is the ratio of [RR]eq over [RRlinit for the datapoint n. 

X2 = _1_~ R::1' _ R th 
N L..,. ( n )2 

-1 n=l Rcxp 
n 

(21) 

It was not possible to fit the data only by means of adsorption site area Ps and 

association constant Km, even when all possible systematic errors were considered. To 

solve this problem we introduced an effective valency qeff of RR ions. We also used 

the linear partition coefficient f3mRR' the ratio of ~ to P8 , to reduce the number of 

parameters. Smejtek and Wang (1990) give values of P8 = 5nm2 for some lipophilic 

monovalent ions that adsorb below the surface of the lipid bilayer; RR most probably 

adsorbs to the surface. Adsorption site areas for monovalent lipophilic ions are 

comparable to adsorption site areas of about trivalent ions that adsorb to the surface if 

one accounts for the changes in the dielectric constant (about 8: 1 for Ew:Em). Lower 

limit for Ps should be the size of the RR molecule (about 0.3nm2
). Higher valencies 

should produce larger exclusion disks. We chose 5nm2 for Ps in all fits. Values for 

{3mRR are only comparable for constant qeff since both parameters are strongly related. 

Errors for qeff represent the range of valencies for which fits with comparable low x! 

were obtained; for the optimum qeff variation of {3mRR within the given error bars was 

10 to 20%. 
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PC: PS Ratio Effects 

Fig. 17 shows the dependence of the adsorption isotherm on the ratio of charged 

to uncharged lipids composed from PS and PC; fit-parameters are given in Table IV. 

Tabels VIII, IX, and X in the appendix give additional data. The GCS theory was able 

to describe the adsorption isotherms if the effective valency was allowed to vary. 

Effective valencies decreased with increasing surface charge density. We could not 

obtain realistic fit-parameters for pure PC membranes since the adsorption was too 

small when compared to the measurement errors. Experiments with higher lipid 

concentrations may provide better experimental data. 
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Fig.17: Adsorption isotherms for different ratios PC:PS (lipid cone. lmg/ml). 
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Table IV: Fit parameter for the PC:PS ratio dependence (Fig.17). Lipid cone. lmg/ml. 

I PC:PS II qeff I {3mRR [nm] I x2 
[ • 10-21 I 

1:0 n. a. n. a. n. a. 

20:1 4.1±0.3 0.89 0.019 

10:1 3.8±0.2 0.54 0.778 

5: 1 2.9±0.1 0.52 0.130 

PC:PS Lipid Concentration Effects 

Fig.18 shows the dependence of the adsorption isotherm on the lipid 

concentration of PC:PS 10: 1 liposomes; fit-parameters are given in Table V (Tables IX, 

XI, XII and XIII in the appendix for additional data). Experimental data are correctly 

described by the GCS theory for a fixed qeff=3.8. The optimum values for qeff varied 

slightly but qerr=3.8 was always within the measurement error. 
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Table V: Fit parameter for the lipid concentration dependence (Fig.18). PC:PS 10: 1; 
[ ... ] are values for qerr=3.8 

lipid cone. Qeff /3mRR [nm] x2 
[ • 10-21 

[mg/ml] 

0.3 3.9±0.2 0.81 [0.99] 0.079 [0.090] 

1.0 3.8±0.2 0.54 0.778 

3.0 3.8±0.2 0.33 1.42 

10.0 3.7±0.2 0.43 [0.34] 2. 73 [5.09] 

PC: PI Ratio Effects 

Mixtures of PC and PI showed the same features as mixtures of PC and PS 

(Fig.19, Table VI for fit-parameter, Tables XIV and XV in the appendix for additional 

data). The effective valency also decreases with increasing surface charge density. 
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Fig.19: Adsorption isotherms for different ratios PC:PI (lipid cone. lmg/ml) . 
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Table VI: Fit parameter for the PC:PI ratio dependence (Fig.19). Lipid cone. lmg/ml. 

PC:PI qeff f3mRR [nm] x2 
[ • 10-21 

20:1 n. a. n. a. n. a. 

10:1 3.9±0.2 0.21 0.071 

5: 1 3.2±0.1 0.16 0.258 

Values for the effective valencies are slightly larger compared to PC:PS membranes. 

The differences are probably caused by the experimental protocol: PI has an about 12 % 

larger molecular weight than PS; PC:PI mixtures for a certain mass ratio contain, 

therefore, less charged phospholipids than PC: PS mixtures. The resulting lower surface 

charge density causes a larger effective valency. 

PC:PI Lipid Concentration Effects 

Lipid concentration dependence of adsorption to PC:PI membranes is similar as 

found for PC:PS membranes (Fig.20, Table VII for fit-parameter, Tables XIV, XVI, 

Table VII: Fit parameter for the lipid concentration dependence (Fig.20). PC:PI 10: l; 
[ ... ] are values for Qerr=3.8 

lipid cone. 

I 
qeff 

I 
{3mRR [nm] 

I 
x2 

[ • 10-21 
I [mg/ml] 

0.3 3.9±0.3 0.08 [0.10] 0.099 [0.124] 

1.0 3.9±0.2 0.21 [0.25] 0.071 [0.073] 

3.0 3.9±0.2 0.18 [0.23] 0.690 [0.360] 

10.0 3.6±0.2 0.24 [0.17] 1.09 [2.10] 
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XVII, and XVIII in the appendix for additional data). The linear partition coefficient 

is significantly smaller than for PC:PS membranes, indicating less adsorption. 

Discussion 

Our data show that the simple GCS theory describes, surprisingly well, 

adsorption isotherms of the hexavalent ion RR when an effective valency is introduced. 

The questions are why it is necessary to introduce an effective valency and why is this 

valency dependent on the membrane composition? 
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As follows from the Boltzmann factor in Eq.(9), qeff mainly controls the 

concentration of RR at the aqueous side of the membrane-water interface. For a 

surface potential of 70mV (that is e.g. the value for PC:PS 10: 1 at low RR 

concentrations) qerr=6 means an increase by a factor of about 20 • 106 of the RR 

concentration at the interface compared to the bulk aqueous concentration. If the RR 

ions could fulfill this prediction they had to be packed denser than in the solid state. 

The finite size of the ions (which is not accounted for in our theory) is therefore one 

reason why an effective valency had to be introduced; screening of RR ions by buffer 

ions may be another. Furthermore, ion-ion repulsion which may be important at high 

local RR concentration is not accounted for by our theory. 

An increase of the surface charge density also increases the membrane surface 

potential. Finite size and ion-ion repulsion limit the available space in front of the 

membrane. For this reason the dependence of the ion concentration on the surface 

potential more probably obeys a saturation curve than an exponential increase (as 

produced by the increasing surface potential in the Boltzmann factor). A decrease of 

qeff is associated with an increase of the surface potential produced by an increasing 

concentration of charged phospholipids. Effective valencies are therefore one 

possibility to account for finite size effects and ion-ion interactions. Carnie and 

McLaughlin (1983) calculated and Alvarez et al. (1983) measured the adsorption of 

large divalent cations including finite size effects. In agreement with our results they 

found less adsorption for high ion concentrations than predicted by the GCS theory. 



56 

Changes in the lipid concentration do not change the surface potential; no changes in 

the effective valency were therefore expected nor found. 

Values for the linear partition coefficient can hardly be compared to values given 

in the literature for other ions since {3mRR and qeff are strongly related. We found that 

PC:PI liposomes adsorb significantly less than PC:PS liposomes for a constant qeff· 

This result disagrees with data presented previously: Eisenberg et al. (1979) found 

larger adsorption to PI liposomes than to PS liposomes for several monovalent ions; 

Chung et al. (1985) also found slightly larger adsorption of the tetravalent ion 

Gentamicin; Langner et al. (1990) found an equivalent electrostatic potential profile for 

PC:PI 5: 1 and PC:PS 5: 1 membranes. Our result may suggest some specific 

interactions of RR with PS. Luft (197la) found different staining reactions of RR with 

PS and PI but he did no adsorption measurements. 

Accounting for possible systematic measurement errors (e.g. additional 

adsorption of RB as a RR-like molecule) would yield higher values of the linear 

partition coefficient and lower values of the effective valency. 

Biological Importance 

We have shown that RR ions adsorb to phospholipids and that their adsorption 

is strongly affected by electrostatic interactions. The main electrostatic effect is the 

increase of the ion concentration at the membrane-water interface. The adsorbance 

saturation occurring for high RR concentrations allows some estimates about the 
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maximum binding of RR to lipid membranes to be made. For PC: PS 20: 1 this is 

about 9±3nmol per mg of lipid (PC:PS 10: 1 about 16nmol/mg; PC:PI 10: 1 about 

8nmol/mg). These interactions should be considered in adsorption studies of biological 

membranes since a significant percentage of the phospholipids in biological membranes 

are charged. PS is the predominant charged phospholipid for many mammalian cells 

(White 1973). 

SR vesicles contain about 0.45mg of phospholipids per mg protein (Scales and 

Inesi 1976) and the surface charge densities of SR vesicles range from -5.4 · 10·3 to 

-9.2·10-3C/m2 (Arrio 1984, Liu and Oba 1990) which is comparable to membranes 

made from 20: 1 mixtures of uncharged to charged phospholipids. Corbalan-Garcia 

(1992) found a RR binding of 6nmol per mg protein to rabbit skeletal SR vesicles; 

Moutin et al (1992) found two RR binding sites on rabbit skeletal SR vesicles, one 

binds lOnmol per mg protein and may represent the high affinity Ca2+ transport sites 

of the Ca2+ -ATPase, the other binds 15-17nmol per mg protein and represents "non­

specific cation binding sites of the SR Ca2+ -ATPase or of a closely associated element". 

It is very probable that a significant part of the reported binding is due to negatively 

charged phospholipids present in the SR membrane. For a quantitative analysis the 

exact surface charge and the phospholipid composition have to be known. 



CHAPTER V 

CONCLUSIONS 

In this study we investigated interaction of the commercially available stain 

Ruthenium Red (RR) with phospholipid bilayer vesicles by means of spectrophotometric 

absorption measurements. Adsorption of RR to liposomes made from 

phosphatidylcholine and phosphatidylserine or phosphatidylinositol in various 

compositions and concentrations was measured. Experimental adsorption isotherms 

were fitted with the Gouy-Chapman-Stem adsorption model from which the linear 

partition coefficient and an effective valency of the Ruthenium Red ion were 

determined. Furthermore, Ruthenium Red solutions and freeze-and-thawing of 

liposomes were characterized and electron micrographs of liposomes were taken. 

Major findings are: 

1) The Gouy-Chapman-Stem theory is able to describe adsorption of a hexavalent ion 

to charged phospholipid bilayer vesicles if an effective ion valency is introduced 

which takes care of the finite size of the ion and ion-ion repulsion. 

2) Ruthenium Red adsorbs to phospholipid vesicles and its adsorption is larger for 

PC:PS membranes than for PC:PI membranes. Attractive electrostatic interactions 

between RR ions and negatively charged membranes strongly increase adsorption 

by increasing the ion concentration at the membrane-water interface. These 
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interactions have to be considered in studies of RR adsorption to biological 

membranes and membrane proteins due to the presence of negatively charged 

phospholipids in most membrane systems. 

3) Five freeze-and-thaw cycles are sufficient to obtain an equilibrium distribution of 

large ions at the membrane-water interface of liposomes. The diameter of vesicles 

produced by this procedure is typically 200 to 300nm. 

The significance of this study is that we have developed understanding of 

adsorption of RR to well defined artificial lipid membranes. Results of this work 

provide a basis for the understanding of interactions between RR and biological 

membranes. 
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APPENDIX 

A: Glossary 

e molar decadic extinction coefficient 

a wavelength exponent (see Eq.(16)) 

{3mRR linear partition coefficient 

e0 permittivity of free space (=8.85419·10-12As(Vm)-1
) 

em dielectric constant of the membrane interior 

Ew dielectric constant of the electrolyte 

A wavelength 

p volume charge density 

cr0 native membrane surface charge density 

crT, crR, crM scattering cross sections 

crm membrane surface charge density 

cf> electrostatic potential 

4>0 electrostatic surface potential 

A absorbance 

B-3 phosphate-citrate-borate buffer (0.002:0.002:0.0005M) 

FAT freeze-and-thaw 

GCS Gouy-Chapman-Stem 

I intensity of monochromatic light emerging from the sample 

I0 intensity of monochromatic light entering the sample 

IF interception point of two fits in Table II 

k8 Boltzmann constant ( = 1.380662 • 10-23JK1
) 

~ intrinsic association constant 

L UV large unilamellar vesicle 

ML V multilamellar vesicle 
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PC Phosphatidy lcholine 

PI Phosphatid y linosi tol 

PL membrane surface area per lipid 

PS Phosphatid y I serine 

Ps surface area per adsorbed RR ion 

q ion charge including the sign 

qeff effective charge of the RR ion including the sign 

RB Ruthenium Browne 

RR Ruthenium Red 

RV Ruthenium Violett 

SPF space filling factor 

SR sarcoplasmic reticulum 

SUV small unilamellar vesicle 

T temperature 

vm membrane surface potential 

[L] volume density of lipids 

(RR)m membrane surface density of adsorbd RR 

[RR]eq bulk aqueous concentration of RR after adsorption of the ions to the membrane 

(equilibrium concentration) 

[RR]if RR volume concentration at the aqueous side of the membrane-solution interface 

[RR]init 

X:Y 10:1 

bulk aqueous concentration of RR before adsorption of the ions to the 

membrane (initial concentration) 

9 mass parts X and 1 mass part Y 
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B: Tables 

Table VIII: Experimental data and fitted data for PC:PS 20: l; lipid cone. lmg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2] [mV] 

0.510 0.858 0.010 0.698 0.005 -42.4 

1.09 0.721 0.100 0.701 0.053 -42.3 

2.31 0.770 0.178 0.704 0.094 -42.3 

5.69 0.831 0.316 0.709 0.164 -42.1 

11.4 0.874 0.562 0.717 0.284 -41.9 

22.3 0.901 1.00 0.730 0.481 -41.5 

55.2 0.933 1.78 0.751 0.791 -40.8 

110. 0.944 3.16 0.779 1.25 -39.8 

246. 0.964 5.62 0.815 1.86 -38.4 

609. 0.993 10.0 0.854 2.61 -36.7 

1230 0.994 17.8 0.891 3.46 -34.6 

additional data: 31.6 0.923 4.37 -32.2 

56.2 0.947 5.28 -29.7 

100. 0.965 6.20 -27.0 

178. 0.978 7.10 -24.1 

316. 0.986 8.00 -21.3 

562. 0.991 8.93 -18.3 

1000. 0.994 9.94 -15.4 

qeff = 4.1; {3mRR = 0. 886nm; X2 = 0.192 • 10-3 
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Table IX: Experimental data and fitted data for PC:PS 10: l; lipid cone. lmg/ml 

experiment data fit data 

RR cone. [RR]~/ RR cone. [RR]~/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.56 0.912 0.010 0.071 0.017 -72.3 

1.11 0.128 0.100 0.072 0.166 -72.1 

2.27 0.128 0.178 0.074 0.295 -72.0 

5.66 0.255 0.316 0.077 0.522 -71.7 

11.3 0.462 0.562 0.082 0.924 -71.3 

22.4 0.654 1.00 0.092 1.63 -70.4 

53.7 0.789 1.78 0.112 2.83 -68.9 

111. 0.881 3.16 0.156 4.78 -66.4 

224. 0.938 5.62 0.251 7.53 -62.4 

578. 0.973 10.0 0.413 10.5 -57.5 

17.8 0.592 13.0 -52.6 

additional data: 31.6 0.737 14.9 -48.2 

0.65 0.090 56.2 0.836 16.5 -44.2 

1.29 0.083 100. 0.901 17.8 -40.3 

2.55 0.120 178. 0.941 18.9 -36.6 

6.45 0.281 316. 0.965 19.9 -32.9 

12.8 0.499 562. 0.979 20.9 -29.2 

25.4 0.686 1000. 0.988 21.8 -25.6 

63.1 0.826 

124. 0.888 

qeff = 3.8; f3mRR = 0.536nm; X2 = 0.778 · lQ-2 
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Table X: Experimental data and fitted data for PC:PS 5:1; lipid cone. lmg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.531 0.021 0.010 0.020 0.018 -106.5 

1.06 0.022 0.100 0.021 0.176 -106.5 

2.16 0.027 0.178 0.021 0.314 -106.4 

5.43 0.033 0.316 0.021 0.557 -106.3 

10.8 0.057 0.562 0.021 0.991 -106.1 

21.6 0.149 1.00 0.022 1.76 -105.8 

58.6 0.509 1.78 0.024 3.13 -105.2 

97.5 0.704 3.16 0.027 5.54 -104. l 

196. 0.842 5.62 0.034 9.78 -102.2 

591. 0.956 10.0 0.051 17.1 -98.5 

17.8 0.108 28.5 -91.7 

additional data: 31.6 0.278 41.1 -81.8 

56.2 0.514 49.2 -73.1 

100. 0.700 54.0 -66.3 

178. 0.821 57.3 -60.4 

316. 0.895 59.8 -55.0 

562. 0.939 61.8 -49.8 

1000. 0.965 63.5 -44.8 

qeff = 2.9; {3mRR = 0.521nm; x2 = 0.129 .10-2 
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Table XI: Experimental data and fitted data for PC:PS 10: 1; lipid cone. 0.3mg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.491 0.168 0.010 0.113 0.053 -72.3 

1.01 0.217 0.100 0.121 0.524 -71.8 

2.08 0.338 0.178 0.129 0.924 -71.3 

5.73 0.652 0.316 0.142 1.62 -70.6 

10.3 0.780 0.562 0.169 2.79 -69.3 

20.6 0.874 1.00 0.221 4.64 -67.1 

54.0 0.944 1.78 0.319 7.22 -63.8 

106. 0.987 3.16 0.466 10.1 -59.8 

180. 0.984 5.62 0.622 12.7 -55.7 

446. 0.991 10.0 0.750 14.9 -51.8 

17.8 0.842 16.8 -48.0 

additional data: 31.6 0.903 18.4 -44.4 

56.2 0.941 19.8 -40.9 

100. 0.965 21.1 -37.3 

178. 0.979 22.2 -33.8 

316. 0.988 23.3 -30.3 

562. 0.993 24.3 -26.8 

1000. 0.996 25.4 -23.3 

Qeff = 3.9; {3mRR = 0.805nm; X2 = 0. 763 • lQ-3 
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Table XII: Experimental data and fitted data for PC:PS 10: 1; lipid cone. 3mg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.59 0.040 0.010 0.039 0.006 -72.3 

1.18 0.037 0.100 0.040 0.057 -72.2 

2.42 0.059 0.178 0.040 0.102 -72.2 

4.87 0.070 0.316 0.041 0.181 -72.1 

9.76 0.146 0.562 0.042 0.321 -71.9 

19.6 0.282 1.00 0.044 0.570 -71.6 

48.7 0.515 1.78 0.048 1.01 -70.9 

94.3 0.690 3.16 0.056 1.78 -69.8 

193. 0.818 5.62 0.074 3.11 -67.8 

486. 0.915 10.0 0.119 5.25 -64.3 

975. 0.967 17.8 0.236 8.11 -58.8 

additional data: 31.6 0.433 10.7 -52.7 

1.04 0.024 56.2 0.627 12.5 -47.4 

2.12 0.033 100. 0.768 13.9 -42.9 

5.62 0.022 178. 0.859 14.9 -38.7 

10.8 0.061 316. 0.916 15.8 -34.8 

22.5 0.140 562. 0.950 16.6 -31.1 

55.3 0.361 1000. 0.971 17.4 -27.3 

110. 0.517 

185. 0.613 

The additional data were not used for the fit. 

qeff = 3.8; f3mRR = 0.332nm; X2 = 0.142 · lQ-l 
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Table XIII: Experimental data and fitted data for PC:PS 10: 1; lipid cone. lOmg/ml 

experiment data fit data 

RR cone. [RR]~/ RR cone. [RR]~/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.010 0.013 0.002 -72.3 

0.100 0.013 0.018 -72.3 

0.178 0.013 0.031 -72.3 

5.37 0.012 0.316 0.013 0.056 -72.3 

10.2 0.018 0.562 0.013 0.099 -72.2 

18.1 0.021 1.00 0.013 0.177 -72.1 

46. l 0.085 1.78 0.013 0.314 -71.9 

86.5 0.228 3.16 0.014 0.558 -71.6 

179. 0.423 5.62 0.015 0.991 -71.1 

451. 0.726 10.0 0.017 1.76 -70.1 

917. 0.846 17.8 0.022 3.11 -68.3 

additional data: 31.6 0.036 5.46 -65.0 

56.2 0.085 9.20 -58.6 

100. 0.256 13.3 -49.7 

178. 0.501 15.9 -42.3 

316. 0.692 17.4 -36.7 

562. 0.815 18.6 -32.1 

1000. 0.890 19.7 -27.9 

qeff = 3. 7; {JmRR = 0.425nm; X2 = 0.273 • lQ-l 
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Table XIV: Experimental data and fitted data for PC:PI 10:1; lipid cone. lmg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.65 0.296 0.010 0.236 0.014 -67.4 

1.29 0.328 0.100 0.243 0.137 -67.2 

2.55 0.412 0.178 0.249 0.242 -67.0 

6.45 0.619 0.316 0.259 0.424 -66.6 

12.8 0.747 0.562 0.278 0.734 -66.0 

25.4 0.835 1.00 0.311 1.25 -64.9 

63.1 0.902 1.78 0.369 2.03 -63.3 

124. 0.918 3.16 0.460 3.08 -60.8 

247. 0.953 5.62 0.578 4.29 -57.7 

10.0 0.698 5.46 -54.3 

17.8 0.797 6.52 -50.8 

additional data: 31.6 0.870 7.45 -47.3 

1.26 0.317 56.2 0.919 8.27 -43.9 

2.63 0.413 100. 0.950 8.99 -40.4 

6.27 0.584 178. 0.970 9.64 -37.0 

24.0 0.828 316. 0.982 10.2 -33.5 

562. 0.989 10.8 -30.0 

1000. 0.994 11.4 -26.6 

Qeff = 3.9; f3mRR = 0.211nm; X2 = 0.713 · lQ-3 
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Table XV: Experimental data and fitted data for PC:PI 5: 1; lipid cone. lmg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.63 0.039 0.010 0.035 0.018 -101.8 

1.26 0.042 0.100 0.036 0.177 -101.7 

2.63 0.059 0.178 0.036 0.315 -101.6 

6.27 0.109 0.316 0.037 0.560 -101.4 

12.5 0.254 0.562 0.039 0.994 -101.0 

24.0 0.465 1.00 0.043 1.76 -100.1 

58.8 0.721 1.78 0.047 3.11 -99.4 

116. 0.823 3.16 0.060 5.46 -97.4 

231. 0.915 5.62 0.094 9.37 -93.6 

10.0 0.189 14.9 -87.3 

17.8 0.385 20.1 -79.5 

additional data: 31.6 0.595 23.5 -72.7 

56.2 0.751 25.8 -67.0 

100. 0.851 27.4 -61.9 

178. 0.912 28.7 -57.1 

316. 0.949 29.8 -52.5 

562. 0.970 30.7 -47.9 

1000. 0.983 31.5 -43.5 

qeff = 3.2; f3mRR = 0.158nm; X2 = 0.258 • 10-2 



78 

Table XVI: Experimental data and fitted data for PC:PI 10: l; lipid cone. 0.3mg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2] [mV] 

0.54 0.750 0.010 0.723 0.017 -67.4 

1.09 0.860 0.100 0.738 0.158 -66.9 

2.29 0.902 0.178 0.749 0.269 -66.5 

4.64 0.950 0.316 0.767 0.444 -65.9 

9.49 0.968 0.562 0.793 0.703 -64.9 

19.0 0.985 1.00 0.825 1.05 -63.5 

47.1 1.010 1.78 0.861 1.49 -61.7 

94.7 1.005 3.16 0.896 1.97 -59.5 

188. 0.993 5.62 0.927 2.48 -57.0 

10.0 0.951 2.98 -54.3 

17.8 0.968 3.46 -51.4 

additional data: 31.6 0.979 3.91 -48.3 

56.2 0.987 4.33 -45.1 

100. 0.992 4.71 -41.9 

178. 0.995 5.06 -38.5 

316. 0.997 5.39 -35.2 

562. 0.998 5.70 -31.7 

1000. 0.999 6.02 -28.3 

Qeff = 3.9; f3mRR = 0.084nm; X2 = 0.988·10-3 
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Table XVII: Experimental data and fitted data for PC:PI 10: 1; lipid cone. 3mg/ml 

experiment data fit data 

RR cone. [RR]~/ RR cone. [RR]~/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.63 0.120 0.010 0.106 0.005 -67.4 

1.26 0.140 0.100 0.108 0.054 -67.3 

2.63 0.165 0.178 0.109 0.096 -67.2 

6.27 0.237 0.316 0.111 0.169 -67.1 

12.5 0.382 0.562 0.116 0.300 -66.8 

24.0 0.553 1.00 0.123 0.528 -66.3 

58.8 0.719 1.78 0.138 0.923 -65.5 

116. 0.777 3.16 0.169 1.58 -63.9 

230. 0.865 5.62 0.230 2.61 -61.4 

10.0 0.345 3.95 -57.7 

17.8 0.505 5.30 -53.4 

additional data: 31.6 0.662 6.44 -49.1 

56.2 0.783 7.35 -45.1 

100. 0.866 8.10 -41.3 

178. 0.918 8.75 -37.6 

316. 0.951 9.33 -34.0 

562. 0.971 9.87 -30.5 

1000. 0.983 10.4 -27.0 

qeff = 3.9; {3mRR = 0.183nm; X2 = 0.690 • lQ-2 
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Table XVIII: Experimental data and fitted data for PC:PI 10: 1; lipid cone. lOmg/ml 

experiment data fit data 

RR cone. [RR]eq/ RR cone. [RR]eq/ (RR)m surf. pot. 
[µM] [RR]init [µM] [RR]init [nmol/m2

] [mV] 

0.59 n. a. 0.010 0.057 0.002 -67.4 

1.18 0.052 0.100 0.057 0.017 -67.4 

2.42 0.060 0.178 0.058 0.030 -67.4 

4.87 0.067 0.316 0.058 0.054 -67.3 

9.76 0.098 0.562 0.058 0.096 -67.3 

19.6 0.147 1.00 0.059 0.170 -67.1 

48.7 0.303 1.78 0.061 0.302 -66.9 

94.3 0.487 3.16 0.065 0.535 -66.5 

193. 0.616 5.62 0.071 0.944 -65.7 

486. 0.853 10.0 0.085 1.65 -64.4 

975. 0.941 17.8 0.116 2.84 -62.0 

additional data: 31.6 0.189 4.64 -57.9 

56.2 0.340 6.71 -52.3 

100. 0.535 8.41 -46.6 

178. 0.699 9.66 -41.6 

316. 0.814 10.6 -37.1 

562. 0.887 11.5 -32.9 

1000. 0.932 12.2 -28.9 

Qeff = 3.6; f3mRR = 0.236nm; X2 = 0.109. lQ-l 
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